1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/data.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/buffer_head.h> 11 #include <linux/mpage.h> 12 #include <linux/writeback.h> 13 #include <linux/backing-dev.h> 14 #include <linux/pagevec.h> 15 #include <linux/blkdev.h> 16 #include <linux/bio.h> 17 #include <linux/blk-crypto.h> 18 #include <linux/swap.h> 19 #include <linux/prefetch.h> 20 #include <linux/uio.h> 21 #include <linux/cleancache.h> 22 #include <linux/sched/signal.h> 23 #include <linux/fiemap.h> 24 25 #include "f2fs.h" 26 #include "node.h" 27 #include "segment.h" 28 #include <trace/events/f2fs.h> 29 30 #define NUM_PREALLOC_POST_READ_CTXS 128 31 32 static struct kmem_cache *bio_post_read_ctx_cache; 33 static struct kmem_cache *bio_entry_slab; 34 static mempool_t *bio_post_read_ctx_pool; 35 static struct bio_set f2fs_bioset; 36 37 #define F2FS_BIO_POOL_SIZE NR_CURSEG_TYPE 38 39 int __init f2fs_init_bioset(void) 40 { 41 if (bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE, 42 0, BIOSET_NEED_BVECS)) 43 return -ENOMEM; 44 return 0; 45 } 46 47 void f2fs_destroy_bioset(void) 48 { 49 bioset_exit(&f2fs_bioset); 50 } 51 52 static bool __is_cp_guaranteed(struct page *page) 53 { 54 struct address_space *mapping = page->mapping; 55 struct inode *inode; 56 struct f2fs_sb_info *sbi; 57 58 if (!mapping) 59 return false; 60 61 if (f2fs_is_compressed_page(page)) 62 return false; 63 64 inode = mapping->host; 65 sbi = F2FS_I_SB(inode); 66 67 if (inode->i_ino == F2FS_META_INO(sbi) || 68 inode->i_ino == F2FS_NODE_INO(sbi) || 69 S_ISDIR(inode->i_mode) || 70 (S_ISREG(inode->i_mode) && 71 (f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) || 72 is_cold_data(page)) 73 return true; 74 return false; 75 } 76 77 static enum count_type __read_io_type(struct page *page) 78 { 79 struct address_space *mapping = page_file_mapping(page); 80 81 if (mapping) { 82 struct inode *inode = mapping->host; 83 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 84 85 if (inode->i_ino == F2FS_META_INO(sbi)) 86 return F2FS_RD_META; 87 88 if (inode->i_ino == F2FS_NODE_INO(sbi)) 89 return F2FS_RD_NODE; 90 } 91 return F2FS_RD_DATA; 92 } 93 94 /* postprocessing steps for read bios */ 95 enum bio_post_read_step { 96 #ifdef CONFIG_FS_ENCRYPTION 97 STEP_DECRYPT = 1 << 0, 98 #else 99 STEP_DECRYPT = 0, /* compile out the decryption-related code */ 100 #endif 101 #ifdef CONFIG_F2FS_FS_COMPRESSION 102 STEP_DECOMPRESS = 1 << 1, 103 #else 104 STEP_DECOMPRESS = 0, /* compile out the decompression-related code */ 105 #endif 106 #ifdef CONFIG_FS_VERITY 107 STEP_VERITY = 1 << 2, 108 #else 109 STEP_VERITY = 0, /* compile out the verity-related code */ 110 #endif 111 }; 112 113 struct bio_post_read_ctx { 114 struct bio *bio; 115 struct f2fs_sb_info *sbi; 116 struct work_struct work; 117 unsigned int enabled_steps; 118 }; 119 120 static void f2fs_finish_read_bio(struct bio *bio) 121 { 122 struct bio_vec *bv; 123 struct bvec_iter_all iter_all; 124 125 /* 126 * Update and unlock the bio's pagecache pages, and put the 127 * decompression context for any compressed pages. 128 */ 129 bio_for_each_segment_all(bv, bio, iter_all) { 130 struct page *page = bv->bv_page; 131 132 if (f2fs_is_compressed_page(page)) { 133 if (bio->bi_status) 134 f2fs_end_read_compressed_page(page, true); 135 f2fs_put_page_dic(page); 136 continue; 137 } 138 139 /* PG_error was set if decryption or verity failed. */ 140 if (bio->bi_status || PageError(page)) { 141 ClearPageUptodate(page); 142 /* will re-read again later */ 143 ClearPageError(page); 144 } else { 145 SetPageUptodate(page); 146 } 147 dec_page_count(F2FS_P_SB(page), __read_io_type(page)); 148 unlock_page(page); 149 } 150 151 if (bio->bi_private) 152 mempool_free(bio->bi_private, bio_post_read_ctx_pool); 153 bio_put(bio); 154 } 155 156 static void f2fs_verify_bio(struct work_struct *work) 157 { 158 struct bio_post_read_ctx *ctx = 159 container_of(work, struct bio_post_read_ctx, work); 160 struct bio *bio = ctx->bio; 161 bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS); 162 163 /* 164 * fsverity_verify_bio() may call readpages() again, and while verity 165 * will be disabled for this, decryption and/or decompression may still 166 * be needed, resulting in another bio_post_read_ctx being allocated. 167 * So to prevent deadlocks we need to release the current ctx to the 168 * mempool first. This assumes that verity is the last post-read step. 169 */ 170 mempool_free(ctx, bio_post_read_ctx_pool); 171 bio->bi_private = NULL; 172 173 /* 174 * Verify the bio's pages with fs-verity. Exclude compressed pages, 175 * as those were handled separately by f2fs_end_read_compressed_page(). 176 */ 177 if (may_have_compressed_pages) { 178 struct bio_vec *bv; 179 struct bvec_iter_all iter_all; 180 181 bio_for_each_segment_all(bv, bio, iter_all) { 182 struct page *page = bv->bv_page; 183 184 if (!f2fs_is_compressed_page(page) && 185 !PageError(page) && !fsverity_verify_page(page)) 186 SetPageError(page); 187 } 188 } else { 189 fsverity_verify_bio(bio); 190 } 191 192 f2fs_finish_read_bio(bio); 193 } 194 195 /* 196 * If the bio's data needs to be verified with fs-verity, then enqueue the 197 * verity work for the bio. Otherwise finish the bio now. 198 * 199 * Note that to avoid deadlocks, the verity work can't be done on the 200 * decryption/decompression workqueue. This is because verifying the data pages 201 * can involve reading verity metadata pages from the file, and these verity 202 * metadata pages may be encrypted and/or compressed. 203 */ 204 static void f2fs_verify_and_finish_bio(struct bio *bio) 205 { 206 struct bio_post_read_ctx *ctx = bio->bi_private; 207 208 if (ctx && (ctx->enabled_steps & STEP_VERITY)) { 209 INIT_WORK(&ctx->work, f2fs_verify_bio); 210 fsverity_enqueue_verify_work(&ctx->work); 211 } else { 212 f2fs_finish_read_bio(bio); 213 } 214 } 215 216 /* 217 * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last 218 * remaining page was read by @ctx->bio. 219 * 220 * Note that a bio may span clusters (even a mix of compressed and uncompressed 221 * clusters) or be for just part of a cluster. STEP_DECOMPRESS just indicates 222 * that the bio includes at least one compressed page. The actual decompression 223 * is done on a per-cluster basis, not a per-bio basis. 224 */ 225 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx) 226 { 227 struct bio_vec *bv; 228 struct bvec_iter_all iter_all; 229 bool all_compressed = true; 230 231 bio_for_each_segment_all(bv, ctx->bio, iter_all) { 232 struct page *page = bv->bv_page; 233 234 /* PG_error was set if decryption failed. */ 235 if (f2fs_is_compressed_page(page)) 236 f2fs_end_read_compressed_page(page, PageError(page)); 237 else 238 all_compressed = false; 239 } 240 241 /* 242 * Optimization: if all the bio's pages are compressed, then scheduling 243 * the per-bio verity work is unnecessary, as verity will be fully 244 * handled at the compression cluster level. 245 */ 246 if (all_compressed) 247 ctx->enabled_steps &= ~STEP_VERITY; 248 } 249 250 static void f2fs_post_read_work(struct work_struct *work) 251 { 252 struct bio_post_read_ctx *ctx = 253 container_of(work, struct bio_post_read_ctx, work); 254 255 if (ctx->enabled_steps & STEP_DECRYPT) 256 fscrypt_decrypt_bio(ctx->bio); 257 258 if (ctx->enabled_steps & STEP_DECOMPRESS) 259 f2fs_handle_step_decompress(ctx); 260 261 f2fs_verify_and_finish_bio(ctx->bio); 262 } 263 264 static void f2fs_read_end_io(struct bio *bio) 265 { 266 struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio)); 267 struct bio_post_read_ctx *ctx = bio->bi_private; 268 269 if (time_to_inject(sbi, FAULT_READ_IO)) { 270 f2fs_show_injection_info(sbi, FAULT_READ_IO); 271 bio->bi_status = BLK_STS_IOERR; 272 } 273 274 if (bio->bi_status) { 275 f2fs_finish_read_bio(bio); 276 return; 277 } 278 279 if (ctx && (ctx->enabled_steps & (STEP_DECRYPT | STEP_DECOMPRESS))) { 280 INIT_WORK(&ctx->work, f2fs_post_read_work); 281 queue_work(ctx->sbi->post_read_wq, &ctx->work); 282 } else { 283 f2fs_verify_and_finish_bio(bio); 284 } 285 } 286 287 static void f2fs_write_end_io(struct bio *bio) 288 { 289 struct f2fs_sb_info *sbi = bio->bi_private; 290 struct bio_vec *bvec; 291 struct bvec_iter_all iter_all; 292 293 if (time_to_inject(sbi, FAULT_WRITE_IO)) { 294 f2fs_show_injection_info(sbi, FAULT_WRITE_IO); 295 bio->bi_status = BLK_STS_IOERR; 296 } 297 298 bio_for_each_segment_all(bvec, bio, iter_all) { 299 struct page *page = bvec->bv_page; 300 enum count_type type = WB_DATA_TYPE(page); 301 302 if (IS_DUMMY_WRITTEN_PAGE(page)) { 303 set_page_private(page, (unsigned long)NULL); 304 ClearPagePrivate(page); 305 unlock_page(page); 306 mempool_free(page, sbi->write_io_dummy); 307 308 if (unlikely(bio->bi_status)) 309 f2fs_stop_checkpoint(sbi, true); 310 continue; 311 } 312 313 fscrypt_finalize_bounce_page(&page); 314 315 #ifdef CONFIG_F2FS_FS_COMPRESSION 316 if (f2fs_is_compressed_page(page)) { 317 f2fs_compress_write_end_io(bio, page); 318 continue; 319 } 320 #endif 321 322 if (unlikely(bio->bi_status)) { 323 mapping_set_error(page->mapping, -EIO); 324 if (type == F2FS_WB_CP_DATA) 325 f2fs_stop_checkpoint(sbi, true); 326 } 327 328 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) && 329 page->index != nid_of_node(page)); 330 331 dec_page_count(sbi, type); 332 if (f2fs_in_warm_node_list(sbi, page)) 333 f2fs_del_fsync_node_entry(sbi, page); 334 clear_cold_data(page); 335 end_page_writeback(page); 336 } 337 if (!get_pages(sbi, F2FS_WB_CP_DATA) && 338 wq_has_sleeper(&sbi->cp_wait)) 339 wake_up(&sbi->cp_wait); 340 341 bio_put(bio); 342 } 343 344 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 345 block_t blk_addr, struct bio *bio) 346 { 347 struct block_device *bdev = sbi->sb->s_bdev; 348 int i; 349 350 if (f2fs_is_multi_device(sbi)) { 351 for (i = 0; i < sbi->s_ndevs; i++) { 352 if (FDEV(i).start_blk <= blk_addr && 353 FDEV(i).end_blk >= blk_addr) { 354 blk_addr -= FDEV(i).start_blk; 355 bdev = FDEV(i).bdev; 356 break; 357 } 358 } 359 } 360 if (bio) { 361 bio_set_dev(bio, bdev); 362 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr); 363 } 364 return bdev; 365 } 366 367 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr) 368 { 369 int i; 370 371 if (!f2fs_is_multi_device(sbi)) 372 return 0; 373 374 for (i = 0; i < sbi->s_ndevs; i++) 375 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr) 376 return i; 377 return 0; 378 } 379 380 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages) 381 { 382 struct f2fs_sb_info *sbi = fio->sbi; 383 struct bio *bio; 384 385 bio = bio_alloc_bioset(GFP_NOIO, npages, &f2fs_bioset); 386 387 f2fs_target_device(sbi, fio->new_blkaddr, bio); 388 if (is_read_io(fio->op)) { 389 bio->bi_end_io = f2fs_read_end_io; 390 bio->bi_private = NULL; 391 } else { 392 bio->bi_end_io = f2fs_write_end_io; 393 bio->bi_private = sbi; 394 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, 395 fio->type, fio->temp); 396 } 397 if (fio->io_wbc) 398 wbc_init_bio(fio->io_wbc, bio); 399 400 return bio; 401 } 402 403 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode, 404 pgoff_t first_idx, 405 const struct f2fs_io_info *fio, 406 gfp_t gfp_mask) 407 { 408 /* 409 * The f2fs garbage collector sets ->encrypted_page when it wants to 410 * read/write raw data without encryption. 411 */ 412 if (!fio || !fio->encrypted_page) 413 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask); 414 } 415 416 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode, 417 pgoff_t next_idx, 418 const struct f2fs_io_info *fio) 419 { 420 /* 421 * The f2fs garbage collector sets ->encrypted_page when it wants to 422 * read/write raw data without encryption. 423 */ 424 if (fio && fio->encrypted_page) 425 return !bio_has_crypt_ctx(bio); 426 427 return fscrypt_mergeable_bio(bio, inode, next_idx); 428 } 429 430 static inline void __submit_bio(struct f2fs_sb_info *sbi, 431 struct bio *bio, enum page_type type) 432 { 433 if (!is_read_io(bio_op(bio))) { 434 unsigned int start; 435 436 if (type != DATA && type != NODE) 437 goto submit_io; 438 439 if (f2fs_lfs_mode(sbi) && current->plug) 440 blk_finish_plug(current->plug); 441 442 if (!F2FS_IO_ALIGNED(sbi)) 443 goto submit_io; 444 445 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS; 446 start %= F2FS_IO_SIZE(sbi); 447 448 if (start == 0) 449 goto submit_io; 450 451 /* fill dummy pages */ 452 for (; start < F2FS_IO_SIZE(sbi); start++) { 453 struct page *page = 454 mempool_alloc(sbi->write_io_dummy, 455 GFP_NOIO | __GFP_NOFAIL); 456 f2fs_bug_on(sbi, !page); 457 458 zero_user_segment(page, 0, PAGE_SIZE); 459 SetPagePrivate(page); 460 set_page_private(page, DUMMY_WRITTEN_PAGE); 461 lock_page(page); 462 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) 463 f2fs_bug_on(sbi, 1); 464 } 465 /* 466 * In the NODE case, we lose next block address chain. So, we 467 * need to do checkpoint in f2fs_sync_file. 468 */ 469 if (type == NODE) 470 set_sbi_flag(sbi, SBI_NEED_CP); 471 } 472 submit_io: 473 if (is_read_io(bio_op(bio))) 474 trace_f2fs_submit_read_bio(sbi->sb, type, bio); 475 else 476 trace_f2fs_submit_write_bio(sbi->sb, type, bio); 477 submit_bio(bio); 478 } 479 480 void f2fs_submit_bio(struct f2fs_sb_info *sbi, 481 struct bio *bio, enum page_type type) 482 { 483 __submit_bio(sbi, bio, type); 484 } 485 486 static void __attach_io_flag(struct f2fs_io_info *fio) 487 { 488 struct f2fs_sb_info *sbi = fio->sbi; 489 unsigned int temp_mask = (1 << NR_TEMP_TYPE) - 1; 490 unsigned int io_flag, fua_flag, meta_flag; 491 492 if (fio->type == DATA) 493 io_flag = sbi->data_io_flag; 494 else if (fio->type == NODE) 495 io_flag = sbi->node_io_flag; 496 else 497 return; 498 499 fua_flag = io_flag & temp_mask; 500 meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask; 501 502 /* 503 * data/node io flag bits per temp: 504 * REQ_META | REQ_FUA | 505 * 5 | 4 | 3 | 2 | 1 | 0 | 506 * Cold | Warm | Hot | Cold | Warm | Hot | 507 */ 508 if ((1 << fio->temp) & meta_flag) 509 fio->op_flags |= REQ_META; 510 if ((1 << fio->temp) & fua_flag) 511 fio->op_flags |= REQ_FUA; 512 } 513 514 static void __submit_merged_bio(struct f2fs_bio_info *io) 515 { 516 struct f2fs_io_info *fio = &io->fio; 517 518 if (!io->bio) 519 return; 520 521 __attach_io_flag(fio); 522 bio_set_op_attrs(io->bio, fio->op, fio->op_flags); 523 524 if (is_read_io(fio->op)) 525 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio); 526 else 527 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio); 528 529 __submit_bio(io->sbi, io->bio, fio->type); 530 io->bio = NULL; 531 } 532 533 static bool __has_merged_page(struct bio *bio, struct inode *inode, 534 struct page *page, nid_t ino) 535 { 536 struct bio_vec *bvec; 537 struct bvec_iter_all iter_all; 538 539 if (!bio) 540 return false; 541 542 if (!inode && !page && !ino) 543 return true; 544 545 bio_for_each_segment_all(bvec, bio, iter_all) { 546 struct page *target = bvec->bv_page; 547 548 if (fscrypt_is_bounce_page(target)) { 549 target = fscrypt_pagecache_page(target); 550 if (IS_ERR(target)) 551 continue; 552 } 553 if (f2fs_is_compressed_page(target)) { 554 target = f2fs_compress_control_page(target); 555 if (IS_ERR(target)) 556 continue; 557 } 558 559 if (inode && inode == target->mapping->host) 560 return true; 561 if (page && page == target) 562 return true; 563 if (ino && ino == ino_of_node(target)) 564 return true; 565 } 566 567 return false; 568 } 569 570 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi, 571 enum page_type type, enum temp_type temp) 572 { 573 enum page_type btype = PAGE_TYPE_OF_BIO(type); 574 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 575 576 down_write(&io->io_rwsem); 577 578 /* change META to META_FLUSH in the checkpoint procedure */ 579 if (type >= META_FLUSH) { 580 io->fio.type = META_FLUSH; 581 io->fio.op = REQ_OP_WRITE; 582 io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC; 583 if (!test_opt(sbi, NOBARRIER)) 584 io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA; 585 } 586 __submit_merged_bio(io); 587 up_write(&io->io_rwsem); 588 } 589 590 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi, 591 struct inode *inode, struct page *page, 592 nid_t ino, enum page_type type, bool force) 593 { 594 enum temp_type temp; 595 bool ret = true; 596 597 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) { 598 if (!force) { 599 enum page_type btype = PAGE_TYPE_OF_BIO(type); 600 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 601 602 down_read(&io->io_rwsem); 603 ret = __has_merged_page(io->bio, inode, page, ino); 604 up_read(&io->io_rwsem); 605 } 606 if (ret) 607 __f2fs_submit_merged_write(sbi, type, temp); 608 609 /* TODO: use HOT temp only for meta pages now. */ 610 if (type >= META) 611 break; 612 } 613 } 614 615 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type) 616 { 617 __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true); 618 } 619 620 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 621 struct inode *inode, struct page *page, 622 nid_t ino, enum page_type type) 623 { 624 __submit_merged_write_cond(sbi, inode, page, ino, type, false); 625 } 626 627 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi) 628 { 629 f2fs_submit_merged_write(sbi, DATA); 630 f2fs_submit_merged_write(sbi, NODE); 631 f2fs_submit_merged_write(sbi, META); 632 } 633 634 /* 635 * Fill the locked page with data located in the block address. 636 * A caller needs to unlock the page on failure. 637 */ 638 int f2fs_submit_page_bio(struct f2fs_io_info *fio) 639 { 640 struct bio *bio; 641 struct page *page = fio->encrypted_page ? 642 fio->encrypted_page : fio->page; 643 644 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, 645 fio->is_por ? META_POR : (__is_meta_io(fio) ? 646 META_GENERIC : DATA_GENERIC_ENHANCE))) 647 return -EFSCORRUPTED; 648 649 trace_f2fs_submit_page_bio(page, fio); 650 651 /* Allocate a new bio */ 652 bio = __bio_alloc(fio, 1); 653 654 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host, 655 fio->page->index, fio, GFP_NOIO); 656 657 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 658 bio_put(bio); 659 return -EFAULT; 660 } 661 662 if (fio->io_wbc && !is_read_io(fio->op)) 663 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE); 664 665 __attach_io_flag(fio); 666 bio_set_op_attrs(bio, fio->op, fio->op_flags); 667 668 inc_page_count(fio->sbi, is_read_io(fio->op) ? 669 __read_io_type(page): WB_DATA_TYPE(fio->page)); 670 671 __submit_bio(fio->sbi, bio, fio->type); 672 return 0; 673 } 674 675 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio, 676 block_t last_blkaddr, block_t cur_blkaddr) 677 { 678 if (unlikely(sbi->max_io_bytes && 679 bio->bi_iter.bi_size >= sbi->max_io_bytes)) 680 return false; 681 if (last_blkaddr + 1 != cur_blkaddr) 682 return false; 683 return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL); 684 } 685 686 static bool io_type_is_mergeable(struct f2fs_bio_info *io, 687 struct f2fs_io_info *fio) 688 { 689 if (io->fio.op != fio->op) 690 return false; 691 return io->fio.op_flags == fio->op_flags; 692 } 693 694 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio, 695 struct f2fs_bio_info *io, 696 struct f2fs_io_info *fio, 697 block_t last_blkaddr, 698 block_t cur_blkaddr) 699 { 700 if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) { 701 unsigned int filled_blocks = 702 F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size); 703 unsigned int io_size = F2FS_IO_SIZE(sbi); 704 unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt; 705 706 /* IOs in bio is aligned and left space of vectors is not enough */ 707 if (!(filled_blocks % io_size) && left_vecs < io_size) 708 return false; 709 } 710 if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr)) 711 return false; 712 return io_type_is_mergeable(io, fio); 713 } 714 715 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio, 716 struct page *page, enum temp_type temp) 717 { 718 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 719 struct bio_entry *be; 720 721 be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS); 722 be->bio = bio; 723 bio_get(bio); 724 725 if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE) 726 f2fs_bug_on(sbi, 1); 727 728 down_write(&io->bio_list_lock); 729 list_add_tail(&be->list, &io->bio_list); 730 up_write(&io->bio_list_lock); 731 } 732 733 static void del_bio_entry(struct bio_entry *be) 734 { 735 list_del(&be->list); 736 kmem_cache_free(bio_entry_slab, be); 737 } 738 739 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio, 740 struct page *page) 741 { 742 struct f2fs_sb_info *sbi = fio->sbi; 743 enum temp_type temp; 744 bool found = false; 745 int ret = -EAGAIN; 746 747 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) { 748 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 749 struct list_head *head = &io->bio_list; 750 struct bio_entry *be; 751 752 down_write(&io->bio_list_lock); 753 list_for_each_entry(be, head, list) { 754 if (be->bio != *bio) 755 continue; 756 757 found = true; 758 759 f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio, 760 *fio->last_block, 761 fio->new_blkaddr)); 762 if (f2fs_crypt_mergeable_bio(*bio, 763 fio->page->mapping->host, 764 fio->page->index, fio) && 765 bio_add_page(*bio, page, PAGE_SIZE, 0) == 766 PAGE_SIZE) { 767 ret = 0; 768 break; 769 } 770 771 /* page can't be merged into bio; submit the bio */ 772 del_bio_entry(be); 773 __submit_bio(sbi, *bio, DATA); 774 break; 775 } 776 up_write(&io->bio_list_lock); 777 } 778 779 if (ret) { 780 bio_put(*bio); 781 *bio = NULL; 782 } 783 784 return ret; 785 } 786 787 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi, 788 struct bio **bio, struct page *page) 789 { 790 enum temp_type temp; 791 bool found = false; 792 struct bio *target = bio ? *bio : NULL; 793 794 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) { 795 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 796 struct list_head *head = &io->bio_list; 797 struct bio_entry *be; 798 799 if (list_empty(head)) 800 continue; 801 802 down_read(&io->bio_list_lock); 803 list_for_each_entry(be, head, list) { 804 if (target) 805 found = (target == be->bio); 806 else 807 found = __has_merged_page(be->bio, NULL, 808 page, 0); 809 if (found) 810 break; 811 } 812 up_read(&io->bio_list_lock); 813 814 if (!found) 815 continue; 816 817 found = false; 818 819 down_write(&io->bio_list_lock); 820 list_for_each_entry(be, head, list) { 821 if (target) 822 found = (target == be->bio); 823 else 824 found = __has_merged_page(be->bio, NULL, 825 page, 0); 826 if (found) { 827 target = be->bio; 828 del_bio_entry(be); 829 break; 830 } 831 } 832 up_write(&io->bio_list_lock); 833 } 834 835 if (found) 836 __submit_bio(sbi, target, DATA); 837 if (bio && *bio) { 838 bio_put(*bio); 839 *bio = NULL; 840 } 841 } 842 843 int f2fs_merge_page_bio(struct f2fs_io_info *fio) 844 { 845 struct bio *bio = *fio->bio; 846 struct page *page = fio->encrypted_page ? 847 fio->encrypted_page : fio->page; 848 849 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, 850 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC)) 851 return -EFSCORRUPTED; 852 853 trace_f2fs_submit_page_bio(page, fio); 854 855 if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block, 856 fio->new_blkaddr)) 857 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL); 858 alloc_new: 859 if (!bio) { 860 bio = __bio_alloc(fio, BIO_MAX_VECS); 861 __attach_io_flag(fio); 862 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host, 863 fio->page->index, fio, GFP_NOIO); 864 bio_set_op_attrs(bio, fio->op, fio->op_flags); 865 866 add_bio_entry(fio->sbi, bio, page, fio->temp); 867 } else { 868 if (add_ipu_page(fio, &bio, page)) 869 goto alloc_new; 870 } 871 872 if (fio->io_wbc) 873 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE); 874 875 inc_page_count(fio->sbi, WB_DATA_TYPE(page)); 876 877 *fio->last_block = fio->new_blkaddr; 878 *fio->bio = bio; 879 880 return 0; 881 } 882 883 void f2fs_submit_page_write(struct f2fs_io_info *fio) 884 { 885 struct f2fs_sb_info *sbi = fio->sbi; 886 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type); 887 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp; 888 struct page *bio_page; 889 890 f2fs_bug_on(sbi, is_read_io(fio->op)); 891 892 down_write(&io->io_rwsem); 893 next: 894 if (fio->in_list) { 895 spin_lock(&io->io_lock); 896 if (list_empty(&io->io_list)) { 897 spin_unlock(&io->io_lock); 898 goto out; 899 } 900 fio = list_first_entry(&io->io_list, 901 struct f2fs_io_info, list); 902 list_del(&fio->list); 903 spin_unlock(&io->io_lock); 904 } 905 906 verify_fio_blkaddr(fio); 907 908 if (fio->encrypted_page) 909 bio_page = fio->encrypted_page; 910 else if (fio->compressed_page) 911 bio_page = fio->compressed_page; 912 else 913 bio_page = fio->page; 914 915 /* set submitted = true as a return value */ 916 fio->submitted = true; 917 918 inc_page_count(sbi, WB_DATA_TYPE(bio_page)); 919 920 if (io->bio && 921 (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio, 922 fio->new_blkaddr) || 923 !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host, 924 bio_page->index, fio))) 925 __submit_merged_bio(io); 926 alloc_new: 927 if (io->bio == NULL) { 928 if (F2FS_IO_ALIGNED(sbi) && 929 (fio->type == DATA || fio->type == NODE) && 930 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) { 931 dec_page_count(sbi, WB_DATA_TYPE(bio_page)); 932 fio->retry = true; 933 goto skip; 934 } 935 io->bio = __bio_alloc(fio, BIO_MAX_VECS); 936 f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host, 937 bio_page->index, fio, GFP_NOIO); 938 io->fio = *fio; 939 } 940 941 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) { 942 __submit_merged_bio(io); 943 goto alloc_new; 944 } 945 946 if (fio->io_wbc) 947 wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE); 948 949 io->last_block_in_bio = fio->new_blkaddr; 950 951 trace_f2fs_submit_page_write(fio->page, fio); 952 skip: 953 if (fio->in_list) 954 goto next; 955 out: 956 if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || 957 !f2fs_is_checkpoint_ready(sbi)) 958 __submit_merged_bio(io); 959 up_write(&io->io_rwsem); 960 } 961 962 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr, 963 unsigned nr_pages, unsigned op_flag, 964 pgoff_t first_idx, bool for_write) 965 { 966 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 967 struct bio *bio; 968 struct bio_post_read_ctx *ctx; 969 unsigned int post_read_steps = 0; 970 971 bio = bio_alloc_bioset(for_write ? GFP_NOIO : GFP_KERNEL, 972 bio_max_segs(nr_pages), &f2fs_bioset); 973 if (!bio) 974 return ERR_PTR(-ENOMEM); 975 976 f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS); 977 978 f2fs_target_device(sbi, blkaddr, bio); 979 bio->bi_end_io = f2fs_read_end_io; 980 bio_set_op_attrs(bio, REQ_OP_READ, op_flag); 981 982 if (fscrypt_inode_uses_fs_layer_crypto(inode)) 983 post_read_steps |= STEP_DECRYPT; 984 985 if (f2fs_need_verity(inode, first_idx)) 986 post_read_steps |= STEP_VERITY; 987 988 /* 989 * STEP_DECOMPRESS is handled specially, since a compressed file might 990 * contain both compressed and uncompressed clusters. We'll allocate a 991 * bio_post_read_ctx if the file is compressed, but the caller is 992 * responsible for enabling STEP_DECOMPRESS if it's actually needed. 