1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/data.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/buffer_head.h> 11 #include <linux/sched/mm.h> 12 #include <linux/mpage.h> 13 #include <linux/writeback.h> 14 #include <linux/pagevec.h> 15 #include <linux/blkdev.h> 16 #include <linux/bio.h> 17 #include <linux/blk-crypto.h> 18 #include <linux/swap.h> 19 #include <linux/prefetch.h> 20 #include <linux/uio.h> 21 #include <linux/sched/signal.h> 22 #include <linux/fiemap.h> 23 #include <linux/iomap.h> 24 25 #include "f2fs.h" 26 #include "node.h" 27 #include "segment.h" 28 #include "iostat.h" 29 #include <trace/events/f2fs.h> 30 31 #define NUM_PREALLOC_POST_READ_CTXS 128 32 33 static struct kmem_cache *bio_post_read_ctx_cache; 34 static struct kmem_cache *bio_entry_slab; 35 static mempool_t *bio_post_read_ctx_pool; 36 static struct bio_set f2fs_bioset; 37 38 #define F2FS_BIO_POOL_SIZE NR_CURSEG_TYPE 39 40 int __init f2fs_init_bioset(void) 41 { 42 if (bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE, 43 0, BIOSET_NEED_BVECS)) 44 return -ENOMEM; 45 return 0; 46 } 47 48 void f2fs_destroy_bioset(void) 49 { 50 bioset_exit(&f2fs_bioset); 51 } 52 53 static bool __is_cp_guaranteed(struct page *page) 54 { 55 struct address_space *mapping = page->mapping; 56 struct inode *inode; 57 struct f2fs_sb_info *sbi; 58 59 if (!mapping) 60 return false; 61 62 inode = mapping->host; 63 sbi = F2FS_I_SB(inode); 64 65 if (inode->i_ino == F2FS_META_INO(sbi) || 66 inode->i_ino == F2FS_NODE_INO(sbi) || 67 S_ISDIR(inode->i_mode)) 68 return true; 69 70 if (f2fs_is_compressed_page(page)) 71 return false; 72 if ((S_ISREG(inode->i_mode) && 73 (f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) || 74 page_private_gcing(page)) 75 return true; 76 return false; 77 } 78 79 static enum count_type __read_io_type(struct page *page) 80 { 81 struct address_space *mapping = page_file_mapping(page); 82 83 if (mapping) { 84 struct inode *inode = mapping->host; 85 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 86 87 if (inode->i_ino == F2FS_META_INO(sbi)) 88 return F2FS_RD_META; 89 90 if (inode->i_ino == F2FS_NODE_INO(sbi)) 91 return F2FS_RD_NODE; 92 } 93 return F2FS_RD_DATA; 94 } 95 96 /* postprocessing steps for read bios */ 97 enum bio_post_read_step { 98 #ifdef CONFIG_FS_ENCRYPTION 99 STEP_DECRYPT = 1 << 0, 100 #else 101 STEP_DECRYPT = 0, /* compile out the decryption-related code */ 102 #endif 103 #ifdef CONFIG_F2FS_FS_COMPRESSION 104 STEP_DECOMPRESS = 1 << 1, 105 #else 106 STEP_DECOMPRESS = 0, /* compile out the decompression-related code */ 107 #endif 108 #ifdef CONFIG_FS_VERITY 109 STEP_VERITY = 1 << 2, 110 #else 111 STEP_VERITY = 0, /* compile out the verity-related code */ 112 #endif 113 }; 114 115 struct bio_post_read_ctx { 116 struct bio *bio; 117 struct f2fs_sb_info *sbi; 118 struct work_struct work; 119 unsigned int enabled_steps; 120 block_t fs_blkaddr; 121 }; 122 123 static void f2fs_finish_read_bio(struct bio *bio) 124 { 125 struct bio_vec *bv; 126 struct bvec_iter_all iter_all; 127 128 /* 129 * Update and unlock the bio's pagecache pages, and put the 130 * decompression context for any compressed pages. 131 */ 132 bio_for_each_segment_all(bv, bio, iter_all) { 133 struct page *page = bv->bv_page; 134 135 if (f2fs_is_compressed_page(page)) { 136 if (bio->bi_status) 137 f2fs_end_read_compressed_page(page, true, 0); 138 f2fs_put_page_dic(page); 139 continue; 140 } 141 142 /* PG_error was set if decryption or verity failed. */ 143 if (bio->bi_status || PageError(page)) { 144 ClearPageUptodate(page); 145 /* will re-read again later */ 146 ClearPageError(page); 147 } else { 148 SetPageUptodate(page); 149 } 150 dec_page_count(F2FS_P_SB(page), __read_io_type(page)); 151 unlock_page(page); 152 } 153 154 if (bio->bi_private) 155 mempool_free(bio->bi_private, bio_post_read_ctx_pool); 156 bio_put(bio); 157 } 158 159 static void f2fs_verify_bio(struct work_struct *work) 160 { 161 struct bio_post_read_ctx *ctx = 162 container_of(work, struct bio_post_read_ctx, work); 163 struct bio *bio = ctx->bio; 164 bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS); 165 166 /* 167 * fsverity_verify_bio() may call readpages() again, and while verity 168 * will be disabled for this, decryption and/or decompression may still 169 * be needed, resulting in another bio_post_read_ctx being allocated. 170 * So to prevent deadlocks we need to release the current ctx to the 171 * mempool first. This assumes that verity is the last post-read step. 172 */ 173 mempool_free(ctx, bio_post_read_ctx_pool); 174 bio->bi_private = NULL; 175 176 /* 177 * Verify the bio's pages with fs-verity. Exclude compressed pages, 178 * as those were handled separately by f2fs_end_read_compressed_page(). 179 */ 180 if (may_have_compressed_pages) { 181 struct bio_vec *bv; 182 struct bvec_iter_all iter_all; 183 184 bio_for_each_segment_all(bv, bio, iter_all) { 185 struct page *page = bv->bv_page; 186 187 if (!f2fs_is_compressed_page(page) && 188 !PageError(page) && !fsverity_verify_page(page)) 189 SetPageError(page); 190 } 191 } else { 192 fsverity_verify_bio(bio); 193 } 194 195 f2fs_finish_read_bio(bio); 196 } 197 198 /* 199 * If the bio's data needs to be verified with fs-verity, then enqueue the 200 * verity work for the bio. Otherwise finish the bio now. 201 * 202 * Note that to avoid deadlocks, the verity work can't be done on the 203 * decryption/decompression workqueue. This is because verifying the data pages 204 * can involve reading verity metadata pages from the file, and these verity 205 * metadata pages may be encrypted and/or compressed. 206 */ 207 static void f2fs_verify_and_finish_bio(struct bio *bio) 208 { 209 struct bio_post_read_ctx *ctx = bio->bi_private; 210 211 if (ctx && (ctx->enabled_steps & STEP_VERITY)) { 212 INIT_WORK(&ctx->work, f2fs_verify_bio); 213 fsverity_enqueue_verify_work(&ctx->work); 214 } else { 215 f2fs_finish_read_bio(bio); 216 } 217 } 218 219 /* 220 * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last 221 * remaining page was read by @ctx->bio. 222 * 223 * Note that a bio may span clusters (even a mix of compressed and uncompressed 224 * clusters) or be for just part of a cluster. STEP_DECOMPRESS just indicates 225 * that the bio includes at least one compressed page. The actual decompression 226 * is done on a per-cluster basis, not a per-bio basis. 227 */ 228 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx) 229 { 230 struct bio_vec *bv; 231 struct bvec_iter_all iter_all; 232 bool all_compressed = true; 233 block_t blkaddr = ctx->fs_blkaddr; 234 235 bio_for_each_segment_all(bv, ctx->bio, iter_all) { 236 struct page *page = bv->bv_page; 237 238 /* PG_error was set if decryption failed. */ 239 if (f2fs_is_compressed_page(page)) 240 f2fs_end_read_compressed_page(page, PageError(page), 241 blkaddr); 242 else 243 all_compressed = false; 244 245 blkaddr++; 246 } 247 248 /* 249 * Optimization: if all the bio's pages are compressed, then scheduling 250 * the per-bio verity work is unnecessary, as verity will be fully 251 * handled at the compression cluster level. 252 */ 253 if (all_compressed) 254 ctx->enabled_steps &= ~STEP_VERITY; 255 } 256 257 static void f2fs_post_read_work(struct work_struct *work) 258 { 259 struct bio_post_read_ctx *ctx = 260 container_of(work, struct bio_post_read_ctx, work); 261 262 if (ctx->enabled_steps & STEP_DECRYPT) 263 fscrypt_decrypt_bio(ctx->bio); 264 265 if (ctx->enabled_steps & STEP_DECOMPRESS) 266 f2fs_handle_step_decompress(ctx); 267 268 f2fs_verify_and_finish_bio(ctx->bio); 269 } 270 271 static void f2fs_read_end_io(struct bio *bio) 272 { 273 struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio)); 274 struct bio_post_read_ctx *ctx; 275 276 iostat_update_and_unbind_ctx(bio, 0); 277 ctx = bio->bi_private; 278 279 if (time_to_inject(sbi, FAULT_READ_IO)) { 280 f2fs_show_injection_info(sbi, FAULT_READ_IO); 281 bio->bi_status = BLK_STS_IOERR; 282 } 283 284 if (bio->bi_status) { 285 f2fs_finish_read_bio(bio); 286 return; 287 } 288 289 if (ctx && (ctx->enabled_steps & (STEP_DECRYPT | STEP_DECOMPRESS))) { 290 INIT_WORK(&ctx->work, f2fs_post_read_work); 291 queue_work(ctx->sbi->post_read_wq, &ctx->work); 292 } else { 293 f2fs_verify_and_finish_bio(bio); 294 } 295 } 296 297 static void f2fs_write_end_io(struct bio *bio) 298 { 299 struct f2fs_sb_info *sbi; 300 struct bio_vec *bvec; 301 struct bvec_iter_all iter_all; 302 303 iostat_update_and_unbind_ctx(bio, 1); 304 sbi = bio->bi_private; 305 306 if (time_to_inject(sbi, FAULT_WRITE_IO)) { 307 f2fs_show_injection_info(sbi, FAULT_WRITE_IO); 308 bio->bi_status = BLK_STS_IOERR; 309 } 310 311 bio_for_each_segment_all(bvec, bio, iter_all) { 312 struct page *page = bvec->bv_page; 313 enum count_type type = WB_DATA_TYPE(page); 314 315 if (page_private_dummy(page)) { 316 clear_page_private_dummy(page); 317 unlock_page(page); 318 mempool_free(page, sbi->write_io_dummy); 319 320 if (unlikely(bio->bi_status)) 321 f2fs_stop_checkpoint(sbi, true); 322 continue; 323 } 324 325 fscrypt_finalize_bounce_page(&page); 326 327 #ifdef CONFIG_F2FS_FS_COMPRESSION 328 if (f2fs_is_compressed_page(page)) { 329 f2fs_compress_write_end_io(bio, page); 330 continue; 331 } 332 #endif 333 334 if (unlikely(bio->bi_status)) { 335 mapping_set_error(page->mapping, -EIO); 336 if (type == F2FS_WB_CP_DATA) 337 f2fs_stop_checkpoint(sbi, true); 338 } 339 340 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) && 341 page->index != nid_of_node(page)); 342 343 dec_page_count(sbi, type); 344 if (f2fs_in_warm_node_list(sbi, page)) 345 f2fs_del_fsync_node_entry(sbi, page); 346 clear_page_private_gcing(page); 347 end_page_writeback(page); 348 } 349 if (!get_pages(sbi, F2FS_WB_CP_DATA) && 350 wq_has_sleeper(&sbi->cp_wait)) 351 wake_up(&sbi->cp_wait); 352 353 bio_put(bio); 354 } 355 356 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 357 block_t blk_addr, sector_t *sector) 358 { 359 struct block_device *bdev = sbi->sb->s_bdev; 360 int i; 361 362 if (f2fs_is_multi_device(sbi)) { 363 for (i = 0; i < sbi->s_ndevs; i++) { 364 if (FDEV(i).start_blk <= blk_addr && 365 FDEV(i).end_blk >= blk_addr) { 366 blk_addr -= FDEV(i).start_blk; 367 bdev = FDEV(i).bdev; 368 break; 369 } 370 } 371 } 372 373 if (sector) 374 *sector = SECTOR_FROM_BLOCK(blk_addr); 375 return bdev; 376 } 377 378 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr) 379 { 380 int i; 381 382 if (!f2fs_is_multi_device(sbi)) 383 return 0; 384 385 for (i = 0; i < sbi->s_ndevs; i++) 386 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr) 387 return i; 388 return 0; 389 } 390 391 static void __attach_io_flag(struct f2fs_io_info *fio, unsigned int io_flag) 392 { 393 unsigned int temp_mask = (1 << NR_TEMP_TYPE) - 1; 394 unsigned int fua_flag = io_flag & temp_mask; 395 unsigned int meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask; 396 397 /* 398 * data/node io flag bits per temp: 399 * REQ_META | REQ_FUA | 400 * 5 | 4 | 3 | 2 | 1 | 0 | 401 * Cold | Warm | Hot | Cold | Warm | Hot | 402 */ 403 if ((1 << fio->temp) & meta_flag) 404 fio->op_flags |= REQ_META; 405 if ((1 << fio->temp) & fua_flag) 406 fio->op_flags |= REQ_FUA; 407 } 408 409 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages) 410 { 411 struct f2fs_sb_info *sbi = fio->sbi; 412 struct block_device *bdev; 413 sector_t sector; 414 struct bio *bio; 415 416 if (fio->type == DATA) 417 __attach_io_flag(fio, sbi->data_io_flag); 418 else if (fio->type == NODE) 419 __attach_io_flag(fio, sbi->node_io_flag); 420 421 bdev = f2fs_target_device(sbi, fio->new_blkaddr, §or); 422 bio = bio_alloc_bioset(bdev, npages, fio->op | fio->op_flags, GFP_NOIO, 423 &f2fs_bioset); 424 bio->bi_iter.bi_sector = sector; 425 if (is_read_io(fio->op)) { 426 bio->bi_end_io = f2fs_read_end_io; 427 bio->bi_private = NULL; 428 } else { 429 bio->bi_end_io = f2fs_write_end_io; 430 bio->bi_private = sbi; 431 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, 432 fio->type, fio->temp); 433 } 434 iostat_alloc_and_bind_ctx(sbi, bio, NULL); 435 436 if (fio->io_wbc) 437 wbc_init_bio(fio->io_wbc, bio); 438 439 return bio; 440 } 441 442 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode, 443 pgoff_t first_idx, 444 const struct f2fs_io_info *fio, 445 gfp_t gfp_mask) 446 { 447 /* 448 * The f2fs garbage collector sets ->encrypted_page when it wants to 449 * read/write raw data without encryption. 450 */ 451 if (!fio || !fio->encrypted_page) 452 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask); 453 } 454 455 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode, 456 pgoff_t next_idx, 457 const struct f2fs_io_info *fio) 458 { 459 /* 460 * The f2fs garbage collector sets ->encrypted_page when it wants to 461 * read/write raw data without encryption. 