1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/data.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/sched/mm.h> 11 #include <linux/mpage.h> 12 #include <linux/writeback.h> 13 #include <linux/pagevec.h> 14 #include <linux/blkdev.h> 15 #include <linux/bio.h> 16 #include <linux/blk-crypto.h> 17 #include <linux/swap.h> 18 #include <linux/prefetch.h> 19 #include <linux/uio.h> 20 #include <linux/sched/signal.h> 21 #include <linux/fiemap.h> 22 #include <linux/iomap.h> 23 24 #include "f2fs.h" 25 #include "node.h" 26 #include "segment.h" 27 #include "iostat.h" 28 #include <trace/events/f2fs.h> 29 30 #define NUM_PREALLOC_POST_READ_CTXS 128 31 32 static struct kmem_cache *bio_post_read_ctx_cache; 33 static struct kmem_cache *bio_entry_slab; 34 static mempool_t *bio_post_read_ctx_pool; 35 static struct bio_set f2fs_bioset; 36 37 #define F2FS_BIO_POOL_SIZE NR_CURSEG_TYPE 38 39 int __init f2fs_init_bioset(void) 40 { 41 return bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE, 42 0, BIOSET_NEED_BVECS); 43 } 44 45 void f2fs_destroy_bioset(void) 46 { 47 bioset_exit(&f2fs_bioset); 48 } 49 50 bool f2fs_is_cp_guaranteed(struct page *page) 51 { 52 struct address_space *mapping = page->mapping; 53 struct inode *inode; 54 struct f2fs_sb_info *sbi; 55 56 if (!mapping) 57 return false; 58 59 inode = mapping->host; 60 sbi = F2FS_I_SB(inode); 61 62 if (inode->i_ino == F2FS_META_INO(sbi) || 63 inode->i_ino == F2FS_NODE_INO(sbi) || 64 S_ISDIR(inode->i_mode)) 65 return true; 66 67 if ((S_ISREG(inode->i_mode) && IS_NOQUOTA(inode)) || 68 page_private_gcing(page)) 69 return true; 70 return false; 71 } 72 73 static enum count_type __read_io_type(struct page *page) 74 { 75 struct address_space *mapping = page_file_mapping(page); 76 77 if (mapping) { 78 struct inode *inode = mapping->host; 79 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 80 81 if (inode->i_ino == F2FS_META_INO(sbi)) 82 return F2FS_RD_META; 83 84 if (inode->i_ino == F2FS_NODE_INO(sbi)) 85 return F2FS_RD_NODE; 86 } 87 return F2FS_RD_DATA; 88 } 89 90 /* postprocessing steps for read bios */ 91 enum bio_post_read_step { 92 #ifdef CONFIG_FS_ENCRYPTION 93 STEP_DECRYPT = BIT(0), 94 #else 95 STEP_DECRYPT = 0, /* compile out the decryption-related code */ 96 #endif 97 #ifdef CONFIG_F2FS_FS_COMPRESSION 98 STEP_DECOMPRESS = BIT(1), 99 #else 100 STEP_DECOMPRESS = 0, /* compile out the decompression-related code */ 101 #endif 102 #ifdef CONFIG_FS_VERITY 103 STEP_VERITY = BIT(2), 104 #else 105 STEP_VERITY = 0, /* compile out the verity-related code */ 106 #endif 107 }; 108 109 struct bio_post_read_ctx { 110 struct bio *bio; 111 struct f2fs_sb_info *sbi; 112 struct work_struct work; 113 unsigned int enabled_steps; 114 /* 115 * decompression_attempted keeps track of whether 116 * f2fs_end_read_compressed_page() has been called on the pages in the 117 * bio that belong to a compressed cluster yet. 118 */ 119 bool decompression_attempted; 120 block_t fs_blkaddr; 121 }; 122 123 /* 124 * Update and unlock a bio's pages, and free the bio. 125 * 126 * This marks pages up-to-date only if there was no error in the bio (I/O error, 127 * decryption error, or verity error), as indicated by bio->bi_status. 128 * 129 * "Compressed pages" (pagecache pages backed by a compressed cluster on-disk) 130 * aren't marked up-to-date here, as decompression is done on a per-compression- 131 * cluster basis rather than a per-bio basis. Instead, we only must do two 132 * things for each compressed page here: call f2fs_end_read_compressed_page() 133 * with failed=true if an error occurred before it would have normally gotten 134 * called (i.e., I/O error or decryption error, but *not* verity error), and 135 * release the bio's reference to the decompress_io_ctx of the page's cluster. 136 */ 137 static void f2fs_finish_read_bio(struct bio *bio, bool in_task) 138 { 139 struct bio_vec *bv; 140 struct bvec_iter_all iter_all; 141 struct bio_post_read_ctx *ctx = bio->bi_private; 142 143 bio_for_each_segment_all(bv, bio, iter_all) { 144 struct page *page = bv->bv_page; 145 146 if (f2fs_is_compressed_page(page)) { 147 if (ctx && !ctx->decompression_attempted) 148 f2fs_end_read_compressed_page(page, true, 0, 149 in_task); 150 f2fs_put_page_dic(page, in_task); 151 continue; 152 } 153 154 if (bio->bi_status) 155 ClearPageUptodate(page); 156 else 157 SetPageUptodate(page); 158 dec_page_count(F2FS_P_SB(page), __read_io_type(page)); 159 unlock_page(page); 160 } 161 162 if (ctx) 163 mempool_free(ctx, bio_post_read_ctx_pool); 164 bio_put(bio); 165 } 166 167 static void f2fs_verify_bio(struct work_struct *work) 168 { 169 struct bio_post_read_ctx *ctx = 170 container_of(work, struct bio_post_read_ctx, work); 171 struct bio *bio = ctx->bio; 172 bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS); 173 174 /* 175 * fsverity_verify_bio() may call readahead() again, and while verity 176 * will be disabled for this, decryption and/or decompression may still 177 * be needed, resulting in another bio_post_read_ctx being allocated. 178 * So to prevent deadlocks we need to release the current ctx to the 179 * mempool first. This assumes that verity is the last post-read step. 180 */ 181 mempool_free(ctx, bio_post_read_ctx_pool); 182 bio->bi_private = NULL; 183 184 /* 185 * Verify the bio's pages with fs-verity. Exclude compressed pages, 186 * as those were handled separately by f2fs_end_read_compressed_page(). 187 */ 188 if (may_have_compressed_pages) { 189 struct bio_vec *bv; 190 struct bvec_iter_all iter_all; 191 192 bio_for_each_segment_all(bv, bio, iter_all) { 193 struct page *page = bv->bv_page; 194 195 if (!f2fs_is_compressed_page(page) && 196 !fsverity_verify_page(page)) { 197 bio->bi_status = BLK_STS_IOERR; 198 break; 199 } 200 } 201 } else { 202 fsverity_verify_bio(bio); 203 } 204 205 f2fs_finish_read_bio(bio, true); 206 } 207 208 /* 209 * If the bio's data needs to be verified with fs-verity, then enqueue the 210 * verity work for the bio. Otherwise finish the bio now. 211 * 212 * Note that to avoid deadlocks, the verity work can't be done on the 213 * decryption/decompression workqueue. This is because verifying the data pages 214 * can involve reading verity metadata pages from the file, and these verity 215 * metadata pages may be encrypted and/or compressed. 216 */ 217 static void f2fs_verify_and_finish_bio(struct bio *bio, bool in_task) 218 { 219 struct bio_post_read_ctx *ctx = bio->bi_private; 220 221 if (ctx && (ctx->enabled_steps & STEP_VERITY)) { 222 INIT_WORK(&ctx->work, f2fs_verify_bio); 223 fsverity_enqueue_verify_work(&ctx->work); 224 } else { 225 f2fs_finish_read_bio(bio, in_task); 226 } 227 } 228 229 /* 230 * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last 231 * remaining page was read by @ctx->bio. 232 * 233 * Note that a bio may span clusters (even a mix of compressed and uncompressed 234 * clusters) or be for just part of a cluster. STEP_DECOMPRESS just indicates 235 * that the bio includes at least one compressed page. The actual decompression 236 * is done on a per-cluster basis, not a per-bio basis. 