xref: /linux/fs/f2fs/data.c (revision b45e0c30bc58fb6fcaa42f1d1d813cefb8ab4117)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/data.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/mpage.h>
12 #include <linux/writeback.h>
13 #include <linux/backing-dev.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/swap.h>
18 #include <linux/prefetch.h>
19 #include <linux/uio.h>
20 #include <linux/cleancache.h>
21 #include <linux/sched/signal.h>
22 
23 #include "f2fs.h"
24 #include "node.h"
25 #include "segment.h"
26 #include "trace.h"
27 #include <trace/events/f2fs.h>
28 
29 #define NUM_PREALLOC_POST_READ_CTXS	128
30 
31 static struct kmem_cache *bio_post_read_ctx_cache;
32 static mempool_t *bio_post_read_ctx_pool;
33 
34 static bool __is_cp_guaranteed(struct page *page)
35 {
36 	struct address_space *mapping = page->mapping;
37 	struct inode *inode;
38 	struct f2fs_sb_info *sbi;
39 
40 	if (!mapping)
41 		return false;
42 
43 	inode = mapping->host;
44 	sbi = F2FS_I_SB(inode);
45 
46 	if (inode->i_ino == F2FS_META_INO(sbi) ||
47 			inode->i_ino ==  F2FS_NODE_INO(sbi) ||
48 			S_ISDIR(inode->i_mode) ||
49 			(S_ISREG(inode->i_mode) &&
50 			(f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) ||
51 			is_cold_data(page))
52 		return true;
53 	return false;
54 }
55 
56 static enum count_type __read_io_type(struct page *page)
57 {
58 	struct address_space *mapping = page_file_mapping(page);
59 
60 	if (mapping) {
61 		struct inode *inode = mapping->host;
62 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
63 
64 		if (inode->i_ino == F2FS_META_INO(sbi))
65 			return F2FS_RD_META;
66 
67 		if (inode->i_ino == F2FS_NODE_INO(sbi))
68 			return F2FS_RD_NODE;
69 	}
70 	return F2FS_RD_DATA;
71 }
72 
73 /* postprocessing steps for read bios */
74 enum bio_post_read_step {
75 	STEP_INITIAL = 0,
76 	STEP_DECRYPT,
77 	STEP_VERITY,
78 };
79 
80 struct bio_post_read_ctx {
81 	struct bio *bio;
82 	struct work_struct work;
83 	unsigned int cur_step;
84 	unsigned int enabled_steps;
85 };
86 
87 static void __read_end_io(struct bio *bio)
88 {
89 	struct page *page;
90 	struct bio_vec *bv;
91 	struct bvec_iter_all iter_all;
92 
93 	bio_for_each_segment_all(bv, bio, iter_all) {
94 		page = bv->bv_page;
95 
96 		/* PG_error was set if any post_read step failed */
97 		if (bio->bi_status || PageError(page)) {
98 			ClearPageUptodate(page);
99 			/* will re-read again later */
100 			ClearPageError(page);
101 		} else {
102 			SetPageUptodate(page);
103 		}
104 		dec_page_count(F2FS_P_SB(page), __read_io_type(page));
105 		unlock_page(page);
106 	}
107 	if (bio->bi_private)
108 		mempool_free(bio->bi_private, bio_post_read_ctx_pool);
109 	bio_put(bio);
110 }
111 
112 static void bio_post_read_processing(struct bio_post_read_ctx *ctx);
113 
114 static void decrypt_work(struct work_struct *work)
115 {
116 	struct bio_post_read_ctx *ctx =
117 		container_of(work, struct bio_post_read_ctx, work);
118 
119 	fscrypt_decrypt_bio(ctx->bio);
120 
121 	bio_post_read_processing(ctx);
122 }
123 
124 static void verity_work(struct work_struct *work)
125 {
126 	struct bio_post_read_ctx *ctx =
127 		container_of(work, struct bio_post_read_ctx, work);
128 
129 	fsverity_verify_bio(ctx->bio);
130 
131 	bio_post_read_processing(ctx);
132 }
133 
134 static void bio_post_read_processing(struct bio_post_read_ctx *ctx)
135 {
136 	/*
137 	 * We use different work queues for decryption and for verity because
138 	 * verity may require reading metadata pages that need decryption, and
139 	 * we shouldn't recurse to the same workqueue.
140 	 */
141 	switch (++ctx->cur_step) {
142 	case STEP_DECRYPT:
143 		if (ctx->enabled_steps & (1 << STEP_DECRYPT)) {
144 			INIT_WORK(&ctx->work, decrypt_work);
145 			fscrypt_enqueue_decrypt_work(&ctx->work);
146 			return;
147 		}
148 		ctx->cur_step++;
149 		/* fall-through */
150 	case STEP_VERITY:
151 		if (ctx->enabled_steps & (1 << STEP_VERITY)) {
152 			INIT_WORK(&ctx->work, verity_work);
153 			fsverity_enqueue_verify_work(&ctx->work);
154 			return;
155 		}
156 		ctx->cur_step++;
157 		/* fall-through */
158 	default:
159 		__read_end_io(ctx->bio);
160 	}
161 }
162 
163 static bool f2fs_bio_post_read_required(struct bio *bio)
164 {
165 	return bio->bi_private && !bio->bi_status;
166 }
167 
168 static void f2fs_read_end_io(struct bio *bio)
169 {
170 	if (time_to_inject(F2FS_P_SB(bio_first_page_all(bio)),
171 						FAULT_READ_IO)) {
172 		f2fs_show_injection_info(FAULT_READ_IO);
173 		bio->bi_status = BLK_STS_IOERR;
174 	}
175 
176 	if (f2fs_bio_post_read_required(bio)) {
177 		struct bio_post_read_ctx *ctx = bio->bi_private;
178 
179 		ctx->cur_step = STEP_INITIAL;
180 		bio_post_read_processing(ctx);
181 		return;
182 	}
183 
184 	__read_end_io(bio);
185 }
186 
187 static void f2fs_write_end_io(struct bio *bio)
188 {
189 	struct f2fs_sb_info *sbi = bio->bi_private;
190 	struct bio_vec *bvec;
191 	struct bvec_iter_all iter_all;
192 
193 	if (time_to_inject(sbi, FAULT_WRITE_IO)) {
194 		f2fs_show_injection_info(FAULT_WRITE_IO);
195 		bio->bi_status = BLK_STS_IOERR;
196 	}
197 
198 	bio_for_each_segment_all(bvec, bio, iter_all) {
199 		struct page *page = bvec->bv_page;
200 		enum count_type type = WB_DATA_TYPE(page);
201 
202 		if (IS_DUMMY_WRITTEN_PAGE(page)) {
203 			set_page_private(page, (unsigned long)NULL);
204 			ClearPagePrivate(page);
205 			unlock_page(page);
206 			mempool_free(page, sbi->write_io_dummy);
207 
208 			if (unlikely(bio->bi_status))
209 				f2fs_stop_checkpoint(sbi, true);
210 			continue;
211 		}
212 
213 		fscrypt_finalize_bounce_page(&page);
214 
215 		if (unlikely(bio->bi_status)) {
216 			mapping_set_error(page->mapping, -EIO);
217 			if (type == F2FS_WB_CP_DATA)
218 				f2fs_stop_checkpoint(sbi, true);
219 		}
220 
221 		f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
222 					page->index != nid_of_node(page));
223 
224 		dec_page_count(sbi, type);
225 		if (f2fs_in_warm_node_list(sbi, page))
226 			f2fs_del_fsync_node_entry(sbi, page);
227 		clear_cold_data(page);
228 		end_page_writeback(page);
229 	}
230 	if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
231 				wq_has_sleeper(&sbi->cp_wait))
232 		wake_up(&sbi->cp_wait);
233 
234 	bio_put(bio);
235 }
236 
237 /*
238  * Return true, if pre_bio's bdev is same as its target device.
239  */
240 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
241 				block_t blk_addr, struct bio *bio)
242 {
243 	struct block_device *bdev = sbi->sb->s_bdev;
244 	int i;
245 
246 	if (f2fs_is_multi_device(sbi)) {
247 		for (i = 0; i < sbi->s_ndevs; i++) {
248 			if (FDEV(i).start_blk <= blk_addr &&
249 			    FDEV(i).end_blk >= blk_addr) {
250 				blk_addr -= FDEV(i).start_blk;
251 				bdev = FDEV(i).bdev;
252 				break;
253 			}
254 		}
255 	}
256 	if (bio) {
257 		bio_set_dev(bio, bdev);
258 		bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
259 	}
260 	return bdev;
261 }
262 
263 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
264 {
265 	int i;
266 
267 	if (!f2fs_is_multi_device(sbi))
268 		return 0;
269 
270 	for (i = 0; i < sbi->s_ndevs; i++)
271 		if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
272 			return i;
273 	return 0;
274 }
275 
276 static bool __same_bdev(struct f2fs_sb_info *sbi,
277 				block_t blk_addr, struct bio *bio)
278 {
279 	struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL);
280 	return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno;
281 }
282 
283 /*
284  * Low-level block read/write IO operations.
285  */
286 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
287 				struct writeback_control *wbc,
288 				int npages, bool is_read,
289 				enum page_type type, enum temp_type temp)
290 {
291 	struct bio *bio;
292 
293 	bio = f2fs_bio_alloc(sbi, npages, true);
294 
295 	f2fs_target_device(sbi, blk_addr, bio);
296 	if (is_read) {
297 		bio->bi_end_io = f2fs_read_end_io;
298 		bio->bi_private = NULL;
299 	} else {
300 		bio->bi_end_io = f2fs_write_end_io;
301 		bio->bi_private = sbi;
302 		bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, type, temp);
303 	}
304 	if (wbc)
305 		wbc_init_bio(wbc, bio);
306 
307 	return bio;
308 }
309 
310 static inline void __submit_bio(struct f2fs_sb_info *sbi,
311 				struct bio *bio, enum page_type type)
312 {
313 	if (!is_read_io(bio_op(bio))) {
314 		unsigned int start;
315 
316 		if (type != DATA && type != NODE)
317 			goto submit_io;
318 
319 		if (test_opt(sbi, LFS) && current->plug)
320 			blk_finish_plug(current->plug);
321 
322 		start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
323 		start %= F2FS_IO_SIZE(sbi);
324 
325 		if (start == 0)
326 			goto submit_io;
327 
328 		/* fill dummy pages */
329 		for (; start < F2FS_IO_SIZE(sbi); start++) {
330 			struct page *page =
331 				mempool_alloc(sbi->write_io_dummy,
332 					      GFP_NOIO | __GFP_NOFAIL);
333 			f2fs_bug_on(sbi, !page);
334 
335 			zero_user_segment(page, 0, PAGE_SIZE);
336 			SetPagePrivate(page);
337 			set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE);
338 			lock_page(page);
339 			if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
340 				f2fs_bug_on(sbi, 1);
341 		}
342 		/*
343 		 * In the NODE case, we lose next block address chain. So, we
344 		 * need to do checkpoint in f2fs_sync_file.
345 		 */
346 		if (type == NODE)
347 			set_sbi_flag(sbi, SBI_NEED_CP);
348 	}
349 submit_io:
350 	if (is_read_io(bio_op(bio)))
351 		trace_f2fs_submit_read_bio(sbi->sb, type, bio);
352 	else
353 		trace_f2fs_submit_write_bio(sbi->sb, type, bio);
354 	submit_bio(bio);
355 }
356 
357 static void __submit_merged_bio(struct f2fs_bio_info *io)
358 {
359 	struct f2fs_io_info *fio = &io->fio;
360 
361 	if (!io->bio)
362 		return;
363 
364 	bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
365 
366 	if (is_read_io(fio->op))
367 		trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
368 	else
369 		trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
370 
371 	__submit_bio(io->sbi, io->bio, fio->type);
372 	io->bio = NULL;
373 }
374 
375 static bool __has_merged_page(struct bio *bio, struct inode *inode,
376 						struct page *page, nid_t ino)
377 {
378 	struct bio_vec *bvec;
379 	struct page *target;
380 	struct bvec_iter_all iter_all;
381 
382 	if (!bio)
383 		return false;
384 
385 	if (!inode && !page && !ino)
386 		return true;
387 
388 	bio_for_each_segment_all(bvec, bio, iter_all) {
389 
390 		target = bvec->bv_page;
391 		if (fscrypt_is_bounce_page(target))
392 			target = fscrypt_pagecache_page(target);
393 
394 		if (inode && inode == target->mapping->host)
395 			return true;
396 		if (page && page == target)
397 			return true;
398 		if (ino && ino == ino_of_node(target))
399 			return true;
400 	}
401 
402 	return false;
403 }
404 
405 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
406 				enum page_type type, enum temp_type temp)
407 {
408 	enum page_type btype = PAGE_TYPE_OF_BIO(type);
409 	struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
410 
411 	down_write(&io->io_rwsem);
412 
413 	/* change META to META_FLUSH in the checkpoint procedure */
414 	if (type >= META_FLUSH) {
415 		io->fio.type = META_FLUSH;
416 		io->fio.op = REQ_OP_WRITE;
417 		io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
418 		if (!test_opt(sbi, NOBARRIER))
419 			io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
420 	}
421 	__submit_merged_bio(io);
422 	up_write(&io->io_rwsem);
423 }
424 
425 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
426 				struct inode *inode, struct page *page,
427 				nid_t ino, enum page_type type, bool force)
428 {
429 	enum temp_type temp;
430 	bool ret = true;
431 
432 	for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
433 		if (!force)	{
434 			enum page_type btype = PAGE_TYPE_OF_BIO(type);
435 			struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
436 
437 			down_read(&io->io_rwsem);
438 			ret = __has_merged_page(io->bio, inode, page, ino);
439 			up_read(&io->io_rwsem);
440 		}
441 		if (ret)
442 			__f2fs_submit_merged_write(sbi, type, temp);
443 
444 		/* TODO: use HOT temp only for meta pages now. */
445 		if (type >= META)
446 			break;
447 	}
448 }
449 
450 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
451 {
452 	__submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
453 }
454 
455 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
456 				struct inode *inode, struct page *page,
457 				nid_t ino, enum page_type type)
458 {
459 	__submit_merged_write_cond(sbi, inode, page, ino, type, false);
460 }
461 
462 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
463 {
464 	f2fs_submit_merged_write(sbi, DATA);
465 	f2fs_submit_merged_write(sbi, NODE);
466 	f2fs_submit_merged_write(sbi, META);
467 }
468 
469 /*
470  * Fill the locked page with data located in the block address.