462 */ 463 if (fio && fio->encrypted_page) 464 return !bio_has_crypt_ctx(bio); 465 466 return fscrypt_mergeable_bio(bio, inode, next_idx); 467 } 468 469 static inline void __submit_bio(struct f2fs_sb_info *sbi, 470 struct bio *bio, enum page_type type) 471 { 472 if (!is_read_io(bio_op(bio))) { 473 unsigned int start; 474 475 if (type != DATA && type != NODE) 476 goto submit_io; 477 478 if (f2fs_lfs_mode(sbi) && current->plug) 479 blk_finish_plug(current->plug); 480 481 if (!F2FS_IO_ALIGNED(sbi)) 482 goto submit_io; 483 484 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS; 485 start %= F2FS_IO_SIZE(sbi); 486 487 if (start == 0) 488 goto submit_io; 489 490 /* fill dummy pages */ 491 for (; start < F2FS_IO_SIZE(sbi); start++) { 492 struct page *page = 493 mempool_alloc(sbi->write_io_dummy, 494 GFP_NOIO | __GFP_NOFAIL); 495 f2fs_bug_on(sbi, !page); 496 497 lock_page(page); 498 499 zero_user_segment(page, 0, PAGE_SIZE); 500 set_page_private_dummy(page); 501 502 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) 503 f2fs_bug_on(sbi, 1); 504 } 505 /* 506 * In the NODE case, we lose next block address chain. So, we 507 * need to do checkpoint in f2fs_sync_file. 508 */ 509 if (type == NODE) 510 set_sbi_flag(sbi, SBI_NEED_CP); 511 } 512 submit_io: 513 if (is_read_io(bio_op(bio))) 514 trace_f2fs_submit_read_bio(sbi->sb, type, bio); 515 else 516 trace_f2fs_submit_write_bio(sbi->sb, type, bio); 517 518 iostat_update_submit_ctx(bio, type); 519 submit_bio(bio); 520 } 521 522 void f2fs_submit_bio(struct f2fs_sb_info *sbi, 523 struct bio *bio, enum page_type type) 524 { 525 __submit_bio(sbi, bio, type); 526 } 527 528 static void __submit_merged_bio(struct f2fs_bio_info *io) 529 { 530 struct f2fs_io_info *fio = &io->fio; 531 532 if (!io->bio) 533 return; 534 535 if (is_read_io(fio->op)) 536 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio); 537 else 538 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio); 539 540 __submit_bio(io->sbi, io->bio, fio->type); 541 io->bio = NULL; 542 } 543 544 static bool __has_merged_page(struct bio *bio, struct inode *inode, 545 struct page *page, nid_t ino) 546 { 547 struct bio_vec *bvec; 548 struct bvec_iter_all iter_all; 549 550 if (!bio) 551 return false; 552 553 if (!inode && !page && !ino) 554 return true; 555 556 bio_for_each_segment_all(bvec, bio, iter_all) { 557 struct page *target = bvec->bv_page; 558 559 if (fscrypt_is_bounce_page(target)) { 560 target = fscrypt_pagecache_page(target); 561 if (IS_ERR(target)) 562 continue; 563 } 564 if (f2fs_is_compressed_page(target)) { 565 target = f2fs_compress_control_page(target); 566 if (IS_ERR(target)) 567 continue; 568 } 569 570 if (inode && inode == target->mapping->host) 571 return true; 572 if (page && page == target) 573 return true; 574 if (ino && ino == ino_of_node(target)) 575 return true; 576 } 577 578 return false; 579 } 580 581 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi, 582 enum page_type type, enum temp_type temp) 583 { 584 enum page_type btype = PAGE_TYPE_OF_BIO(type); 585 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 586 587 down_write(&io->io_rwsem); 588 589 /* change META to META_FLUSH in the checkpoint procedure */ 590 if (type >= META_FLUSH) { 591 io->fio.type = META_FLUSH; 592 io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC; 593 if (!test_opt(sbi, NOBARRIER)) 594 io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA; 595 } 596 __submit_merged_bio(io); 597 up_write(&io->io_rwsem); 598 } 599 600 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi, 601 struct inode *inode, struct page *page, 602 nid_t ino, enum page_type type, bool force) 603 { 604 enum temp_type temp; 605 bool ret = true; 606 607 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) { 608 if (!force) { 609 enum page_type btype = PAGE_TYPE_OF_BIO(type); 610 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 611 612 down_read(&io->io_rwsem); 613 ret = __has_merged_page(io->bio, inode, page, ino); 614 up_read(&io->io_rwsem); 615 } 616 if (ret) 617 __f2fs_submit_merged_write(sbi, type, temp); 618 619 /* TODO: use HOT temp only for meta pages now. */ 620 if (type >= META) 621 break; 622 } 623 } 624 625 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type) 626 { 627 __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true); 628 } 629 630 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 631 struct inode *inode, struct page *page, 632 nid_t ino, enum page_type type) 633 { 634 __submit_merged_write_cond(sbi, inode, page, ino, type, false); 635 } 636 637 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi) 638 { 639 f2fs_submit_merged_write(sbi, DATA); 640 f2fs_submit_merged_write(sbi, NODE); 641 f2fs_submit_merged_write(sbi, META); 642 } 643 644 /* 645 * Fill the locked page with data located in the block address. 646 * A caller needs to unlock the page on failure. 647 */ 648 int f2fs_submit_page_bio(struct f2fs_io_info *fio) 649 { 650 struct bio *bio; 651 struct page *page = fio->encrypted_page ? 652 fio->encrypted_page : fio->page; 653 654 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, 655 fio->is_por ? META_POR : (__is_meta_io(fio) ? 656 META_GENERIC : DATA_GENERIC_ENHANCE))) 657 return -EFSCORRUPTED; 658 659 trace_f2fs_submit_page_bio(page, fio); 660 661 /* Allocate a new bio */ 662 bio = __bio_alloc(fio, 1); 663 664 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host, 665 fio->page->index, fio, GFP_NOIO); 666 667 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 668 bio_put(bio); 669 return -EFAULT; 670 } 671 672 if (fio->io_wbc && !is_read_io(fio->op)) 673 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE); 674 675 inc_page_count(fio->sbi, is_read_io(fio->op) ? 676 __read_io_type(page): WB_DATA_TYPE(fio->page)); 677 678 __submit_bio(fio->sbi, bio, fio->type); 679 return 0; 680 } 681 682 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio, 683 block_t last_blkaddr, block_t cur_blkaddr) 684 { 685 if (unlikely(sbi->max_io_bytes && 686 bio->bi_iter.bi_size >= sbi->max_io_bytes)) 687 return false; 688 if (last_blkaddr + 1 != cur_blkaddr) 689 return false; 690 return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL); 691 } 692 693 static bool io_type_is_mergeable(struct f2fs_bio_info *io, 694 struct f2fs_io_info *fio) 695 { 696 if (io->fio.op != fio->op) 697 return false; 698 return io->fio.op_flags == fio->op_flags; 699 } 700 701 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio, 702 struct f2fs_bio_info *io, 703 struct f2fs_io_info *fio, 704 block_t last_blkaddr, 705 block_t cur_blkaddr) 706 { 707 if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) { 708 unsigned int filled_blocks = 709 F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size); 710 unsigned int io_size = F2FS_IO_SIZE(sbi); 711 unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt; 712 713 /* IOs in bio is aligned and left space of vectors is not enough */ 714 if (!(filled_blocks % io_size) && left_vecs < io_size) 715 return false; 716 } 717 if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr)) 718 return false; 719 return io_type_is_mergeable(io, fio); 720 } 721 722 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio, 723 struct page *page, enum temp_type temp) 724 { 725 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 726 struct bio_entry *be; 727 728 be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL); 729 be->bio = bio; 730 bio_get(bio); 731 732 if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE) 733 f2fs_bug_on(sbi, 1); 734 735 down_write(&io->bio_list_lock); 736 list_add_tail(&be->list, &io->bio_list); 737 up_write(&io->bio_list_lock); 738 } 739 740 static void del_bio_entry(struct bio_entry *be) 741 { 742 list_del(&be->list); 743 kmem_cache_free(bio_entry_slab, be); 744 } 745 746 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio, 747 struct page *page) 748 { 749 struct f2fs_sb_info *sbi = fio->sbi; 750 enum temp_type temp; 751 bool found = false; 752 int ret = -EAGAIN; 753 754 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) { 755 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 756 struct list_head *head = &io->bio_list; 757 struct bio_entry *be; 758 759 down_write(&io->bio_list_lock); 760 list_for_each_entry(be, head, list) { 761 if (be->bio != *bio) 762 continue; 763 764 found = true; 765 766 f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio, 767 *fio->last_block, 768 fio->new_blkaddr)); 769 if (f2fs_crypt_mergeable_bio(*bio, 770 fio->page->mapping->host, 771 fio->page->index, fio) && 772 bio_add_page(*bio, page, PAGE_SIZE, 0) == 773 PAGE_SIZE) { 774 ret = 0; 775 break; 776 } 777 778 /* page can't be merged into bio; submit the bio */ 779 del_bio_entry(be); 780 __submit_bio(sbi, *bio, DATA); 781 break; 782 } 783 up_write(&io->bio_list_lock); 784 } 785 786 if (ret) { 787 bio_put(*bio); 788 *bio = NULL; 789 } 790 791 return ret; 792 } 793 794 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi, 795 struct bio **bio, struct page *page) 796 { 797 enum temp_type temp; 798 bool found = false; 799 struct bio *target = bio ? *bio : NULL; 800 801 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) { 802 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 803 struct list_head *head = &io->bio_list; 804 struct bio_entry *be; 805 806 if (list_empty(head)) 807 continue; 808 809 down_read(&io->bio_list_lock); 810 list_for_each_entry(be, head, list) { 811 if (target) 812 found = (target == be->bio); 813 else 814 found = __has_merged_page(be->bio, NULL, 815 page, 0); 816 if (found) 817 break; 818 } 819 up_read(&io->bio_list_lock); 820 821 if (!found) 822 continue; 823 824 found = false; 825 826 down_write(&io->bio_list_lock); 827 list_for_each_entry(be, head, list) { 828 if (target) 829 found = (target == be->bio); 830 else 831 found = __has_merged_page(be->bio, NULL, 832 page, 0); 833 if (found) { 834 target = be->bio; 835 del_bio_entry(be); 836 break; 837 } 838 } 839 up_write(&io->bio_list_lock); 840 } 841 842 if (found) 843 __submit_bio(sbi, target, DATA); 844 if (bio && *bio) { 845 bio_put(*bio); 846 *bio = NULL; 847 } 848 } 849 850 int f2fs_merge_page_bio(struct f2fs_io_info *fio) 851 { 852 struct bio *bio = *fio->bio; 853 struct page *page = fio->encrypted_page ? 854 fio->encrypted_page : fio->page; 855 856 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, 857 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC)) 858 return -EFSCORRUPTED; 859 860 trace_f2fs_submit_page_bio(page, fio); 861 862 if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block, 863 fio->new_blkaddr)) 864 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL); 865 alloc_new: 866 if (!bio) { 867 bio = __bio_alloc(fio, BIO_MAX_VECS); 868 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host, 869 fio->page->index, fio, GFP_NOIO); 870 871 add_bio_entry(fio->sbi, bio, page, fio->temp); 872 } else { 873 if (add_ipu_page(fio, &bio, page)) 874 goto alloc_new; 875 } 876 877 if (fio->io_wbc) 878 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE); 879 880 inc_page_count(fio->sbi, WB_DATA_TYPE(page)); 881 882 *fio->last_block = fio->new_blkaddr; 883 *fio->bio = bio; 884 885 return 0; 886 } 887 888 void f2fs_submit_page_write(struct f2fs_io_info *fio) 889 { 890 struct f2fs_sb_info *sbi = fio->sbi; 891 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type); 892 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp; 893 struct page *bio_page; 894 895 f2fs_bug_on(sbi, is_read_io(fio->op)); 896 897 down_write(&io->io_rwsem); 898 next: 899 if (fio->in_list) { 900 spin_lock(&io->io_lock); 901 if (list_empty(&io->io_list)) { 902 spin_unlock(&io->io_lock); 903 goto out; 904 } 905 fio = list_first_entry(&io->io_list, 906 struct f2fs_io_info, list); 907 list_del(&fio->list); 908 spin_unlock(&io->io_lock); 909 } 910 911 verify_fio_blkaddr(fio); 912 913 if (fio->encrypted_page) 914 bio_page = fio->encrypted_page; 915 else if (fio->compressed_page) 916 bio_page = fio->compressed_page; 917 else 918 bio_page = fio->page; 919 920 /* set submitted = true as a return value */ 921 fio->submitted = true; 922 923 inc_page_count(sbi, WB_DATA_TYPE(bio_page)); 924 925 if (io->bio && 926 (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio, 927 fio->new_blkaddr) || 928 !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host, 929 bio_page->index, fio))) 930 __submit_merged_bio(io); 931 alloc_new: 932 if (io->bio == NULL) { 933 if (F2FS_IO_ALIGNED(sbi) && 934 (fio->type == DATA || fio->type == NODE) && 935 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) { 936 dec_page_count(sbi, WB_DATA_TYPE(bio_page)); 937 fio->retry = true; 938 goto skip; 939 } 940 io->bio = __bio_alloc(fio, BIO_MAX_VECS); 941 f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host, 942 bio_page->index, fio, GFP_NOIO); 943 io->fio = *fio; 944 } 945 946 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) { 947 __submit_merged_bio(io); 948 goto alloc_new; 949 } 950 951 if (fio->io_wbc) 952 wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE); 953 954 io->last_block_in_bio = fio->new_blkaddr; 955 956 trace_f2fs_submit_page_write(fio->page, fio); 957 skip: 958 if (fio->in_list) 959 goto next; 960 out: 961 if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || 962 !f2fs_is_checkpoint_ready(sbi)) 963 __submit_merged_bio(io); 964 up_write(&io->io_rwsem); 965 } 966 967 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr, 968 unsigned nr_pages, unsigned op_flag, 969 pgoff_t first_idx, bool for_write) 970 { 971 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 972 struct bio *bio; 973 struct bio_post_read_ctx *ctx = NULL; 974 unsigned int post_read_steps = 0; 975 sector_t sector; 976 struct block_device *bdev = f2fs_target_device(sbi, blkaddr, §or); 977 978 bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages), 979 REQ_OP_READ | op_flag, 980 for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset); 981 if (!bio) 982 return ERR_PTR(-ENOMEM); 983 bio->bi_iter.bi_sector = sector; 984 f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS); 985 bio->bi_end_io = f2fs_read_end_io; 986 987 if (fscrypt_inode_uses_fs_layer_crypto(inode)) 988 post_read_steps |= STEP_DECRYPT; 989 990 if (f2fs_need_verity(inode, first_idx)) 991 post_read_steps |= STEP_VERITY; 992 993 /* 994 * STEP_DECOMPRESS is handled specially, since a compressed file might 995 * contain both compressed and uncompressed clusters. We'll allocate a 996 * bio_post_read_ctx if the file is compressed, but the caller is 997 * responsible for enabling STEP_DECOMPRESS if it's actually needed. 