237 */ 238 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx, 239 bool in_task) 240 { 241 struct bio_vec *bv; 242 struct bvec_iter_all iter_all; 243 bool all_compressed = true; 244 block_t blkaddr = ctx->fs_blkaddr; 245 246 bio_for_each_segment_all(bv, ctx->bio, iter_all) { 247 struct page *page = bv->bv_page; 248 249 if (f2fs_is_compressed_page(page)) 250 f2fs_end_read_compressed_page(page, false, blkaddr, 251 in_task); 252 else 253 all_compressed = false; 254 255 blkaddr++; 256 } 257 258 ctx->decompression_attempted = true; 259 260 /* 261 * Optimization: if all the bio's pages are compressed, then scheduling 262 * the per-bio verity work is unnecessary, as verity will be fully 263 * handled at the compression cluster level. 264 */ 265 if (all_compressed) 266 ctx->enabled_steps &= ~STEP_VERITY; 267 } 268 269 static void f2fs_post_read_work(struct work_struct *work) 270 { 271 struct bio_post_read_ctx *ctx = 272 container_of(work, struct bio_post_read_ctx, work); 273 struct bio *bio = ctx->bio; 274 275 if ((ctx->enabled_steps & STEP_DECRYPT) && !fscrypt_decrypt_bio(bio)) { 276 f2fs_finish_read_bio(bio, true); 277 return; 278 } 279 280 if (ctx->enabled_steps & STEP_DECOMPRESS) 281 f2fs_handle_step_decompress(ctx, true); 282 283 f2fs_verify_and_finish_bio(bio, true); 284 } 285 286 static void f2fs_read_end_io(struct bio *bio) 287 { 288 struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio)); 289 struct bio_post_read_ctx *ctx; 290 bool intask = in_task(); 291 292 iostat_update_and_unbind_ctx(bio); 293 ctx = bio->bi_private; 294 295 if (time_to_inject(sbi, FAULT_READ_IO)) 296 bio->bi_status = BLK_STS_IOERR; 297 298 if (bio->bi_status) { 299 f2fs_finish_read_bio(bio, intask); 300 return; 301 } 302 303 if (ctx) { 304 unsigned int enabled_steps = ctx->enabled_steps & 305 (STEP_DECRYPT | STEP_DECOMPRESS); 306 307 /* 308 * If we have only decompression step between decompression and 309 * decrypt, we don't need post processing for this. 310 */ 311 if (enabled_steps == STEP_DECOMPRESS && 312 !f2fs_low_mem_mode(sbi)) { 313 f2fs_handle_step_decompress(ctx, intask); 314 } else if (enabled_steps) { 315 INIT_WORK(&ctx->work, f2fs_post_read_work); 316 queue_work(ctx->sbi->post_read_wq, &ctx->work); 317 return; 318 } 319 } 320 321 f2fs_verify_and_finish_bio(bio, intask); 322 } 323 324 static void f2fs_write_end_io(struct bio *bio) 325 { 326 struct f2fs_sb_info *sbi; 327 struct bio_vec *bvec; 328 struct bvec_iter_all iter_all; 329 330 iostat_update_and_unbind_ctx(bio); 331 sbi = bio->bi_private; 332 333 if (time_to_inject(sbi, FAULT_WRITE_IO)) 334 bio->bi_status = BLK_STS_IOERR; 335 336 bio_for_each_segment_all(bvec, bio, iter_all) { 337 struct page *page = bvec->bv_page; 338 enum count_type type = WB_DATA_TYPE(page, false); 339 340 fscrypt_finalize_bounce_page(&page); 341 342 #ifdef CONFIG_F2FS_FS_COMPRESSION 343 if (f2fs_is_compressed_page(page)) { 344 f2fs_compress_write_end_io(bio, page); 345 continue; 346 } 347 #endif 348 349 if (unlikely(bio->bi_status)) { 350 mapping_set_error(page->mapping, -EIO); 351 if (type == F2FS_WB_CP_DATA) 352 f2fs_stop_checkpoint(sbi, true, 353 STOP_CP_REASON_WRITE_FAIL); 354 } 355 356 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) && 357 page_folio(page)->index != nid_of_node(page)); 358 359 dec_page_count(sbi, type); 360 if (f2fs_in_warm_node_list(sbi, page)) 361 f2fs_del_fsync_node_entry(sbi, page); 362 clear_page_private_gcing(page); 363 end_page_writeback(page); 364 } 365 if (!get_pages(sbi, F2FS_WB_CP_DATA) && 366 wq_has_sleeper(&sbi->cp_wait)) 367 wake_up(&sbi->cp_wait); 368 369 bio_put(bio); 370 } 371 372 #ifdef CONFIG_BLK_DEV_ZONED 373 static void f2fs_zone_write_end_io(struct bio *bio) 374 { 375 struct f2fs_bio_info *io = (struct f2fs_bio_info *)bio->bi_private; 376 377 bio->bi_private = io->bi_private; 378 complete(&io->zone_wait); 379 f2fs_write_end_io(bio); 380 } 381 #endif 382 383 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 384 block_t blk_addr, sector_t *sector) 385 { 386 struct block_device *bdev = sbi->sb->s_bdev; 387 int i; 388 389 if (f2fs_is_multi_device(sbi)) { 390 for (i = 0; i < sbi->s_ndevs; i++) { 391 if (FDEV(i).start_blk <= blk_addr && 392 FDEV(i).end_blk >= blk_addr) { 393 blk_addr -= FDEV(i).start_blk; 394 bdev = FDEV(i).bdev; 395 break; 396 } 397 } 398 } 399 400 if (sector) 401 *sector = SECTOR_FROM_BLOCK(blk_addr); 402 return bdev; 403 } 404 405 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr) 406 { 407 int i; 408 409 if (!f2fs_is_multi_device(sbi)) 410 return 0; 411 412 for (i = 0; i < sbi->s_ndevs; i++) 413 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr) 414 return i; 415 return 0; 416 } 417 418 static blk_opf_t f2fs_io_flags(struct f2fs_io_info *fio) 419 { 420 unsigned int temp_mask = GENMASK(NR_TEMP_TYPE - 1, 0); 421 unsigned int fua_flag, meta_flag, io_flag; 422 blk_opf_t op_flags = 0; 423 424 if (fio->op != REQ_OP_WRITE) 425 return 0; 426 if (fio->type == DATA) 427 io_flag = fio->sbi->data_io_flag; 428 else if (fio->type == NODE) 429 io_flag = fio->sbi->node_io_flag; 430 else 431 return 0; 432 433 fua_flag = io_flag & temp_mask; 434 meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask; 435 436 /* 437 * data/node io flag bits per temp: 438 * REQ_META | REQ_FUA | 439 * 5 | 4 | 3 | 2 | 1 | 0 | 440 * Cold | Warm | Hot | Cold | Warm | Hot | 441 */ 442 if (BIT(fio->temp) & meta_flag) 443 op_flags |= REQ_META; 444 if (BIT(fio->temp) & fua_flag) 445 op_flags |= REQ_FUA; 446 return op_flags; 447 } 448 449 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages) 450 { 451 struct f2fs_sb_info *sbi = fio->sbi; 452 struct block_device *bdev; 453 sector_t sector; 454 struct bio *bio; 455 456 bdev = f2fs_target_device(sbi, fio->new_blkaddr, §or); 457 bio = bio_alloc_bioset(bdev, npages, 458 fio->op | fio->op_flags | f2fs_io_flags(fio), 459 GFP_NOIO, &f2fs_bioset); 460 bio->bi_iter.bi_sector = sector; 461 if (is_read_io(fio->op)) { 462 bio->bi_end_io = f2fs_read_end_io; 463 bio->bi_private = NULL; 464 } else { 465 bio->bi_end_io = f2fs_write_end_io; 466 bio->bi_private = sbi; 467 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, 468 fio->type, fio->temp); 469 } 470 iostat_alloc_and_bind_ctx(sbi, bio, NULL); 471 472 if (fio->io_wbc) 473 wbc_init_bio(fio->io_wbc, bio); 474 475 return bio; 476 } 477 478 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode, 479 pgoff_t first_idx, 480 const struct f2fs_io_info *fio, 481 gfp_t gfp_mask) 482 { 483 /* 484 * The f2fs garbage collector sets ->encrypted_page when it wants to 485 * read/write raw data without encryption. 