471  * A caller needs to unlock the page on failure.
472  */
473 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
474 {
475 	struct bio *bio;
476 	struct page *page = fio->encrypted_page ?
477 			fio->encrypted_page : fio->page;
478 
479 	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
480 			fio->is_por ? META_POR : (__is_meta_io(fio) ?
481 			META_GENERIC : DATA_GENERIC_ENHANCE)))
482 		return -EFSCORRUPTED;
483 
484 	trace_f2fs_submit_page_bio(page, fio);
485 	f2fs_trace_ios(fio, 0);
486 
487 	/* Allocate a new bio */
488 	bio = __bio_alloc(fio->sbi, fio->new_blkaddr, fio->io_wbc,
489 				1, is_read_io(fio->op), fio->type, fio->temp);
490 
491 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
492 		bio_put(bio);
493 		return -EFAULT;
494 	}
495 
496 	if (fio->io_wbc && !is_read_io(fio->op))
497 		wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
498 
499 	bio_set_op_attrs(bio, fio->op, fio->op_flags);
500 
501 	inc_page_count(fio->sbi, is_read_io(fio->op) ?
502 			__read_io_type(page): WB_DATA_TYPE(fio->page));
503 
504 	__submit_bio(fio->sbi, bio, fio->type);
505 	return 0;
506 }
507 
508 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
509 {
510 	struct bio *bio = *fio->bio;
511 	struct page *page = fio->encrypted_page ?
512 			fio->encrypted_page : fio->page;
513 
514 	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
515 			__is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
516 		return -EFSCORRUPTED;
517 
518 	trace_f2fs_submit_page_bio(page, fio);
519 	f2fs_trace_ios(fio, 0);
520 
521 	if (bio && (*fio->last_block + 1 != fio->new_blkaddr ||
522 			!__same_bdev(fio->sbi, fio->new_blkaddr, bio))) {
523 		__submit_bio(fio->sbi, bio, fio->type);
524 		bio = NULL;
525 	}
526 alloc_new:
527 	if (!bio) {
528 		bio = __bio_alloc(fio->sbi, fio->new_blkaddr, fio->io_wbc,
529 				BIO_MAX_PAGES, false, fio->type, fio->temp);
530 		bio_set_op_attrs(bio, fio->op, fio->op_flags);
531 	}
532 
533 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
534 		__submit_bio(fio->sbi, bio, fio->type);
535 		bio = NULL;
536 		goto alloc_new;
537 	}
538 
539 	if (fio->io_wbc)
540 		wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
541 
542 	inc_page_count(fio->sbi, WB_DATA_TYPE(page));
543 
544 	*fio->last_block = fio->new_blkaddr;
545 	*fio->bio = bio;
546 
547 	return 0;
548 }
549 
550 static void f2fs_submit_ipu_bio(struct f2fs_sb_info *sbi, struct bio **bio,
551 							struct page *page)
552 {
553 	if (!bio)
554 		return;
555 
556 	if (!__has_merged_page(*bio, NULL, page, 0))
557 		return;
558 
559 	__submit_bio(sbi, *bio, DATA);
560 	*bio = NULL;
561 }
562 
563 void f2fs_submit_page_write(struct f2fs_io_info *fio)
564 {
565 	struct f2fs_sb_info *sbi = fio->sbi;
566 	enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
567 	struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
568 	struct page *bio_page;
569 
570 	f2fs_bug_on(sbi, is_read_io(fio->op));
571 
572 	down_write(&io->io_rwsem);
573 next:
574 	if (fio->in_list) {
575 		spin_lock(&io->io_lock);
576 		if (list_empty(&io->io_list)) {
577 			spin_unlock(&io->io_lock);
578 			goto out;
579 		}
580 		fio = list_first_entry(&io->io_list,
581 						struct f2fs_io_info, list);
582 		list_del(&fio->list);
583 		spin_unlock(&io->io_lock);
584 	}
585 
586 	verify_fio_blkaddr(fio);
587 
588 	bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
589 
590 	/* set submitted = true as a return value */
591 	fio->submitted = true;
592 
593 	inc_page_count(sbi, WB_DATA_TYPE(bio_page));
594 
595 	if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 ||
596 	    (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags) ||
597 			!__same_bdev(sbi, fio->new_blkaddr, io->bio)))
598 		__submit_merged_bio(io);
599 alloc_new:
600 	if (io->bio == NULL) {
601 		if ((fio->type == DATA || fio->type == NODE) &&
602 				fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
603 			dec_page_count(sbi, WB_DATA_TYPE(bio_page));
604 			fio->retry = true;
605 			goto skip;
606 		}
607 		io->bio = __bio_alloc(sbi, fio->new_blkaddr, fio->io_wbc,
608 						BIO_MAX_PAGES, false,
609 						fio->type, fio->temp);
610 		io->fio = *fio;
611 	}
612 
613 	if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
614 		__submit_merged_bio(io);
615 		goto alloc_new;
616 	}
617 
618 	if (fio->io_wbc)
619 		wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE);
620 
621 	io->last_block_in_bio = fio->new_blkaddr;
622 	f2fs_trace_ios(fio, 0);
623 
624 	trace_f2fs_submit_page_write(fio->page, fio);
625 skip:
626 	if (fio->in_list)
627 		goto next;
628 out:
629 	if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
630 				f2fs_is_checkpoint_ready(sbi))
631 		__submit_merged_bio(io);
632 	up_write(&io->io_rwsem);
633 }
634 
635 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
636 {
637 	return fsverity_active(inode) &&
638 	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
639 }
640 
641 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
642 				      unsigned nr_pages, unsigned op_flag,
643 				      pgoff_t first_idx)
644 {
645 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
646 	struct bio *bio;
647 	struct bio_post_read_ctx *ctx;
648 	unsigned int post_read_steps = 0;
649 
650 	bio = f2fs_bio_alloc(sbi, min_t(int, nr_pages, BIO_MAX_PAGES), false);
651 	if (!bio)
652 		return ERR_PTR(-ENOMEM);
653 	f2fs_target_device(sbi, blkaddr, bio);
654 	bio->bi_end_io = f2fs_read_end_io;
655 	bio_set_op_attrs(bio, REQ_OP_READ, op_flag);
656 
657 	if (f2fs_encrypted_file(inode))
658 		post_read_steps |= 1 << STEP_DECRYPT;
659 
660 	if (f2fs_need_verity(inode, first_idx))
661 		post_read_steps |= 1 << STEP_VERITY;
662 
663 	if (post_read_steps) {
664 		ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
665 		if (!ctx) {
666 			bio_put(bio);
667 			return ERR_PTR(-ENOMEM);
668 		}
669 		ctx->bio = bio;
670 		ctx->enabled_steps = post_read_steps;
671 		bio->bi_private = ctx;
672 	}
673 
674 	return bio;
675 }
676 
677 /* This can handle encryption stuffs */
678 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
679 							block_t blkaddr)
680 {
681 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
682 	struct bio *bio;
683 
684 	bio = f2fs_grab_read_bio(inode, blkaddr, 1, 0, page->index);
685 	if (IS_ERR(bio))
686 		return PTR_ERR(bio);
687 
688 	/* wait for GCed page writeback via META_MAPPING */
689 	f2fs_wait_on_block_writeback(inode, blkaddr);
690 
691 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
692 		bio_put(bio);
693 		return -EFAULT;
694 	}
695 	ClearPageError(page);
696 	inc_page_count(sbi, F2FS_RD_DATA);
697 	__submit_bio(sbi, bio, DATA);
698 	return 0;
699 }
700 
701 static void __set_data_blkaddr(struct dnode_of_data *dn)
702 {
703 	struct f2fs_node *rn = F2FS_NODE(dn->node_page);
704 	__le32 *addr_array;
705 	int base = 0;
706 
707 	if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
708 		base = get_extra_isize(dn->inode);
709 
710 	/* Get physical address of data block */
711 	addr_array = blkaddr_in_node(rn);
712 	addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
713 }
714 
715 /*
716  * Lock ordering for the change of data block address:
717  * ->data_page
718  *  ->node_page
719  *    update block addresses in the node page
720  */
721 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
722 {
723 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
724 	__set_data_blkaddr(dn);
725 	if (set_page_dirty(dn->node_page))
726 		dn->node_changed = true;
727 }
728 
729 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
730 {
731 	dn->data_blkaddr = blkaddr;
732 	f2fs_set_data_blkaddr(dn);
733 	f2fs_update_extent_cache(dn);
734 }
735 
736 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
737 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
738 {
739 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
740 	int err;
741 
742 	if (!count)
743 		return 0;
744 
745 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
746 		return -EPERM;
747 	if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
748 		return err;
749 
750 	trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
751 						dn->ofs_in_node, count);
752 
753 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
754 
755 	for (; count > 0; dn->ofs_in_node++) {
756 		block_t blkaddr = datablock_addr(dn->inode,
757 					dn->node_page, dn->ofs_in_node);
758 		if (blkaddr == NULL_ADDR) {
759 			dn->data_blkaddr = NEW_ADDR;
760 			__set_data_blkaddr(dn);
761 			count--;
762 		}
763 	}
764 
765 	if (set_page_dirty(dn->node_page))
766 		dn->node_changed = true;
767 	return 0;
768 }
769 
770 /* Should keep dn->ofs_in_node unchanged */
771 int f2fs_reserve_new_block(struct dnode_of_data *dn)
772 {
773 	unsigned int ofs_in_node = dn->ofs_in_node;
774 	int ret;
775 
776 	ret = f2fs_reserve_new_blocks(dn, 1);
777 	dn->ofs_in_node = ofs_in_node;
778 	return ret;
779 }
780 
781 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
782 {
783 	bool need_put = dn->inode_page ? false : true;
784 	int err;
785 
786 	err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
787 	if (err)
788 		return err;
789 
790 	if (dn->data_blkaddr == NULL_ADDR)
791 		err = f2fs_reserve_new_block(dn);
792 	if (err || need_put)
793 		f2fs_put_dnode(dn);
794 	return err;
795 }
796 
797 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
798 {
799 	struct extent_info ei  = {0,0,0};
800 	struct inode *inode = dn->inode;
801 
802 	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
803 		dn->data_blkaddr = ei.blk + index - ei.fofs;
804 		return 0;
805 	}
806 
807 	return f2fs_reserve_block(dn, index);
808 }
809 
810 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
811 						int op_flags, bool for_write)
812 {
813 	struct address_space *mapping = inode->i_mapping;
814 	struct dnode_of_data dn;
815 	struct page *page;
816 	struct extent_info ei = {0,0,0};
817 	int err;
818 
819 	page = f2fs_grab_cache_page(mapping, index, for_write);
820 	if (!page)
821 		return ERR_PTR(-ENOMEM);
822 
823 	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
824 		dn.data_blkaddr = ei.blk + index - ei.fofs;
825 		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
826 						DATA_GENERIC_ENHANCE_READ)) {
827 			err = -EFSCORRUPTED;
828 			goto put_err;
829 		}
830 		goto got_it;
831 	}
832 
833 	set_new_dnode(&dn, inode, NULL, NULL, 0);
834 	err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
835 	if (err)
836 		goto put_err;
837 	f2fs_put_dnode(&dn);
838 
839 	if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
840 		err = -ENOENT;
841 		goto put_err;
842 	}
843 	if (dn.data_blkaddr != NEW_ADDR &&
844 			!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
845 						dn.data_blkaddr,
846 						DATA_GENERIC_ENHANCE)) {
847 		err = -EFSCORRUPTED;
848 		goto put_err;
849 	}
850 got_it:
851 	if (PageUptodate(page)) {
852 		unlock_page(page);
853 		return page;
854 	}
855 
856 	/*
857 	 * A new dentry page is allocated but not able to be written, since its
858 	 * new inode page couldn't be allocated due to -ENOSPC.
859 	 * In such the case, its blkaddr can be remained as NEW_ADDR.
860 	 * see, f2fs_add_link -> f2fs_get_new_data_page ->
861 	 * f2fs_init_inode_metadata.