998 */ 999 1000 if (post_read_steps || f2fs_compressed_file(inode)) { 1001 /* Due to the mempool, this never fails. */ 1002 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS); 1003 ctx->bio = bio; 1004 ctx->sbi = sbi; 1005 ctx->enabled_steps = post_read_steps; 1006 ctx->fs_blkaddr = blkaddr; 1007 bio->bi_private = ctx; 1008 } 1009 iostat_alloc_and_bind_ctx(sbi, bio, ctx); 1010 1011 return bio; 1012 } 1013 1014 /* This can handle encryption stuffs */ 1015 static int f2fs_submit_page_read(struct inode *inode, struct page *page, 1016 block_t blkaddr, int op_flags, bool for_write) 1017 { 1018 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1019 struct bio *bio; 1020 1021 bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags, 1022 page->index, for_write); 1023 if (IS_ERR(bio)) 1024 return PTR_ERR(bio); 1025 1026 /* wait for GCed page writeback via META_MAPPING */ 1027 f2fs_wait_on_block_writeback(inode, blkaddr); 1028 1029 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 1030 bio_put(bio); 1031 return -EFAULT; 1032 } 1033 ClearPageError(page); 1034 inc_page_count(sbi, F2FS_RD_DATA); 1035 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE); 1036 __submit_bio(sbi, bio, DATA); 1037 return 0; 1038 } 1039 1040 static void __set_data_blkaddr(struct dnode_of_data *dn) 1041 { 1042 struct f2fs_node *rn = F2FS_NODE(dn->node_page); 1043 __le32 *addr_array; 1044 int base = 0; 1045 1046 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode)) 1047 base = get_extra_isize(dn->inode); 1048 1049 /* Get physical address of data block */ 1050 addr_array = blkaddr_in_node(rn); 1051 addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr); 1052 } 1053 1054 /* 1055 * Lock ordering for the change of data block address: 1056 * ->data_page 1057 * ->node_page 1058 * update block addresses in the node page 1059 */ 1060 void f2fs_set_data_blkaddr(struct dnode_of_data *dn) 1061 { 1062 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true); 1063 __set_data_blkaddr(dn); 1064 if (set_page_dirty(dn->node_page)) 1065 dn->node_changed = true; 1066 } 1067 1068 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) 1069 { 1070 dn->data_blkaddr = blkaddr; 1071 f2fs_set_data_blkaddr(dn); 1072 f2fs_update_extent_cache(dn); 1073 } 1074 1075 /* dn->ofs_in_node will be returned with up-to-date last block pointer */ 1076 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count) 1077 { 1078 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1079 int err; 1080 1081 if (!count) 1082 return 0; 1083 1084 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1085 return -EPERM; 1086 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count)))) 1087 return err; 1088 1089 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid, 1090 dn->ofs_in_node, count); 1091 1092 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true); 1093 1094 for (; count > 0; dn->ofs_in_node++) { 1095 block_t blkaddr = f2fs_data_blkaddr(dn); 1096 1097 if (blkaddr == NULL_ADDR) { 1098 dn->data_blkaddr = NEW_ADDR; 1099 __set_data_blkaddr(dn); 1100 count--; 1101 } 1102 } 1103 1104 if (set_page_dirty(dn->node_page)) 1105 dn->node_changed = true; 1106 return 0; 1107 } 1108 1109 /* Should keep dn->ofs_in_node unchanged */ 1110 int f2fs_reserve_new_block(struct dnode_of_data *dn) 1111 { 1112 unsigned int ofs_in_node = dn->ofs_in_node; 1113 int ret; 1114 1115 ret = f2fs_reserve_new_blocks(dn, 1); 1116 dn->ofs_in_node = ofs_in_node; 1117 return ret; 1118 } 1119 1120 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index) 1121 { 1122 bool need_put = dn->inode_page ? false : true; 1123 int err; 1124 1125 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE); 1126 if (err) 1127 return err; 1128 1129 if (dn->data_blkaddr == NULL_ADDR) 1130 err = f2fs_reserve_new_block(dn); 1131 if (err || need_put) 1132 f2fs_put_dnode(dn); 1133 return err; 1134 } 1135 1136 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index) 1137 { 1138 struct extent_info ei = {0, }; 1139 struct inode *inode = dn->inode; 1140 1141 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 1142 dn->data_blkaddr = ei.blk + index - ei.fofs; 1143 return 0; 1144 } 1145 1146 return f2fs_reserve_block(dn, index); 1147 } 1148 1149 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index, 1150 int op_flags, bool for_write) 1151 { 1152 struct address_space *mapping = inode->i_mapping; 1153 struct dnode_of_data dn; 1154 struct page *page; 1155 struct extent_info ei = {0, }; 1156 int err; 1157 1158 page = f2fs_grab_cache_page(mapping, index, for_write); 1159 if (!page) 1160 return ERR_PTR(-ENOMEM); 1161 1162 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 1163 dn.data_blkaddr = ei.blk + index - ei.fofs; 1164 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr, 1165 DATA_GENERIC_ENHANCE_READ)) { 1166 err = -EFSCORRUPTED; 1167 goto put_err; 1168 } 1169 goto got_it; 1170 } 1171 1172 set_new_dnode(&dn, inode, NULL, NULL, 0); 1173 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 1174 if (err) 1175 goto put_err; 1176 f2fs_put_dnode(&dn); 1177 1178 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { 1179 err = -ENOENT; 1180 goto put_err; 1181 } 1182 if (dn.data_blkaddr != NEW_ADDR && 1183 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode), 1184 dn.data_blkaddr, 1185 DATA_GENERIC_ENHANCE)) { 1186 err = -EFSCORRUPTED; 1187 goto put_err; 1188 } 1189 got_it: 1190 if (PageUptodate(page)) { 1191 unlock_page(page); 1192 return page; 1193 } 1194 1195 /* 1196 * A new dentry page is allocated but not able to be written, since its 1197 * new inode page couldn't be allocated due to -ENOSPC. 1198 * In such the case, its blkaddr can be remained as NEW_ADDR. 1199 * see, f2fs_add_link -> f2fs_get_new_data_page -> 1200 * f2fs_init_inode_metadata. 1201 */ 1202 if (dn.data_blkaddr == NEW_ADDR) { 1203 zero_user_segment(page, 0, PAGE_SIZE); 1204 if (!PageUptodate(page)) 1205 SetPageUptodate(page); 1206 unlock_page(page); 1207 return page; 1208 } 1209 1210 err = f2fs_submit_page_read(inode, page, dn.data_blkaddr, 1211 op_flags, for_write); 1212 if (err) 1213 goto put_err; 1214 return page; 1215 1216 put_err: 1217 f2fs_put_page(page, 1); 1218 return ERR_PTR(err); 1219 } 1220 1221 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index) 1222 { 1223 struct address_space *mapping = inode->i_mapping; 1224 struct page *page; 1225 1226 page = find_get_page(mapping, index); 1227 if (page && PageUptodate(page)) 1228 return page; 1229 f2fs_put_page(page, 0); 1230 1231 page = f2fs_get_read_data_page(inode, index, 0, false); 1232 if (IS_ERR(page)) 1233 return page; 1234 1235 if (PageUptodate(page)) 1236 return page; 1237 1238 wait_on_page_locked(page); 1239 if (unlikely(!PageUptodate(page))) { 1240 f2fs_put_page(page, 0); 1241 return ERR_PTR(-EIO); 1242 } 1243 return page; 1244 } 1245 1246 /* 1247 * If it tries to access a hole, return an error. 1248 * Because, the callers, functions in dir.c and GC, should be able to know 1249 * whether this page exists or not. 1250 */ 1251 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index, 1252 bool for_write) 1253 { 1254 struct address_space *mapping = inode->i_mapping; 1255 struct page *page; 1256 repeat: 1257 page = f2fs_get_read_data_page(inode, index, 0, for_write); 1258 if (IS_ERR(page)) 1259 return page; 1260 1261 /* wait for read completion */ 1262 lock_page(page); 1263 if (unlikely(page->mapping != mapping)) { 1264 f2fs_put_page(page, 1); 1265 goto repeat; 1266 } 1267 if (unlikely(!PageUptodate(page))) { 1268 f2fs_put_page(page, 1); 1269 return ERR_PTR(-EIO); 1270 } 1271 return page; 1272 } 1273 1274 /* 1275 * Caller ensures that this data page is never allocated. 1276 * A new zero-filled data page is allocated in the page cache. 1277 * 1278 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and 1279 * f2fs_unlock_op(). 1280 * Note that, ipage is set only by make_empty_dir, and if any error occur, 1281 * ipage should be released by this function. 1282 */ 1283 struct page *f2fs_get_new_data_page(struct inode *inode, 1284 struct page *ipage, pgoff_t index, bool new_i_size) 1285 { 1286 struct address_space *mapping = inode->i_mapping; 1287 struct page *page; 1288 struct dnode_of_data dn; 1289 int err; 1290 1291 page = f2fs_grab_cache_page(mapping, index, true); 1292 if (!page) { 1293 /* 1294 * before exiting, we should make sure ipage will be released 1295 * if any error occur. 1296 */ 1297 f2fs_put_page(ipage, 1); 1298 return ERR_PTR(-ENOMEM); 1299 } 1300 1301 set_new_dnode(&dn, inode, ipage, NULL, 0); 1302 err = f2fs_reserve_block(&dn, index); 1303 if (err) { 1304 f2fs_put_page(page, 1); 1305 return ERR_PTR(err); 1306 } 1307 if (!ipage) 1308 f2fs_put_dnode(&dn); 1309 1310 if (PageUptodate(page)) 1311 goto got_it; 1312 1313 if (dn.data_blkaddr == NEW_ADDR) { 1314 zero_user_segment(page, 0, PAGE_SIZE); 1315 if (!PageUptodate(page)) 1316 SetPageUptodate(page); 1317 } else { 1318 f2fs_put_page(page, 1); 1319 1320 /* if ipage exists, blkaddr should be NEW_ADDR */ 1321 f2fs_bug_on(F2FS_I_SB(inode), ipage); 1322 page = f2fs_get_lock_data_page(inode, index, true); 1323 if (IS_ERR(page)) 1324 return page; 1325 } 1326 got_it: 1327 if (new_i_size && i_size_read(inode) < 1328 ((loff_t)(index + 1) << PAGE_SHIFT)) 1329 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT)); 1330 return page; 1331 } 1332 1333 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type) 1334 { 1335 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1336 struct f2fs_summary sum; 1337 struct node_info ni; 1338 block_t old_blkaddr; 1339 blkcnt_t count = 1; 1340 int err; 1341 1342 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1343 return -EPERM; 1344 1345 err = f2fs_get_node_info(sbi, dn->nid, &ni, false); 1346 if (err) 1347 return err; 1348 1349 dn->data_blkaddr = f2fs_data_blkaddr(dn); 1350 if (dn->data_blkaddr != NULL_ADDR) 1351 goto alloc; 1352 1353 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count)))) 1354 return err; 1355 1356 alloc: 1357 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 1358 old_blkaddr = dn->data_blkaddr; 1359 f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr, 1360 &sum, seg_type, NULL); 1361 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) { 1362 invalidate_mapping_pages(META_MAPPING(sbi), 1363 old_blkaddr, old_blkaddr); 1364 f2fs_invalidate_compress_page(sbi, old_blkaddr); 1365 } 1366 f2fs_update_data_blkaddr(dn, dn->data_blkaddr); 1367 return 0; 1368 } 1369 1370 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock) 1371 { 1372 if (flag == F2FS_GET_BLOCK_PRE_AIO) { 1373 if (lock) 1374 down_read(&sbi->node_change); 1375 else 1376 up_read(&sbi->node_change); 1377 } else { 1378 if (lock) 1379 f2fs_lock_op(sbi); 1380 else 1381 f2fs_unlock_op(sbi); 1382 } 1383 } 1384 1385 /* 1386 * f2fs_map_blocks() tries to find or build mapping relationship which 1387 * maps continuous logical blocks to physical blocks, and return such 1388 * info via f2fs_map_blocks structure. 1389 */ 1390 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 1391 int create, int flag) 1392 { 1393 unsigned int maxblocks = map->m_len; 1394 struct dnode_of_data dn; 1395 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1396 int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE; 1397 pgoff_t pgofs, end_offset, end; 1398 int err = 0, ofs = 1; 1399 unsigned int ofs_in_node, last_ofs_in_node; 1400 blkcnt_t prealloc; 1401 struct extent_info ei = {0, }; 1402 block_t blkaddr; 1403 unsigned int start_pgofs; 1404 int bidx = 0; 1405 1406 if (!maxblocks) 1407 return 0; 1408 1409 map->m_bdev = inode->i_sb->s_bdev; 1410 map->m_multidev_dio = 1411 f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag); 1412 1413 map->m_len = 0; 1414 map->m_flags = 0; 1415 1416 /* it only supports block size == page size */ 1417 pgofs = (pgoff_t)map->m_lblk; 1418 end = pgofs + maxblocks; 1419 1420 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) { 1421 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO && 1422 map->m_may_create) 1423 goto next_dnode; 1424 1425 map->m_pblk = ei.blk + pgofs - ei.fofs; 1426 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs); 1427 map->m_flags = F2FS_MAP_MAPPED; 1428 if (map->m_next_extent) 1429 *map->m_next_extent = pgofs + map->m_len; 1430 1431 /* for hardware encryption, but to avoid potential issue in future */ 1432 if (flag == F2FS_GET_BLOCK_DIO) 1433 f2fs_wait_on_block_writeback_range(inode, 1434 map->m_pblk, map->m_len); 1435 1436 if (map->m_multidev_dio) { 1437 block_t blk_addr = map->m_pblk; 1438 1439 bidx = f2fs_target_device_index(sbi, map->m_pblk); 1440 1441 map->m_bdev = FDEV(bidx).bdev; 1442 map->m_pblk -= FDEV(bidx).start_blk; 1443 map->m_len = min(map->m_len, 1444 FDEV(bidx).end_blk + 1 - map->m_pblk); 1445 1446 if (map->m_may_create) 1447 f2fs_update_device_state(sbi, inode->i_ino, 1448 blk_addr, map->m_len); 1449 } 1450 goto out; 1451 } 1452 1453 next_dnode: 1454 if (map->m_may_create) 1455 f2fs_do_map_lock(sbi, flag, true); 1456 1457 /* When reading holes, we need its node page */ 1458 set_new_dnode(&dn, inode, NULL, NULL, 0); 1459 err = f2fs_get_dnode_of_data(&dn, pgofs, mode); 1460 if (err) { 1461 if (flag == F2FS_GET_BLOCK_BMAP) 1462 map->m_pblk = 0; 1463 1464 if (err == -ENOENT) { 1465 /* 1466 * There is one exceptional case that read_node_page() 1467 * may return -ENOENT due to filesystem has been 1468 * shutdown or cp_error, so force to convert error 1469 * number to EIO for such case. 1470 */ 1471 if (map->m_may_create && 1472 (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || 1473 f2fs_cp_error(sbi))) { 1474 err = -EIO; 1475 goto unlock_out; 1476 } 1477 1478 err = 0; 1479 if (map->m_next_pgofs) 1480 *map->m_next_pgofs = 1481 f2fs_get_next_page_offset(&dn, pgofs); 1482 if (map->m_next_extent) 1483 *map->m_next_extent = 1484 f2fs_get_next_page_offset(&dn, pgofs); 1485 } 1486 goto unlock_out; 1487 } 1488 1489 start_pgofs = pgofs; 1490 prealloc = 0; 1491 last_ofs_in_node = ofs_in_node = dn.ofs_in_node; 1492 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1493 1494 next_block: 1495 blkaddr = f2fs_data_blkaddr(&dn); 1496 1497 if (__is_valid_data_blkaddr(blkaddr) && 1498 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) { 1499 err = -EFSCORRUPTED; 1500 goto sync_out; 1501 } 1502 1503 if (__is_valid_data_blkaddr(blkaddr)) { 1504 /* use out-place-update for driect IO under LFS mode */ 1505 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO && 1506 map->m_may_create) { 1507 err = __allocate_data_block(&dn, map->m_seg_type); 1508 if (err) 1509 goto sync_out; 1510 blkaddr = dn.data_blkaddr; 1511 set_inode_flag(inode, FI_APPEND_WRITE); 1512 } 1513 } else { 1514 