1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/data.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/buffer_head.h> 11 #include <linux/sched/mm.h> 12 #include <linux/mpage.h> 13 #include <linux/writeback.h> 14 #include <linux/pagevec.h> 15 #include <linux/blkdev.h> 16 #include <linux/bio.h> 17 #include <linux/blk-crypto.h> 18 #include <linux/swap.h> 19 #include <linux/prefetch.h> 20 #include <linux/uio.h> 21 #include <linux/sched/signal.h> 22 #include <linux/fiemap.h> 23 #include <linux/iomap.h> 24 25 #include "f2fs.h" 26 #include "node.h" 27 #include "segment.h" 28 #include "iostat.h" 29 #include <trace/events/f2fs.h> 30 31 #define NUM_PREALLOC_POST_READ_CTXS 128 32 33 static struct kmem_cache *bio_post_read_ctx_cache; 34 static struct kmem_cache *bio_entry_slab; 35 static mempool_t *bio_post_read_ctx_pool; 36 static struct bio_set f2fs_bioset; 37 38 #define F2FS_BIO_POOL_SIZE NR_CURSEG_TYPE 39 40 int __init f2fs_init_bioset(void) 41 { 42 return bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE, 43 0, BIOSET_NEED_BVECS); 44 } 45 46 void f2fs_destroy_bioset(void) 47 { 48 bioset_exit(&f2fs_bioset); 49 } 50 51 static bool __is_cp_guaranteed(struct page *page) 52 { 53 struct address_space *mapping = page->mapping; 54 struct inode *inode; 55 struct f2fs_sb_info *sbi; 56 57 if (!mapping) 58 return false; 59 60 inode = mapping->host; 61 sbi = F2FS_I_SB(inode); 62 63 if (inode->i_ino == F2FS_META_INO(sbi) || 64 inode->i_ino == F2FS_NODE_INO(sbi) || 65 S_ISDIR(inode->i_mode)) 66 return true; 67 68 if (f2fs_is_compressed_page(page)) 69 return false; 70 if ((S_ISREG(inode->i_mode) && IS_NOQUOTA(inode)) || 71 page_private_gcing(page)) 72 return true; 73 return false; 74 } 75 76 static enum count_type __read_io_type(struct page *page) 77 { 78 struct address_space *mapping = page_file_mapping(page); 79 80 if (mapping) { 81 struct inode *inode = mapping->host; 82 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 83 84 if (inode->i_ino == F2FS_META_INO(sbi)) 85 return F2FS_RD_META; 86 87 if (inode->i_ino == F2FS_NODE_INO(sbi)) 88 return F2FS_RD_NODE; 89 } 90 return F2FS_RD_DATA; 91 } 92 93 /* postprocessing steps for read bios */ 94 enum bio_post_read_step { 95 #ifdef CONFIG_FS_ENCRYPTION 96 STEP_DECRYPT = BIT(0), 97 #else 98 STEP_DECRYPT = 0, /* compile out the decryption-related code */ 99 #endif 100 #ifdef CONFIG_F2FS_FS_COMPRESSION 101 STEP_DECOMPRESS = BIT(1), 102 #else 103 STEP_DECOMPRESS = 0, /* compile out the decompression-related code */ 104 #endif 105 #ifdef CONFIG_FS_VERITY 106 STEP_VERITY = BIT(2), 107 #else 108 STEP_VERITY = 0, /* compile out the verity-related code */ 109 #endif 110 }; 111 112 struct bio_post_read_ctx { 113 struct bio *bio; 114 struct f2fs_sb_info *sbi; 115 struct work_struct work; 116 unsigned int enabled_steps; 117 /* 118 * decompression_attempted keeps track of whether 119 * f2fs_end_read_compressed_page() has been called on the pages in the 120 * bio that belong to a compressed cluster yet. 121 */ 122 bool decompression_attempted; 123 block_t fs_blkaddr; 124 }; 125 126 /* 127 * Update and unlock a bio's pages, and free the bio. 128 * 129 * This marks pages up-to-date only if there was no error in the bio (I/O error, 130 * decryption error, or verity error), as indicated by bio->bi_status. 131 * 132 * "Compressed pages" (pagecache pages backed by a compressed cluster on-disk) 133 * aren't marked up-to-date here, as decompression is done on a per-compression- 134 * cluster basis rather than a per-bio basis. Instead, we only must do two 135 * things for each compressed page here: call f2fs_end_read_compressed_page() 136 * with failed=true if an error occurred before it would have normally gotten 137 * called (i.e., I/O error or decryption error, but *not* verity error), and 138 * release the bio's reference to the decompress_io_ctx of the page's cluster. 139 */ 140 static void f2fs_finish_read_bio(struct bio *bio, bool in_task) 141 { 142 struct bio_vec *bv; 143 struct bvec_iter_all iter_all; 144 struct bio_post_read_ctx *ctx = bio->bi_private; 145 146 bio_for_each_segment_all(bv, bio, iter_all) { 147 struct page *page = bv->bv_page; 148 149 if (f2fs_is_compressed_page(page)) { 150 if (ctx && !ctx->decompression_attempted) 151 f2fs_end_read_compressed_page(page, true, 0, 152 in_task); 153 f2fs_put_page_dic(page, in_task); 154 continue; 155 } 156 157 if (bio->bi_status) 158 ClearPageUptodate(page); 159 else 160 SetPageUptodate(page); 161 dec_page_count(F2FS_P_SB(page), __read_io_type(page)); 162 unlock_page(page); 163 } 164 165 if (ctx) 166 mempool_free(ctx, bio_post_read_ctx_pool); 167 bio_put(bio); 168 } 169 170 static void f2fs_verify_bio(struct work_struct *work) 171 { 172 struct bio_post_read_ctx *ctx = 173 container_of(work, struct bio_post_read_ctx, work); 174 struct bio *bio = ctx->bio; 175 bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS); 176 177 /* 178 * fsverity_verify_bio() may call readahead() again, and while verity 179 * will be disabled for this, decryption and/or decompression may still 180 * be needed, resulting in another bio_post_read_ctx being allocated. 181 * So to prevent deadlocks we need to release the current ctx to the 182 * mempool first. This assumes that verity is the last post-read step. 183 */ 184 mempool_free(ctx, bio_post_read_ctx_pool); 185 bio->bi_private = NULL; 186 187 /* 188 * Verify the bio's pages with fs-verity. Exclude compressed pages, 189 * as those were handled separately by f2fs_end_read_compressed_page(). 190 */ 191 if (may_have_compressed_pages) { 192 struct bio_vec *bv; 193 struct bvec_iter_all iter_all; 194 195 bio_for_each_segment_all(bv, bio, iter_all) { 196 struct page *page = bv->bv_page; 197 198 if (!f2fs_is_compressed_page(page) && 199 !fsverity_verify_page(page)) { 200 bio->bi_status = BLK_STS_IOERR; 201 break; 202 } 203 } 204 } else { 205 fsverity_verify_bio(bio); 206 } 207 208 f2fs_finish_read_bio(bio, true); 209 } 210 211 /* 212 * If the bio's data needs to be verified with fs-verity, then enqueue the 213 * verity work for the bio. Otherwise finish the bio now. 214 * 215 * Note that to avoid deadlocks, the verity work can't be done on the 216 * decryption/decompression workqueue. This is because verifying the data pages 217 * can involve reading verity metadata pages from the file, and these verity 218 * metadata pages may be encrypted and/or compressed. 219 */ 220 static void f2fs_verify_and_finish_bio(struct bio *bio, bool in_task) 221 { 222 struct bio_post_read_ctx *ctx = bio->bi_private; 223 224 if (ctx && (ctx->enabled_steps & STEP_VERITY)) { 225 INIT_WORK(&ctx->work, f2fs_verify_bio); 226 fsverity_enqueue_verify_work(&ctx->work); 227 } else { 228 f2fs_finish_read_bio(bio, in_task); 229 } 230 } 231 232 /* 233 * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last 234 * remaining page was read by @ctx->bio. 235 * 236 * Note that a bio may span clusters (even a mix of compressed and uncompressed 237 * clusters) or be for just part of a cluster. STEP_DECOMPRESS just indicates 238 * that the bio includes at least one compressed page. The actual decompression 239 * is done on a per-cluster basis, not a per-bio basis. 240 */ 241 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx, 242 bool in_task) 243 { 244 struct bio_vec *bv; 245 struct bvec_iter_all iter_all; 246 bool all_compressed = true; 247 block_t blkaddr = ctx->fs_blkaddr; 248 249 bio_for_each_segment_all(bv, ctx->bio, iter_all) { 250 struct page *page = bv->bv_page; 251 252 if (f2fs_is_compressed_page(page)) 253 f2fs_end_read_compressed_page(page, false, blkaddr, 254 in_task); 255 else 256 all_compressed = false; 257 258 blkaddr++; 259 } 260 261 ctx->decompression_attempted = true; 262 263 /* 264 * Optimization: if all the bio's pages are compressed, then scheduling 265 * the per-bio verity work is unnecessary, as verity will be fully 266 * handled at the compression cluster level. 267 */ 268 if (all_compressed) 269 ctx->enabled_steps &= ~STEP_VERITY; 270 } 271 272 static void f2fs_post_read_work(struct work_struct *work) 273 { 274 struct bio_post_read_ctx *ctx = 275 container_of(work, struct bio_post_read_ctx, work); 276 struct bio *bio = ctx->bio; 277 278 if ((ctx->enabled_steps & STEP_DECRYPT) && !fscrypt_decrypt_bio(bio)) { 279 f2fs_finish_read_bio(bio, true); 280 return; 281 } 282 283 if (ctx->enabled_steps & STEP_DECOMPRESS) 284 f2fs_handle_step_decompress(ctx, true); 285 286 f2fs_verify_and_finish_bio(bio, true); 287 } 288 289 static void f2fs_read_end_io(struct bio *bio) 290 { 291 struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio)); 292 struct bio_post_read_ctx *ctx; 293 bool intask = in_task(); 294 295 iostat_update_and_unbind_ctx(bio); 296 ctx = bio->bi_private; 297 298 if (time_to_inject(sbi, FAULT_READ_IO)) 299 bio->bi_status = BLK_STS_IOERR; 300 301 if (bio->bi_status) { 302 f2fs_finish_read_bio(bio, intask); 303 return; 304 } 305 306 if (ctx) { 307 unsigned int enabled_steps = ctx->enabled_steps & 308 (STEP_DECRYPT | STEP_DECOMPRESS); 309 310 /* 311 * If we have only decompression step between decompression and 312 * decrypt, we don't need post processing for this. 313 */ 314 if (enabled_steps == STEP_DECOMPRESS && 315 !f2fs_low_mem_mode(sbi)) { 316 f2fs_handle_step_decompress(ctx, intask); 317 } else if (enabled_steps) { 318 INIT_WORK(&ctx->work, f2fs_post_read_work); 319 queue_work(ctx->sbi->post_read_wq, &ctx->work); 320 return; 321 } 322 } 323 324 f2fs_verify_and_finish_bio(bio, intask); 325 } 326 327 static void f2fs_write_end_io(struct bio *bio) 328 { 329 struct f2fs_sb_info *sbi; 330 struct bio_vec *bvec; 331 struct bvec_iter_all iter_all; 332 333 iostat_update_and_unbind_ctx(bio); 334 sbi = bio->bi_private; 335 336 if (time_to_inject(sbi, FAULT_WRITE_IO)) 337 bio->bi_status = BLK_STS_IOERR; 338 339 bio_for_each_segment_all(bvec, bio, iter_all) { 340 struct page *page = bvec->bv_page; 341 enum count_type type = WB_DATA_TYPE(page); 342 343 if (page_private_dummy(page)) { 344 clear_page_private_dummy(page); 345 unlock_page(page); 346 mempool_free(page, sbi->write_io_dummy); 347 348 if (unlikely(bio->bi_status)) 349 f2fs_stop_checkpoint(sbi, true, 350 STOP_CP_REASON_WRITE_FAIL); 351 continue; 352 } 353 354 fscrypt_finalize_bounce_page(&page); 355 356 #ifdef CONFIG_F2FS_FS_COMPRESSION 357 if (f2fs_is_compressed_page(page)) { 358 f2fs_compress_write_end_io(bio, page); 359 continue; 360 } 361 #endif 362 363 if (unlikely(bio->bi_status)) { 364 mapping_set_error(page->mapping, -EIO); 365 if (type == F2FS_WB_CP_DATA) 366 f2fs_stop_checkpoint(sbi, true, 367 STOP_CP_REASON_WRITE_FAIL); 368 } 369 370 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) && 371 page->index != nid_of_node(page)); 372 373 dec_page_count(sbi, type); 374 if (f2fs_in_warm_node_list(sbi, page)) 375 f2fs_del_fsync_node_entry(sbi, page); 376 clear_page_private_gcing(page); 377 end_page_writeback(page); 378 } 379 if (!get_pages(sbi, F2FS_WB_CP_DATA) && 380 wq_has_sleeper(&sbi->cp_wait)) 381 wake_up(&sbi->cp_wait); 382 383 bio_put(bio); 384 } 385 386 #ifdef CONFIG_BLK_DEV_ZONED 387 static void f2fs_zone_write_end_io(struct bio *bio) 388 { 389 struct f2fs_bio_info *io = (struct f2fs_bio_info *)bio->bi_private; 390 391 bio->bi_private = io->bi_private; 392 complete(&io->zone_wait); 393 f2fs_write_end_io(bio); 394 } 395 #endif 396 397 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 398 block_t blk_addr, sector_t *sector) 399 { 400 struct block_device *bdev = sbi->sb->s_bdev; 401 int i; 402 403 if (f2fs_is_multi_device(sbi)) { 404 for (i = 0; i < sbi->s_ndevs; i++) { 405 if (FDEV(i).start_blk <= blk_addr && 406 FDEV(i).end_blk >= blk_addr) { 407 blk_addr -= FDEV(i).start_blk; 408 bdev = FDEV(i).bdev; 409 break; 410 } 411 } 412 } 413 414 if (sector) 415 *sector = SECTOR_FROM_BLOCK(blk_addr); 416 return bdev; 417 } 418 419 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr) 420 { 421 int i; 422 423 if (!f2fs_is_multi_device(sbi)) 424 return 0; 425 426 for (i = 0; i < sbi->s_ndevs; i++) 427 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr) 428 return i; 429 return 0; 430 } 431 432 static blk_opf_t f2fs_io_flags(struct f2fs_io_info *fio) 433 { 434 unsigned int temp_mask = GENMASK(NR_TEMP_TYPE - 1, 0); 435 unsigned int fua_flag, meta_flag, io_flag; 436 blk_opf_t op_flags = 0; 437 438 if (fio->op != REQ_OP_WRITE) 439 return 0; 440 if (fio->type == DATA) 441 io_flag = fio->sbi->data_io_flag; 442 else if (fio->type == NODE) 443 io_flag = fio->sbi->node_io_flag; 444 else 445 return 0; 446 447 fua_flag = io_flag & temp_mask; 448 meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask; 449 450 /* 451 * data/node io flag bits per temp: 452 * REQ_META | REQ_FUA | 453 * 5 | 4 | 3 | 2 | 1 | 0 | 454 * Cold | Warm | Hot | Cold | Warm | Hot | 455 */ 456 if (BIT(fio->temp) & meta_flag) 457 op_flags |= REQ_META; 458 if (BIT(fio->temp) & fua_flag) 459 op_flags |= REQ_FUA; 460 return op_flags; 461 } 462 463 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages) 464 { 465 struct f2fs_sb_info *sbi = fio->sbi; 466 struct block_device *bdev; 467 sector_t sector; 468 struct bio *bio; 469 470 bdev = f2fs_target_device(sbi, fio->new_blkaddr, §or); 471 bio = bio_alloc_bioset(bdev, npages, 472 fio->op | fio->op_flags | f2fs_io_flags(fio), 473 GFP_NOIO, &f2fs_bioset); 474 bio->bi_iter.bi_sector = sector; 475 if (is_read_io(fio->op)) { 476 bio->bi_end_io = f2fs_read_end_io; 477 bio->bi_private = NULL; 478 } else { 479 bio->bi_end_io = f2fs_write_end_io; 480 bio->bi_private = sbi; 481 } 482 iostat_alloc_and_bind_ctx(sbi, bio, NULL); 483 484 if (fio->io_wbc) 485 wbc_init_bio(fio->io_wbc, bio); 486 487 return bio; 488 } 489 490 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode, 491 pgoff_t first_idx, 492 const struct f2fs_io_info *fio, 493 gfp_t gfp_mask) 494 { 495 /* 496 * The f2fs garbage collector sets ->encrypted_page when it wants to 497 * read/write raw data without encryption. 498 */ 499 if (!fio || !fio->encrypted_page) 500 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask); 501 } 502 503 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode, 504 pgoff_t next_idx, 505 const struct f2fs_io_info *fio) 506 { 507 /* 508 * The f2fs garbage collector sets ->encrypted_page when it wants to 509 * read/write raw data without encryption. 