1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/data.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/buffer_head.h> 11 #include <linux/mpage.h> 12 #include <linux/writeback.h> 13 #include <linux/backing-dev.h> 14 #include <linux/pagevec.h> 15 #include <linux/blkdev.h> 16 #include <linux/bio.h> 17 #include <linux/swap.h> 18 #include <linux/prefetch.h> 19 #include <linux/uio.h> 20 #include <linux/cleancache.h> 21 #include <linux/sched/signal.h> 22 23 #include "f2fs.h" 24 #include "node.h" 25 #include "segment.h" 26 #include "trace.h" 27 #include <trace/events/f2fs.h> 28 29 #define NUM_PREALLOC_POST_READ_CTXS 128 30 31 static struct kmem_cache *bio_post_read_ctx_cache; 32 static mempool_t *bio_post_read_ctx_pool; 33 34 static bool __is_cp_guaranteed(struct page *page) 35 { 36 struct address_space *mapping = page->mapping; 37 struct inode *inode; 38 struct f2fs_sb_info *sbi; 39 40 if (!mapping) 41 return false; 42 43 inode = mapping->host; 44 sbi = F2FS_I_SB(inode); 45 46 if (inode->i_ino == F2FS_META_INO(sbi) || 47 inode->i_ino == F2FS_NODE_INO(sbi) || 48 S_ISDIR(inode->i_mode) || 49 (S_ISREG(inode->i_mode) && 50 (f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) || 51 is_cold_data(page)) 52 return true; 53 return false; 54 } 55 56 static enum count_type __read_io_type(struct page *page) 57 { 58 struct address_space *mapping = page_file_mapping(page); 59 60 if (mapping) { 61 struct inode *inode = mapping->host; 62 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 63 64 if (inode->i_ino == F2FS_META_INO(sbi)) 65 return F2FS_RD_META; 66 67 if (inode->i_ino == F2FS_NODE_INO(sbi)) 68 return F2FS_RD_NODE; 69 } 70 return F2FS_RD_DATA; 71 } 72 73 /* postprocessing steps for read bios */ 74 enum bio_post_read_step { 75 STEP_INITIAL = 0, 76 STEP_DECRYPT, 77 STEP_VERITY, 78 }; 79 80 struct bio_post_read_ctx { 81 struct bio *bio; 82 struct work_struct work; 83 unsigned int cur_step; 84 unsigned int enabled_steps; 85 }; 86 87 static void __read_end_io(struct bio *bio) 88 { 89 struct page *page; 90 struct bio_vec *bv; 91 struct bvec_iter_all iter_all; 92 93 bio_for_each_segment_all(bv, bio, iter_all) { 94 page = bv->bv_page; 95 96 /* PG_error was set if any post_read step failed */ 97 if (bio->bi_status || PageError(page)) { 98 ClearPageUptodate(page); 99 /* will re-read again later */ 100 ClearPageError(page); 101 } else { 102 SetPageUptodate(page); 103 } 104 dec_page_count(F2FS_P_SB(page), __read_io_type(page)); 105 unlock_page(page); 106 } 107 if (bio->bi_private) 108 mempool_free(bio->bi_private, bio_post_read_ctx_pool); 109 bio_put(bio); 110 } 111 112 static void bio_post_read_processing(struct bio_post_read_ctx *ctx); 113 114 static void decrypt_work(struct work_struct *work) 115 { 116 struct bio_post_read_ctx *ctx = 117 container_of(work, struct bio_post_read_ctx, work); 118 119 fscrypt_decrypt_bio(ctx->bio); 120 121 bio_post_read_processing(ctx); 122 } 123 124 static void verity_work(struct work_struct *work) 125 { 126 struct bio_post_read_ctx *ctx = 127 container_of(work, struct bio_post_read_ctx, work); 128 129 fsverity_verify_bio(ctx->bio); 130 131 bio_post_read_processing(ctx); 132 } 133 134 static void bio_post_read_processing(struct bio_post_read_ctx *ctx) 135 { 136 /* 137 * We use different work queues for decryption and for verity because 138 * verity may require reading metadata pages that need decryption, and 139 * we shouldn't recurse to the same workqueue. 140 */ 141 switch (++ctx->cur_step) { 142 case STEP_DECRYPT: 143 if (ctx->enabled_steps & (1 << STEP_DECRYPT)) { 144 INIT_WORK(&ctx->work, decrypt_work); 145 fscrypt_enqueue_decrypt_work(&ctx->work); 146 return; 147 } 148 ctx->cur_step++; 149 /* fall-through */ 150 case STEP_VERITY: 151 if (ctx->enabled_steps & (1 << STEP_VERITY)) { 152 INIT_WORK(&ctx->work, verity_work); 153 fsverity_enqueue_verify_work(&ctx->work); 154 return; 155 } 156 ctx->cur_step++; 157 /* fall-through */ 158 default: 159 __read_end_io(ctx->bio); 160 } 161 } 162 163 static bool f2fs_bio_post_read_required(struct bio *bio) 164 { 165 return bio->bi_private && !bio->bi_status; 166 } 167 168 static void f2fs_read_end_io(struct bio *bio) 169 { 170 if (time_to_inject(F2FS_P_SB(bio_first_page_all(bio)), 171 FAULT_READ_IO)) { 172 f2fs_show_injection_info(FAULT_READ_IO); 173 bio->bi_status = BLK_STS_IOERR; 174 } 175 176 if (f2fs_bio_post_read_required(bio)) { 177 struct bio_post_read_ctx *ctx = bio->bi_private; 178 179 ctx->cur_step = STEP_INITIAL; 180 bio_post_read_processing(ctx); 181 return; 182 } 183 184 __read_end_io(bio); 185 } 186 187 static void f2fs_write_end_io(struct bio *bio) 188 { 189 struct f2fs_sb_info *sbi = bio->bi_private; 190 struct bio_vec *bvec; 191 struct bvec_iter_all iter_all; 192 193 if (time_to_inject(sbi, FAULT_WRITE_IO)) { 194 f2fs_show_injection_info(FAULT_WRITE_IO); 195 bio->bi_status = BLK_STS_IOERR; 196 } 197 198 bio_for_each_segment_all(bvec, bio, iter_all) { 199 struct page *page = bvec->bv_page; 200 enum count_type type = WB_DATA_TYPE(page); 201 202 if (IS_DUMMY_WRITTEN_PAGE(page)) { 203 set_page_private(page, (unsigned long)NULL); 204 ClearPagePrivate(page); 205 unlock_page(page); 206 mempool_free(page, sbi->write_io_dummy); 207 208 if (unlikely(bio->bi_status)) 209 f2fs_stop_checkpoint(sbi, true); 210 continue; 211 } 212 213 fscrypt_finalize_bounce_page(&page); 214 215 if (unlikely(bio->bi_status)) { 216 mapping_set_error(page->mapping, -EIO); 217 if (type == F2FS_WB_CP_DATA) 218 f2fs_stop_checkpoint(sbi, true); 219 } 220 221 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) && 222 page->index != nid_of_node(page)); 223 224 dec_page_count(sbi, type); 225 if (f2fs_in_warm_node_list(sbi, page)) 226 f2fs_del_fsync_node_entry(sbi, page); 227 clear_cold_data(page); 228 end_page_writeback(page); 229 } 230 if (!get_pages(sbi, F2FS_WB_CP_DATA) && 231 wq_has_sleeper(&sbi->cp_wait)) 232 wake_up(&sbi->cp_wait); 233 234 bio_put(bio); 235 } 236 237 /* 238 * Return true, if pre_bio's bdev is same as its target device. 239 */ 240 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 241 block_t blk_addr, struct bio *bio) 242 { 243 struct block_device *bdev = sbi->sb->s_bdev; 244 int i; 245 246 if (f2fs_is_multi_device(sbi)) { 247 for (i = 0; i < sbi->s_ndevs; i++) { 248 if (FDEV(i).start_blk <= blk_addr && 249 FDEV(i).end_blk >= blk_addr) { 250 blk_addr -= FDEV(i).start_blk; 251 bdev = FDEV(i).bdev; 252 break; 253 } 254 } 255 } 256 if (bio) { 257 bio_set_dev(bio, bdev); 258 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr); 259 } 260 return bdev; 261 } 262 263 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr) 264 { 265 int i; 266 267 if (!f2fs_is_multi_device(sbi)) 268 return 0; 269 270 for (i = 0; i < sbi->s_ndevs; i++) 271 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr) 272 return i; 273 return 0; 274 } 275 276 static bool __same_bdev(struct f2fs_sb_info *sbi, 277 block_t blk_addr, struct bio *bio) 278 { 279 struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL); 280 return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno; 281 } 282 283 /* 284 * Low-level block read/write IO operations. 285 */ 286 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr, 287 struct writeback_control *wbc, 288 int npages, bool is_read, 289 enum page_type type, enum temp_type temp) 290 { 291 struct bio *bio; 292 293 bio = f2fs_bio_alloc(sbi, npages, true); 294 295 f2fs_target_device(sbi, blk_addr, bio); 296 if (is_read) { 297 bio->bi_end_io = f2fs_read_end_io; 298 bio->bi_private = NULL; 299 } else { 300 bio->bi_end_io = f2fs_write_end_io; 301 bio->bi_private = sbi; 302 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, type, temp); 303 } 304 if (wbc) 305 wbc_init_bio(wbc, bio); 306 307 return bio; 308 } 309 310 static inline void __submit_bio(struct f2fs_sb_info *sbi, 311 struct bio *bio, enum page_type type) 312 { 313 if (!is_read_io(bio_op(bio))) { 314 unsigned int start; 315 316 if (type != DATA && type != NODE) 317 goto submit_io; 318 319 if (test_opt(sbi, LFS) && current->plug) 320 blk_finish_plug(current->plug); 321 322 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS; 323 start %= F2FS_IO_SIZE(sbi); 324 325 if (start == 0) 326 goto submit_io; 327 328 /* fill dummy pages */ 329 for (; start < F2FS_IO_SIZE(sbi); start++) { 330 struct page *page = 331 mempool_alloc(sbi->write_io_dummy, 332 GFP_NOIO | __GFP_NOFAIL); 333 f2fs_bug_on(sbi, !page); 334 335 zero_user_segment(page, 0, PAGE_SIZE); 336 SetPagePrivate(page); 337 set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE); 338 lock_page(page); 339 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) 340 f2fs_bug_on(sbi, 1); 341 } 342 /* 343 * In the NODE case, we lose next block address chain. So, we 344 * need to do checkpoint in f2fs_sync_file. 345 */ 346 if (type == NODE) 347 set_sbi_flag(sbi, SBI_NEED_CP); 348 } 349 submit_io: 350 if (is_read_io(bio_op(bio))) 351 trace_f2fs_submit_read_bio(sbi->sb, type, bio); 352 else 353 trace_f2fs_submit_write_bio(sbi->sb, type, bio); 354 submit_bio(bio); 355 } 356 357 static void __submit_merged_bio(struct f2fs_bio_info *io) 358 { 359 struct f2fs_io_info *fio = &io->fio; 360 361 if (!io->bio) 362 return; 363 364 bio_set_op_attrs(io->bio, fio->op, fio->op_flags); 365 366 if (is_read_io(fio->op)) 367 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio); 368 else 369 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio); 370 371 __submit_bio(io->sbi, io->bio, fio->type); 372 io->bio = NULL; 373 } 374 375 static bool __has_merged_page(struct bio *bio, struct inode *inode, 376 struct page *page, nid_t ino) 377 { 378 struct bio_vec *bvec; 379 struct page *target; 380 struct bvec_iter_all iter_all; 381 382 if (!bio) 383 return false; 384 385 if (!inode && !page && !ino) 386 return true; 387 388 bio_for_each_segment_all(bvec, bio, iter_all) { 389 390 target = bvec->bv_page; 391 if (fscrypt_is_bounce_page(target)) 392 target = fscrypt_pagecache_page(target); 393 394 if (inode && inode == target->mapping->host) 395 return true; 396 if (page && page == target) 397 return true; 398 if (ino && ino == ino_of_node(target)) 399 return true; 400 } 401 402 return false; 403 } 404 405 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi, 406 enum page_type type, enum temp_type temp) 407 { 408 enum page_type btype = PAGE_TYPE_OF_BIO(type); 409 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 410 411 down_write(&io->io_rwsem); 412 413 /* change META to META_FLUSH in the checkpoint procedure */ 414 if (type >= META_FLUSH) { 415 io->fio.type = META_FLUSH; 416 io->fio.op = REQ_OP_WRITE; 417 io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC; 418 if (!test_opt(sbi, NOBARRIER)) 419 io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA; 420 } 421 __submit_merged_bio(io); 422 up_write(&io->io_rwsem); 423 } 424 425 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi, 426 struct inode *inode, struct page *page, 427 nid_t ino, enum page_type type, bool force) 428 { 429 enum temp_type temp; 430 bool ret = true; 431 432 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) { 433 if (!force) { 434 enum page_type btype = PAGE_TYPE_OF_BIO(type); 435 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 436 437 down_read(&io->io_rwsem); 438 ret = __has_merged_page(io->bio, inode, page, ino); 439 up_read(&io->io_rwsem); 440 } 441 if (ret) 442 __f2fs_submit_merged_write(sbi, type, temp); 443 444 /* TODO: use HOT temp only for meta pages now. */ 445 if (type >= META) 446 break; 447 } 448 } 449 450 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type) 451 { 452 __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true); 453 } 454 455 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 456 struct inode *inode, struct page *page, 457 nid_t ino, enum page_type type) 458 { 459 __submit_merged_write_cond(sbi, inode, page, ino, type, false); 460 } 461 462 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi) 463 { 464 f2fs_submit_merged_write(sbi, DATA); 465 f2fs_submit_merged_write(sbi, NODE); 466 f2fs_submit_merged_write(sbi, META); 467 } 468 469 /* 470 * Fill the locked page with data located in the block address. 