if (create) { 1515 if (unlikely(f2fs_cp_error(sbi))) { 1516 err = -EIO; 1517 goto sync_out; 1518 } 1519 if (flag == F2FS_GET_BLOCK_PRE_AIO) { 1520 if (blkaddr == NULL_ADDR) { 1521 prealloc++; 1522 last_ofs_in_node = dn.ofs_in_node; 1523 } 1524 } else { 1525 WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO && 1526 flag != F2FS_GET_BLOCK_DIO); 1527 err = __allocate_data_block(&dn, 1528 map->m_seg_type); 1529 if (!err) { 1530 if (flag == F2FS_GET_BLOCK_PRE_DIO) 1531 file_need_truncate(inode); 1532 set_inode_flag(inode, FI_APPEND_WRITE); 1533 } 1534 } 1535 if (err) 1536 goto sync_out; 1537 map->m_flags |= F2FS_MAP_NEW; 1538 blkaddr = dn.data_blkaddr; 1539 } else { 1540 if (f2fs_compressed_file(inode) && 1541 f2fs_sanity_check_cluster(&dn) && 1542 (flag != F2FS_GET_BLOCK_FIEMAP || 1543 IS_ENABLED(CONFIG_F2FS_CHECK_FS))) { 1544 err = -EFSCORRUPTED; 1545 goto sync_out; 1546 } 1547 if (flag == F2FS_GET_BLOCK_BMAP) { 1548 map->m_pblk = 0; 1549 goto sync_out; 1550 } 1551 if (flag == F2FS_GET_BLOCK_PRECACHE) 1552 goto sync_out; 1553 if (flag == F2FS_GET_BLOCK_FIEMAP && 1554 blkaddr == NULL_ADDR) { 1555 if (map->m_next_pgofs) 1556 *map->m_next_pgofs = pgofs + 1; 1557 goto sync_out; 1558 } 1559 if (flag != F2FS_GET_BLOCK_FIEMAP) { 1560 /* for defragment case */ 1561 if (map->m_next_pgofs) 1562 *map->m_next_pgofs = pgofs + 1; 1563 goto sync_out; 1564 } 1565 } 1566 } 1567 1568 if (flag == F2FS_GET_BLOCK_PRE_AIO) 1569 goto skip; 1570 1571 if (map->m_multidev_dio) 1572 bidx = f2fs_target_device_index(sbi, blkaddr); 1573 1574 if (map->m_len == 0) { 1575 /* preallocated unwritten block should be mapped for fiemap. */ 1576 if (blkaddr == NEW_ADDR) 1577 map->m_flags |= F2FS_MAP_UNWRITTEN; 1578 map->m_flags |= F2FS_MAP_MAPPED; 1579 1580 map->m_pblk = blkaddr; 1581 map->m_len = 1; 1582 1583 if (map->m_multidev_dio) 1584 map->m_bdev = FDEV(bidx).bdev; 1585 } else if ((map->m_pblk != NEW_ADDR && 1586 blkaddr == (map->m_pblk + ofs)) || 1587 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) || 1588 flag == F2FS_GET_BLOCK_PRE_DIO) { 1589 if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev) 1590 goto sync_out; 1591 ofs++; 1592 map->m_len++; 1593 } else { 1594 goto sync_out; 1595 } 1596 1597 skip: 1598 dn.ofs_in_node++; 1599 pgofs++; 1600 1601 /* preallocate blocks in batch for one dnode page */ 1602 if (flag == F2FS_GET_BLOCK_PRE_AIO && 1603 (pgofs == end || dn.ofs_in_node == end_offset)) { 1604 1605 dn.ofs_in_node = ofs_in_node; 1606 err = f2fs_reserve_new_blocks(&dn, prealloc); 1607 if (err) 1608 goto sync_out; 1609 1610 map->m_len += dn.ofs_in_node - ofs_in_node; 1611 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) { 1612 err = -ENOSPC; 1613 goto sync_out; 1614 } 1615 dn.ofs_in_node = end_offset; 1616 } 1617 1618 if (pgofs >= end) 1619 goto sync_out; 1620 else if (dn.ofs_in_node < end_offset) 1621 goto next_block; 1622 1623 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1624 if (map->m_flags & F2FS_MAP_MAPPED) { 1625 unsigned int ofs = start_pgofs - map->m_lblk; 1626 1627 f2fs_update_extent_cache_range(&dn, 1628 start_pgofs, map->m_pblk + ofs, 1629 map->m_len - ofs); 1630 } 1631 } 1632 1633 f2fs_put_dnode(&dn); 1634 1635 if (map->m_may_create) { 1636 f2fs_do_map_lock(sbi, flag, false); 1637 f2fs_balance_fs(sbi, dn.node_changed); 1638 } 1639 goto next_dnode; 1640 1641 sync_out: 1642 1643 if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) { 1644 /* 1645 * for hardware encryption, but to avoid potential issue 1646 * in future 1647 */ 1648 f2fs_wait_on_block_writeback_range(inode, 1649 map->m_pblk, map->m_len); 1650 invalidate_mapping_pages(META_MAPPING(sbi), 1651 map->m_pblk, map->m_pblk); 1652 1653 if (map->m_multidev_dio) { 1654 block_t blk_addr = map->m_pblk; 1655 1656 bidx = f2fs_target_device_index(sbi, map->m_pblk); 1657 1658 map->m_bdev = FDEV(bidx).bdev; 1659 map->m_pblk -= FDEV(bidx).start_blk; 1660 1661 if (map->m_may_create) 1662 f2fs_update_device_state(sbi, inode->i_ino, 1663 blk_addr, map->m_len); 1664 1665 f2fs_bug_on(sbi, blk_addr + map->m_len > 1666 FDEV(bidx).end_blk + 1); 1667 } 1668 } 1669 1670 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1671 if (map->m_flags & F2FS_MAP_MAPPED) { 1672 unsigned int ofs = start_pgofs - map->m_lblk; 1673 1674 f2fs_update_extent_cache_range(&dn, 1675 start_pgofs, map->m_pblk + ofs, 1676 map->m_len - ofs); 1677 } 1678 if (map->m_next_extent) 1679 *map->m_next_extent = pgofs + 1; 1680 } 1681 f2fs_put_dnode(&dn); 1682 unlock_out: 1683 if (map->m_may_create) { 1684 f2fs_do_map_lock(sbi, flag, false); 1685 f2fs_balance_fs(sbi, dn.node_changed); 1686 } 1687 out: 1688 trace_f2fs_map_blocks(inode, map, create, flag, err); 1689 return err; 1690 } 1691 1692 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len) 1693 { 1694 struct f2fs_map_blocks map; 1695 block_t last_lblk; 1696 int err; 1697 1698 if (pos + len > i_size_read(inode)) 1699 return false; 1700 1701 map.m_lblk = F2FS_BYTES_TO_BLK(pos); 1702 map.m_next_pgofs = NULL; 1703 map.m_next_extent = NULL; 1704 map.m_seg_type = NO_CHECK_TYPE; 1705 map.m_may_create = false; 1706 last_lblk = F2FS_BLK_ALIGN(pos + len); 1707 1708 while (map.m_lblk < last_lblk) { 1709 map.m_len = last_lblk - map.m_lblk; 1710 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT); 1711 if (err || map.m_len == 0) 1712 return false; 1713 map.m_lblk += map.m_len; 1714 } 1715 return true; 1716 } 1717 1718 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes) 1719 { 1720 return (bytes >> inode->i_blkbits); 1721 } 1722 1723 static inline u64 blks_to_bytes(struct inode *inode, u64 blks) 1724 { 1725 return (blks << inode->i_blkbits); 1726 } 1727 1728 static int f2fs_xattr_fiemap(struct inode *inode, 1729 struct fiemap_extent_info *fieinfo) 1730 { 1731 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1732 struct page *page; 1733 struct node_info ni; 1734 __u64 phys = 0, len; 1735 __u32 flags; 1736 nid_t xnid = F2FS_I(inode)->i_xattr_nid; 1737 int err = 0; 1738 1739 if (f2fs_has_inline_xattr(inode)) { 1740 int offset; 1741 1742 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), 1743 inode->i_ino, false); 1744 if (!page) 1745 return -ENOMEM; 1746 1747 err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false); 1748 if (err) { 1749 f2fs_put_page(page, 1); 1750 return err; 1751 } 1752 1753 phys = blks_to_bytes(inode, ni.blk_addr); 1754 offset = offsetof(struct f2fs_inode, i_addr) + 1755 sizeof(__le32) * (DEF_ADDRS_PER_INODE - 1756 get_inline_xattr_addrs(inode)); 1757 1758 phys += offset; 1759 len = inline_xattr_size(inode); 1760 1761 f2fs_put_page(page, 1); 1762 1763 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED; 1764 1765 if (!xnid) 1766 flags |= FIEMAP_EXTENT_LAST; 1767 1768 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1769 trace_f2fs_fiemap(inode, 0, phys, len, flags, err); 1770 if (err || err == 1) 1771 return err; 1772 } 1773 1774 if (xnid) { 1775 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false); 1776 if (!page) 1777 return -ENOMEM; 1778 1779 err = f2fs_get_node_info(sbi, xnid, &ni, false); 1780 if (err) { 1781 f2fs_put_page(page, 1); 1782 return err; 1783 } 1784 1785 phys = blks_to_bytes(inode, ni.blk_addr); 1786 len = inode->i_sb->s_blocksize; 1787 1788 f2fs_put_page(page, 1); 1789 1790 flags = FIEMAP_EXTENT_LAST; 1791 } 1792 1793 if (phys) { 1794 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1795 trace_f2fs_fiemap(inode, 0, phys, len, flags, err); 1796 } 1797 1798 return (err < 0 ? err : 0); 1799 } 1800 1801 static loff_t max_inode_blocks(struct inode *inode) 1802 { 1803 loff_t result = ADDRS_PER_INODE(inode); 1804 loff_t leaf_count = ADDRS_PER_BLOCK(inode); 1805 1806 /* two direct node blocks */ 1807 result += (leaf_count * 2); 1808 1809 /* two indirect node blocks */ 1810 leaf_count *= NIDS_PER_BLOCK; 1811 result += (leaf_count * 2); 1812 1813 /* one double indirect node block */ 1814 leaf_count *= NIDS_PER_BLOCK; 1815 result += leaf_count; 1816 1817 return result; 1818 } 1819 1820 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 1821 u64 start, u64 len) 1822 { 1823 struct f2fs_map_blocks map; 1824 sector_t start_blk, last_blk; 1825 pgoff_t next_pgofs; 1826 u64 logical = 0, phys = 0, size = 0; 1827 u32 flags = 0; 1828 int ret = 0; 1829 bool compr_cluster = false, compr_appended; 1830 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size; 1831 unsigned int count_in_cluster = 0; 1832 loff_t maxbytes; 1833 1834 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) { 1835 ret = f2fs_precache_extents(inode); 1836 if (ret) 1837 return ret; 1838 } 1839 1840 ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR); 1841 if (ret) 1842 return ret; 1843 1844 inode_lock(inode); 1845 1846 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS; 1847 if (start > maxbytes) { 1848 ret = -EFBIG; 1849 goto out; 1850 } 1851 1852 if (len > maxbytes || (maxbytes - len) < start) 1853 len = maxbytes - start; 1854 1855 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 1856 ret = f2fs_xattr_fiemap(inode, fieinfo); 1857 goto out; 1858 } 1859 1860 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) { 1861 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len); 1862 if (ret != -EAGAIN) 1863 goto out; 1864 } 1865 1866 if (bytes_to_blks(inode, len) == 0) 1867 len = blks_to_bytes(inode, 1); 1868 1869 start_blk = bytes_to_blks(inode, start); 1870 last_blk = bytes_to_blks(inode, start + len - 1); 1871 1872 next: 1873 memset(&map, 0, sizeof(map)); 1874 map.m_lblk = start_blk; 1875 map.m_len = bytes_to_blks(inode, len); 1876 map.m_next_pgofs = &next_pgofs; 1877 map.m_seg_type = NO_CHECK_TYPE; 1878 1879 if (compr_cluster) { 1880 map.m_lblk += 1; 1881 map.m_len = cluster_size - count_in_cluster; 1882 } 1883 1884 ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP); 1885 if (ret) 1886 goto out; 1887 1888 /* HOLE */ 1889 if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) { 1890 start_blk = next_pgofs; 1891 1892 if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode, 1893 max_inode_blocks(inode))) 1894 goto prep_next; 1895 1896 flags |= FIEMAP_EXTENT_LAST; 1897 } 1898 1899 compr_appended = false; 1900 /* In a case of compressed cluster, append this to the last extent */ 1901 if (compr_cluster && ((map.m_flags & F2FS_MAP_UNWRITTEN) || 1902 !(map.m_flags & F2FS_MAP_FLAGS))) { 1903 compr_appended = true; 1904 goto skip_fill; 1905 } 1906 1907 if (size) { 1908 flags |= FIEMAP_EXTENT_MERGED; 1909 if (IS_ENCRYPTED(inode)) 1910 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED; 1911 1912 ret = fiemap_fill_next_extent(fieinfo, logical, 1913 phys, size, flags); 1914 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret); 1915 if (ret) 1916 goto out; 1917 size = 0; 1918 } 1919 1920 if (start_blk > last_blk) 1921 goto out; 1922 1923 skip_fill: 1924 if (map.m_pblk == COMPRESS_ADDR) { 1925 compr_cluster = true; 1926 count_in_cluster = 1; 1927 } else if (compr_appended) { 1928 unsigned int appended_blks = cluster_size - 1929 count_in_cluster + 1; 1930 size += blks_to_bytes(inode, appended_blks); 1931 start_blk += appended_blks; 1932 compr_cluster = false; 1933 } else { 1934 logical = blks_to_bytes(inode, start_blk); 1935 phys = __is_valid_data_blkaddr(map.m_pblk) ? 1936 blks_to_bytes(inode, map.m_pblk) : 0; 1937 size = blks_to_bytes(inode, map.m_len); 1938 flags = 0; 1939 1940 if (compr_cluster) { 1941 flags = FIEMAP_EXTENT_ENCODED; 1942 count_in_cluster += map.m_len; 1943 if (count_in_cluster == cluster_size) { 1944 compr_cluster = false; 1945 size += blks_to_bytes(inode, 1); 1946 } 1947 } else if (map.m_flags & F2FS_MAP_UNWRITTEN) { 1948 flags = FIEMAP_EXTENT_UNWRITTEN; 1949 } 1950 1951 start_blk += bytes_to_blks(inode, size); 1952 } 1953 1954 prep_next: 1955 cond_resched(); 1956 if (fatal_signal_pending(current)) 1957 ret = -EINTR; 1958 else 1959 goto next; 1960 out: 1961 if (ret == 1) 1962 ret = 0; 1963 1964 inode_unlock(inode); 1965 return ret; 1966 } 1967 1968 static inline loff_t f2fs_readpage_limit(struct inode *inode) 1969 { 1970 if (IS_ENABLED(CONFIG_FS_VERITY) && 1971 (IS_VERITY(inode) || f2fs_verity_in_progress(inode))) 1972 return inode->i_sb->s_maxbytes; 1973 1974 return i_size_read(inode); 1975 } 1976 1977 static int f2fs_read_single_page(struct inode *inode, struct page *page, 1978 unsigned nr_pages, 1979 struct f2fs_map_blocks *map, 1980 struct bio **bio_ret, 1981 sector_t *last_block_in_bio, 1982 bool is_readahead) 1983 { 1984 struct bio *bio = *bio_ret; 1985 const unsigned blocksize = blks_to_bytes(inode, 1); 1986 sector_t block_in_file; 1987 sector_t last_block; 1988 sector_t last_block_in_file; 1989 sector_t block_nr; 1990 int ret = 0; 1991 1992 block_in_file = (sector_t)page_index(page); 1993 last_block = block_in_file + nr_pages; 1994 last_block_in_file = bytes_to_blks(inode, 1995 f2fs_readpage_limit(inode) + blocksize - 1); 1996 if (last_block > last_block_in_file) 1997 last_block = last_block_in_file; 1998 1999 /* just zeroing out page which is beyond EOF */ 2000 if (block_in_file >= last_block) 2001 goto zero_out; 2002 /* 2003 * Map blocks using the previous result first. 2004 */ 2005 if ((map->m_flags & F2FS_MAP_MAPPED) && 2006 block_in_file > map->m_lblk && 2007 block_in_file < (map->m_lblk + map->m_len)) 2008 goto got_it; 2009 2010 /* 2011 * Then do more f2fs_map_blocks() calls until we are 2012 * done with this page. 2013 */ 2014 map->m_lblk = block_in_file; 2015 map->m_len = last_block - block_in_file; 2016 2017 ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT); 2018 if (ret) 2019 goto out; 2020 got_it: 2021 if ((map->m_flags & F2FS_MAP_MAPPED)) { 2022 block_nr = map->m_pblk + block_in_file - map->m_lblk; 2023 SetPageMappedToDisk(page); 2024 2025 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr, 2026 DATA_GENERIC_ENHANCE_READ)) { 2027 ret = -EFSCORRUPTED; 2028 goto out; 2029 } 2030 } else { 2031 zero_out: 2032 zero_user_segment(page, 0, PAGE_SIZE); 2033 if (f2fs_need_verity(inode, page->index) && 2034 !fsverity_verify_page(page)) { 2035 ret = -EIO; 2036 goto out; 2037 } 2038 if (!PageUptodate(page)) 2039 SetPageUptodate(page); 2040 unlock_page(page); 2041 goto out; 2042 } 2043 2044 /* 2045 * This page will go to BIO. Do we need to send this 2046 * BIO off first? 