510 */ 511 if (fio && fio->encrypted_page) 512 return !bio_has_crypt_ctx(bio); 513 514 return fscrypt_mergeable_bio(bio, inode, next_idx); 515 } 516 517 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio, 518 enum page_type type) 519 { 520 WARN_ON_ONCE(!is_read_io(bio_op(bio))); 521 trace_f2fs_submit_read_bio(sbi->sb, type, bio); 522 523 iostat_update_submit_ctx(bio, type); 524 submit_bio(bio); 525 } 526 527 static void f2fs_align_write_bio(struct f2fs_sb_info *sbi, struct bio *bio) 528 { 529 unsigned int start = 530 (bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS) % F2FS_IO_SIZE(sbi); 531 532 if (start == 0) 533 return; 534 535 /* fill dummy pages */ 536 for (; start < F2FS_IO_SIZE(sbi); start++) { 537 struct page *page = 538 mempool_alloc(sbi->write_io_dummy, 539 GFP_NOIO | __GFP_NOFAIL); 540 f2fs_bug_on(sbi, !page); 541 542 lock_page(page); 543 544 zero_user_segment(page, 0, PAGE_SIZE); 545 set_page_private_dummy(page); 546 547 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) 548 f2fs_bug_on(sbi, 1); 549 } 550 } 551 552 static void f2fs_submit_write_bio(struct f2fs_sb_info *sbi, struct bio *bio, 553 enum page_type type) 554 { 555 WARN_ON_ONCE(is_read_io(bio_op(bio))); 556 557 if (type == DATA || type == NODE) { 558 if (f2fs_lfs_mode(sbi) && current->plug) 559 blk_finish_plug(current->plug); 560 561 if (F2FS_IO_ALIGNED(sbi)) { 562 f2fs_align_write_bio(sbi, bio); 563 /* 564 * In the NODE case, we lose next block address chain. 565 * So, we need to do checkpoint in f2fs_sync_file. 566 */ 567 if (type == NODE) 568 set_sbi_flag(sbi, SBI_NEED_CP); 569 } 570 } 571 572 trace_f2fs_submit_write_bio(sbi->sb, type, bio); 573 iostat_update_submit_ctx(bio, type); 574 submit_bio(bio); 575 } 576 577 static void __submit_merged_bio(struct f2fs_bio_info *io) 578 { 579 struct f2fs_io_info *fio = &io->fio; 580 581 if (!io->bio) 582 return; 583 584 if (is_read_io(fio->op)) { 585 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio); 586 f2fs_submit_read_bio(io->sbi, io->bio, fio->type); 587 } else { 588 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio); 589 f2fs_submit_write_bio(io->sbi, io->bio, fio->type); 590 } 591 io->bio = NULL; 592 } 593 594 static bool __has_merged_page(struct bio *bio, struct inode *inode, 595 struct page *page, nid_t ino) 596 { 597 struct bio_vec *bvec; 598 struct bvec_iter_all iter_all; 599 600 if (!bio) 601 return false; 602 603 if (!inode && !page && !ino) 604 return true; 605 606 bio_for_each_segment_all(bvec, bio, iter_all) { 607 struct page *target = bvec->bv_page; 608 609 if (fscrypt_is_bounce_page(target)) { 610 target = fscrypt_pagecache_page(target); 611 if (IS_ERR(target)) 612 continue; 613 } 614 if (f2fs_is_compressed_page(target)) { 615 target = f2fs_compress_control_page(target); 616 if (IS_ERR(target)) 617 continue; 618 } 619 620 if (inode && inode == target->mapping->host) 621 return true; 622 if (page && page == target) 623 return true; 624 if (ino && ino == ino_of_node(target)) 625 return true; 626 } 627 628 return false; 629 } 630 631 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi) 632 { 633 int i; 634 635 for (i = 0; i < NR_PAGE_TYPE; i++) { 636 int n = (i == META) ? 1 : NR_TEMP_TYPE; 637 int j; 638 639 sbi->write_io[i] = f2fs_kmalloc(sbi, 640 array_size(n, sizeof(struct f2fs_bio_info)), 641 GFP_KERNEL); 642 if (!sbi->write_io[i]) 643 return -ENOMEM; 644 645 for (j = HOT; j < n; j++) { 646 init_f2fs_rwsem(&sbi->write_io[i][j].io_rwsem); 647 sbi->write_io[i][j].sbi = sbi; 648 sbi->write_io[i][j].bio = NULL; 649 spin_lock_init(&sbi->write_io[i][j].io_lock); 650 INIT_LIST_HEAD(&sbi->write_io[i][j].io_list); 651 INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list); 652 init_f2fs_rwsem(&sbi->write_io[i][j].bio_list_lock); 653 #ifdef CONFIG_BLK_DEV_ZONED 654 init_completion(&sbi->write_io[i][j].zone_wait); 655 sbi->write_io[i][j].zone_pending_bio = NULL; 656 sbi->write_io[i][j].bi_private = NULL; 657 #endif 658 } 659 } 660 661 return 0; 662 } 663 664 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi, 665 enum page_type type, enum temp_type temp) 666 { 667 enum page_type btype = PAGE_TYPE_OF_BIO(type); 668 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 669 670 f2fs_down_write(&io->io_rwsem); 671 672 if (!io->bio) 673 goto unlock_out; 674 675 /* change META to META_FLUSH in the checkpoint procedure */ 676 if (type >= META_FLUSH) { 677 io->fio.type = META_FLUSH; 678 io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC; 679 if (!test_opt(sbi, NOBARRIER)) 680 io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA; 681 } 682 __submit_merged_bio(io); 683 unlock_out: 684 f2fs_up_write(&io->io_rwsem); 685 } 686 687 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi, 688 struct inode *inode, struct page *page, 689 nid_t ino, enum page_type type, bool force) 690 { 691 enum temp_type temp; 692 bool ret = true; 693 694 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) { 695 if (!force) { 696 enum page_type btype = PAGE_TYPE_OF_BIO(type); 697 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 698 699 f2fs_down_read(&io->io_rwsem); 700 ret = __has_merged_page(io->bio, inode, page, ino); 701 f2fs_up_read(&io->io_rwsem); 702 } 703 if (ret) 704 __f2fs_submit_merged_write(sbi, type, temp); 705 706 /* TODO: use HOT temp only for meta pages now. */ 707 if (type >= META) 708 break; 709 } 710 } 711 712 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type) 713 { 714 __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true); 715 } 716 717 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 718 struct inode *inode, struct page *page, 719 nid_t ino, enum page_type type) 720 { 721 __submit_merged_write_cond(sbi, inode, page, ino, type, false); 722 } 723 724 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi) 725 { 726 f2fs_submit_merged_write(sbi, DATA); 727 f2fs_submit_merged_write(sbi, NODE); 728 f2fs_submit_merged_write(sbi, META); 729 } 730 731 /* 732 * Fill the locked page with data located in the block address. 733 * A caller needs to unlock the page on failure. 734 */ 735 int f2fs_submit_page_bio(struct f2fs_io_info *fio) 736 { 737 struct bio *bio; 738 struct page *page = fio->encrypted_page ? 739 fio->encrypted_page : fio->page; 740 741 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, 742 fio->is_por ? META_POR : (__is_meta_io(fio) ? 743 META_GENERIC : DATA_GENERIC_ENHANCE))) { 744 f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR); 745 return -EFSCORRUPTED; 746 } 747 748 trace_f2fs_submit_page_bio(page, fio); 749 750 /* Allocate a new bio */ 751 bio = __bio_alloc(fio, 1); 752 753 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host, 754 fio->page->index, fio, GFP_NOIO); 755 756 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 757 bio_put(bio); 758 return -EFAULT; 759 } 760 761 if (fio->io_wbc && !is_read_io(fio->op)) 762 wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE); 763 764 inc_page_count(fio->sbi, is_read_io(fio->op) ? 765 __read_io_type(page) : WB_DATA_TYPE(fio->page)); 766 767 if (is_read_io(bio_op(bio))) 768 f2fs_submit_read_bio(fio->sbi, bio, fio->type); 769 else 770 f2fs_submit_write_bio(fio->sbi, bio, fio->type); 771 return 0; 772 } 773 774 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio, 775 block_t last_blkaddr, block_t cur_blkaddr) 776 { 777 if (unlikely(sbi->max_io_bytes && 778 bio->bi_iter.bi_size >= sbi->max_io_bytes)) 779 return false; 780 if (last_blkaddr + 1 != cur_blkaddr) 781 return false; 782 return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL); 783 } 784 785 static bool io_type_is_mergeable(struct f2fs_bio_info *io, 786 struct f2fs_io_info *fio) 787 { 788 if (io->fio.op != fio->op) 789 return false; 790 return io->fio.op_flags == fio->op_flags; 791 } 792 793 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio, 794 struct f2fs_bio_info *io, 795 struct f2fs_io_info *fio, 796 block_t last_blkaddr, 797 block_t cur_blkaddr) 798 { 799 if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) { 800 unsigned int filled_blocks = 801 F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size); 802 unsigned int io_size = F2FS_IO_SIZE(sbi); 803 unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt; 804 805 /* IOs in bio is aligned and left space of vectors is not enough */ 806 if (!(filled_blocks % io_size) && left_vecs < io_size) 807 return false; 808 } 809 if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr)) 810 return false; 811 return io_type_is_mergeable(io, fio); 812 } 813 814 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio, 815 struct page *page, enum temp_type temp) 816 { 817 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 818 struct bio_entry *be; 819 820 be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL); 821 be->bio = bio; 822 bio_get(bio); 823 824 if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE) 825 f2fs_bug_on(sbi, 1); 826 827 f2fs_down_write(&io->bio_list_lock); 828 list_add_tail(&be->list, &io->bio_list); 829 f2fs_up_write(&io->bio_list_lock); 830 } 831 832 static void del_bio_entry(struct bio_entry *be) 833 { 834 list_del(&be->list); 835 kmem_cache_free(bio_entry_slab, be); 836 } 837 838 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio, 839 struct page *page) 840 { 841 struct f2fs_sb_info *sbi = fio->sbi; 842 enum temp_type temp; 843 bool found = false; 844 int ret = -EAGAIN; 845 846 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) { 847 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 848 struct list_head *head = &io->bio_list; 849 struct bio_entry *be; 850 851 f2fs_down_write(&io->bio_list_lock); 852 list_for_each_entry(be, head, list) { 853 if (be->bio != *bio) 854 continue; 855 856 found = true; 857 858 f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio, 859 *fio->last_block, 860 fio->new_blkaddr)); 861 if (f2fs_crypt_mergeable_bio(*bio, 862 fio->page->mapping->host, 863 fio->page->index, fio) && 864 bio_add_page(*bio, page, PAGE_SIZE, 0) == 865 PAGE_SIZE) { 866 ret = 0; 867 break; 868 } 869 870 /* page can't be merged into bio; submit the bio */ 871 del_bio_entry(be); 872 f2fs_submit_write_bio(sbi, *bio, DATA); 873 break; 874 } 875 f2fs_up_write(&io->bio_list_lock); 876 } 877 878 if (ret) { 879 bio_put(*bio); 880 *bio = NULL; 881 } 882 883 return ret; 884 } 885 886 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi, 887 struct bio **bio, struct page *page) 888 { 889 enum temp_type temp; 890 bool found = false; 891 struct bio *target = bio ? *bio : NULL; 892 893 f2fs_bug_on(sbi, !target && !page); 894 895 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) { 896 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 897 struct list_head *head = &io->bio_list; 898 struct bio_entry *be; 899 900 if (list_empty(head)) 901 continue; 902 903 f2fs_down_read(&io->bio_list_lock); 904 list_for_each_entry(be, head, list) { 905 if (target) 906 found = (target == be->bio); 907 else 908 found = __has_merged_page(be->bio, NULL, 909 page, 0); 910 if (found) 911 break; 912 } 913 f2fs_up_read(&io->bio_list_lock); 914 915 if (!found) 916 continue; 917 918 found = false; 919 920 f2fs_down_write(&io->bio_list_lock); 921 list_for_each_entry(be, head, list) { 922 if (target) 923 found = (target == be->bio); 924 else 925 found = __has_merged_page(be->bio, NULL, 926 page, 0); 927 if (found) { 928 target = be->bio; 929 del_bio_entry(be); 930 break; 931 } 932 } 933 f2fs_up_write(&io->bio_list_lock); 934 } 935 936 if (found) 937 f2fs_submit_write_bio(sbi, target, DATA); 938 if (bio && *bio) { 939 bio_put(*bio); 940 *bio = NULL; 941 } 942 } 943 944 int f2fs_merge_page_bio(struct f2fs_io_info *fio) 945 { 946 struct bio *bio = *fio->bio; 947 struct page *page = fio->encrypted_page ? 948 fio->encrypted_page : fio->page; 949 950 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, 951 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC)) { 952 f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR); 953 return -EFSCORRUPTED; 954 } 955 956 trace_f2fs_submit_page_bio(page, fio); 957 958 if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block, 959 fio->new_blkaddr)) 960 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL); 961 alloc_new: 962 if (!bio) { 963 bio = __bio_alloc(fio, BIO_MAX_VECS); 964 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host, 965 fio->page->index, fio, GFP_NOIO); 966 967 add_bio_entry(fio->sbi, bio, page, fio->temp); 968 } else { 969 if (add_ipu_page(fio, &bio, page)) 970 goto alloc_new; 971 } 972 973 if (fio->io_wbc) 974 wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE); 975 976 inc_page_count(fio->sbi, WB_DATA_TYPE(page)); 977 978 *fio->last_block = fio->new_blkaddr; 979 *fio->bio = bio; 980 981 return 0; 982 } 983 984 #ifdef CONFIG_BLK_DEV_ZONED 985 static bool is_end_zone_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr) 986 { 987 int devi = 0; 988 989 if (f2fs_is_multi_device(sbi)) { 990 devi = f2fs_target_device_index(sbi, blkaddr); 991 if (blkaddr < FDEV(devi).start_blk || 992 blkaddr > FDEV(devi).end_blk) { 993 f2fs_err(sbi, "Invalid block %x", blkaddr); 994 return false; 995 } 996 blkaddr -= FDEV(devi).start_blk; 997 } 998 return bdev_is_zoned(FDEV(devi).bdev) && 999 f2fs_blkz_is_seq(sbi, devi, blkaddr) && 1000 (blkaddr % sbi->blocks_per_blkz == sbi->blocks_per_blkz - 1); 1001 } 1002 #endif 1003 1004 void f2fs_submit_page_write(struct f2fs_io_info *fio) 1005 { 1006 struct f2fs_sb_info *sbi = fio->sbi; 1007 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type); 1008 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp; 1009 struct page *bio_page; 1010 1011 f2fs_bug_on(sbi, is_read_io(fio->op)); 1012 1013 f2fs_down_write(&io->io_rwsem); 1014 1015 #ifdef CONFIG_BLK_DEV_ZONED 1016 if (f2fs_sb_has_blkzoned(sbi) && btype < META && io->zone_pending_bio) { 1017 wait_for_completion_io(&io->zone_wait); 1018 bio_put(io->zone_pending_bio); 1019 io->zone_pending_bio = NULL; 1020 io->bi_private = NULL; 1021 } 1022 #endif 1023 1024 next: 1025 if (fio->in_list) { 1026 spin_lock(&io->io_lock); 1027 if (list_empty(&io->io_list)) { 1028 spin_unlock(&io->io_lock); 1029 goto out; 1030 } 1031 fio = list_first_entry(&io->io_list, 1032 struct f2fs_io_info, list); 1033 list_del(&fio->list); 1034 spin_unlock(&io->io_lock); 1035 } 1036 1037 verify_fio_blkaddr(fio); 1038 1039 if (fio->encrypted_page) 1040 bio_page = fio->encrypted_page; 1041 else if (fio->compressed_page) 1042 bio_page = fio->compressed_page; 1043 else 1044 bio_page = fio->page; 1045 1046 /* set submitted = true as a return value */ 1047 fio->submitted = 1; 1048 1049 inc_page_count(sbi, WB_DATA_TYPE(bio_page)); 1050 1051 if (io->bio && 1052 (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio, 1053 fio->new_blkaddr) || 1054 !