471 * A caller needs to unlock the page on failure. 472 */ 473 int f2fs_submit_page_bio(struct f2fs_io_info *fio) 474 { 475 struct bio *bio; 476 struct page *page = fio->encrypted_page ? 477 fio->encrypted_page : fio->page; 478 479 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, 480 fio->is_por ? META_POR : (__is_meta_io(fio) ? 481 META_GENERIC : DATA_GENERIC_ENHANCE))) 482 return -EFSCORRUPTED; 483 484 trace_f2fs_submit_page_bio(page, fio); 485 f2fs_trace_ios(fio, 0); 486 487 /* Allocate a new bio */ 488 bio = __bio_alloc(fio->sbi, fio->new_blkaddr, fio->io_wbc, 489 1, is_read_io(fio->op), fio->type, fio->temp); 490 491 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 492 bio_put(bio); 493 return -EFAULT; 494 } 495 496 if (fio->io_wbc && !is_read_io(fio->op)) 497 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE); 498 499 bio_set_op_attrs(bio, fio->op, fio->op_flags); 500 501 inc_page_count(fio->sbi, is_read_io(fio->op) ? 502 __read_io_type(page): WB_DATA_TYPE(fio->page)); 503 504 __submit_bio(fio->sbi, bio, fio->type); 505 return 0; 506 } 507 508 int f2fs_merge_page_bio(struct f2fs_io_info *fio) 509 { 510 struct bio *bio = *fio->bio; 511 struct page *page = fio->encrypted_page ? 512 fio->encrypted_page : fio->page; 513 514 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, 515 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC)) 516 return -EFSCORRUPTED; 517 518 trace_f2fs_submit_page_bio(page, fio); 519 f2fs_trace_ios(fio, 0); 520 521 if (bio && (*fio->last_block + 1 != fio->new_blkaddr || 522 !__same_bdev(fio->sbi, fio->new_blkaddr, bio))) { 523 __submit_bio(fio->sbi, bio, fio->type); 524 bio = NULL; 525 } 526 alloc_new: 527 if (!bio) { 528 bio = __bio_alloc(fio->sbi, fio->new_blkaddr, fio->io_wbc, 529 BIO_MAX_PAGES, false, fio->type, fio->temp); 530 bio_set_op_attrs(bio, fio->op, fio->op_flags); 531 } 532 533 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 534 __submit_bio(fio->sbi, bio, fio->type); 535 bio = NULL; 536 goto alloc_new; 537 } 538 539 if (fio->io_wbc) 540 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE); 541 542 inc_page_count(fio->sbi, WB_DATA_TYPE(page)); 543 544 *fio->last_block = fio->new_blkaddr; 545 *fio->bio = bio; 546 547 return 0; 548 } 549 550 static void f2fs_submit_ipu_bio(struct f2fs_sb_info *sbi, struct bio **bio, 551 struct page *page) 552 { 553 if (!bio) 554 return; 555 556 if (!__has_merged_page(*bio, NULL, page, 0)) 557 return; 558 559 __submit_bio(sbi, *bio, DATA); 560 *bio = NULL; 561 } 562 563 void f2fs_submit_page_write(struct f2fs_io_info *fio) 564 { 565 struct f2fs_sb_info *sbi = fio->sbi; 566 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type); 567 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp; 568 struct page *bio_page; 569 570 f2fs_bug_on(sbi, is_read_io(fio->op)); 571 572 down_write(&io->io_rwsem); 573 next: 574 if (fio->in_list) { 575 spin_lock(&io->io_lock); 576 if (list_empty(&io->io_list)) { 577 spin_unlock(&io->io_lock); 578 goto out; 579 } 580 fio = list_first_entry(&io->io_list, 581 struct f2fs_io_info, list); 582 list_del(&fio->list); 583 spin_unlock(&io->io_lock); 584 } 585 586 verify_fio_blkaddr(fio); 587 588 bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page; 589 590 /* set submitted = true as a return value */ 591 fio->submitted = true; 592 593 inc_page_count(sbi, WB_DATA_TYPE(bio_page)); 594 595 if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 || 596 (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags) || 597 !__same_bdev(sbi, fio->new_blkaddr, io->bio))) 598 __submit_merged_bio(io); 599 alloc_new: 600 if (io->bio == NULL) { 601 if ((fio->type == DATA || fio->type == NODE) && 602 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) { 603 dec_page_count(sbi, WB_DATA_TYPE(bio_page)); 604 fio->retry = true; 605 goto skip; 606 } 607 io->bio = __bio_alloc(sbi, fio->new_blkaddr, fio->io_wbc, 608 BIO_MAX_PAGES, false, 609 fio->type, fio->temp); 610 io->fio = *fio; 611 } 612 613 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) { 614 __submit_merged_bio(io); 615 goto alloc_new; 616 } 617 618 if (fio->io_wbc) 619 wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE); 620 621 io->last_block_in_bio = fio->new_blkaddr; 622 f2fs_trace_ios(fio, 0); 623 624 trace_f2fs_submit_page_write(fio->page, fio); 625 skip: 626 if (fio->in_list) 627 goto next; 628 out: 629 if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || 630 f2fs_is_checkpoint_ready(sbi)) 631 __submit_merged_bio(io); 632 up_write(&io->io_rwsem); 633 } 634 635 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx) 636 { 637 return fsverity_active(inode) && 638 idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE); 639 } 640 641 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr, 642 unsigned nr_pages, unsigned op_flag, 643 pgoff_t first_idx) 644 { 645 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 646 struct bio *bio; 647 struct bio_post_read_ctx *ctx; 648 unsigned int post_read_steps = 0; 649 650 bio = f2fs_bio_alloc(sbi, min_t(int, nr_pages, BIO_MAX_PAGES), false); 651 if (!bio) 652 return ERR_PTR(-ENOMEM); 653 f2fs_target_device(sbi, blkaddr, bio); 654 bio->bi_end_io = f2fs_read_end_io; 655 bio_set_op_attrs(bio, REQ_OP_READ, op_flag); 656 657 if (f2fs_encrypted_file(inode)) 658 post_read_steps |= 1 << STEP_DECRYPT; 659 660 if (f2fs_need_verity(inode, first_idx)) 661 post_read_steps |= 1 << STEP_VERITY; 662 663 if (post_read_steps) { 664 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS); 665 if (!ctx) { 666 bio_put(bio); 667 return ERR_PTR(-ENOMEM); 668 } 669 ctx->bio = bio; 670 ctx->enabled_steps = post_read_steps; 671 bio->bi_private = ctx; 672 } 673 674 return bio; 675 } 676 677 /* This can handle encryption stuffs */ 678 static int f2fs_submit_page_read(struct inode *inode, struct page *page, 679 block_t blkaddr) 680 { 681 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 682 struct bio *bio; 683 684 bio = f2fs_grab_read_bio(inode, blkaddr, 1, 0, page->index); 685 if (IS_ERR(bio)) 686 return PTR_ERR(bio); 687 688 /* wait for GCed page writeback via META_MAPPING */ 689 f2fs_wait_on_block_writeback(inode, blkaddr); 690 691 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 692 bio_put(bio); 693 return -EFAULT; 694 } 695 ClearPageError(page); 696 inc_page_count(sbi, F2FS_RD_DATA); 697 __submit_bio(sbi, bio, DATA); 698 return 0; 699 } 700 701 static void __set_data_blkaddr(struct dnode_of_data *dn) 702 { 703 struct f2fs_node *rn = F2FS_NODE(dn->node_page); 704 __le32 *addr_array; 705 int base = 0; 706 707 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode)) 708 base = get_extra_isize(dn->inode); 709 710 /* Get physical address of data block */ 711 addr_array = blkaddr_in_node(rn); 712 addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr); 713 } 714 715 /* 716 * Lock ordering for the change of data block address: 717 * ->data_page 718 * ->node_page 719 * update block addresses in the node page 720 */ 721 void f2fs_set_data_blkaddr(struct dnode_of_data *dn) 722 { 723 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true); 724 __set_data_blkaddr(dn); 725 if (set_page_dirty(dn->node_page)) 726 dn->node_changed = true; 727 } 728 729 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) 730 { 731 dn->data_blkaddr = blkaddr; 732 f2fs_set_data_blkaddr(dn); 733 f2fs_update_extent_cache(dn); 734 } 735 736 /* dn->ofs_in_node will be returned with up-to-date last block pointer */ 737 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count) 738 { 739 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 740 int err; 741 742 if (!count) 743 return 0; 744 745 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 746 return -EPERM; 747 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count)))) 748 return err; 749 750 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid, 751 dn->ofs_in_node, count); 752 753 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true); 754 755 for (; count > 0; dn->ofs_in_node++) { 756 block_t blkaddr = datablock_addr(dn->inode, 757 dn->node_page, dn->ofs_in_node); 758 if (blkaddr == NULL_ADDR) { 759 dn->data_blkaddr = NEW_ADDR; 760 __set_data_blkaddr(dn); 761 count--; 762 } 763 } 764 765 if (set_page_dirty(dn->node_page)) 766 dn->node_changed = true; 767 return 0; 768 } 769 770 /* Should keep dn->ofs_in_node unchanged */ 771 int f2fs_reserve_new_block(struct dnode_of_data *dn) 772 { 773 unsigned int ofs_in_node = dn->ofs_in_node; 774 int ret; 775 776 ret = f2fs_reserve_new_blocks(dn, 1); 777 dn->ofs_in_node = ofs_in_node; 778 return ret; 779 } 780 781 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index) 782 { 783 bool need_put = dn->inode_page ? false : true; 784 int err; 785 786 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE); 787 if (err) 788 return err; 789 790 if (dn->data_blkaddr == NULL_ADDR) 791 err = f2fs_reserve_new_block(dn); 792 if (err || need_put) 793 f2fs_put_dnode(dn); 794 return err; 795 } 796 797 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index) 798 { 799 struct extent_info ei = {0,0,0}; 800 struct inode *inode = dn->inode; 801 802 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 803 dn->data_blkaddr = ei.blk + index - ei.fofs; 804 return 0; 805 } 806 807 return f2fs_reserve_block(dn, index); 808 } 809 810 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index, 811 int op_flags, bool for_write) 812 { 813 struct address_space *mapping = inode->i_mapping; 814 struct dnode_of_data dn; 815 struct page *page; 816 struct extent_info ei = {0,0,0}; 817 int err; 818 819 page = f2fs_grab_cache_page(mapping, index, for_write); 820 if (!page) 821 return ERR_PTR(-ENOMEM); 822 823 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 824 dn.data_blkaddr = ei.blk + index - ei.fofs; 825 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr, 826 DATA_GENERIC_ENHANCE_READ)) { 827 err = -EFSCORRUPTED; 828 goto put_err; 829 } 830 goto got_it; 831 } 832 833 set_new_dnode(&dn, inode, NULL, NULL, 0); 834 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 835 if (err) 836 goto put_err; 837 f2fs_put_dnode(&dn); 838 839 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { 840 err = -ENOENT; 841 goto put_err; 842 } 843 if (dn.data_blkaddr != NEW_ADDR && 844 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode), 845 dn.data_blkaddr, 846 DATA_GENERIC_ENHANCE)) { 847 err = -EFSCORRUPTED; 848 goto put_err; 849 } 850 got_it: 851 if (PageUptodate(page)) { 852 unlock_page(page); 853 return page; 854 } 855 856 /* 857 * A new dentry page is allocated but not able to be written, since its 858 * new inode page couldn't be allocated due to -ENOSPC. 