2047 */ 2048 if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio, 2049 *last_block_in_bio, block_nr) || 2050 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) { 2051 submit_and_realloc: 2052 __submit_bio(F2FS_I_SB(inode), bio, DATA); 2053 bio = NULL; 2054 } 2055 if (bio == NULL) { 2056 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages, 2057 is_readahead ? REQ_RAHEAD : 0, page->index, 2058 false); 2059 if (IS_ERR(bio)) { 2060 ret = PTR_ERR(bio); 2061 bio = NULL; 2062 goto out; 2063 } 2064 } 2065 2066 /* 2067 * If the page is under writeback, we need to wait for 2068 * its completion to see the correct decrypted data. 2069 */ 2070 f2fs_wait_on_block_writeback(inode, block_nr); 2071 2072 if (bio_add_page(bio, page, blocksize, 0) < blocksize) 2073 goto submit_and_realloc; 2074 2075 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA); 2076 f2fs_update_iostat(F2FS_I_SB(inode), FS_DATA_READ_IO, F2FS_BLKSIZE); 2077 ClearPageError(page); 2078 *last_block_in_bio = block_nr; 2079 goto out; 2080 out: 2081 *bio_ret = bio; 2082 return ret; 2083 } 2084 2085 #ifdef CONFIG_F2FS_FS_COMPRESSION 2086 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret, 2087 unsigned nr_pages, sector_t *last_block_in_bio, 2088 bool is_readahead, bool for_write) 2089 { 2090 struct dnode_of_data dn; 2091 struct inode *inode = cc->inode; 2092 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2093 struct bio *bio = *bio_ret; 2094 unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size; 2095 sector_t last_block_in_file; 2096 const unsigned blocksize = blks_to_bytes(inode, 1); 2097 struct decompress_io_ctx *dic = NULL; 2098 struct extent_info ei = {0, }; 2099 bool from_dnode = true; 2100 int i; 2101 int ret = 0; 2102 2103 f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc)); 2104 2105 last_block_in_file = bytes_to_blks(inode, 2106 f2fs_readpage_limit(inode) + blocksize - 1); 2107 2108 /* get rid of pages beyond EOF */ 2109 for (i = 0; i < cc->cluster_size; i++) { 2110 struct page *page = cc->rpages[i]; 2111 2112 if (!page) 2113 continue; 2114 if ((sector_t)page->index >= last_block_in_file) { 2115 zero_user_segment(page, 0, PAGE_SIZE); 2116 if (!PageUptodate(page)) 2117 SetPageUptodate(page); 2118 } else if (!PageUptodate(page)) { 2119 continue; 2120 } 2121 unlock_page(page); 2122 if (for_write) 2123 put_page(page); 2124 cc->rpages[i] = NULL; 2125 cc->nr_rpages--; 2126 } 2127 2128 /* we are done since all pages are beyond EOF */ 2129 if (f2fs_cluster_is_empty(cc)) 2130 goto out; 2131 2132 if (f2fs_lookup_extent_cache(inode, start_idx, &ei)) 2133 from_dnode = false; 2134 2135 if (!from_dnode) 2136 goto skip_reading_dnode; 2137 2138 set_new_dnode(&dn, inode, NULL, NULL, 0); 2139 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 2140 if (ret) 2141 goto out; 2142 2143 f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR); 2144 2145 skip_reading_dnode: 2146 for (i = 1; i < cc->cluster_size; i++) { 2147 block_t blkaddr; 2148 2149 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page, 2150 dn.ofs_in_node + i) : 2151 ei.blk + i - 1; 2152 2153 if (!__is_valid_data_blkaddr(blkaddr)) 2154 break; 2155 2156 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) { 2157 ret = -EFAULT; 2158 goto out_put_dnode; 2159 } 2160 cc->nr_cpages++; 2161 2162 if (!from_dnode && i >= ei.c_len) 2163 break; 2164 } 2165 2166 /* nothing to decompress */ 2167 if (cc->nr_cpages == 0) { 2168 ret = 0; 2169 goto out_put_dnode; 2170 } 2171 2172 dic = f2fs_alloc_dic(cc); 2173 if (IS_ERR(dic)) { 2174 ret = PTR_ERR(dic); 2175 goto out_put_dnode; 2176 } 2177 2178 for (i = 0; i < cc->nr_cpages; i++) { 2179 struct page *page = dic->cpages[i]; 2180 block_t blkaddr; 2181 struct bio_post_read_ctx *ctx; 2182 2183 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page, 2184 dn.ofs_in_node + i + 1) : 2185 ei.blk + i; 2186 2187 f2fs_wait_on_block_writeback(inode, blkaddr); 2188 2189 if (f2fs_load_compressed_page(sbi, page, blkaddr)) { 2190 if (atomic_dec_and_test(&dic->remaining_pages)) 2191 f2fs_decompress_cluster(dic); 2192 continue; 2193 } 2194 2195 if (bio && (!page_is_mergeable(sbi, bio, 2196 *last_block_in_bio, blkaddr) || 2197 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) { 2198 submit_and_realloc: 2199 __submit_bio(sbi, bio, DATA); 2200 bio = NULL; 2201 } 2202 2203 if (!bio) { 2204 bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages, 2205 is_readahead ? REQ_RAHEAD : 0, 2206 page->index, for_write); 2207 if (IS_ERR(bio)) { 2208 ret = PTR_ERR(bio); 2209 f2fs_decompress_end_io(dic, ret); 2210 f2fs_put_dnode(&dn); 2211 *bio_ret = NULL; 2212 return ret; 2213 } 2214 } 2215 2216 if (bio_add_page(bio, page, blocksize, 0) < blocksize) 2217 goto submit_and_realloc; 2218 2219 ctx = get_post_read_ctx(bio); 2220 ctx->enabled_steps |= STEP_DECOMPRESS; 2221 refcount_inc(&dic->refcnt); 2222 2223 inc_page_count(sbi, F2FS_RD_DATA); 2224 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE); 2225 f2fs_update_iostat(sbi, FS_CDATA_READ_IO, F2FS_BLKSIZE); 2226 ClearPageError(page); 2227 *last_block_in_bio = blkaddr; 2228 } 2229 2230 if (from_dnode) 2231 f2fs_put_dnode(&dn); 2232 2233 *bio_ret = bio; 2234 return 0; 2235 2236 out_put_dnode: 2237 if (from_dnode) 2238 f2fs_put_dnode(&dn); 2239 out: 2240 for (i = 0; i < cc->cluster_size; i++) { 2241 if (cc->rpages[i]) { 2242 ClearPageUptodate(cc->rpages[i]); 2243 ClearPageError(cc->rpages[i]); 2244 unlock_page(cc->rpages[i]); 2245 } 2246 } 2247 *bio_ret = bio; 2248 return ret; 2249 } 2250 #endif 2251 2252 /* 2253 * This function was originally taken from fs/mpage.c, and customized for f2fs. 2254 * Major change was from block_size == page_size in f2fs by default. 2255 */ 2256 static int f2fs_mpage_readpages(struct inode *inode, 2257 struct readahead_control *rac, struct page *page) 2258 { 2259 struct bio *bio = NULL; 2260 sector_t last_block_in_bio = 0; 2261 struct f2fs_map_blocks map; 2262 #ifdef CONFIG_F2FS_FS_COMPRESSION 2263 struct compress_ctx cc = { 2264 .inode = inode, 2265 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 2266 .cluster_size = F2FS_I(inode)->i_cluster_size, 2267 .cluster_idx = NULL_CLUSTER, 2268 .rpages = NULL, 2269 .cpages = NULL, 2270 .nr_rpages = 0, 2271 .nr_cpages = 0, 2272 }; 2273 pgoff_t nc_cluster_idx = NULL_CLUSTER; 2274 #endif 2275 unsigned nr_pages = rac ? readahead_count(rac) : 1; 2276 unsigned max_nr_pages = nr_pages; 2277 int ret = 0; 2278 2279 map.m_pblk = 0; 2280 map.m_lblk = 0; 2281 map.m_len = 0; 2282 map.m_flags = 0; 2283 map.m_next_pgofs = NULL; 2284 map.m_next_extent = NULL; 2285 map.m_seg_type = NO_CHECK_TYPE; 2286 map.m_may_create = false; 2287 2288 for (; nr_pages; nr_pages--) { 2289 if (rac) { 2290 page = readahead_page(rac); 2291 prefetchw(&page->flags); 2292 } 2293 2294 #ifdef CONFIG_F2FS_FS_COMPRESSION 2295 if (f2fs_compressed_file(inode)) { 2296 /* there are remained comressed pages, submit them */ 2297 if (!f2fs_cluster_can_merge_page(&cc, page->index)) { 2298 ret = f2fs_read_multi_pages(&cc, &bio, 2299 max_nr_pages, 2300 &last_block_in_bio, 2301 rac != NULL, false); 2302 f2fs_destroy_compress_ctx(&cc, false); 2303 if (ret) 2304 goto set_error_page; 2305 } 2306 if (cc.cluster_idx == NULL_CLUSTER) { 2307 if (nc_cluster_idx == 2308 page->index >> cc.log_cluster_size) { 2309 goto read_single_page; 2310 } 2311 2312 ret = f2fs_is_compressed_cluster(inode, page->index); 2313 if (ret < 0) 2314 goto set_error_page; 2315 else if (!ret) { 2316 nc_cluster_idx = 2317 page->index >> cc.log_cluster_size; 2318 goto read_single_page; 2319 } 2320 2321 nc_cluster_idx = NULL_CLUSTER; 2322 } 2323 ret = f2fs_init_compress_ctx(&cc); 2324 if (ret) 2325 goto set_error_page; 2326 2327 f2fs_compress_ctx_add_page(&cc, page); 2328 2329 goto next_page; 2330 } 2331 read_single_page: 2332 #endif 2333 2334 ret = f2fs_read_single_page(inode, page, max_nr_pages, &map, 2335 &bio, &last_block_in_bio, rac); 2336 if (ret) { 2337 #ifdef CONFIG_F2FS_FS_COMPRESSION 2338 set_error_page: 2339 #endif 2340 SetPageError(page); 2341 zero_user_segment(page, 0, PAGE_SIZE); 2342 unlock_page(page); 2343 } 2344 #ifdef CONFIG_F2FS_FS_COMPRESSION 2345 next_page: 2346 #endif 2347 if (rac) 2348 put_page(page); 2349 2350 #ifdef CONFIG_F2FS_FS_COMPRESSION 2351 if (f2fs_compressed_file(inode)) { 2352 /* last page */ 2353 if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) { 2354 ret = f2fs_read_multi_pages(&cc, &bio, 2355 max_nr_pages, 2356 &last_block_in_bio, 2357 rac != NULL, false); 2358 f2fs_destroy_compress_ctx(&cc, false); 2359 } 2360 } 2361 #endif 2362 } 2363 if (bio) 2364 __submit_bio(F2FS_I_SB(inode), bio, DATA); 2365 return ret; 2366 } 2367 2368 static int f2fs_read_data_page(struct file *file, struct page *page) 2369 { 2370 struct inode *inode = page_file_mapping(page)->host; 2371 int ret = -EAGAIN; 2372 2373 trace_f2fs_readpage(page, DATA); 2374 2375 if (!f2fs_is_compress_backend_ready(inode)) { 2376 unlock_page(page); 2377 return -EOPNOTSUPP; 2378 } 2379 2380 /* If the file has inline data, try to read it directly */ 2381 if (f2fs_has_inline_data(inode)) 2382 ret = f2fs_read_inline_data(inode, page); 2383 if (ret == -EAGAIN) 2384 ret = f2fs_mpage_readpages(inode, NULL, page); 2385 return ret; 2386 } 2387 2388 static void f2fs_readahead(struct readahead_control *rac) 2389 { 2390 struct inode *inode = rac->mapping->host; 2391 2392 trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac)); 2393 2394 if (!f2fs_is_compress_backend_ready(inode)) 2395 return; 2396 2397 /* If the file has inline data, skip readpages */ 2398 if (f2fs_has_inline_data(inode)) 2399 return; 2400 2401 f2fs_mpage_readpages(inode, rac, NULL); 2402 } 2403 2404 int f2fs_encrypt_one_page(struct f2fs_io_info *fio) 2405 { 2406 struct inode *inode = fio->page->mapping->host; 2407 struct page *mpage, *page; 2408 gfp_t gfp_flags = GFP_NOFS; 2409 2410 if (!f2fs_encrypted_file(inode)) 2411 return 0; 2412 2413 page = fio->compressed_page ? fio->compressed_page : fio->page; 2414 2415 /* wait for GCed page writeback via META_MAPPING */ 2416 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr); 2417 2418 if (fscrypt_inode_uses_inline_crypto(inode)) 2419 return 0; 2420 2421 retry_encrypt: 2422 fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page, 2423 PAGE_SIZE, 0, gfp_flags); 2424 if (IS_ERR(fio->encrypted_page)) { 2425 /* flush pending IOs and wait for a while in the ENOMEM case */ 2426 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) { 2427 f2fs_flush_merged_writes(fio->sbi); 2428 memalloc_retry_wait(GFP_NOFS); 2429 gfp_flags |= __GFP_NOFAIL; 2430 goto retry_encrypt; 2431 } 2432 return PTR_ERR(fio->encrypted_page); 2433 } 2434 2435 mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr); 2436 if (mpage) { 2437 if (PageUptodate(mpage)) 2438 memcpy(page_address(mpage), 2439 page_address(fio->encrypted_page), PAGE_SIZE); 2440 f2fs_put_page(mpage, 1); 2441 } 2442 return 0; 2443 } 2444 2445 static inline bool check_inplace_update_policy(struct inode *inode, 2446 struct f2fs_io_info *fio) 2447 { 2448 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2449 unsigned int policy = SM_I(sbi)->ipu_policy; 2450 2451 if (policy & (0x1 << F2FS_IPU_FORCE)) 2452 return true; 2453 if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi)) 2454 return true; 2455 if (policy & (0x1 << F2FS_IPU_UTIL) && 2456 utilization(sbi) > SM_I(sbi)->min_ipu_util) 2457 return true; 2458 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) && 2459 utilization(sbi) > SM_I(sbi)->min_ipu_util) 2460 return true; 2461 2462 /* 2463 * IPU for rewrite async pages 2464 */ 2465 if (policy & (0x1 << F2FS_IPU_ASYNC) && 2466 fio && fio->op == REQ_OP_WRITE && 2467 !(fio->op_flags & REQ_SYNC) && 2468 !IS_ENCRYPTED(inode)) 2469 return true; 2470 2471 /* this is only set during fdatasync */ 2472 if (policy & (0x1 << F2FS_IPU_FSYNC) && 2473 is_inode_flag_set(inode, FI_NEED_IPU)) 2474 return true; 2475 2476 if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 2477 !