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host, 1055 bio_page->index, fio))) 1056 __submit_merged_bio(io); 1057 alloc_new: 1058 if (io->bio == NULL) { 1059 if (F2FS_IO_ALIGNED(sbi) && 1060 (fio->type == DATA || fio->type == NODE) && 1061 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) { 1062 dec_page_count(sbi, WB_DATA_TYPE(bio_page)); 1063 fio->retry = 1; 1064 goto skip; 1065 } 1066 io->bio = __bio_alloc(fio, BIO_MAX_VECS); 1067 f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host, 1068 bio_page->index, fio, GFP_NOIO); 1069 io->fio = *fio; 1070 } 1071 1072 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) { 1073 __submit_merged_bio(io); 1074 goto alloc_new; 1075 } 1076 1077 if (fio->io_wbc) 1078 wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE); 1079 1080 io->last_block_in_bio = fio->new_blkaddr; 1081 1082 trace_f2fs_submit_page_write(fio->page, fio); 1083 skip: 1084 if (fio->in_list) 1085 goto next; 1086 out: 1087 #ifdef CONFIG_BLK_DEV_ZONED 1088 if (f2fs_sb_has_blkzoned(sbi) && btype < META && 1089 is_end_zone_blkaddr(sbi, fio->new_blkaddr)) { 1090 bio_get(io->bio); 1091 reinit_completion(&io->zone_wait); 1092 io->bi_private = io->bio->bi_private; 1093 io->bio->bi_private = io; 1094 io->bio->bi_end_io = f2fs_zone_write_end_io; 1095 io->zone_pending_bio = io->bio; 1096 __submit_merged_bio(io); 1097 } 1098 #endif 1099 if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || 1100 !f2fs_is_checkpoint_ready(sbi)) 1101 __submit_merged_bio(io); 1102 f2fs_up_write(&io->io_rwsem); 1103 } 1104 1105 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr, 1106 unsigned nr_pages, blk_opf_t op_flag, 1107 pgoff_t first_idx, bool for_write) 1108 { 1109 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1110 struct bio *bio; 1111 struct bio_post_read_ctx *ctx = NULL; 1112 unsigned int post_read_steps = 0; 1113 sector_t sector; 1114 struct block_device *bdev = f2fs_target_device(sbi, blkaddr, §or); 1115 1116 bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages), 1117 REQ_OP_READ | op_flag, 1118 for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset); 1119 if (!bio) 1120 return ERR_PTR(-ENOMEM); 1121 bio->bi_iter.bi_sector = sector; 1122 f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS); 1123 bio->bi_end_io = f2fs_read_end_io; 1124 1125 if (fscrypt_inode_uses_fs_layer_crypto(inode)) 1126 post_read_steps |= STEP_DECRYPT; 1127 1128 if (f2fs_need_verity(inode, first_idx)) 1129 post_read_steps |= STEP_VERITY; 1130 1131 /* 1132 * STEP_DECOMPRESS is handled specially, since a compressed file might 1133 * contain both compressed and uncompressed clusters. We'll allocate a 1134 * bio_post_read_ctx if the file is compressed, but the caller is 1135 * responsible for enabling STEP_DECOMPRESS if it's actually needed. 1136 */ 1137 1138 if (post_read_steps || f2fs_compressed_file(inode)) { 1139 /* Due to the mempool, this never fails. */ 1140 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS); 1141 ctx->bio = bio; 1142 ctx->sbi = sbi; 1143 ctx->enabled_steps = post_read_steps; 1144 ctx->fs_blkaddr = blkaddr; 1145 ctx->decompression_attempted = false; 1146 bio->bi_private = ctx; 1147 } 1148 iostat_alloc_and_bind_ctx(sbi, bio, ctx); 1149 1150 return bio; 1151 } 1152 1153 /* This can handle encryption stuffs */ 1154 static int f2fs_submit_page_read(struct inode *inode, struct page *page, 1155 block_t blkaddr, blk_opf_t op_flags, 1156 bool for_write) 1157 { 1158 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1159 struct bio *bio; 1160 1161 bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags, 1162 page->index, for_write); 1163 if (IS_ERR(bio)) 1164 return PTR_ERR(bio); 1165 1166 /* wait for GCed page writeback via META_MAPPING */ 1167 f2fs_wait_on_block_writeback(inode, blkaddr); 1168 1169 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 1170 iostat_update_and_unbind_ctx(bio); 1171 if (bio->bi_private) 1172 mempool_free(bio->bi_private, bio_post_read_ctx_pool); 1173 bio_put(bio); 1174 return -EFAULT; 1175 } 1176 inc_page_count(sbi, F2FS_RD_DATA); 1177 f2fs_update_iostat(sbi, NULL, FS_DATA_READ_IO, F2FS_BLKSIZE); 1178 f2fs_submit_read_bio(sbi, bio, DATA); 1179 return 0; 1180 } 1181 1182 static void __set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) 1183 { 1184 __le32 *addr = get_dnode_addr(dn->inode, dn->node_page); 1185 1186 dn->data_blkaddr = blkaddr; 1187 addr[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr); 1188 } 1189 1190 /* 1191 * Lock ordering for the change of data block address: 1192 * ->data_page 1193 * ->node_page 1194 * update block addresses in the node page 1195 */ 1196 void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) 1197 { 1198 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true); 1199 __set_data_blkaddr(dn, blkaddr); 1200 if (set_page_dirty(dn->node_page)) 1201 dn->node_changed = true; 1202 } 1203 1204 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) 1205 { 1206 f2fs_set_data_blkaddr(dn, blkaddr); 1207 f2fs_update_read_extent_cache(dn); 1208 } 1209 1210 /* dn->ofs_in_node will be returned with up-to-date last block pointer */ 1211 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count) 1212 { 1213 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1214 int err; 1215 1216 if (!count) 1217 return 0; 1218 1219 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1220 return -EPERM; 1221 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count)))) 1222 return err; 1223 1224 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid, 1225 dn->ofs_in_node, count); 1226 1227 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true); 1228 1229 for (; count > 0; dn->ofs_in_node++) { 1230 block_t blkaddr = f2fs_data_blkaddr(dn); 1231 1232 if (blkaddr == NULL_ADDR) { 1233 __set_data_blkaddr(dn, NEW_ADDR); 1234 count--; 1235 } 1236 } 1237 1238 if (set_page_dirty(dn->node_page)) 1239 dn->node_changed = true; 1240 return 0; 1241 } 1242 1243 /* Should keep dn->ofs_in_node unchanged */ 1244 int f2fs_reserve_new_block(struct dnode_of_data *dn) 1245 { 1246 unsigned int ofs_in_node = dn->ofs_in_node; 1247 int ret; 1248 1249 ret = f2fs_reserve_new_blocks(dn, 1); 1250 dn->ofs_in_node = ofs_in_node; 1251 return ret; 1252 } 1253 1254 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index) 1255 { 1256 bool need_put = dn->inode_page ? false : true; 1257 int err; 1258 1259 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE); 1260 if (err) 1261 return err; 1262 1263 if (dn->data_blkaddr == NULL_ADDR) 1264 err = f2fs_reserve_new_block(dn); 1265 if (err || need_put) 1266 f2fs_put_dnode(dn); 1267 return err; 1268 } 1269 1270 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index, 1271 blk_opf_t op_flags, bool for_write, 1272 pgoff_t *next_pgofs) 1273 { 1274 struct address_space *mapping = inode->i_mapping; 1275 struct dnode_of_data dn; 1276 struct page *page; 1277 int err; 1278 1279 page = f2fs_grab_cache_page(mapping, index, for_write); 1280 if (!page) 1281 return ERR_PTR(-ENOMEM); 1282 1283 if (f2fs_lookup_read_extent_cache_block(inode, index, 1284 &dn.data_blkaddr)) { 1285 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr, 1286 DATA_GENERIC_ENHANCE_READ)) { 1287 err = -EFSCORRUPTED; 1288 f2fs_handle_error(F2FS_I_SB(inode), 1289 ERROR_INVALID_BLKADDR); 1290 goto put_err; 1291 } 1292 goto got_it; 1293 } 1294 1295 set_new_dnode(&dn, inode, NULL, NULL, 0); 1296 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 1297 if (err) { 1298 if (err == -ENOENT && next_pgofs) 1299 *next_pgofs = f2fs_get_next_page_offset(&dn, index); 1300 goto put_err; 1301 } 1302 f2fs_put_dnode(&dn); 1303 1304 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { 1305 err = -ENOENT; 1306 if (next_pgofs) 1307 *next_pgofs = index + 1; 1308 goto put_err; 1309 } 1310 if (dn.data_blkaddr != NEW_ADDR && 1311 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode), 1312 dn.data_blkaddr, 1313 DATA_GENERIC_ENHANCE)) { 1314 err = -EFSCORRUPTED; 1315 f2fs_handle_error(F2FS_I_SB(inode), 1316 ERROR_INVALID_BLKADDR); 1317 goto put_err; 1318 } 1319 got_it: 1320 if (PageUptodate(page)) { 1321 unlock_page(page); 1322 return page; 1323 } 1324 1325 /* 1326 * A new dentry page is allocated but not able to be written, since its 1327 * new inode page couldn't be allocated due to -ENOSPC. 1328 * In such the case, its blkaddr can be remained as NEW_ADDR. 1329 * see, f2fs_add_link -> f2fs_get_new_data_page -> 1330 * f2fs_init_inode_metadata. 1331 */ 1332 if (dn.data_blkaddr == NEW_ADDR) { 1333 zero_user_segment(page, 0, PAGE_SIZE); 1334 if (!PageUptodate(page)) 1335 SetPageUptodate(page); 1336 unlock_page(page); 1337 return page; 1338 } 1339 1340 err = f2fs_submit_page_read(inode, page, dn.data_blkaddr, 1341 op_flags, for_write); 1342 if (err) 1343 goto put_err; 1344 return page; 1345 1346 put_err: 1347 f2fs_put_page(page, 1); 1348 return ERR_PTR(err); 1349 } 1350 1351 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index, 1352 pgoff_t *next_pgofs) 1353 { 1354 struct address_space *mapping = inode->i_mapping; 1355 struct page *page; 1356 1357 page = find_get_page(mapping, index); 1358 if (page && PageUptodate(page)) 1359 return page; 1360 f2fs_put_page(page, 0); 1361 1362 page = f2fs_get_read_data_page(inode, index, 0, false, next_pgofs); 1363 if (IS_ERR(page)) 1364 return page; 1365 1366 if (PageUptodate(page)) 1367 return page; 1368 1369 wait_on_page_locked(page); 1370 if (unlikely(!PageUptodate(page))) { 1371 f2fs_put_page(page, 0); 1372 return ERR_PTR(-EIO); 1373 } 1374 return page; 1375 } 1376 1377 /* 1378 * If it tries to access a hole, return an error. 1379 * Because, the callers, functions in dir.c and GC, should be able to know 1380 * whether this page exists or not. 1381 */ 1382 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index, 1383 bool for_write) 1384 { 1385 struct address_space *mapping = inode->i_mapping; 1386 struct page *page; 1387 1388 page = f2fs_get_read_data_page(inode, index, 0, for_write, NULL); 1389 if (IS_ERR(page)) 1390 return page; 1391 1392 /* wait for read completion */ 1393 lock_page(page); 1394 if (unlikely(page->mapping != mapping || !PageUptodate(page))) { 1395 f2fs_put_page(page, 1); 1396 return ERR_PTR(-EIO); 1397 } 1398 return page; 1399 } 1400 1401 /* 1402 * Caller ensures that this data page is never allocated. 1403 * A new zero-filled data page is allocated in the page cache. 1404 * 1405 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and 1406 * f2fs_unlock_op(). 1407 * Note that, ipage is set only by make_empty_dir, and if any error occur, 1408 * ipage should be released by this function. 1409 */ 1410 struct page *f2fs_get_new_data_page(struct inode *inode, 1411 struct page *ipage, pgoff_t index, bool new_i_size) 1412 { 1413 struct address_space *mapping = inode->i_mapping; 1414 struct page *page; 1415 struct dnode_of_data dn; 1416 int err; 1417 1418 page = f2fs_grab_cache_page(mapping, index, true); 1419 if (!page) { 1420 /* 1421 * before exiting, we should make sure ipage will be released 1422 * if any error occur. 1423 */ 1424 f2fs_put_page(ipage, 1); 1425 return ERR_PTR(-ENOMEM); 1426 } 1427 1428 set_new_dnode(&dn, inode, ipage, NULL, 0); 1429 err = f2fs_reserve_block(&dn, index); 1430 if (err) { 1431 f2fs_put_page(page, 1); 1432 return ERR_PTR(err); 1433 } 1434 if (!ipage) 1435 f2fs_put_dnode(&dn); 1436 1437 if (PageUptodate(page)) 1438 goto got_it; 1439 1440 if (dn.data_blkaddr == NEW_ADDR) { 1441 zero_user_segment(page, 0, PAGE_SIZE); 1442 if (!PageUptodate(page)) 1443 SetPageUptodate(page); 1444 } else { 1445 f2fs_put_page(page, 1); 1446 1447 /* if ipage exists, blkaddr should be NEW_ADDR */ 1448 f2fs_bug_on(F2FS_I_SB(inode), ipage); 1449 page = f2fs_get_lock_data_page(inode, index, true); 1450 if (IS_ERR(page)) 1451 return page; 1452 } 1453 got_it: 1454 if (new_i_size && i_size_read(inode) < 1455 ((loff_t)(index + 1) << PAGE_SHIFT)) 1456 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT)); 1457 return page; 1458 } 1459 1460 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type) 1461 { 1462 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1463 struct f2fs_summary sum; 1464 struct node_info ni; 1465 block_t old_blkaddr; 1466 blkcnt_t count = 1; 1467 int err; 1468 1469 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1470 return -EPERM; 1471 1472 err = f2fs_get_node_info(sbi, dn->nid, &ni, false); 1473 if (err) 1474 return err; 1475 1476 dn->data_blkaddr = f2fs_data_blkaddr(dn); 1477 if (dn->data_blkaddr == NULL_ADDR) { 1478 err = inc_valid_block_count(sbi, dn->inode, &count); 1479 if (unlikely(err)) 1480 return err; 1481 } 1482 1483 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 1484 old_blkaddr = dn->data_blkaddr; 1485 f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr, 1486 &sum, seg_type, NULL); 1487 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 1488 f2fs_invalidate_internal_cache(sbi, old_blkaddr); 1489 1490 f2fs_update_data_blkaddr(dn, dn->data_blkaddr); 1491 return 0; 1492 } 1493 1494 static void f2fs_map_lock(struct f2fs_sb_info *sbi, int flag) 1495 { 1496 if (flag == F2FS_GET_BLOCK_PRE_AIO) 1497 f2fs_down_read(&sbi->node_change); 1498 else 1499 f2fs_lock_op(sbi); 1500 } 1501 1502 static void f2fs_map_unlock(struct f2fs_sb_info *sbi, int flag) 1503 { 1504 if (flag == F2FS_GET_BLOCK_PRE_AIO) 1505 f2fs_up_read(&sbi->node_change); 1506 else 1507 f2fs_unlock_op(sbi); 1508 } 1509 1510 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index) 1511 { 1512 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1513 int err = 0; 1514 1515 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO); 1516 if (!f2fs_lookup_read_extent_cache_block(dn->inode, index, 1517 &dn->data_blkaddr)) 1518 err = f2fs_reserve_block(dn, index); 1519 f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO); 1520 1521 return err; 1522 } 1523 1524 static int f2fs_map_no_dnode(struct inode *inode, 1525 struct f2fs_map_blocks *map, struct dnode_of_data *dn, 1526 pgoff_t pgoff) 1527 { 1528 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1529 1530 /* 1531 * There is one exceptional case that read_node_page() may return 1532 * -ENOENT due to filesystem has been shutdown or cp_error, return 1533 * -EIO in that case. 1534 */ 1535 if (map->m_may_create && 1536 (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || f2fs_cp_error(sbi))) 1537 return -EIO; 1538 1539 if (map->m_next_pgofs) 1540 *map->m_next_pgofs = f2fs_get_next_page_offset(dn, pgoff); 1541 if (map->m_next_extent) 1542 *map->m_next_extent = f2fs_get_next_page_offset(dn, pgoff); 1543 return 0; 1544 } 1545 1546 static bool f2fs_map_blocks_cached(struct inode *inode, 1547 struct f2fs_map_blocks *map, int flag) 1548 { 1549 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1550 unsigned int maxblocks = map->m_len; 1551 pgoff_t pgoff = (pgoff_t)map->m_lblk; 1552 struct extent_info ei = {}; 1553 1554 if (!f2fs_lookup_read_extent_cache(inode, pgoff, &ei)) 1555 return false; 1556 1557 map->m_pblk = ei.blk + pgoff - ei.fofs; 1558 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgoff); 1559 map->m_flags = F2FS_MAP_MAPPED; 1560 if (map->m_next_extent) 1561 *map->m_next_extent = pgoff + map->m_len; 1562 1563 /* for hardware encryption, but to avoid potential issue in future */ 1564 if (flag == F2FS_GET_BLOCK_DIO) 1565 f2fs_wait_on_block_writeback_range(inode, 1566 map->m_pblk, map->m_len); 1567 1568 if (f2fs_allow_multi_device_dio(sbi, flag)) { 1569 int bidx = f2fs_target_device_index(sbi, map->m_pblk); 1570 struct f2fs_dev_info *dev = &sbi->devs[bidx]; 1571 1572 map->m_bdev = dev->bdev; 1573 map->m_pblk -= dev->start_blk; 1574 map->m_len = min(map->m_len, dev->end_blk + 1 - map->m_pblk); 1575 } else { 1576 map->m_bdev = inode->i_sb->s_bdev; 1577 } 1578 return true; 1579 } 1580 1581 /* 1582 * f2fs_map_blocks() tries to find or build mapping relationship which 1583 * maps continuous logical blocks to physical blocks, and return such 1584 * info via f2fs_map_blocks structure. 