486 */ 487 if (!fio || !fio->encrypted_page) 488 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask); 489 } 490 491 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode, 492 pgoff_t next_idx, 493 const struct f2fs_io_info *fio) 494 { 495 /* 496 * The f2fs garbage collector sets ->encrypted_page when it wants to 497 * read/write raw data without encryption. 498 */ 499 if (fio && fio->encrypted_page) 500 return !bio_has_crypt_ctx(bio); 501 502 return fscrypt_mergeable_bio(bio, inode, next_idx); 503 } 504 505 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio, 506 enum page_type type) 507 { 508 WARN_ON_ONCE(!is_read_io(bio_op(bio))); 509 trace_f2fs_submit_read_bio(sbi->sb, type, bio); 510 511 iostat_update_submit_ctx(bio, type); 512 submit_bio(bio); 513 } 514 515 static void f2fs_submit_write_bio(struct f2fs_sb_info *sbi, struct bio *bio, 516 enum page_type type) 517 { 518 WARN_ON_ONCE(is_read_io(bio_op(bio))); 519 520 if (f2fs_lfs_mode(sbi) && current->plug && PAGE_TYPE_ON_MAIN(type)) 521 blk_finish_plug(current->plug); 522 523 trace_f2fs_submit_write_bio(sbi->sb, type, bio); 524 iostat_update_submit_ctx(bio, type); 525 submit_bio(bio); 526 } 527 528 static void __submit_merged_bio(struct f2fs_bio_info *io) 529 { 530 struct f2fs_io_info *fio = &io->fio; 531 532 if (!io->bio) 533 return; 534 535 if (is_read_io(fio->op)) { 536 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio); 537 f2fs_submit_read_bio(io->sbi, io->bio, fio->type); 538 } else { 539 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio); 540 f2fs_submit_write_bio(io->sbi, io->bio, fio->type); 541 } 542 io->bio = NULL; 543 } 544 545 static bool __has_merged_page(struct bio *bio, struct inode *inode, 546 struct page *page, nid_t ino) 547 { 548 struct bio_vec *bvec; 549 struct bvec_iter_all iter_all; 550 551 if (!bio) 552 return false; 553 554 if (!inode && !page && !ino) 555 return true; 556 557 bio_for_each_segment_all(bvec, bio, iter_all) { 558 struct page *target = bvec->bv_page; 559 560 if (fscrypt_is_bounce_page(target)) { 561 target = fscrypt_pagecache_page(target); 562 if (IS_ERR(target)) 563 continue; 564 } 565 if (f2fs_is_compressed_page(target)) { 566 target = f2fs_compress_control_page(target); 567 if (IS_ERR(target)) 568 continue; 569 } 570 571 if (inode && inode == target->mapping->host) 572 return true; 573 if (page && page == target) 574 return true; 575 if (ino && ino == ino_of_node(target)) 576 return true; 577 } 578 579 return false; 580 } 581 582 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi) 583 { 584 int i; 585 586 for (i = 0; i < NR_PAGE_TYPE; i++) { 587 int n = (i == META) ? 1 : NR_TEMP_TYPE; 588 int j; 589 590 sbi->write_io[i] = f2fs_kmalloc(sbi, 591 array_size(n, sizeof(struct f2fs_bio_info)), 592 GFP_KERNEL); 593 if (!sbi->write_io[i]) 594 return -ENOMEM; 595 596 for (j = HOT; j < n; j++) { 597 struct f2fs_bio_info *io = &sbi->write_io[i][j]; 598 599 init_f2fs_rwsem(&io->io_rwsem); 600 io->sbi = sbi; 601 io->bio = NULL; 602 io->last_block_in_bio = 0; 603 spin_lock_init(&io->io_lock); 604 INIT_LIST_HEAD(&io->io_list); 605 INIT_LIST_HEAD(&io->bio_list); 606 init_f2fs_rwsem(&io->bio_list_lock); 607 #ifdef CONFIG_BLK_DEV_ZONED 608 init_completion(&io->zone_wait); 609 io->zone_pending_bio = NULL; 610 io->bi_private = NULL; 611 #endif 612 } 613 } 614 615 return 0; 616 } 617 618 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi, 619 enum page_type type, enum temp_type temp) 620 { 621 enum page_type btype = PAGE_TYPE_OF_BIO(type); 622 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 623 624 f2fs_down_write(&io->io_rwsem); 625 626 if (!io->bio) 627 goto unlock_out; 628 629 /* change META to META_FLUSH in the checkpoint procedure */ 630 if (type >= META_FLUSH) { 631 io->fio.type = META_FLUSH; 632 io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC; 633 if (!test_opt(sbi, NOBARRIER)) 634 io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA; 635 } 636 __submit_merged_bio(io); 637 unlock_out: 638 f2fs_up_write(&io->io_rwsem); 639 } 640 641 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi, 642 struct inode *inode, struct page *page, 643 nid_t ino, enum page_type type, bool force) 644 { 645 enum temp_type temp; 646 bool ret = true; 647 648 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) { 649 if (!force) { 650 enum page_type btype = PAGE_TYPE_OF_BIO(type); 651 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 652 653 f2fs_down_read(&io->io_rwsem); 654 ret = __has_merged_page(io->bio, inode, page, ino); 655 f2fs_up_read(&io->io_rwsem); 656 } 657 if (ret) 658 __f2fs_submit_merged_write(sbi, type, temp); 659 660 /* TODO: use HOT temp only for meta pages now. */ 661 if (type >= META) 662 break; 663 } 664 } 665 666 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type) 667 { 668 __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true); 669 } 670 671 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 672 struct inode *inode, struct page *page, 673 nid_t ino, enum page_type type) 674 { 675 __submit_merged_write_cond(sbi, inode, page, ino, type, false); 676 } 677 678 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi) 679 { 680 f2fs_submit_merged_write(sbi, DATA); 681 f2fs_submit_merged_write(sbi, NODE); 682 f2fs_submit_merged_write(sbi, META); 683 } 684 685 /* 686 * Fill the locked page with data located in the block address. 687 * A caller needs to unlock the page on failure. 688 */ 689 int f2fs_submit_page_bio(struct f2fs_io_info *fio) 690 { 691 struct bio *bio; 692 struct page *page = fio->encrypted_page ? 693 fio->encrypted_page : fio->page; 694 695 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, 696 fio->is_por ? META_POR : (__is_meta_io(fio) ? 697 META_GENERIC : DATA_GENERIC_ENHANCE))) 698 return -EFSCORRUPTED; 699 700 trace_f2fs_submit_page_bio(page, fio); 701 702 /* Allocate a new bio */ 703 bio = __bio_alloc(fio, 1); 704 705 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host, 706 page_folio(fio->page)->index, fio, GFP_NOIO); 707 708 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 709 bio_put(bio); 710 return -EFAULT; 711 } 712 713 if (fio->io_wbc && !is_read_io(fio->op)) 714 wbc_account_cgroup_owner(fio->io_wbc, page_folio(fio->page), 715 PAGE_SIZE); 716 717 inc_page_count(fio->sbi, is_read_io(fio->op) ? 