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) 2478 return true; 2479 2480 return false; 2481 } 2482 2483 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio) 2484 { 2485 /* swap file is migrating in aligned write mode */ 2486 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE)) 2487 return false; 2488 2489 if (f2fs_is_pinned_file(inode)) 2490 return true; 2491 2492 /* if this is cold file, we should overwrite to avoid fragmentation */ 2493 if (file_is_cold(inode)) 2494 return true; 2495 2496 return check_inplace_update_policy(inode, fio); 2497 } 2498 2499 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio) 2500 { 2501 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2502 2503 /* The below cases were checked when setting it. */ 2504 if (f2fs_is_pinned_file(inode)) 2505 return false; 2506 if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 2507 return true; 2508 if (f2fs_lfs_mode(sbi)) 2509 return true; 2510 if (S_ISDIR(inode->i_mode)) 2511 return true; 2512 if (IS_NOQUOTA(inode)) 2513 return true; 2514 if (f2fs_is_atomic_file(inode)) 2515 return true; 2516 2517 /* swap file is migrating in aligned write mode */ 2518 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE)) 2519 return true; 2520 2521 if (fio) { 2522 if (page_private_gcing(fio->page)) 2523 return true; 2524 if (page_private_dummy(fio->page)) 2525 return true; 2526 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 2527 f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) 2528 return true; 2529 } 2530 return false; 2531 } 2532 2533 static inline bool need_inplace_update(struct f2fs_io_info *fio) 2534 { 2535 struct inode *inode = fio->page->mapping->host; 2536 2537 if (f2fs_should_update_outplace(inode, fio)) 2538 return false; 2539 2540 return f2fs_should_update_inplace(inode, fio); 2541 } 2542 2543 int f2fs_do_write_data_page(struct f2fs_io_info *fio) 2544 { 2545 struct page *page = fio->page; 2546 struct inode *inode = page->mapping->host; 2547 struct dnode_of_data dn; 2548 struct extent_info ei = {0, }; 2549 struct node_info ni; 2550 bool ipu_force = false; 2551 int err = 0; 2552 2553 set_new_dnode(&dn, inode, NULL, NULL, 0); 2554 if (need_inplace_update(fio) && 2555 f2fs_lookup_extent_cache(inode, page->index, &ei)) { 2556 fio->old_blkaddr = ei.blk + page->index - ei.fofs; 2557 2558 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 2559 DATA_GENERIC_ENHANCE)) 2560 return -EFSCORRUPTED; 2561 2562 ipu_force = true; 2563 fio->need_lock = LOCK_DONE; 2564 goto got_it; 2565 } 2566 2567 /* Deadlock due to between page->lock and f2fs_lock_op */ 2568 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi)) 2569 return -EAGAIN; 2570 2571 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE); 2572 if (err) 2573 goto out; 2574 2575 fio->old_blkaddr = dn.data_blkaddr; 2576 2577 /* This page is already truncated */ 2578 if (fio->old_blkaddr == NULL_ADDR) { 2579 ClearPageUptodate(page); 2580 clear_page_private_gcing(page); 2581 goto out_writepage; 2582 } 2583 got_it: 2584 if (__is_valid_data_blkaddr(fio->old_blkaddr) && 2585 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 2586 DATA_GENERIC_ENHANCE)) { 2587 err = -EFSCORRUPTED; 2588 goto out_writepage; 2589 } 2590 /* 2591 * If current allocation needs SSR, 2592 * it had better in-place writes for updated data. 2593 */ 2594 if (ipu_force || 2595 (__is_valid_data_blkaddr(fio->old_blkaddr) && 2596 need_inplace_update(fio))) { 2597 err = f2fs_encrypt_one_page(fio); 2598 if (err) 2599 goto out_writepage; 2600 2601 set_page_writeback(page); 2602 ClearPageError(page); 2603 f2fs_put_dnode(&dn); 2604 if (fio->need_lock == LOCK_REQ) 2605 f2fs_unlock_op(fio->sbi); 2606 err = f2fs_inplace_write_data(fio); 2607 if (err) { 2608 if (fscrypt_inode_uses_fs_layer_crypto(inode)) 2609 fscrypt_finalize_bounce_page(&fio->encrypted_page); 2610 if (PageWriteback(page)) 2611 end_page_writeback(page); 2612 } else { 2613 set_inode_flag(inode, FI_UPDATE_WRITE); 2614 } 2615 trace_f2fs_do_write_data_page(fio->page, IPU); 2616 return err; 2617 } 2618 2619 if (fio->need_lock == LOCK_RETRY) { 2620 if (!f2fs_trylock_op(fio->sbi)) { 2621 err = -EAGAIN; 2622 goto out_writepage; 2623 } 2624 fio->need_lock = LOCK_REQ; 2625 } 2626 2627 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false); 2628 if (err) 2629 goto out_writepage; 2630 2631 fio->version = ni.version; 2632 2633 err = f2fs_encrypt_one_page(fio); 2634 if (err) 2635 goto out_writepage; 2636 2637 set_page_writeback(page); 2638 ClearPageError(page); 2639 2640 if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR) 2641 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false); 2642 2643 /* LFS mode write path */ 2644 f2fs_outplace_write_data(&dn, fio); 2645 trace_f2fs_do_write_data_page(page, OPU); 2646 set_inode_flag(inode, FI_APPEND_WRITE); 2647 if (page->index == 0) 2648 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); 2649 out_writepage: 2650 f2fs_put_dnode(&dn); 2651 out: 2652 if (fio->need_lock == LOCK_REQ) 2653 f2fs_unlock_op(fio->sbi); 2654 return err; 2655 } 2656 2657 int f2fs_write_single_data_page(struct page *page, int *submitted, 2658 struct bio **bio, 2659 sector_t *last_block, 2660 struct writeback_control *wbc, 2661 enum iostat_type io_type, 2662 int compr_blocks, 2663 bool allow_balance) 2664 { 2665 struct inode *inode = page->mapping->host; 2666 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2667 loff_t i_size = i_size_read(inode); 2668 const pgoff_t end_index = ((unsigned long long)i_size) 2669 >> PAGE_SHIFT; 2670 loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT; 2671 unsigned offset = 0; 2672 bool need_balance_fs = false; 2673 int err = 0; 2674 struct f2fs_io_info fio = { 2675 .sbi = sbi, 2676 .ino = inode->i_ino, 2677 .type = DATA, 2678 .op = REQ_OP_WRITE, 2679 .op_flags = wbc_to_write_flags(wbc), 2680 .old_blkaddr = NULL_ADDR, 2681 .page = page, 2682 .encrypted_page = NULL, 2683 .submitted = false, 2684 .compr_blocks = compr_blocks, 2685 .need_lock = LOCK_RETRY, 2686 .io_type = io_type, 2687 .io_wbc = wbc, 2688 .bio = bio, 2689 .last_block = last_block, 2690 }; 2691 2692 trace_f2fs_writepage(page, DATA); 2693 2694 /* we should bypass data pages to proceed the kworkder jobs */ 2695 if (unlikely(f2fs_cp_error(sbi))) { 2696 mapping_set_error(page->mapping, -EIO); 2697 /* 2698 * don't drop any dirty dentry pages for keeping lastest 2699 * directory structure. 2700 */ 2701 if (S_ISDIR(inode->i_mode)) 2702 goto redirty_out; 2703 goto out; 2704 } 2705 2706 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 2707 goto redirty_out; 2708 2709 if (page->index < end_index || 2710 f2fs_verity_in_progress(inode) || 2711 compr_blocks) 2712 goto write; 2713 2714 /* 2715 * If the offset is out-of-range of file size, 2716 * this page does not have to be written to disk. 2717 */ 2718 offset = i_size & (PAGE_SIZE - 1); 2719 if ((page->index >= end_index + 1) || !offset) 2720 goto out; 2721 2722 zero_user_segment(page, offset, PAGE_SIZE); 2723 write: 2724 if (f2fs_is_drop_cache(inode)) 2725 goto out; 2726 /* we should not write 0'th page having journal header */ 2727 if (f2fs_is_volatile_file(inode) && (!page->index || 2728 (!wbc->for_reclaim && 2729 f2fs_available_free_memory(sbi, BASE_CHECK)))) 2730 goto redirty_out; 2731 2732 /* Dentry/quota blocks are controlled by checkpoint */ 2733 if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) { 2734 /* 2735 * We need to wait for node_write to avoid block allocation during 2736 * checkpoint. This can only happen to quota writes which can cause 2737 * the below discard race condition. 2738 */ 2739 if (IS_NOQUOTA(inode)) 2740 down_read(&sbi->node_write); 2741 2742 fio.need_lock = LOCK_DONE; 2743 err = f2fs_do_write_data_page(&fio); 2744 2745 if (IS_NOQUOTA(inode)) 2746 up_read(&sbi->node_write); 2747 2748 goto done; 2749 } 2750 2751 if (!wbc->for_reclaim) 2752 need_balance_fs = true; 2753 else if (has_not_enough_free_secs(sbi, 0, 0)) 2754 goto redirty_out; 2755 else 2756 set_inode_flag(inode, FI_HOT_DATA); 2757 2758 err = -EAGAIN; 2759 if (f2fs_has_inline_data(inode)) { 2760 err = f2fs_write_inline_data(inode, page); 2761 if (!err) 2762 goto out; 2763 } 2764 2765 if (err == -EAGAIN) { 2766 err = f2fs_do_write_data_page(&fio); 2767 if (err == -EAGAIN) { 2768 fio.need_lock = LOCK_REQ; 2769 err = f2fs_do_write_data_page(&fio); 2770 } 2771 } 2772 2773 if (err) { 2774 file_set_keep_isize(inode); 2775 } else { 2776 spin_lock(&F2FS_I(inode)->i_size_lock); 2777 if (F2FS_I(inode)->last_disk_size < psize) 2778 F2FS_I(inode)->last_disk_size = psize; 2779 spin_unlock(&F2FS_I(inode)->i_size_lock); 2780 } 2781 2782 done: 2783 if (err && err != -ENOENT) 2784 goto redirty_out; 2785 2786 out: 2787 inode_dec_dirty_pages(inode); 2788 if (err) { 2789 ClearPageUptodate(page); 2790 clear_page_private_gcing(page); 2791 } 2792 2793 if (wbc->for_reclaim) { 2794 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA); 2795 clear_inode_flag(inode, FI_HOT_DATA); 2796 f2fs_remove_dirty_inode(inode); 2797 submitted = NULL; 2798 } 2799 unlock_page(page); 2800 if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) && 2801 !F2FS_I(inode)->cp_task && allow_balance) 2802 f2fs_balance_fs(sbi, need_balance_fs); 2803 2804 if (unlikely(f2fs_cp_error(sbi))) { 2805 f2fs_submit_merged_write(sbi, DATA); 2806 f2fs_submit_merged_ipu_write(sbi, bio, NULL); 2807 submitted = NULL; 2808 } 2809 2810 if (submitted) 2811 *submitted = fio.submitted ? 1 : 0; 2812 2813 return 0; 2814 2815 redirty_out: 2816 redirty_page_for_writepage(wbc, page); 2817 /* 2818 * pageout() in MM traslates EAGAIN, so calls handle_write_error() 2819 * -> mapping_set_error() -> set_bit(AS_EIO, ...). 2820 * file_write_and_wait_range() will see EIO error, which is critical 2821 * to return value of fsync() followed by atomic_write failure to user. 2822 */ 2823 if (!err || wbc->for_reclaim) 2824 return AOP_WRITEPAGE_ACTIVATE; 2825 unlock_page(page); 2826 return err; 2827 } 2828 2829 static int f2fs_write_data_page(struct page *page, 2830 struct writeback_control *wbc) 2831 { 2832 #ifdef CONFIG_F2FS_FS_COMPRESSION 2833 struct inode *inode = page->mapping->host; 2834 2835 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 2836 goto out; 2837 2838 if (f2fs_compressed_file(inode)) { 2839 if (f2fs_is_compressed_cluster(inode, page->index)) { 2840 redirty_page_for_writepage(wbc, page); 2841 return AOP_WRITEPAGE_ACTIVATE; 2842 } 2843 } 2844 out: 2845 #endif 2846 2847 return f2fs_write_single_data_page(page, NULL, NULL, NULL, 2848 wbc, FS_DATA_IO, 0, true); 2849 } 2850 2851 /* 2852 * This function was copied from write_cche_pages from mm/page-writeback.c. 2853 * The major change is making write step of cold data page separately from 2854 * warm/hot data page. 2855 */ 2856 static int f2fs_write_cache_pages(struct address_space *mapping, 2857 struct writeback_control *wbc, 2858 enum iostat_type io_type) 2859 { 2860 int ret = 0; 2861 int done = 0, retry = 0; 2862 struct pagevec pvec; 2863 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 2864 struct bio *bio = NULL; 2865 sector_t last_block; 2866 #ifdef CONFIG_F2FS_FS_COMPRESSION 2867 struct inode *inode = mapping->host; 2868 struct compress_ctx cc = { 2869 .inode = inode, 2870 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 2871 .cluster_size = F2FS_I(inode)->i_cluster_size, 2872 .cluster_idx = NULL_CLUSTER, 2873 .rpages = NULL, 2874 .nr_rpages = 0, 2875 .cpages = NULL, 2876 .valid_nr_cpages = 0, 2877 .rbuf = NULL, 2878 .cbuf = NULL, 2879 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size, 2880 .private = NULL, 2881 }; 2882 #endif 2883 int nr_pages; 2884 pgoff_t index; 2885 pgoff_t end; /* Inclusive */ 2886 pgoff_t done_index; 2887 int range_whole = 0; 2888 xa_mark_t tag; 2889 int nwritten = 0; 2890 int submitted = 0; 2891 int i; 2892 2893 pagevec_init(&pvec); 2894 2895 if (get_dirty_pages(mapping->host) <= 2896 SM_I(F2FS_M_SB(mapping))->min_hot_blocks) 2897 set_inode_flag(mapping->host, FI_HOT_DATA); 2898 else 2899 clear_inode_flag(mapping->host, FI_HOT_DATA); 2900 2901 if (wbc->range_cyclic) { 2902 index = mapping->writeback_index; /* prev offset */ 2903 end = -1; 2904 } else { 2905 index = wbc->range_start >> PAGE_SHIFT; 2906 end = wbc->range_end >> PAGE_SHIFT; 2907 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2908 range_whole = 1; 2909 } 2910 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2911 tag = PAGECACHE_TAG_TOWRITE; 2912 else 2913 tag = PAGECACHE_TAG_DIRTY; 2914 retry: 2915 retry = 0; 2916 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2917 tag_pages_for_writeback(mapping, index, end); 2918 done_index = index; 2919 while (!done && !retry && (index <= end)) { 2920 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 2921 tag); 2922 if (nr_pages == 0) 2923 break; 2924 2925 for (i = 0; i < nr_pages; i++) { 2926 struct page *page = pvec.pages[i]; 2927 bool need_readd; 2928 readd: 2929 need_readd = false; 2930 #ifdef CONFIG_F2FS_FS_COMPRESSION 2931 if (f2fs_compressed_file(inode)) { 2932 void *fsdata = NULL; 2933 struct page *pagep; 2934 int ret2; 2935 2936 ret = f2fs_init_compress_ctx(&cc); 2937 if (ret) { 2938 done = 1; 2939 break; 2940 } 2941 2942 if (!f2fs_cluster_can_merge_page(&cc, 2943 page->index)) { 2944 ret = f2fs_write_multi_pages(&cc, 2945 &submitted, wbc, io_type); 2946 if (!ret) 2947 need_readd = true; 2948 goto result; 2949 } 2950 2951 if (unlikely(f2fs_cp_error(sbi))) 2952 goto lock_page; 2953 2954 if (!f2fs_cluster_is_empty(&cc)) 2955 goto lock_page; 2956 2957 ret2 = f2fs_prepare_compress_overwrite( 2958 inode, &pagep, 2959 page->index, &fsdata); 2960 if (ret2 < 0) { 2961 ret = ret2; 2962 done = 1; 2963 break; 2964 } else if (ret2 && 2965 (!f2fs_compress_write_end(inode, 2966 fsdata, page->index, 1) || 2967 !f2fs_all_cluster_page_loaded(&cc, 2968 &pvec, i, nr_pages))) { 2969 retry = 1; 2970 break; 2971 } 2972 } 2973 #endif 2974 /* give a priority to WB_SYNC threads */ 2975 if (atomic_read(&sbi->wb_sync_req[DATA]) && 2976 wbc->sync_mode == WB_SYNC_NONE) { 2977 done = 1; 2978 break; 2979 } 2980 #ifdef CONFIG_F2FS_FS_COMPRESSION 2981 lock_page: 2982 #endif 2983 done_index = page->index; 2984 retry_write: 2985 lock_page(page); 2986 2987 if (unlikely(page->mapping != mapping)) { 2988 continue_unlock: 2989 unlock_page(page); 2990 continue; 2991 } 2992 2993 if (!PageDirty(page)) { 2994 /* someone wrote it for us */ 2995 goto continue_unlock; 2996 } 2997 2998 if (PageWriteback(page)) { 2999 if (wbc->sync_mode != WB_SYNC_NONE) 3000 f2fs_wait_on_page_writeback(page, 3001 DATA, true, true); 3002 else 3003 goto continue_unlock; 3004 } 3005 3006 if (!clear_page_dirty_for_io(page)) 3007 goto continue_unlock; 3008 3009 #ifdef CONFIG_F2FS_FS_COMPRESSION 3010 if (f2fs_compressed_file(inode)) { 3011 get_page(page); 3012 f2fs_compress_ctx_add_page(&cc, page); 3013 continue; 3014 } 3015 #endif 3016 ret = f2fs_write_single_data_page(page, &submitted, 3017 &bio, &last_block, wbc, io_type, 3018 0, true); 3019 if (ret == AOP_WRITEPAGE_ACTIVATE) 3020 unlock_page(page); 3021 #ifdef CONFIG_F2FS_FS_COMPRESSION 3022 result: 3023 #endif 3024 nwritten += submitted; 3025 wbc->nr_to_write -= submitted; 3026 3027 if (unlikely(ret)) { 3028 /* 3029 * keep nr_to_write, since vfs uses this to 3030 * get # of written pages. 