993 */ 994 995 if (post_read_steps || f2fs_compressed_file(inode)) { 996 /* Due to the mempool, this never fails. */ 997 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS); 998 ctx->bio = bio; 999 ctx->sbi = sbi; 1000 ctx->enabled_steps = post_read_steps; 1001 bio->bi_private = ctx; 1002 } 1003 1004 return bio; 1005 } 1006 1007 /* This can handle encryption stuffs */ 1008 static int f2fs_submit_page_read(struct inode *inode, struct page *page, 1009 block_t blkaddr, int op_flags, bool for_write) 1010 { 1011 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1012 struct bio *bio; 1013 1014 bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags, 1015 page->index, for_write); 1016 if (IS_ERR(bio)) 1017 return PTR_ERR(bio); 1018 1019 /* wait for GCed page writeback via META_MAPPING */ 1020 f2fs_wait_on_block_writeback(inode, blkaddr); 1021 1022 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 1023 bio_put(bio); 1024 return -EFAULT; 1025 } 1026 ClearPageError(page); 1027 inc_page_count(sbi, F2FS_RD_DATA); 1028 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE); 1029 __submit_bio(sbi, bio, DATA); 1030 return 0; 1031 } 1032 1033 static void __set_data_blkaddr(struct dnode_of_data *dn) 1034 { 1035 struct f2fs_node *rn = F2FS_NODE(dn->node_page); 1036 __le32 *addr_array; 1037 int base = 0; 1038 1039 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode)) 1040 base = get_extra_isize(dn->inode); 1041 1042 /* Get physical address of data block */ 1043 addr_array = blkaddr_in_node(rn); 1044 addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr); 1045 } 1046 1047 /* 1048 * Lock ordering for the change of data block address: 1049 * ->data_page 1050 * ->node_page 1051 * update block addresses in the node page 1052 */ 1053 void f2fs_set_data_blkaddr(struct dnode_of_data *dn) 1054 { 1055 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true); 1056 __set_data_blkaddr(dn); 1057 if (set_page_dirty(dn->node_page)) 1058 dn->node_changed = true; 1059 } 1060 1061 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) 1062 { 1063 dn->data_blkaddr = blkaddr; 1064 f2fs_set_data_blkaddr(dn); 1065 f2fs_update_extent_cache(dn); 1066 } 1067 1068 /* dn->ofs_in_node will be returned with up-to-date last block pointer */ 1069 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count) 1070 { 1071 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1072 int err; 1073 1074 if (!count) 1075 return 0; 1076 1077 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1078 return -EPERM; 1079 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count)))) 1080 return err; 1081 1082 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid, 1083 dn->ofs_in_node, count); 1084 1085 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true); 1086 1087 for (; count > 0; dn->ofs_in_node++) { 1088 block_t blkaddr = f2fs_data_blkaddr(dn); 1089 if (blkaddr == NULL_ADDR) { 1090 dn->data_blkaddr = NEW_ADDR; 1091 __set_data_blkaddr(dn); 1092 count--; 1093 } 1094 } 1095 1096 if (set_page_dirty(dn->node_page)) 1097 dn->node_changed = true; 1098 return 0; 1099 } 1100 1101 /* Should keep dn->ofs_in_node unchanged */ 1102 int f2fs_reserve_new_block(struct dnode_of_data *dn) 1103 { 1104 unsigned int ofs_in_node = dn->ofs_in_node; 1105 int ret; 1106 1107 ret = f2fs_reserve_new_blocks(dn, 1); 1108 dn->ofs_in_node = ofs_in_node; 1109 return ret; 1110 } 1111 1112 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index) 1113 { 1114 bool need_put = dn->inode_page ? false : true; 1115 int err; 1116 1117 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE); 1118 if (err) 1119 return err; 1120 1121 if (dn->data_blkaddr == NULL_ADDR) 1122 err = f2fs_reserve_new_block(dn); 1123 if (err || need_put) 1124 f2fs_put_dnode(dn); 1125 return err; 1126 } 1127 1128 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index) 1129 { 1130 struct extent_info ei = {0, 0, 0}; 1131 struct inode *inode = dn->inode; 1132 1133 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 1134 dn->data_blkaddr = ei.blk + index - ei.fofs; 1135 return 0; 1136 } 1137 1138 return f2fs_reserve_block(dn, index); 1139 } 1140 1141 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index, 1142 int op_flags, bool for_write) 1143 { 1144 struct address_space *mapping = inode->i_mapping; 1145 struct dnode_of_data dn; 1146 struct page *page; 1147 struct extent_info ei = {0,0,0}; 1148 int err; 1149 1150 page = f2fs_grab_cache_page(mapping, index, for_write); 1151 if (!page) 1152 return ERR_PTR(-ENOMEM); 1153 1154 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 1155 dn.data_blkaddr = ei.blk + index - ei.fofs; 1156 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr, 1157 DATA_GENERIC_ENHANCE_READ)) { 1158 err = -EFSCORRUPTED; 1159 goto put_err; 1160 } 1161 goto got_it; 1162 } 1163 1164 set_new_dnode(&dn, inode, NULL, NULL, 0); 1165 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 1166 if (err) 1167 goto put_err; 1168 f2fs_put_dnode(&dn); 1169 1170 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { 1171 err = -ENOENT; 1172 goto put_err; 1173 } 1174 if (dn.data_blkaddr != NEW_ADDR && 1175 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode), 1176 dn.data_blkaddr, 1177 DATA_GENERIC_ENHANCE)) { 1178 err = -EFSCORRUPTED; 1179 goto put_err; 1180 } 1181 got_it: 1182 if (PageUptodate(page)) { 1183 unlock_page(page); 1184 return page; 1185 } 1186 1187 /* 1188 * A new dentry page is allocated but not able to be written, since its 1189 * new inode page couldn't be allocated due to -ENOSPC. 1190 * In such the case, its blkaddr can be remained as NEW_ADDR. 1191 * see, f2fs_add_link -> f2fs_get_new_data_page -> 1192 * f2fs_init_inode_metadata. 1193 */ 1194 if (dn.data_blkaddr == NEW_ADDR) { 1195 zero_user_segment(page, 0, PAGE_SIZE); 1196 if (!PageUptodate(page)) 1197 SetPageUptodate(page); 1198 unlock_page(page); 1199 return page; 1200 } 1201 1202 err = f2fs_submit_page_read(inode, page, dn.data_blkaddr, 1203 op_flags, for_write); 1204 if (err) 1205 goto put_err; 1206 return page; 1207 1208 put_err: 1209 f2fs_put_page(page, 1); 1210 return ERR_PTR(err); 1211 } 1212 1213 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index) 1214 { 1215 struct address_space *mapping = inode->i_mapping; 1216 struct page *page; 1217 1218 page = find_get_page(mapping, index); 1219 if (page && PageUptodate(page)) 1220 return page; 1221 f2fs_put_page(page, 0); 1222 1223 page = f2fs_get_read_data_page(inode, index, 0, false); 1224 if (IS_ERR(page)) 1225 return page; 1226 1227 if (PageUptodate(page)) 1228 return page; 1229 1230 wait_on_page_locked(page); 1231 if (unlikely(!PageUptodate(page))) { 1232 f2fs_put_page(page, 0); 1233 return ERR_PTR(-EIO); 1234 } 1235 return page; 1236 } 1237 1238 /* 1239 * If it tries to access a hole, return an error. 1240 * Because, the callers, functions in dir.c and GC, should be able to know 1241 * whether this page exists or not. 1242 */ 1243 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index, 1244 bool for_write) 1245 { 1246 struct address_space *mapping = inode->i_mapping; 1247 struct page *page; 1248 repeat: 1249 page = f2fs_get_read_data_page(inode, index, 0, for_write); 1250 if (IS_ERR(page)) 1251 return page; 1252 1253 /* wait for read completion */ 1254 lock_page(page); 1255 if (unlikely(page->mapping != mapping)) { 1256 f2fs_put_page(page, 1); 1257 goto repeat; 1258 } 1259 if (unlikely(!PageUptodate(page))) { 1260 f2fs_put_page(page, 1); 1261 return ERR_PTR(-EIO); 1262 } 1263 return page; 1264 } 1265 1266 /* 1267 * Caller ensures that this data page is never allocated. 1268 * A new zero-filled data page is allocated in the page cache. 1269 * 1270 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and 1271 * f2fs_unlock_op(). 1272 * Note that, ipage is set only by make_empty_dir, and if any error occur, 1273 * ipage should be released by this function. 1274 */ 1275 struct page *f2fs_get_new_data_page(struct inode *inode, 1276 struct page *ipage, pgoff_t index, bool new_i_size) 1277 { 1278 struct address_space *mapping = inode->i_mapping; 1279 struct page *page; 1280 struct dnode_of_data dn; 1281 int err; 1282 1283 page = f2fs_grab_cache_page(mapping, index, true); 1284 if (!page) { 1285 /* 1286 * before exiting, we should make sure ipage will be released 1287 * if any error occur. 1288 */ 1289 f2fs_put_page(ipage, 1); 1290 return ERR_PTR(-ENOMEM); 1291 } 1292 1293 set_new_dnode(&dn, inode, ipage, NULL, 0); 1294 err = f2fs_reserve_block(&dn, index); 1295 if (err) { 1296 f2fs_put_page(page, 1); 1297 return ERR_PTR(err); 1298 } 1299 if (!ipage) 1300 f2fs_put_dnode(&dn); 1301 1302 if (PageUptodate(page)) 1303 goto got_it; 1304 1305 if (dn.data_blkaddr == NEW_ADDR) { 1306 zero_user_segment(page, 0, PAGE_SIZE); 1307 if (!PageUptodate(page)) 1308 SetPageUptodate(page); 1309 } else { 1310 f2fs_put_page(page, 1); 1311 1312 /* if ipage exists, blkaddr should be NEW_ADDR */ 1313 f2fs_bug_on(F2FS_I_SB(inode), ipage); 1314 page = f2fs_get_lock_data_page(inode, index, true); 1315 if (IS_ERR(page)) 1316 return page; 1317 } 1318 got_it: 1319 if (new_i_size && i_size_read(inode) < 1320 ((loff_t)(index + 1) << PAGE_SHIFT)) 1321 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT)); 1322 return page; 1323 } 1324 1325 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type) 1326 { 1327 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1328 struct f2fs_summary sum; 1329 struct node_info ni; 1330 block_t old_blkaddr; 1331 blkcnt_t count = 1; 1332 int err; 1333 1334 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1335 return -EPERM; 1336 1337 err = f2fs_get_node_info(sbi, dn->nid, &ni); 1338 if (err) 1339 return err; 1340 1341 dn->data_blkaddr = f2fs_data_blkaddr(dn); 1342 if (dn->data_blkaddr != NULL_ADDR) 1343 goto alloc; 1344 1345 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count)))) 1346 return err; 1347 1348 alloc: 1349 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 1350 old_blkaddr = dn->data_blkaddr; 1351 f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr, 1352 &sum, seg_type, NULL); 1353 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 1354 invalidate_mapping_pages(META_MAPPING(sbi), 1355 old_blkaddr, old_blkaddr); 1356 f2fs_update_data_blkaddr(dn, dn->data_blkaddr); 1357 1358 /* 1359 * i_size will be updated by direct_IO. Otherwise, we'll get stale 1360 * data from unwritten block via dio_read. 1361 */ 1362 return 0; 1363 } 1364 1365 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from) 1366 { 1367 struct inode *inode = file_inode(iocb->ki_filp); 1368 struct f2fs_map_blocks map; 1369 int flag; 1370 int err = 0; 1371 bool direct_io = iocb->ki_flags & IOCB_DIRECT; 1372 1373 map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos); 1374 map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from)); 1375 if (map.m_len > map.m_lblk) 1376 map.m_len -= map.m_lblk; 1377 else 1378 map.m_len = 0; 1379 1380 map.m_next_pgofs = NULL; 1381 map.m_next_extent = NULL; 1382 map.m_seg_type = NO_CHECK_TYPE; 1383 map.m_may_create = true; 1384 1385 if (direct_io) { 1386 map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint); 1387 flag = f2fs_force_buffered_io(inode, iocb, from) ? 1388 F2FS_GET_BLOCK_PRE_AIO : 1389 F2FS_GET_BLOCK_PRE_DIO; 1390 goto map_blocks; 1391 } 1392 if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) { 1393 err = f2fs_convert_inline_inode(inode); 1394 if (err) 1395 return err; 1396 } 1397 if (f2fs_has_inline_data(inode)) 1398 return err; 1399 1400 flag = F2FS_GET_BLOCK_PRE_AIO; 1401 1402 map_blocks: 1403 err = f2fs_map_blocks(inode, &map, 1, flag); 1404 if (map.m_len > 0 && err == -ENOSPC) { 1405 if (!direct_io) 1406 set_inode_flag(inode, FI_NO_PREALLOC); 1407 err = 0; 1408 } 1409 return err; 1410 } 1411 1412 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock) 1413 { 1414 if (flag == F2FS_GET_BLOCK_PRE_AIO) { 1415 if (lock) 1416 down_read(&sbi->node_change); 1417 else 1418 up_read(&sbi->node_change); 1419 } else { 1420 if (lock) 1421 f2fs_lock_op(sbi); 1422 else 1423 f2fs_unlock_op(sbi); 1424 } 1425 } 1426 1427 /* 1428 * f2fs_map_blocks() tries to find or build mapping relationship which 1429 * maps continuous logical blocks to physical blocks, and return such 1430 * info via f2fs_map_blocks structure. 1431 */ 1432 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 1433 int create, int flag) 1434 { 1435 unsigned int maxblocks = map->m_len; 1436 struct dnode_of_data dn; 1437 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1438 int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE; 1439 pgoff_t pgofs, end_offset, end; 1440 int err = 0, ofs = 1; 1441 unsigned int ofs_in_node, last_ofs_in_node; 1442 blkcnt_t prealloc; 1443 struct extent_info ei = {0,0,0}; 1444 block_t blkaddr; 1445 unsigned int start_pgofs; 1446 1447 if (!maxblocks) 1448 return 0; 1449 1450 map->m_len = 0; 1451 map->m_flags = 0; 1452 1453 /* it only supports block size == page size */ 1454 pgofs = (pgoff_t)map->m_lblk; 1455 end = pgofs + maxblocks; 1456 1457 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) { 1458 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO && 1459 map->m_may_create) 1460 goto next_dnode; 1461 1462 map->m_pblk = ei.blk + pgofs - ei.fofs; 1463 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs); 1464 map->m_flags = F2FS_MAP_MAPPED; 1465 if (map->m_next_extent) 1466 *map->m_next_extent = pgofs + map->m_len; 1467 1468 /* for hardware encryption, but to avoid potential issue in future */ 1469 if (flag == F2FS_GET_BLOCK_DIO) 1470 f2fs_wait_on_block_writeback_range(inode, 1471 map->m_pblk, map->m_len); 1472 goto out; 1473 } 1474 1475 next_dnode: 1476 if (map->m_may_create) 1477 f2fs_do_map_lock(sbi, flag, true); 1478 1479 /* When reading holes, we need its node page */ 1480 set_new_dnode(&dn, inode, NULL, NULL, 0); 1481 err = f2fs_get_dnode_of_data(&dn, pgofs, mode); 1482 if (err) { 1483 if (flag == F2FS_GET_BLOCK_BMAP) 1484 map->m_pblk = 0; 1485 if (err == -ENOENT) { 1486 err = 0; 1487 if (map->m_next_pgofs) 1488 *map->m_next_pgofs = 1489 f2fs_get_next_page_offset(&dn, pgofs); 1490 if (map->m_next_extent) 1491 *map->m_next_extent = 1492 f2fs_get_next_page_offset(&dn, pgofs); 1493 } 1494 goto unlock_out; 1495 } 1496 1497 start_pgofs = pgofs; 1498 prealloc = 0; 1499 last_ofs_in_node = ofs_in_node = dn.ofs_in_node; 1500 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1501 1502 next_block: 1503 blkaddr = f2fs_data_blkaddr(&dn); 1504 1505 if (__is_valid_data_blkaddr(blkaddr) && 1506 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) { 1507 err = -EFSCORRUPTED; 1508 goto sync_out; 1509 } 1510 1511 if (__is_valid_data_blkaddr(blkaddr)) { 1512 /* use out-place-update for driect IO under LFS mode */ 1513 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO && 1514 map->m_may_create) { 1515 err = __allocate_data_block(&dn, map->m_seg_type); 1516 if (err) 1517 goto sync_out; 1518 blkaddr = dn.data_blkaddr; 1519 set_inode_flag(inode, FI_APPEND_WRITE); 1520 } 1521 } else { 1522 if (create) { 1523 if (unlikely(f2fs_cp_error(sbi))) { 1524 err = -EIO; 1525 goto sync_out; 1526 } 1527 if (flag == F2FS_GET_BLOCK_PRE_AIO) { 1528 if (blkaddr == NULL_ADDR) { 1529 prealloc++; 1530 last_ofs_in_node = dn.ofs_in_node; 1531 } 1532 } else { 1533 WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO && 1534 flag != F2FS_GET_BLOCK_DIO); 1535 err = __allocate_data_block(&dn, 1536 map->m_seg_type); 1537 if (!err) 1538 set_inode_flag(inode, FI_APPEND_WRITE); 1539 } 1540 if (err) 1541 goto sync_out; 1542 map->m_flags |= F2FS_MAP_NEW; 1543 blkaddr = dn.data_blkaddr; 1544 } else { 1545 if (flag == F2FS_GET_BLOCK_BMAP) { 1546 map->m_pblk = 0; 1547 goto sync_out; 1548 } 1549 if (flag == F2FS_GET_BLOCK_PRECACHE) 1550 goto sync_out; 1551 if (flag == F2FS_GET_BLOCK_FIEMAP && 1552 blkaddr == NULL_ADDR) { 1553 if (map->m_next_pgofs) 1554 *map->m_next_pgofs = pgofs + 1; 1555 goto sync_out; 1556 } 1557 if (flag != F2FS_GET_BLOCK_FIEMAP) { 1558 /* for defragment case */ 1559 if (map->m_next_pgofs) 1560 *map->m_next_pgofs = pgofs + 1; 1561 goto sync_out; 1562 } 1563 } 1564 } 1565 1566 if (flag == F2FS_GET_BLOCK_PRE_AIO) 1567 goto skip; 1568 1569 if (map->m_len == 0) { 1570 /* preallocated unwritten block should be mapped for fiemap. */ 1571 if (blkaddr == NEW_ADDR) 1572 map->m_flags |= F2FS_MAP_UNWRITTEN; 1573 map->m_flags |= F2FS_MAP_MAPPED; 1574 1575 map->m_pblk = blkaddr; 1576 map->m_len = 1; 1577 } else if ((map->m_pblk != NEW_ADDR && 1578 blkaddr == (map->m_pblk + ofs)) || 1579 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) || 1580 flag == F2FS_GET_BLOCK_PRE_DIO) { 1581 ofs++; 1582 map->m_len++; 1583 } else { 1584 goto sync_out; 1585 } 1586 1587 skip: 1588 dn.ofs_in_node++; 1589 pgofs++; 1590 1591 /* preallocate blocks in batch for one dnode page */ 1592 if (flag == F2FS_GET_BLOCK_PRE_AIO && 1593 (pgofs == end || dn.ofs_in_node == end_offset)) { 1594 1595 dn.ofs_in_node = ofs_in_node; 1596 err = f2fs_reserve_new_blocks(&dn, prealloc); 1597 if (err) 1598 goto sync_out; 1599 1600 map->m_len += dn.ofs_in_node - ofs_in_node; 1601 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) { 1602 err = -ENOSPC; 1603 goto sync_out; 1604 } 1605 dn.ofs_in_node = end_offset; 1606 } 1607 1608 if (pgofs >= end) 1609 goto sync_out; 1610 else if (dn.ofs_in_node < end_offset) 1611 goto next_block; 1612 1613 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1614 if (map->m_flags & F2FS_MAP_MAPPED) { 1615 unsigned int ofs = start_pgofs - map->m_lblk; 1616 1617 f2fs_update_extent_cache_range(&dn, 1618 start_pgofs, map->m_pblk + ofs, 1619 map->m_len - ofs); 1620 } 1621 } 1622 1623 f2fs_put_dnode(&dn); 1624 1625 if (map->m_may_create) { 1626 f2fs_do_map_lock(sbi, flag, false); 1627 f2fs_balance_fs(sbi, dn.node_changed); 1628 } 1629 goto next_dnode; 1630 1631 sync_out: 1632 1633 /* for hardware encryption, but to avoid potential issue in future */ 1634 if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) 1635 f2fs_wait_on_block_writeback_range(inode, 1636 map->m_pblk, map->m_len); 1637 1638 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1639 if (map->m_flags & F2FS_MAP_MAPPED) { 1640 unsigned int ofs = start_pgofs - map->m_lblk; 1641 1642 f2fs_update_extent_cache_range(&dn, 1643 start_pgofs, map->m_pblk + ofs, 1644 map->m_len - ofs); 1645 } 1646 if (map->m_next_extent) 1647 *map->m_next_extent = pgofs + 1; 1648 } 1649 f2fs_put_dnode(&dn); 1650 unlock_out: 1651 if (map->m_may_create) { 1652 f2fs_do_map_lock(sbi, flag, false); 1653 f2fs_balance_fs(sbi, dn.node_changed); 1654 } 1655 out: 1656 trace_f2fs_map_blocks(inode, map, err); 1657 return err; 1658 } 1659 1660 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len) 1661 { 1662 struct f2fs_map_blocks map; 1663 block_t last_lblk; 1664 int err; 1665 1666 if (pos + len > i_size_read(inode)) 1667 return false; 1668 1669 map.m_lblk = F2FS_BYTES_TO_BLK(pos); 1670 map.m_next_pgofs = NULL; 1671 map.m_next_extent = NULL; 1672 map.m_seg_type = NO_CHECK_TYPE; 1673 map.m_may_create = false; 1674 last_lblk = F2FS_BLK_ALIGN(pos + len); 1675 1676 while (map.m_lblk < last_lblk) { 1677 map.m_len = last_lblk - map.m_lblk; 1678 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT); 1679 if (err || map.m_len == 0) 1680 return false; 1681 map.m_lblk += map.m_len; 1682 } 1683 return true; 1684 } 1685 1686 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes) 1687 { 1688 return (bytes >> inode->i_blkbits); 1689 } 1690 1691 static inline u64 blks_to_bytes(struct inode *inode, u64 blks) 1692 { 1693 return (blks << inode->i_blkbits); 1694 } 1695 1696 static int __get_data_block(struct inode *inode, sector_t iblock, 1697 struct buffer_head *bh, int create, int flag, 1698 pgoff_t *next_pgofs, int seg_type, bool may_write) 1699 { 1700 struct f2fs_map_blocks map; 1701 int err; 1702 1703 map.m_lblk = iblock; 1704 map.m_len = bytes_to_blks(inode, bh->b_size); 1705 map.m_next_pgofs = next_pgofs; 1706 map.m_next_extent = NULL; 1707 map.m_seg_type = seg_type; 1708 map.m_may_create = may_write; 1709 1710 err = f2fs_map_blocks(inode, &map, create, flag); 1711 if (!err) { 1712 map_bh(bh, inode->i_sb, map.m_pblk); 1713 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags; 1714 bh->b_size = blks_to_bytes(inode, map.m_len); 1715 } 1716 return err; 1717 } 1718 1719 static int get_data_block_dio_write(struct inode *inode, sector_t iblock, 1720 struct buffer_head *bh_result, int create) 1721 { 1722 return __get_data_block(inode, iblock, bh_result, create, 1723 F2FS_GET_BLOCK_DIO, NULL, 1724 f2fs_rw_hint_to_seg_type(inode->i_write_hint), 1725 IS_SWAPFILE(inode) ? false : true); 1726 } 1727 1728 static int get_data_block_dio(struct inode *inode, sector_t iblock, 1729 struct buffer_head *bh_result, int create) 1730 { 1731 return __get_data_block(inode, iblock, bh_result, create, 1732 F2FS_GET_BLOCK_DIO, NULL, 1733 f2fs_rw_hint_to_seg_type(inode->i_write_hint), 1734 false); 1735 } 1736 1737 static int f2fs_xattr_fiemap(struct inode *inode, 1738 struct fiemap_extent_info *fieinfo) 1739 { 1740 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1741 struct page *page; 1742 struct node_info ni; 1743 __u64 phys = 0, len; 1744 __u32 flags; 1745 nid_t xnid = F2FS_I(inode)->i_xattr_nid; 1746 int err = 0; 1747 1748 if (f2fs_has_inline_xattr(inode)) { 1749 int offset; 1750 1751 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), 1752 inode->i_ino, false); 1753 if (!page) 1754 return -ENOMEM; 1755 1756 err = f2fs_get_node_info(sbi, inode->i_ino, &ni); 1757 if (err) { 1758 f2fs_put_page(page, 1); 1759 return err; 1760 } 1761 1762 phys = blks_to_bytes(inode, ni.blk_addr); 1763 offset = offsetof(struct f2fs_inode, i_addr) + 1764 sizeof(__le32) * (DEF_ADDRS_PER_INODE - 1765 get_inline_xattr_addrs(inode)); 1766 1767 phys += offset; 1768 len = inline_xattr_size(inode); 1769 1770 f2fs_put_page(page, 1); 1771 1772 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED; 1773 1774 if (!xnid) 1775 flags |= FIEMAP_EXTENT_LAST; 1776 1777 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1778 trace_f2fs_fiemap(inode, 0, phys, len, flags, err); 1779 if (err || err == 1) 1780 return err; 1781 } 1782 1783 if (xnid) { 1784 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false); 1785 if (!page) 1786 return -ENOMEM; 1787 1788 err = f2fs_get_node_info(sbi, xnid, &ni); 1789 if (err) { 1790 f2fs_put_page(page, 1); 1791 return err; 1792 } 1793 1794 phys = blks_to_bytes(inode, ni.blk_addr); 1795 len = inode->i_sb->s_blocksize; 1796 1797 f2fs_put_page(page, 1); 1798 1799 flags = FIEMAP_EXTENT_LAST; 1800 } 1801 1802 if (phys) { 1803 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1804 trace_f2fs_fiemap(inode, 0, phys, len, flags, err); 1805 } 1806 1807 return (err < 0 ? err : 0); 1808 } 1809 1810 static loff_t max_inode_blocks(struct inode *inode) 1811 { 1812 loff_t result = ADDRS_PER_INODE(inode); 1813 loff_t leaf_count = ADDRS_PER_BLOCK(inode); 1814 1815 /* two direct node blocks */ 1816 result += (leaf_count * 2); 1817 1818 /* two indirect node blocks */ 1819 leaf_count *= NIDS_PER_BLOCK; 1820 result += (leaf_count * 2); 1821 1822 /* one double indirect node block */ 1823 leaf_count *= NIDS_PER_BLOCK; 1824 result += leaf_count; 1825 1826 return result; 1827 } 1828 1829 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 1830 u64 start, u64 len) 1831 { 1832 struct f2fs_map_blocks map; 1833 sector_t start_blk, last_blk; 1834 pgoff_t next_pgofs; 1835 u64 logical = 0, phys = 0, size = 0; 1836 u32 flags = 0; 1837 int ret = 0; 1838 bool compr_cluster = false; 1839 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size; 1840 1841 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) { 1842 ret = f2fs_precache_extents(inode); 1843 if (ret) 1844 return ret; 1845 } 1846 1847 ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR); 1848 if (ret) 1849 return ret; 1850 1851 inode_lock(inode); 1852 1853 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 1854 ret = f2fs_xattr_fiemap(inode, fieinfo); 1855 goto out; 1856 } 1857 1858 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) { 1859 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len); 1860 if (ret != -EAGAIN) 1861 goto out; 1862 } 1863 1864 if (bytes_to_blks(inode, len) == 0) 1865 len = blks_to_bytes(inode, 1); 1866 1867 start_blk = bytes_to_blks(inode, start); 1868 last_blk = bytes_to_blks(inode, start + len - 1); 1869 1870 next: 1871 memset(&map, 0, sizeof(map)); 1872 map.m_lblk = start_blk; 1873 map.m_len = bytes_to_blks(inode, len); 1874 map.m_next_pgofs = &next_pgofs; 1875 map.m_seg_type = NO_CHECK_TYPE; 1876 1877 if (compr_cluster) 1878 map.m_len = cluster_size - 1; 1879 1880 ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP); 1881 if (ret) 1882 goto out; 1883 1884 /* HOLE */ 1885 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 1886 start_blk = next_pgofs; 1887 1888 if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode, 1889 max_inode_blocks(inode))) 1890 goto prep_next; 1891 1892 flags |= FIEMAP_EXTENT_LAST; 1893 } 1894 1895 if (size) { 1896 flags |= FIEMAP_EXTENT_MERGED; 1897 if (IS_ENCRYPTED(inode)) 1898 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED; 1899 1900 ret = fiemap_fill_next_extent(fieinfo, logical, 1901 phys, size, flags); 1902 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret); 1903 if (ret) 1904 goto out; 1905 size = 0; 1906 } 1907 1908 if (start_blk > last_blk) 1909 goto out; 1910 1911 if (compr_cluster) { 1912 compr_cluster = false; 1913 1914 1915 logical = blks_to_bytes(inode, start_blk - 1); 1916 phys = blks_to_bytes(inode, map.m_pblk); 1917 size = blks_to_bytes(inode, cluster_size); 1918 1919 flags |= FIEMAP_EXTENT_ENCODED; 1920 1921 start_blk += cluster_size - 1; 1922 1923 if (start_blk > last_blk) 1924 goto out; 1925 1926 goto prep_next; 1927 } 1928 1929 if (map.m_pblk == COMPRESS_ADDR) { 1930 compr_cluster = true; 1931 start_blk++; 1932 goto prep_next; 1933 } 1934 1935 logical = blks_to_bytes(inode, start_blk); 1936 phys = blks_to_bytes(inode, map.m_pblk); 1937 size = blks_to_bytes(inode, map.m_len); 1938 flags = 0; 1939 if (map.m_flags & F2FS_MAP_UNWRITTEN) 1940 flags = FIEMAP_EXTENT_UNWRITTEN; 1941 1942 start_blk += bytes_to_blks(inode, size); 1943 1944 prep_next: 1945 cond_resched(); 1946 if (fatal_signal_pending(current)) 1947 ret = -EINTR; 1948 else 1949 goto next; 1950 out: 1951 if (ret == 1) 1952 ret = 0; 1953 1954 inode_unlock(inode); 1955 return ret; 1956 } 1957 1958 static inline loff_t f2fs_readpage_limit(struct inode *inode) 1959 { 1960 if (IS_ENABLED(CONFIG_FS_VERITY) && 1961 (IS_VERITY(inode) || f2fs_verity_in_progress(inode))) 1962 return inode->i_sb->s_maxbytes; 1963 1964 return i_size_read(inode); 1965 } 1966 1967 static int f2fs_read_single_page(struct inode *inode, struct page *page, 1968 unsigned nr_pages, 1969 struct f2fs_map_blocks *map, 1970 struct bio **bio_ret, 1971 sector_t *last_block_in_bio, 1972 bool is_readahead) 1973 { 1974 struct bio *bio = *bio_ret; 1975 const unsigned blocksize = blks_to_bytes(inode, 1); 1976 sector_t block_in_file; 1977 sector_t last_block; 1978 sector_t last_block_in_file; 1979 sector_t block_nr; 1980 int ret = 0; 1981 1982 block_in_file = (sector_t)page_index(page); 1983 last_block = block_in_file + nr_pages; 1984 last_block_in_file = bytes_to_blks(inode, 1985 f2fs_readpage_limit(inode) + blocksize - 1); 1986 if (last_block > last_block_in_file) 1987 last_block = last_block_in_file; 1988 1989 /* just zeroing out page which is beyond EOF */ 1990 if (block_in_file >= last_block) 1991 goto zero_out; 1992 /* 1993 * Map blocks using the previous result first. 1994 */ 1995 if ((map->m_flags & F2FS_MAP_MAPPED) && 1996 block_in_file > map->m_lblk && 1997 block_in_file < (map->m_lblk + map->m_len)) 1998 goto got_it; 1999 2000 /* 2001 * Then do more f2fs_map_blocks() calls until we are 2002 * done with this page. 2003 */ 2004 map->m_lblk = block_in_file; 2005 map->m_len = last_block - block_in_file; 2006 2007 ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT); 2008 if (ret) 2009 goto out; 2010 got_it: 2011 if ((map->m_flags & F2FS_MAP_MAPPED)) { 2012 block_nr = map->m_pblk + block_in_file - map->m_lblk; 2013 SetPageMappedToDisk(page); 2014 2015 if (!PageUptodate(page) && (!PageSwapCache(page) && 2016 !cleancache_get_page(page))) { 2017 SetPageUptodate(page); 2018 goto confused; 2019 } 2020 2021 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr, 2022 DATA_GENERIC_ENHANCE_READ)) { 2023 ret = -EFSCORRUPTED; 2024 goto out; 2025 } 2026 } else { 2027 zero_out: 2028 zero_user_segment(page, 0, PAGE_SIZE); 2029 if (f2fs_need_verity(inode, page->index) && 2030 !fsverity_verify_page(page)) { 2031 ret = -EIO; 2032 goto out; 2033 } 2034 if (!PageUptodate(page)) 2035 SetPageUptodate(page); 2036 unlock_page(page); 2037 goto out; 2038 } 2039 2040 /* 2041 * This page will go to BIO. Do we need to send this 2042 * BIO off first? 