862 	 */
863 	if (dn.data_blkaddr == NEW_ADDR) {
864 		zero_user_segment(page, 0, PAGE_SIZE);
865 		if (!PageUptodate(page))
866 			SetPageUptodate(page);
867 		unlock_page(page);
868 		return page;
869 	}
870 
871 	err = f2fs_submit_page_read(inode, page, dn.data_blkaddr);
872 	if (err)
873 		goto put_err;
874 	return page;
875 
876 put_err:
877 	f2fs_put_page(page, 1);
878 	return ERR_PTR(err);
879 }
880 
881 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
882 {
883 	struct address_space *mapping = inode->i_mapping;
884 	struct page *page;
885 
886 	page = find_get_page(mapping, index);
887 	if (page && PageUptodate(page))
888 		return page;
889 	f2fs_put_page(page, 0);
890 
891 	page = f2fs_get_read_data_page(inode, index, 0, false);
892 	if (IS_ERR(page))
893 		return page;
894 
895 	if (PageUptodate(page))
896 		return page;
897 
898 	wait_on_page_locked(page);
899 	if (unlikely(!PageUptodate(page))) {
900 		f2fs_put_page(page, 0);
901 		return ERR_PTR(-EIO);
902 	}
903 	return page;
904 }
905 
906 /*
907  * If it tries to access a hole, return an error.
908  * Because, the callers, functions in dir.c and GC, should be able to know
909  * whether this page exists or not.
910  */
911 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
912 							bool for_write)
913 {
914 	struct address_space *mapping = inode->i_mapping;
915 	struct page *page;
916 repeat:
917 	page = f2fs_get_read_data_page(inode, index, 0, for_write);
918 	if (IS_ERR(page))
919 		return page;
920 
921 	/* wait for read completion */
922 	lock_page(page);
923 	if (unlikely(page->mapping != mapping)) {
924 		f2fs_put_page(page, 1);
925 		goto repeat;
926 	}
927 	if (unlikely(!PageUptodate(page))) {
928 		f2fs_put_page(page, 1);
929 		return ERR_PTR(-EIO);
930 	}
931 	return page;
932 }
933 
934 /*
935  * Caller ensures that this data page is never allocated.
936  * A new zero-filled data page is allocated in the page cache.
937  *
938  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
939  * f2fs_unlock_op().
940  * Note that, ipage is set only by make_empty_dir, and if any error occur,
941  * ipage should be released by this function.
942  */
943 struct page *f2fs_get_new_data_page(struct inode *inode,
944 		struct page *ipage, pgoff_t index, bool new_i_size)
945 {
946 	struct address_space *mapping = inode->i_mapping;
947 	struct page *page;
948 	struct dnode_of_data dn;
949 	int err;
950 
951 	page = f2fs_grab_cache_page(mapping, index, true);
952 	if (!page) {
953 		/*
954 		 * before exiting, we should make sure ipage will be released
955 		 * if any error occur.
956 		 */
957 		f2fs_put_page(ipage, 1);
958 		return ERR_PTR(-ENOMEM);
959 	}
960 
961 	set_new_dnode(&dn, inode, ipage, NULL, 0);
962 	err = f2fs_reserve_block(&dn, index);
963 	if (err) {
964 		f2fs_put_page(page, 1);
965 		return ERR_PTR(err);
966 	}
967 	if (!ipage)
968 		f2fs_put_dnode(&dn);
969 
970 	if (PageUptodate(page))
971 		goto got_it;
972 
973 	if (dn.data_blkaddr == NEW_ADDR) {
974 		zero_user_segment(page, 0, PAGE_SIZE);
975 		if (!PageUptodate(page))
976 			SetPageUptodate(page);
977 	} else {
978 		f2fs_put_page(page, 1);
979 
980 		/* if ipage exists, blkaddr should be NEW_ADDR */
981 		f2fs_bug_on(F2FS_I_SB(inode), ipage);
982 		page = f2fs_get_lock_data_page(inode, index, true);
983 		if (IS_ERR(page))
984 			return page;
985 	}
986 got_it:
987 	if (new_i_size && i_size_read(inode) <
988 				((loff_t)(index + 1) << PAGE_SHIFT))
989 		f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
990 	return page;
991 }
992 
993 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
994 {
995 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
996 	struct f2fs_summary sum;
997 	struct node_info ni;
998 	block_t old_blkaddr;
999 	blkcnt_t count = 1;
1000 	int err;
1001 
1002 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1003 		return -EPERM;
1004 
1005 	err = f2fs_get_node_info(sbi, dn->nid, &ni);
1006 	if (err)
1007 		return err;
1008 
1009 	dn->data_blkaddr = datablock_addr(dn->inode,
1010 				dn->node_page, dn->ofs_in_node);
1011 	if (dn->data_blkaddr != NULL_ADDR)
1012 		goto alloc;
1013 
1014 	if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1015 		return err;
1016 
1017 alloc:
1018 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1019 	old_blkaddr = dn->data_blkaddr;
1020 	f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1021 					&sum, seg_type, NULL, false);
1022 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1023 		invalidate_mapping_pages(META_MAPPING(sbi),
1024 					old_blkaddr, old_blkaddr);
1025 	f2fs_set_data_blkaddr(dn);
1026 
1027 	/*
1028 	 * i_size will be updated by direct_IO. Otherwise, we'll get stale
1029 	 * data from unwritten block via dio_read.
1030 	 */
1031 	return 0;
1032 }
1033 
1034 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
1035 {
1036 	struct inode *inode = file_inode(iocb->ki_filp);
1037 	struct f2fs_map_blocks map;
1038 	int flag;
1039 	int err = 0;
1040 	bool direct_io = iocb->ki_flags & IOCB_DIRECT;
1041 
1042 	/* convert inline data for Direct I/O*/
1043 	if (direct_io) {
1044 		err = f2fs_convert_inline_inode(inode);
1045 		if (err)
1046 			return err;
1047 	}
1048 
1049 	if (direct_io && allow_outplace_dio(inode, iocb, from))
1050 		return 0;
1051 
1052 	if (is_inode_flag_set(inode, FI_NO_PREALLOC))
1053 		return 0;
1054 
1055 	map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
1056 	map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
1057 	if (map.m_len > map.m_lblk)
1058 		map.m_len -= map.m_lblk;
1059 	else
1060 		map.m_len = 0;
1061 
1062 	map.m_next_pgofs = NULL;
1063 	map.m_next_extent = NULL;
1064 	map.m_seg_type = NO_CHECK_TYPE;
1065 	map.m_may_create = true;
1066 
1067 	if (direct_io) {
1068 		map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint);
1069 		flag = f2fs_force_buffered_io(inode, iocb, from) ?
1070 					F2FS_GET_BLOCK_PRE_AIO :
1071 					F2FS_GET_BLOCK_PRE_DIO;
1072 		goto map_blocks;
1073 	}
1074 	if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
1075 		err = f2fs_convert_inline_inode(inode);
1076 		if (err)
1077 			return err;
1078 	}
1079 	if (f2fs_has_inline_data(inode))
1080 		return err;
1081 
1082 	flag = F2FS_GET_BLOCK_PRE_AIO;
1083 
1084 map_blocks:
1085 	err = f2fs_map_blocks(inode, &map, 1, flag);
1086 	if (map.m_len > 0 && err == -ENOSPC) {
1087 		if (!direct_io)
1088 			set_inode_flag(inode, FI_NO_PREALLOC);
1089 		err = 0;
1090 	}
1091 	return err;
1092 }
1093 
1094 void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
1095 {
1096 	if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1097 		if (lock)
1098 			down_read(&sbi->node_change);
1099 		else
1100 			up_read(&sbi->node_change);
1101 	} else {
1102 		if (lock)
1103 			f2fs_lock_op(sbi);
1104 		else
1105 			f2fs_unlock_op(sbi);
1106 	}
1107 }
1108 
1109 /*
1110  * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
1111  * f2fs_map_blocks structure.
1112  * If original data blocks are allocated, then give them to blockdev.
1113  * Otherwise,
1114  *     a. preallocate requested block addresses
1115  *     b. do not use extent cache for better performance
1116  *     c. give the block addresses to blockdev
1117  */
1118 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1119 						int create, int flag)
1120 {
1121 	unsigned int maxblocks = map->m_len;
1122 	struct dnode_of_data dn;
1123 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1124 	int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1125 	pgoff_t pgofs, end_offset, end;
1126 	int err = 0, ofs = 1;
1127 	unsigned int ofs_in_node, last_ofs_in_node;
1128 	blkcnt_t prealloc;
1129 	struct extent_info ei = {0,0,0};
1130 	block_t blkaddr;
1131 	unsigned int start_pgofs;
1132 
1133 	if (!maxblocks)
1134 		return 0;
1135 
1136 	map->m_len = 0;
1137 	map->m_flags = 0;
1138 
1139 	/* it only supports block size == page size */
1140 	pgofs =	(pgoff_t)map->m_lblk;
1141 	end = pgofs + maxblocks;
1142 
1143 	if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1144 		if (test_opt(sbi, LFS) && flag == F2FS_GET_BLOCK_DIO &&
1145 							map->m_may_create)
1146 			goto next_dnode;
1147 
1148 		map->m_pblk = ei.blk + pgofs - ei.fofs;
1149 		map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1150 		map->m_flags = F2FS_MAP_MAPPED;
1151 		if (map->m_next_extent)
1152 			*map->m_next_extent = pgofs + map->m_len;
1153 
1154 		/* for hardware encryption, but to avoid potential issue in future */
1155 		if (flag == F2FS_GET_BLOCK_DIO)
1156 			f2fs_wait_on_block_writeback_range(inode,
1157 						map->m_pblk, map->m_len);
1158 		goto out;
1159 	}
1160 
1161 next_dnode:
1162 	if (map->m_may_create)
1163 		__do_map_lock(sbi, flag, true);
1164 
1165 	/* When reading holes, we need its node page */
1166 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1167 	err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1168 	if (err) {
1169 		if (flag == F2FS_GET_BLOCK_BMAP)
1170 			map->m_pblk = 0;
1171 		if (err == -ENOENT) {
1172 			err = 0;
1173 			if (map->m_next_pgofs)
1174 				*map->m_next_pgofs =
1175 					f2fs_get_next_page_offset(&dn, pgofs);
1176 			if (map->m_next_extent)
1177 				*map->m_next_extent =
1178 					f2fs_get_next_page_offset(&dn, pgofs);
1179 		}
1180 		goto unlock_out;
1181 	}
1182 
1183 	start_pgofs = pgofs;
1184 	prealloc = 0;
1185 	last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1186 	end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1187 
1188 next_block:
1189 	blkaddr = datablock_addr(dn.inode, dn.node_page, dn.ofs_in_node);
1190 
1191 	if (__is_valid_data_blkaddr(blkaddr) &&
1192 		!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1193 		err = -EFSCORRUPTED;
1194 		goto sync_out;
1195 	}
1196 
1197 	if (__is_valid_data_blkaddr(blkaddr)) {
1198 		/* use out-place-update for driect IO under LFS mode */
1199 		if (test_opt(sbi, LFS) && flag == F2FS_GET_BLOCK_DIO &&
1200 							map->m_may_create) {
1201 			err = __allocate_data_block(&dn, map->m_seg_type);
1202 			if (!err) {
1203 				blkaddr = dn.data_blkaddr;
1204 				set_inode_flag(inode, FI_APPEND_WRITE);
1205 			}
1206 		}
1207 	} else {
1208 		if (create) {
1209 			if (unlikely(f2fs_cp_error(sbi))) {
1210 				err = -EIO;
1211 				goto sync_out;
1212 			}
1213 			if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1214 				if (blkaddr == NULL_ADDR) {
1215 					prealloc++;
1216 					last_ofs_in_node = dn.ofs_in_node;
1217 				}
1218 			} else {
1219 				WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1220 					flag != F2FS_GET_BLOCK_DIO);
1221 				err = __allocate_data_block(&dn,
1222 							map->m_seg_type);
1223 				if (!err)
1224 					set_inode_flag(inode, FI_APPEND_WRITE);
1225 			}
1226 			if (err)
1227 				goto sync_out;
1228 			map->m_flags |= F2FS_MAP_NEW;
1229 			blkaddr = dn.data_blkaddr;
1230 		} else {
1231 			if (flag == F2FS_GET_BLOCK_BMAP) {
1232 				map->m_pblk = 0;
1233 				goto sync_out;
1234 			}
1235 			if (flag == F2FS_GET_BLOCK_PRECACHE)
1236 				goto sync_out;
1237 			if (flag == F2FS_GET_BLOCK_FIEMAP &&
1238 						blkaddr == NULL_ADDR) {
1239 				if (map->m_next_pgofs)
1240 					*map->m_next_pgofs = pgofs + 1;
1241 				goto sync_out;
1242 			}
1243 			if (flag != F2FS_GET_BLOCK_FIEMAP) {
1244 				/* for defragment case */
1245 				if (map->m_next_pgofs)
1246 					*map->m_next_pgofs = pgofs + 1;
1247 				goto sync_out;
1248 			}
1249 		}
1250 	}
1251 
1252 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1253 		goto skip;
1254 
1255 	if (map->m_len == 0) {