718 __read_io_type(page) : WB_DATA_TYPE(fio->page, false)); 719 720 if (is_read_io(bio_op(bio))) 721 f2fs_submit_read_bio(fio->sbi, bio, fio->type); 722 else 723 f2fs_submit_write_bio(fio->sbi, bio, fio->type); 724 return 0; 725 } 726 727 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio, 728 block_t last_blkaddr, block_t cur_blkaddr) 729 { 730 if (unlikely(sbi->max_io_bytes && 731 bio->bi_iter.bi_size >= sbi->max_io_bytes)) 732 return false; 733 if (last_blkaddr + 1 != cur_blkaddr) 734 return false; 735 return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL); 736 } 737 738 static bool io_type_is_mergeable(struct f2fs_bio_info *io, 739 struct f2fs_io_info *fio) 740 { 741 if (io->fio.op != fio->op) 742 return false; 743 return io->fio.op_flags == fio->op_flags; 744 } 745 746 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio, 747 struct f2fs_bio_info *io, 748 struct f2fs_io_info *fio, 749 block_t last_blkaddr, 750 block_t cur_blkaddr) 751 { 752 if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr)) 753 return false; 754 return io_type_is_mergeable(io, fio); 755 } 756 757 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio, 758 struct page *page, enum temp_type temp) 759 { 760 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 761 struct bio_entry *be; 762 763 be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL); 764 be->bio = bio; 765 bio_get(bio); 766 767 if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE) 768 f2fs_bug_on(sbi, 1); 769 770 f2fs_down_write(&io->bio_list_lock); 771 list_add_tail(&be->list, &io->bio_list); 772 f2fs_up_write(&io->bio_list_lock); 773 } 774 775 static void del_bio_entry(struct bio_entry *be) 776 { 777 list_del(&be->list); 778 kmem_cache_free(bio_entry_slab, be); 779 } 780 781 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio, 782 struct page *page) 783 { 784 struct f2fs_sb_info *sbi = fio->sbi; 785 enum temp_type temp; 786 bool found = false; 787 int ret = -EAGAIN; 788 789 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) { 790 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 791 struct list_head *head = &io->bio_list; 792 struct bio_entry *be; 793 794 f2fs_down_write(&io->bio_list_lock); 795 list_for_each_entry(be, head, list) { 796 if (be->bio != *bio) 797 continue; 798 799 found = true; 800 801 f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio, 802 *fio->last_block, 803 fio->new_blkaddr)); 804 if (f2fs_crypt_mergeable_bio(*bio, 805 fio->page->mapping->host, 806 page_folio(fio->page)->index, fio) && 807 bio_add_page(*bio, page, PAGE_SIZE, 0) == 808 PAGE_SIZE) { 809 ret = 0; 810 break; 811 } 812 813 /* page can't be merged into bio; submit the bio */ 814 del_bio_entry(be); 815 f2fs_submit_write_bio(sbi, *bio, DATA); 816 break; 817 } 818 f2fs_up_write(&io->bio_list_lock); 819 } 820 821 if (ret) { 822 bio_put(*bio); 823 *bio = NULL; 824 } 825 826 return ret; 827 } 828 829 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi, 830 struct bio **bio, struct page *page) 831 { 832 enum temp_type temp; 833 bool found = false; 834 struct bio *target = bio ? *bio : NULL; 835 836 f2fs_bug_on(sbi, !target && !page); 837 838 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) { 839 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 840 struct list_head *head = &io->bio_list; 841 struct bio_entry *be; 842 843 if (list_empty(head)) 844 continue; 845 846 f2fs_down_read(&io->bio_list_lock); 847 list_for_each_entry(be, head, list) { 848 if (target) 849 found = (target == be->bio); 850 else 851 found = __has_merged_page(be->bio, NULL, 852 page, 0); 853 if (found) 854 break; 855 } 856 f2fs_up_read(&io->bio_list_lock); 857 858 if (!found) 859 continue; 860 861 found = false; 862 863 f2fs_down_write(&io->bio_list_lock); 864 list_for_each_entry(be, head, list) { 865 if (target) 866 found = (target == be->bio); 867 else 868 found = __has_merged_page(be->bio, NULL, 869 page, 0); 870 if (found) { 871 target = be->bio; 872 del_bio_entry(be); 873 break; 874 } 875 } 876 f2fs_up_write(&io->bio_list_lock); 877 } 878 879 if (found) 880 f2fs_submit_write_bio(sbi, target, DATA); 881 if (bio && *bio) { 882 bio_put(*bio); 883 *bio = NULL; 884 } 885 } 886 887 int f2fs_merge_page_bio(struct f2fs_io_info *fio) 888 { 889 struct bio *bio = *fio->bio; 890 struct page *page = fio->encrypted_page ? 891 fio->encrypted_page : fio->page; 892 893 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, 894 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC)) 895 return -EFSCORRUPTED; 896 897 trace_f2fs_submit_page_bio(page, fio); 898 899 if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block, 900 fio->new_blkaddr)) 901 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL); 902 alloc_new: 903 if (!bio) { 904 bio = __bio_alloc(fio, BIO_MAX_VECS); 905 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host, 906 page_folio(fio->page)->index, fio, GFP_NOIO); 907 908 add_bio_entry(fio->sbi, bio, page, fio->temp); 909 } else { 910 if (add_ipu_page(fio, &bio, page)) 911 goto alloc_new; 912 } 913 914 if (fio->io_wbc) 915 wbc_account_cgroup_owner(fio->io_wbc, page_folio(fio->page), 916 PAGE_SIZE); 917 918 inc_page_count(fio->sbi, WB_DATA_TYPE(page, false)); 919 920 *fio->last_block = fio->new_blkaddr; 921 *fio->bio = bio; 922 923 return 0; 924 } 925 926 #ifdef CONFIG_BLK_DEV_ZONED 927 static bool is_end_zone_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr) 928 { 929 struct block_device *bdev = sbi->sb->s_bdev; 930 int devi = 0; 931 932 if (f2fs_is_multi_device(sbi)) { 933 devi = f2fs_target_device_index(sbi, blkaddr); 934 if (blkaddr < FDEV(devi).start_blk || 935 blkaddr > FDEV(devi).end_blk) { 936 f2fs_err(sbi, "Invalid block %x", blkaddr); 937 return false; 938 } 939 blkaddr -= FDEV(devi).start_blk; 940 bdev = FDEV(devi).bdev; 941 } 942 return bdev_is_zoned(bdev) && 943 f2fs_blkz_is_seq(sbi, devi, blkaddr) && 944 (blkaddr % sbi->blocks_per_blkz == sbi->blocks_per_blkz - 1); 945 } 946 #endif 947 948 void f2fs_submit_page_write(struct f2fs_io_info *fio) 949 { 950 struct f2fs_sb_info *sbi = fio->sbi; 951 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type); 952 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp; 953 struct page *bio_page; 954 enum count_type type; 955 956 f2fs_bug_on(sbi, is_read_io(fio->op)); 957 958 f2fs_down_write(&io->io_rwsem); 959 next: 960 #ifdef CONFIG_BLK_DEV_ZONED 961 if (f2fs_sb_has_blkzoned(sbi) && btype < META && io->zone_pending_bio) { 962 wait_for_completion_io(&io->zone_wait); 963 bio_put(io->zone_pending_bio); 964 io->zone_pending_bio = NULL; 965 io->bi_private = NULL; 966 } 967 #endif 968 969 if (fio->in_list) { 970 spin_lock(&io->io_lock); 971 if (list_empty(&io->io_list)) { 972 spin_unlock(&io->io_lock); 973 goto out; 974 } 975 fio = list_first_entry(&io->io_list, 976 struct f2fs_io_info, list); 977 list_del(&fio->list); 978 spin_unlock(&io->io_lock); 979 } 980 981 verify_fio_blkaddr(fio); 982 983 if (fio->encrypted_page) 984 bio_page = fio->encrypted_page; 985 else if (fio->compressed_page) 986 bio_page = fio->compressed_page; 987 else 988 bio_page = fio->page; 989 990 /* set submitted = true as a return value */ 991 fio->submitted = 1; 992 993 type = WB_DATA_TYPE(bio_page, fio->compressed_page); 994 inc_page_count(sbi, type); 995 996 if (io->bio && 997 (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio, 998 fio->new_blkaddr) || 999 !