1585 */ 1586 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag) 1587 { 1588 unsigned int maxblocks = map->m_len; 1589 struct dnode_of_data dn; 1590 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1591 int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE; 1592 pgoff_t pgofs, end_offset, end; 1593 int err = 0, ofs = 1; 1594 unsigned int ofs_in_node, last_ofs_in_node; 1595 blkcnt_t prealloc; 1596 block_t blkaddr; 1597 unsigned int start_pgofs; 1598 int bidx = 0; 1599 bool is_hole; 1600 1601 if (!maxblocks) 1602 return 0; 1603 1604 if (!map->m_may_create && f2fs_map_blocks_cached(inode, map, flag)) 1605 goto out; 1606 1607 map->m_bdev = inode->i_sb->s_bdev; 1608 map->m_multidev_dio = 1609 f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag); 1610 1611 map->m_len = 0; 1612 map->m_flags = 0; 1613 1614 /* it only supports block size == page size */ 1615 pgofs = (pgoff_t)map->m_lblk; 1616 end = pgofs + maxblocks; 1617 1618 next_dnode: 1619 if (map->m_may_create) 1620 f2fs_map_lock(sbi, flag); 1621 1622 /* When reading holes, we need its node page */ 1623 set_new_dnode(&dn, inode, NULL, NULL, 0); 1624 err = f2fs_get_dnode_of_data(&dn, pgofs, mode); 1625 if (err) { 1626 if (flag == F2FS_GET_BLOCK_BMAP) 1627 map->m_pblk = 0; 1628 if (err == -ENOENT) 1629 err = f2fs_map_no_dnode(inode, map, &dn, pgofs); 1630 goto unlock_out; 1631 } 1632 1633 start_pgofs = pgofs; 1634 prealloc = 0; 1635 last_ofs_in_node = ofs_in_node = dn.ofs_in_node; 1636 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1637 1638 next_block: 1639 blkaddr = f2fs_data_blkaddr(&dn); 1640 is_hole = !__is_valid_data_blkaddr(blkaddr); 1641 if (!is_hole && 1642 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) { 1643 err = -EFSCORRUPTED; 1644 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 1645 goto sync_out; 1646 } 1647 1648 /* use out-place-update for direct IO under LFS mode */ 1649 if (map->m_may_create && 1650 (is_hole || (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO))) { 1651 if (unlikely(f2fs_cp_error(sbi))) { 1652 err = -EIO; 1653 goto sync_out; 1654 } 1655 1656 switch (flag) { 1657 case F2FS_GET_BLOCK_PRE_AIO: 1658 if (blkaddr == NULL_ADDR) { 1659 prealloc++; 1660 last_ofs_in_node = dn.ofs_in_node; 1661 } 1662 break; 1663 case F2FS_GET_BLOCK_PRE_DIO: 1664 case F2FS_GET_BLOCK_DIO: 1665 err = __allocate_data_block(&dn, map->m_seg_type); 1666 if (err) 1667 goto sync_out; 1668 if (flag == F2FS_GET_BLOCK_PRE_DIO) 1669 file_need_truncate(inode); 1670 set_inode_flag(inode, FI_APPEND_WRITE); 1671 break; 1672 default: 1673 WARN_ON_ONCE(1); 1674 err = -EIO; 1675 goto sync_out; 1676 } 1677 1678 blkaddr = dn.data_blkaddr; 1679 if (is_hole) 1680 map->m_flags |= F2FS_MAP_NEW; 1681 } else if (is_hole) { 1682 if (f2fs_compressed_file(inode) && 1683 f2fs_sanity_check_cluster(&dn)) { 1684 err = -EFSCORRUPTED; 1685 f2fs_handle_error(sbi, 1686 ERROR_CORRUPTED_CLUSTER); 1687 goto sync_out; 1688 } 1689 1690 switch (flag) { 1691 case F2FS_GET_BLOCK_PRECACHE: 1692 goto sync_out; 1693 case F2FS_GET_BLOCK_BMAP: 1694 map->m_pblk = 0; 1695 goto sync_out; 1696 case F2FS_GET_BLOCK_FIEMAP: 1697 if (blkaddr == NULL_ADDR) { 1698 if (map->m_next_pgofs) 1699 *map->m_next_pgofs = pgofs + 1; 1700 goto sync_out; 1701 } 1702 break; 1703 default: 1704 /* for defragment case */ 1705 if (map->m_next_pgofs) 1706 *map->m_next_pgofs = pgofs + 1; 1707 goto sync_out; 1708 } 1709 } 1710 1711 if (flag == F2FS_GET_BLOCK_PRE_AIO) 1712 goto skip; 1713 1714 if (map->m_multidev_dio) 1715 bidx = f2fs_target_device_index(sbi, blkaddr); 1716 1717 if (map->m_len == 0) { 1718 /* reserved delalloc block should be mapped for fiemap. */ 1719 if (blkaddr == NEW_ADDR) 1720 map->m_flags |= F2FS_MAP_DELALLOC; 1721 map->m_flags |= F2FS_MAP_MAPPED; 1722 1723 map->m_pblk = blkaddr; 1724 map->m_len = 1; 1725 1726 if (map->m_multidev_dio) 1727 map->m_bdev = FDEV(bidx).bdev; 1728 } else if ((map->m_pblk != NEW_ADDR && 1729 blkaddr == (map->m_pblk + ofs)) || 1730 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) || 1731 flag == F2FS_GET_BLOCK_PRE_DIO) { 1732 if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev) 1733 goto sync_out; 1734 ofs++; 1735 map->m_len++; 1736 } else { 1737 goto sync_out; 1738 } 1739 1740 skip: 1741 dn.ofs_in_node++; 1742 pgofs++; 1743 1744 /* preallocate blocks in batch for one dnode page */ 1745 if (flag == F2FS_GET_BLOCK_PRE_AIO && 1746 (pgofs == end || dn.ofs_in_node == end_offset)) { 1747 1748 dn.ofs_in_node = ofs_in_node; 1749 err = f2fs_reserve_new_blocks(&dn, prealloc); 1750 if (err) 1751 goto sync_out; 1752 1753 map->m_len += dn.ofs_in_node - ofs_in_node; 1754 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) { 1755 err = -ENOSPC; 1756 goto sync_out; 1757 } 1758 dn.ofs_in_node = end_offset; 1759 } 1760 1761 if (pgofs >= end) 1762 goto sync_out; 1763 else if (dn.ofs_in_node < end_offset) 1764 goto next_block; 1765 1766 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1767 if (map->m_flags & F2FS_MAP_MAPPED) { 1768 unsigned int ofs = start_pgofs - map->m_lblk; 1769 1770 f2fs_update_read_extent_cache_range(&dn, 1771 start_pgofs, map->m_pblk + ofs, 1772 map->m_len - ofs); 1773 } 1774 } 1775 1776 f2fs_put_dnode(&dn); 1777 1778 if (map->m_may_create) { 1779 f2fs_map_unlock(sbi, flag); 1780 f2fs_balance_fs(sbi, dn.node_changed); 1781 } 1782 goto next_dnode; 1783 1784 sync_out: 1785 1786 if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) { 1787 /* 1788 * for hardware encryption, but to avoid potential issue 1789 * in future 1790 */ 1791 f2fs_wait_on_block_writeback_range(inode, 1792 map->m_pblk, map->m_len); 1793 1794 if (map->m_multidev_dio) { 1795 block_t blk_addr = map->m_pblk; 1796 1797 bidx = f2fs_target_device_index(sbi, map->m_pblk); 1798 1799 map->m_bdev = FDEV(bidx).bdev; 1800 map->m_pblk -= FDEV(bidx).start_blk; 1801 1802 if (map->m_may_create) 1803 f2fs_update_device_state(sbi, inode->i_ino, 1804 blk_addr, map->m_len); 1805 1806 f2fs_bug_on(sbi, blk_addr + map->m_len > 1807 FDEV(bidx).end_blk + 1); 1808 } 1809 } 1810 1811 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1812 if (map->m_flags & F2FS_MAP_MAPPED) { 1813 unsigned int ofs = start_pgofs - map->m_lblk; 1814 1815 f2fs_update_read_extent_cache_range(&dn, 1816 start_pgofs, map->m_pblk + ofs, 1817 map->m_len - ofs); 1818 } 1819 if (map->m_next_extent) 1820 *map->m_next_extent = pgofs + 1; 1821 } 1822 f2fs_put_dnode(&dn); 1823 unlock_out: 1824 if (map->m_may_create) { 1825 f2fs_map_unlock(sbi, flag); 1826 f2fs_balance_fs(sbi, dn.node_changed); 1827 } 1828 out: 1829 trace_f2fs_map_blocks(inode, map, flag, err); 1830 return err; 1831 } 1832 1833 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len) 1834 { 1835 struct f2fs_map_blocks map; 1836 block_t last_lblk; 1837 int err; 1838 1839 if (pos + len > i_size_read(inode)) 1840 return false; 1841 1842 map.m_lblk = F2FS_BYTES_TO_BLK(pos); 1843 map.m_next_pgofs = NULL; 1844 map.m_next_extent = NULL; 1845 map.m_seg_type = NO_CHECK_TYPE; 1846 map.m_may_create = false; 1847 last_lblk = F2FS_BLK_ALIGN(pos + len); 1848 1849 while (map.m_lblk < last_lblk) { 1850 map.m_len = last_lblk - map.m_lblk; 1851 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT); 1852 if (err || map.m_len == 0) 1853 return false; 1854 map.m_lblk += map.m_len; 1855 } 1856 return true; 1857 } 1858 1859 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes) 1860 { 1861 return (bytes >> inode->i_blkbits); 1862 } 1863 1864 static inline u64 blks_to_bytes(struct inode *inode, u64 blks) 1865 { 1866 return (blks << inode->i_blkbits); 1867 } 1868 1869 static int f2fs_xattr_fiemap(struct inode *inode, 1870 struct fiemap_extent_info *fieinfo) 1871 { 1872 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1873 struct page *page; 1874 struct node_info ni; 1875 __u64 phys = 0, len; 1876 __u32 flags; 1877 nid_t xnid = F2FS_I(inode)->i_xattr_nid; 1878 int err = 0; 1879 1880 if (f2fs_has_inline_xattr(inode)) { 1881 int offset; 1882 1883 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), 1884 inode->i_ino, false); 1885 if (!page) 1886 return -ENOMEM; 1887 1888 err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false); 1889 if (err) { 1890 f2fs_put_page(page, 1); 1891 return err; 1892 } 1893 1894 phys = blks_to_bytes(inode, ni.blk_addr); 1895 offset = offsetof(struct f2fs_inode, i_addr) + 1896 sizeof(__le32) * (DEF_ADDRS_PER_INODE - 1897 get_inline_xattr_addrs(inode)); 1898 1899 phys += offset; 1900 len = inline_xattr_size(inode); 1901 1902 f2fs_put_page(page, 1); 1903 1904 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED; 1905 1906 if (!xnid) 1907 flags |= FIEMAP_EXTENT_LAST; 1908 1909 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1910 trace_f2fs_fiemap(inode, 0, phys, len, flags, err); 1911 if (err) 1912 return err; 1913 } 1914 1915 if (xnid) { 1916 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false); 1917 if (!page) 1918 return -ENOMEM; 1919 1920 err = f2fs_get_node_info(sbi, xnid, &ni, false); 1921 if (err) { 1922 f2fs_put_page(page, 1); 1923 return err; 1924 } 1925 1926 phys = blks_to_bytes(inode, ni.blk_addr); 1927 len = inode->i_sb->s_blocksize; 1928 1929 f2fs_put_page(page, 1); 1930 1931 flags = FIEMAP_EXTENT_LAST; 1932 } 1933 1934 if (phys) { 1935 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1936 trace_f2fs_fiemap(inode, 0, phys, len, flags, err); 1937 } 1938 1939 return (err < 0 ? err : 0); 1940 } 1941 1942 static loff_t max_inode_blocks(struct inode *inode) 1943 { 1944 loff_t result = ADDRS_PER_INODE(inode); 1945 loff_t leaf_count = ADDRS_PER_BLOCK(inode); 1946 1947 /* two direct node blocks */ 1948 result += (leaf_count * 2); 1949 1950 /* two indirect node blocks */ 1951 leaf_count *= NIDS_PER_BLOCK; 1952 result += (leaf_count * 2); 1953 1954 /* one double indirect node block */ 1955 leaf_count *= NIDS_PER_BLOCK; 1956 result += leaf_count; 1957 1958 return result; 1959 } 1960 1961 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 1962 u64 start, u64 len) 1963 { 1964 struct f2fs_map_blocks map; 1965 sector_t start_blk, last_blk; 1966 pgoff_t next_pgofs; 1967 u64 logical = 0, phys = 0, size = 0; 1968 u32 flags = 0; 1969 int ret = 0; 1970 bool compr_cluster = false, compr_appended; 1971 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size; 1972 unsigned int count_in_cluster = 0; 1973 loff_t maxbytes; 1974 1975 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) { 1976 ret = f2fs_precache_extents(inode); 1977 if (ret) 1978 return ret; 1979 } 1980 1981 ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR); 1982 if (ret) 1983 return ret; 1984 1985 inode_lock_shared(inode); 1986 1987 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS; 1988 if (start > maxbytes) { 1989 ret = -EFBIG; 1990 goto out; 1991 } 1992 1993 if (len > maxbytes || (maxbytes - len) < start) 1994 len = maxbytes - start; 1995 1996 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 1997 ret = f2fs_xattr_fiemap(inode, fieinfo); 1998 goto out; 1999 } 2000 2001 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) { 2002 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len); 2003 if (ret != -EAGAIN) 2004 goto out; 2005 } 2006 2007 if (bytes_to_blks(inode, len) == 0) 2008 len = blks_to_bytes(inode, 1); 2009 2010 start_blk = bytes_to_blks(inode, start); 2011 last_blk = bytes_to_blks(inode, start + len - 1); 2012 2013 next: 2014 memset(&map, 0, sizeof(map)); 2015 map.m_lblk = start_blk; 2016 map.m_len = bytes_to_blks(inode, len); 2017 map.m_next_pgofs = &next_pgofs; 2018 map.m_seg_type = NO_CHECK_TYPE; 2019 2020 if (compr_cluster) { 2021 map.m_lblk += 1; 2022 map.m_len = cluster_size - count_in_cluster; 2023 } 2024 2025 ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP); 2026 if (ret) 2027 goto out; 2028 2029 /* HOLE */ 2030 if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) { 2031 start_blk = next_pgofs; 2032 2033 if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode, 2034 max_inode_blocks(inode))) 2035 goto prep_next; 2036 2037 flags |= FIEMAP_EXTENT_LAST; 2038 } 2039 2040 compr_appended = false; 2041 /* In a case of compressed cluster, append this to the last extent */ 2042 if (compr_cluster && ((map.m_flags & F2FS_MAP_DELALLOC) || 2043 !(map.m_flags & F2FS_MAP_FLAGS))) { 2044 compr_appended = true; 2045 goto skip_fill; 2046 } 2047 2048 if (size) { 2049 flags |= FIEMAP_EXTENT_MERGED; 2050 if (IS_ENCRYPTED(inode)) 2051 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED; 2052 2053 ret = fiemap_fill_next_extent(fieinfo, logical, 2054 phys, size, flags); 2055 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret); 2056 if (ret) 2057 goto out; 2058 size = 0; 2059 } 2060 2061 if (start_blk > last_blk) 2062 goto out; 2063 2064 skip_fill: 2065 if (map.m_pblk == COMPRESS_ADDR) { 2066 compr_cluster = true; 2067 count_in_cluster = 1; 2068 } else if (compr_appended) { 2069 unsigned int appended_blks = cluster_size - 2070 count_in_cluster + 1; 2071 size += blks_to_bytes(inode, appended_blks); 2072 start_blk += appended_blks; 2073 compr_cluster = false; 2074 } else { 2075 logical = blks_to_bytes(inode, start_blk); 2076 phys = __is_valid_data_blkaddr(map.m_pblk) ? 2077 blks_to_bytes(inode, map.m_pblk) : 0; 2078 size = blks_to_bytes(inode, map.m_len); 2079 flags = 0; 2080 2081 if (compr_cluster) { 2082 flags = FIEMAP_EXTENT_ENCODED; 2083 count_in_cluster += map.m_len; 2084 if (count_in_cluster == cluster_size) { 2085 compr_cluster = false; 2086 size += blks_to_bytes(inode, 1); 2087 } 2088 } else if (map.m_flags & F2FS_MAP_DELALLOC) { 2089 flags = FIEMAP_EXTENT_UNWRITTEN; 2090 } 2091 2092 start_blk += bytes_to_blks(inode, size); 2093 } 2094 2095 prep_next: 2096 cond_resched(); 2097 if (fatal_signal_pending(current)) 2098 ret = -EINTR; 2099 else 2100 goto next; 2101 out: 2102 if (ret == 1) 2103 ret = 0; 2104 2105 inode_unlock_shared(inode); 2106 return ret; 2107 } 2108 2109 static inline loff_t f2fs_readpage_limit(struct inode *inode) 2110 { 2111 if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode)) 2112 return inode->i_sb->s_maxbytes; 2113 2114 return i_size_read(inode); 2115 } 2116 2117 static int f2fs_read_single_page(struct inode *inode, struct page *page, 2118 unsigned nr_pages, 2119 struct f2fs_map_blocks *map, 2120 struct bio **bio_ret, 2121 sector_t *last_block_in_bio, 2122 bool is_readahead) 2123 { 2124 struct bio *bio = *bio_ret; 2125 const unsigned blocksize = blks_to_bytes(inode, 1); 2126 sector_t block_in_file; 2127 sector_t last_block; 2128 sector_t last_block_in_file; 2129 sector_t block_nr; 2130 int ret = 0; 2131 2132 block_in_file = (sector_t)page_index(page); 2133 last_block = block_in_file + nr_pages; 2134 last_block_in_file = bytes_to_blks(inode, 2135 f2fs_readpage_limit(inode) + blocksize - 1); 2136 if (last_block > last_block_in_file) 2137 last_block = last_block_in_file; 2138 2139 /* just zeroing out page which is beyond EOF */ 2140 if (block_in_file >= last_block) 2141 goto zero_out; 2142 /* 2143 * Map blocks using the previous result first. 