859 * In such the case, its blkaddr can be remained as NEW_ADDR. 860 * see, f2fs_add_link -> f2fs_get_new_data_page -> 861 * f2fs_init_inode_metadata. 862 */ 863 if (dn.data_blkaddr == NEW_ADDR) { 864 zero_user_segment(page, 0, PAGE_SIZE); 865 if (!PageUptodate(page)) 866 SetPageUptodate(page); 867 unlock_page(page); 868 return page; 869 } 870 871 err = f2fs_submit_page_read(inode, page, dn.data_blkaddr); 872 if (err) 873 goto put_err; 874 return page; 875 876 put_err: 877 f2fs_put_page(page, 1); 878 return ERR_PTR(err); 879 } 880 881 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index) 882 { 883 struct address_space *mapping = inode->i_mapping; 884 struct page *page; 885 886 page = find_get_page(mapping, index); 887 if (page && PageUptodate(page)) 888 return page; 889 f2fs_put_page(page, 0); 890 891 page = f2fs_get_read_data_page(inode, index, 0, false); 892 if (IS_ERR(page)) 893 return page; 894 895 if (PageUptodate(page)) 896 return page; 897 898 wait_on_page_locked(page); 899 if (unlikely(!PageUptodate(page))) { 900 f2fs_put_page(page, 0); 901 return ERR_PTR(-EIO); 902 } 903 return page; 904 } 905 906 /* 907 * If it tries to access a hole, return an error. 908 * Because, the callers, functions in dir.c and GC, should be able to know 909 * whether this page exists or not. 910 */ 911 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index, 912 bool for_write) 913 { 914 struct address_space *mapping = inode->i_mapping; 915 struct page *page; 916 repeat: 917 page = f2fs_get_read_data_page(inode, index, 0, for_write); 918 if (IS_ERR(page)) 919 return page; 920 921 /* wait for read completion */ 922 lock_page(page); 923 if (unlikely(page->mapping != mapping)) { 924 f2fs_put_page(page, 1); 925 goto repeat; 926 } 927 if (unlikely(!PageUptodate(page))) { 928 f2fs_put_page(page, 1); 929 return ERR_PTR(-EIO); 930 } 931 return page; 932 } 933 934 /* 935 * Caller ensures that this data page is never allocated. 936 * A new zero-filled data page is allocated in the page cache. 937 * 938 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and 939 * f2fs_unlock_op(). 940 * Note that, ipage is set only by make_empty_dir, and if any error occur, 941 * ipage should be released by this function. 942 */ 943 struct page *f2fs_get_new_data_page(struct inode *inode, 944 struct page *ipage, pgoff_t index, bool new_i_size) 945 { 946 struct address_space *mapping = inode->i_mapping; 947 struct page *page; 948 struct dnode_of_data dn; 949 int err; 950 951 page = f2fs_grab_cache_page(mapping, index, true); 952 if (!page) { 953 /* 954 * before exiting, we should make sure ipage will be released 955 * if any error occur. 956 */ 957 f2fs_put_page(ipage, 1); 958 return ERR_PTR(-ENOMEM); 959 } 960 961 set_new_dnode(&dn, inode, ipage, NULL, 0); 962 err = f2fs_reserve_block(&dn, index); 963 if (err) { 964 f2fs_put_page(page, 1); 965 return ERR_PTR(err); 966 } 967 if (!ipage) 968 f2fs_put_dnode(&dn); 969 970 if (PageUptodate(page)) 971 goto got_it; 972 973 if (dn.data_blkaddr == NEW_ADDR) { 974 zero_user_segment(page, 0, PAGE_SIZE); 975 if (!PageUptodate(page)) 976 SetPageUptodate(page); 977 } else { 978 f2fs_put_page(page, 1); 979 980 /* if ipage exists, blkaddr should be NEW_ADDR */ 981 f2fs_bug_on(F2FS_I_SB(inode), ipage); 982 page = f2fs_get_lock_data_page(inode, index, true); 983 if (IS_ERR(page)) 984 return page; 985 } 986 got_it: 987 if (new_i_size && i_size_read(inode) < 988 ((loff_t)(index + 1) << PAGE_SHIFT)) 989 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT)); 990 return page; 991 } 992 993 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type) 994 { 995 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 996 struct f2fs_summary sum; 997 struct node_info ni; 998 block_t old_blkaddr; 999 blkcnt_t count = 1; 1000 int err; 1001 1002 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1003 return -EPERM; 1004 1005 err = f2fs_get_node_info(sbi, dn->nid, &ni); 1006 if (err) 1007 return err; 1008 1009 dn->data_blkaddr = datablock_addr(dn->inode, 1010 dn->node_page, dn->ofs_in_node); 1011 if (dn->data_blkaddr != NULL_ADDR) 1012 goto alloc; 1013 1014 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count)))) 1015 return err; 1016 1017 alloc: 1018 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 1019 old_blkaddr = dn->data_blkaddr; 1020 f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr, 1021 &sum, seg_type, NULL, false); 1022 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 1023 invalidate_mapping_pages(META_MAPPING(sbi), 1024 old_blkaddr, old_blkaddr); 1025 f2fs_set_data_blkaddr(dn); 1026 1027 /* 1028 * i_size will be updated by direct_IO. Otherwise, we'll get stale 1029 * data from unwritten block via dio_read. 1030 */ 1031 return 0; 1032 } 1033 1034 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from) 1035 { 1036 struct inode *inode = file_inode(iocb->ki_filp); 1037 struct f2fs_map_blocks map; 1038 int flag; 1039 int err = 0; 1040 bool direct_io = iocb->ki_flags & IOCB_DIRECT; 1041 1042 /* convert inline data for Direct I/O*/ 1043 if (direct_io) { 1044 err = f2fs_convert_inline_inode(inode); 1045 if (err) 1046 return err; 1047 } 1048 1049 if (direct_io && allow_outplace_dio(inode, iocb, from)) 1050 return 0; 1051 1052 if (is_inode_flag_set(inode, FI_NO_PREALLOC)) 1053 return 0; 1054 1055 map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos); 1056 map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from)); 1057 if (map.m_len > map.m_lblk) 1058 map.m_len -= map.m_lblk; 1059 else 1060 map.m_len = 0; 1061 1062 map.m_next_pgofs = NULL; 1063 map.m_next_extent = NULL; 1064 map.m_seg_type = NO_CHECK_TYPE; 1065 map.m_may_create = true; 1066 1067 if (direct_io) { 1068 map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint); 1069 flag = f2fs_force_buffered_io(inode, iocb, from) ? 1070 F2FS_GET_BLOCK_PRE_AIO : 1071 F2FS_GET_BLOCK_PRE_DIO; 1072 goto map_blocks; 1073 } 1074 if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) { 1075 err = f2fs_convert_inline_inode(inode); 1076 if (err) 1077 return err; 1078 } 1079 if (f2fs_has_inline_data(inode)) 1080 return err; 1081 1082 flag = F2FS_GET_BLOCK_PRE_AIO; 1083 1084 map_blocks: 1085 err = f2fs_map_blocks(inode, &map, 1, flag); 1086 if (map.m_len > 0 && err == -ENOSPC) { 1087 if (!direct_io) 1088 set_inode_flag(inode, FI_NO_PREALLOC); 1089 err = 0; 1090 } 1091 return err; 1092 } 1093 1094 void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock) 1095 { 1096 if (flag == F2FS_GET_BLOCK_PRE_AIO) { 1097 if (lock) 1098 down_read(&sbi->node_change); 1099 else 1100 up_read(&sbi->node_change); 1101 } else { 1102 if (lock) 1103 f2fs_lock_op(sbi); 1104 else 1105 f2fs_unlock_op(sbi); 1106 } 1107 } 1108 1109 /* 1110 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with 1111 * f2fs_map_blocks structure. 1112 * If original data blocks are allocated, then give them to blockdev. 1113 * Otherwise, 1114 * a. preallocate requested block addresses 1115 * b. do not use extent cache for better performance 1116 * c. give the block addresses to blockdev 1117 */ 1118 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 1119 int create, int flag) 1120 { 1121 unsigned int maxblocks = map->m_len; 1122 struct dnode_of_data dn; 1123 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1124 int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE; 1125 pgoff_t pgofs, end_offset, end; 1126 int err = 0, ofs = 1; 1127 unsigned int ofs_in_node, last_ofs_in_node; 1128 blkcnt_t prealloc; 1129 struct extent_info ei = {0,0,0}; 1130 block_t blkaddr; 1131 unsigned int start_pgofs; 1132 1133 if (!maxblocks) 1134 return 0; 1135 1136 map->m_len = 0; 1137 map->m_flags = 0; 1138 1139 /* it only supports block size == page size */ 1140 pgofs = (pgoff_t)map->m_lblk; 1141 end = pgofs + maxblocks; 1142 1143 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) { 1144 if (test_opt(sbi, LFS) && flag == F2FS_GET_BLOCK_DIO && 1145 map->m_may_create) 1146 goto next_dnode; 1147 1148 map->m_pblk = ei.blk + pgofs - ei.fofs; 1149 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs); 1150 map->m_flags = F2FS_MAP_MAPPED; 1151 if (map->m_next_extent) 1152 *map->m_next_extent = pgofs + map->m_len; 1153 1154 /* for hardware encryption, but to avoid potential issue in future */ 1155 if (flag == F2FS_GET_BLOCK_DIO) 1156 f2fs_wait_on_block_writeback_range(inode, 1157 map->m_pblk, map->m_len); 1158 goto out; 1159 } 1160 1161 next_dnode: 1162 if (map->m_may_create) 1163 __do_map_lock(sbi, flag, true); 1164 1165 /* When reading holes, we need its node page */ 1166 set_new_dnode(&dn, inode, NULL, NULL, 0); 1167 err = f2fs_get_dnode_of_data(&dn, pgofs, mode); 1168 if (err) { 1169 if (flag == F2FS_GET_BLOCK_BMAP) 1170 map->m_pblk = 0; 1171 if (err == -ENOENT) { 1172 err = 0; 1173 if (map->m_next_pgofs) 1174 *map->m_next_pgofs = 1175 f2fs_get_next_page_offset(&dn, pgofs); 1176 if (map->m_next_extent) 1177 *map->m_next_extent = 1178 f2fs_get_next_page_offset(&dn, pgofs); 1179 } 1180 goto unlock_out; 1181 } 1182 1183 start_pgofs = pgofs; 1184 prealloc = 0; 1185 last_ofs_in_node = ofs_in_node = dn.ofs_in_node; 1186 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1187 1188 next_block: 1189 blkaddr = datablock_addr(dn.inode, dn.node_page, dn.ofs_in_node); 1190 1191 if (__is_valid_data_blkaddr(blkaddr) && 1192 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) { 1193 err = -EFSCORRUPTED; 1194 goto sync_out; 1195 } 1196 1197 if (__is_valid_data_blkaddr(blkaddr)) { 1198 /* use out-place-update for driect IO under LFS mode */ 1199 if (test_opt(sbi, LFS) && flag == F2FS_GET_BLOCK_DIO && 1200 map->m_may_create) { 1201 err = __allocate_data_block(&dn, map->m_seg_type); 1202 if (!err) { 1203 blkaddr = dn.data_blkaddr; 1204 set_inode_flag(inode, FI_APPEND_WRITE); 1205 } 1206 } 1207 } else { 1208 if (create) { 1209 if (unlikely(f2fs_cp_error(sbi))) { 1210 err = -EIO; 1211 goto sync_out; 1212 } 1213 if (flag == F2FS_GET_BLOCK_PRE_AIO) { 