1256 		/* preallocated unwritten block should be mapped for fiemap. */
1257 		if (blkaddr == NEW_ADDR)
1258 			map->m_flags |= F2FS_MAP_UNWRITTEN;
1259 		map->m_flags |= F2FS_MAP_MAPPED;
1260 
1261 		map->m_pblk = blkaddr;
1262 		map->m_len = 1;
1263 	} else if ((map->m_pblk != NEW_ADDR &&
1264 			blkaddr == (map->m_pblk + ofs)) ||
1265 			(map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1266 			flag == F2FS_GET_BLOCK_PRE_DIO) {
1267 		ofs++;
1268 		map->m_len++;
1269 	} else {
1270 		goto sync_out;
1271 	}
1272 
1273 skip:
1274 	dn.ofs_in_node++;
1275 	pgofs++;
1276 
1277 	/* preallocate blocks in batch for one dnode page */
1278 	if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1279 			(pgofs == end || dn.ofs_in_node == end_offset)) {
1280 
1281 		dn.ofs_in_node = ofs_in_node;
1282 		err = f2fs_reserve_new_blocks(&dn, prealloc);
1283 		if (err)
1284 			goto sync_out;
1285 
1286 		map->m_len += dn.ofs_in_node - ofs_in_node;
1287 		if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1288 			err = -ENOSPC;
1289 			goto sync_out;
1290 		}
1291 		dn.ofs_in_node = end_offset;
1292 	}
1293 
1294 	if (pgofs >= end)
1295 		goto sync_out;
1296 	else if (dn.ofs_in_node < end_offset)
1297 		goto next_block;
1298 
1299 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1300 		if (map->m_flags & F2FS_MAP_MAPPED) {
1301 			unsigned int ofs = start_pgofs - map->m_lblk;
1302 
1303 			f2fs_update_extent_cache_range(&dn,
1304 				start_pgofs, map->m_pblk + ofs,
1305 				map->m_len - ofs);
1306 		}
1307 	}
1308 
1309 	f2fs_put_dnode(&dn);
1310 
1311 	if (map->m_may_create) {
1312 		__do_map_lock(sbi, flag, false);
1313 		f2fs_balance_fs(sbi, dn.node_changed);
1314 	}
1315 	goto next_dnode;
1316 
1317 sync_out:
1318 
1319 	/* for hardware encryption, but to avoid potential issue in future */
1320 	if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED)
1321 		f2fs_wait_on_block_writeback_range(inode,
1322 						map->m_pblk, map->m_len);
1323 
1324 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1325 		if (map->m_flags & F2FS_MAP_MAPPED) {
1326 			unsigned int ofs = start_pgofs - map->m_lblk;
1327 
1328 			f2fs_update_extent_cache_range(&dn,
1329 				start_pgofs, map->m_pblk + ofs,
1330 				map->m_len - ofs);
1331 		}
1332 		if (map->m_next_extent)
1333 			*map->m_next_extent = pgofs + 1;
1334 	}
1335 	f2fs_put_dnode(&dn);
1336 unlock_out:
1337 	if (map->m_may_create) {
1338 		__do_map_lock(sbi, flag, false);
1339 		f2fs_balance_fs(sbi, dn.node_changed);
1340 	}
1341 out:
1342 	trace_f2fs_map_blocks(inode, map, err);
1343 	return err;
1344 }
1345 
1346 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1347 {
1348 	struct f2fs_map_blocks map;
1349 	block_t last_lblk;
1350 	int err;
1351 
1352 	if (pos + len > i_size_read(inode))
1353 		return false;
1354 
1355 	map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1356 	map.m_next_pgofs = NULL;
1357 	map.m_next_extent = NULL;
1358 	map.m_seg_type = NO_CHECK_TYPE;
1359 	map.m_may_create = false;
1360 	last_lblk = F2FS_BLK_ALIGN(pos + len);
1361 
1362 	while (map.m_lblk < last_lblk) {
1363 		map.m_len = last_lblk - map.m_lblk;
1364 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1365 		if (err || map.m_len == 0)
1366 			return false;
1367 		map.m_lblk += map.m_len;
1368 	}
1369 	return true;
1370 }
1371 
1372 static int __get_data_block(struct inode *inode, sector_t iblock,
1373 			struct buffer_head *bh, int create, int flag,
1374 			pgoff_t *next_pgofs, int seg_type, bool may_write)
1375 {
1376 	struct f2fs_map_blocks map;
1377 	int err;
1378 
1379 	map.m_lblk = iblock;
1380 	map.m_len = bh->b_size >> inode->i_blkbits;
1381 	map.m_next_pgofs = next_pgofs;
1382 	map.m_next_extent = NULL;
1383 	map.m_seg_type = seg_type;
1384 	map.m_may_create = may_write;
1385 
1386 	err = f2fs_map_blocks(inode, &map, create, flag);
1387 	if (!err) {
1388 		map_bh(bh, inode->i_sb, map.m_pblk);
1389 		bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1390 		bh->b_size = (u64)map.m_len << inode->i_blkbits;
1391 	}
1392 	return err;
1393 }
1394 
1395 static int get_data_block(struct inode *inode, sector_t iblock,
1396 			struct buffer_head *bh_result, int create, int flag,
1397 			pgoff_t *next_pgofs)
1398 {
1399 	return __get_data_block(inode, iblock, bh_result, create,
1400 							flag, next_pgofs,
1401 							NO_CHECK_TYPE, create);
1402 }
1403 
1404 static int get_data_block_dio_write(struct inode *inode, sector_t iblock,
1405 			struct buffer_head *bh_result, int create)
1406 {
1407 	return __get_data_block(inode, iblock, bh_result, create,
1408 				F2FS_GET_BLOCK_DIO, NULL,
1409 				f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1410 				true);
1411 }
1412 
1413 static int get_data_block_dio(struct inode *inode, sector_t iblock,
1414 			struct buffer_head *bh_result, int create)
1415 {
1416 	return __get_data_block(inode, iblock, bh_result, create,
1417 				F2FS_GET_BLOCK_DIO, NULL,
1418 				f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1419 				false);
1420 }
1421 
1422 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
1423 			struct buffer_head *bh_result, int create)
1424 {
1425 	/* Block number less than F2FS MAX BLOCKS */
1426 	if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
1427 		return -EFBIG;
1428 
1429 	return __get_data_block(inode, iblock, bh_result, create,
1430 						F2FS_GET_BLOCK_BMAP, NULL,
1431 						NO_CHECK_TYPE, create);
1432 }
1433 
1434 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
1435 {
1436 	return (offset >> inode->i_blkbits);
1437 }
1438 
1439 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
1440 {
1441 	return (blk << inode->i_blkbits);
1442 }
1443 
1444 static int f2fs_xattr_fiemap(struct inode *inode,
1445 				struct fiemap_extent_info *fieinfo)
1446 {
1447 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1448 	struct page *page;
1449 	struct node_info ni;
1450 	__u64 phys = 0, len;
1451 	__u32 flags;
1452 	nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1453 	int err = 0;
1454 
1455 	if (f2fs_has_inline_xattr(inode)) {
1456 		int offset;
1457 
1458 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1459 						inode->i_ino, false);
1460 		if (!page)
1461 			return -ENOMEM;
1462 
1463 		err = f2fs_get_node_info(sbi, inode->i_ino, &ni);
1464 		if (err) {
1465 			f2fs_put_page(page, 1);
1466 			return err;
1467 		}
1468 
1469 		phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1470 		offset = offsetof(struct f2fs_inode, i_addr) +
1471 					sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1472 					get_inline_xattr_addrs(inode));
1473 
1474 		phys += offset;
1475 		len = inline_xattr_size(inode);
1476 
1477 		f2fs_put_page(page, 1);
1478 
1479 		flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1480 
1481 		if (!xnid)
1482 			flags |= FIEMAP_EXTENT_LAST;
1483 
1484 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1485 		if (err || err == 1)
1486 			return err;
1487 	}
1488 
1489 	if (xnid) {
1490 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1491 		if (!page)
1492 			return -ENOMEM;
1493 
1494 		err = f2fs_get_node_info(sbi, xnid, &ni);
1495 		if (err) {
1496 			f2fs_put_page(page, 1);
1497 			return err;
1498 		}
1499 
1500 		phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1501 		len = inode->i_sb->s_blocksize;
1502 
1503 		f2fs_put_page(page, 1);
1504 
1505 		flags = FIEMAP_EXTENT_LAST;
1506 	}
1507 
1508 	if (phys)
1509 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1510 
1511 	return (err < 0 ? err : 0);
1512 }
1513 
1514 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1515 		u64 start, u64 len)
1516 {
1517 	struct buffer_head map_bh;
1518 	sector_t start_blk, last_blk;
1519 	pgoff_t next_pgofs;
1520 	u64 logical = 0, phys = 0, size = 0;
1521 	u32 flags = 0;
1522 	int ret = 0;
1523 
1524 	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1525 		ret = f2fs_precache_extents(inode);
1526 		if (ret)
1527 			return ret;
1528 	}
1529 
1530 	ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC | FIEMAP_FLAG_XATTR);
1531 	if (ret)
1532 		return ret;
1533 
1534 	inode_lock(inode);
1535 
1536 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1537 		ret = f2fs_xattr_fiemap(inode, fieinfo);
1538 		goto out;
1539 	}
1540 
1541 	if (f2fs_has_inline_data(inode)) {
1542 		ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1543 		if (ret != -EAGAIN)
1544 			goto out;
1545 	}
1546 
1547 	if (logical_to_blk(inode, len) == 0)
1548 		len = blk_to_logical(inode, 1);
1549 
1550 	start_blk = logical_to_blk(inode, start);
1551 	last_blk = logical_to_blk(inode, start + len - 1);
1552 
1553 next:
1554 	memset(&map_bh, 0, sizeof(struct buffer_head));
1555 	map_bh.b_size = len;
1556 
1557 	ret = get_data_block(inode, start_blk, &map_bh, 0,
1558 					F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
1559 	if (ret)
1560 		goto out;
1561 
1562 	/* HOLE */
1563 	if (!buffer_mapped(&map_bh)) {
1564 		start_blk = next_pgofs;
1565 
1566 		if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
1567 					F2FS_I_SB(inode)->max_file_blocks))
1568 			goto prep_next;
1569 
1570 		flags |= FIEMAP_EXTENT_LAST;
1571 	}
1572 
1573 	if (size) {
1574 		if (IS_ENCRYPTED(inode))
1575 			flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1576 
1577 		ret = fiemap_fill_next_extent(fieinfo, logical,
1578 				phys, size, flags);
1579 	}
1580 
1581 	if (start_blk > last_blk || ret)
1582 		goto out;
1583 
1584 	logical = blk_to_logical(inode, start_blk);
1585 	phys = blk_to_logical(inode, map_bh.b_blocknr);
1586 	size = map_bh.b_size;
1587 	flags = 0;
1588 	if (buffer_unwritten(&map_bh))
1589 		flags = FIEMAP_EXTENT_UNWRITTEN;
1590 
1591 	start_blk += logical_to_blk(inode, size);
1592 
1593 prep_next:
1594 	cond_resched();
1595 	if (fatal_signal_pending(current))
1596 		ret = -EINTR;
1597 	else
1598 		goto next;
1599 out:
1600 	if (ret == 1)
1601 		ret = 0;
1602 
1603 	inode_unlock(inode);
1604 	return ret;
1605 }
1606 
1607 static inline loff_t f2fs_readpage_limit(struct inode *inode)
1608 {
1609 	if (IS_ENABLED(CONFIG_FS_VERITY) &&
1610 	    (IS_VERITY(inode) || f2fs_verity_in_progress(inode)))
1611 		return inode->i_sb->s_maxbytes;
1612 
1613 	return i_size_read(inode);
1614 }
1615 
1616 static int f2fs_read_single_page(struct inode *inode, struct page *page,
1617 					unsigned nr_pages,
1618 					struct f2fs_map_blocks *map,
1619 					struct bio **bio_ret,
1620 					sector_t *last_block_in_bio,
1621 					bool is_readahead)
1622 {
1623 	struct bio *bio = *bio_ret;
1624 	const unsigned blkbits = inode->i_blkbits;
1625 	const unsigned blocksize = 1 << blkbits;
1626 	sector_t block_in_file;
1627 	sector_t last_block;
1628 	sector_t last_block_in_file;
1629 	sector_t block_nr;
1630 	int ret = 0;
1631 
1632 	block_in_file = (sector_t)page_index(page);
1633 	last_block = block_in_file + nr_pages;
1634 	last_block_in_file = (f2fs_readpage_limit(inode) + blocksize - 1) >>
1635 							blkbits;
1636 	if (last_block > last_block_in_file)
1637 		last_block = last_block_in_file;
1638 
1639 	/* just zeroing out page which is beyond EOF */
1640 	if (block_in_file >= last_block)
1641 		goto zero_out;
1642 	/*
1643 	 * Map blocks using the previous result first.
1644 	 */
1645 	if ((map->m_flags & F2FS_MAP_MAPPED) &&
1646 			block_in_file > map->m_lblk &&
1647 			block_in_file < (map->m_lblk + map->m_len))
1648 		goto got_it;
1649 
1650 	/*
1651 	 * Then do more f2fs_map_blocks() calls until we are
1652 	 * done with this page.