2043 */ 2044 if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio, 2045 *last_block_in_bio, block_nr) || 2046 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) { 2047 submit_and_realloc: 2048 __submit_bio(F2FS_I_SB(inode), bio, DATA); 2049 bio = NULL; 2050 } 2051 if (bio == NULL) { 2052 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages, 2053 is_readahead ? REQ_RAHEAD : 0, page->index, 2054 false); 2055 if (IS_ERR(bio)) { 2056 ret = PTR_ERR(bio); 2057 bio = NULL; 2058 goto out; 2059 } 2060 } 2061 2062 /* 2063 * If the page is under writeback, we need to wait for 2064 * its completion to see the correct decrypted data. 2065 */ 2066 f2fs_wait_on_block_writeback(inode, block_nr); 2067 2068 if (bio_add_page(bio, page, blocksize, 0) < blocksize) 2069 goto submit_and_realloc; 2070 2071 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA); 2072 f2fs_update_iostat(F2FS_I_SB(inode), FS_DATA_READ_IO, F2FS_BLKSIZE); 2073 ClearPageError(page); 2074 *last_block_in_bio = block_nr; 2075 goto out; 2076 confused: 2077 if (bio) { 2078 __submit_bio(F2FS_I_SB(inode), bio, DATA); 2079 bio = NULL; 2080 } 2081 unlock_page(page); 2082 out: 2083 *bio_ret = bio; 2084 return ret; 2085 } 2086 2087 #ifdef CONFIG_F2FS_FS_COMPRESSION 2088 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret, 2089 unsigned nr_pages, sector_t *last_block_in_bio, 2090 bool is_readahead, bool for_write) 2091 { 2092 struct dnode_of_data dn; 2093 struct inode *inode = cc->inode; 2094 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2095 struct bio *bio = *bio_ret; 2096 unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size; 2097 sector_t last_block_in_file; 2098 const unsigned blocksize = blks_to_bytes(inode, 1); 2099 struct decompress_io_ctx *dic = NULL; 2100 int i; 2101 int ret = 0; 2102 2103 f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc)); 2104 2105 last_block_in_file = bytes_to_blks(inode, 2106 f2fs_readpage_limit(inode) + blocksize - 1); 2107 2108 /* get rid of pages beyond EOF */ 2109 for (i = 0; i < cc->cluster_size; i++) { 2110 struct page *page = cc->rpages[i]; 2111 2112 if (!page) 2113 continue; 2114 if ((sector_t)page->index >= last_block_in_file) { 2115 zero_user_segment(page, 0, PAGE_SIZE); 2116 if (!PageUptodate(page)) 2117 SetPageUptodate(page); 2118 } else if (!PageUptodate(page)) { 2119 continue; 2120 } 2121 unlock_page(page); 2122 cc->rpages[i] = NULL; 2123 cc->nr_rpages--; 2124 } 2125 2126 /* we are done since all pages are beyond EOF */ 2127 if (f2fs_cluster_is_empty(cc)) 2128 goto out; 2129 2130 set_new_dnode(&dn, inode, NULL, NULL, 0); 2131 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 2132 if (ret) 2133 goto out; 2134 2135 f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR); 2136 2137 for (i = 1; i < cc->cluster_size; i++) { 2138 block_t blkaddr; 2139 2140 blkaddr = data_blkaddr(dn.inode, dn.node_page, 2141 dn.ofs_in_node + i); 2142 2143 if (!__is_valid_data_blkaddr(blkaddr)) 2144 break; 2145 2146 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) { 2147 ret = -EFAULT; 2148 goto out_put_dnode; 2149 } 2150 cc->nr_cpages++; 2151 } 2152 2153 /* nothing to decompress */ 2154 if (cc->nr_cpages == 0) { 2155 ret = 0; 2156 goto out_put_dnode; 2157 } 2158 2159 dic = f2fs_alloc_dic(cc); 2160 if (IS_ERR(dic)) { 2161 ret = PTR_ERR(dic); 2162 goto out_put_dnode; 2163 } 2164 2165 for (i = 0; i < dic->nr_cpages; i++) { 2166 struct page *page = dic->cpages[i]; 2167 block_t blkaddr; 2168 struct bio_post_read_ctx *ctx; 2169 2170 blkaddr = data_blkaddr(dn.inode, dn.node_page, 2171 dn.ofs_in_node + i + 1); 2172 2173 if (bio && (!page_is_mergeable(sbi, bio, 2174 *last_block_in_bio, blkaddr) || 2175 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) { 2176 submit_and_realloc: 2177 __submit_bio(sbi, bio, DATA); 2178 bio = NULL; 2179 } 2180 2181 if (!bio) { 2182 bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages, 2183 is_readahead ? REQ_RAHEAD : 0, 2184 page->index, for_write); 2185 if (IS_ERR(bio)) { 2186 ret = PTR_ERR(bio); 2187 f2fs_decompress_end_io(dic, ret); 2188 f2fs_put_dnode(&dn); 2189 *bio_ret = NULL; 2190 return ret; 2191 } 2192 } 2193 2194 f2fs_wait_on_block_writeback(inode, blkaddr); 2195 2196 if (bio_add_page(bio, page, blocksize, 0) < blocksize) 2197 goto submit_and_realloc; 2198 2199 ctx = bio->bi_private; 2200 ctx->enabled_steps |= STEP_DECOMPRESS; 2201 refcount_inc(&dic->refcnt); 2202 2203 inc_page_count(sbi, F2FS_RD_DATA); 2204 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE); 2205 f2fs_update_iostat(sbi, FS_CDATA_READ_IO, F2FS_BLKSIZE); 2206 ClearPageError(page); 2207 *last_block_in_bio = blkaddr; 2208 } 2209 2210 f2fs_put_dnode(&dn); 2211 2212 *bio_ret = bio; 2213 return 0; 2214 2215 out_put_dnode: 2216 f2fs_put_dnode(&dn); 2217 out: 2218 for (i = 0; i < cc->cluster_size; i++) { 2219 if (cc->rpages[i]) { 2220 ClearPageUptodate(cc->rpages[i]); 2221 ClearPageError(cc->rpages[i]); 2222 unlock_page(cc->rpages[i]); 2223 } 2224 } 2225 *bio_ret = bio; 2226 return ret; 2227 } 2228 #endif 2229 2230 /* 2231 * This function was originally taken from fs/mpage.c, and customized for f2fs. 2232 * Major change was from block_size == page_size in f2fs by default. 2233 */ 2234 static int f2fs_mpage_readpages(struct inode *inode, 2235 struct readahead_control *rac, struct page *page) 2236 { 2237 struct bio *bio = NULL; 2238 sector_t last_block_in_bio = 0; 2239 struct f2fs_map_blocks map; 2240 #ifdef CONFIG_F2FS_FS_COMPRESSION 2241 struct compress_ctx cc = { 2242 .inode = inode, 2243 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 2244 .cluster_size = F2FS_I(inode)->i_cluster_size, 2245 .cluster_idx = NULL_CLUSTER, 2246 .rpages = NULL, 2247 .cpages = NULL, 2248 .nr_rpages = 0, 2249 .nr_cpages = 0, 2250 }; 2251 #endif 2252 unsigned nr_pages = rac ? readahead_count(rac) : 1; 2253 unsigned max_nr_pages = nr_pages; 2254 int ret = 0; 2255 2256 map.m_pblk = 0; 2257 map.m_lblk = 0; 2258 map.m_len = 0; 2259 map.m_flags = 0; 2260 map.m_next_pgofs = NULL; 2261 map.m_next_extent = NULL; 2262 map.m_seg_type = NO_CHECK_TYPE; 2263 map.m_may_create = false; 2264 2265 for (; nr_pages; nr_pages--) { 2266 if (rac) { 2267 page = readahead_page(rac); 2268 prefetchw(&page->flags); 2269 } 2270 2271 #ifdef CONFIG_F2FS_FS_COMPRESSION 2272 if (f2fs_compressed_file(inode)) { 2273 /* there are remained comressed pages, submit them */ 2274 if (!f2fs_cluster_can_merge_page(&cc, page->index)) { 2275 ret = f2fs_read_multi_pages(&cc, &bio, 2276 max_nr_pages, 2277 &last_block_in_bio, 2278 rac != NULL, false); 2279 f2fs_destroy_compress_ctx(&cc); 2280 if (ret) 2281 goto set_error_page; 2282 } 2283 ret = f2fs_is_compressed_cluster(inode, page->index); 2284 if (ret < 0) 2285 goto set_error_page; 2286 else if (!ret) 2287 goto read_single_page; 2288 2289 ret = f2fs_init_compress_ctx(&cc); 2290 if (ret) 2291 goto set_error_page; 2292 2293 f2fs_compress_ctx_add_page(&cc, page); 2294 2295 goto next_page; 2296 } 2297 read_single_page: 2298 #endif 2299 2300 ret = f2fs_read_single_page(inode, page, max_nr_pages, &map, 2301 &bio, &last_block_in_bio, rac); 2302 if (ret) { 2303 #ifdef CONFIG_F2FS_FS_COMPRESSION 2304 set_error_page: 2305 #endif 2306 SetPageError(page); 2307 zero_user_segment(page, 0, PAGE_SIZE); 2308 unlock_page(page); 2309 } 2310 #ifdef CONFIG_F2FS_FS_COMPRESSION 2311 next_page: 2312 #endif 2313 if (rac) 2314 put_page(page); 2315 2316 #ifdef CONFIG_F2FS_FS_COMPRESSION 2317 if (f2fs_compressed_file(inode)) { 2318 /* last page */ 2319 if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) { 2320 ret = f2fs_read_multi_pages(&cc, &bio, 2321 max_nr_pages, 2322 &last_block_in_bio, 2323 rac != NULL, false); 2324 f2fs_destroy_compress_ctx(&cc); 2325 } 2326 } 2327 #endif 2328 } 2329 if (bio) 2330 __submit_bio(F2FS_I_SB(inode), bio, DATA); 2331 return ret; 2332 } 2333 2334 static int f2fs_read_data_page(struct file *file, struct page *page) 2335 { 2336 struct inode *inode = page_file_mapping(page)->host; 2337 int ret = -EAGAIN; 2338 2339 trace_f2fs_readpage(page, DATA); 2340 2341 if (!f2fs_is_compress_backend_ready(inode)) { 2342 unlock_page(page); 2343 return -EOPNOTSUPP; 2344 } 2345 2346 /* If the file has inline data, try to read it directly */ 2347 if (f2fs_has_inline_data(inode)) 2348 ret = f2fs_read_inline_data(inode, page); 2349 if (ret == -EAGAIN) 2350 ret = f2fs_mpage_readpages(inode, NULL, page); 2351 return ret; 2352 } 2353 2354 static void f2fs_readahead(struct readahead_control *rac) 2355 { 2356 struct inode *inode = rac->mapping->host; 2357 2358 trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac)); 2359 2360 if (!f2fs_is_compress_backend_ready(inode)) 2361 return; 2362 2363 /* If the file has inline data, skip readpages */ 2364 if (f2fs_has_inline_data(inode)) 2365 return; 2366 2367 f2fs_mpage_readpages(inode, rac, NULL); 2368 } 2369 2370 int f2fs_encrypt_one_page(struct f2fs_io_info *fio) 2371 { 2372 struct inode *inode = fio->page->mapping->host; 2373 struct page *mpage, *page; 2374 gfp_t gfp_flags = GFP_NOFS; 2375 2376 if (!f2fs_encrypted_file(inode)) 2377 return 0; 2378 2379 page = fio->compressed_page ? fio->compressed_page : fio->page; 2380 2381 /* wait for GCed page writeback via META_MAPPING */ 2382 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr); 2383 2384 if (fscrypt_inode_uses_inline_crypto(inode)) 2385 return 0; 2386 2387 retry_encrypt: 2388 fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page, 2389 PAGE_SIZE, 0, gfp_flags); 2390 if (IS_ERR(fio->encrypted_page)) { 2391 /* flush pending IOs and wait for a while in the ENOMEM case */ 2392 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) { 2393 f2fs_flush_merged_writes(fio->sbi); 2394 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT); 2395 gfp_flags |= __GFP_NOFAIL; 2396 goto retry_encrypt; 2397 } 2398 return PTR_ERR(fio->encrypted_page); 2399 } 2400 2401 mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr); 2402 if (mpage) { 2403 if (PageUptodate(mpage)) 2404 memcpy(page_address(mpage), 2405 page_address(fio->encrypted_page), PAGE_SIZE); 2406 f2fs_put_page(mpage, 1); 2407 } 2408 return 0; 2409 } 2410 2411 static inline bool check_inplace_update_policy(struct inode *inode, 2412 struct f2fs_io_info *fio) 2413 { 2414 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2415 unsigned int policy = SM_I(sbi)->ipu_policy; 2416 2417 if (policy & (0x1 << F2FS_IPU_FORCE)) 2418 return true; 2419 if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi)) 2420 return true; 2421 if (policy & (0x1 << F2FS_IPU_UTIL) && 2422 utilization(sbi) > SM_I(sbi)->min_ipu_util) 2423 return true; 2424 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) && 2425 utilization(sbi) > SM_I(sbi)->min_ipu_util) 2426 return true; 2427 2428 /* 2429 * IPU for rewrite async pages 2430 */ 2431 if (policy & (0x1 << F2FS_IPU_ASYNC) && 2432 fio && fio->op == REQ_OP_WRITE && 2433 !(fio->op_flags & REQ_SYNC) && 2434 !IS_ENCRYPTED(inode)) 2435 return true; 2436 2437 /* this is only set during fdatasync */ 2438 if (policy & (0x1 << F2FS_IPU_FSYNC) && 2439 is_inode_flag_set(inode, FI_NEED_IPU)) 2440 return true; 2441 2442 if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 2443 !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) 2444 return true; 2445 2446 return false; 2447 } 2448 2449 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio) 2450 { 2451 if (f2fs_is_pinned_file(inode)) 2452 return true; 2453 2454 /* if this is cold file, we should overwrite to avoid fragmentation */ 2455 if (file_is_cold(inode)) 2456 return true; 2457 2458 return check_inplace_update_policy(inode, fio); 2459 } 2460 2461 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio) 2462 { 2463 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2464 2465 if (f2fs_lfs_mode(sbi)) 2466 return true; 2467 if (S_ISDIR(inode->i_mode)) 2468 return true; 2469 if (IS_NOQUOTA(inode)) 2470 return true; 2471 if (f2fs_is_atomic_file(inode)) 2472 return true; 2473 if (fio) { 2474 if (is_cold_data(fio->page)) 2475 return true; 2476 if (IS_ATOMIC_WRITTEN_PAGE(fio->page)) 2477 return true; 2478 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 2479 f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) 2480 return true; 2481 } 2482 return false; 2483 } 2484 2485 static inline bool need_inplace_update(struct f2fs_io_info *fio) 2486 { 2487 struct inode *inode = fio->page->mapping->host; 2488 2489 if (f2fs_should_update_outplace(inode, fio)) 2490 return false; 2491 2492 return f2fs_should_update_inplace(inode, fio); 2493 } 2494 2495 int f2fs_do_write_data_page(struct f2fs_io_info *fio) 2496 { 2497 struct page *page = fio->page; 2498 struct inode *inode = page->mapping->host; 2499 struct dnode_of_data dn; 2500 struct extent_info ei = {0,0,0}; 2501 struct node_info ni; 2502 bool ipu_force = false; 2503 int err = 0; 2504 2505 set_new_dnode(&dn, inode, NULL, NULL, 0); 2506 if (need_inplace_update(fio) && 2507 f2fs_lookup_extent_cache(inode, page->index, &ei)) { 2508 fio->old_blkaddr = ei.blk + page->index - ei.fofs; 2509 2510 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 2511 DATA_GENERIC_ENHANCE)) 2512 return -EFSCORRUPTED; 2513 2514 ipu_force = true; 2515 fio->need_lock = LOCK_DONE; 2516 goto got_it; 2517 } 2518 2519 /* Deadlock due to between page->lock and f2fs_lock_op */ 2520 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi)) 2521 return -EAGAIN; 2522 2523 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE); 2524 if (err) 2525 goto out; 2526 2527 fio->old_blkaddr = dn.data_blkaddr; 2528 2529 /* This page is already truncated */ 2530 if (fio->old_blkaddr == NULL_ADDR) { 2531 ClearPageUptodate(page); 2532 clear_cold_data(page); 2533 goto out_writepage; 2534 } 2535 got_it: 2536 if (__is_valid_data_blkaddr(fio->old_blkaddr) && 2537 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 2538 DATA_GENERIC_ENHANCE)) { 2539 err = -EFSCORRUPTED; 2540 goto out_writepage; 2541 } 2542 /* 2543 * If current allocation needs SSR, 2544 * it had better in-place writes for updated data. 2545 */ 2546 if (ipu_force || 2547 (__is_valid_data_blkaddr(fio->old_blkaddr) && 2548 need_inplace_update(fio))) { 2549 err = f2fs_encrypt_one_page(fio); 2550 if (err) 2551 goto out_writepage; 2552 2553 set_page_writeback(page); 2554 ClearPageError(page); 2555 f2fs_put_dnode(&dn); 2556 if (fio->need_lock == LOCK_REQ) 2557 f2fs_unlock_op(fio->sbi); 2558 err = f2fs_inplace_write_data(fio); 2559 if (err) { 2560 if (fscrypt_inode_uses_fs_layer_crypto(inode)) 2561 fscrypt_finalize_bounce_page(&fio->encrypted_page); 2562 if (PageWriteback(page)) 2563 end_page_writeback(page); 2564 } else { 2565 set_inode_flag(inode, FI_UPDATE_WRITE); 2566 } 2567 trace_f2fs_do_write_data_page(fio->page, IPU); 2568 return err; 2569 } 2570 2571 if (fio->need_lock == LOCK_RETRY) { 2572 if (!f2fs_trylock_op(fio->sbi)) { 2573 err = -EAGAIN; 2574 goto out_writepage; 2575 } 2576 fio->need_lock = LOCK_REQ; 2577 } 2578 2579 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni); 2580 if (err) 2581 goto out_writepage; 2582 2583 fio->version = ni.version; 2584 2585 err = f2fs_encrypt_one_page(fio); 2586 if (err) 2587 goto out_writepage; 2588 2589 set_page_writeback(page); 2590 ClearPageError(page); 2591 2592 if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR) 2593 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false); 2594 2595 /* LFS mode write path */ 2596 f2fs_outplace_write_data(&dn, fio); 2597 trace_f2fs_do_write_data_page(page, OPU); 2598 set_inode_flag(inode, FI_APPEND_WRITE); 2599 if (page->index == 0) 2600 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); 2601 out_writepage: 2602 f2fs_put_dnode(&dn); 2603 out: 2604 if (fio->need_lock == LOCK_REQ) 2605 f2fs_unlock_op(fio->sbi); 2606 return err; 2607 } 2608 2609 int f2fs_write_single_data_page(struct page *page, int *submitted, 2610 struct bio **bio, 2611 sector_t *last_block, 2612 struct writeback_control *wbc, 2613 enum iostat_type io_type, 2614 int compr_blocks, 2615 bool allow_balance) 2616 { 2617 struct inode *inode = page->mapping->host; 2618 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2619 loff_t i_size = i_size_read(inode); 2620 const pgoff_t end_index = ((unsigned long long)i_size) 2621 >> PAGE_SHIFT; 2622 loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT; 2623 unsigned offset = 0; 2624 bool need_balance_fs = false; 2625 int err = 0; 2626 struct f2fs_io_info fio = { 2627 .sbi = sbi, 2628 .ino = inode->i_ino, 2629 .type = DATA, 2630 .op = REQ_OP_WRITE, 2631 .op_flags = wbc_to_write_flags(wbc), 2632 .old_blkaddr = NULL_ADDR, 2633 .page = page, 2634 .encrypted_page = NULL, 2635 .submitted = false, 2636 .compr_blocks = compr_blocks, 2637 .need_lock = LOCK_RETRY, 2638 .io_type = io_type, 2639 .io_wbc = wbc, 2640 .bio = bio, 2641 .last_block = last_block, 2642 }; 2643 2644 trace_f2fs_writepage(page, DATA); 2645 2646 /* we should bypass data pages to proceed the kworkder jobs */ 2647 if (unlikely(f2fs_cp_error(sbi))) { 2648 mapping_set_error(page->mapping, -EIO); 2649 /* 2650 * don't drop any dirty dentry pages for keeping lastest 2651 * directory structure. 2652 */ 2653 if (S_ISDIR(inode->i_mode)) 2654 goto redirty_out; 2655 goto out; 2656 } 2657 2658 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 2659 goto redirty_out; 2660 2661 if (page->index < end_index || 2662 f2fs_verity_in_progress(inode) || 2663 compr_blocks) 2664 goto write; 2665 2666 /* 2667 * If the offset is out-of-range of file size, 2668 * this page does not have to be written to disk. 2669 */ 2670 offset = i_size & (PAGE_SIZE - 1); 2671 if ((page->index >= end_index + 1) || !offset) 2672 goto out; 2673 2674 zero_user_segment(page, offset, PAGE_SIZE); 2675 write: 2676 if (f2fs_is_drop_cache(inode)) 2677 goto out; 2678 /* we should not write 0'th page having journal header */ 2679 if (f2fs_is_volatile_file(inode) && (!page->index || 2680 (!wbc->for_reclaim && 2681 f2fs_available_free_memory(sbi, BASE_CHECK)))) 2682 goto redirty_out; 2683 2684 /* Dentry/quota blocks are controlled by checkpoint */ 2685 if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) { 2686 /* 2687 * We need to wait for node_write to avoid block allocation during 2688 * checkpoint. This can only happen to quota writes which can cause 2689 * the below discard race condition. 2690 */ 2691 if (IS_NOQUOTA(inode)) 2692 down_read(&sbi->node_write); 2693 2694 fio.need_lock = LOCK_DONE; 2695 err = f2fs_do_write_data_page(&fio); 2696 2697 if (IS_NOQUOTA(inode)) 2698 up_read(&sbi->node_write); 2699 2700 goto done; 2701 } 2702 2703 if (!wbc->for_reclaim) 2704 need_balance_fs = true; 2705 else if (has_not_enough_free_secs(sbi, 0, 0)) 2706 goto redirty_out; 2707 else 2708 set_inode_flag(inode, FI_HOT_DATA); 2709 2710 err = -EAGAIN; 2711 if (f2fs_has_inline_data(inode)) { 2712 err = f2fs_write_inline_data(inode, page); 2713 if (!err) 2714 goto out; 2715 } 2716 2717 if (err == -EAGAIN) { 2718 err = f2fs_do_write_data_page(&fio); 2719 if (err == -EAGAIN) { 2720 fio.need_lock = LOCK_REQ; 2721 err = f2fs_do_write_data_page(&fio); 2722 } 2723 } 2724 2725 if (err) { 2726 file_set_keep_isize(inode); 2727 } else { 2728 spin_lock(&F2FS_I(inode)->i_size_lock); 2729 if (F2FS_I(inode)->last_disk_size < psize) 2730 F2FS_I(inode)->last_disk_size = psize; 2731 spin_unlock(&F2FS_I(inode)->i_size_lock); 2732 } 2733 2734 done: 2735 if (err && err != -ENOENT) 2736 goto redirty_out; 2737 2738 out: 2739 inode_dec_dirty_pages(inode); 2740 if (err) { 2741 ClearPageUptodate(page); 2742 clear_cold_data(page); 2743 } 2744 2745 if (wbc->for_reclaim) { 2746 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA); 2747 clear_inode_flag(inode, FI_HOT_DATA); 2748 f2fs_remove_dirty_inode(inode); 2749 submitted = NULL; 2750 } 2751 unlock_page(page); 2752 if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) && 2753 !F2FS_I(inode)->cp_task && allow_balance) 2754 f2fs_balance_fs(sbi, need_balance_fs); 2755 2756 if (unlikely(f2fs_cp_error(sbi))) { 2757 f2fs_submit_merged_write(sbi, DATA); 2758 f2fs_submit_merged_ipu_write(sbi, bio, NULL); 2759 submitted = NULL; 2760 } 2761 2762 if (submitted) 2763 *submitted = fio.submitted ? 1 : 0; 2764 2765 return 0; 2766 2767 redirty_out: 2768 redirty_page_for_writepage(wbc, page); 2769 /* 2770 * pageout() in MM traslates EAGAIN, so calls handle_write_error() 2771 * -> mapping_set_error() -> set_bit(AS_EIO, ...). 2772 * file_write_and_wait_range() will see EIO error, which is critical 2773 * to return value of fsync() followed by atomic_write failure to user. 2774 */ 2775 if (!err || wbc->for_reclaim) 2776 return AOP_WRITEPAGE_ACTIVATE; 2777 unlock_page(page); 2778 return err; 2779 } 2780 2781 static int f2fs_write_data_page(struct page *page, 2782 struct writeback_control *wbc) 2783 { 2784 #ifdef CONFIG_F2FS_FS_COMPRESSION 2785 struct inode *inode = page->mapping->host; 2786 2787 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 2788 goto out; 2789 2790 if (f2fs_compressed_file(inode)) { 2791 if (f2fs_is_compressed_cluster(inode, page->index)) { 2792 redirty_page_for_writepage(wbc, page); 2793 return AOP_WRITEPAGE_ACTIVATE; 2794 } 2795 } 2796 out: 2797 #endif 2798 2799 return f2fs_write_single_data_page(page, NULL, NULL, NULL, 2800 wbc, FS_DATA_IO, 0, true); 2801 } 2802 2803 /* 2804 * This function was copied from write_cche_pages from mm/page-writeback.c. 2805 * The major change is making write step of cold data page separately from 2806 * warm/hot data page. 2807 */ 2808 static int f2fs_write_cache_pages(struct address_space *mapping, 2809 struct writeback_control *wbc, 2810 enum iostat_type io_type) 2811 { 2812 int ret = 0; 2813 int done = 0, retry = 0; 2814 struct pagevec pvec; 2815 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 2816 struct bio *bio = NULL; 2817 sector_t last_block; 2818 #ifdef CONFIG_F2FS_FS_COMPRESSION 2819 struct inode *inode = mapping->host; 2820 struct compress_ctx cc = { 2821 .inode = inode, 2822 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 2823 .cluster_size = F2FS_I(inode)->i_cluster_size, 2824 .cluster_idx = NULL_CLUSTER, 2825 .rpages = NULL, 2826 .nr_rpages = 0, 2827 .cpages = NULL, 2828 .rbuf = NULL, 2829 .cbuf = NULL, 2830 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size, 2831 .private = NULL, 2832 }; 2833 #endif 2834 int nr_pages; 2835 pgoff_t index; 2836 pgoff_t end; /* Inclusive */ 2837 pgoff_t done_index; 2838 int range_whole = 0; 2839 xa_mark_t tag; 2840 int nwritten = 0; 2841 int submitted = 0; 2842 int i; 2843 2844 pagevec_init(&pvec); 2845 2846 if (get_dirty_pages(mapping->host) <= 2847 SM_I(F2FS_M_SB(mapping))->min_hot_blocks) 2848 set_inode_flag(mapping->host, FI_HOT_DATA); 2849 else 2850 clear_inode_flag(mapping->host, FI_HOT_DATA); 2851 2852 if (wbc->range_cyclic) { 2853 index = mapping->writeback_index; /* prev offset */ 2854 end = -1; 2855 } else { 2856 index = wbc->range_start >> PAGE_SHIFT; 2857 end = wbc->range_end >> PAGE_SHIFT; 2858 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2859 range_whole = 1; 2860 } 2861 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2862 tag = PAGECACHE_TAG_TOWRITE; 2863 else 2864 tag = PAGECACHE_TAG_DIRTY; 2865 retry: 2866 retry = 0; 2867 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2868 tag_pages_for_writeback(mapping, index, end); 2869 done_index = index; 2870 while (!done && !retry && (index <= end)) { 2871 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 2872 tag); 2873 if (nr_pages == 0) 2874 break; 2875 2876 for (i = 0; i < nr_pages; i++) { 2877 struct page *page = pvec.pages[i]; 2878 bool need_readd; 2879 readd: 2880 need_readd = false; 2881 #ifdef CONFIG_F2FS_FS_COMPRESSION 2882 if (f2fs_compressed_file(inode)) { 2883 ret = f2fs_init_compress_ctx(&cc); 2884 if (ret) { 2885 done = 1; 2886 break; 2887 } 2888 2889 if (!f2fs_cluster_can_merge_page(&cc, 2890 page->index)) { 2891 ret = f2fs_write_multi_pages(&cc, 2892 &submitted, wbc, io_type); 2893 if (!ret) 2894 need_readd = true; 2895 goto result; 2896 } 2897 2898 if (unlikely(f2fs_cp_error(sbi))) 2899 goto lock_page; 2900 2901 if (f2fs_cluster_is_empty(&cc)) { 2902 void *fsdata = NULL; 2903 struct page *pagep; 2904 int ret2; 2905 2906 ret2 = f2fs_prepare_compress_overwrite( 2907 inode, &pagep, 2908 page->index, &fsdata); 2909 if (ret2 < 0) { 2910 ret = ret2; 2911 done = 1; 2912 break; 2913 } else if (ret2 && 2914 !f2fs_compress_write_end(inode, 2915 fsdata, page->index, 2916 1)) { 2917 retry = 1; 2918 break; 2919 } 2920 } else { 2921 goto lock_page; 2922 } 2923 } 2924 #endif 2925 /* give a priority to WB_SYNC threads */ 2926 if (atomic_read(&sbi->wb_sync_req[DATA]) && 2927 wbc->sync_mode == WB_SYNC_NONE) { 2928 done = 1; 2929 break; 2930 } 2931 #ifdef CONFIG_F2FS_FS_COMPRESSION 2932 lock_page: 2933 #endif 2934 done_index = page->index; 2935 retry_write: 2936 lock_page(page); 2937 2938 if (unlikely(page->mapping != mapping)) { 2939 continue_unlock: 2940 unlock_page(page); 2941 continue; 2942 } 2943 2944 if (!PageDirty(page)) { 2945 /* someone wrote it for us */ 2946 goto continue_unlock; 2947 } 2948 2949 if (PageWriteback(page)) { 2950 if (wbc->sync_mode != WB_SYNC_NONE) 2951 f2fs_wait_on_page_writeback(page, 2952 DATA, true, true); 2953 else 2954 goto continue_unlock; 2955 } 2956 2957 if (!clear_page_dirty_for_io(page)) 2958 goto continue_unlock; 2959 2960 #ifdef CONFIG_F2FS_FS_COMPRESSION 2961 if (f2fs_compressed_file(inode)) { 2962 get_page(page); 2963 f2fs_compress_ctx_add_page(&cc, page); 2964 continue; 2965 } 2966 #endif 2967 ret = f2fs_write_single_data_page(page, &submitted, 2968 &bio, &last_block, wbc, io_type, 2969 0, true); 2970 if (ret == AOP_WRITEPAGE_ACTIVATE) 2971 unlock_page(page); 2972 #ifdef CONFIG_F2FS_FS_COMPRESSION 2973 result: 2974 #endif 2975 nwritten += submitted; 2976 wbc->nr_to_write -= submitted; 2977 2978 if (unlikely(ret)) { 2979 /* 2980 * keep nr_to_write, since vfs uses this to 2981 * get # of written pages. 2982 */ 2983 if (ret == AOP_WRITEPAGE_ACTIVATE) { 2984 ret = 0; 2985 goto next; 2986 } else if (ret == -EAGAIN) { 2987 ret = 0; 2988 if (wbc->sync_mode == WB_SYNC_ALL) { 2989 cond_resched(); 2990 congestion_wait(BLK_RW_ASYNC, 2991 DEFAULT_IO_TIMEOUT); 2992 goto retry_write; 2993 } 2994 goto next; 2995 } 2996 done_index = page->index + 1; 2997 done = 1; 2998 break; 2999 } 3000 3001 if (wbc->nr_to_write <= 0 && 3002 wbc->sync_mode == WB_SYNC_NONE) { 3003 done = 1; 3004 break; 3005 } 3006 next: 3007 if (need_readd) 3008 goto readd; 3009 } 3010 pagevec_release(&pvec); 3011 cond_resched(); 3012 } 3013 #ifdef CONFIG_F2FS_FS_COMPRESSION 3014 /* flush remained pages in compress cluster */ 3015 if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) { 3016 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type); 3017 nwritten += submitted; 3018 wbc->nr_to_write -= submitted; 3019 if (ret) { 3020 done = 1; 3021 retry = 0; 3022 } 3023 } 3024 if (f2fs_compressed_file(inode)) 3025 f2fs_destroy_compress_ctx(&cc); 3026 #endif 3027 if (retry) { 3028 index = 0; 3029 end = -1; 3030 goto retry; 3031 } 3032 if (wbc->range_cyclic && !done) 3033 done_index = 0; 3034 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 3035 mapping->writeback_index = done_index; 3036 3037 if (nwritten) 3038 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host, 3039 NULL, 0, DATA); 3040 /* submit cached bio of IPU write */ 3041 if (bio) 3042 f2fs_submit_merged_ipu_write(sbi, &bio, NULL); 3043 3044 return ret; 3045 } 3046 3047 static inline bool __should_serialize_io(struct inode *inode, 3048 struct writeback_control *wbc) 3049 { 3050 /* to avoid deadlock in path of data flush */ 3051 if (F2FS_I(inode)->cp_task) 3052 return false; 3053 3054 if (!S_ISREG(inode->i_mode)) 3055 return false; 3056 if (IS_NOQUOTA(inode)) 3057 return false; 3058 3059 if (f2fs_need_compress_data(inode)) 3060 return true; 3061 if (wbc->sync_mode != WB_SYNC_ALL) 3062 return true; 3063 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks) 3064 return true; 3065 return false; 3066 } 3067 3068 static int __f2fs_write_data_pages(struct address_space *mapping, 3069 struct writeback_control *wbc, 3070 enum iostat_type io_type) 3071 { 3072 struct inode *inode = mapping->host; 3073 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3074 struct blk_plug plug; 3075 int ret; 3076 bool locked = false; 3077 3078 /* deal with chardevs and other special file */ 3079 if (!mapping->a_ops->writepage) 3080 return 0; 3081 3082 /* skip writing if there is no dirty page in this inode */ 3083 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE) 3084 return 0; 3085 3086 /* during POR, we don't need to trigger writepage at all. */ 3087 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 3088 goto skip_write; 3089 3090 if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) && 3091 wbc->sync_mode == WB_SYNC_NONE && 3092 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) && 3093 f2fs_available_free_memory(sbi, DIRTY_DENTS)) 3094 goto skip_write; 3095 3096 /* skip writing during file defragment */ 3097 if (is_inode_flag_set(inode, FI_DO_DEFRAG)) 3098 goto skip_write; 3099 3100 trace_f2fs_writepages(mapping->host, wbc, DATA); 3101 3102 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */ 3103 if (wbc->sync_mode == WB_SYNC_ALL) 3104 atomic_inc(&sbi->wb_sync_req[DATA]); 3105 else if (atomic_read(&sbi->wb_sync_req[DATA])) 3106 goto skip_write; 3107 3108 if (__should_serialize_io(inode, wbc)) { 3109 mutex_lock(&sbi->writepages); 3110 locked = true; 3111 } 3112 3113 blk_start_plug(&plug); 3114 ret = f2fs_write_cache_pages(mapping, wbc, io_type); 3115 blk_finish_plug(&plug); 3116 3117 if (locked) 3118 mutex_unlock(&sbi->writepages); 3119 3120 if (wbc->sync_mode == WB_SYNC_ALL) 3121 atomic_dec(&sbi->wb_sync_req[DATA]); 3122 /* 3123 * if some pages were truncated, we cannot guarantee its mapping->host 3124 * to detect pending bios. 3125 */ 3126 3127 f2fs_remove_dirty_inode(inode); 3128 return ret; 3129 3130 skip_write: 3131 wbc->pages_skipped += get_dirty_pages(inode); 3132 trace_f2fs_writepages(mapping->host, wbc, DATA); 3133 return 0; 3134 } 3135 3136 static int f2fs_write_data_pages(struct address_space *mapping, 3137 struct writeback_control *wbc) 3138 { 3139 struct inode *inode = mapping->host; 3140 3141 return __f2fs_write_data_pages(mapping, wbc, 3142 F2FS_I(inode)->cp_task == current ? 