1214 if (blkaddr == NULL_ADDR) { 1215 prealloc++; 1216 last_ofs_in_node = dn.ofs_in_node; 1217 } 1218 } else { 1219 WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO && 1220 flag != F2FS_GET_BLOCK_DIO); 1221 err = __allocate_data_block(&dn, 1222 map->m_seg_type); 1223 if (!err) 1224 set_inode_flag(inode, FI_APPEND_WRITE); 1225 } 1226 if (err) 1227 goto sync_out; 1228 map->m_flags |= F2FS_MAP_NEW; 1229 blkaddr = dn.data_blkaddr; 1230 } else { 1231 if (flag == F2FS_GET_BLOCK_BMAP) { 1232 map->m_pblk = 0; 1233 goto sync_out; 1234 } 1235 if (flag == F2FS_GET_BLOCK_PRECACHE) 1236 goto sync_out; 1237 if (flag == F2FS_GET_BLOCK_FIEMAP && 1238 blkaddr == NULL_ADDR) { 1239 if (map->m_next_pgofs) 1240 *map->m_next_pgofs = pgofs + 1; 1241 goto sync_out; 1242 } 1243 if (flag != F2FS_GET_BLOCK_FIEMAP) { 1244 /* for defragment case */ 1245 if (map->m_next_pgofs) 1246 *map->m_next_pgofs = pgofs + 1; 1247 goto sync_out; 1248 } 1249 } 1250 } 1251 1252 if (flag == F2FS_GET_BLOCK_PRE_AIO) 1253 goto skip; 1254 1255 if (map->m_len == 0) { 1256 /* preallocated unwritten block should be mapped for fiemap. */ 1257 if (blkaddr == NEW_ADDR) 1258 map->m_flags |= F2FS_MAP_UNWRITTEN; 1259 map->m_flags |= F2FS_MAP_MAPPED; 1260 1261 map->m_pblk = blkaddr; 1262 map->m_len = 1; 1263 } else if ((map->m_pblk != NEW_ADDR && 1264 blkaddr == (map->m_pblk + ofs)) || 1265 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) || 1266 flag == F2FS_GET_BLOCK_PRE_DIO) { 1267 ofs++; 1268 map->m_len++; 1269 } else { 1270 goto sync_out; 1271 } 1272 1273 skip: 1274 dn.ofs_in_node++; 1275 pgofs++; 1276 1277 /* preallocate blocks in batch for one dnode page */ 1278 if (flag == F2FS_GET_BLOCK_PRE_AIO && 1279 (pgofs == end || dn.ofs_in_node == end_offset)) { 1280 1281 dn.ofs_in_node = ofs_in_node; 1282 err = f2fs_reserve_new_blocks(&dn, prealloc); 1283 if (err) 1284 goto sync_out; 1285 1286 map->m_len += dn.ofs_in_node - ofs_in_node; 1287 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) { 1288 err = -ENOSPC; 1289 goto sync_out; 1290 } 1291 dn.ofs_in_node = end_offset; 1292 } 1293 1294 if (pgofs >= end) 1295 goto sync_out; 1296 else if (dn.ofs_in_node < end_offset) 1297 goto next_block; 1298 1299 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1300 if (map->m_flags & F2FS_MAP_MAPPED) { 1301 unsigned int ofs = start_pgofs - map->m_lblk; 1302 1303 f2fs_update_extent_cache_range(&dn, 1304 start_pgofs, map->m_pblk + ofs, 1305 map->m_len - ofs); 1306 } 1307 } 1308 1309 f2fs_put_dnode(&dn); 1310 1311 if (map->m_may_create) { 1312 __do_map_lock(sbi, flag, false); 1313 f2fs_balance_fs(sbi, dn.node_changed); 1314 } 1315 goto next_dnode; 1316 1317 sync_out: 1318 1319 /* for hardware encryption, but to avoid potential issue in future */ 1320 if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) 1321 f2fs_wait_on_block_writeback_range(inode, 1322 map->m_pblk, map->m_len); 1323 1324 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1325 if (map->m_flags & F2FS_MAP_MAPPED) { 1326 unsigned int ofs = start_pgofs - map->m_lblk; 1327 1328 f2fs_update_extent_cache_range(&dn, 1329 start_pgofs, map->m_pblk + ofs, 1330 map->m_len - ofs); 1331 } 1332 if (map->m_next_extent) 1333 *map->m_next_extent = pgofs + 1; 1334 } 1335 f2fs_put_dnode(&dn); 1336 unlock_out: 1337 if (map->m_may_create) { 1338 __do_map_lock(sbi, flag, false); 1339 f2fs_balance_fs(sbi, dn.node_changed); 1340 } 1341 out: 1342 trace_f2fs_map_blocks(inode, map, err); 1343 return err; 1344 } 1345 1346 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len) 1347 { 1348 struct f2fs_map_blocks map; 1349 block_t last_lblk; 1350 int err; 1351 1352 if (pos + len > i_size_read(inode)) 1353 return false; 1354 1355 map.m_lblk = F2FS_BYTES_TO_BLK(pos); 1356 map.m_next_pgofs = NULL; 1357 map.m_next_extent = NULL; 1358 map.m_seg_type = NO_CHECK_TYPE; 1359 map.m_may_create = false; 1360 last_lblk = F2FS_BLK_ALIGN(pos + len); 1361 1362 while (map.m_lblk < last_lblk) { 1363 map.m_len = last_lblk - map.m_lblk; 1364 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT); 1365 if (err || map.m_len == 0) 1366 return false; 1367 map.m_lblk += map.m_len; 1368 } 1369 return true; 1370 } 1371 1372 static int __get_data_block(struct inode *inode, sector_t iblock, 1373 struct buffer_head *bh, int create, int flag, 1374 pgoff_t *next_pgofs, int seg_type, bool may_write) 1375 { 1376 struct f2fs_map_blocks map; 1377 int err; 1378 1379 map.m_lblk = iblock; 1380 map.m_len = bh->b_size >> inode->i_blkbits; 1381 map.m_next_pgofs = next_pgofs; 1382 map.m_next_extent = NULL; 1383 map.m_seg_type = seg_type; 1384 map.m_may_create = may_write; 1385 1386 err = f2fs_map_blocks(inode, &map, create, flag); 1387 if (!err) { 1388 map_bh(bh, inode->i_sb, map.m_pblk); 1389 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags; 1390 bh->b_size = (u64)map.m_len << inode->i_blkbits; 1391 } 1392 return err; 1393 } 1394 1395 static int get_data_block(struct inode *inode, sector_t iblock, 1396 struct buffer_head *bh_result, int create, int flag, 1397 pgoff_t *next_pgofs) 1398 { 1399 return __get_data_block(inode, iblock, bh_result, create, 1400 flag, next_pgofs, 1401 NO_CHECK_TYPE, create); 1402 } 1403 1404 static int get_data_block_dio_write(struct inode *inode, sector_t iblock, 1405 struct buffer_head *bh_result, int create) 1406 { 1407 return __get_data_block(inode, iblock, bh_result, create, 1408 F2FS_GET_BLOCK_DIO, NULL, 1409 f2fs_rw_hint_to_seg_type(inode->i_write_hint), 1410 true); 1411 } 1412 1413 static int get_data_block_dio(struct inode *inode, sector_t iblock, 1414 struct buffer_head *bh_result, int create) 1415 { 1416 return __get_data_block(inode, iblock, bh_result, create, 1417 F2FS_GET_BLOCK_DIO, NULL, 1418 f2fs_rw_hint_to_seg_type(inode->i_write_hint), 1419 false); 1420 } 1421 1422 static int get_data_block_bmap(struct inode *inode, sector_t iblock, 1423 struct buffer_head *bh_result, int create) 1424 { 1425 /* Block number less than F2FS MAX BLOCKS */ 1426 if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks)) 1427 return -EFBIG; 1428 1429 return __get_data_block(inode, iblock, bh_result, create, 1430 F2FS_GET_BLOCK_BMAP, NULL, 1431 NO_CHECK_TYPE, create); 1432 } 1433 1434 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset) 1435 { 1436 return (offset >> inode->i_blkbits); 1437 } 1438 1439 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk) 1440 { 1441 return (blk << inode->i_blkbits); 1442 } 1443 1444 static int f2fs_xattr_fiemap(struct inode *inode, 1445 struct fiemap_extent_info *fieinfo) 1446 { 1447 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1448 struct page *page; 1449 struct node_info ni; 1450 __u64 phys = 0, len; 1451 __u32 flags; 1452 nid_t xnid = F2FS_I(inode)->i_xattr_nid; 1453 int err = 0; 1454 1455 if (f2fs_has_inline_xattr(inode)) { 1456 int offset; 1457 1458 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), 1459 inode->i_ino, false); 1460 if (!page) 1461 return -ENOMEM; 1462 1463 err = f2fs_get_node_info(sbi, inode->i_ino, &ni); 1464 if (err) { 1465 f2fs_put_page(page, 1); 1466 return err; 1467 } 1468 1469 phys = (__u64)blk_to_logical(inode, ni.blk_addr); 1470 offset = offsetof(struct f2fs_inode, i_addr) + 1471 sizeof(__le32) * (DEF_ADDRS_PER_INODE - 1472 get_inline_xattr_addrs(inode)); 1473 1474 phys += offset; 1475 len = inline_xattr_size(inode); 1476 1477 f2fs_put_page(page, 1); 1478 1479 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED; 1480 1481 if (!xnid) 1482 flags |= FIEMAP_EXTENT_LAST; 1483 1484 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1485 if (err || err == 1) 1486 return err; 1487 } 1488 1489 if (xnid) { 1490 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false); 1491 if (!page) 1492 return -ENOMEM; 1493 1494 err = f2fs_get_node_info(sbi, xnid, &ni); 1495 if (err) { 1496 f2fs_put_page(page, 1); 1497 return err; 1498 } 1499 1500 phys = (__u64)blk_to_logical(inode, ni.blk_addr); 1501 len = inode->i_sb->s_blocksize; 1502 1503 f2fs_put_page(page, 1); 1504 1505 flags = FIEMAP_EXTENT_LAST; 1506 } 1507 1508 if (phys) 1509 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1510 1511 return (err < 0 ? err : 0); 1512 } 1513 1514 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 1515 u64 start, u64 len) 1516 { 1517 struct buffer_head map_bh; 1518 sector_t start_blk, last_blk; 1519 pgoff_t next_pgofs; 1520 u64 logical = 0, phys = 0, size = 0; 1521 u32 flags = 0; 1522 int ret = 0; 1523 1524 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) { 1525 ret = f2fs_precache_extents(inode); 1526 if (ret) 1527 return ret; 1528 } 1529 1530 ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC | FIEMAP_FLAG_XATTR); 1531 if (ret) 1532 return ret; 1533 1534 inode_lock(inode); 1535 1536 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 1537 ret = f2fs_xattr_fiemap(inode, fieinfo); 1538 goto out; 1539 } 1540 1541 if (f2fs_has_inline_data(inode)) { 1542 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len); 1543 if (ret != -EAGAIN) 1544 goto out; 1545 } 1546 1547 if (logical_to_blk(inode, len) == 0) 1548 len = blk_to_logical(inode, 1); 1549 1550 start_blk = logical_to_blk(inode, start); 1551 last_blk = logical_to_blk(inode, start + len - 1); 1552 1553 next: 1554 memset(&map_bh, 0, sizeof(struct buffer_head)); 1555 map_bh.b_size = len; 1556 1557 ret = get_data_block(inode, start_blk, &map_bh, 0, 1558 F2FS_GET_BLOCK_FIEMAP, &next_pgofs); 1559 if (ret) 1560 goto out; 1561 1562 /* HOLE */ 1563 if (!buffer_mapped(&map_bh)) { 1564 start_blk = next_pgofs; 1565 1566 if (blk_to_logical(inode, start_blk) < blk_to_logical(inode, 1567 F2FS_I_SB(inode)->max_file_blocks)) 1568 goto prep_next; 1569 1570 flags |= FIEMAP_EXTENT_LAST; 1571 } 1572 1573 if (size) { 1574 if (IS_ENCRYPTED(inode)) 1575 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED; 1576 1577 ret = fiemap_fill_next_extent(fieinfo, logical, 1578 phys, size, flags); 1579 } 1580 1581 if (start_blk > last_blk || ret) 1582 goto out; 1583 1584 logical = blk_to_logical(inode, start_blk); 1585 phys = blk_to_logical(inode, map_bh.b_blocknr); 1586 size = map_bh.b_size; 1587 flags = 0; 1588 if (buffer_unwritten(&map_bh)) 1589 flags = FIEMAP_EXTENT_UNWRITTEN; 1590 1591 start_blk += logical_to_blk(inode, size); 1592 1593 prep_next: 1594 cond_resched(); 1595 if (fatal_signal_pending(current)) 1596 ret = -EINTR; 1597 else 1598 goto next; 1599 out: 1600 if (ret == 1) 1601 ret = 0; 1602 1603 inode_unlock(inode); 1604 return ret; 1605 } 1606 1607 static inline loff_t f2fs_readpage_limit(struct inode *inode) 1608 { 1609 if (IS_ENABLED(CONFIG_FS_VERITY) && 1610 (IS_VERITY(inode) || f2fs_verity_in_progress(inode))) 1611 return inode->i_sb->s_maxbytes; 1612 1613 return i_size_read(inode); 1614 } 1615 1616 static int f2fs_read_single_page(struct inode *inode, struct page *page, 1617 unsigned nr_pages, 1618 struct f2fs_map_blocks *map, 1619 struct bio **bio_ret, 1620 sector_t *last_block_in_bio, 1621 bool is_readahead) 1622 { 1623 struct bio *bio = *bio_ret; 1624 const unsigned blkbits = inode->i_blkbits; 1625 const unsigned blocksize = 1 << blkbits; 1626 sector_t block_in_file; 1627 sector_t last_block; 1628 sector_t last_block_in_file; 1629 sector_t block_nr; 1630 int ret = 0; 1631 1632 block_in_file = (sector_t)page_index(page); 1633 last_block = block_in_file + nr_pages; 1634 last_block_in_file = (f2fs_readpage_limit(inode) + blocksize - 1) >> 1635 blkbits; 1636 if (last_block > last_block_in_file) 1637 last_block = last_block_in_file; 1638 1639 /* just zeroing out page which is beyond EOF */ 1640 if (block_in_file >= last_block) 1641 goto zero_out; 1642 /* 1643 * Map blocks using the previous result first. 