3031 */ 3032 if (ret == AOP_WRITEPAGE_ACTIVATE) { 3033 ret = 0; 3034 goto next; 3035 } else if (ret == -EAGAIN) { 3036 ret = 0; 3037 if (wbc->sync_mode == WB_SYNC_ALL) { 3038 cond_resched(); 3039 congestion_wait(BLK_RW_ASYNC, 3040 DEFAULT_IO_TIMEOUT); 3041 goto retry_write; 3042 } 3043 goto next; 3044 } 3045 done_index = page->index + 1; 3046 done = 1; 3047 break; 3048 } 3049 3050 if (wbc->nr_to_write <= 0 && 3051 wbc->sync_mode == WB_SYNC_NONE) { 3052 done = 1; 3053 break; 3054 } 3055 next: 3056 if (need_readd) 3057 goto readd; 3058 } 3059 pagevec_release(&pvec); 3060 cond_resched(); 3061 } 3062 #ifdef CONFIG_F2FS_FS_COMPRESSION 3063 /* flush remained pages in compress cluster */ 3064 if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) { 3065 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type); 3066 nwritten += submitted; 3067 wbc->nr_to_write -= submitted; 3068 if (ret) { 3069 done = 1; 3070 retry = 0; 3071 } 3072 } 3073 if (f2fs_compressed_file(inode)) 3074 f2fs_destroy_compress_ctx(&cc, false); 3075 #endif 3076 if (retry) { 3077 index = 0; 3078 end = -1; 3079 goto retry; 3080 } 3081 if (wbc->range_cyclic && !done) 3082 done_index = 0; 3083 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 3084 mapping->writeback_index = done_index; 3085 3086 if (nwritten) 3087 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host, 3088 NULL, 0, DATA); 3089 /* submit cached bio of IPU write */ 3090 if (bio) 3091 f2fs_submit_merged_ipu_write(sbi, &bio, NULL); 3092 3093 return ret; 3094 } 3095 3096 static inline bool __should_serialize_io(struct inode *inode, 3097 struct writeback_control *wbc) 3098 { 3099 /* to avoid deadlock in path of data flush */ 3100 if (F2FS_I(inode)->cp_task) 3101 return false; 3102 3103 if (!S_ISREG(inode->i_mode)) 3104 return false; 3105 if (IS_NOQUOTA(inode)) 3106 return false; 3107 3108 if (f2fs_need_compress_data(inode)) 3109 return true; 3110 if (wbc->sync_mode != WB_SYNC_ALL) 3111 return true; 3112 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks) 3113 return true; 3114 return false; 3115 } 3116 3117 static int __f2fs_write_data_pages(struct address_space *mapping, 3118 struct writeback_control *wbc, 3119 enum iostat_type io_type) 3120 { 3121 struct inode *inode = mapping->host; 3122 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3123 struct blk_plug plug; 3124 int ret; 3125 bool locked = false; 3126 3127 /* deal with chardevs and other special file */ 3128 if (!mapping->a_ops->writepage) 3129 return 0; 3130 3131 /* skip writing if there is no dirty page in this inode */ 3132 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE) 3133 return 0; 3134 3135 /* during POR, we don't need to trigger writepage at all. */ 3136 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 3137 goto skip_write; 3138 3139 if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) && 3140 wbc->sync_mode == WB_SYNC_NONE && 3141 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) && 3142 f2fs_available_free_memory(sbi, DIRTY_DENTS)) 3143 goto skip_write; 3144 3145 /* skip writing during file defragment */ 3146 if (is_inode_flag_set(inode, FI_DO_DEFRAG)) 3147 goto skip_write; 3148 3149 trace_f2fs_writepages(mapping->host, wbc, DATA); 3150 3151 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */ 3152 if (wbc->sync_mode == WB_SYNC_ALL) 3153 atomic_inc(&sbi->wb_sync_req[DATA]); 3154 else if (atomic_read(&sbi->wb_sync_req[DATA])) 3155 goto skip_write; 3156 3157 if (__should_serialize_io(inode, wbc)) { 3158 mutex_lock(&sbi->writepages); 3159 locked = true; 3160 } 3161 3162 blk_start_plug(&plug); 3163 ret = f2fs_write_cache_pages(mapping, wbc, io_type); 3164 blk_finish_plug(&plug); 3165 3166 if (locked) 3167 mutex_unlock(&sbi->writepages); 3168 3169 if (wbc->sync_mode == WB_SYNC_ALL) 3170 atomic_dec(&sbi->wb_sync_req[DATA]); 3171 /* 3172 * if some pages were truncated, we cannot guarantee its mapping->host 3173 * to detect pending bios. 3174 */ 3175 3176 f2fs_remove_dirty_inode(inode); 3177 return ret; 3178 3179 skip_write: 3180 wbc->pages_skipped += get_dirty_pages(inode); 3181 trace_f2fs_writepages(mapping->host, wbc, DATA); 3182 return 0; 3183 } 3184 3185 static int f2fs_write_data_pages(struct address_space *mapping, 3186 struct writeback_control *wbc) 3187 { 3188 struct inode *inode = mapping->host; 3189 3190 return __f2fs_write_data_pages(mapping, wbc, 3191 F2FS_I(inode)->cp_task == current ? 3192 FS_CP_DATA_IO : FS_DATA_IO); 3193 } 3194 3195 void f2fs_write_failed(struct inode *inode, loff_t to) 3196 { 3197 loff_t i_size = i_size_read(inode); 3198 3199 if (IS_NOQUOTA(inode)) 3200 return; 3201 3202 /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */ 3203 if (to > i_size && !f2fs_verity_in_progress(inode)) { 3204 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3205 filemap_invalidate_lock(inode->i_mapping); 3206 3207 truncate_pagecache(inode, i_size); 3208 f2fs_truncate_blocks(inode, i_size, true); 3209 3210 filemap_invalidate_unlock(inode->i_mapping); 3211 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3212 } 3213 } 3214 3215 static int prepare_write_begin(struct f2fs_sb_info *sbi, 3216 struct page *page, loff_t pos, unsigned len, 3217 block_t *blk_addr, bool *node_changed) 3218 { 3219 struct inode *inode = page->mapping->host; 3220 pgoff_t index = page->index; 3221 struct dnode_of_data dn; 3222 struct page *ipage; 3223 bool locked = false; 3224 struct extent_info ei = {0, }; 3225 int err = 0; 3226 int flag; 3227 3228 /* 3229 * If a whole page is being written and we already preallocated all the 3230 * blocks, then there is no need to get a block address now. 3231 */ 3232 if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL)) 3233 return 0; 3234 3235 /* f2fs_lock_op avoids race between write CP and convert_inline_page */ 3236 if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode)) 3237 flag = F2FS_GET_BLOCK_DEFAULT; 3238 else 3239 flag = F2FS_GET_BLOCK_PRE_AIO; 3240 3241 if (f2fs_has_inline_data(inode) || 3242 (pos & PAGE_MASK) >= i_size_read(inode)) { 3243 f2fs_do_map_lock(sbi, flag, true); 3244 locked = true; 3245 } 3246 3247 restart: 3248 /* check inline_data */ 3249 ipage = f2fs_get_node_page(sbi, inode->i_ino); 3250 if (IS_ERR(ipage)) { 3251 err = PTR_ERR(ipage); 3252 goto unlock_out; 3253 } 3254 3255 set_new_dnode(&dn, inode, ipage, ipage, 0); 3256 3257 if (f2fs_has_inline_data(inode)) { 3258 if (pos + len <= MAX_INLINE_DATA(inode)) { 3259 f2fs_do_read_inline_data(page, ipage); 3260 set_inode_flag(inode, FI_DATA_EXIST); 3261 if (inode->i_nlink) 3262 set_page_private_inline(ipage); 3263 } else { 3264 err = f2fs_convert_inline_page(&dn, page); 3265 if (err) 3266 goto out; 3267 if (dn.data_blkaddr == NULL_ADDR) 3268 err = f2fs_get_block(&dn, index); 3269 } 3270 } else if (locked) { 3271 err = f2fs_get_block(&dn, index); 3272 } else { 3273 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 3274 dn.data_blkaddr = ei.blk + index - ei.fofs; 3275 } else { 3276 /* hole case */ 3277 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 3278 if (err || dn.data_blkaddr == NULL_ADDR) { 3279 f2fs_put_dnode(&dn); 3280 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, 3281 true); 3282 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO); 3283 locked = true; 3284 goto restart; 3285 } 3286 } 3287 } 3288 3289 /* convert_inline_page can make node_changed */ 3290 *blk_addr = dn.data_blkaddr; 3291 *node_changed = dn.node_changed; 3292 out: 3293 f2fs_put_dnode(&dn); 3294 unlock_out: 3295 if (locked) 3296 f2fs_do_map_lock(sbi, flag, false); 3297 return err; 3298 } 3299 3300 static int f2fs_write_begin(struct file *file, struct address_space *mapping, 3301 loff_t pos, unsigned len, unsigned flags, 3302 struct page **pagep, void **fsdata) 3303 { 3304 struct inode *inode = mapping->host; 3305 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3306 struct page *page = NULL; 3307 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT; 3308 bool need_balance = false, drop_atomic = false; 3309 block_t blkaddr = NULL_ADDR; 3310 int err = 0; 3311 3312 trace_f2fs_write_begin(inode, pos, len, flags); 3313 3314 if (!f2fs_is_checkpoint_ready(sbi)) { 3315 err = -ENOSPC; 3316 goto fail; 3317 } 3318 3319 if ((f2fs_is_atomic_file(inode) && 3320 !f2fs_available_free_memory(sbi, INMEM_PAGES)) || 3321 is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) { 3322 err = -ENOMEM; 3323 drop_atomic = true; 3324 goto fail; 3325 } 3326 3327 /* 3328 * We should check this at this moment to avoid deadlock on inode page 3329 * and #0 page. The locking rule for inline_data conversion should be: 3330 * lock_page(page #0) -> lock_page(inode_page) 3331 */ 3332 if (index != 0) { 3333 err = f2fs_convert_inline_inode(inode); 3334 if (err) 3335 goto fail; 3336 } 3337 3338 #ifdef CONFIG_F2FS_FS_COMPRESSION 3339 if (f2fs_compressed_file(inode)) { 3340 int ret; 3341 3342 *fsdata = NULL; 3343 3344 if (len == PAGE_SIZE) 3345 goto repeat; 3346 3347 ret = f2fs_prepare_compress_overwrite(inode, pagep, 3348 index, fsdata); 3349 if (ret < 0) { 3350 err = ret; 3351 goto fail; 3352 } else if (ret) { 3353 return 0; 3354 } 3355 } 3356 #endif 3357 3358 repeat: 3359 /* 3360 * Do not use grab_cache_page_write_begin() to avoid deadlock due to 3361 * wait_for_stable_page. Will wait that below with our IO control. 3362 */ 3363 page = f2fs_pagecache_get_page(mapping, index, 3364 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS); 3365 if (!page) { 3366 err = -ENOMEM; 3367 goto fail; 3368 } 3369 3370 /* TODO: cluster can be compressed due to race with .writepage */ 3371 3372 *pagep = page; 3373 3374 err = prepare_write_begin(sbi, page, pos, len, 3375 &blkaddr, &need_balance); 3376 if (err) 3377 goto fail; 3378 3379 if (need_balance && !IS_NOQUOTA(inode) && 3380 has_not_enough_free_secs(sbi, 0, 0)) { 3381 unlock_page(page); 3382 f2fs_balance_fs(sbi, true); 3383 lock_page(page); 3384 if (page->mapping != mapping) { 3385 /* The page got truncated from under us */ 3386 f2fs_put_page(page, 1); 3387 goto repeat; 3388 } 3389 } 3390 3391 f2fs_wait_on_page_writeback(page, DATA, false, true); 3392 3393 if (len == PAGE_SIZE || PageUptodate(page)) 3394 return 0; 3395 3396 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) && 3397 !f2fs_verity_in_progress(inode)) { 3398 zero_user_segment(page, len, PAGE_SIZE); 3399 return 0; 3400 } 3401 3402 if (blkaddr == NEW_ADDR) { 3403 zero_user_segment(page, 0, PAGE_SIZE); 3404 SetPageUptodate(page); 3405 } else { 3406 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 3407 DATA_GENERIC_ENHANCE_READ)) { 3408 err = -EFSCORRUPTED; 3409 goto fail; 3410 } 3411 err = f2fs_submit_page_read(inode, page, blkaddr, 0, true); 3412 if (err) 3413 goto fail; 3414 3415 lock_page(page); 3416 if (unlikely(page->mapping != mapping)) { 3417 f2fs_put_page(page, 1); 3418 goto repeat; 3419 } 3420 if (unlikely(!PageUptodate(page))) { 3421 err = -EIO; 3422 goto fail; 3423 } 3424 } 3425 return 0; 3426 3427 fail: 3428 f2fs_put_page(page, 1); 3429 f2fs_write_failed(inode, pos + len); 3430 if (drop_atomic) 3431 f2fs_drop_inmem_pages_all(sbi, false); 3432 return err; 3433 } 3434 3435 static int f2fs_write_end(struct file *file, 3436 struct address_space *mapping, 3437 loff_t pos, unsigned len, unsigned copied, 3438 struct page *page, void *fsdata) 3439 { 3440 struct inode *inode = page->mapping->host; 3441 3442 trace_f2fs_write_end(inode, pos, len, copied); 3443 3444 /* 3445 * This should be come from len == PAGE_SIZE, and we expect copied 3446 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and 3447 * let generic_perform_write() try to copy data again through copied=0. 3448 */ 3449 if (!PageUptodate(page)) { 3450 if (unlikely(copied != len)) 3451 copied = 0; 3452 else 3453 SetPageUptodate(page); 3454 } 3455 3456 #ifdef CONFIG_F2FS_FS_COMPRESSION 3457 /* overwrite compressed file */ 3458 if (f2fs_compressed_file(inode) && fsdata) { 3459 f2fs_compress_write_end(inode, fsdata, page->index, copied); 3460 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3461 3462 if (pos + copied > i_size_read(inode) && 3463 !f2fs_verity_in_progress(inode)) 3464 f2fs_i_size_write(inode, pos + copied); 3465 return copied; 3466 } 3467 #endif 3468 3469 if (!copied) 3470 goto unlock_out; 3471 3472 set_page_dirty(page); 3473 3474 if (pos + copied > i_size_read(inode) && 3475 !f2fs_verity_in_progress(inode)) 3476 f2fs_i_size_write(inode, pos + copied); 3477 unlock_out: 3478 f2fs_put_page(page, 1); 3479 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3480 return copied; 3481 } 3482 3483 void f2fs_invalidate_page(struct page *page, unsigned int offset, 3484 unsigned int length) 3485 { 3486 struct inode *inode = page->mapping->host; 3487 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3488 3489 if (inode->i_ino >= F2FS_ROOT_INO(sbi) && 3490 (offset % PAGE_SIZE || length != PAGE_SIZE)) 3491 return; 3492 3493 if (PageDirty(page)) { 3494 if (inode->i_ino == F2FS_META_INO(sbi)) { 3495 dec_page_count(sbi, F2FS_DIRTY_META); 3496 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) { 3497 dec_page_count(sbi, F2FS_DIRTY_NODES); 3498 } else { 3499 inode_dec_dirty_pages(inode); 3500 f2fs_remove_dirty_inode(inode); 3501 } 3502 } 3503 3504 clear_page_private_gcing(page); 3505 3506 if (test_opt(sbi, COMPRESS_CACHE) && 3507 inode->i_ino == F2FS_COMPRESS_INO(sbi)) 3508 clear_page_private_data(page); 3509 3510 if (page_private_atomic(page)) 3511 return f2fs_drop_inmem_page(inode, page); 3512 3513 detach_page_private(page); 3514 set_page_private(page, 0); 3515 } 3516 3517 int f2fs_release_page(struct page *page, gfp_t wait) 3518 { 3519 /* If this is dirty page, keep PagePrivate */ 3520 if (PageDirty(page)) 3521 return 0; 3522 3523 /* This is atomic written page, keep Private */ 3524 if (page_private_atomic(page)) 3525 return 0; 3526 3527 if (test_opt(F2FS_P_SB(page), COMPRESS_CACHE)) { 3528 struct inode *inode = page->mapping->host; 3529 3530 if (inode->i_ino == F2FS_COMPRESS_INO(F2FS_I_SB(inode))) 3531 clear_page_private_data(page); 3532 } 3533 3534 clear_page_private_gcing(page); 3535 3536 detach_page_private(page); 3537 set_page_private(page, 0); 3538 return 1; 3539 } 3540 3541 static int f2fs_set_data_page_dirty(struct page *page) 3542 { 3543 struct inode *inode = page_file_mapping(page)->host; 3544 3545 trace_f2fs_set_page_dirty(page, DATA); 3546 3547 if (!PageUptodate(page)) 3548 SetPageUptodate(page); 3549 if (PageSwapCache(page)) 3550 return __set_page_dirty_nobuffers(page); 3551 3552 if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) { 3553 if (!page_private_atomic(page)) { 3554 f2fs_register_inmem_page(inode, page); 3555 return 1; 3556 } 3557 /* 3558 * Previously, this page has been registered, we just 3559 * return here. 3560 */ 3561 return 0; 3562 } 3563 3564 if (!PageDirty(page)) { 3565 __set_page_dirty_nobuffers(page); 3566 f2fs_update_dirty_page(inode, page); 3567 return 1; 3568 } 3569 return 0; 3570 } 3571 3572 3573 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block) 3574 { 3575 #ifdef CONFIG_F2FS_FS_COMPRESSION 3576 struct dnode_of_data dn; 3577 sector_t start_idx, blknr = 0; 3578 int ret; 3579 3580 start_idx = round_down(block, F2FS_I(inode)->i_cluster_size); 3581 3582 set_new_dnode(&dn, inode, NULL, NULL, 0); 3583 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 3584 if (ret) 3585 return 0; 3586 3587 if (dn.data_blkaddr != COMPRESS_ADDR) { 3588 dn.ofs_in_node += block - start_idx; 3589 blknr = f2fs_data_blkaddr(&dn); 3590 if (!