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host, 1000 page_folio(bio_page)->index, fio))) 1001 __submit_merged_bio(io); 1002 alloc_new: 1003 if (io->bio == NULL) { 1004 io->bio = __bio_alloc(fio, BIO_MAX_VECS); 1005 f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host, 1006 page_folio(bio_page)->index, fio, GFP_NOIO); 1007 io->fio = *fio; 1008 } 1009 1010 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) { 1011 __submit_merged_bio(io); 1012 goto alloc_new; 1013 } 1014 1015 if (fio->io_wbc) 1016 wbc_account_cgroup_owner(fio->io_wbc, page_folio(fio->page), 1017 PAGE_SIZE); 1018 1019 io->last_block_in_bio = fio->new_blkaddr; 1020 1021 trace_f2fs_submit_page_write(fio->page, fio); 1022 #ifdef CONFIG_BLK_DEV_ZONED 1023 if (f2fs_sb_has_blkzoned(sbi) && btype < META && 1024 is_end_zone_blkaddr(sbi, fio->new_blkaddr)) { 1025 bio_get(io->bio); 1026 reinit_completion(&io->zone_wait); 1027 io->bi_private = io->bio->bi_private; 1028 io->bio->bi_private = io; 1029 io->bio->bi_end_io = f2fs_zone_write_end_io; 1030 io->zone_pending_bio = io->bio; 1031 __submit_merged_bio(io); 1032 } 1033 #endif 1034 if (fio->in_list) 1035 goto next; 1036 out: 1037 if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || 1038 !f2fs_is_checkpoint_ready(sbi)) 1039 __submit_merged_bio(io); 1040 f2fs_up_write(&io->io_rwsem); 1041 } 1042 1043 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr, 1044 unsigned nr_pages, blk_opf_t op_flag, 1045 pgoff_t first_idx, bool for_write) 1046 { 1047 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1048 struct bio *bio; 1049 struct bio_post_read_ctx *ctx = NULL; 1050 unsigned int post_read_steps = 0; 1051 sector_t sector; 1052 struct block_device *bdev = f2fs_target_device(sbi, blkaddr, §or); 1053 1054 bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages), 1055 REQ_OP_READ | op_flag, 1056 for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset); 1057 if (!bio) 1058 return ERR_PTR(-ENOMEM); 1059 bio->bi_iter.bi_sector = sector; 1060 f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS); 1061 bio->bi_end_io = f2fs_read_end_io; 1062 1063 if (fscrypt_inode_uses_fs_layer_crypto(inode)) 1064 post_read_steps |= STEP_DECRYPT; 1065 1066 if (f2fs_need_verity(inode, first_idx)) 1067 post_read_steps |= STEP_VERITY; 1068 1069 /* 1070 * STEP_DECOMPRESS is handled specially, since a compressed file might 1071 * contain both compressed and uncompressed clusters. We'll allocate a 1072 * bio_post_read_ctx if the file is compressed, but the caller is 1073 * responsible for enabling STEP_DECOMPRESS if it's actually needed. 1074 */ 1075 1076 if (post_read_steps || f2fs_compressed_file(inode)) { 1077 /* Due to the mempool, this never fails. */ 1078 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS); 1079 ctx->bio = bio; 1080 ctx->sbi = sbi; 1081 ctx->enabled_steps = post_read_steps; 1082 ctx->fs_blkaddr = blkaddr; 1083 ctx->decompression_attempted = false; 1084 bio->bi_private = ctx; 1085 } 1086 iostat_alloc_and_bind_ctx(sbi, bio, ctx); 1087 1088 return bio; 1089 } 1090 1091 /* This can handle encryption stuffs */ 1092 static int f2fs_submit_page_read(struct inode *inode, struct folio *folio, 1093 block_t blkaddr, blk_opf_t op_flags, 1094 bool for_write) 1095 { 1096 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1097 struct bio *bio; 1098 1099 bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags, 1100 folio->index, for_write); 1101 if (IS_ERR(bio)) 1102 return PTR_ERR(bio); 1103 1104 /* wait for GCed page writeback via META_MAPPING */ 1105 f2fs_wait_on_block_writeback(inode, blkaddr); 1106 1107 if (!bio_add_folio(bio, folio, PAGE_SIZE, 0)) { 1108 iostat_update_and_unbind_ctx(bio); 1109 if (bio->bi_private) 1110 mempool_free(bio->bi_private, bio_post_read_ctx_pool); 1111 bio_put(bio); 1112 return -EFAULT; 1113 } 1114 inc_page_count(sbi, F2FS_RD_DATA); 1115 f2fs_update_iostat(sbi, NULL, FS_DATA_READ_IO, F2FS_BLKSIZE); 1116 f2fs_submit_read_bio(sbi, bio, DATA); 1117 return 0; 1118 } 1119 1120 static void __set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) 1121 { 1122 __le32 *addr = get_dnode_addr(dn->inode, dn->node_page); 1123 1124 dn->data_blkaddr = blkaddr; 1125 addr[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr); 1126 } 1127 1128 /* 1129 * Lock ordering for the change of data block address: 1130 * ->data_page 1131 * ->node_page 1132 * update block addresses in the node page 1133 */ 1134 void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) 1135 { 1136 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true); 1137 __set_data_blkaddr(dn, blkaddr); 1138 if (set_page_dirty(dn->node_page)) 1139 dn->node_changed = true; 1140 } 1141 1142 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) 1143 { 1144 f2fs_set_data_blkaddr(dn, blkaddr); 1145 f2fs_update_read_extent_cache(dn); 1146 } 1147 1148 /* dn->ofs_in_node will be returned with up-to-date last block pointer */ 1149 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count) 1150 { 1151 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1152 int err; 1153 1154 if (!count) 1155 return 0; 1156 1157 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1158 return -EPERM; 1159 err = inc_valid_block_count(sbi, dn->inode, &count, true); 1160 if (unlikely(err)) 1161 return err; 1162 1163 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid, 1164 dn->ofs_in_node, count); 1165 1166 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true); 1167 1168 for (; count > 0; dn->ofs_in_node++) { 1169 block_t blkaddr = f2fs_data_blkaddr(dn); 1170 1171 if (blkaddr == NULL_ADDR) { 1172 __set_data_blkaddr(dn, NEW_ADDR); 1173 count--; 1174 } 1175 } 1176 1177 if (set_page_dirty(dn->node_page)) 1178 dn->node_changed = true; 1179 return 0; 1180 } 1181 1182 /* Should keep dn->ofs_in_node unchanged */ 1183 int f2fs_reserve_new_block(struct dnode_of_data *dn) 1184 { 1185 unsigned int ofs_in_node = dn->ofs_in_node; 1186 int ret; 1187 1188 ret = f2fs_reserve_new_blocks(dn, 1); 1189 dn->ofs_in_node = ofs_in_node; 1190 return ret; 1191 } 1192 1193 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index) 1194 { 1195 bool need_put = dn->inode_page ? false : true; 1196 int err; 1197 1198 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE); 1199 if (err) 1200 return err; 1201 1202 if (dn->data_blkaddr == NULL_ADDR) 1203 err = f2fs_reserve_new_block(dn); 1204 if (err || need_put) 1205 f2fs_put_dnode(dn); 1206 return err; 1207 } 1208 1209 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index, 1210 blk_opf_t op_flags, bool for_write, 1211 pgoff_t *next_pgofs) 1212 { 1213 struct address_space *mapping = inode->i_mapping; 1214 struct dnode_of_data dn; 1215 struct page *page; 1216 int err; 1217 1218 page = f2fs_grab_cache_page(mapping, index, for_write); 1219 if (!page) 1220 return ERR_PTR(-ENOMEM); 