1653 	 */
1654 	map->m_lblk = block_in_file;
1655 	map->m_len = last_block - block_in_file;
1656 
1657 	ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT);
1658 	if (ret)
1659 		goto out;
1660 got_it:
1661 	if ((map->m_flags & F2FS_MAP_MAPPED)) {
1662 		block_nr = map->m_pblk + block_in_file - map->m_lblk;
1663 		SetPageMappedToDisk(page);
1664 
1665 		if (!PageUptodate(page) && (!PageSwapCache(page) &&
1666 					!cleancache_get_page(page))) {
1667 			SetPageUptodate(page);
1668 			goto confused;
1669 		}
1670 
1671 		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
1672 						DATA_GENERIC_ENHANCE_READ)) {
1673 			ret = -EFSCORRUPTED;
1674 			goto out;
1675 		}
1676 	} else {
1677 zero_out:
1678 		zero_user_segment(page, 0, PAGE_SIZE);
1679 		if (f2fs_need_verity(inode, page->index) &&
1680 		    !fsverity_verify_page(page)) {
1681 			ret = -EIO;
1682 			goto out;
1683 		}
1684 		if (!PageUptodate(page))
1685 			SetPageUptodate(page);
1686 		unlock_page(page);
1687 		goto out;
1688 	}
1689 
1690 	/*
1691 	 * This page will go to BIO.  Do we need to send this
1692 	 * BIO off first?
1693 	 */
1694 	if (bio && (*last_block_in_bio != block_nr - 1 ||
1695 		!__same_bdev(F2FS_I_SB(inode), block_nr, bio))) {
1696 submit_and_realloc:
1697 		__submit_bio(F2FS_I_SB(inode), bio, DATA);
1698 		bio = NULL;
1699 	}
1700 	if (bio == NULL) {
1701 		bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
1702 				is_readahead ? REQ_RAHEAD : 0, page->index);
1703 		if (IS_ERR(bio)) {
1704 			ret = PTR_ERR(bio);
1705 			bio = NULL;
1706 			goto out;
1707 		}
1708 	}
1709 
1710 	/*
1711 	 * If the page is under writeback, we need to wait for
1712 	 * its completion to see the correct decrypted data.
1713 	 */
1714 	f2fs_wait_on_block_writeback(inode, block_nr);
1715 
1716 	if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1717 		goto submit_and_realloc;
1718 
1719 	inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
1720 	ClearPageError(page);
1721 	*last_block_in_bio = block_nr;
1722 	goto out;
1723 confused:
1724 	if (bio) {
1725 		__submit_bio(F2FS_I_SB(inode), bio, DATA);
1726 		bio = NULL;
1727 	}
1728 	unlock_page(page);
1729 out:
1730 	*bio_ret = bio;
1731 	return ret;
1732 }
1733 
1734 /*
1735  * This function was originally taken from fs/mpage.c, and customized for f2fs.
1736  * Major change was from block_size == page_size in f2fs by default.
1737  *
1738  * Note that the aops->readpages() function is ONLY used for read-ahead. If
1739  * this function ever deviates from doing just read-ahead, it should either
1740  * use ->readpage() or do the necessary surgery to decouple ->readpages()
1741  * from read-ahead.
1742  */
1743 static int f2fs_mpage_readpages(struct address_space *mapping,
1744 			struct list_head *pages, struct page *page,
1745 			unsigned nr_pages, bool is_readahead)
1746 {
1747 	struct bio *bio = NULL;
1748 	sector_t last_block_in_bio = 0;
1749 	struct inode *inode = mapping->host;
1750 	struct f2fs_map_blocks map;
1751 	int ret = 0;
1752 
1753 	map.m_pblk = 0;
1754 	map.m_lblk = 0;
1755 	map.m_len = 0;
1756 	map.m_flags = 0;
1757 	map.m_next_pgofs = NULL;
1758 	map.m_next_extent = NULL;
1759 	map.m_seg_type = NO_CHECK_TYPE;
1760 	map.m_may_create = false;
1761 
1762 	for (; nr_pages; nr_pages--) {
1763 		if (pages) {
1764 			page = list_last_entry(pages, struct page, lru);
1765 
1766 			prefetchw(&page->flags);
1767 			list_del(&page->lru);
1768 			if (add_to_page_cache_lru(page, mapping,
1769 						  page_index(page),
1770 						  readahead_gfp_mask(mapping)))
1771 				goto next_page;
1772 		}
1773 
1774 		ret = f2fs_read_single_page(inode, page, nr_pages, &map, &bio,
1775 					&last_block_in_bio, is_readahead);
1776 		if (ret) {
1777 			SetPageError(page);
1778 			zero_user_segment(page, 0, PAGE_SIZE);
1779 			unlock_page(page);
1780 		}
1781 next_page:
1782 		if (pages)
1783 			put_page(page);
1784 	}
1785 	BUG_ON(pages && !list_empty(pages));
1786 	if (bio)
1787 		__submit_bio(F2FS_I_SB(inode), bio, DATA);
1788 	return pages ? 0 : ret;
1789 }
1790 
1791 static int f2fs_read_data_page(struct file *file, struct page *page)
1792 {
1793 	struct inode *inode = page_file_mapping(page)->host;
1794 	int ret = -EAGAIN;
1795 
1796 	trace_f2fs_readpage(page, DATA);
1797 
1798 	/* If the file has inline data, try to read it directly */
1799 	if (f2fs_has_inline_data(inode))
1800 		ret = f2fs_read_inline_data(inode, page);
1801 	if (ret == -EAGAIN)
1802 		ret = f2fs_mpage_readpages(page_file_mapping(page),
1803 						NULL, page, 1, false);
1804 	return ret;
1805 }
1806 
1807 static int f2fs_read_data_pages(struct file *file,
1808 			struct address_space *mapping,
1809 			struct list_head *pages, unsigned nr_pages)
1810 {
1811 	struct inode *inode = mapping->host;
1812 	struct page *page = list_last_entry(pages, struct page, lru);
1813 
1814 	trace_f2fs_readpages(inode, page, nr_pages);
1815 
1816 	/* If the file has inline data, skip readpages */
1817 	if (f2fs_has_inline_data(inode))
1818 		return 0;
1819 
1820 	return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages, true);
1821 }
1822 
1823 static int encrypt_one_page(struct f2fs_io_info *fio)
1824 {
1825 	struct inode *inode = fio->page->mapping->host;
1826 	struct page *mpage;
1827 	gfp_t gfp_flags = GFP_NOFS;
1828 
1829 	if (!f2fs_encrypted_file(inode))
1830 		return 0;
1831 
1832 	/* wait for GCed page writeback via META_MAPPING */
1833 	f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
1834 
1835 retry_encrypt:
1836 	fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(fio->page,
1837 							       PAGE_SIZE, 0,
1838 							       gfp_flags);
1839 	if (IS_ERR(fio->encrypted_page)) {
1840 		/* flush pending IOs and wait for a while in the ENOMEM case */
1841 		if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
1842 			f2fs_flush_merged_writes(fio->sbi);
1843 			congestion_wait(BLK_RW_ASYNC, HZ/50);
1844 			gfp_flags |= __GFP_NOFAIL;
1845 			goto retry_encrypt;
1846 		}
1847 		return PTR_ERR(fio->encrypted_page);
1848 	}
1849 
1850 	mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
1851 	if (mpage) {
1852 		if (PageUptodate(mpage))
1853 			memcpy(page_address(mpage),
1854 				page_address(fio->encrypted_page), PAGE_SIZE);
1855 		f2fs_put_page(mpage, 1);
1856 	}
1857 	return 0;
1858 }
1859 
1860 static inline bool check_inplace_update_policy(struct inode *inode,
1861 				struct f2fs_io_info *fio)
1862 {
1863 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1864 	unsigned int policy = SM_I(sbi)->ipu_policy;
1865 
1866 	if (policy & (0x1 << F2FS_IPU_FORCE))
1867 		return true;
1868 	if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
1869 		return true;
1870 	if (policy & (0x1 << F2FS_IPU_UTIL) &&
1871 			utilization(sbi) > SM_I(sbi)->min_ipu_util)
1872 		return true;
1873 	if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
1874 			utilization(sbi) > SM_I(sbi)->min_ipu_util)
1875 		return true;
1876 
1877 	/*
1878 	 * IPU for rewrite async pages
1879 	 */
1880 	if (policy & (0x1 << F2FS_IPU_ASYNC) &&
1881 			fio && fio->op == REQ_OP_WRITE &&
1882 			!(fio->op_flags & REQ_SYNC) &&
1883 			!IS_ENCRYPTED(inode))
1884 		return true;
1885 
1886 	/* this is only set during fdatasync */
1887 	if (policy & (0x1 << F2FS_IPU_FSYNC) &&
1888 			is_inode_flag_set(inode, FI_NEED_IPU))
1889 		return true;
1890 
1891 	if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1892 			!f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
1893 		return true;
1894 
1895 	return false;
1896 }
1897 
1898 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
1899 {
1900 	if (f2fs_is_pinned_file(inode))
1901 		return true;
1902 
1903 	/* if this is cold file, we should overwrite to avoid fragmentation */
1904 	if (file_is_cold(inode))
1905 		return true;
1906 
1907 	return check_inplace_update_policy(inode, fio);
1908 }
1909 
1910 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
1911 {
1912 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1913 
1914 	if (test_opt(sbi, LFS))
1915 		return true;
1916 	if (S_ISDIR(inode->i_mode))
1917 		return true;
1918 	if (IS_NOQUOTA(inode))
1919 		return true;
1920 	if (f2fs_is_atomic_file(inode))
1921 		return true;
1922 	if (fio) {
1923 		if (is_cold_data(fio->page))
1924 			return true;
1925 		if (IS_ATOMIC_WRITTEN_PAGE(fio->page))
1926 			return true;
1927 		if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1928 			f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
1929 			return true;
1930 	}
1931 	return false;
1932 }
1933 
1934 static inline bool need_inplace_update(struct f2fs_io_info *fio)
1935 {
1936 	struct inode *inode = fio->page->mapping->host;
1937 
1938 	if (f2fs_should_update_outplace(inode, fio))
1939 		return false;
1940 
1941 	return f2fs_should_update_inplace(inode, fio);
1942 }
1943 
1944 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
1945 {
1946 	struct page *page = fio->page;
1947 	struct inode *inode = page->mapping->host;
1948 	struct dnode_of_data dn;
1949 	struct extent_info ei = {0,0,0};
1950 	struct node_info ni;
1951 	bool ipu_force = false;
1952 	int err = 0;
1953 
1954 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1955 	if (need_inplace_update(fio) &&
1956 			f2fs_lookup_extent_cache(inode, page->index, &ei)) {
1957 		fio->old_blkaddr = ei.blk + page->index - ei.fofs;
1958 
1959 		if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
1960 						DATA_GENERIC_ENHANCE))
1961 			return -EFSCORRUPTED;
1962 
1963 		ipu_force = true;
1964 		fio->need_lock = LOCK_DONE;
1965 		goto got_it;
1966 	}
1967 
1968 	/* Deadlock due to between page->lock and f2fs_lock_op */
1969 	if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
1970 		return -EAGAIN;
1971 
1972 	err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1973 	if (err)
1974 		goto out;
1975 
1976 	fio->old_blkaddr = dn.data_blkaddr;
1977 
1978 	/* This page is already truncated */
1979 	if (fio->old_blkaddr == NULL_ADDR) {
1980 		ClearPageUptodate(page);
1981 		clear_cold_data(page);
1982 		goto out_writepage;
1983 	}
1984 got_it:
1985 	if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
1986 		!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
1987 						DATA_GENERIC_ENHANCE)) {
1988 		err = -EFSCORRUPTED;
1989 		goto out_writepage;
1990 	}
1991 	/*
1992 	 * If current allocation needs SSR,
1993 	 * it had better in-place writes for updated data.