2144 */ 2145 if ((map->m_flags & F2FS_MAP_MAPPED) && 2146 block_in_file > map->m_lblk && 2147 block_in_file < (map->m_lblk + map->m_len)) 2148 goto got_it; 2149 2150 /* 2151 * Then do more f2fs_map_blocks() calls until we are 2152 * done with this page. 2153 */ 2154 map->m_lblk = block_in_file; 2155 map->m_len = last_block - block_in_file; 2156 2157 ret = f2fs_map_blocks(inode, map, F2FS_GET_BLOCK_DEFAULT); 2158 if (ret) 2159 goto out; 2160 got_it: 2161 if ((map->m_flags & F2FS_MAP_MAPPED)) { 2162 block_nr = map->m_pblk + block_in_file - map->m_lblk; 2163 SetPageMappedToDisk(page); 2164 2165 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr, 2166 DATA_GENERIC_ENHANCE_READ)) { 2167 ret = -EFSCORRUPTED; 2168 f2fs_handle_error(F2FS_I_SB(inode), 2169 ERROR_INVALID_BLKADDR); 2170 goto out; 2171 } 2172 } else { 2173 zero_out: 2174 zero_user_segment(page, 0, PAGE_SIZE); 2175 if (f2fs_need_verity(inode, page->index) && 2176 !fsverity_verify_page(page)) { 2177 ret = -EIO; 2178 goto out; 2179 } 2180 if (!PageUptodate(page)) 2181 SetPageUptodate(page); 2182 unlock_page(page); 2183 goto out; 2184 } 2185 2186 /* 2187 * This page will go to BIO. Do we need to send this 2188 * BIO off first? 2189 */ 2190 if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio, 2191 *last_block_in_bio, block_nr) || 2192 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) { 2193 submit_and_realloc: 2194 f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA); 2195 bio = NULL; 2196 } 2197 if (bio == NULL) { 2198 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages, 2199 is_readahead ? REQ_RAHEAD : 0, page->index, 2200 false); 2201 if (IS_ERR(bio)) { 2202 ret = PTR_ERR(bio); 2203 bio = NULL; 2204 goto out; 2205 } 2206 } 2207 2208 /* 2209 * If the page is under writeback, we need to wait for 2210 * its completion to see the correct decrypted data. 2211 */ 2212 f2fs_wait_on_block_writeback(inode, block_nr); 2213 2214 if (bio_add_page(bio, page, blocksize, 0) < blocksize) 2215 goto submit_and_realloc; 2216 2217 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA); 2218 f2fs_update_iostat(F2FS_I_SB(inode), NULL, FS_DATA_READ_IO, 2219 F2FS_BLKSIZE); 2220 *last_block_in_bio = block_nr; 2221 out: 2222 *bio_ret = bio; 2223 return ret; 2224 } 2225 2226 #ifdef CONFIG_F2FS_FS_COMPRESSION 2227 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret, 2228 unsigned nr_pages, sector_t *last_block_in_bio, 2229 bool is_readahead, bool for_write) 2230 { 2231 struct dnode_of_data dn; 2232 struct inode *inode = cc->inode; 2233 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2234 struct bio *bio = *bio_ret; 2235 unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size; 2236 sector_t last_block_in_file; 2237 const unsigned blocksize = blks_to_bytes(inode, 1); 2238 struct decompress_io_ctx *dic = NULL; 2239 struct extent_info ei = {}; 2240 bool from_dnode = true; 2241 int i; 2242 int ret = 0; 2243 2244 f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc)); 2245 2246 last_block_in_file = bytes_to_blks(inode, 2247 f2fs_readpage_limit(inode) + blocksize - 1); 2248 2249 /* get rid of pages beyond EOF */ 2250 for (i = 0; i < cc->cluster_size; i++) { 2251 struct page *page = cc->rpages[i]; 2252 2253 if (!page) 2254 continue; 2255 if ((sector_t)page->index >= last_block_in_file) { 2256 zero_user_segment(page, 0, PAGE_SIZE); 2257 if (!PageUptodate(page)) 2258 SetPageUptodate(page); 2259 } else if (!PageUptodate(page)) { 2260 continue; 2261 } 2262 unlock_page(page); 2263 if (for_write) 2264 put_page(page); 2265 cc->rpages[i] = NULL; 2266 cc->nr_rpages--; 2267 } 2268 2269 /* we are done since all pages are beyond EOF */ 2270 if (f2fs_cluster_is_empty(cc)) 2271 goto out; 2272 2273 if (f2fs_lookup_read_extent_cache(inode, start_idx, &ei)) 2274 from_dnode = false; 2275 2276 if (!from_dnode) 2277 goto skip_reading_dnode; 2278 2279 set_new_dnode(&dn, inode, NULL, NULL, 0); 2280 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 2281 if (ret) 2282 goto out; 2283 2284 if (unlikely(f2fs_cp_error(sbi))) { 2285 ret = -EIO; 2286 goto out_put_dnode; 2287 } 2288 f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR); 2289 2290 skip_reading_dnode: 2291 for (i = 1; i < cc->cluster_size; i++) { 2292 block_t blkaddr; 2293 2294 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page, 2295 dn.ofs_in_node + i) : 2296 ei.blk + i - 1; 2297 2298 if (!__is_valid_data_blkaddr(blkaddr)) 2299 break; 2300 2301 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) { 2302 ret = -EFAULT; 2303 goto out_put_dnode; 2304 } 2305 cc->nr_cpages++; 2306 2307 if (!from_dnode && i >= ei.c_len) 2308 break; 2309 } 2310 2311 /* nothing to decompress */ 2312 if (cc->nr_cpages == 0) { 2313 ret = 0; 2314 goto out_put_dnode; 2315 } 2316 2317 dic = f2fs_alloc_dic(cc); 2318 if (IS_ERR(dic)) { 2319 ret = PTR_ERR(dic); 2320 goto out_put_dnode; 2321 } 2322 2323 for (i = 0; i < cc->nr_cpages; i++) { 2324 struct page *page = dic->cpages[i]; 2325 block_t blkaddr; 2326 struct bio_post_read_ctx *ctx; 2327 2328 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page, 2329 dn.ofs_in_node + i + 1) : 2330 ei.blk + i; 2331 2332 f2fs_wait_on_block_writeback(inode, blkaddr); 2333 2334 if (f2fs_load_compressed_page(sbi, page, blkaddr)) { 2335 if (atomic_dec_and_test(&dic->remaining_pages)) { 2336 f2fs_decompress_cluster(dic, true); 2337 break; 2338 } 2339 continue; 2340 } 2341 2342 if (bio && (!page_is_mergeable(sbi, bio, 2343 *last_block_in_bio, blkaddr) || 2344 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) { 2345 submit_and_realloc: 2346 f2fs_submit_read_bio(sbi, bio, DATA); 2347 bio = NULL; 2348 } 2349 2350 if (!bio) { 2351 bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages, 2352 is_readahead ? REQ_RAHEAD : 0, 2353 page->index, for_write); 2354 if (IS_ERR(bio)) { 2355 ret = PTR_ERR(bio); 2356 f2fs_decompress_end_io(dic, ret, true); 2357 f2fs_put_dnode(&dn); 2358 *bio_ret = NULL; 2359 return ret; 2360 } 2361 } 2362 2363 if (bio_add_page(bio, page, blocksize, 0) < blocksize) 2364 goto submit_and_realloc; 2365 2366 ctx = get_post_read_ctx(bio); 2367 ctx->enabled_steps |= STEP_DECOMPRESS; 2368 refcount_inc(&dic->refcnt); 2369 2370 inc_page_count(sbi, F2FS_RD_DATA); 2371 f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE); 2372 *last_block_in_bio = blkaddr; 2373 } 2374 2375 if (from_dnode) 2376 f2fs_put_dnode(&dn); 2377 2378 *bio_ret = bio; 2379 return 0; 2380 2381 out_put_dnode: 2382 if (from_dnode) 2383 f2fs_put_dnode(&dn); 2384 out: 2385 for (i = 0; i < cc->cluster_size; i++) { 2386 if (cc->rpages[i]) { 2387 ClearPageUptodate(cc->rpages[i]); 2388 unlock_page(cc->rpages[i]); 2389 } 2390 } 2391 *bio_ret = bio; 2392 return ret; 2393 } 2394 #endif 2395 2396 /* 2397 * This function was originally taken from fs/mpage.c, and customized for f2fs. 2398 * Major change was from block_size == page_size in f2fs by default. 2399 */ 2400 static int f2fs_mpage_readpages(struct inode *inode, 2401 struct readahead_control *rac, struct page *page) 2402 { 2403 struct bio *bio = NULL; 2404 sector_t last_block_in_bio = 0; 2405 struct f2fs_map_blocks map; 2406 #ifdef CONFIG_F2FS_FS_COMPRESSION 2407 struct compress_ctx cc = { 2408 .inode = inode, 2409 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 2410 .cluster_size = F2FS_I(inode)->i_cluster_size, 2411 .cluster_idx = NULL_CLUSTER, 2412 .rpages = NULL, 2413 .cpages = NULL, 2414 .nr_rpages = 0, 2415 .nr_cpages = 0, 2416 }; 2417 pgoff_t nc_cluster_idx = NULL_CLUSTER; 2418 #endif 2419 unsigned nr_pages = rac ? readahead_count(rac) : 1; 2420 unsigned max_nr_pages = nr_pages; 2421 int ret = 0; 2422 2423 map.m_pblk = 0; 2424 map.m_lblk = 0; 2425 map.m_len = 0; 2426 map.m_flags = 0; 2427 map.m_next_pgofs = NULL; 2428 map.m_next_extent = NULL; 2429 map.m_seg_type = NO_CHECK_TYPE; 2430 map.m_may_create = false; 2431 2432 for (; nr_pages; nr_pages--) { 2433 if (rac) { 2434 page = readahead_page(rac); 2435 prefetchw(&page->flags); 2436 } 2437 2438 #ifdef CONFIG_F2FS_FS_COMPRESSION 2439 if (f2fs_compressed_file(inode)) { 2440 /* there are remained compressed pages, submit them */ 2441 if (!f2fs_cluster_can_merge_page(&cc, page->index)) { 2442 ret = f2fs_read_multi_pages(&cc, &bio, 2443 max_nr_pages, 2444 &last_block_in_bio, 2445 rac != NULL, false); 2446 f2fs_destroy_compress_ctx(&cc, false); 2447 if (ret) 2448 goto set_error_page; 2449 } 2450 if (cc.cluster_idx == NULL_CLUSTER) { 2451 if (nc_cluster_idx == 2452 page->index >> cc.log_cluster_size) { 2453 goto read_single_page; 2454 } 2455 2456 ret = f2fs_is_compressed_cluster(inode, page->index); 2457 if (ret < 0) 2458 goto set_error_page; 2459 else if (!ret) { 2460 nc_cluster_idx = 2461 page->index >> cc.log_cluster_size; 2462 goto read_single_page; 2463 } 2464 2465 nc_cluster_idx = NULL_CLUSTER; 2466 } 2467 ret = f2fs_init_compress_ctx(&cc); 2468 if (ret) 2469 goto set_error_page; 2470 2471 f2fs_compress_ctx_add_page(&cc, page); 2472 2473 goto next_page; 2474 } 2475 read_single_page: 2476 #endif 2477 2478 ret = f2fs_read_single_page(inode, page, max_nr_pages, &map, 2479 &bio, &last_block_in_bio, rac); 2480 if (ret) { 2481 #ifdef CONFIG_F2FS_FS_COMPRESSION 2482 set_error_page: 2483 #endif 2484 zero_user_segment(page, 0, PAGE_SIZE); 2485 unlock_page(page); 2486 } 2487 #ifdef CONFIG_F2FS_FS_COMPRESSION 2488 next_page: 2489 #endif 2490 if (rac) 2491 put_page(page); 2492 2493 #ifdef CONFIG_F2FS_FS_COMPRESSION 2494 if (f2fs_compressed_file(inode)) { 2495 /* last page */ 2496 if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) { 2497 ret = f2fs_read_multi_pages(&cc, &bio, 2498 max_nr_pages, 2499 &last_block_in_bio, 2500 rac != NULL, false); 2501 f2fs_destroy_compress_ctx(&cc, false); 2502 } 2503 } 2504 #endif 2505 } 2506 if (bio) 2507 f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA); 2508 return ret; 2509 } 2510 2511 static int f2fs_read_data_folio(struct file *file, struct folio *folio) 2512 { 2513 struct page *page = &folio->page; 2514 struct inode *inode = page_file_mapping(page)->host; 2515 int ret = -EAGAIN; 2516 2517 trace_f2fs_readpage(page, DATA); 2518 2519 if (!f2fs_is_compress_backend_ready(inode)) { 2520 unlock_page(page); 2521 return -EOPNOTSUPP; 2522 } 2523 2524 /* If the file has inline data, try to read it directly */ 2525 if (f2fs_has_inline_data(inode)) 2526 ret = f2fs_read_inline_data(inode, page); 2527 if (ret == -EAGAIN) 2528 ret = f2fs_mpage_readpages(inode, NULL, page); 2529 return ret; 2530 } 2531 2532 static void f2fs_readahead(struct readahead_control *rac) 2533 { 2534 struct inode *inode = rac->mapping->host; 2535 2536 trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac)); 2537 2538 if (!f2fs_is_compress_backend_ready(inode)) 2539 return; 2540 2541 /* If the file has inline data, skip readahead */ 2542 if (f2fs_has_inline_data(inode)) 2543 return; 2544 2545 f2fs_mpage_readpages(inode, rac, NULL); 2546 } 2547 2548 int f2fs_encrypt_one_page(struct f2fs_io_info *fio) 2549 { 2550 struct inode *inode = fio->page->mapping->host; 2551 struct page *mpage, *page; 2552 gfp_t gfp_flags = GFP_NOFS; 2553 2554 if (!f2fs_encrypted_file(inode)) 2555 return 0; 2556 2557 page = fio->compressed_page ? fio->compressed_page : fio->page; 2558 2559 if (fscrypt_inode_uses_inline_crypto(inode)) 2560 return 0; 2561 2562 retry_encrypt: 2563 fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page, 2564 PAGE_SIZE, 0, gfp_flags); 2565 if (IS_ERR(fio->encrypted_page)) { 2566 /* flush pending IOs and wait for a while in the ENOMEM case */ 2567 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) { 2568 f2fs_flush_merged_writes(fio->sbi); 2569 memalloc_retry_wait(GFP_NOFS); 2570 gfp_flags |= __GFP_NOFAIL; 2571 goto retry_encrypt; 2572 } 2573 return PTR_ERR(fio->encrypted_page); 2574 } 2575 2576 mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr); 2577 if (mpage) { 2578 if (PageUptodate(mpage)) 2579 memcpy(page_address(mpage), 2580 page_address(fio->encrypted_page), PAGE_SIZE); 2581 f2fs_put_page(mpage, 1); 2582 } 2583 return 0; 2584 } 2585 2586 static inline bool check_inplace_update_policy(struct inode *inode, 2587 struct f2fs_io_info *fio) 2588 { 2589 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2590 2591 if (IS_F2FS_IPU_HONOR_OPU_WRITE(sbi) && 2592 is_inode_flag_set(inode, FI_OPU_WRITE)) 2593 return false; 2594 if (IS_F2FS_IPU_FORCE(sbi)) 2595 return true; 2596 if (IS_F2FS_IPU_SSR(sbi) && f2fs_need_SSR(sbi)) 2597 return true; 2598 if (IS_F2FS_IPU_UTIL(sbi) && utilization(sbi) > SM_I(sbi)->min_ipu_util) 2599 return true; 2600 if (IS_F2FS_IPU_SSR_UTIL(sbi) && f2fs_need_SSR(sbi) && 2601 utilization(sbi) > SM_I(sbi)->min_ipu_util) 2602 return true; 2603 2604 /* 2605 * IPU for rewrite async pages 2606 */ 2607 if (IS_F2FS_IPU_ASYNC(sbi) && fio && fio->op == REQ_OP_WRITE && 2608 !(fio->op_flags & REQ_SYNC) && !IS_ENCRYPTED(inode)) 2609 return true; 2610 2611 /* this is only set during fdatasync */ 2612 if (IS_F2FS_IPU_FSYNC(sbi) && is_inode_flag_set(inode, FI_NEED_IPU)) 2613 return true; 2614 2615 if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 2616 !