1221 1222 if (f2fs_lookup_read_extent_cache_block(inode, index, 1223 &dn.data_blkaddr)) { 1224 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr, 1225 DATA_GENERIC_ENHANCE_READ)) { 1226 err = -EFSCORRUPTED; 1227 goto put_err; 1228 } 1229 goto got_it; 1230 } 1231 1232 set_new_dnode(&dn, inode, NULL, NULL, 0); 1233 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 1234 if (err) { 1235 if (err == -ENOENT && next_pgofs) 1236 *next_pgofs = f2fs_get_next_page_offset(&dn, index); 1237 goto put_err; 1238 } 1239 f2fs_put_dnode(&dn); 1240 1241 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { 1242 err = -ENOENT; 1243 if (next_pgofs) 1244 *next_pgofs = index + 1; 1245 goto put_err; 1246 } 1247 if (dn.data_blkaddr != NEW_ADDR && 1248 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode), 1249 dn.data_blkaddr, 1250 DATA_GENERIC_ENHANCE)) { 1251 err = -EFSCORRUPTED; 1252 goto put_err; 1253 } 1254 got_it: 1255 if (PageUptodate(page)) { 1256 unlock_page(page); 1257 return page; 1258 } 1259 1260 /* 1261 * A new dentry page is allocated but not able to be written, since its 1262 * new inode page couldn't be allocated due to -ENOSPC. 1263 * In such the case, its blkaddr can be remained as NEW_ADDR. 1264 * see, f2fs_add_link -> f2fs_get_new_data_page -> 1265 * f2fs_init_inode_metadata. 1266 */ 1267 if (dn.data_blkaddr == NEW_ADDR) { 1268 zero_user_segment(page, 0, PAGE_SIZE); 1269 if (!PageUptodate(page)) 1270 SetPageUptodate(page); 1271 unlock_page(page); 1272 return page; 1273 } 1274 1275 err = f2fs_submit_page_read(inode, page_folio(page), dn.data_blkaddr, 1276 op_flags, for_write); 1277 if (err) 1278 goto put_err; 1279 return page; 1280 1281 put_err: 1282 f2fs_put_page(page, 1); 1283 return ERR_PTR(err); 1284 } 1285 1286 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index, 1287 pgoff_t *next_pgofs) 1288 { 1289 struct address_space *mapping = inode->i_mapping; 1290 struct page *page; 1291 1292 page = find_get_page(mapping, index); 1293 if (page && PageUptodate(page)) 1294 return page; 1295 f2fs_put_page(page, 0); 1296 1297 page = f2fs_get_read_data_page(inode, index, 0, false, next_pgofs); 1298 if (IS_ERR(page)) 1299 return page; 1300 1301 if (PageUptodate(page)) 1302 return page; 1303 1304 wait_on_page_locked(page); 1305 if (unlikely(!PageUptodate(page))) { 1306 f2fs_put_page(page, 0); 1307 return ERR_PTR(-EIO); 1308 } 1309 return page; 1310 } 1311 1312 /* 1313 * If it tries to access a hole, return an error. 1314 * Because, the callers, functions in dir.c and GC, should be able to know 1315 * whether this page exists or not. 1316 */ 1317 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index, 1318 bool for_write) 1319 { 1320 struct address_space *mapping = inode->i_mapping; 1321 struct page *page; 1322 1323 page = f2fs_get_read_data_page(inode, index, 0, for_write, NULL); 1324 if (IS_ERR(page)) 1325 return page; 1326 1327 /* wait for read completion */ 1328 lock_page(page); 1329 if (unlikely(page->mapping != mapping || !PageUptodate(page))) { 1330 f2fs_put_page(page, 1); 1331 return ERR_PTR(-EIO); 1332 } 1333 return page; 1334 } 1335 1336 /* 1337 * Caller ensures that this data page is never allocated. 1338 * A new zero-filled data page is allocated in the page cache. 1339 * 1340 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and 1341 * f2fs_unlock_op(). 1342 * Note that, ipage is set only by make_empty_dir, and if any error occur, 1343 * ipage should be released by this function. 1344 */ 1345 struct page *f2fs_get_new_data_page(struct inode *inode, 1346 struct page *ipage, pgoff_t index, bool new_i_size) 1347 { 1348 struct address_space *mapping = inode->i_mapping; 1349 struct page *page; 1350 struct dnode_of_data dn; 1351 int err; 1352 1353 page = f2fs_grab_cache_page(mapping, index, true); 1354 if (!page) { 1355 /* 1356 * before exiting, we should make sure ipage will be released 1357 * if any error occur. 1358 */ 1359 f2fs_put_page(ipage, 1); 1360 return ERR_PTR(-ENOMEM); 1361 } 1362 1363 set_new_dnode(&dn, inode, ipage, NULL, 0); 1364 err = f2fs_reserve_block(&dn, index); 1365 if (err) { 1366 f2fs_put_page(page, 1); 1367 return ERR_PTR(err); 1368 } 1369 if (!ipage) 1370 f2fs_put_dnode(&dn); 1371 1372 if (PageUptodate(page)) 1373 goto got_it; 1374 1375 if (dn.data_blkaddr == NEW_ADDR) { 1376 zero_user_segment(page, 0, PAGE_SIZE); 1377 if (!PageUptodate(page)) 1378 SetPageUptodate(page); 1379 } else { 1380 f2fs_put_page(page, 1); 1381 1382 /* if ipage exists, blkaddr should be NEW_ADDR */ 1383 f2fs_bug_on(F2FS_I_SB(inode), ipage); 1384 page = f2fs_get_lock_data_page(inode, index, true); 1385 if (IS_ERR(page)) 1386 return page; 1387 } 1388 got_it: 1389 if (new_i_size && i_size_read(inode) < 1390 ((loff_t)(index + 1) << PAGE_SHIFT)) 1391 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT)); 1392 return page; 1393 } 1394 1395 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type) 1396 { 1397 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1398 struct f2fs_summary sum; 1399 struct node_info ni; 1400 block_t old_blkaddr; 1401 blkcnt_t count = 1; 1402 int err; 1403 1404 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1405 return -EPERM; 1406 1407 err = f2fs_get_node_info(sbi, dn->nid, &ni, false); 1408 if (err) 1409 return err; 1410 1411 dn->data_blkaddr = f2fs_data_blkaddr(dn); 1412 if (dn->data_blkaddr == NULL_ADDR) { 1413 err = inc_valid_block_count(sbi, dn->inode, &count, true); 1414 if (unlikely(err)) 1415 return err; 1416 } 1417 1418 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 1419 old_blkaddr = dn->data_blkaddr; 1420 err = f2fs_allocate_data_block(sbi, NULL, old_blkaddr, 1421 &dn->data_blkaddr, &sum, seg_type, NULL); 1422 if (err) 1423 return err; 1424 1425 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 1426 f2fs_invalidate_internal_cache(sbi, old_blkaddr); 1427 1428 f2fs_update_data_blkaddr(dn, dn->data_blkaddr); 1429 return 0; 1430 } 1431 1432 static void f2fs_map_lock(struct f2fs_sb_info *sbi, int flag) 1433 { 1434 if (flag == F2FS_GET_BLOCK_PRE_AIO) 1435 f2fs_down_read(&sbi->node_change); 1436 else 1437 f2fs_lock_op(sbi); 1438 } 1439 1440 static void f2fs_map_unlock(struct f2fs_sb_info *sbi, int flag) 1441 { 1442 if (flag == F2FS_GET_BLOCK_PRE_AIO) 1443 f2fs_up_read(&sbi->node_change); 1444 else 1445 f2fs_unlock_op(sbi); 1446 } 1447 1448 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index) 1449 { 1450 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1451 int err = 0; 1452 1453 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO); 1454 if (!f2fs_lookup_read_extent_cache_block(dn->inode, index, 1455 &dn->data_blkaddr)) 1456 err = f2fs_reserve_block(dn, index); 1457 f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO); 1458 1459 return err; 1460 } 1461 1462 static int f2fs_map_no_dnode(struct inode *inode, 1463 struct