1994 	 */
1995 	if (ipu_force ||
1996 		(__is_valid_data_blkaddr(fio->old_blkaddr) &&
1997 					need_inplace_update(fio))) {
1998 		err = encrypt_one_page(fio);
1999 		if (err)
2000 			goto out_writepage;
2001 
2002 		set_page_writeback(page);
2003 		ClearPageError(page);
2004 		f2fs_put_dnode(&dn);
2005 		if (fio->need_lock == LOCK_REQ)
2006 			f2fs_unlock_op(fio->sbi);
2007 		err = f2fs_inplace_write_data(fio);
2008 		if (err) {
2009 			if (f2fs_encrypted_file(inode))
2010 				fscrypt_finalize_bounce_page(&fio->encrypted_page);
2011 			if (PageWriteback(page))
2012 				end_page_writeback(page);
2013 		} else {
2014 			set_inode_flag(inode, FI_UPDATE_WRITE);
2015 		}
2016 		trace_f2fs_do_write_data_page(fio->page, IPU);
2017 		return err;
2018 	}
2019 
2020 	if (fio->need_lock == LOCK_RETRY) {
2021 		if (!f2fs_trylock_op(fio->sbi)) {
2022 			err = -EAGAIN;
2023 			goto out_writepage;
2024 		}
2025 		fio->need_lock = LOCK_REQ;
2026 	}
2027 
2028 	err = f2fs_get_node_info(fio->sbi, dn.nid, &ni);
2029 	if (err)
2030 		goto out_writepage;
2031 
2032 	fio->version = ni.version;
2033 
2034 	err = encrypt_one_page(fio);
2035 	if (err)
2036 		goto out_writepage;
2037 
2038 	set_page_writeback(page);
2039 	ClearPageError(page);
2040 
2041 	/* LFS mode write path */
2042 	f2fs_outplace_write_data(&dn, fio);
2043 	trace_f2fs_do_write_data_page(page, OPU);
2044 	set_inode_flag(inode, FI_APPEND_WRITE);
2045 	if (page->index == 0)
2046 		set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
2047 out_writepage:
2048 	f2fs_put_dnode(&dn);
2049 out:
2050 	if (fio->need_lock == LOCK_REQ)
2051 		f2fs_unlock_op(fio->sbi);
2052 	return err;
2053 }
2054 
2055 static int __write_data_page(struct page *page, bool *submitted,
2056 				struct bio **bio,
2057 				sector_t *last_block,
2058 				struct writeback_control *wbc,
2059 				enum iostat_type io_type)
2060 {
2061 	struct inode *inode = page->mapping->host;
2062 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2063 	loff_t i_size = i_size_read(inode);
2064 	const pgoff_t end_index = ((unsigned long long) i_size)
2065 							>> PAGE_SHIFT;
2066 	loff_t psize = (page->index + 1) << PAGE_SHIFT;
2067 	unsigned offset = 0;
2068 	bool need_balance_fs = false;
2069 	int err = 0;
2070 	struct f2fs_io_info fio = {
2071 		.sbi = sbi,
2072 		.ino = inode->i_ino,
2073 		.type = DATA,
2074 		.op = REQ_OP_WRITE,
2075 		.op_flags = wbc_to_write_flags(wbc),
2076 		.old_blkaddr = NULL_ADDR,
2077 		.page = page,
2078 		.encrypted_page = NULL,
2079 		.submitted = false,
2080 		.need_lock = LOCK_RETRY,
2081 		.io_type = io_type,
2082 		.io_wbc = wbc,
2083 		.bio = bio,
2084 		.last_block = last_block,
2085 	};
2086 
2087 	trace_f2fs_writepage(page, DATA);
2088 
2089 	/* we should bypass data pages to proceed the kworkder jobs */
2090 	if (unlikely(f2fs_cp_error(sbi))) {
2091 		mapping_set_error(page->mapping, -EIO);
2092 		/*
2093 		 * don't drop any dirty dentry pages for keeping lastest
2094 		 * directory structure.
2095 		 */
2096 		if (S_ISDIR(inode->i_mode))
2097 			goto redirty_out;
2098 		goto out;
2099 	}
2100 
2101 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2102 		goto redirty_out;
2103 
2104 	if (page->index < end_index || f2fs_verity_in_progress(inode))
2105 		goto write;
2106 
2107 	/*
2108 	 * If the offset is out-of-range of file size,
2109 	 * this page does not have to be written to disk.
2110 	 */
2111 	offset = i_size & (PAGE_SIZE - 1);
2112 	if ((page->index >= end_index + 1) || !offset)
2113 		goto out;
2114 
2115 	zero_user_segment(page, offset, PAGE_SIZE);
2116 write:
2117 	if (f2fs_is_drop_cache(inode))
2118 		goto out;
2119 	/* we should not write 0'th page having journal header */
2120 	if (f2fs_is_volatile_file(inode) && (!page->index ||
2121 			(!wbc->for_reclaim &&
2122 			f2fs_available_free_memory(sbi, BASE_CHECK))))
2123 		goto redirty_out;
2124 
2125 	/* Dentry blocks are controlled by checkpoint */
2126 	if (S_ISDIR(inode->i_mode)) {
2127 		fio.need_lock = LOCK_DONE;
2128 		err = f2fs_do_write_data_page(&fio);
2129 		goto done;
2130 	}
2131 
2132 	if (!wbc->for_reclaim)
2133 		need_balance_fs = true;
2134 	else if (has_not_enough_free_secs(sbi, 0, 0))
2135 		goto redirty_out;
2136 	else
2137 		set_inode_flag(inode, FI_HOT_DATA);
2138 
2139 	err = -EAGAIN;
2140 	if (f2fs_has_inline_data(inode)) {
2141 		err = f2fs_write_inline_data(inode, page);
2142 		if (!err)
2143 			goto out;
2144 	}
2145 
2146 	if (err == -EAGAIN) {
2147 		err = f2fs_do_write_data_page(&fio);
2148 		if (err == -EAGAIN) {
2149 			fio.need_lock = LOCK_REQ;
2150 			err = f2fs_do_write_data_page(&fio);
2151 		}
2152 	}
2153 
2154 	if (err) {
2155 		file_set_keep_isize(inode);
2156 	} else {
2157 		down_write(&F2FS_I(inode)->i_sem);
2158 		if (F2FS_I(inode)->last_disk_size < psize)
2159 			F2FS_I(inode)->last_disk_size = psize;
2160 		up_write(&F2FS_I(inode)->i_sem);
2161 	}
2162 
2163 done:
2164 	if (err && err != -ENOENT)
2165 		goto redirty_out;
2166 
2167 out:
2168 	inode_dec_dirty_pages(inode);
2169 	if (err) {
2170 		ClearPageUptodate(page);
2171 		clear_cold_data(page);
2172 	}
2173 
2174 	if (wbc->for_reclaim) {
2175 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2176 		clear_inode_flag(inode, FI_HOT_DATA);
2177 		f2fs_remove_dirty_inode(inode);
2178 		submitted = NULL;
2179 	}
2180 
2181 	unlock_page(page);
2182 	if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2183 					!F2FS_I(inode)->cp_task) {
2184 		f2fs_submit_ipu_bio(sbi, bio, page);
2185 		f2fs_balance_fs(sbi, need_balance_fs);
2186 	}
2187 
2188 	if (unlikely(f2fs_cp_error(sbi))) {
2189 		f2fs_submit_ipu_bio(sbi, bio, page);
2190 		f2fs_submit_merged_write(sbi, DATA);
2191 		submitted = NULL;
2192 	}
2193 
2194 	if (submitted)
2195 		*submitted = fio.submitted;
2196 
2197 	return 0;
2198 
2199 redirty_out:
2200 	redirty_page_for_writepage(wbc, page);
2201 	/*
2202 	 * pageout() in MM traslates EAGAIN, so calls handle_write_error()
2203 	 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2204 	 * file_write_and_wait_range() will see EIO error, which is critical
2205 	 * to return value of fsync() followed by atomic_write failure to user.
2206 	 */
2207 	if (!err || wbc->for_reclaim)
2208 		return AOP_WRITEPAGE_ACTIVATE;
2209 	unlock_page(page);
2210 	return err;
2211 }
2212 
2213 static int f2fs_write_data_page(struct page *page,
2214 					struct writeback_control *wbc)
2215 {
2216 	return __write_data_page(page, NULL, NULL, NULL, wbc, FS_DATA_IO);
2217 }
2218 
2219 /*
2220  * This function was copied from write_cche_pages from mm/page-writeback.c.
2221  * The major change is making write step of cold data page separately from
2222  * warm/hot data page.
2223  */
2224 static int f2fs_write_cache_pages(struct address_space *mapping,
2225 					struct writeback_control *wbc,
2226 					enum iostat_type io_type)
2227 {
2228 	int ret = 0;
2229 	int done = 0;
2230 	struct pagevec pvec;
2231 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2232 	struct bio *bio = NULL;
2233 	sector_t last_block;
2234 	int nr_pages;
2235 	pgoff_t uninitialized_var(writeback_index);
2236 	pgoff_t index;
2237 	pgoff_t end;		/* Inclusive */
2238 	pgoff_t done_index;
2239 	int cycled;
2240 	int range_whole = 0;
2241 	xa_mark_t tag;
2242 	int nwritten = 0;
2243 
2244 	pagevec_init(&pvec);
2245 
2246 	if (get_dirty_pages(mapping->host) <=
2247 				SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2248 		set_inode_flag(mapping->host, FI_HOT_DATA);
2249 	else
2250 		clear_inode_flag(mapping->host, FI_HOT_DATA);
2251 
2252 	if (wbc->range_cyclic) {
2253 		writeback_index = mapping->writeback_index; /* prev offset */
2254 		index = writeback_index;
2255 		if (index == 0)
2256 			cycled = 1;
2257 		else
2258 			cycled = 0;
2259 		end = -1;
2260 	} else {
2261 		index = wbc->range_start >> PAGE_SHIFT;
2262 		end = wbc->range_end >> PAGE_SHIFT;
2263 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2264 			range_whole = 1;
2265 		cycled = 1; /* ignore range_cyclic tests */
2266 	}
2267 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2268 		tag = PAGECACHE_TAG_TOWRITE;
2269 	else
2270 		tag = PAGECACHE_TAG_DIRTY;
2271 retry:
2272 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2273 		tag_pages_for_writeback(mapping, index, end);
2274 	done_index = index;
2275 	while (!done && (index <= end)) {
2276 		int i;
2277 
2278 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2279 				tag);
2280 		if (nr_pages == 0)
2281 			break;
2282 
2283 		for (i = 0; i < nr_pages; i++) {
2284 			struct page *page = pvec.pages[i];
2285 			bool submitted = false;
2286 
2287 			/* give a priority to WB_SYNC threads */
2288 			if (atomic_read(&sbi->wb_sync_req[DATA]) &&
2289 					wbc->sync_mode == WB_SYNC_NONE) {
2290 				done = 1;
2291 				break;
2292 			}
2293 
2294 			done_index = page->index;
2295 retry_write:
2296 			lock_page(page);
2297 
2298 			if (unlikely(page->mapping != mapping)) {
2299 continue_unlock:
2300 				unlock_page(page);
2301 				continue;
2302 			}
2303 
2304 			if (!PageDirty(page)) {
2305 				/* someone wrote it for us */
2306 				goto continue_unlock;
2307 			}
2308 
2309 			if (PageWriteback(page)) {
2310 				if (wbc->sync_mode != WB_SYNC_NONE) {
2311 					f2fs_wait_on_page_writeback(page,
2312 							DATA, true, true);
2313 					f2fs_submit_ipu_bio(sbi, &bio, page);
2314 				} else {
2315 					goto continue_unlock;
2316 				}
2317 			}
2318 
2319 			if (!clear_page_dirty_for_io(page))
2320 				goto continue_unlock;
2321 
2322 			ret = __write_data_page(page, &submitted, &bio,
2323 					&last_block, wbc, io_type);
2324 			if (unlikely(ret)) {
2325 				/*
2326 				 * keep nr_to_write, since vfs uses this to
2327 				 * get # of written pages.
2328 				 */
2329 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
2330 					unlock_page(page);
2331 					ret = 0;
2332 					continue;
2333 				} else if (ret == -EAGAIN) {
2334 					ret = 0;
2335 					if (wbc->sync_mode == WB_SYNC_ALL) {
2336 						cond_resched();
2337 						congestion_wait(BLK_RW_ASYNC,
2338 									HZ/50);
2339 						goto retry_write;
2340 					}
2341 					continue;
2342 				}
2343 				done_index = page->index + 1;
2344 				done = 1;
2345 				break;
2346 			} else if (submitted) {
2347 				nwritten++;
2348 			}
2349 
2350 			if (--wbc->nr_to_write <= 0 &&
2351 					wbc->sync_mode == WB_SYNC_NONE) {
2352 				done = 1;
2353 				break;
2354 			}
2355 		}
2356 		pagevec_release(&pvec);
2357 		cond_resched();
2358 	}
2359 
2360 	if (!cycled && !done) {
2361 		cycled = 1;
2362 		index = 0;
2363 		end = writeback_index - 1;
2364 		goto retry;
2365 	}
2366 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2367 		mapping->writeback_index = done_index;
2368 
2369 	if (nwritten)
2370 		f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
2371 								NULL, 0, DATA);
2372 	/* submit cached bio of IPU write */
2373 	if (bio)
2374 		__submit_bio(sbi, bio, DATA);
2375 
2376 	return ret;
2377 }
2378 
2379 static inline bool __should_serialize_io(struct inode *inode,
2380 					struct writeback_control *wbc)
2381 {
2382 	if (!S_ISREG(inode->i_mode))
2383 		return false;
2384 	if (IS_NOQUOTA(inode))
2385 		return false;
2386 	/* to avoid deadlock in path of data flush */
2387 	if (F2FS_I(inode)->cp_task)
2388 		return false;
2389 	if (wbc->sync_mode != WB_SYNC_ALL)
2390 		return true;
2391 	if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
2392 		return true;
2393 	return false;
2394 }
2395 
2396 static int __f2fs_write_data_pages(struct address_space *mapping,
2397 						struct writeback_control *wbc,
2398 						enum iostat_type io_type)
2399 {
2400 	struct inode *inode = mapping->host;
2401 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2402 	struct blk_plug plug;
2403 	int ret;
2404 	bool locked = false;
2405 
2406 	/* deal with chardevs and other special file */
2407 	if (!mapping->a_ops->writepage)
2408 		return 0;
2409 
2410 	/* skip writing if there is no dirty page in this inode */
2411 	if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
2412 		return 0;
2413 
2414 	/* during POR, we don't need to trigger writepage at all. */
2415 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2416 		goto skip_write;
2417 
2418 	if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
2419 			wbc->sync_mode == WB_SYNC_NONE &&
2420 			get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
2421 			f2fs_available_free_memory(sbi, DIRTY_DENTS))
2422 		goto skip_write;
2423 
2424 	/* skip writing during file defragment */
2425 	if (is_inode_flag_set(inode, FI_DO_DEFRAG))
2426 		goto skip_write;
2427 
2428 	trace_f2fs_writepages(mapping->host, wbc, DATA);
2429 
2430 	/* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
2431 	if (wbc->sync_mode == WB_SYNC_ALL)
2432 		atomic_inc(&sbi->wb_sync_req[DATA]);
2433 	else if (atomic_read(&sbi->wb_sync_req[DATA]))
2434 		goto skip_write;
2435 
2436 	if (__should_serialize_io(inode, wbc)) {
2437 		mutex_lock(&sbi->writepages);
2438 		locked = true;
2439 	}
2440 
2441 	blk_start_plug(&plug);
2442 	ret = f2fs_write_cache_pages(mapping, wbc, io_type);
2443 	blk_finish_plug(&plug);
2444 
2445 	if (locked)
2446 		mutex_unlock(&sbi->writepages);
2447 
2448 	if (wbc->sync_mode == WB_SYNC_ALL)
2449 		atomic_dec(&sbi->wb_sync_req[DATA]);
2450 	/*
2451 	 * if some pages were truncated, we cannot guarantee its mapping->host
2452 	 * to detect pending bios.