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) 2617 return true; 2618 2619 return false; 2620 } 2621 2622 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio) 2623 { 2624 /* swap file is migrating in aligned write mode */ 2625 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE)) 2626 return false; 2627 2628 if (f2fs_is_pinned_file(inode)) 2629 return true; 2630 2631 /* if this is cold file, we should overwrite to avoid fragmentation */ 2632 if (file_is_cold(inode) && !is_inode_flag_set(inode, FI_OPU_WRITE)) 2633 return true; 2634 2635 return check_inplace_update_policy(inode, fio); 2636 } 2637 2638 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio) 2639 { 2640 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2641 2642 /* The below cases were checked when setting it. */ 2643 if (f2fs_is_pinned_file(inode)) 2644 return false; 2645 if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 2646 return true; 2647 if (f2fs_lfs_mode(sbi)) 2648 return true; 2649 if (S_ISDIR(inode->i_mode)) 2650 return true; 2651 if (IS_NOQUOTA(inode)) 2652 return true; 2653 if (f2fs_is_atomic_file(inode)) 2654 return true; 2655 /* rewrite low ratio compress data w/ OPU mode to avoid fragmentation */ 2656 if (f2fs_compressed_file(inode) && 2657 F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER && 2658 is_inode_flag_set(inode, FI_ENABLE_COMPRESS)) 2659 return true; 2660 2661 /* swap file is migrating in aligned write mode */ 2662 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE)) 2663 return true; 2664 2665 if (is_inode_flag_set(inode, FI_OPU_WRITE)) 2666 return true; 2667 2668 if (fio) { 2669 if (page_private_gcing(fio->page)) 2670 return true; 2671 if (page_private_dummy(fio->page)) 2672 return true; 2673 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 2674 f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) 2675 return true; 2676 } 2677 return false; 2678 } 2679 2680 static inline bool need_inplace_update(struct f2fs_io_info *fio) 2681 { 2682 struct inode *inode = fio->page->mapping->host; 2683 2684 if (f2fs_should_update_outplace(inode, fio)) 2685 return false; 2686 2687 return f2fs_should_update_inplace(inode, fio); 2688 } 2689 2690 int f2fs_do_write_data_page(struct f2fs_io_info *fio) 2691 { 2692 struct page *page = fio->page; 2693 struct inode *inode = page->mapping->host; 2694 struct dnode_of_data dn; 2695 struct node_info ni; 2696 bool ipu_force = false; 2697 int err = 0; 2698 2699 /* Use COW inode to make dnode_of_data for atomic write */ 2700 if (f2fs_is_atomic_file(inode)) 2701 set_new_dnode(&dn, F2FS_I(inode)->cow_inode, NULL, NULL, 0); 2702 else 2703 set_new_dnode(&dn, inode, NULL, NULL, 0); 2704 2705 if (need_inplace_update(fio) && 2706 f2fs_lookup_read_extent_cache_block(inode, page->index, 2707 &fio->old_blkaddr)) { 2708 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 2709 DATA_GENERIC_ENHANCE)) { 2710 f2fs_handle_error(fio->sbi, 2711 ERROR_INVALID_BLKADDR); 2712 return -EFSCORRUPTED; 2713 } 2714 2715 ipu_force = true; 2716 fio->need_lock = LOCK_DONE; 2717 goto got_it; 2718 } 2719 2720 /* Deadlock due to between page->lock and f2fs_lock_op */ 2721 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi)) 2722 return -EAGAIN; 2723 2724 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE); 2725 if (err) 2726 goto out; 2727 2728 fio->old_blkaddr = dn.data_blkaddr; 2729 2730 /* This page is already truncated */ 2731 if (fio->old_blkaddr == NULL_ADDR) { 2732 ClearPageUptodate(page); 2733 clear_page_private_gcing(page); 2734 goto out_writepage; 2735 } 2736 got_it: 2737 if (__is_valid_data_blkaddr(fio->old_blkaddr) && 2738 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 2739 DATA_GENERIC_ENHANCE)) { 2740 err = -EFSCORRUPTED; 2741 f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR); 2742 goto out_writepage; 2743 } 2744 2745 /* wait for GCed page writeback via META_MAPPING */ 2746 if (fio->post_read) 2747 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr); 2748 2749 /* 2750 * If current allocation needs SSR, 2751 * it had better in-place writes for updated data. 2752 */ 2753 if (ipu_force || 2754 (__is_valid_data_blkaddr(fio->old_blkaddr) && 2755 need_inplace_update(fio))) { 2756 err = f2fs_encrypt_one_page(fio); 2757 if (err) 2758 goto out_writepage; 2759 2760 set_page_writeback(page); 2761 f2fs_put_dnode(&dn); 2762 if (fio->need_lock == LOCK_REQ) 2763 f2fs_unlock_op(fio->sbi); 2764 err = f2fs_inplace_write_data(fio); 2765 if (err) { 2766 if (fscrypt_inode_uses_fs_layer_crypto(inode)) 2767 fscrypt_finalize_bounce_page(&fio->encrypted_page); 2768 if (PageWriteback(page)) 2769 end_page_writeback(page); 2770 } else { 2771 set_inode_flag(inode, FI_UPDATE_WRITE); 2772 } 2773 trace_f2fs_do_write_data_page(fio->page, IPU); 2774 return err; 2775 } 2776 2777 if (fio->need_lock == LOCK_RETRY) { 2778 if (!f2fs_trylock_op(fio->sbi)) { 2779 err = -EAGAIN; 2780 goto out_writepage; 2781 } 2782 fio->need_lock = LOCK_REQ; 2783 } 2784 2785 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false); 2786 if (err) 2787 goto out_writepage; 2788 2789 fio->version = ni.version; 2790 2791 err = f2fs_encrypt_one_page(fio); 2792 if (err) 2793 goto out_writepage; 2794 2795 set_page_writeback(page); 2796 2797 if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR) 2798 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false); 2799 2800 /* LFS mode write path */ 2801 f2fs_outplace_write_data(&dn, fio); 2802 trace_f2fs_do_write_data_page(page, OPU); 2803 set_inode_flag(inode, FI_APPEND_WRITE); 2804 out_writepage: 2805 f2fs_put_dnode(&dn); 2806 out: 2807 if (fio->need_lock == LOCK_REQ) 2808 f2fs_unlock_op(fio->sbi); 2809 return err; 2810 } 2811 2812 int f2fs_write_single_data_page(struct page *page, int *submitted, 2813 struct bio **bio, 2814 sector_t *last_block, 2815 struct writeback_control *wbc, 2816 enum iostat_type io_type, 2817 int compr_blocks, 2818 bool allow_balance) 2819 { 2820 struct inode *inode = page->mapping->host; 2821 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2822 loff_t i_size = i_size_read(inode); 2823 const pgoff_t end_index = ((unsigned long long)i_size) 2824 >> PAGE_SHIFT; 2825 loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT; 2826 unsigned offset = 0; 2827 bool need_balance_fs = false; 2828 bool quota_inode = IS_NOQUOTA(inode); 2829 int err = 0; 2830 struct f2fs_io_info fio = { 2831 .sbi = sbi, 2832 .ino = inode->i_ino, 2833 .type = DATA, 2834 .op = REQ_OP_WRITE, 2835 .op_flags = wbc_to_write_flags(wbc), 2836 .old_blkaddr = NULL_ADDR, 2837 .page = page, 2838 .encrypted_page = NULL, 2839 .submitted = 0, 2840 .compr_blocks = compr_blocks, 2841 .need_lock = LOCK_RETRY, 2842 .post_read = f2fs_post_read_required(inode) ? 1 : 0, 2843 .io_type = io_type, 2844 .io_wbc = wbc, 2845 .bio = bio, 2846 .last_block = last_block, 2847 }; 2848 2849 trace_f2fs_writepage(page, DATA); 2850 2851 /* we should bypass data pages to proceed the kworker jobs */ 2852 if (unlikely(f2fs_cp_error(sbi))) { 2853 mapping_set_error(page->mapping, -EIO); 2854 /* 2855 * don't drop any dirty dentry pages for keeping lastest 2856 * directory structure. 2857 */ 2858 if (S_ISDIR(inode->i_mode) && 2859 !is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 2860 goto redirty_out; 2861 2862 /* keep data pages in remount-ro mode */ 2863 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY) 2864 goto redirty_out; 2865 goto out; 2866 } 2867 2868 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 2869 goto redirty_out; 2870 2871 if (page->index < end_index || 2872 f2fs_verity_in_progress(inode) || 2873 compr_blocks) 2874 goto write; 2875 2876 /* 2877 * If the offset is out-of-range of file size, 2878 * this page does not have to be written to disk. 2879 */ 2880 offset = i_size & (PAGE_SIZE - 1); 2881 if ((page->index >= end_index + 1) || !offset) 2882 goto out; 2883 2884 zero_user_segment(page, offset, PAGE_SIZE); 2885 write: 2886 /* Dentry/quota blocks are controlled by checkpoint */ 2887 if (S_ISDIR(inode->i_mode) || quota_inode) { 2888 /* 2889 * We need to wait for node_write to avoid block allocation during 2890 * checkpoint. This can only happen to quota writes which can cause 2891 * the below discard race condition. 2892 */ 2893 if (quota_inode) 2894 f2fs_down_read(&sbi->node_write); 2895 2896 fio.need_lock = LOCK_DONE; 2897 err = f2fs_do_write_data_page(&fio); 2898 2899 if (quota_inode) 2900 f2fs_up_read(&sbi->node_write); 2901 2902 goto done; 2903 } 2904 2905 if (!wbc->for_reclaim) 2906 need_balance_fs = true; 2907 else if (has_not_enough_free_secs(sbi, 0, 0)) 2908 goto redirty_out; 2909 else 2910 set_inode_flag(inode, FI_HOT_DATA); 2911 2912 err = -EAGAIN; 2913 if (f2fs_has_inline_data(inode)) { 2914 err = f2fs_write_inline_data(inode, page); 2915 if (!err) 2916 goto out; 2917 } 2918 2919 if (err == -EAGAIN) { 2920 err = f2fs_do_write_data_page(&fio); 2921 if (err == -EAGAIN) { 2922 fio.need_lock = LOCK_REQ; 2923 err = f2fs_do_write_data_page(&fio); 2924 } 2925 } 2926 2927 if (err) { 2928 file_set_keep_isize(inode); 2929 } else { 2930 spin_lock(&F2FS_I(inode)->i_size_lock); 2931 if (F2FS_I(inode)->last_disk_size < psize) 2932 F2FS_I(inode)->last_disk_size = psize; 2933 spin_unlock(&F2FS_I(inode)->i_size_lock); 2934 } 2935 2936 done: 2937 if (err && err != -ENOENT) 2938 goto redirty_out; 2939 2940 out: 2941 inode_dec_dirty_pages(inode); 2942 if (err) { 2943 ClearPageUptodate(page); 2944 clear_page_private_gcing(page); 2945 } 2946 2947 if (wbc->for_reclaim) { 2948 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA); 2949 clear_inode_flag(inode, FI_HOT_DATA); 2950 f2fs_remove_dirty_inode(inode); 2951 submitted = NULL; 2952 } 2953 unlock_page(page); 2954 if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) && 2955 !F2FS_I(inode)->wb_task && allow_balance) 2956 f2fs_balance_fs(sbi, need_balance_fs); 2957 2958 if (unlikely(f2fs_cp_error(sbi))) { 2959 f2fs_submit_merged_write(sbi, DATA); 2960 if (bio && *bio) 2961 f2fs_submit_merged_ipu_write(sbi, bio, NULL); 2962 submitted = NULL; 2963 } 2964 2965 if (submitted) 2966 *submitted = fio.submitted; 2967 2968 return 0; 2969 2970 redirty_out: 2971 redirty_page_for_writepage(wbc, page); 2972 /* 2973 * pageout() in MM translates EAGAIN, so calls handle_write_error() 2974 * -> mapping_set_error() -> set_bit(AS_EIO, ...). 2975 * file_write_and_wait_range() will see EIO error, which is critical 2976 * to return value of fsync() followed by atomic_write failure to user. 2977 */ 2978 if (!err || wbc->for_reclaim) 2979 return AOP_WRITEPAGE_ACTIVATE; 2980 unlock_page(page); 2981 return err; 2982 } 2983 2984 static int f2fs_write_data_page(struct page *page, 2985 struct writeback_control *wbc) 2986 { 2987 #ifdef CONFIG_F2FS_FS_COMPRESSION 2988 struct inode *inode = page->mapping->host; 2989 2990 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 2991 goto out; 2992 2993 if (f2fs_compressed_file(inode)) { 2994 if (f2fs_is_compressed_cluster(inode, page->index)) { 2995 redirty_page_for_writepage(wbc, page); 2996 return AOP_WRITEPAGE_ACTIVATE; 2997 } 2998 } 2999 out: 3000 #endif 3001 3002 return f2fs_write_single_data_page(page, NULL, NULL, NULL, 3003 wbc, FS_DATA_IO, 0, true); 3004 } 3005 3006 /* 3007 * This function was copied from write_cache_pages from mm/page-writeback.c. 3008 * The major change is making write step of cold data page separately from 3009 * warm/hot data page. 3010 */ 3011 static int f2fs_write_cache_pages(struct address_space *mapping, 3012 struct writeback_control *wbc, 3013 enum iostat_type io_type) 3014 { 3015 int ret = 0; 3016 int done = 0, retry = 0; 3017 struct page *pages_local[F2FS_ONSTACK_PAGES]; 3018 struct page **pages = pages_local; 3019 struct folio_batch fbatch; 3020 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 3021 struct bio *bio = NULL; 3022 sector_t last_block; 3023 #ifdef CONFIG_F2FS_FS_COMPRESSION 3024 struct inode *inode = mapping->host; 3025 struct compress_ctx cc = { 3026 .inode = inode, 3027 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 3028 .cluster_size = F2FS_I(inode)->i_cluster_size, 3029 .cluster_idx = NULL_CLUSTER, 3030 .rpages = NULL, 3031 .nr_rpages = 0, 3032 .cpages = NULL, 3033 .valid_nr_cpages = 0, 3034 .rbuf = NULL, 3035 .cbuf = NULL, 3036 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size, 3037 .private = NULL, 3038 }; 3039 #endif 3040 int nr_folios, p, idx; 3041 int nr_pages; 3042 unsigned int max_pages = F2FS_ONSTACK_PAGES; 3043 pgoff_t index; 3044 pgoff_t end; /* Inclusive */ 3045 pgoff_t done_index; 3046 int range_whole = 0; 3047 xa_mark_t tag; 3048 int nwritten = 0; 3049 int submitted = 0; 3050 int i; 3051 3052 #ifdef CONFIG_F2FS_FS_COMPRESSION 3053 if (f2fs_compressed_file(inode) && 3054 1 << cc.log_cluster_size > F2FS_ONSTACK_PAGES) { 3055 pages = f2fs_kzalloc(sbi, sizeof(struct page *) << 3056 cc.log_cluster_size, GFP_NOFS | __GFP_NOFAIL); 3057 max_pages = 1 << cc.log_cluster_size; 3058 } 3059 #endif 3060 3061 folio_batch_init(&fbatch); 3062 3063 if (get_dirty_pages(mapping->host) <= 3064 SM_I(F2FS_M_SB(mapping))->min_hot_blocks) 3065 set_inode_flag(mapping->host, FI_HOT_DATA); 3066 else 3067 clear_inode_flag(mapping->host, FI_HOT_DATA); 3068 3069 if (wbc->range_cyclic) { 3070 index = mapping->writeback_index; /* prev offset */ 3071 end = -1; 3072 } else { 3073 index = wbc->range_start >> PAGE_SHIFT; 3074 end = wbc->range_end >> PAGE_SHIFT; 3075 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 3076 range_whole = 1; 3077 } 3078 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 3079 tag = PAGECACHE_TAG_TOWRITE; 3080 else 3081 tag = PAGECACHE_TAG_DIRTY; 3082 retry: 3083 retry = 0; 3084 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 3085 tag_pages_for_writeback(mapping, index, end); 3086 done_index = index; 3087 while (!done && !retry && (index <= end)) { 3088 nr_pages = 0; 3089 again: 3090 nr_folios = filemap_get_folios_tag(mapping, &index, end, 3091 tag, &fbatch); 3092 if (nr_folios == 0) { 3093 if (nr_pages) 3094 goto write; 3095 break; 3096 } 3097 3098 for (i = 0; i < nr_folios; i++) { 3099 struct folio *folio = fbatch.folios[i]; 3100 3101 idx = 0; 3102 p = folio_nr_pages(folio); 3103 add_more: 3104 pages[nr_pages] = folio_page(folio, idx); 3105 folio_get(folio); 3106 if (++nr_pages == max_pages) { 3107 index = folio->index + idx + 1; 3108 folio_batch_release(&fbatch); 3109 goto write; 3110 } 3111 if (++idx < p) 3112 goto add_more; 3113 } 3114 folio_batch_release(&fbatch); 3115 goto again; 3116 write: 3117 for (i = 0; i < nr_pages; i++) { 3118 struct page *page = pages[i]; 3119 struct folio *folio = page_folio(page); 3120 bool need_readd; 3121 readd: 3122 need_readd = false; 3123 #ifdef CONFIG_F2FS_FS_COMPRESSION 3124 if (f2fs_compressed_file(inode)) { 3125 void *fsdata = NULL; 3126 struct page *pagep; 3127 int ret2; 3128 3129 ret = f2fs_init_compress_ctx(&cc); 3130 if (ret) { 3131 done = 1; 3132 break; 3133 } 3134 3135 if (!f2fs_cluster_can_merge_page(&cc, 3136 folio->index)) { 3137 ret = f2fs_write_multi_pages(&cc, 3138 &submitted, wbc, io_type); 3139 if (!ret) 3140 need_readd = true; 3141 goto result; 3142 } 3143 3144 if (unlikely(f2fs_cp_error(sbi))) 3145 goto lock_folio; 3146 3147 if (!f2fs_cluster_is_empty(&cc)) 3148 goto lock_folio; 3149 3150 if (f2fs_all_cluster_page_ready(&cc, 3151 pages, i, nr_pages, true)) 3152 goto lock_folio; 3153 3154 ret2 = f2fs_prepare_compress_overwrite( 3155 inode, &pagep, 3156 folio->index, &fsdata); 3157 if (ret2 < 0) { 3158 ret = ret2; 3159 done = 1; 3160 break; 3161 } else if (ret2 && 3162 (!f2fs_compress_write_end(inode, 3163 fsdata, folio->index, 1) || 3164 !f2fs_all_cluster_page_ready(&cc, 3165 pages, i, nr_pages, 3166 false))) { 3167 retry = 1; 3168 break; 3169 } 3170 } 3171 #endif 3172 /* give a priority to WB_SYNC threads */ 3173 if (atomic_read(&sbi->wb_sync_req[DATA]) && 3174 wbc->sync_mode == WB_SYNC_NONE) { 3175 done = 1; 3176 break; 3177 } 3178 #ifdef CONFIG_F2FS_FS_COMPRESSION 3179 lock_folio: 3180 #endif 3181 done_index = folio->index; 3182 retry_write: 3183 folio_lock(folio); 3184 3185 if (unlikely(folio->mapping != mapping)) { 3186 continue_unlock: 3187 folio_unlock(folio); 3188 continue; 3189 } 3190 3191 if (!folio_test_dirty(folio)) { 3192 /* someone wrote it for us */ 3193 goto continue_unlock; 3194 } 3195 3196 if (folio_test_writeback(folio)) { 3197 if (wbc->sync_mode == WB_SYNC_NONE) 3198 goto continue_unlock; 3199 f2fs_wait_on_page_writeback(&folio->page, DATA, true, true); 3200 } 3201 3202 if (!folio_clear_dirty_for_io(folio)) 3203 goto continue_unlock; 3204 3205 #ifdef CONFIG_F2FS_FS_COMPRESSION 3206 if (f2fs_compressed_file(inode)) { 3207 folio_get(folio); 3208 f2fs_compress_ctx_add_page(&cc, &folio->page); 3209 continue; 3210 } 3211 #endif 3212 ret = f2fs_write_single_data_page(&folio->page, 3213 &submitted, &bio, &last_block, 3214 wbc, io_type, 0, true); 3215 if (ret == AOP_WRITEPAGE_ACTIVATE) 3216 folio_unlock(folio); 3217 #ifdef CONFIG_F2FS_FS_COMPRESSION 3218 result: 3219 #endif 3220 nwritten += submitted; 3221 wbc->nr_to_write -= submitted; 3222 3223 if (unlikely(ret)) { 3224 /* 3225 * keep nr_to_write, since vfs uses this to 3226 * get # of written pages. 