3143 FS_CP_DATA_IO : FS_DATA_IO); 3144 } 3145 3146 static void f2fs_write_failed(struct address_space *mapping, loff_t to) 3147 { 3148 struct inode *inode = mapping->host; 3149 loff_t i_size = i_size_read(inode); 3150 3151 if (IS_NOQUOTA(inode)) 3152 return; 3153 3154 /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */ 3155 if (to > i_size && !f2fs_verity_in_progress(inode)) { 3156 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3157 down_write(&F2FS_I(inode)->i_mmap_sem); 3158 3159 truncate_pagecache(inode, i_size); 3160 f2fs_truncate_blocks(inode, i_size, true); 3161 3162 up_write(&F2FS_I(inode)->i_mmap_sem); 3163 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3164 } 3165 } 3166 3167 static int prepare_write_begin(struct f2fs_sb_info *sbi, 3168 struct page *page, loff_t pos, unsigned len, 3169 block_t *blk_addr, bool *node_changed) 3170 { 3171 struct inode *inode = page->mapping->host; 3172 pgoff_t index = page->index; 3173 struct dnode_of_data dn; 3174 struct page *ipage; 3175 bool locked = false; 3176 struct extent_info ei = {0,0,0}; 3177 int err = 0; 3178 int flag; 3179 3180 /* 3181 * we already allocated all the blocks, so we don't need to get 3182 * the block addresses when there is no need to fill the page. 3183 */ 3184 if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE && 3185 !is_inode_flag_set(inode, FI_NO_PREALLOC) && 3186 !f2fs_verity_in_progress(inode)) 3187 return 0; 3188 3189 /* f2fs_lock_op avoids race between write CP and convert_inline_page */ 3190 if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode)) 3191 flag = F2FS_GET_BLOCK_DEFAULT; 3192 else 3193 flag = F2FS_GET_BLOCK_PRE_AIO; 3194 3195 if (f2fs_has_inline_data(inode) || 3196 (pos & PAGE_MASK) >= i_size_read(inode)) { 3197 f2fs_do_map_lock(sbi, flag, true); 3198 locked = true; 3199 } 3200 3201 restart: 3202 /* check inline_data */ 3203 ipage = f2fs_get_node_page(sbi, inode->i_ino); 3204 if (IS_ERR(ipage)) { 3205 err = PTR_ERR(ipage); 3206 goto unlock_out; 3207 } 3208 3209 set_new_dnode(&dn, inode, ipage, ipage, 0); 3210 3211 if (f2fs_has_inline_data(inode)) { 3212 if (pos + len <= MAX_INLINE_DATA(inode)) { 3213 f2fs_do_read_inline_data(page, ipage); 3214 set_inode_flag(inode, FI_DATA_EXIST); 3215 if (inode->i_nlink) 3216 set_inline_node(ipage); 3217 } else { 3218 err = f2fs_convert_inline_page(&dn, page); 3219 if (err) 3220 goto out; 3221 if (dn.data_blkaddr == NULL_ADDR) 3222 err = f2fs_get_block(&dn, index); 3223 } 3224 } else if (locked) { 3225 err = f2fs_get_block(&dn, index); 3226 } else { 3227 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 3228 dn.data_blkaddr = ei.blk + index - ei.fofs; 3229 } else { 3230 /* hole case */ 3231 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 3232 if (err || dn.data_blkaddr == NULL_ADDR) { 3233 f2fs_put_dnode(&dn); 3234 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, 3235 true); 3236 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO); 3237 locked = true; 3238 goto restart; 3239 } 3240 } 3241 } 3242 3243 /* convert_inline_page can make node_changed */ 3244 *blk_addr = dn.data_blkaddr; 3245 *node_changed = dn.node_changed; 3246 out: 3247 f2fs_put_dnode(&dn); 3248 unlock_out: 3249 if (locked) 3250 f2fs_do_map_lock(sbi, flag, false); 3251 return err; 3252 } 3253 3254 static int f2fs_write_begin(struct file *file, struct address_space *mapping, 3255 loff_t pos, unsigned len, unsigned flags, 3256 struct page **pagep, void **fsdata) 3257 { 3258 struct inode *inode = mapping->host; 3259 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3260 struct page *page = NULL; 3261 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT; 3262 bool need_balance = false, drop_atomic = false; 3263 block_t blkaddr = NULL_ADDR; 3264 int err = 0; 3265 3266 trace_f2fs_write_begin(inode, pos, len, flags); 3267 3268 if (!f2fs_is_checkpoint_ready(sbi)) { 3269 err = -ENOSPC; 3270 goto fail; 3271 } 3272 3273 if ((f2fs_is_atomic_file(inode) && 3274 !f2fs_available_free_memory(sbi, INMEM_PAGES)) || 3275 is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) { 3276 err = -ENOMEM; 3277 drop_atomic = true; 3278 goto fail; 3279 } 3280 3281 /* 3282 * We should check this at this moment to avoid deadlock on inode page 3283 * and #0 page. The locking rule for inline_data conversion should be: 3284 * lock_page(page #0) -> lock_page(inode_page) 3285 */ 3286 if (index != 0) { 3287 err = f2fs_convert_inline_inode(inode); 3288 if (err) 3289 goto fail; 3290 } 3291 3292 #ifdef CONFIG_F2FS_FS_COMPRESSION 3293 if (f2fs_compressed_file(inode)) { 3294 int ret; 3295 3296 *fsdata = NULL; 3297 3298 ret = f2fs_prepare_compress_overwrite(inode, pagep, 3299 index, fsdata); 3300 if (ret < 0) { 3301 err = ret; 3302 goto fail; 3303 } else if (ret) { 3304 return 0; 3305 } 3306 } 3307 #endif 3308 3309 repeat: 3310 /* 3311 * Do not use grab_cache_page_write_begin() to avoid deadlock due to 3312 * wait_for_stable_page. Will wait that below with our IO control. 3313 */ 3314 page = f2fs_pagecache_get_page(mapping, index, 3315 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS); 3316 if (!page) { 3317 err = -ENOMEM; 3318 goto fail; 3319 } 3320 3321 /* TODO: cluster can be compressed due to race with .writepage */ 3322 3323 *pagep = page; 3324 3325 err = prepare_write_begin(sbi, page, pos, len, 3326 &blkaddr, &need_balance); 3327 if (err) 3328 goto fail; 3329 3330 if (need_balance && !IS_NOQUOTA(inode) && 3331 has_not_enough_free_secs(sbi, 0, 0)) { 3332 unlock_page(page); 3333 f2fs_balance_fs(sbi, true); 3334 lock_page(page); 3335 if (page->mapping != mapping) { 3336 /* The page got truncated from under us */ 3337 f2fs_put_page(page, 1); 3338 goto repeat; 3339 } 3340 } 3341 3342 f2fs_wait_on_page_writeback(page, DATA, false, true); 3343 3344 if (len == PAGE_SIZE || PageUptodate(page)) 3345 return 0; 3346 3347 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) && 3348 !f2fs_verity_in_progress(inode)) { 3349 zero_user_segment(page, len, PAGE_SIZE); 3350 return 0; 3351 } 3352 3353 if (blkaddr == NEW_ADDR) { 3354 zero_user_segment(page, 0, PAGE_SIZE); 3355 SetPageUptodate(page); 3356 } else { 3357 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 3358 DATA_GENERIC_ENHANCE_READ)) { 3359 err = -EFSCORRUPTED; 3360 goto fail; 3361 } 3362 err = f2fs_submit_page_read(inode, page, blkaddr, 0, true); 3363 if (err) 3364 goto fail; 3365 3366 lock_page(page); 3367 if (unlikely(page->mapping != mapping)) { 3368 f2fs_put_page(page, 1); 3369 goto repeat; 3370 } 3371 if (unlikely(!PageUptodate(page))) { 3372 err = -EIO; 3373 goto fail; 3374 } 3375 } 3376 return 0; 3377 3378 fail: 3379 f2fs_put_page(page, 1); 3380 f2fs_write_failed(mapping, pos + len); 3381 if (drop_atomic) 3382 f2fs_drop_inmem_pages_all(sbi, false); 3383 return err; 3384 } 3385 3386 static int f2fs_write_end(struct file *file, 3387 struct address_space *mapping, 3388 loff_t pos, unsigned len, unsigned copied, 3389 struct page *page, void *fsdata) 3390 { 3391 struct inode *inode = page->mapping->host; 3392 3393 trace_f2fs_write_end(inode, pos, len, copied); 3394 3395 /* 3396 * This should be come from len == PAGE_SIZE, and we expect copied 3397 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and 3398 * let generic_perform_write() try to copy data again through copied=0. 3399 */ 3400 if (!PageUptodate(page)) { 3401 if (unlikely(copied != len)) 3402 copied = 0; 3403 else 3404 SetPageUptodate(page); 3405 } 3406 3407 #ifdef CONFIG_F2FS_FS_COMPRESSION 3408 /* overwrite compressed file */ 3409 if (f2fs_compressed_file(inode) && fsdata) { 3410 f2fs_compress_write_end(inode, fsdata, page->index, copied); 3411 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3412 3413 if (pos + copied > i_size_read(inode) && 3414 !f2fs_verity_in_progress(inode)) 3415 f2fs_i_size_write(inode, pos + copied); 3416 return copied; 3417 } 3418 #endif 3419 3420 if (!copied) 3421 goto unlock_out; 3422 3423 set_page_dirty(page); 3424 3425 if (pos + copied > i_size_read(inode) && 3426 !f2fs_verity_in_progress(inode)) 3427 f2fs_i_size_write(inode, pos + copied); 3428 unlock_out: 3429 f2fs_put_page(page, 1); 3430 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3431 return copied; 3432 } 3433 3434 static int check_direct_IO(struct inode *inode, struct iov_iter *iter, 3435 loff_t offset) 3436 { 3437 unsigned i_blkbits = READ_ONCE(inode->i_blkbits); 3438 unsigned blkbits = i_blkbits; 3439 unsigned blocksize_mask = (1 << blkbits) - 1; 3440 unsigned long align = offset | iov_iter_alignment(iter); 3441 struct block_device *bdev = inode->i_sb->s_bdev; 3442 3443 if (iov_iter_rw(iter) == READ && offset >= i_size_read(inode)) 3444 return 1; 3445 3446 if (align & blocksize_mask) { 3447 if (bdev) 3448 blkbits = blksize_bits(bdev_logical_block_size(bdev)); 3449 blocksize_mask = (1 << blkbits) - 1; 3450 if (align & blocksize_mask) 3451 return -EINVAL; 3452 return 1; 3453 } 3454 return 0; 3455 } 3456 3457 static void f2fs_dio_end_io(struct bio *bio) 3458 { 3459 struct f2fs_private_dio *dio = bio->bi_private; 3460 3461 dec_page_count(F2FS_I_SB(dio->inode), 3462 dio->write ? F2FS_DIO_WRITE : F2FS_DIO_READ); 3463 3464 bio->bi_private = dio->orig_private; 3465 bio->bi_end_io = dio->orig_end_io; 3466 3467 kfree(dio); 3468 3469 bio_endio(bio); 3470 } 3471 3472 static void f2fs_dio_submit_bio(struct bio *bio, struct inode *inode, 3473 loff_t file_offset) 3474 { 3475 struct f2fs_private_dio *dio; 3476 bool write = (bio_op(bio) == REQ_OP_WRITE); 3477 3478 dio = f2fs_kzalloc(F2FS_I_SB(inode), 3479 sizeof(struct f2fs_private_dio), GFP_NOFS); 3480 if (!dio) 3481 goto out; 3482 3483 dio->inode = inode; 3484 dio->orig_end_io = bio->bi_end_io; 3485 dio->orig_private = bio->bi_private; 3486 dio->write = write; 3487 3488 bio->bi_end_io = f2fs_dio_end_io; 3489 bio->bi_private = dio; 3490 3491 inc_page_count(F2FS_I_SB(inode), 3492 write ? F2FS_DIO_WRITE : F2FS_DIO_READ); 3493 3494 submit_bio(bio); 3495 return; 3496 out: 3497 bio->bi_status = BLK_STS_IOERR; 3498 bio_endio(bio); 3499 } 3500 3501 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 3502 { 3503 struct address_space *mapping = iocb->ki_filp->f_mapping; 3504 struct inode *inode = mapping->host; 3505 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3506 struct f2fs_inode_info *fi = F2FS_I(inode); 3507 size_t count = iov_iter_count(iter); 3508 loff_t offset = iocb->ki_pos; 3509 int rw = iov_iter_rw(iter); 3510 int err; 3511 enum rw_hint hint = iocb->ki_hint; 3512 int whint_mode = F2FS_OPTION(sbi).whint_mode; 3513 bool do_opu; 3514 3515 err = check_direct_IO(inode, iter, offset); 3516 if (err) 3517 return err < 0 ? err : 0; 3518 3519 if (f2fs_force_buffered_io(inode, iocb, iter)) 3520 return 0; 3521 3522 do_opu = allow_outplace_dio(inode, iocb, iter); 3523 3524 trace_f2fs_direct_IO_enter(inode, offset, count, rw); 3525 3526 if (rw == WRITE && whint_mode == WHINT_MODE_OFF) 3527 iocb->ki_hint = WRITE_LIFE_NOT_SET; 3528 3529 if (iocb->ki_flags & IOCB_NOWAIT) { 3530 if (!down_read_trylock(&fi->i_gc_rwsem[rw])) { 3531 iocb->ki_hint = hint; 3532 err = -EAGAIN; 3533 goto out; 3534 } 3535 if (do_opu && !down_read_trylock(&fi->i_gc_rwsem[READ])) { 3536 up_read(&fi->i_gc_rwsem[rw]); 3537 iocb->ki_hint = hint; 3538 err = -EAGAIN; 3539 goto out; 3540 } 3541 } else { 3542 down_read(&fi->i_gc_rwsem[rw]); 3543 if (do_opu) 3544 down_read(&fi->i_gc_rwsem[READ]); 3545 } 3546 3547 err = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, 3548 iter, rw == WRITE ? get_data_block_dio_write : 3549 get_data_block_dio, NULL, f2fs_dio_submit_bio, 3550 rw == WRITE ? DIO_LOCKING | DIO_SKIP_HOLES : 3551 DIO_SKIP_HOLES); 3552 3553 if (do_opu) 3554 up_read(&fi->i_gc_rwsem[READ]); 3555 3556 up_read(&fi->i_gc_rwsem[rw]); 3557 3558 if (rw == WRITE) { 3559 if (whint_mode == WHINT_MODE_OFF) 3560 iocb->ki_hint = hint; 3561 if (err > 0) { 3562 f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO, 3563 err); 3564 if (!do_opu) 3565 set_inode_flag(inode, FI_UPDATE_WRITE); 3566 } else if (err == -EIOCBQUEUED) { 3567 f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO, 3568 count - iov_iter_count(iter)); 3569 } else if (err < 0) { 3570 f2fs_write_failed(mapping, offset + count); 3571 } 3572 } else { 3573 if (err > 0) 3574 f2fs_update_iostat(sbi, APP_DIRECT_READ_IO, err); 3575 else if (err == -EIOCBQUEUED) 3576 f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_READ_IO, 3577 count - iov_iter_count(iter)); 3578 } 3579 3580 out: 3581 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err); 3582 3583 return err; 3584 } 3585 3586 void f2fs_invalidate_page(struct page *page, unsigned int offset, 3587 unsigned int length) 3588 { 3589 struct inode *inode = page->mapping->host; 3590 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3591 3592 if (inode->i_ino >= F2FS_ROOT_INO(sbi) && 3593 (offset % PAGE_SIZE || length != PAGE_SIZE)) 3594 return; 3595 3596 if (PageDirty(page)) { 3597 if (inode->i_ino == F2FS_META_INO(sbi)) { 3598 dec_page_count(sbi, F2FS_DIRTY_META); 3599 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) { 3600 dec_page_count(sbi, F2FS_DIRTY_NODES); 3601 } else { 3602 inode_dec_dirty_pages(inode); 3603 f2fs_remove_dirty_inode(inode); 3604 } 3605 } 3606 3607 clear_cold_data(page); 3608 3609 if (IS_ATOMIC_WRITTEN_PAGE(page)) 3610 return f2fs_drop_inmem_page(inode, page); 3611 3612 f2fs_clear_page_private(page); 3613 } 3614 3615 int f2fs_release_page(struct page *page, gfp_t wait) 3616 { 3617 /* If this is dirty page, keep PagePrivate */ 3618 if (PageDirty(page)) 3619 return 0; 3620 3621 /* This is atomic written page, keep Private */ 3622 if (IS_ATOMIC_WRITTEN_PAGE(page)) 3623 return 0; 3624 3625 clear_cold_data(page); 3626 f2fs_clear_page_private(page); 3627 return 1; 3628 } 3629 3630 static int f2fs_set_data_page_dirty(struct page *page) 3631 { 3632 struct inode *inode = page_file_mapping(page)->host; 3633 3634 trace_f2fs_set_page_dirty(page, DATA); 3635 3636 if (!PageUptodate(page)) 3637 SetPageUptodate(page); 3638 if (PageSwapCache(page)) 3639 return __set_page_dirty_nobuffers(page); 3640 3641 if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) { 3642 if (!IS_ATOMIC_WRITTEN_PAGE(page)) { 3643 f2fs_register_inmem_page(inode, page); 3644 return 1; 3645 } 3646 /* 3647 * Previously, this page has been registered, we just 3648 * return here. 3649 */ 3650 return 0; 3651 } 3652 3653 if (!PageDirty(page)) { 3654 __set_page_dirty_nobuffers(page); 3655 f2fs_update_dirty_page(inode, page); 3656 return 1; 3657 } 3658 return 0; 3659 } 3660 3661 3662 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block) 3663 { 3664 #ifdef CONFIG_F2FS_FS_COMPRESSION 3665 struct dnode_of_data dn; 3666 sector_t start_idx, blknr = 0; 3667 int ret; 3668 3669 start_idx = round_down(block, F2FS_I(inode)->i_cluster_size); 3670 3671 set_new_dnode(&dn, inode, NULL, NULL, 0); 3672 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 3673 if (ret) 3674 return 0; 3675 3676 if (dn.data_blkaddr != COMPRESS_ADDR) { 3677 dn.ofs_in_node += block - start_idx; 3678 blknr = f2fs_data_blkaddr(&dn); 3679 if (!__is_valid_data_blkaddr(blknr)) 3680 blknr = 0; 3681 } 3682 3683 f2fs_put_dnode(&dn); 3684 return blknr; 3685 #else 3686 return 0; 3687 #endif 3688 } 3689 3690 3691 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block) 3692 { 3693 struct inode *inode = mapping->host; 3694 sector_t blknr = 0; 3695 3696 if (f2fs_has_inline_data(inode)) 3697 goto out; 3698 3699 /* make sure allocating whole blocks */ 3700 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 3701 filemap_write_and_wait(mapping); 3702 3703 /* Block number less than F2FS MAX BLOCKS */ 3704 if (unlikely(block >= max_file_blocks(inode))) 3705 goto out; 3706 3707 if (f2fs_compressed_file(inode)) { 3708 blknr = f2fs_bmap_compress(inode, block); 3709 } else { 3710 struct f2fs_map_blocks map; 3711 3712 memset(&map, 0, sizeof(map)); 3713 map.m_lblk = block; 3714 map.m_len = 1; 3715 map.m_next_pgofs = NULL; 3716 map.m_seg_type = NO_CHECK_TYPE; 3717 3718 if (!f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_BMAP)) 3719 blknr = map.m_pblk; 3720 } 3721 out: 3722 trace_f2fs_bmap(inode, block, blknr); 3723 return blknr; 3724 } 3725 3726 #ifdef CONFIG_MIGRATION 3727 #include <linux/migrate.h> 3728 3729 int f2fs_migrate_page(struct address_space *mapping, 3730 struct page *newpage, struct page *page, enum migrate_mode mode) 3731 { 3732 int rc, extra_count; 3733 struct f2fs_inode_info *fi = F2FS_I(mapping->host); 3734 bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page); 3735 3736 BUG_ON(PageWriteback(page)); 3737 3738 /* migrating an atomic written page is safe with the inmem_lock hold */ 3739 if (atomic_written) { 3740 if (mode != MIGRATE_SYNC) 3741 return -EBUSY; 3742 if (!mutex_trylock(&fi->inmem_lock)) 3743 return -EAGAIN; 3744 } 3745 3746 /* one extra reference was held for atomic_write page */ 3747 extra_count = atomic_written ? 1 : 0; 3748 rc = migrate_page_move_mapping(mapping, newpage, 3749 page, extra_count); 3750 if (rc != MIGRATEPAGE_SUCCESS) { 3751 if (atomic_written) 3752 mutex_unlock(&fi->inmem_lock); 3753 return rc; 3754 } 3755 3756 if (atomic_written) { 3757 struct inmem_pages *cur; 3758 list_for_each_entry(cur, &fi->inmem_pages, list) 3759 if (cur->page == page) { 3760 cur->page = newpage; 3761 break; 3762 } 3763 mutex_unlock(&fi->inmem_lock); 3764 put_page(page); 3765 get_page(newpage); 3766 } 3767 3768 if (PagePrivate(page)) { 3769 f2fs_set_page_private(newpage, page_private(page)); 3770 f2fs_clear_page_private(page); 3771 } 3772 3773 if (mode != MIGRATE_SYNC_NO_COPY) 3774 migrate_page_copy(newpage, page); 3775 else 3776 migrate_page_states(newpage, page); 3777 3778 return MIGRATEPAGE_SUCCESS; 3779 } 3780 #endif 3781 3782 #ifdef CONFIG_SWAP 3783 static int check_swap_activate_fast(struct swap_info_struct *sis, 3784 struct file *swap_file, sector_t *span) 3785 { 3786 struct address_space *mapping = swap_file->f_mapping; 3787 struct inode *inode = mapping->host; 3788 sector_t cur_lblock; 3789 sector_t last_lblock; 3790 sector_t pblock; 3791 sector_t lowest_pblock = -1; 3792 sector_t highest_pblock = 0; 3793 int nr_extents = 0; 3794 unsigned long nr_pblocks; 3795 u64 len; 3796 int ret; 3797 3798 /* 3799 * Map all the blocks into the extent list. This code doesn't try 3800 * to be very smart. 3801 */ 3802 cur_lblock = 0; 3803 last_lblock = bytes_to_blks(inode, i_size_read(inode)); 3804 len = i_size_read(inode); 3805 3806 while (cur_lblock <= last_lblock && cur_lblock < sis->max) { 3807 struct f2fs_map_blocks map; 3808 pgoff_t next_pgofs; 3809 3810 cond_resched(); 3811 3812 memset(&map, 0, sizeof(map)); 3813 map.m_lblk = cur_lblock; 3814 map.m_len = bytes_to_blks(inode, len) - cur_lblock; 3815 map.m_next_pgofs = &next_pgofs; 3816 map.m_seg_type = NO_CHECK_TYPE; 3817 3818 ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP); 3819 if (ret) 3820 goto err_out; 3821 3822 /* hole */ 3823 if (!(map.m_flags & F2FS_MAP_FLAGS)) 3824 goto err_out; 3825 3826 pblock = map.m_pblk; 3827 nr_pblocks = map.m_len; 3828 3829 if (cur_lblock + nr_pblocks >= sis->max) 3830 nr_pblocks = sis->max - cur_lblock; 3831 3832 if (cur_lblock) { /* exclude the header page */ 3833 if (pblock < lowest_pblock) 3834 lowest_pblock = pblock; 3835 if (pblock + nr_pblocks - 1 > highest_pblock) 3836 highest_pblock = pblock + nr_pblocks - 1; 3837 } 3838 3839 /* 3840 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks 3841 */ 3842 ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock); 3843 if (ret < 0) 3844 goto out; 3845 nr_extents += ret; 3846 cur_lblock += nr_pblocks; 3847 } 3848 ret = nr_extents; 3849 *span = 1 + highest_pblock - lowest_pblock; 3850 if (cur_lblock == 0) 3851 cur_lblock = 1; /* force Empty message */ 3852 sis->max = cur_lblock; 3853 sis->pages = cur_lblock - 1; 3854 sis->highest_bit = cur_lblock - 1; 3855 out: 3856 return ret; 3857 err_out: 3858 pr_err("swapon: swapfile has holes\n"); 3859 return -EINVAL; 3860 } 3861 3862 /* Copied from generic_swapfile_activate() to check any holes */ 3863 static int check_swap_activate(struct swap_info_struct *sis, 3864 struct file *swap_file, sector_t *span) 3865 { 3866 struct address_space *mapping = swap_file->f_mapping; 3867 struct inode *inode = mapping->host; 3868 unsigned blocks_per_page; 3869 unsigned long page_no; 3870 sector_t probe_block; 3871 sector_t last_block; 3872 sector_t lowest_block = -1; 3873 sector_t highest_block = 0; 3874 int nr_extents = 0; 3875 int ret; 3876 3877 if (PAGE_SIZE == F2FS_BLKSIZE) 3878 return check_swap_activate_fast(sis, swap_file, span); 3879 3880 blocks_per_page = bytes_to_blks(inode, PAGE_SIZE); 3881 3882 /* 3883 * Map all the blocks into the extent list. This code doesn't try 3884 * to be very smart. 3885 */ 3886 probe_block = 0; 3887 page_no = 0; 3888 last_block = bytes_to_blks(inode, i_size_read(inode)); 3889 while ((probe_block + blocks_per_page) <= last_block && 3890 page_no < sis->max) { 3891 unsigned block_in_page; 3892 sector_t first_block; 3893 sector_t block = 0; 3894 int err = 0; 3895 3896 cond_resched(); 3897 3898 block = probe_block; 3899 err = bmap(inode, &block); 3900 if (err || !block) 3901 goto bad_bmap; 3902 first_block = block; 3903 3904 /* 3905 * It must be PAGE_SIZE aligned on-disk 3906 */ 3907 if (first_block & (blocks_per_page - 1)) { 3908 probe_block++; 3909 goto reprobe; 3910 } 3911 3912 for (block_in_page = 1; block_in_page < blocks_per_page; 3913 block_in_page++) { 3914 3915 block = probe_block + block_in_page; 3916 err = bmap(inode, &block); 3917 3918 if (err || !block) 3919 goto bad_bmap; 3920 3921 if (block != first_block + block_in_page) { 3922 /* Discontiguity */ 3923 probe_block++; 3924 goto reprobe; 3925 } 3926 } 3927 3928 first_block >>= (PAGE_SHIFT - inode->i_blkbits); 3929 if (page_no) { /* exclude the header page */ 3930 if (first_block < lowest_block) 3931 lowest_block = first_block; 3932 if (first_block > highest_block) 3933 highest_block = first_block; 3934 } 3935 3936 /* 3937 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks 3938 */ 3939 ret = add_swap_extent(sis, page_no, 1, first_block); 3940 if (ret < 0) 3941 goto out; 3942 nr_extents += ret; 3943 page_no++; 3944 probe_block += blocks_per_page; 3945 reprobe: 3946 continue; 3947 } 3948 ret = nr_extents; 3949 *span = 1 + highest_block - lowest_block; 3950 if (page_no == 0) 3951 page_no = 1; /* force Empty message */ 3952 sis->max = page_no; 3953 sis->pages = page_no - 1; 3954 sis->highest_bit = page_no - 1; 3955 out: 3956 return ret; 3957 bad_bmap: 3958 pr_err("swapon: swapfile has holes\n"); 3959 return -EINVAL; 3960 } 3961 3962 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, 3963 sector_t *span) 3964 { 3965 struct inode *inode = file_inode(file); 3966 int ret; 3967 3968 if (!S_ISREG(inode->i_mode)) 3969 return -EINVAL; 3970 3971 if (f2fs_readonly(F2FS_I_SB(inode)->sb)) 3972 return -EROFS; 3973 3974 ret = f2fs_convert_inline_inode(inode); 3975 if (ret) 3976 return ret; 3977 3978 if (!f2fs_disable_compressed_file(inode)) 3979 return -EINVAL; 3980 3981 f2fs_precache_extents(inode); 3982 3983 ret = check_swap_activate(sis, file, span); 3984 if (ret < 0) 3985 return ret; 3986 3987 set_inode_flag(inode, FI_PIN_FILE); 3988 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3989 return ret; 3990 } 3991 3992 static void f2fs_swap_deactivate(struct file *file) 3993 { 3994 struct inode *inode = file_inode(file); 3995 3996 clear_inode_flag(inode, FI_PIN_FILE); 3997 } 3998 #else 3999 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, 4000 sector_t *span) 4001 { 4002 return -EOPNOTSUPP; 4003 } 4004 4005 static void f2fs_swap_deactivate(struct file *file) 4006 { 4007 } 4008 #endif 4009 4010 const struct address_space_operations f2fs_dblock_aops = { 4011 .readpage = f2fs_read_data_page, 4012 .readahead = f2fs_readahead, 4013 .writepage = f2fs_write_data_page, 4014 .writepages = f2fs_write_data_pages, 4015 .write_begin = f2fs_write_begin, 4016 .write_end = f2fs_write_end, 4017 .set_page_dirty = f2fs_set_data_page_dirty, 4018 .invalidatepage = f2fs_invalidate_page, 4019 .releasepage = f2fs_release_page, 4020 .direct_IO = f2fs_direct_IO, 4021 .bmap = f2fs_bmap, 4022 .swap_activate = f2fs_swap_activate, 4023 .swap_deactivate = f2fs_swap_deactivate, 4024 #ifdef CONFIG_MIGRATION 4025 .migratepage = f2fs_migrate_page, 4026 #endif 4027 }; 4028 4029 void f2fs_clear_page_cache_dirty_tag(struct page *page) 4030 { 4031 struct address_space *mapping = page_mapping(page); 4032 unsigned long flags; 4033 4034 xa_lock_irqsave(&mapping->i_pages, flags); 4035 __xa_clear_mark(&mapping->i_pages, page_index(page), 4036 PAGECACHE_TAG_DIRTY); 4037 xa_unlock_irqrestore(&mapping->i_pages, flags); 4038 } 4039 4040 int __init f2fs_init_post_read_processing(void) 4041 { 4042 bio_post_read_ctx_cache = 4043 kmem_cache_create("f2fs_bio_post_read_ctx", 4044 sizeof(struct bio_post_read_ctx), 0, 0, NULL); 4045 if (!bio_post_read_ctx_cache) 4046 goto fail; 4047 bio_post_read_ctx_pool = 4048 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS, 4049 bio_post_read_ctx_cache); 4050 if (!bio_post_read_ctx_pool) 4051 goto fail_free_cache; 4052 return 0; 4053 4054 fail_free_cache: 4055 kmem_cache_destroy(bio_post_read_ctx_cache); 4056 fail: 4057 return -ENOMEM; 4058 } 4059 4060 void f2fs_destroy_post_read_processing(void) 4061 { 4062 mempool_destroy(bio_post_read_ctx_pool); 4063 kmem_cache_destroy(bio_post_read_ctx_cache); 4064 } 4065 4066 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi) 4067 { 4068 if (!f2fs_sb_has_encrypt(sbi) && 4069 !f2fs_sb_has_verity(sbi) && 4070 !f2fs_sb_has_compression(sbi)) 4071 return 0; 4072 4073 sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq", 4074 WQ_UNBOUND | WQ_HIGHPRI, 4075 num_online_cpus()); 4076 if (!sbi->post_read_wq) 4077 return -ENOMEM; 4078 return 0; 4079 } 4080 4081 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi) 4082 { 4083 if (sbi->post_read_wq) 4084 destroy_workqueue(sbi->post_read_wq); 4085 } 4086 4087 int __init f2fs_init_bio_entry_cache(void) 4088 { 4089 bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab", 4090 sizeof(struct bio_entry)); 4091 if (!bio_entry_slab) 4092 return -ENOMEM; 4093 return 0; 4094 } 4095 4096 void f2fs_destroy_bio_entry_cache(void) 4097 { 4098 kmem_cache_destroy(bio_entry_slab); 4099 } 4100