f2fs_map_blocks *map, struct dnode_of_data *dn, 1464 pgoff_t pgoff) 1465 { 1466 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1467 1468 /* 1469 * There is one exceptional case that read_node_page() may return 1470 * -ENOENT due to filesystem has been shutdown or cp_error, return 1471 * -EIO in that case. 1472 */ 1473 if (map->m_may_create && 1474 (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || f2fs_cp_error(sbi))) 1475 return -EIO; 1476 1477 if (map->m_next_pgofs) 1478 *map->m_next_pgofs = f2fs_get_next_page_offset(dn, pgoff); 1479 if (map->m_next_extent) 1480 *map->m_next_extent = f2fs_get_next_page_offset(dn, pgoff); 1481 return 0; 1482 } 1483 1484 static bool f2fs_map_blocks_cached(struct inode *inode, 1485 struct f2fs_map_blocks *map, int flag) 1486 { 1487 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1488 unsigned int maxblocks = map->m_len; 1489 pgoff_t pgoff = (pgoff_t)map->m_lblk; 1490 struct extent_info ei = {}; 1491 1492 if (!f2fs_lookup_read_extent_cache(inode, pgoff, &ei)) 1493 return false; 1494 1495 map->m_pblk = ei.blk + pgoff - ei.fofs; 1496 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgoff); 1497 map->m_flags = F2FS_MAP_MAPPED; 1498 if (map->m_next_extent) 1499 *map->m_next_extent = pgoff + map->m_len; 1500 1501 /* for hardware encryption, but to avoid potential issue in future */ 1502 if (flag == F2FS_GET_BLOCK_DIO) 1503 f2fs_wait_on_block_writeback_range(inode, 1504 map->m_pblk, map->m_len); 1505 1506 if (f2fs_allow_multi_device_dio(sbi, flag)) { 1507 int bidx = f2fs_target_device_index(sbi, map->m_pblk); 1508 struct f2fs_dev_info *dev = &sbi->devs[bidx]; 1509 1510 map->m_bdev = dev->bdev; 1511 map->m_pblk -= dev->start_blk; 1512 map->m_len = min(map->m_len, dev->end_blk + 1 - map->m_pblk); 1513 } else { 1514 map->m_bdev = inode->i_sb->s_bdev; 1515 } 1516 return true; 1517 } 1518 1519 static bool map_is_mergeable(struct f2fs_sb_info *sbi, 1520 struct f2fs_map_blocks *map, 1521 block_t blkaddr, int flag, int bidx, 1522 int ofs) 1523 { 1524 if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev) 1525 return false; 1526 if (map->m_pblk != NEW_ADDR && blkaddr == (map->m_pblk + ofs)) 1527 return true; 1528 if (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) 1529 return true; 1530 if (flag == F2FS_GET_BLOCK_PRE_DIO) 1531 return true; 1532 if (flag == F2FS_GET_BLOCK_DIO && 1533 map->m_pblk == NULL_ADDR && blkaddr == NULL_ADDR) 1534 return true; 1535 return false; 1536 } 1537 1538 /* 1539 * f2fs_map_blocks() tries to find or build mapping relationship which 1540 * maps continuous logical blocks to physical blocks, and return such 1541 * info via f2fs_map_blocks structure. 1542 */ 1543 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag) 1544 { 1545 unsigned int maxblocks = map->m_len; 1546 struct dnode_of_data dn; 1547 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1548 int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE; 1549 pgoff_t pgofs, end_offset, end; 1550 int err = 0, ofs = 1; 1551 unsigned int ofs_in_node, last_ofs_in_node; 1552 blkcnt_t prealloc; 1553 block_t blkaddr; 1554 unsigned int start_pgofs; 1555 int bidx = 0; 1556 bool is_hole; 1557 1558 if (!maxblocks) 1559 return 0; 1560 1561 if (!map->m_may_create && f2fs_map_blocks_cached(inode, map, flag)) 1562 goto out; 1563 1564 map->m_bdev = inode->i_sb->s_bdev; 1565 map->m_multidev_dio = 1566 f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag); 1567 1568 map->m_len = 0; 1569 map->m_flags = 0; 1570 1571 /* it only supports block size == page size */ 1572 pgofs = (pgoff_t)map->m_lblk; 1573 end = pgofs + maxblocks; 1574 1575 next_dnode: 1576 if (map->m_may_create) 1577 f2fs_map_lock(sbi, flag); 1578 1579 /* When reading holes, we need its node page */ 1580 set_new_dnode(&dn, inode, NULL, NULL, 0); 1581 err = f2fs_get_dnode_of_data(&dn, pgofs, mode); 1582 if (err) { 1583 if (flag == F2FS_GET_BLOCK_BMAP) 1584 map->m_pblk = 0; 1585 if (err == -ENOENT) 1586 err = f2fs_map_no_dnode(inode, map, &dn, pgofs); 1587 goto unlock_out; 1588 } 1589 1590 start_pgofs = pgofs; 1591 prealloc = 0; 1592 last_ofs_in_node = ofs_in_node = dn.ofs_in_node; 1593 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1594 1595 next_block: 1596 blkaddr = f2fs_data_blkaddr(&dn); 1597 is_hole = !__is_valid_data_blkaddr(blkaddr); 1598 if (!is_hole && 1599 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) { 1600 err = -EFSCORRUPTED; 1601 goto sync_out; 1602 } 1603 1604 /* use out-place-update for direct IO under LFS mode */ 1605 if (map->m_may_create && (is_hole || 1606 (flag == F2FS_GET_BLOCK_DIO && f2fs_lfs_mode(sbi) && 1607 !f2fs_is_pinned_file(inode)))) { 1608 if (unlikely(f2fs_cp_error(sbi))) { 1609 err = -EIO; 1610 goto sync_out; 1611 } 1612 1613 switch (flag) { 1614 case F2FS_GET_BLOCK_PRE_AIO: 1615 if (blkaddr == NULL_ADDR) { 1616 prealloc++; 1617 last_ofs_in_node = dn.ofs_in_node; 1618 } 1619 break; 1620 case F2FS_GET_BLOCK_PRE_DIO: 1621 case F2FS_GET_BLOCK_DIO: 1622 err = __allocate_data_block(&dn, map->m_seg_type); 1623 if (err) 1624 goto sync_out; 1625 if (flag == F2FS_GET_BLOCK_PRE_DIO) 1626 file_need_truncate(inode); 1627 set_inode_flag(inode, FI_APPEND_WRITE); 1628 break; 1629 default: 1630 WARN_ON_ONCE(1); 1631 err = -EIO; 1632 goto sync_out; 1633 } 1634 1635 blkaddr = dn.data_blkaddr; 1636 if (is_hole) 1637 map->m_flags |= F2FS_MAP_NEW; 1638 } else if (is_hole) { 1639 if (f2fs_compressed_file(inode) && 1640 f2fs_sanity_check_cluster(&dn)) { 1641 err = -EFSCORRUPTED; 1642 f2fs_handle_error(sbi, 1643 ERROR_CORRUPTED_CLUSTER); 1644 goto sync_out; 1645 } 1646 1647 switch (flag) { 1648 case F2FS_GET_BLOCK_PRECACHE: 1649 goto sync_out; 1650 case F2FS_GET_BLOCK_BMAP: 1651 map->m_pblk = 0; 1652 goto sync_out; 1653 case F2FS_GET_BLOCK_FIEMAP: 1654 if (blkaddr == NULL_ADDR) { 1655 if (map->m_next_pgofs) 1656 *map->m_next_pgofs = pgofs + 1; 1657 goto sync_out; 1658 } 1659 break; 1660 case F2FS_GET_BLOCK_DIO: 1661 if (map->m_next_pgofs) 1662 *map->m_next_pgofs = pgofs + 1; 1663 break; 1664 default: 1665 /* for defragment case */ 1666 if (map->m_next_pgofs) 1667 *map->m_next_pgofs = pgofs + 1; 1668 goto sync_out; 1669 } 1670 } 1671 1672 if (flag == F2FS_GET_BLOCK_PRE_AIO) 1673 goto skip; 1674 1675 if (map->m_multidev_dio) 1676 bidx = f2fs_target_device_index(sbi, blkaddr); 1677 1678 if (map->m_len == 0) { 1679 /* reserved delalloc block should be mapped for fiemap. */ 1680 if (blkaddr == NEW_ADDR) 1681 map->m_flags |= F2FS_MAP_DELALLOC; 1682 if (flag != F2FS_GET_BLOCK_DIO || !is_hole) 1683 map->m_flags |= F2FS_MAP_MAPPED; 1684 1685 map->m_pblk = blkaddr; 1686 map->m_len = 1; 1687 1688 if (map->m_multidev_dio) 1689 map->m_bdev = FDEV(bidx).bdev; 1690 } else if (map_is_mergeable(sbi, map, blkaddr, flag, bidx, ofs)) { 1691 ofs++; 1692 map->m_len++; 1693 } else { 1694 goto sync_out; 1695 } 1696 