2453 	 */
2454 
2455 	f2fs_remove_dirty_inode(inode);
2456 	return ret;
2457 
2458 skip_write:
2459 	wbc->pages_skipped += get_dirty_pages(inode);
2460 	trace_f2fs_writepages(mapping->host, wbc, DATA);
2461 	return 0;
2462 }
2463 
2464 static int f2fs_write_data_pages(struct address_space *mapping,
2465 			    struct writeback_control *wbc)
2466 {
2467 	struct inode *inode = mapping->host;
2468 
2469 	return __f2fs_write_data_pages(mapping, wbc,
2470 			F2FS_I(inode)->cp_task == current ?
2471 			FS_CP_DATA_IO : FS_DATA_IO);
2472 }
2473 
2474 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
2475 {
2476 	struct inode *inode = mapping->host;
2477 	loff_t i_size = i_size_read(inode);
2478 
2479 	/* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
2480 	if (to > i_size && !f2fs_verity_in_progress(inode)) {
2481 		down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2482 		down_write(&F2FS_I(inode)->i_mmap_sem);
2483 
2484 		truncate_pagecache(inode, i_size);
2485 		if (!IS_NOQUOTA(inode))
2486 			f2fs_truncate_blocks(inode, i_size, true);
2487 
2488 		up_write(&F2FS_I(inode)->i_mmap_sem);
2489 		up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2490 	}
2491 }
2492 
2493 static int prepare_write_begin(struct f2fs_sb_info *sbi,
2494 			struct page *page, loff_t pos, unsigned len,
2495 			block_t *blk_addr, bool *node_changed)
2496 {
2497 	struct inode *inode = page->mapping->host;
2498 	pgoff_t index = page->index;
2499 	struct dnode_of_data dn;
2500 	struct page *ipage;
2501 	bool locked = false;
2502 	struct extent_info ei = {0,0,0};
2503 	int err = 0;
2504 	int flag;
2505 
2506 	/*
2507 	 * we already allocated all the blocks, so we don't need to get
2508 	 * the block addresses when there is no need to fill the page.
2509 	 */
2510 	if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
2511 	    !is_inode_flag_set(inode, FI_NO_PREALLOC) &&
2512 	    !f2fs_verity_in_progress(inode))
2513 		return 0;
2514 
2515 	/* f2fs_lock_op avoids race between write CP and convert_inline_page */
2516 	if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
2517 		flag = F2FS_GET_BLOCK_DEFAULT;
2518 	else
2519 		flag = F2FS_GET_BLOCK_PRE_AIO;
2520 
2521 	if (f2fs_has_inline_data(inode) ||
2522 			(pos & PAGE_MASK) >= i_size_read(inode)) {
2523 		__do_map_lock(sbi, flag, true);
2524 		locked = true;
2525 	}
2526 restart:
2527 	/* check inline_data */
2528 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
2529 	if (IS_ERR(ipage)) {
2530 		err = PTR_ERR(ipage);
2531 		goto unlock_out;
2532 	}
2533 
2534 	set_new_dnode(&dn, inode, ipage, ipage, 0);
2535 
2536 	if (f2fs_has_inline_data(inode)) {
2537 		if (pos + len <= MAX_INLINE_DATA(inode)) {
2538 			f2fs_do_read_inline_data(page, ipage);
2539 			set_inode_flag(inode, FI_DATA_EXIST);
2540 			if (inode->i_nlink)
2541 				set_inline_node(ipage);
2542 		} else {
2543 			err = f2fs_convert_inline_page(&dn, page);
2544 			if (err)
2545 				goto out;
2546 			if (dn.data_blkaddr == NULL_ADDR)
2547 				err = f2fs_get_block(&dn, index);
2548 		}
2549 	} else if (locked) {
2550 		err = f2fs_get_block(&dn, index);
2551 	} else {
2552 		if (f2fs_lookup_extent_cache(inode, index, &ei)) {
2553 			dn.data_blkaddr = ei.blk + index - ei.fofs;
2554 		} else {
2555 			/* hole case */
2556 			err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
2557 			if (err || dn.data_blkaddr == NULL_ADDR) {
2558 				f2fs_put_dnode(&dn);
2559 				__do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
2560 								true);
2561 				WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
2562 				locked = true;
2563 				goto restart;
2564 			}
2565 		}
2566 	}
2567 
2568 	/* convert_inline_page can make node_changed */
2569 	*blk_addr = dn.data_blkaddr;
2570 	*node_changed = dn.node_changed;
2571 out:
2572 	f2fs_put_dnode(&dn);
2573 unlock_out:
2574 	if (locked)
2575 		__do_map_lock(sbi, flag, false);
2576 	return err;
2577 }
2578 
2579 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
2580 		loff_t pos, unsigned len, unsigned flags,
2581 		struct page **pagep, void **fsdata)
2582 {
2583 	struct inode *inode = mapping->host;
2584 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2585 	struct page *page = NULL;
2586 	pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
2587 	bool need_balance = false, drop_atomic = false;
2588 	block_t blkaddr = NULL_ADDR;
2589 	int err = 0;
2590 
2591 	trace_f2fs_write_begin(inode, pos, len, flags);
2592 
2593 	err = f2fs_is_checkpoint_ready(sbi);
2594 	if (err)
2595 		goto fail;
2596 
2597 	if ((f2fs_is_atomic_file(inode) &&
2598 			!f2fs_available_free_memory(sbi, INMEM_PAGES)) ||
2599 			is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
2600 		err = -ENOMEM;
2601 		drop_atomic = true;
2602 		goto fail;
2603 	}
2604 
2605 	/*
2606 	 * We should check this at this moment to avoid deadlock on inode page
2607 	 * and #0 page. The locking rule for inline_data conversion should be:
2608 	 * lock_page(page #0) -> lock_page(inode_page)
2609 	 */
2610 	if (index != 0) {
2611 		err = f2fs_convert_inline_inode(inode);
2612 		if (err)
2613 			goto fail;
2614 	}
2615 repeat:
2616 	/*
2617 	 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
2618 	 * wait_for_stable_page. Will wait that below with our IO control.
2619 	 */
2620 	page = f2fs_pagecache_get_page(mapping, index,
2621 				FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
2622 	if (!page) {
2623 		err = -ENOMEM;
2624 		goto fail;
2625 	}
2626 
2627 	*pagep = page;
2628 
2629 	err = prepare_write_begin(sbi, page, pos, len,
2630 					&blkaddr, &need_balance);
2631 	if (err)
2632 		goto fail;
2633 
2634 	if (need_balance && !IS_NOQUOTA(inode) &&
2635 			has_not_enough_free_secs(sbi, 0, 0)) {
2636 		unlock_page(page);
2637 		f2fs_balance_fs(sbi, true);
2638 		lock_page(page);
2639 		if (page->mapping != mapping) {
2640 			/* The page got truncated from under us */
2641 			f2fs_put_page(page, 1);
2642 			goto repeat;
2643 		}
2644 	}
2645 
2646 	f2fs_wait_on_page_writeback(page, DATA, false, true);
2647 
2648 	if (len == PAGE_SIZE || PageUptodate(page))
2649 		return 0;
2650 
2651 	if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
2652 	    !f2fs_verity_in_progress(inode)) {
2653 		zero_user_segment(page, len, PAGE_SIZE);
2654 		return 0;
2655 	}
2656 
2657 	if (blkaddr == NEW_ADDR) {
2658 		zero_user_segment(page, 0, PAGE_SIZE);
2659 		SetPageUptodate(page);
2660 	} else {
2661 		if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
2662 				DATA_GENERIC_ENHANCE_READ)) {
2663 			err = -EFSCORRUPTED;
2664 			goto fail;
2665 		}
2666 		err = f2fs_submit_page_read(inode, page, blkaddr);
2667 		if (err)
2668 			goto fail;
2669 
2670 		lock_page(page);
2671 		if (unlikely(page->mapping != mapping)) {
2672 			f2fs_put_page(page, 1);
2673 			goto repeat;
2674 		}
2675 		if (unlikely(!PageUptodate(page))) {
2676 			err = -EIO;
2677 			goto fail;
2678 		}
2679 	}
2680 	return 0;
2681 
2682 fail:
2683 	f2fs_put_page(page, 1);
2684 	f2fs_write_failed(mapping, pos + len);
2685 	if (drop_atomic)
2686 		f2fs_drop_inmem_pages_all(sbi, false);
2687 	return err;
2688 }
2689 
2690 static int f2fs_write_end(struct file *file,
2691 			struct address_space *mapping,
2692 			loff_t pos, unsigned len, unsigned copied,
2693 			struct page *page, void *fsdata)
2694 {
2695 	struct inode *inode = page->mapping->host;
2696 
2697 	trace_f2fs_write_end(inode, pos, len, copied);
2698 
2699 	/*
2700 	 * This should be come from len == PAGE_SIZE, and we expect copied
2701 	 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
2702 	 * let generic_perform_write() try to copy data again through copied=0.