1644 */ 1645 if ((map->m_flags & F2FS_MAP_MAPPED) && 1646 block_in_file > map->m_lblk && 1647 block_in_file < (map->m_lblk + map->m_len)) 1648 goto got_it; 1649 1650 /* 1651 * Then do more f2fs_map_blocks() calls until we are 1652 * done with this page. 1653 */ 1654 map->m_lblk = block_in_file; 1655 map->m_len = last_block - block_in_file; 1656 1657 ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT); 1658 if (ret) 1659 goto out; 1660 got_it: 1661 if ((map->m_flags & F2FS_MAP_MAPPED)) { 1662 block_nr = map->m_pblk + block_in_file - map->m_lblk; 1663 SetPageMappedToDisk(page); 1664 1665 if (!PageUptodate(page) && (!PageSwapCache(page) && 1666 !cleancache_get_page(page))) { 1667 SetPageUptodate(page); 1668 goto confused; 1669 } 1670 1671 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr, 1672 DATA_GENERIC_ENHANCE_READ)) { 1673 ret = -EFSCORRUPTED; 1674 goto out; 1675 } 1676 } else { 1677 zero_out: 1678 zero_user_segment(page, 0, PAGE_SIZE); 1679 if (f2fs_need_verity(inode, page->index) && 1680 !fsverity_verify_page(page)) { 1681 ret = -EIO; 1682 goto out; 1683 } 1684 if (!PageUptodate(page)) 1685 SetPageUptodate(page); 1686 unlock_page(page); 1687 goto out; 1688 } 1689 1690 /* 1691 * This page will go to BIO. Do we need to send this 1692 * BIO off first? 1693 */ 1694 if (bio && (*last_block_in_bio != block_nr - 1 || 1695 !__same_bdev(F2FS_I_SB(inode), block_nr, bio))) { 1696 submit_and_realloc: 1697 __submit_bio(F2FS_I_SB(inode), bio, DATA); 1698 bio = NULL; 1699 } 1700 if (bio == NULL) { 1701 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages, 1702 is_readahead ? REQ_RAHEAD : 0, page->index); 1703 if (IS_ERR(bio)) { 1704 ret = PTR_ERR(bio); 1705 bio = NULL; 1706 goto out; 1707 } 1708 } 1709 1710 /* 1711 * If the page is under writeback, we need to wait for 1712 * its completion to see the correct decrypted data. 1713 */ 1714 f2fs_wait_on_block_writeback(inode, block_nr); 1715 1716 if (bio_add_page(bio, page, blocksize, 0) < blocksize) 1717 goto submit_and_realloc; 1718 1719 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA); 1720 ClearPageError(page); 1721 *last_block_in_bio = block_nr; 1722 goto out; 1723 confused: 1724 if (bio) { 1725 __submit_bio(F2FS_I_SB(inode), bio, DATA); 1726 bio = NULL; 1727 } 1728 unlock_page(page); 1729 out: 1730 *bio_ret = bio; 1731 return ret; 1732 } 1733 1734 /* 1735 * This function was originally taken from fs/mpage.c, and customized for f2fs. 1736 * Major change was from block_size == page_size in f2fs by default. 1737 * 1738 * Note that the aops->readpages() function is ONLY used for read-ahead. If 1739 * this function ever deviates from doing just read-ahead, it should either 1740 * use ->readpage() or do the necessary surgery to decouple ->readpages() 1741 * from read-ahead. 1742 */ 1743 static int f2fs_mpage_readpages(struct address_space *mapping, 1744 struct list_head *pages, struct page *page, 1745 unsigned nr_pages, bool is_readahead) 1746 { 1747 struct bio *bio = NULL; 1748 sector_t last_block_in_bio = 0; 1749 struct inode *inode = mapping->host; 1750 struct f2fs_map_blocks map; 1751 int ret = 0; 1752 1753 map.m_pblk = 0; 1754 map.m_lblk = 0; 1755 map.m_len = 0; 1756 map.m_flags = 0; 1757 map.m_next_pgofs = NULL; 1758 map.m_next_extent = NULL; 1759 map.m_seg_type = NO_CHECK_TYPE; 1760 map.m_may_create = false; 1761 1762 for (; nr_pages; nr_pages--) { 1763 if (pages) { 1764 page = list_last_entry(pages, struct page, lru); 1765 1766 prefetchw(&page->flags); 1767 list_del(&page->lru); 1768 if (add_to_page_cache_lru(page, mapping, 1769 page_index(page), 1770 readahead_gfp_mask(mapping))) 1771 goto next_page; 1772 } 1773 1774 ret = f2fs_read_single_page(inode, page, nr_pages, &map, &bio, 1775 &last_block_in_bio, is_readahead); 1776 if (ret) { 1777 SetPageError(page); 1778 zero_user_segment(page, 0, PAGE_SIZE); 1779 unlock_page(page); 1780 } 1781 next_page: 1782 if (pages) 1783 put_page(page); 1784 } 1785 BUG_ON(pages && !list_empty(pages)); 1786 if (bio) 1787 __submit_bio(F2FS_I_SB(inode), bio, DATA); 1788 return pages ? 0 : ret; 1789 } 1790 1791 static int f2fs_read_data_page(struct file *file, struct page *page) 1792 { 1793 struct inode *inode = page_file_mapping(page)->host; 1794 int ret = -EAGAIN; 1795 1796 trace_f2fs_readpage(page, DATA); 1797 1798 /* If the file has inline data, try to read it directly */ 1799 if (f2fs_has_inline_data(inode)) 1800 ret = f2fs_read_inline_data(inode, page); 1801 if (ret == -EAGAIN) 1802 ret = f2fs_mpage_readpages(page_file_mapping(page), 1803 NULL, page, 1, false); 1804 return ret; 1805 } 1806 1807 static int f2fs_read_data_pages(struct file *file, 1808 struct address_space *mapping, 1809 struct list_head *pages, unsigned nr_pages) 1810 { 1811 struct inode *inode = mapping->host; 1812 struct page *page = list_last_entry(pages, struct page, lru); 1813 1814 trace_f2fs_readpages(inode, page, nr_pages); 1815 1816 /* If the file has inline data, skip readpages */ 1817 if (f2fs_has_inline_data(inode)) 1818 return 0; 1819 1820 return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages, true); 1821 } 1822 1823 static int encrypt_one_page(struct f2fs_io_info *fio) 1824 { 1825 struct inode *inode = fio->page->mapping->host; 1826 struct page *mpage; 1827 gfp_t gfp_flags = GFP_NOFS; 1828 1829 if (!f2fs_encrypted_file(inode)) 1830 return 0; 1831 1832 /* wait for GCed page writeback via META_MAPPING */ 1833 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr); 1834 1835 retry_encrypt: 1836 fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(fio->page, 1837 PAGE_SIZE, 0, 1838 gfp_flags); 1839 if (IS_ERR(fio->encrypted_page)) { 1840 /* flush pending IOs and wait for a while in the ENOMEM case */ 1841 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) { 1842 f2fs_flush_merged_writes(fio->sbi); 1843 congestion_wait(BLK_RW_ASYNC, HZ/50); 1844 gfp_flags |= __GFP_NOFAIL; 1845 goto retry_encrypt; 1846 } 1847 return PTR_ERR(fio->encrypted_page); 1848 } 1849 1850 mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr); 1851 if (mpage) { 1852 if (PageUptodate(mpage)) 1853 memcpy(page_address(mpage), 1854 page_address(fio->encrypted_page), PAGE_SIZE); 1855 f2fs_put_page(mpage, 1); 1856 } 1857 return 0; 1858 } 1859 1860 static inline bool check_inplace_update_policy(struct inode *inode, 1861 struct f2fs_io_info *fio) 1862 { 1863 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1864 unsigned int policy = SM_I(sbi)->ipu_policy; 1865 1866 if (policy & (0x1 << F2FS_IPU_FORCE)) 1867 return true; 1868 if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi)) 1869 return true; 1870 if (policy & (0x1 << F2FS_IPU_UTIL) && 1871 utilization(sbi) > SM_I(sbi)->min_ipu_util) 1872 return true; 1873 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) && 1874 utilization(sbi) > SM_I(sbi)->min_ipu_util) 1875 return true; 1876 1877 /* 1878 * IPU for rewrite async pages 1879 */ 1880 if (policy & (0x1 << F2FS_IPU_ASYNC) && 1881 fio && fio->op == REQ_OP_WRITE && 1882 !(fio->op_flags & REQ_SYNC) && 1883 !IS_ENCRYPTED(inode)) 1884 return true; 1885 1886 /* this is only set during fdatasync */ 1887 if (policy & (0x1 << F2FS_IPU_FSYNC) && 1888 is_inode_flag_set(inode, FI_NEED_IPU)) 1889 return true; 1890 1891 if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 1892 !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) 1893 return true; 1894 1895 return false; 1896 } 1897 1898 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio) 1899 { 1900 if (f2fs_is_pinned_file(inode)) 1901 return true; 1902 1903 /* if this is cold file, we should overwrite to avoid fragmentation */ 1904 if (file_is_cold(inode)) 1905 return true; 1906 1907 return check_inplace_update_policy(inode, fio); 1908 } 1909 1910 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio) 1911 { 1912 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1913 1914 if (test_opt(sbi, LFS)) 1915 return true; 1916 if (S_ISDIR(inode->i_mode)) 1917 return true; 1918 if (IS_NOQUOTA(inode)) 1919 return true; 1920 if (f2fs_is_atomic_file(inode)) 1921 return true; 1922 if (fio) { 1923 if (is_cold_data(fio->page)) 1924 return true; 1925 if (IS_ATOMIC_WRITTEN_PAGE(fio->page)) 1926 return true; 1927 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 1928 f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) 1929 return true; 1930 } 1931 return false; 1932 } 1933 1934 static inline bool need_inplace_update(struct f2fs_io_info *fio) 1935 { 1936 struct inode *inode = fio->page->mapping->host; 1937 1938 if (f2fs_should_update_outplace(inode, fio)) 1939 return false; 1940 1941 return f2fs_should_update_inplace(inode, fio); 1942 } 1943 1944 int f2fs_do_write_data_page(struct f2fs_io_info *fio) 1945 { 1946 struct page *page = fio->page; 1947 struct inode *inode = page->mapping->host; 1948 struct dnode_of_data dn; 1949 struct extent_info ei = {0,0,0}; 1950 struct node_info ni; 1951 bool ipu_force = false; 1952 int err = 0; 1953 1954 set_new_dnode(&dn, inode, NULL, NULL, 0); 1955 if (need_inplace_update(fio) && 1956 f2fs_lookup_extent_cache(inode, page->index, &ei)) { 1957 fio->old_blkaddr = ei.blk + page->index - ei.fofs; 1958 1959 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 1960 DATA_GENERIC_ENHANCE)) 1961 return -EFSCORRUPTED; 1962 1963 ipu_force = true; 1964 fio->need_lock = LOCK_DONE; 1965 goto got_it; 1966 } 1967 1968 /* Deadlock due to between page->lock and f2fs_lock_op */ 1969 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi)) 1970 return -EAGAIN; 1971 1972 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE); 1973 if (err) 1974 goto out; 1975 1976 fio->old_blkaddr = dn.data_blkaddr; 1977 1978 /* This page is already truncated */ 1979 if (fio->old_blkaddr == NULL_ADDR) { 1980 ClearPageUptodate(page); 1981 clear_cold_data(page); 1982 goto out_writepage; 1983 } 1984 got_it: 1985 if (__is_valid_data_blkaddr(fio->old_blkaddr) && 1986 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 1987 DATA_GENERIC_ENHANCE)) { 1988 err = -EFSCORRUPTED; 1989 goto out_writepage; 1990 } 1991 /* 1992 * If current allocation needs SSR, 1993 * it had better in-place writes for updated data. 1994 */ 1995 if (ipu_force || 1996 (__is_valid_data_blkaddr(fio->old_blkaddr) && 