3227 */ 3228 if (ret == AOP_WRITEPAGE_ACTIVATE) { 3229 ret = 0; 3230 goto next; 3231 } else if (ret == -EAGAIN) { 3232 ret = 0; 3233 if (wbc->sync_mode == WB_SYNC_ALL) { 3234 f2fs_io_schedule_timeout( 3235 DEFAULT_IO_TIMEOUT); 3236 goto retry_write; 3237 } 3238 goto next; 3239 } 3240 done_index = folio_next_index(folio); 3241 done = 1; 3242 break; 3243 } 3244 3245 if (wbc->nr_to_write <= 0 && 3246 wbc->sync_mode == WB_SYNC_NONE) { 3247 done = 1; 3248 break; 3249 } 3250 next: 3251 if (need_readd) 3252 goto readd; 3253 } 3254 release_pages(pages, nr_pages); 3255 cond_resched(); 3256 } 3257 #ifdef CONFIG_F2FS_FS_COMPRESSION 3258 /* flush remained pages in compress cluster */ 3259 if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) { 3260 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type); 3261 nwritten += submitted; 3262 wbc->nr_to_write -= submitted; 3263 if (ret) { 3264 done = 1; 3265 retry = 0; 3266 } 3267 } 3268 if (f2fs_compressed_file(inode)) 3269 f2fs_destroy_compress_ctx(&cc, false); 3270 #endif 3271 if (retry) { 3272 index = 0; 3273 end = -1; 3274 goto retry; 3275 } 3276 if (wbc->range_cyclic && !done) 3277 done_index = 0; 3278 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 3279 mapping->writeback_index = done_index; 3280 3281 if (nwritten) 3282 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host, 3283 NULL, 0, DATA); 3284 /* submit cached bio of IPU write */ 3285 if (bio) 3286 f2fs_submit_merged_ipu_write(sbi, &bio, NULL); 3287 3288 #ifdef CONFIG_F2FS_FS_COMPRESSION 3289 if (pages != pages_local) 3290 kfree(pages); 3291 #endif 3292 3293 return ret; 3294 } 3295 3296 static inline bool __should_serialize_io(struct inode *inode, 3297 struct writeback_control *wbc) 3298 { 3299 /* to avoid deadlock in path of data flush */ 3300 if (F2FS_I(inode)->wb_task) 3301 return false; 3302 3303 if (!S_ISREG(inode->i_mode)) 3304 return false; 3305 if (IS_NOQUOTA(inode)) 3306 return false; 3307 3308 if (f2fs_need_compress_data(inode)) 3309 return true; 3310 if (wbc->sync_mode != WB_SYNC_ALL) 3311 return true; 3312 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks) 3313 return true; 3314 return false; 3315 } 3316 3317 static int __f2fs_write_data_pages(struct address_space *mapping, 3318 struct writeback_control *wbc, 3319 enum iostat_type io_type) 3320 { 3321 struct inode *inode = mapping->host; 3322 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3323 struct blk_plug plug; 3324 int ret; 3325 bool locked = false; 3326 3327 /* deal with chardevs and other special file */ 3328 if (!mapping->a_ops->writepage) 3329 return 0; 3330 3331 /* skip writing if there is no dirty page in this inode */ 3332 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE) 3333 return 0; 3334 3335 /* during POR, we don't need to trigger writepage at all. */ 3336 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 3337 goto skip_write; 3338 3339 if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) && 3340 wbc->sync_mode == WB_SYNC_NONE && 3341 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) && 3342 f2fs_available_free_memory(sbi, DIRTY_DENTS)) 3343 goto skip_write; 3344 3345 /* skip writing in file defragment preparing stage */ 3346 if (is_inode_flag_set(inode, FI_SKIP_WRITES)) 3347 goto skip_write; 3348 3349 trace_f2fs_writepages(mapping->host, wbc, DATA); 3350 3351 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */ 3352 if (wbc->sync_mode == WB_SYNC_ALL) 3353 atomic_inc(&sbi->wb_sync_req[DATA]); 3354 else if (atomic_read(&sbi->wb_sync_req[DATA])) { 3355 /* to avoid potential deadlock */ 3356 if (current->plug) 3357 blk_finish_plug(current->plug); 3358 goto skip_write; 3359 } 3360 3361 if (__should_serialize_io(inode, wbc)) { 3362 mutex_lock(&sbi->writepages); 3363 locked = true; 3364 } 3365 3366 blk_start_plug(&plug); 3367 ret = f2fs_write_cache_pages(mapping, wbc, io_type); 3368 blk_finish_plug(&plug); 3369 3370 if (locked) 3371 mutex_unlock(&sbi->writepages); 3372 3373 if (wbc->sync_mode == WB_SYNC_ALL) 3374 atomic_dec(&sbi->wb_sync_req[DATA]); 3375 /* 3376 * if some pages were truncated, we cannot guarantee its mapping->host 3377 * to detect pending bios. 3378 */ 3379 3380 f2fs_remove_dirty_inode(inode); 3381 return ret; 3382 3383 skip_write: 3384 wbc->pages_skipped += get_dirty_pages(inode); 3385 trace_f2fs_writepages(mapping->host, wbc, DATA); 3386 return 0; 3387 } 3388 3389 static int f2fs_write_data_pages(struct address_space *mapping, 3390 struct writeback_control *wbc) 3391 { 3392 struct inode *inode = mapping->host; 3393 3394 return __f2fs_write_data_pages(mapping, wbc, 3395 F2FS_I(inode)->cp_task == current ? 3396 FS_CP_DATA_IO : FS_DATA_IO); 3397 } 3398 3399 void f2fs_write_failed(struct inode *inode, loff_t to) 3400 { 3401 loff_t i_size = i_size_read(inode); 3402 3403 if (IS_NOQUOTA(inode)) 3404 return; 3405 3406 /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */ 3407 if (to > i_size && !f2fs_verity_in_progress(inode)) { 3408 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3409 filemap_invalidate_lock(inode->i_mapping); 3410 3411 truncate_pagecache(inode, i_size); 3412 f2fs_truncate_blocks(inode, i_size, true); 3413 3414 filemap_invalidate_unlock(inode->i_mapping); 3415 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3416 } 3417 } 3418 3419 static int prepare_write_begin(struct f2fs_sb_info *sbi, 3420 struct page *page, loff_t pos, unsigned len, 3421 block_t *blk_addr, bool *node_changed) 3422 { 3423 struct inode *inode = page->mapping->host; 3424 pgoff_t index = page->index; 3425 struct dnode_of_data dn; 3426 struct page *ipage; 3427 bool locked = false; 3428 int flag = F2FS_GET_BLOCK_PRE_AIO; 3429 int err = 0; 3430 3431 /* 3432 * If a whole page is being written and we already preallocated all the 3433 * blocks, then there is no need to get a block address now. 3434 */ 3435 if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL)) 3436 return 0; 3437 3438 /* f2fs_lock_op avoids race between write CP and convert_inline_page */ 3439 if (f2fs_has_inline_data(inode)) { 3440 if (pos + len > MAX_INLINE_DATA(inode)) 3441 flag = F2FS_GET_BLOCK_DEFAULT; 3442 f2fs_map_lock(sbi, flag); 3443 locked = true; 3444 } else if ((pos & PAGE_MASK) >= i_size_read(inode)) { 3445 f2fs_map_lock(sbi, flag); 3446 locked = true; 3447 } 3448 3449 restart: 3450 /* check inline_data */ 3451 ipage = f2fs_get_node_page(sbi, inode->i_ino); 3452 if (IS_ERR(ipage)) { 3453 err = PTR_ERR(ipage); 3454 goto unlock_out; 3455 } 3456 3457 set_new_dnode(&dn, inode, ipage, ipage, 0); 3458 3459 if (f2fs_has_inline_data(inode)) { 3460 if (pos + len <= MAX_INLINE_DATA(inode)) { 3461 f2fs_do_read_inline_data(page, ipage); 3462 set_inode_flag(inode, FI_DATA_EXIST); 3463 if (inode->i_nlink) 3464 set_page_private_inline(ipage); 3465 goto out; 3466 } 3467 err = f2fs_convert_inline_page(&dn, page); 3468 if (err || dn.data_blkaddr != NULL_ADDR) 3469 goto out; 3470 } 3471 3472 if (!f2fs_lookup_read_extent_cache_block(inode, index, 3473 &dn.data_blkaddr)) { 3474 if (locked) { 3475 err = f2fs_reserve_block(&dn, index); 3476 goto out; 3477 } 3478 3479 /* hole case */ 3480 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 3481 if (!err && dn.data_blkaddr != NULL_ADDR) 3482 goto out; 3483 f2fs_put_dnode(&dn); 3484 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO); 3485 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO); 3486 locked = true; 3487 goto restart; 3488 } 3489 out: 3490 if (!err) { 3491 /* convert_inline_page can make node_changed */ 3492 *blk_addr = dn.data_blkaddr; 3493 *node_changed = dn.node_changed; 3494 } 3495 f2fs_put_dnode(&dn); 3496 unlock_out: 3497 if (locked) 3498 f2fs_map_unlock(sbi, flag); 3499 return err; 3500 } 3501 3502 static int __find_data_block(struct inode *inode, pgoff_t index, 3503 block_t *blk_addr) 3504 { 3505 struct dnode_of_data dn; 3506 struct page *ipage; 3507 int err = 0; 3508 3509 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino); 3510 if (IS_ERR(ipage)) 3511 return PTR_ERR(ipage); 3512 3513 set_new_dnode(&dn, inode, ipage, ipage, 0); 3514 3515 if (!f2fs_lookup_read_extent_cache_block(inode, index, 3516 &dn.data_blkaddr)) { 3517 /* hole case */ 3518 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 3519 if (err) { 3520 dn.data_blkaddr = NULL_ADDR; 3521 err = 0; 3522 } 3523 } 3524 *blk_addr = dn.data_blkaddr; 3525 f2fs_put_dnode(&dn); 3526 return err; 3527 } 3528 3529 static int __reserve_data_block(struct inode *inode, pgoff_t index, 3530 block_t *blk_addr, bool *node_changed) 3531 { 3532 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3533 struct dnode_of_data dn; 3534 struct page *ipage; 3535 int err = 0; 3536 3537 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO); 3538 3539 ipage = f2fs_get_node_page(sbi, inode->i_ino); 3540 if (IS_ERR(ipage)) { 3541 err = PTR_ERR(ipage); 3542 goto unlock_out; 3543 } 3544 set_new_dnode(&dn, inode, ipage, ipage, 0); 3545 3546 if (!f2fs_lookup_read_extent_cache_block(dn.inode, index, 3547 &dn.data_blkaddr)) 3548 err = f2fs_reserve_block(&dn, index); 3549 3550 *blk_addr = dn.data_blkaddr; 3551 *node_changed = dn.node_changed; 3552 f2fs_put_dnode(&dn); 3553 3554 unlock_out: 3555 f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO); 3556 return err; 3557 } 3558 3559 static int prepare_atomic_write_begin(struct f2fs_sb_info *sbi, 3560 struct page *page, loff_t pos, unsigned int len, 3561 block_t *blk_addr, bool *node_changed, bool *use_cow) 3562 { 3563 struct inode *inode = page->mapping->host; 3564 struct inode *cow_inode = F2FS_I(inode)->cow_inode; 3565 pgoff_t index = page->index; 3566 int err = 0; 3567 block_t ori_blk_addr = NULL_ADDR; 3568 3569 /* If pos is beyond the end of file, reserve a new block in COW inode */ 3570 if ((pos & PAGE_MASK) >= i_size_read(inode)) 3571 goto reserve_block; 3572 3573 /* Look for the block in COW inode first */ 3574 err = __find_data_block(cow_inode, index, blk_addr); 3575 if (err) { 3576 return err; 3577 } else if (*blk_addr != NULL_ADDR) { 3578 *use_cow = true; 3579 return 0; 3580 } 3581 3582 if (is_inode_flag_set(inode, FI_ATOMIC_REPLACE)) 3583 goto reserve_block; 3584 3585 /* Look for the block in the original inode */ 3586 err = __find_data_block(inode, index, &ori_blk_addr); 3587 if (err) 3588 return err; 3589 3590 reserve_block: 3591 /* Finally, we should reserve a new block in COW inode for the update */ 3592 err = __reserve_data_block(cow_inode, index, blk_addr, node_changed); 3593 if (err) 3594 return err; 3595 inc_atomic_write_cnt(inode); 3596 3597 if (ori_blk_addr != NULL_ADDR) 3598 *blk_addr = ori_blk_addr; 3599 return 0; 3600 } 3601 3602 static int f2fs_write_begin(struct file *file, struct address_space *mapping, 3603 loff_t pos, unsigned len, struct page **pagep, void **fsdata) 3604 { 3605 struct inode *inode = mapping->host; 3606 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3607 struct page *page = NULL; 3608 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT; 3609 bool need_balance = false; 3610 bool use_cow = false; 3611 block_t blkaddr = NULL_ADDR; 3612 int err = 0; 3613 3614 trace_f2fs_write_begin(inode, pos, len); 3615 3616 if (!f2fs_is_checkpoint_ready(sbi)) { 3617 err = -ENOSPC; 3618 goto fail; 3619 } 3620 3621 /* 3622 * We should check this at this moment to avoid deadlock on inode page 3623 * and #0 page. The locking rule for inline_data conversion should be: 3624 * lock_page(page #0) -> lock_page(inode_page) 3625 */ 3626 if (index != 0) { 3627 err = f2fs_convert_inline_inode(inode); 3628 if (err) 3629 goto fail; 3630 } 3631 3632 #ifdef CONFIG_F2FS_FS_COMPRESSION 3633 if (f2fs_compressed_file(inode)) { 3634 int ret; 3635 3636 *fsdata = NULL; 3637 3638 if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode))) 3639 goto repeat; 3640 3641 ret = f2fs_prepare_compress_overwrite(inode, pagep, 3642 index, fsdata); 3643 if (ret < 0) { 3644 err = ret; 3645 goto fail; 3646 } else if (ret) { 3647 return 0; 3648 } 3649 } 3650 #endif 3651 3652 repeat: 3653 /* 3654 * Do not use grab_cache_page_write_begin() to avoid deadlock due to 3655 * wait_for_stable_page. Will wait that below with our IO control. 3656 */ 3657 page = f2fs_pagecache_get_page(mapping, index, 3658 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS); 3659 if (!page) { 3660 err = -ENOMEM; 3661 goto fail; 3662 } 3663 3664 /* TODO: cluster can be compressed due to race with .writepage */ 3665 3666 *pagep = page; 3667 3668 if (f2fs_is_atomic_file(inode)) 3669 err = prepare_atomic_write_begin(sbi, page, pos, len, 3670 &blkaddr, &need_balance, &use_cow); 3671 else 3672 err = prepare_write_begin(sbi, page, pos, len, 3673 &blkaddr, &need_balance); 3674 if (err) 3675 goto fail; 3676 3677 if (need_balance && !IS_NOQUOTA(inode) && 3678 has_not_enough_free_secs(sbi, 0, 0)) { 3679 unlock_page(page); 3680 f2fs_balance_fs(sbi, true); 3681 lock_page(page); 3682 if (page->mapping != mapping) { 3683 /* The page got truncated from under us */ 3684 f2fs_put_page(page, 1); 3685 goto repeat; 3686 } 3687 } 3688 3689 f2fs_wait_on_page_writeback(page, DATA, false, true); 3690 3691 if (len == PAGE_SIZE || PageUptodate(page)) 3692 return 0; 3693 3694 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) && 3695 !f2fs_verity_in_progress(inode)) { 3696 zero_user_segment(page, len, PAGE_SIZE); 3697 return 0; 3698 } 3699 3700 if (blkaddr == NEW_ADDR) { 3701 zero_user_segment(page, 0, PAGE_SIZE); 3702 SetPageUptodate(page); 3703 } else { 3704 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 3705 DATA_GENERIC_ENHANCE_READ)) { 3706 err = -EFSCORRUPTED; 3707 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 3708 goto fail; 3709 } 3710 err = f2fs_submit_page_read(use_cow ? 3711 F2FS_I(inode)->cow_inode : inode, page, 3712 blkaddr, 0, true); 3713 if (err) 3714 goto fail; 3715 3716 lock_page(page); 3717 if (unlikely(page->mapping != mapping)) { 3718 f2fs_put_page(page, 1); 3719 goto repeat; 3720 } 3721 if (unlikely(!PageUptodate(page))) { 3722 err = -EIO; 3723 goto fail; 3724 } 3725 } 3726 return 0; 3727 3728 fail: 3729 f2fs_put_page(page, 1); 3730 f2fs_write_failed(inode, pos + len); 3731 return err; 3732 } 3733 3734 static int f2fs_write_end(struct file *file, 3735 struct address_space *mapping, 3736 loff_t pos, unsigned len, unsigned copied, 3737 struct page *page, void *fsdata) 3738 { 3739 struct inode *inode = page->mapping->host; 3740 3741 trace_f2fs_write_end(inode, pos, len, copied); 3742 3743 /* 3744 * This should be come from len == PAGE_SIZE, and we expect copied 3745 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and 3746 * let generic_perform_write() try to copy data again through copied=0. 