__is_valid_data_blkaddr(blknr)) 3591 blknr = 0; 3592 } 3593 3594 f2fs_put_dnode(&dn); 3595 return blknr; 3596 #else 3597 return 0; 3598 #endif 3599 } 3600 3601 3602 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block) 3603 { 3604 struct inode *inode = mapping->host; 3605 sector_t blknr = 0; 3606 3607 if (f2fs_has_inline_data(inode)) 3608 goto out; 3609 3610 /* make sure allocating whole blocks */ 3611 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 3612 filemap_write_and_wait(mapping); 3613 3614 /* Block number less than F2FS MAX BLOCKS */ 3615 if (unlikely(block >= max_file_blocks(inode))) 3616 goto out; 3617 3618 if (f2fs_compressed_file(inode)) { 3619 blknr = f2fs_bmap_compress(inode, block); 3620 } else { 3621 struct f2fs_map_blocks map; 3622 3623 memset(&map, 0, sizeof(map)); 3624 map.m_lblk = block; 3625 map.m_len = 1; 3626 map.m_next_pgofs = NULL; 3627 map.m_seg_type = NO_CHECK_TYPE; 3628 3629 if (!f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_BMAP)) 3630 blknr = map.m_pblk; 3631 } 3632 out: 3633 trace_f2fs_bmap(inode, block, blknr); 3634 return blknr; 3635 } 3636 3637 #ifdef CONFIG_MIGRATION 3638 #include <linux/migrate.h> 3639 3640 int f2fs_migrate_page(struct address_space *mapping, 3641 struct page *newpage, struct page *page, enum migrate_mode mode) 3642 { 3643 int rc, extra_count; 3644 struct f2fs_inode_info *fi = F2FS_I(mapping->host); 3645 bool atomic_written = page_private_atomic(page); 3646 3647 BUG_ON(PageWriteback(page)); 3648 3649 /* migrating an atomic written page is safe with the inmem_lock hold */ 3650 if (atomic_written) { 3651 if (mode != MIGRATE_SYNC) 3652 return -EBUSY; 3653 if (!mutex_trylock(&fi->inmem_lock)) 3654 return -EAGAIN; 3655 } 3656 3657 /* one extra reference was held for atomic_write page */ 3658 extra_count = atomic_written ? 1 : 0; 3659 rc = migrate_page_move_mapping(mapping, newpage, 3660 page, extra_count); 3661 if (rc != MIGRATEPAGE_SUCCESS) { 3662 if (atomic_written) 3663 mutex_unlock(&fi->inmem_lock); 3664 return rc; 3665 } 3666 3667 if (atomic_written) { 3668 struct inmem_pages *cur; 3669 3670 list_for_each_entry(cur, &fi->inmem_pages, list) 3671 if (cur->page == page) { 3672 cur->page = newpage; 3673 break; 3674 } 3675 mutex_unlock(&fi->inmem_lock); 3676 put_page(page); 3677 get_page(newpage); 3678 } 3679 3680 /* guarantee to start from no stale private field */ 3681 set_page_private(newpage, 0); 3682 if (PagePrivate(page)) { 3683 set_page_private(newpage, page_private(page)); 3684 SetPagePrivate(newpage); 3685 get_page(newpage); 3686 3687 set_page_private(page, 0); 3688 ClearPagePrivate(page); 3689 put_page(page); 3690 } 3691 3692 if (mode != MIGRATE_SYNC_NO_COPY) 3693 migrate_page_copy(newpage, page); 3694 else 3695 migrate_page_states(newpage, page); 3696 3697 return MIGRATEPAGE_SUCCESS; 3698 } 3699 #endif 3700 3701 #ifdef CONFIG_SWAP 3702 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk, 3703 unsigned int blkcnt) 3704 { 3705 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3706 unsigned int blkofs; 3707 unsigned int blk_per_sec = BLKS_PER_SEC(sbi); 3708 unsigned int secidx = start_blk / blk_per_sec; 3709 unsigned int end_sec = secidx + blkcnt / blk_per_sec; 3710 int ret = 0; 3711 3712 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3713 filemap_invalidate_lock(inode->i_mapping); 3714 3715 set_inode_flag(inode, FI_ALIGNED_WRITE); 3716 3717 for (; secidx < end_sec; secidx++) { 3718 down_write(&sbi->pin_sem); 3719 3720 f2fs_lock_op(sbi); 3721 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false); 3722 f2fs_unlock_op(sbi); 3723 3724 set_inode_flag(inode, FI_DO_DEFRAG); 3725 3726 for (blkofs = 0; blkofs < blk_per_sec; blkofs++) { 3727 struct page *page; 3728 unsigned int blkidx = secidx * blk_per_sec + blkofs; 3729 3730 page = f2fs_get_lock_data_page(inode, blkidx, true); 3731 if (IS_ERR(page)) { 3732 up_write(&sbi->pin_sem); 3733 ret = PTR_ERR(page); 3734 goto done; 3735 } 3736 3737 set_page_dirty(page); 3738 f2fs_put_page(page, 1); 3739 } 3740 3741 clear_inode_flag(inode, FI_DO_DEFRAG); 3742 3743 ret = filemap_fdatawrite(inode->i_mapping); 3744 3745 up_write(&sbi->pin_sem); 3746 3747 if (ret) 3748 break; 3749 } 3750 3751 done: 3752 clear_inode_flag(inode, FI_DO_DEFRAG); 3753 clear_inode_flag(inode, FI_ALIGNED_WRITE); 3754 3755 filemap_invalidate_unlock(inode->i_mapping); 3756 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3757 3758 return ret; 3759 } 3760 3761 static int check_swap_activate(struct swap_info_struct *sis, 3762 struct file *swap_file, sector_t *span) 3763 { 3764 struct address_space *mapping = swap_file->f_mapping; 3765 struct inode *inode = mapping->host; 3766 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3767 sector_t cur_lblock; 3768 sector_t last_lblock; 3769 sector_t pblock; 3770 sector_t lowest_pblock = -1; 3771 sector_t highest_pblock = 0; 3772 int nr_extents = 0; 3773 unsigned long nr_pblocks; 3774 unsigned int blks_per_sec = BLKS_PER_SEC(sbi); 3775 unsigned int sec_blks_mask = BLKS_PER_SEC(sbi) - 1; 3776 unsigned int not_aligned = 0; 3777 int ret = 0; 3778 3779 /* 3780 * Map all the blocks into the extent list. This code doesn't try 3781 * to be very smart. 3782 */ 3783 cur_lblock = 0; 3784 last_lblock = bytes_to_blks(inode, i_size_read(inode)); 3785 3786 while (cur_lblock < last_lblock && cur_lblock < sis->max) { 3787 struct f2fs_map_blocks map; 3788 retry: 3789 cond_resched(); 3790 3791 memset(&map, 0, sizeof(map)); 3792 map.m_lblk = cur_lblock; 3793 map.m_len = last_lblock - cur_lblock; 3794 map.m_next_pgofs = NULL; 3795 map.m_next_extent = NULL; 3796 map.m_seg_type = NO_CHECK_TYPE; 3797 map.m_may_create = false; 3798 3799 ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP); 3800 if (ret) 3801 goto out; 3802 3803 /* hole */ 3804 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 3805 f2fs_err(sbi, "Swapfile has holes"); 3806 ret = -EINVAL; 3807 goto out; 3808 } 3809 3810 pblock = map.m_pblk; 3811 nr_pblocks = map.m_len; 3812 3813 if ((pblock - SM_I(sbi)->main_blkaddr) & sec_blks_mask || 3814 nr_pblocks & sec_blks_mask) { 3815 not_aligned++; 3816 3817 nr_pblocks = roundup(nr_pblocks, blks_per_sec); 3818 if (cur_lblock + nr_pblocks > sis->max) 3819 nr_pblocks -= blks_per_sec; 3820 3821 if (!nr_pblocks) { 3822 /* this extent is last one */ 3823 nr_pblocks = map.m_len; 3824 f2fs_warn(sbi, "Swapfile: last extent is not aligned to section"); 3825 goto next; 3826 } 3827 3828 ret = f2fs_migrate_blocks(inode, cur_lblock, 3829 nr_pblocks); 3830 if (ret) 3831 goto out; 3832 goto retry; 3833 } 3834 next: 3835 if (cur_lblock + nr_pblocks >= sis->max) 3836 nr_pblocks = sis->max - cur_lblock; 3837 3838 if (cur_lblock) { /* exclude the header page */ 3839 if (pblock < lowest_pblock) 3840 lowest_pblock = pblock; 3841 if (pblock + nr_pblocks - 1 > highest_pblock) 3842 highest_pblock = pblock + nr_pblocks - 1; 3843 } 3844 3845 /* 3846 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks 3847 */ 3848 ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock); 3849 if (ret < 0) 3850 goto out; 3851 nr_extents += ret; 3852 cur_lblock += nr_pblocks; 3853 } 3854 ret = nr_extents; 3855 *span = 1 + highest_pblock - lowest_pblock; 3856 if (cur_lblock == 0) 3857 cur_lblock = 1; /* force Empty message */ 3858 sis->max = cur_lblock; 3859 sis->pages = cur_lblock - 1; 3860 sis->highest_bit = cur_lblock - 1; 3861 out: 3862 if (not_aligned) 3863 f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%u * N)", 3864 not_aligned, blks_per_sec * F2FS_BLKSIZE); 3865 return ret; 3866 } 3867 3868 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, 3869 sector_t *span) 3870 { 3871 struct inode *inode = file_inode(file); 3872 int ret; 3873 3874 if (!S_ISREG(inode->i_mode)) 3875 return -EINVAL; 3876 3877 if (f2fs_readonly(F2FS_I_SB(inode)->sb)) 3878 return -EROFS; 3879 3880 if (f2fs_lfs_mode(F2FS_I_SB(inode))) { 3881 f2fs_err(F2FS_I_SB(inode), 3882 "Swapfile not supported in LFS mode"); 3883 return -EINVAL; 3884 } 3885 3886 ret = f2fs_convert_inline_inode(inode); 3887 if (ret) 3888 return ret; 3889 3890 if (!f2fs_disable_compressed_file(inode)) 3891 return -EINVAL; 3892 3893 f2fs_precache_extents(inode); 3894 3895 ret = check_swap_activate(sis, file, span); 3896 if (ret < 0) 3897 return ret; 3898 3899 set_inode_flag(inode, FI_PIN_FILE); 3900 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3901 return ret; 3902 } 3903 3904 static void f2fs_swap_deactivate(struct file *file) 3905 { 3906 struct inode *inode = file_inode(file); 3907 3908 clear_inode_flag(inode, FI_PIN_FILE); 3909 } 3910 #else 3911 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, 3912 sector_t *span) 3913 { 3914 return -EOPNOTSUPP; 3915 } 3916 3917 static void f2fs_swap_deactivate(struct file *file) 3918 { 3919 } 3920 #endif 3921 3922 const struct address_space_operations f2fs_dblock_aops = { 3923 .readpage = f2fs_read_data_page, 3924 .readahead = f2fs_readahead, 3925 .writepage = f2fs_write_data_page, 3926 .writepages = f2fs_write_data_pages, 3927 .write_begin = f2fs_write_begin, 3928 .write_end = f2fs_write_end, 3929 .set_page_dirty = f2fs_set_data_page_dirty, 3930 .invalidatepage = f2fs_invalidate_page, 3931 .releasepage = f2fs_release_page, 3932 .direct_IO = noop_direct_IO, 3933 .bmap = f2fs_bmap, 3934 .swap_activate = f2fs_swap_activate, 3935 .swap_deactivate = f2fs_swap_deactivate, 3936 #ifdef CONFIG_MIGRATION 3937 .migratepage = f2fs_migrate_page, 3938 #endif 3939 }; 3940 3941 void f2fs_clear_page_cache_dirty_tag(struct page *page) 3942 { 3943 struct address_space *mapping = page_mapping(page); 3944 unsigned long flags; 3945 3946 xa_lock_irqsave(&mapping->i_pages, flags); 3947 __xa_clear_mark(&mapping->i_pages, page_index(page), 3948 PAGECACHE_TAG_DIRTY); 3949 xa_unlock_irqrestore(&mapping->i_pages, flags); 3950 } 3951 3952 int __init f2fs_init_post_read_processing(void) 3953 { 3954 bio_post_read_ctx_cache = 3955 kmem_cache_create("f2fs_bio_post_read_ctx", 3956 sizeof(struct bio_post_read_ctx), 0, 0, NULL); 3957 if (!bio_post_read_ctx_cache) 3958 goto fail; 3959 bio_post_read_ctx_pool = 3960 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS, 3961 bio_post_read_ctx_cache); 3962 if (!bio_post_read_ctx_pool) 3963 goto fail_free_cache; 3964 return 0; 3965 3966 fail_free_cache: 3967 kmem_cache_destroy(bio_post_read_ctx_cache); 3968 fail: 3969 return -ENOMEM; 3970 } 3971 3972 void f2fs_destroy_post_read_processing(void) 3973 { 3974 mempool_destroy(bio_post_read_ctx_pool); 3975 kmem_cache_destroy(bio_post_read_ctx_cache); 3976 } 3977 3978 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi) 3979 { 3980 if (!f2fs_sb_has_encrypt(sbi) && 3981 !f2fs_sb_has_verity(sbi) && 3982 !f2fs_sb_has_compression(sbi)) 3983 return 0; 3984 3985 sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq", 3986 WQ_UNBOUND | WQ_HIGHPRI, 3987 num_online_cpus()); 3988 if (!sbi->post_read_wq) 3989 return -ENOMEM; 3990 return 0; 3991 } 3992 3993 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi) 3994 { 3995 if (sbi->post_read_wq) 3996 destroy_workqueue(sbi->post_read_wq); 3997 } 3998 3999 int __init f2fs_init_bio_entry_cache(void) 4000 { 4001 bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab", 4002 sizeof(struct bio_entry)); 4003 if (!bio_entry_slab) 4004 return -ENOMEM; 4005 return 0; 4006 } 4007 4008 void f2fs_destroy_bio_entry_cache(void) 4009 { 4010 kmem_cache_destroy(bio_entry_slab); 4011 } 4012 4013 static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 4014 unsigned int flags, struct iomap *iomap, 4015 struct iomap *srcmap) 4016 { 4017 struct f2fs_map_blocks map = {}; 4018 pgoff_t next_pgofs = 0; 4019 int err; 4020 4021 map.m_lblk = bytes_to_blks(inode, offset); 4022 map.m_len = bytes_to_blks(inode, offset + length - 1) - map.m_lblk + 1; 4023 map.m_next_pgofs = &next_pgofs; 4024 map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint); 4025 if (flags & IOMAP_WRITE) 4026 map.m_may_create = true; 4027 4028 err = f2fs_map_blocks(inode, &map, flags & IOMAP_WRITE, 4029 F2FS_GET_BLOCK_DIO); 4030 if (err) 4031 return err; 4032 4033 iomap->offset = blks_to_bytes(inode, map.m_lblk); 4034 4035 if (map.m_flags & (F2FS_MAP_MAPPED | F2FS_MAP_UNWRITTEN)) { 4036 iomap->length = blks_to_bytes(inode, map.m_len); 4037 if (map.m_flags & F2FS_MAP_MAPPED) { 4038 iomap->type = IOMAP_MAPPED; 4039 iomap->flags |= IOMAP_F_MERGED; 4040 } else { 4041 iomap->type = IOMAP_UNWRITTEN; 4042 } 4043 if (WARN_ON_ONCE(!__is_valid_data_blkaddr(map.m_pblk))) 4044 return -EINVAL; 4045 4046 iomap->bdev = map.m_bdev; 4047 iomap->addr = blks_to_bytes(inode, map.m_pblk); 4048 } else { 4049 iomap->length = blks_to_bytes(inode, next_pgofs) - 4050 iomap->offset; 4051 iomap->type = IOMAP_HOLE; 4052 iomap->addr = IOMAP_NULL_ADDR; 4053 } 4054 4055 if (map.m_flags & F2FS_MAP_NEW) 4056 iomap->flags |= IOMAP_F_NEW; 4057 if ((inode->i_state & I_DIRTY_DATASYNC) || 4058 offset + length > i_size_read(inode)) 4059 iomap->flags |= IOMAP_F_DIRTY; 4060 4061 return 0; 4062 } 4063 4064 const struct iomap_ops f2fs_iomap_ops = { 4065 .iomap_begin = f2fs_iomap_begin, 4066 }; 4067