1997 need_inplace_update(fio))) { 1998 err = encrypt_one_page(fio); 1999 if (err) 2000 goto out_writepage; 2001 2002 set_page_writeback(page); 2003 ClearPageError(page); 2004 f2fs_put_dnode(&dn); 2005 if (fio->need_lock == LOCK_REQ) 2006 f2fs_unlock_op(fio->sbi); 2007 err = f2fs_inplace_write_data(fio); 2008 if (err) { 2009 if (f2fs_encrypted_file(inode)) 2010 fscrypt_finalize_bounce_page(&fio->encrypted_page); 2011 if (PageWriteback(page)) 2012 end_page_writeback(page); 2013 } else { 2014 set_inode_flag(inode, FI_UPDATE_WRITE); 2015 } 2016 trace_f2fs_do_write_data_page(fio->page, IPU); 2017 return err; 2018 } 2019 2020 if (fio->need_lock == LOCK_RETRY) { 2021 if (!f2fs_trylock_op(fio->sbi)) { 2022 err = -EAGAIN; 2023 goto out_writepage; 2024 } 2025 fio->need_lock = LOCK_REQ; 2026 } 2027 2028 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni); 2029 if (err) 2030 goto out_writepage; 2031 2032 fio->version = ni.version; 2033 2034 err = encrypt_one_page(fio); 2035 if (err) 2036 goto out_writepage; 2037 2038 set_page_writeback(page); 2039 ClearPageError(page); 2040 2041 /* LFS mode write path */ 2042 f2fs_outplace_write_data(&dn, fio); 2043 trace_f2fs_do_write_data_page(page, OPU); 2044 set_inode_flag(inode, FI_APPEND_WRITE); 2045 if (page->index == 0) 2046 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); 2047 out_writepage: 2048 f2fs_put_dnode(&dn); 2049 out: 2050 if (fio->need_lock == LOCK_REQ) 2051 f2fs_unlock_op(fio->sbi); 2052 return err; 2053 } 2054 2055 static int __write_data_page(struct page *page, bool *submitted, 2056 struct bio **bio, 2057 sector_t *last_block, 2058 struct writeback_control *wbc, 2059 enum iostat_type io_type) 2060 { 2061 struct inode *inode = page->mapping->host; 2062 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2063 loff_t i_size = i_size_read(inode); 2064 const pgoff_t end_index = ((unsigned long long) i_size) 2065 >> PAGE_SHIFT; 2066 loff_t psize = (page->index + 1) << PAGE_SHIFT; 2067 unsigned offset = 0; 2068 bool need_balance_fs = false; 2069 int err = 0; 2070 struct f2fs_io_info fio = { 2071 .sbi = sbi, 2072 .ino = inode->i_ino, 2073 .type = DATA, 2074 .op = REQ_OP_WRITE, 2075 .op_flags = wbc_to_write_flags(wbc), 2076 .old_blkaddr = NULL_ADDR, 2077 .page = page, 2078 .encrypted_page = NULL, 2079 .submitted = false, 2080 .need_lock = LOCK_RETRY, 2081 .io_type = io_type, 2082 .io_wbc = wbc, 2083 .bio = bio, 2084 .last_block = last_block, 2085 }; 2086 2087 trace_f2fs_writepage(page, DATA); 2088 2089 /* we should bypass data pages to proceed the kworkder jobs */ 2090 if (unlikely(f2fs_cp_error(sbi))) { 2091 mapping_set_error(page->mapping, -EIO); 2092 /* 2093 * don't drop any dirty dentry pages for keeping lastest 2094 * directory structure. 2095 */ 2096 if (S_ISDIR(inode->i_mode)) 2097 goto redirty_out; 2098 goto out; 2099 } 2100 2101 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 2102 goto redirty_out; 2103 2104 if (page->index < end_index || f2fs_verity_in_progress(inode)) 2105 goto write; 2106 2107 /* 2108 * If the offset is out-of-range of file size, 2109 * this page does not have to be written to disk. 2110 */ 2111 offset = i_size & (PAGE_SIZE - 1); 2112 if ((page->index >= end_index + 1) || !offset) 2113 goto out; 2114 2115 zero_user_segment(page, offset, PAGE_SIZE); 2116 write: 2117 if (f2fs_is_drop_cache(inode)) 2118 goto out; 2119 /* we should not write 0'th page having journal header */ 2120 if (f2fs_is_volatile_file(inode) && (!page->index || 2121 (!wbc->for_reclaim && 2122 f2fs_available_free_memory(sbi, BASE_CHECK)))) 2123 goto redirty_out; 2124 2125 /* Dentry blocks are controlled by checkpoint */ 2126 if (S_ISDIR(inode->i_mode)) { 2127 fio.need_lock = LOCK_DONE; 2128 err = f2fs_do_write_data_page(&fio); 2129 goto done; 2130 } 2131 2132 if (!wbc->for_reclaim) 2133 need_balance_fs = true; 2134 else if (has_not_enough_free_secs(sbi, 0, 0)) 2135 goto redirty_out; 2136 else 2137 set_inode_flag(inode, FI_HOT_DATA); 2138 2139 err = -EAGAIN; 2140 if (f2fs_has_inline_data(inode)) { 2141 err = f2fs_write_inline_data(inode, page); 2142 if (!err) 2143 goto out; 2144 } 2145 2146 if (err == -EAGAIN) { 2147 err = f2fs_do_write_data_page(&fio); 2148 if (err == -EAGAIN) { 2149 fio.need_lock = LOCK_REQ; 2150 err = f2fs_do_write_data_page(&fio); 2151 } 2152 } 2153 2154 if (err) { 2155 file_set_keep_isize(inode); 2156 } else { 2157 down_write(&F2FS_I(inode)->i_sem); 2158 if (F2FS_I(inode)->last_disk_size < psize) 2159 F2FS_I(inode)->last_disk_size = psize; 2160 up_write(&F2FS_I(inode)->i_sem); 2161 } 2162 2163 done: 2164 if (err && err != -ENOENT) 2165 goto redirty_out; 2166 2167 out: 2168 inode_dec_dirty_pages(inode); 2169 if (err) { 2170 ClearPageUptodate(page); 2171 clear_cold_data(page); 2172 } 2173 2174 if (wbc->for_reclaim) { 2175 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA); 2176 clear_inode_flag(inode, FI_HOT_DATA); 2177 f2fs_remove_dirty_inode(inode); 2178 submitted = NULL; 2179 } 2180 2181 unlock_page(page); 2182 if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) && 2183 !F2FS_I(inode)->cp_task) { 2184 f2fs_submit_ipu_bio(sbi, bio, page); 2185 f2fs_balance_fs(sbi, need_balance_fs); 2186 } 2187 2188 if (unlikely(f2fs_cp_error(sbi))) { 2189 f2fs_submit_ipu_bio(sbi, bio, page); 2190 f2fs_submit_merged_write(sbi, DATA); 2191 submitted = NULL; 2192 } 2193 2194 if (submitted) 2195 *submitted = fio.submitted; 2196 2197 return 0; 2198 2199 redirty_out: 2200 redirty_page_for_writepage(wbc, page); 2201 /* 2202 * pageout() in MM traslates EAGAIN, so calls handle_write_error() 2203 * -> mapping_set_error() -> set_bit(AS_EIO, ...). 2204 * file_write_and_wait_range() will see EIO error, which is critical 2205 * to return value of fsync() followed by atomic_write failure to user. 2206 */ 2207 if (!err || wbc->for_reclaim) 2208 return AOP_WRITEPAGE_ACTIVATE; 2209 unlock_page(page); 2210 return err; 2211 } 2212 2213 static int f2fs_write_data_page(struct page *page, 2214 struct writeback_control *wbc) 2215 { 2216 return __write_data_page(page, NULL, NULL, NULL, wbc, FS_DATA_IO); 2217 } 2218 2219 /* 2220 * This function was copied from write_cche_pages from mm/page-writeback.c. 2221 * The major change is making write step of cold data page separately from 2222 * warm/hot data page. 2223 */ 2224 static int f2fs_write_cache_pages(struct address_space *mapping, 2225 struct writeback_control *wbc, 2226 enum iostat_type io_type) 2227 { 2228 int ret = 0; 2229 int done = 0; 2230 struct pagevec pvec; 2231 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 2232 struct bio *bio = NULL; 2233 sector_t last_block; 2234 int nr_pages; 2235 pgoff_t uninitialized_var(writeback_index); 2236 pgoff_t index; 2237 pgoff_t end; /* Inclusive */ 2238 pgoff_t done_index; 2239 int cycled; 2240 int range_whole = 0; 2241 xa_mark_t tag; 2242 int nwritten = 0; 2243 2244 pagevec_init(&pvec); 2245 2246 if (get_dirty_pages(mapping->host) <= 2247 SM_I(F2FS_M_SB(mapping))->min_hot_blocks) 2248 set_inode_flag(mapping->host, FI_HOT_DATA); 2249 else 2250 clear_inode_flag(mapping->host, FI_HOT_DATA); 2251 2252 if (wbc->range_cyclic) { 2253 writeback_index = mapping->writeback_index; /* prev offset */ 2254 index = writeback_index; 2255 if (index == 0) 2256 cycled = 1; 2257 else 2258 cycled = 0; 2259 end = -1; 2260 } else { 2261 index = wbc->range_start >> PAGE_SHIFT; 2262 end = wbc->range_end >> PAGE_SHIFT; 2263 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2264 range_whole = 1; 2265 cycled = 1; /* ignore range_cyclic tests */ 2266 } 2267 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2268 tag = PAGECACHE_TAG_TOWRITE; 2269 else 2270 tag = PAGECACHE_TAG_DIRTY; 2271 retry: 2272 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2273 tag_pages_for_writeback(mapping, index, end); 2274 done_index = index; 2275 while (!done && (index <= end)) { 2276 int i; 2277 2278 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 2279 tag); 2280 if (nr_pages == 0) 2281 break; 2282 2283 for (i = 0; i < nr_pages; i++) { 2284 struct page *page = pvec.pages[i]; 2285 bool submitted = false; 2286 2287 /* give a priority to WB_SYNC threads */ 2288 if (atomic_read(&sbi->wb_sync_req[DATA]) && 2289 wbc->sync_mode == WB_SYNC_NONE) { 2290 done = 1; 2291 break; 2292 } 2293 2294 done_index = page->index; 2295 retry_write: 2296 lock_page(page); 2297 2298 if (unlikely(page->mapping != mapping)) { 2299 continue_unlock: 2300 unlock_page(page); 2301 continue; 2302 } 2303 2304 if (!PageDirty(page)) { 2305 /* someone wrote it for us */ 2306 goto continue_unlock; 2307 } 2308 2309 if (PageWriteback(page)) { 2310 if (wbc->sync_mode != WB_SYNC_NONE) { 2311 f2fs_wait_on_page_writeback(page, 2312 DATA, true, true); 2313 f2fs_submit_ipu_bio(sbi, &bio, page); 2314 } else { 2315 goto continue_unlock; 2316 } 2317 } 2318 2319 if (!clear_page_dirty_for_io(page)) 2320 goto continue_unlock; 2321 2322 ret = __write_data_page(page, &submitted, &bio, 2323 &last_block, wbc, io_type); 2324 if (unlikely(ret)) { 2325 /* 2326 * keep nr_to_write, since vfs uses this to 2327 * get # of written pages. 2328 */ 2329 if (ret == AOP_WRITEPAGE_ACTIVATE) { 2330 unlock_page(page); 2331 ret = 0; 2332 continue; 2333 } else if (ret == -EAGAIN) { 2334 ret = 0; 2335 if (wbc->sync_mode == WB_SYNC_ALL) { 2336 cond_resched(); 2337 congestion_wait(BLK_RW_ASYNC, 2338 HZ/50); 2339 goto retry_write; 2340 } 2341 continue; 2342 } 2343 done_index = page->index + 1; 2344 done = 1; 2345 break; 2346 } else if (submitted) { 2347 nwritten++; 2348 } 2349 2350 if (--wbc->nr_to_write <= 0 && 2351 wbc->sync_mode == WB_SYNC_NONE) { 2352 done = 1; 2353 break; 2354 } 2355 } 2356 pagevec_release(&pvec); 2357 cond_resched(); 2358 } 2359 2360 if (!cycled && !done) { 2361 cycled = 1; 2362 index = 0; 2363 end = writeback_index - 1; 2364 goto retry; 2365 } 2366 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2367 mapping->writeback_index = done_index; 2368 2369 if (nwritten) 2370 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host, 2371 NULL, 0, DATA); 2372 /* submit cached bio of IPU write */ 2373 if (bio) 2374 __submit_bio(sbi, bio, DATA); 2375 2376 return ret; 2377 } 2378 2379 static inline bool __should_serialize_io(struct inode *inode, 2380 struct writeback_control *wbc) 2381 { 2382 if (!S_ISREG(inode->i_mode)) 2383 return false; 2384 if (IS_NOQUOTA(inode)) 2385 return false; 2386 /* to avoid deadlock in path of data flush */ 2387 if (F2FS_I(inode)->cp_task) 2388 return false; 2389 if (wbc->sync_mode != WB_SYNC_ALL) 2390 return true; 2391 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks) 2392 return true; 2393 return false; 2394 } 2395 2396 static int __f2fs_write_data_pages(struct address_space *mapping, 2397 struct writeback_control *wbc, 2398 enum iostat_type io_type) 2399 { 2400 struct inode *inode = mapping->host; 2401 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2402 struct blk_plug plug; 2403 int ret; 2404 bool