2703 	 */
2704 	if (!PageUptodate(page)) {
2705 		if (unlikely(copied != len))
2706 			copied = 0;
2707 		else
2708 			SetPageUptodate(page);
2709 	}
2710 	if (!copied)
2711 		goto unlock_out;
2712 
2713 	set_page_dirty(page);
2714 
2715 	if (pos + copied > i_size_read(inode) &&
2716 	    !f2fs_verity_in_progress(inode))
2717 		f2fs_i_size_write(inode, pos + copied);
2718 unlock_out:
2719 	f2fs_put_page(page, 1);
2720 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2721 	return copied;
2722 }
2723 
2724 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
2725 			   loff_t offset)
2726 {
2727 	unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
2728 	unsigned blkbits = i_blkbits;
2729 	unsigned blocksize_mask = (1 << blkbits) - 1;
2730 	unsigned long align = offset | iov_iter_alignment(iter);
2731 	struct block_device *bdev = inode->i_sb->s_bdev;
2732 
2733 	if (align & blocksize_mask) {
2734 		if (bdev)
2735 			blkbits = blksize_bits(bdev_logical_block_size(bdev));
2736 		blocksize_mask = (1 << blkbits) - 1;
2737 		if (align & blocksize_mask)
2738 			return -EINVAL;
2739 		return 1;
2740 	}
2741 	return 0;
2742 }
2743 
2744 static void f2fs_dio_end_io(struct bio *bio)
2745 {
2746 	struct f2fs_private_dio *dio = bio->bi_private;
2747 
2748 	dec_page_count(F2FS_I_SB(dio->inode),
2749 			dio->write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
2750 
2751 	bio->bi_private = dio->orig_private;
2752 	bio->bi_end_io = dio->orig_end_io;
2753 
2754 	kvfree(dio);
2755 
2756 	bio_endio(bio);
2757 }
2758 
2759 static void f2fs_dio_submit_bio(struct bio *bio, struct inode *inode,
2760 							loff_t file_offset)
2761 {
2762 	struct f2fs_private_dio *dio;
2763 	bool write = (bio_op(bio) == REQ_OP_WRITE);
2764 
2765 	dio = f2fs_kzalloc(F2FS_I_SB(inode),
2766 			sizeof(struct f2fs_private_dio), GFP_NOFS);
2767 	if (!dio)
2768 		goto out;
2769 
2770 	dio->inode = inode;
2771 	dio->orig_end_io = bio->bi_end_io;
2772 	dio->orig_private = bio->bi_private;
2773 	dio->write = write;
2774 
2775 	bio->bi_end_io = f2fs_dio_end_io;
2776 	bio->bi_private = dio;
2777 
2778 	inc_page_count(F2FS_I_SB(inode),
2779 			write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
2780 
2781 	submit_bio(bio);
2782 	return;
2783 out:
2784 	bio->bi_status = BLK_STS_IOERR;
2785 	bio_endio(bio);
2786 }
2787 
2788 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2789 {
2790 	struct address_space *mapping = iocb->ki_filp->f_mapping;
2791 	struct inode *inode = mapping->host;
2792 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2793 	struct f2fs_inode_info *fi = F2FS_I(inode);
2794 	size_t count = iov_iter_count(iter);
2795 	loff_t offset = iocb->ki_pos;
2796 	int rw = iov_iter_rw(iter);
2797 	int err;
2798 	enum rw_hint hint = iocb->ki_hint;
2799 	int whint_mode = F2FS_OPTION(sbi).whint_mode;
2800 	bool do_opu;
2801 
2802 	err = check_direct_IO(inode, iter, offset);
2803 	if (err)
2804 		return err < 0 ? err : 0;
2805 
2806 	if (f2fs_force_buffered_io(inode, iocb, iter))
2807 		return 0;
2808 
2809 	do_opu = allow_outplace_dio(inode, iocb, iter);
2810 
2811 	trace_f2fs_direct_IO_enter(inode, offset, count, rw);
2812 
2813 	if (rw == WRITE && whint_mode == WHINT_MODE_OFF)
2814 		iocb->ki_hint = WRITE_LIFE_NOT_SET;
2815 
2816 	if (iocb->ki_flags & IOCB_NOWAIT) {
2817 		if (!down_read_trylock(&fi->i_gc_rwsem[rw])) {
2818 			iocb->ki_hint = hint;
2819 			err = -EAGAIN;
2820 			goto out;
2821 		}
2822 		if (do_opu && !down_read_trylock(&fi->i_gc_rwsem[READ])) {
2823 			up_read(&fi->i_gc_rwsem[rw]);
2824 			iocb->ki_hint = hint;
2825 			err = -EAGAIN;
2826 			goto out;
2827 		}
2828 	} else {
2829 		down_read(&fi->i_gc_rwsem[rw]);
2830 		if (do_opu)
2831 			down_read(&fi->i_gc_rwsem[READ]);
2832 	}
2833 
2834 	err = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
2835 			iter, rw == WRITE ? get_data_block_dio_write :
2836 			get_data_block_dio, NULL, f2fs_dio_submit_bio,
2837 			DIO_LOCKING | DIO_SKIP_HOLES);
2838 
2839 	if (do_opu)
2840 		up_read(&fi->i_gc_rwsem[READ]);
2841 
2842 	up_read(&fi->i_gc_rwsem[rw]);
2843 
2844 	if (rw == WRITE) {
2845 		if (whint_mode == WHINT_MODE_OFF)
2846 			iocb->ki_hint = hint;
2847 		if (err > 0) {
2848 			f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
2849 									err);
2850 			if (!do_opu)
2851 				set_inode_flag(inode, FI_UPDATE_WRITE);
2852 		} else if (err < 0) {
2853 			f2fs_write_failed(mapping, offset + count);
2854 		}
2855 	}
2856 
2857 out:
2858 	trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
2859 
2860 	return err;
2861 }
2862 
2863 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2864 							unsigned int length)
2865 {
2866 	struct inode *inode = page->mapping->host;
2867 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2868 
2869 	if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
2870 		(offset % PAGE_SIZE || length != PAGE_SIZE))
2871 		return;
2872 
2873 	if (PageDirty(page)) {
2874 		if (inode->i_ino == F2FS_META_INO(sbi)) {
2875 			dec_page_count(sbi, F2FS_DIRTY_META);
2876 		} else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
2877 			dec_page_count(sbi, F2FS_DIRTY_NODES);
2878 		} else {
2879 			inode_dec_dirty_pages(inode);
2880 			f2fs_remove_dirty_inode(inode);
2881 		}
2882 	}
2883 
2884 	clear_cold_data(page);
2885 
2886 	if (IS_ATOMIC_WRITTEN_PAGE(page))
2887 		return f2fs_drop_inmem_page(inode, page);
2888 
2889 	f2fs_clear_page_private(page);
2890 }
2891 
2892 int f2fs_release_page(struct page *page, gfp_t wait)
2893 {
2894 	/* If this is dirty page, keep PagePrivate */
2895 	if (PageDirty(page))
2896 		return 0;
2897 
2898 	/* This is atomic written page, keep Private */
2899 	if (IS_ATOMIC_WRITTEN_PAGE(page))
2900 		return 0;
2901 
2902 	clear_cold_data(page);
2903 	f2fs_clear_page_private(page);
2904 	return 1;
2905 }
2906 
2907 static int f2fs_set_data_page_dirty(struct page *page)
2908 {
2909 	struct inode *inode = page_file_mapping(page)->host;
2910 
2911 	trace_f2fs_set_page_dirty(page, DATA);
2912 
2913 	if (!PageUptodate(page))
2914 		SetPageUptodate(page);
2915 	if (PageSwapCache(page))
2916 		return __set_page_dirty_nobuffers(page);
2917 
2918 	if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
2919 		if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
2920 			f2fs_register_inmem_page(inode, page);
2921 			return 1;
2922 		}
2923 		/*
2924 		 * Previously, this page has been registered, we just
2925 		 * return here.
2926 		 */
2927 		return 0;
2928 	}
2929 
2930 	if (!PageDirty(page)) {
2931 		__set_page_dirty_nobuffers(page);
2932 		f2fs_update_dirty_page(inode, page);
2933 		return 1;
2934 	}
2935 	return 0;
2936 }
2937 
2938 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
2939 {
2940 	struct inode *inode = mapping->host;
2941 
2942 	if (f2fs_has_inline_data(inode))
2943 		return 0;
2944 
2945 	/* make sure allocating whole blocks */
2946 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2947 		filemap_write_and_wait(mapping);
2948 
2949 	return generic_block_bmap(mapping, block, get_data_block_bmap);
2950 }
2951 
2952 #ifdef CONFIG_MIGRATION
2953 #include <linux/migrate.h>
2954 
2955 int f2fs_migrate_page(struct address_space *mapping,
2956 		struct page *newpage, struct page *page, enum migrate_mode mode)
2957 {
2958 	int rc, extra_count;
2959 	struct f2fs_inode_info *fi = F2FS_I(mapping->host);
2960 	bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
2961 
2962 	BUG_ON(PageWriteback(page));
2963 
2964 	/* migrating an atomic written page is safe with the inmem_lock hold */
2965 	if (atomic_written) {
2966 		if (mode != MIGRATE_SYNC)
2967 			return -EBUSY;
2968 		if (!mutex_trylock(&fi->inmem_lock))
2969 			return -EAGAIN;
2970 	}
2971 
2972 	/* one extra reference was held for atomic_write page */
2973 	extra_count = atomic_written ? 1 : 0;
2974 	rc = migrate_page_move_mapping(mapping, newpage,
2975 				page, extra_count);
2976 	if (rc != MIGRATEPAGE_SUCCESS) {
2977 		if (atomic_written)
2978 			mutex_unlock(&fi->inmem_lock);
2979 		return rc;
2980 	}
2981 
2982 	if (atomic_written) {
2983 		struct inmem_pages *cur;
2984 		list_for_each_entry(cur, &fi->inmem_pages, list)
2985 			if (cur->page == page) {
2986 				cur->page = newpage;
2987 				break;
2988 			}
2989 		mutex_unlock(&fi->inmem_lock);
2990 		put_page(page);
2991 		get_page(newpage);
2992 	}
2993 
2994 	if (PagePrivate(page)) {
2995 		f2fs_set_page_private(newpage, page_private(page));
2996 		f2fs_clear_page_private(page);
2997 	}
2998 
2999 	if (mode != MIGRATE_SYNC_NO_COPY)
3000 		migrate_page_copy(newpage, page);
3001 	else
3002 		migrate_page_states(newpage, page);
3003 
3004 	return MIGRATEPAGE_SUCCESS;
3005 }
3006 #endif
3007 
3008 #ifdef CONFIG_SWAP
3009 /* Copied from generic_swapfile_activate() to check any holes */
3010 static int check_swap_activate(struct file *swap_file, unsigned int max)
3011 {
3012 	struct address_space *mapping = swap_file->f_mapping;
3013 	struct inode *inode = mapping->host;
3014 	unsigned blocks_per_page;
3015 	unsigned long page_no;
3016 	unsigned blkbits;
3017 	sector_t probe_block;
3018 	sector_t last_block;
3019 	sector_t lowest_block = -1;
3020 	sector_t highest_block = 0;
3021 
3022 	blkbits = inode->i_blkbits;
3023 	blocks_per_page = PAGE_SIZE >> blkbits;
3024 
3025 	/*
3026 	 * Map all the blocks into the extent list.  This code doesn't try
3027 	 * to be very smart.
3028 	 */
3029 	probe_block = 0;
3030 	page_no = 0;
3031 	last_block = i_size_read(inode) >> blkbits;
3032 	while ((probe_block + blocks_per_page) <= last_block && page_no < max) {
3033 		unsigned block_in_page;
3034 		sector_t first_block;
3035 
3036 		cond_resched();
3037 
3038 		first_block = bmap(inode, probe_block);
3039 		if (first_block == 0)
3040 			goto bad_bmap;
3041 
3042 		/*
3043 		 * It must be PAGE_SIZE aligned on-disk
3044 		 */
3045 		if (first_block & (blocks_per_page - 1)) {
3046 			probe_block++;
3047 			goto reprobe;
3048 		}
3049 
3050 		for (block_in_page = 1; block_in_page < blocks_per_page;
3051 					block_in_page++) {
3052 			sector_t block;
3053 
3054 			block = bmap(inode, probe_block + block_in_page);
3055 			if (block == 0)
3056 				goto bad_bmap;
3057 			if (block != first_block + block_in_page) {
3058 				/* Discontiguity */
3059 				probe_block++;
3060 				goto reprobe;
3061 			}
3062 		}
3063 
3064 		first_block >>= (PAGE_SHIFT - blkbits);
3065 		if (page_no) {	/* exclude the header page */
3066 			if (first_block < lowest_block)
3067 				lowest_block = first_block;
3068 			if (first_block > highest_block)
3069 				highest_block = first_block;
3070 		}
3071 
3072 		page_no++;
3073 		probe_block += blocks_per_page;
3074 reprobe:
3075 		continue;
3076 	}
3077 	return 0;
3078 
3079 bad_bmap:
3080 	pr_err("swapon: swapfile has holes\n");
3081 	return -EINVAL;
3082 }
3083 
3084 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
3085 				sector_t *span)
3086 {
3087 	struct inode *inode = file_inode(file);
3088 	int ret;
3089 
3090 	if (!S_ISREG(inode->i_mode))
3091 		return -EINVAL;
3092 
3093 	if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3094 		return -EROFS;
3095 
3096 	ret = f2fs_convert_inline_inode(inode);
3097 	if (ret)
3098 		return ret;
3099 
3100 	ret = check_swap_activate(file, sis->max);
3101 	if (ret)
3102 		return ret;
3103 
3104 	set_inode_flag(inode, FI_PIN_FILE);
3105 	f2fs_precache_extents(inode);
3106 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3107 	return 0;
3108 }
3109 
3110 static void f2fs_swap_deactivate(struct file *file)
3111 {
3112 	struct inode *inode = file_inode(file);
3113 
3114 	clear_inode_flag(inode, FI_PIN_FILE);
3115 }
3116 #else
3117 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
3118 				sector_t *span)
3119 {
3120 	return -EOPNOTSUPP;
3121 }
3122 
3123 static void f2fs_swap_deactivate(struct file *file)
3124 {
3125 }
3126 #endif
3127 
3128 const struct address_space_operations f2fs_dblock_aops = {
3129 	.readpage	= f2fs_read_data_page,
3130 	.readpages	= f2fs_read_data_pages,
3131 	.writepage	= f2fs_write_data_page,
3132 	.writepages	= f2fs_write_data_pages,
3133 	.write_begin	= f2fs_write_begin,
3134 	.write_end	= f2fs_write_end,
3135 	.set_page_dirty	= f2fs_set_data_page_dirty,
3136 	.invalidatepage	= f2fs_invalidate_page,
3137 	.releasepage	= f2fs_release_page,
3138 	.direct_IO	= f2fs_direct_IO,
3139 	.bmap		= f2fs_bmap,
3140 	.swap_activate  = f2fs_swap_activate,
3141 	.swap_deactivate = f2fs_swap_deactivate,
3142 #ifdef CONFIG_MIGRATION
3143 	.migratepage    = f2fs_migrate_page,
3144 #endif
3145 };
3146 
3147 void f2fs_clear_page_cache_dirty_tag(struct page *page)
3148 {
3149 	struct address_space *mapping = page_mapping(page);
3150 	unsigned long flags;
3151 
3152 	xa_lock_irqsave(&mapping->i_pages, flags);
3153 	__xa_clear_mark(&mapping->i_pages, page_index(page),
3154 						PAGECACHE_TAG_DIRTY);
3155 	xa_unlock_irqrestore(&mapping->i_pages, flags);
3156 }
3157 
3158 int __init f2fs_init_post_read_processing(void)
3159 {
3160 	bio_post_read_ctx_cache =
3161 		kmem_cache_create("f2fs_bio_post_read_ctx",
3162 				  sizeof(struct bio_post_read_ctx), 0, 0, NULL);
3163 	if (!bio_post_read_ctx_cache)
3164 		goto fail;
3165 	bio_post_read_ctx_pool =
3166 		mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
3167 					 bio_post_read_ctx_cache);
3168 	if (!bio_post_read_ctx_pool)
3169 		goto fail_free_cache;
3170 	return 0;
3171 
3172 fail_free_cache:
3173 	kmem_cache_destroy(bio_post_read_ctx_cache);
3174 fail:
3175 	return -ENOMEM;
3176 }
3177 
3178 void __exit f2fs_destroy_post_read_processing(void)
3179 {
3180 	mempool_destroy(bio_post_read_ctx_pool);
3181 	kmem_cache_destroy(bio_post_read_ctx_cache);
3182 }
3183