3747 */ 3748 if (!PageUptodate(page)) { 3749 if (unlikely(copied != len)) 3750 copied = 0; 3751 else 3752 SetPageUptodate(page); 3753 } 3754 3755 #ifdef CONFIG_F2FS_FS_COMPRESSION 3756 /* overwrite compressed file */ 3757 if (f2fs_compressed_file(inode) && fsdata) { 3758 f2fs_compress_write_end(inode, fsdata, page->index, copied); 3759 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3760 3761 if (pos + copied > i_size_read(inode) && 3762 !f2fs_verity_in_progress(inode)) 3763 f2fs_i_size_write(inode, pos + copied); 3764 return copied; 3765 } 3766 #endif 3767 3768 if (!copied) 3769 goto unlock_out; 3770 3771 set_page_dirty(page); 3772 3773 if (pos + copied > i_size_read(inode) && 3774 !f2fs_verity_in_progress(inode)) { 3775 f2fs_i_size_write(inode, pos + copied); 3776 if (f2fs_is_atomic_file(inode)) 3777 f2fs_i_size_write(F2FS_I(inode)->cow_inode, 3778 pos + copied); 3779 } 3780 unlock_out: 3781 f2fs_put_page(page, 1); 3782 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3783 return copied; 3784 } 3785 3786 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length) 3787 { 3788 struct inode *inode = folio->mapping->host; 3789 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3790 3791 if (inode->i_ino >= F2FS_ROOT_INO(sbi) && 3792 (offset || length != folio_size(folio))) 3793 return; 3794 3795 if (folio_test_dirty(folio)) { 3796 if (inode->i_ino == F2FS_META_INO(sbi)) { 3797 dec_page_count(sbi, F2FS_DIRTY_META); 3798 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) { 3799 dec_page_count(sbi, F2FS_DIRTY_NODES); 3800 } else { 3801 inode_dec_dirty_pages(inode); 3802 f2fs_remove_dirty_inode(inode); 3803 } 3804 } 3805 clear_page_private_all(&folio->page); 3806 } 3807 3808 bool f2fs_release_folio(struct folio *folio, gfp_t wait) 3809 { 3810 /* If this is dirty folio, keep private data */ 3811 if (folio_test_dirty(folio)) 3812 return false; 3813 3814 clear_page_private_all(&folio->page); 3815 return true; 3816 } 3817 3818 static bool f2fs_dirty_data_folio(struct address_space *mapping, 3819 struct folio *folio) 3820 { 3821 struct inode *inode = mapping->host; 3822 3823 trace_f2fs_set_page_dirty(&folio->page, DATA); 3824 3825 if (!folio_test_uptodate(folio)) 3826 folio_mark_uptodate(folio); 3827 BUG_ON(folio_test_swapcache(folio)); 3828 3829 if (filemap_dirty_folio(mapping, folio)) { 3830 f2fs_update_dirty_folio(inode, folio); 3831 return true; 3832 } 3833 return false; 3834 } 3835 3836 3837 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block) 3838 { 3839 #ifdef CONFIG_F2FS_FS_COMPRESSION 3840 struct dnode_of_data dn; 3841 sector_t start_idx, blknr = 0; 3842 int ret; 3843 3844 start_idx = round_down(block, F2FS_I(inode)->i_cluster_size); 3845 3846 set_new_dnode(&dn, inode, NULL, NULL, 0); 3847 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 3848 if (ret) 3849 return 0; 3850 3851 if (dn.data_blkaddr != COMPRESS_ADDR) { 3852 dn.ofs_in_node += block - start_idx; 3853 blknr = f2fs_data_blkaddr(&dn); 3854 if (!__is_valid_data_blkaddr(blknr)) 3855 blknr = 0; 3856 } 3857 3858 f2fs_put_dnode(&dn); 3859 return blknr; 3860 #else 3861 return 0; 3862 #endif 3863 } 3864 3865 3866 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block) 3867 { 3868 struct inode *inode = mapping->host; 3869 sector_t blknr = 0; 3870 3871 if (f2fs_has_inline_data(inode)) 3872 goto out; 3873 3874 /* make sure allocating whole blocks */ 3875 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 3876 filemap_write_and_wait(mapping); 3877 3878 /* Block number less than F2FS MAX BLOCKS */ 3879 if (unlikely(block >= max_file_blocks(inode))) 3880 goto out; 3881 3882 if (f2fs_compressed_file(inode)) { 3883 blknr = f2fs_bmap_compress(inode, block); 3884 } else { 3885 struct f2fs_map_blocks map; 3886 3887 memset(&map, 0, sizeof(map)); 3888 map.m_lblk = block; 3889 map.m_len = 1; 3890 map.m_next_pgofs = NULL; 3891 map.m_seg_type = NO_CHECK_TYPE; 3892 3893 if (!f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_BMAP)) 3894 blknr = map.m_pblk; 3895 } 3896 out: 3897 trace_f2fs_bmap(inode, block, blknr); 3898 return blknr; 3899 } 3900 3901 #ifdef CONFIG_SWAP 3902 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk, 3903 unsigned int blkcnt) 3904 { 3905 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3906 unsigned int blkofs; 3907 unsigned int blk_per_sec = BLKS_PER_SEC(sbi); 3908 unsigned int secidx = start_blk / blk_per_sec; 3909 unsigned int end_sec = secidx + blkcnt / blk_per_sec; 3910 int ret = 0; 3911 3912 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3913 filemap_invalidate_lock(inode->i_mapping); 3914 3915 set_inode_flag(inode, FI_ALIGNED_WRITE); 3916 set_inode_flag(inode, FI_OPU_WRITE); 3917 3918 for (; secidx < end_sec; secidx++) { 3919 f2fs_down_write(&sbi->pin_sem); 3920 3921 f2fs_lock_op(sbi); 3922 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false); 3923 f2fs_unlock_op(sbi); 3924 3925 set_inode_flag(inode, FI_SKIP_WRITES); 3926 3927 for (blkofs = 0; blkofs < blk_per_sec; blkofs++) { 3928 struct page *page; 3929 unsigned int blkidx = secidx * blk_per_sec + blkofs; 3930 3931 page = f2fs_get_lock_data_page(inode, blkidx, true); 3932 if (IS_ERR(page)) { 3933 f2fs_up_write(&sbi->pin_sem); 3934 ret = PTR_ERR(page); 3935 goto done; 3936 } 3937 3938 set_page_dirty(page); 3939 f2fs_put_page(page, 1); 3940 } 3941 3942 clear_inode_flag(inode, FI_SKIP_WRITES); 3943 3944 ret = filemap_fdatawrite(inode->i_mapping); 3945 3946 f2fs_up_write(&sbi->pin_sem); 3947 3948 if (ret) 3949 break; 3950 } 3951 3952 done: 3953 clear_inode_flag(inode, FI_SKIP_WRITES); 3954 clear_inode_flag(inode, FI_OPU_WRITE); 3955 clear_inode_flag(inode, FI_ALIGNED_WRITE); 3956 3957 filemap_invalidate_unlock(inode->i_mapping); 3958 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3959 3960 return ret; 3961 } 3962 3963 static int check_swap_activate(struct swap_info_struct *sis, 3964 struct file *swap_file, sector_t *span) 3965 { 3966 struct address_space *mapping = swap_file->f_mapping; 3967 struct inode *inode = mapping->host; 3968 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3969 sector_t cur_lblock; 3970 sector_t last_lblock; 3971 sector_t pblock; 3972 sector_t lowest_pblock = -1; 3973 sector_t highest_pblock = 0; 3974 int nr_extents = 0; 3975 unsigned long nr_pblocks; 3976 unsigned int blks_per_sec = BLKS_PER_SEC(sbi); 3977 unsigned int sec_blks_mask = BLKS_PER_SEC(sbi) - 1; 3978 unsigned int not_aligned = 0; 3979 int ret = 0; 3980 3981 /* 3982 * Map all the blocks into the extent list. This code doesn't try 3983 * to be very smart. 3984 */ 3985 cur_lblock = 0; 3986 last_lblock = bytes_to_blks(inode, i_size_read(inode)); 3987 3988 while (cur_lblock < last_lblock && cur_lblock < sis->max) { 3989 struct f2fs_map_blocks map; 3990 retry: 3991 cond_resched(); 3992 3993 memset(&map, 0, sizeof(map)); 3994 map.m_lblk = cur_lblock; 3995 map.m_len = last_lblock - cur_lblock; 3996 map.m_next_pgofs = NULL; 3997 map.m_next_extent = NULL; 3998 map.m_seg_type = NO_CHECK_TYPE; 3999 map.m_may_create = false; 4000 4001 ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP); 4002 if (ret) 4003 goto out; 4004 4005 /* hole */ 4006 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 4007 f2fs_err(sbi, "Swapfile has holes"); 4008 ret = -EINVAL; 4009 goto out; 4010 } 4011 4012 pblock = map.m_pblk; 4013 nr_pblocks = map.m_len; 4014 4015 if ((pblock - SM_I(sbi)->main_blkaddr) & sec_blks_mask || 4016 nr_pblocks & sec_blks_mask) { 4017 not_aligned++; 4018 4019 nr_pblocks = roundup(nr_pblocks, blks_per_sec); 4020 if (cur_lblock + nr_pblocks > sis->max) 4021 nr_pblocks -= blks_per_sec; 4022 4023 if (!nr_pblocks) { 4024 /* this extent is last one */ 4025 nr_pblocks = map.m_len; 4026 f2fs_warn(sbi, "Swapfile: last extent is not aligned to section"); 4027 goto next; 4028 } 4029 4030 ret = f2fs_migrate_blocks(inode, cur_lblock, 4031 nr_pblocks); 4032 if (ret) 4033 goto out; 4034 goto retry; 4035 } 4036 next: 4037 if (cur_lblock + nr_pblocks >= sis->max) 4038 nr_pblocks = sis->max - cur_lblock; 4039 4040 if (cur_lblock) { /* exclude the header page */ 4041 if (pblock < lowest_pblock) 4042 lowest_pblock = pblock; 4043 if (pblock + nr_pblocks - 1 > highest_pblock) 4044 highest_pblock = pblock + nr_pblocks - 1; 4045 } 4046 4047 /* 4048 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks 4049 */ 4050 ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock); 4051 if (ret < 0) 4052 goto out; 4053 nr_extents += ret; 4054 cur_lblock += nr_pblocks; 4055 } 4056 ret = nr_extents; 4057 *span = 1 + highest_pblock - lowest_pblock; 4058 if (cur_lblock == 0) 4059 cur_lblock = 1; /* force Empty message */ 4060 sis->max = cur_lblock; 4061 sis->pages = cur_lblock - 1; 4062 sis->highest_bit = cur_lblock - 1; 4063 out: 4064 if (not_aligned) 4065 f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%lu * N)", 4066 not_aligned, blks_per_sec * F2FS_BLKSIZE); 4067 return ret; 4068 } 4069 4070 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, 4071 sector_t *span) 4072 { 4073 struct inode *inode = file_inode(file); 4074 int ret; 4075 4076 if (!S_ISREG(inode->i_mode)) 4077 return -EINVAL; 4078 4079 if (f2fs_readonly(F2FS_I_SB(inode)->sb)) 4080 return -EROFS; 4081 4082 if (f2fs_lfs_mode(F2FS_I_SB(inode))) { 4083 f2fs_err(F2FS_I_SB(inode), 4084 "Swapfile not supported in LFS mode"); 4085 return -EINVAL; 4086 } 4087 4088 ret = f2fs_convert_inline_inode(inode); 4089 if (ret) 4090 return ret; 4091 4092 if (!f2fs_disable_compressed_file(inode)) 4093 return -EINVAL; 4094 4095 f2fs_precache_extents(inode); 4096 4097 ret = check_swap_activate(sis, file, span); 4098 if (ret < 0) 4099 return ret; 4100 4101 stat_inc_swapfile_inode(inode); 4102 set_inode_flag(inode, FI_PIN_FILE); 4103 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 4104 return ret; 4105 } 4106 4107 static void f2fs_swap_deactivate(struct file *file) 4108 { 4109 struct inode *inode = file_inode(file); 4110 4111 stat_dec_swapfile_inode(inode); 4112 clear_inode_flag(inode, FI_PIN_FILE); 4113 } 4114 #else 4115 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, 4116 sector_t *span) 4117 { 4118 return -EOPNOTSUPP; 4119 } 4120 4121 static void f2fs_swap_deactivate(struct file *file) 4122 { 4123 } 4124 #endif 4125 4126 const struct address_space_operations f2fs_dblock_aops = { 4127 .read_folio = f2fs_read_data_folio, 4128 .readahead = f2fs_readahead, 4129 .writepage = f2fs_write_data_page, 4130 .writepages = f2fs_write_data_pages, 4131 .write_begin = f2fs_write_begin, 4132 .write_end = f2fs_write_end, 4133 .dirty_folio = f2fs_dirty_data_folio, 4134 .migrate_folio = filemap_migrate_folio, 4135 .invalidate_folio = f2fs_invalidate_folio, 4136 .release_folio = f2fs_release_folio, 4137 .bmap = f2fs_bmap, 4138 .swap_activate = f2fs_swap_activate, 4139 .swap_deactivate = f2fs_swap_deactivate, 4140 }; 4141 4142 void f2fs_clear_page_cache_dirty_tag(struct page *page) 4143 { 4144 struct address_space *mapping = page_mapping(page); 4145 unsigned long flags; 4146 4147 xa_lock_irqsave(&mapping->i_pages, flags); 4148 __xa_clear_mark(&mapping->i_pages, page_index(page), 4149 PAGECACHE_TAG_DIRTY); 4150 xa_unlock_irqrestore(&mapping->i_pages, flags); 4151 } 4152 4153 int __init f2fs_init_post_read_processing(void) 4154 { 4155 bio_post_read_ctx_cache = 4156 kmem_cache_create("f2fs_bio_post_read_ctx", 4157 sizeof(struct bio_post_read_ctx), 0, 0, NULL); 4158 if (!bio_post_read_ctx_cache) 4159 goto fail; 4160 bio_post_read_ctx_pool = 4161 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS, 4162 bio_post_read_ctx_cache); 4163 if (!bio_post_read_ctx_pool) 4164 goto fail_free_cache; 4165 return 0; 4166 4167 fail_free_cache: 4168 kmem_cache_destroy(bio_post_read_ctx_cache); 4169 fail: 4170 return -ENOMEM; 4171 } 4172 4173 void f2fs_destroy_post_read_processing(void) 4174 { 4175 mempool_destroy(bio_post_read_ctx_pool); 4176 kmem_cache_destroy(bio_post_read_ctx_cache); 4177 } 4178 4179 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi) 4180 { 4181 if (!f2fs_sb_has_encrypt(sbi) && 4182 !f2fs_sb_has_verity(sbi) && 4183 !f2fs_sb_has_compression(sbi)) 4184 return 0; 4185 4186 sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq", 4187 WQ_UNBOUND | WQ_HIGHPRI, 4188 num_online_cpus()); 4189 return sbi->post_read_wq ? 0 : -ENOMEM; 4190 } 4191 4192 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi) 4193 { 4194 if (sbi->post_read_wq) 4195 destroy_workqueue(sbi->post_read_wq); 4196 } 4197 4198 int __init f2fs_init_bio_entry_cache(void) 4199 { 4200 bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab", 4201 sizeof(struct bio_entry)); 4202 return bio_entry_slab ? 0 : -ENOMEM; 4203 } 4204 4205 void f2fs_destroy_bio_entry_cache(void) 4206 { 4207 kmem_cache_destroy(bio_entry_slab); 4208 } 4209 4210 static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 4211 unsigned int flags, struct iomap *iomap, 4212 struct iomap *srcmap) 4213 { 4214 struct f2fs_map_blocks map = {}; 4215 pgoff_t next_pgofs = 0; 4216 int err; 4217 4218 map.m_lblk = bytes_to_blks(inode, offset); 4219 map.m_len = bytes_to_blks(inode, offset + length - 1) - map.m_lblk + 1; 4220 map.m_next_pgofs = &next_pgofs; 4221 map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint); 4222 if (flags & IOMAP_WRITE) 4223 map.m_may_create = true; 4224 4225 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DIO); 4226 if (err) 4227 return err; 4228 4229 iomap->offset = blks_to_bytes(inode, map.m_lblk); 4230 4231 /* 4232 * When inline encryption is enabled, sometimes I/O to an encrypted file 4233 * has to be broken up to guarantee DUN contiguity. Handle this by 4234 * limiting the length of the mapping returned. 4235 */ 4236 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len); 4237 4238 /* 4239 * We should never see delalloc or compressed extents here based on 4240 * prior flushing and checks. 4241 */ 4242 if (WARN_ON_ONCE(map.m_pblk == NEW_ADDR)) 4243 return -EINVAL; 4244 if (WARN_ON_ONCE(map.m_pblk == COMPRESS_ADDR)) 4245 return -EINVAL; 4246 4247 if (map.m_pblk != NULL_ADDR) { 4248 iomap->length = blks_to_bytes(inode, map.m_len); 4249 iomap->type = IOMAP_MAPPED; 4250 iomap->flags |= IOMAP_F_MERGED; 4251 iomap->bdev = map.m_bdev; 4252 iomap->addr = blks_to_bytes(inode, map.m_pblk); 4253 } else { 4254 if (flags & IOMAP_WRITE) 4255 return -ENOTBLK; 4256 iomap->length = blks_to_bytes(inode, next_pgofs) - 4257 iomap->offset; 4258 iomap->type = IOMAP_HOLE; 4259 iomap->addr = IOMAP_NULL_ADDR; 4260 } 4261 4262 if (map.m_flags & F2FS_MAP_NEW) 4263 iomap->flags |= IOMAP_F_NEW; 4264 if ((inode->i_state & I_DIRTY_DATASYNC) || 4265 offset + length > i_size_read(inode)) 4266 iomap->flags |= IOMAP_F_DIRTY; 4267 4268 return 0; 4269 } 4270 4271 const struct iomap_ops f2fs_iomap_ops = { 4272 .iomap_begin = f2fs_iomap_begin, 4273 }; 4274