locked = false; 2405 2406 /* deal with chardevs and other special file */ 2407 if (!mapping->a_ops->writepage) 2408 return 0; 2409 2410 /* skip writing if there is no dirty page in this inode */ 2411 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE) 2412 return 0; 2413 2414 /* during POR, we don't need to trigger writepage at all. */ 2415 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 2416 goto skip_write; 2417 2418 if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) && 2419 wbc->sync_mode == WB_SYNC_NONE && 2420 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) && 2421 f2fs_available_free_memory(sbi, DIRTY_DENTS)) 2422 goto skip_write; 2423 2424 /* skip writing during file defragment */ 2425 if (is_inode_flag_set(inode, FI_DO_DEFRAG)) 2426 goto skip_write; 2427 2428 trace_f2fs_writepages(mapping->host, wbc, DATA); 2429 2430 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */ 2431 if (wbc->sync_mode == WB_SYNC_ALL) 2432 atomic_inc(&sbi->wb_sync_req[DATA]); 2433 else if (atomic_read(&sbi->wb_sync_req[DATA])) 2434 goto skip_write; 2435 2436 if (__should_serialize_io(inode, wbc)) { 2437 mutex_lock(&sbi->writepages); 2438 locked = true; 2439 } 2440 2441 blk_start_plug(&plug); 2442 ret = f2fs_write_cache_pages(mapping, wbc, io_type); 2443 blk_finish_plug(&plug); 2444 2445 if (locked) 2446 mutex_unlock(&sbi->writepages); 2447 2448 if (wbc->sync_mode == WB_SYNC_ALL) 2449 atomic_dec(&sbi->wb_sync_req[DATA]); 2450 /* 2451 * if some pages were truncated, we cannot guarantee its mapping->host 2452 * to detect pending bios. 2453 */ 2454 2455 f2fs_remove_dirty_inode(inode); 2456 return ret; 2457 2458 skip_write: 2459 wbc->pages_skipped += get_dirty_pages(inode); 2460 trace_f2fs_writepages(mapping->host, wbc, DATA); 2461 return 0; 2462 } 2463 2464 static int f2fs_write_data_pages(struct address_space *mapping, 2465 struct writeback_control *wbc) 2466 { 2467 struct inode *inode = mapping->host; 2468 2469 return __f2fs_write_data_pages(mapping, wbc, 2470 F2FS_I(inode)->cp_task == current ? 2471 FS_CP_DATA_IO : FS_DATA_IO); 2472 } 2473 2474 static void f2fs_write_failed(struct address_space *mapping, loff_t to) 2475 { 2476 struct inode *inode = mapping->host; 2477 loff_t i_size = i_size_read(inode); 2478 2479 /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */ 2480 if (to > i_size && !f2fs_verity_in_progress(inode)) { 2481 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 2482 down_write(&F2FS_I(inode)->i_mmap_sem); 2483 2484 truncate_pagecache(inode, i_size); 2485 if (!IS_NOQUOTA(inode)) 2486 f2fs_truncate_blocks(inode, i_size, true); 2487 2488 up_write(&F2FS_I(inode)->i_mmap_sem); 2489 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 2490 } 2491 } 2492 2493 static int prepare_write_begin(struct f2fs_sb_info *sbi, 2494 struct page *page, loff_t pos, unsigned len, 2495 block_t *blk_addr, bool *node_changed) 2496 { 2497 struct inode *inode = page->mapping->host; 2498 pgoff_t index = page->index; 2499 struct dnode_of_data dn; 2500 struct page *ipage; 2501 bool locked = false; 2502 struct extent_info ei = {0,0,0}; 2503 int err = 0; 2504 int flag; 2505 2506 /* 2507 * we already allocated all the blocks, so we don't need to get 2508 * the block addresses when there is no need to fill the page. 2509 */ 2510 if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE && 2511 !is_inode_flag_set(inode, FI_NO_PREALLOC) && 2512 !f2fs_verity_in_progress(inode)) 2513 return 0; 2514 2515 /* f2fs_lock_op avoids race between write CP and convert_inline_page */ 2516 if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode)) 2517 flag = F2FS_GET_BLOCK_DEFAULT; 2518 else 2519 flag = F2FS_GET_BLOCK_PRE_AIO; 2520 2521 if (f2fs_has_inline_data(inode) || 2522 (pos & PAGE_MASK) >= i_size_read(inode)) { 2523 __do_map_lock(sbi, flag, true); 2524 locked = true; 2525 } 2526 restart: 2527 /* check inline_data */ 2528 ipage = f2fs_get_node_page(sbi, inode->i_ino); 2529 if (IS_ERR(ipage)) { 2530 err = PTR_ERR(ipage); 2531 goto unlock_out; 2532 } 2533 2534 set_new_dnode(&dn, inode, ipage, ipage, 0); 2535 2536 if (f2fs_has_inline_data(inode)) { 2537 if (pos + len <= MAX_INLINE_DATA(inode)) { 2538 f2fs_do_read_inline_data(page, ipage); 2539 set_inode_flag(inode, FI_DATA_EXIST); 2540 if (inode->i_nlink) 2541 set_inline_node(ipage); 2542 } else { 2543 err = f2fs_convert_inline_page(&dn, page); 2544 if (err) 2545 goto out; 2546 if (dn.data_blkaddr == NULL_ADDR) 2547 err = f2fs_get_block(&dn, index); 2548 } 2549 } else if (locked) { 2550 err = f2fs_get_block(&dn, index); 2551 } else { 2552 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 2553 dn.data_blkaddr = ei.blk + index - ei.fofs; 2554 } else { 2555 /* hole case */ 2556 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 2557 if (err || dn.data_blkaddr == NULL_ADDR) { 2558 f2fs_put_dnode(&dn); 2559 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, 2560 true); 2561 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO); 2562 locked = true; 2563 goto restart; 2564 } 2565 } 2566 } 2567 2568 /* convert_inline_page can make node_changed */ 2569 *blk_addr = dn.data_blkaddr; 2570 *node_changed = dn.node_changed; 2571 out: 2572 f2fs_put_dnode(&dn); 2573 unlock_out: 2574 if (locked) 2575 __do_map_lock(sbi, flag, false); 2576 return err; 2577 } 2578 2579 static int f2fs_write_begin(struct file *file, struct address_space *mapping, 2580 loff_t pos, unsigned len, unsigned flags, 2581 struct page **pagep, void **fsdata) 2582 { 2583 struct inode *inode = mapping->host; 2584 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2585 struct page *page = NULL; 2586 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT; 2587 bool need_balance = false, drop_atomic = false; 2588 block_t blkaddr = NULL_ADDR; 2589 int err = 0; 2590 2591 trace_f2fs_write_begin(inode, pos, len, flags); 2592 2593 err = f2fs_is_checkpoint_ready(sbi); 2594 if (err) 2595 goto fail; 2596 2597 if ((f2fs_is_atomic_file(inode) && 2598 !f2fs_available_free_memory(sbi, INMEM_PAGES)) || 2599 is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) { 2600 err = -ENOMEM; 2601 drop_atomic = true; 2602 goto fail; 2603 } 2604 2605 /* 2606 * We should check this at this moment to avoid deadlock on inode page 2607 * and #0 page. The locking rule for inline_data conversion should be: 2608 * lock_page(page #0) -> lock_page(inode_page) 2609 */ 2610 if (index != 0) { 2611 err = f2fs_convert_inline_inode(inode); 2612 if (err) 2613 goto fail; 2614 } 2615 repeat: 2616 /* 2617 * Do not use grab_cache_page_write_begin() to avoid deadlock due to 2618 * wait_for_stable_page. Will wait that below with our IO control. 2619 */ 2620 page = f2fs_pagecache_get_page(mapping, index, 2621 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS); 2622 if (!page) { 2623 err = -ENOMEM; 2624 goto fail; 2625 } 2626 2627 *pagep = page; 2628 2629 err = prepare_write_begin(sbi, page, pos, len, 2630 &blkaddr, &need_balance); 2631 if (err) 2632 goto fail; 2633 2634 if (need_balance && !IS_NOQUOTA(inode) && 2635 has_not_enough_free_secs(sbi, 0, 0)) { 2636 unlock_page(page); 2637 f2fs_balance_fs(sbi, true); 2638 lock_page(page); 2639 if (page->mapping != mapping) { 2640 /* The page got truncated from under us */ 2641 f2fs_put_page(page, 1); 2642 goto repeat; 2643 } 2644 } 2645 2646 f2fs_wait_on_page_writeback(page, DATA, false, true); 2647 2648 if (len == PAGE_SIZE || PageUptodate(page)) 2649 return 0; 2650 2651 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) && 2652 !f2fs_verity_in_progress(inode)) { 2653 zero_user_segment(page, len, PAGE_SIZE); 2654 return 0; 2655 } 2656 2657 if (blkaddr == NEW_ADDR) { 2658 zero_user_segment(page, 0, PAGE_SIZE); 2659 SetPageUptodate(page); 2660 } else { 2661 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 2662 DATA_GENERIC_ENHANCE_READ)) { 2663 err = -EFSCORRUPTED; 2664 goto fail; 2665 } 2666 err = f2fs_submit_page_read(inode, page, blkaddr); 2667 if (err) 2668 goto fail; 2669 2670 lock_page(page); 2671 if (unlikely(page->mapping != mapping)) { 2672 f2fs_put_page(page, 1); 2673 goto repeat; 2674 } 2675 if (unlikely(!PageUptodate(page))) { 2676 err = -EIO; 2677 goto fail; 2678 } 2679 } 2680 return 0; 2681 2682 fail: 2683 f2fs_put_page(page, 1); 2684 f2fs_write_failed(mapping, pos + len); 2685 if (drop_atomic) 2686 f2fs_drop_inmem_pages_all(sbi, false); 2687 return err; 2688 } 2689 2690 static int f2fs_write_end(struct file *file, 2691 struct address_space *mapping, 2692 loff_t pos, unsigned len, unsigned copied, 2693 struct page *page, void *fsdata) 2694 { 2695 struct inode *inode = page->mapping->host; 2696 2697 trace_f2fs_write_end(inode, pos, len, copied); 2698 2699 /* 2700 * This should be come from len == PAGE_SIZE, and we expect copied 2701 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and 2702 * let generic_perform_write() try to copy data again through copied=0. 2703 */ 2704 if (!PageUptodate(page)) { 2705 if (unlikely(copied != len)) 2706 copied = 0; 2707 else 2708 SetPageUptodate(page); 2709 } 2710 if (!copied) 2711 goto unlock_out; 2712 2713 set_page_dirty(page); 2714 2715 if (pos + copied > i_size_read(inode) && 2716 !f2fs_verity_in_progress(inode)) 2717 f2fs_i_size_write(inode, pos + copied); 2718 unlock_out: 2719 f2fs_put_page(page, 1); 2720 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2721 return copied; 2722 } 2723 2724 static int check_direct_IO(struct inode *inode, struct iov_iter *iter, 2725 loff_t offset) 2726 { 2727 unsigned i_blkbits = READ_ONCE(inode->i_blkbits); 2728 unsigned blkbits = i_blkbits; 2729 unsigned blocksize_mask = (1 << blkbits) - 1; 2730 unsigned long align = offset | iov_iter_alignment(iter); 2731 struct block_device *bdev = inode->i_sb->s_bdev; 2732 2733 if (align & blocksize_mask) { 2734 if (bdev) 2735 blkbits = blksize_bits(bdev_logical_block_size(bdev)); 2736 blocksize_mask = (1 << blkbits) - 1; 2737 if (align & blocksize_mask) 2738 return -EINVAL; 2739 return 1; 2740 } 2741 return 0; 2742 } 2743 2744 static void f2fs_dio_end_io(struct bio *bio) 2745 { 2746 struct f2fs_private_dio *dio = bio->bi_private; 2747 2748 dec_page_count(F2FS_I_SB(dio->inode), 2749 dio->write ? F2FS_DIO_WRITE : F2FS_DIO_READ); 2750 2751 bio->bi_private = dio->orig_private; 2752 bio->bi_end_io = dio->orig_end_io; 2753 2754 kvfree(dio); 2755 2756 bio_endio(bio); 2757 } 2758 2759 static void f2fs_dio_submit_bio(struct bio *bio, struct inode *inode, 2760 loff_t file_offset) 2761 { 2762 struct f2fs_private_dio *dio; 2763 bool write = (bio_op(bio) == REQ_OP_WRITE); 2764 2765 dio = f2fs_kzalloc(F2FS_I_SB(inode), 2766 sizeof(struct f2fs_private_dio), GFP_NOFS); 2767 if (!dio) 2768 goto out; 2769 2770 dio->inode = inode; 2771 dio->orig_end_io = bio->bi_end_io; 2772 dio->orig_private = bio->bi_private; 2773 dio->write = write; 2774 2775 bio->bi_end_io = f2fs_dio_end_io; 2776 bio->bi_private = dio; 2777 2778 inc_page_count(F2FS_I_SB(inode), 2779 write ? F2FS_DIO_WRITE : F2FS_DIO_READ); 2780 2781 submit_bio(bio); 2782 return; 2783 out: 2784 bio->bi_status = BLK_STS_IOERR; 2785 bio_endio(bio); 2786 } 2787 2788 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 2789 { 2790 struct address_space *mapping = iocb->ki_filp->f_mapping; 2791 struct inode *inode = mapping->host; 2792 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2793 struct f2fs_inode_info *fi = F2FS_I(inode); 2794 size_t count = iov_iter_count(iter); 2795 loff_t offset = iocb->ki_pos; 2796 int rw = iov_iter_rw(iter); 2797 int err; 2798 enum rw_hint hint = iocb->ki_hint; 2799 int whint_mode = F2FS_OPTION(sbi).whint_mode; 2800 bool do_opu; 2801 2802 err = check_direct_IO(inode, iter, offset); 2803 if (err) 2804 return err < 0 ? err : 0; 2805 2806 if (f2fs_force_buffered_io(inode, iocb, iter)) 2807 return 0; 2808 2809 do_opu = allow_outplace_dio(inode, iocb, iter); 2810 2811 trace_f2fs_direct_IO_enter(inode, offset, count, rw); 2812 2813 if (rw == WRITE && whint_mode == WHINT_MODE_OFF) 2814 iocb->ki_hint = WRITE_LIFE_NOT_SET; 2815 2816 if (iocb->ki_flags & IOCB_NOWAIT) { 2817 if (!down_read_trylock(&fi->i_gc_rwsem[rw])) { 2818 iocb->ki_hint = hint; 2819 err = -EAGAIN; 2820 goto out; 2821 } 2822 if (do_opu && !down_read_trylock(&fi->i_gc_rwsem[READ])) { 2823 up_read(&fi->i_gc_rwsem[rw]); 2824 iocb->ki_hint = hint; 2825 err = -EAGAIN; 2826 goto out; 2827 } 2828 } else { 2829 down_read(&fi->i_gc_rwsem[rw]); 2830 if (do_opu) 2831 down_read(&fi->i_gc_rwsem[READ]); 2832 } 2833 2834 err = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, 2835 iter, rw == WRITE ? get_data_block_dio_write : 2836 get_data_block_dio, NULL, f2fs_dio_submit_bio, 2837 DIO_LOCKING | DIO_SKIP_HOLES); 2838 2839 if (do_opu) 2840 up_read(&fi->i_gc_rwsem[READ]); 2841 2842 up_read(&fi->i_gc_rwsem[rw]); 2843 2844 if (rw == WRITE) { 2845 if (whint_mode == WHINT_MODE_OFF) 2846 iocb->ki_hint = hint; 2847 if (err > 0) { 2848 f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO, 2849 err); 2850 if (!do_opu) 2851 set_inode_flag(inode, FI_UPDATE_WRITE); 2852 } else if (err < 0) { 2853 f2fs_write_failed(mapping, offset + count); 2854 } 2855 } 2856 2857 out: 2858 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err); 2859 2860 return err; 2861 } 2862 2863 void f2fs_invalidate_page(struct page *page, unsigned int offset, 2864 unsigned int length) 2865 { 2866 struct inode *inode = page->mapping->host; 2867 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2868 2869 if (inode->i_ino >= F2FS_ROOT_INO(sbi) && 2870 (offset % PAGE_SIZE || length != PAGE_SIZE)) 2871 return; 2872 2873 if (PageDirty(page)) { 2874 if (inode->i_ino == F2FS_META_INO(sbi)) { 2875 dec_page_count(sbi, F2FS_DIRTY_META); 2876 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) { 2877 dec_page_count(sbi, F2FS_DIRTY_NODES); 2878 } else { 2879 inode_dec_dirty_pages(inode); 2880 f2fs_remove_dirty_inode(inode); 2881 } 2882 } 2883 2884 clear_cold_data(page); 2885 2886 if (IS_ATOMIC_WRITTEN_PAGE(page)) 2887 return f2fs_drop_inmem_page(inode, page); 2888 2889 f2fs_clear_page_private(page); 2890 } 2891 2892 int f2fs_release_page(struct page *page, gfp_t wait) 2893 { 2894 /* If this is dirty page, keep PagePrivate */ 2895 if (PageDirty(page)) 2896 return 0; 2897 2898 /* This is atomic written page, keep Private */ 2899 if (IS_ATOMIC_WRITTEN_PAGE(page)) 2900 return 0; 2901 2902 clear_cold_data(page); 2903 f2fs_clear_page_private(page); 2904 return 1; 2905 } 2906 2907 static int f2fs_set_data_page_dirty(struct page *page) 2908 { 2909 struct inode *inode = page_file_mapping(page)->host; 2910 2911 trace_f2fs_set_page_dirty(page, DATA); 2912 2913 if (!PageUptodate(page)) 2914 SetPageUptodate(page); 2915 if (PageSwapCache(page)) 2916 return __set_page_dirty_nobuffers(page); 2917 2918 if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) { 2919 if (!IS_ATOMIC_WRITTEN_PAGE(page)) { 2920 f2fs_register_inmem_page(inode, page); 2921 return 1; 2922 } 2923 /* 2924 * Previously, this page has been registered, we just 2925 * return here. 2926 */ 2927 return 0; 2928 } 2929 2930 if (!PageDirty(page)) { 2931 __set_page_dirty_nobuffers(page); 2932 f2fs_update_dirty_page(inode, page); 2933 return 1; 2934 } 2935 return 0; 2936 } 2937 2938 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block) 2939 { 2940 struct inode *inode = mapping->host; 2941 2942 if (f2fs_has_inline_data(inode)) 2943 return 0; 2944 2945 /* make sure allocating whole blocks */ 2946 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2947 filemap_write_and_wait(mapping); 2948 2949 return generic_block_bmap(mapping, block, get_data_block_bmap); 2950 } 2951 2952 #ifdef CONFIG_MIGRATION 2953 #include <linux/migrate.h> 2954 2955 int f2fs_migrate_page(struct address_space *mapping, 2956 struct page *newpage, struct page *page, enum migrate_mode mode) 2957 { 2958 int rc, extra_count; 2959 struct f2fs_inode_info *fi = F2FS_I(mapping->host); 2960 bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page); 2961 2962 BUG_ON(PageWriteback(page)); 2963 2964 /* migrating an atomic written page is safe with the inmem_lock hold */ 2965 if (atomic_written) { 2966 if (mode != MIGRATE_SYNC) 2967 return -EBUSY; 2968 if (!mutex_trylock(&fi->inmem_lock)) 2969 return -EAGAIN; 2970 } 2971 2972 /* one extra reference was held for atomic_write page */ 2973 extra_count = atomic_written ? 1 : 0; 2974 rc = migrate_page_move_mapping(mapping, newpage, 2975 page, extra_count); 2976 if (rc != MIGRATEPAGE_SUCCESS) { 2977 if (atomic_written) 2978 mutex_unlock(&fi->inmem_lock); 2979 return rc; 2980 } 2981 2982 if (atomic_written) { 2983 struct inmem_pages *cur; 2984 list_for_each_entry(cur, &fi->inmem_pages, list) 2985 if (cur->page == page) { 2986 cur->page = newpage; 2987 break; 2988 } 2989 mutex_unlock(&fi->inmem_lock); 2990 put_page(page); 2991 get_page(newpage); 2992 } 2993 2994 if (PagePrivate(page)) { 2995 f2fs_set_page_private(newpage, page_private(page)); 2996 f2fs_clear_page_private(page); 2997 } 2998 2999 if (mode != MIGRATE_SYNC_NO_COPY) 3000 migrate_page_copy(newpage, page); 3001 else 3002 migrate_page_states(newpage, page); 3003 3004 return MIGRATEPAGE_SUCCESS; 3005 } 3006 #endif 3007 3008 #ifdef CONFIG_SWAP 3009 /* Copied from generic_swapfile_activate() to check any holes */ 3010 static int check_swap_activate(struct file *swap_file, unsigned int max) 3011 { 3012 struct address_space *mapping = swap_file->f_mapping; 3013 struct inode *inode = mapping->host; 3014 unsigned blocks_per_page; 3015 unsigned long page_no; 3016 unsigned blkbits; 3017 sector_t probe_block; 3018 sector_t last_block; 3019 sector_t lowest_block = -1; 3020 sector_t highest_block = 0; 3021 3022 blkbits = inode->i_blkbits; 3023 blocks_per_page = PAGE_SIZE >> blkbits; 3024 3025 /* 3026 * Map all the blocks into the extent list. This code doesn't try 3027 * to be very smart. 3028 */ 3029 probe_block = 0; 3030 page_no = 0; 3031 last_block = i_size_read(inode) >> blkbits; 3032 while ((probe_block + blocks_per_page) <= last_block && page_no < max) { 3033 unsigned block_in_page; 3034 sector_t first_block; 3035 3036 cond_resched(); 3037 3038 first_block = bmap(inode, probe_block); 3039 if (first_block == 0) 3040 goto bad_bmap; 3041 3042 /* 3043 * It must be PAGE_SIZE aligned on-disk 3044 */ 3045 if (first_block & (blocks_per_page - 1)) { 3046 probe_block++; 3047 goto reprobe; 3048 } 3049 3050 for (block_in_page = 1; block_in_page < blocks_per_page; 3051 block_in_page++) { 3052 sector_t block; 3053 3054 block = bmap(inode, probe_block + block_in_page); 3055 if (block == 0) 3056 goto bad_bmap; 3057 if (block != first_block + block_in_page) { 3058 /* Discontiguity */ 3059 probe_block++; 3060 goto reprobe; 3061 } 3062 } 3063 3064 first_block >>= (PAGE_SHIFT - blkbits); 3065 if (page_no) { /* exclude the header page */ 3066 if (first_block < lowest_block) 3067 lowest_block = first_block; 3068 if (first_block > highest_block) 3069 highest_block = first_block; 3070 } 3071 3072 page_no++; 3073 probe_block += blocks_per_page; 3074 reprobe: 3075 continue; 3076 } 3077 return 0; 3078 3079 bad_bmap: 3080 pr_err("swapon: swapfile has holes\n"); 3081 return -EINVAL; 3082 } 3083 3084 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, 3085 sector_t *span) 3086 { 3087 struct inode *inode = file_inode(file); 3088 int ret; 3089 3090 if (!S_ISREG(inode->i_mode)) 3091 return -EINVAL; 3092 3093 if (f2fs_readonly(F2FS_I_SB(inode)->sb)) 3094 return -EROFS; 3095 3096 ret = f2fs_convert_inline_inode(inode); 3097 if (ret) 3098 return ret; 3099 3100 ret = check_swap_activate(file, sis->max); 3101 if (ret) 3102 return ret; 3103 3104 set_inode_flag(inode, FI_PIN_FILE); 3105 f2fs_precache_extents(inode); 3106 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3107 return 0; 3108 } 3109 3110 static void f2fs_swap_deactivate(struct file *file) 3111 { 3112 struct inode *inode = file_inode(file); 3113 3114 clear_inode_flag(inode, FI_PIN_FILE); 3115 } 3116 #else 3117 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, 3118 sector_t *span) 3119 { 3120 return -EOPNOTSUPP; 3121 } 3122 3123 static void f2fs_swap_deactivate(struct file *file) 3124 { 3125 } 3126 #endif 3127 3128 const struct address_space_operations f2fs_dblock_aops = { 3129 .readpage = f2fs_read_data_page, 3130 .readpages = f2fs_read_data_pages, 3131 .writepage = f2fs_write_data_page, 3132 .writepages = f2fs_write_data_pages, 3133 .write_begin = f2fs_write_begin, 3134 .write_end = f2fs_write_end, 3135 .set_page_dirty = f2fs_set_data_page_dirty, 3136 .invalidatepage = f2fs_invalidate_page, 3137 .releasepage = f2fs_release_page, 3138 .direct_IO = f2fs_direct_IO, 3139 .bmap = f2fs_bmap, 3140 .swap_activate = f2fs_swap_activate, 3141 .swap_deactivate = f2fs_swap_deactivate, 3142 #ifdef CONFIG_MIGRATION 3143 .migratepage = f2fs_migrate_page, 3144 #endif 3145 }; 3146 3147 void f2fs_clear_page_cache_dirty_tag(struct page *page) 3148 { 3149 struct address_space *mapping = page_mapping(page); 3150 unsigned long flags; 3151 3152 xa_lock_irqsave(&mapping->i_pages, flags); 3153 __xa_clear_mark(&mapping->i_pages, page_index(page), 3154 PAGECACHE_TAG_DIRTY); 3155 xa_unlock_irqrestore(&mapping->i_pages, flags); 3156 } 3157 3158 int __init f2fs_init_post_read_processing(void) 3159 { 3160 bio_post_read_ctx_cache = 3161 kmem_cache_create("f2fs_bio_post_read_ctx", 3162 sizeof(struct bio_post_read_ctx), 0, 0, NULL); 3163 if (!bio_post_read_ctx_cache) 3164 goto fail; 3165 bio_post_read_ctx_pool = 3166 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS, 3167 bio_post_read_ctx_cache); 3168 if (!bio_post_read_ctx_pool) 3169 goto fail_free_cache; 3170 return 0; 3171 3172 fail_free_cache: 3173 kmem_cache_destroy(bio_post_read_ctx_cache); 3174 fail: 3175 return -ENOMEM; 3176 } 3177 3178 void __exit f2fs_destroy_post_read_processing(void) 3179 { 3180 mempool_destroy(bio_post_read_ctx_pool); 3181 kmem_cache_destroy(bio_post_read_ctx_cache); 3182 } 3183