1697 skip: 1698 dn.ofs_in_node++; 1699 pgofs++; 1700 1701 /* preallocate blocks in batch for one dnode page */ 1702 if (flag == F2FS_GET_BLOCK_PRE_AIO && 1703 (pgofs == end || dn.ofs_in_node == end_offset)) { 1704 1705 dn.ofs_in_node = ofs_in_node; 1706 err = f2fs_reserve_new_blocks(&dn, prealloc); 1707 if (err) 1708 goto sync_out; 1709 1710 map->m_len += dn.ofs_in_node - ofs_in_node; 1711 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) { 1712 err = -ENOSPC; 1713 goto sync_out; 1714 } 1715 dn.ofs_in_node = end_offset; 1716 } 1717 1718 if (flag == F2FS_GET_BLOCK_DIO && f2fs_lfs_mode(sbi) && 1719 map->m_may_create) { 1720 /* the next block to be allocated may not be contiguous. */ 1721 if (GET_SEGOFF_FROM_SEG0(sbi, blkaddr) % BLKS_PER_SEC(sbi) == 1722 CAP_BLKS_PER_SEC(sbi) - 1) 1723 goto sync_out; 1724 } 1725 1726 if (pgofs >= end) 1727 goto sync_out; 1728 else if (dn.ofs_in_node < end_offset) 1729 goto next_block; 1730 1731 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1732 if (map->m_flags & F2FS_MAP_MAPPED) { 1733 unsigned int ofs = start_pgofs - map->m_lblk; 1734 1735 f2fs_update_read_extent_cache_range(&dn, 1736 start_pgofs, map->m_pblk + ofs, 1737 map->m_len - ofs); 1738 } 1739 } 1740 1741 f2fs_put_dnode(&dn); 1742 1743 if (map->m_may_create) { 1744 f2fs_map_unlock(sbi, flag); 1745 f2fs_balance_fs(sbi, dn.node_changed); 1746 } 1747 goto next_dnode; 1748 1749 sync_out: 1750 1751 if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) { 1752 /* 1753 * for hardware encryption, but to avoid potential issue 1754 * in future 1755 */ 1756 f2fs_wait_on_block_writeback_range(inode, 1757 map->m_pblk, map->m_len); 1758 1759 if (map->m_multidev_dio) { 1760 block_t blk_addr = map->m_pblk; 1761 1762 bidx = f2fs_target_device_index(sbi, map->m_pblk); 1763 1764 map->m_bdev = FDEV(bidx).bdev; 1765 map->m_pblk -= FDEV(bidx).start_blk; 1766 1767 if (map->m_may_create) 1768 f2fs_update_device_state(sbi, inode->i_ino, 1769 blk_addr, map->m_len); 1770 1771 f2fs_bug_on(sbi, blk_addr + map->m_len > 1772 FDEV(bidx).end_blk + 1); 1773 } 1774 } 1775 1776 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1777 if (map->m_flags & F2FS_MAP_MAPPED) { 1778 unsigned int ofs = start_pgofs - map->m_lblk; 1779 1780 f2fs_update_read_extent_cache_range(&dn, 1781 start_pgofs, map->m_pblk + ofs, 1782 map->m_len - ofs); 1783 } 1784 if (map->m_next_extent) 1785 *map->m_next_extent = pgofs + 1; 1786 } 1787 f2fs_put_dnode(&dn); 1788 unlock_out: 1789 if (map->m_may_create) { 1790 f2fs_map_unlock(sbi, flag); 1791 f2fs_balance_fs(sbi, dn.node_changed); 1792 } 1793 out: 1794 trace_f2fs_map_blocks(inode, map, flag, err); 1795 return err; 1796 } 1797 1798 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len) 1799 { 1800 struct f2fs_map_blocks map; 1801 block_t last_lblk; 1802 int err; 1803 1804 if (pos + len > i_size_read(inode)) 1805 return false; 1806 1807 map.m_lblk = F2FS_BYTES_TO_BLK(pos); 1808 map.m_next_pgofs = NULL; 1809 map.m_next_extent = NULL; 1810 map.m_seg_type = NO_CHECK_TYPE; 1811 map.m_may_create = false; 1812 last_lblk = F2FS_BLK_ALIGN(pos + len); 1813 1814 while (map.m_lblk < last_lblk) { 1815 map.m_len = last_lblk - map.m_lblk; 1816 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT); 1817 if (err || map.m_len == 0) 1818 return false; 1819 map.m_lblk += map.m_len; 1820 } 1821 return true; 1822 } 1823 1824 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes) 1825 { 1826 return (bytes >> inode->i_blkbits); 1827 } 1828 1829 static inline u64 blks_to_bytes(struct inode *inode, u64 blks) 1830 { 1831 return (blks << inode->i_blkbits); 1832 } 1833 1834 static int f2fs_xattr_fiemap(struct inode *inode, 1835 struct fiemap_extent_info *fieinfo) 1836 { 1837 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1838 struct page *page; 1839 struct node_info ni; 1840 __u64 phys = 0, len; 1841 __u32 flags; 1842 nid_t xnid = F2FS_I(inode)->i_xattr_nid; 1843 int err = 0; 1844 1845 if (f2fs_has_inline_xattr(inode)) { 1846 int offset; 1847 1848 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), 1849 inode->i_ino, false); 1850 if (!page) 1851 return -ENOMEM; 1852 1853 err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false); 1854 if (err) { 1855 f2fs_put_page(page, 1); 1856 return err; 1857 } 1858 1859 phys = blks_to_bytes(inode, ni.blk_addr); 1860 offset = offsetof(struct f2fs_inode, i_addr) + 1861 sizeof(__le32) * (DEF_ADDRS_PER_INODE - 1862 get_inline_xattr_addrs(inode)); 1863 1864 phys += offset; 1865 len = inline_xattr_size(inode); 1866 1867 f2fs_put_page(page, 1); 1868 1869 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED; 1870 1871 if (!xnid) 1872 flags |= FIEMAP_EXTENT_LAST; 1873 1874 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1875 trace_f2fs_fiemap(inode, 0, phys, len, flags, err); 1876 if (err) 1877 return err; 1878 } 1879 1880 if (xnid) { 1881 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false); 1882 if (!page) 1883 return -ENOMEM; 1884 1885 err = f2fs_get_node_info(sbi, xnid, &ni, false); 1886 if (err) { 1887 f2fs_put_page(page, 1); 1888 return err; 1889 } 1890 1891 phys = blks_to_bytes(inode, ni.blk_addr); 1892 len = inode->i_sb->s_blocksize; 1893 1894 f2fs_put_page(page, 1); 1895 1896 flags = FIEMAP_EXTENT_LAST; 1897 } 1898 1899 if (phys) { 1900 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1901 trace_f2fs_fiemap(inode, 0, phys, len, flags, err); 1902 } 1903 1904 return (err < 0 ? err : 0); 1905 } 1906 1907 static loff_t max_inode_blocks(struct inode *inode) 1908 { 1909 loff_t result = ADDRS_PER_INODE(inode); 1910 loff_t leaf_count = ADDRS_PER_BLOCK(inode); 1911 1912 /* two direct node blocks */ 1913 result += (leaf_count * 2); 1914 1915 /* two indirect node blocks */ 1916 leaf_count *= NIDS_PER_BLOCK; 1917 result += (leaf_count * 2); 1918 1919 /* one double indirect node block */ 1920 leaf_count *= NIDS_PER_BLOCK; 1921 result += leaf_count; 1922 1923 return result; 1924 } 1925 1926 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 1927 u64 start, u64 len) 1928 { 1929 struct f2fs_map_blocks map; 1930 sector_t start_blk, last_blk; 1931 pgoff_t next_pgofs; 1932 u64 logical = 0, phys = 0, size = 0; 1933 u32 flags = 0; 1934 int ret = 0; 1935 bool compr_cluster = false, compr_appended; 1936 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size; 1937 unsigned int count_in_cluster = 0; 1938 loff_t maxbytes; 1939 1940 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) { 1941 ret = f2fs_precache_extents(inode); 1942 if (ret) 1943 return ret; 1944 } 1945 1946 ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR); 1947 if (ret) 1948 return ret; 1949 1950 inode_lock_shared(inode); 1951 1952 maxbytes = F2FS_BLK_TO_BYTES(max_file_blocks(inode)); 1953 if (start > maxbytes) { 1954 ret = -EFBIG; 1955 goto out; 1956 } 1957 1958 if (len > maxbytes || (maxbytes - len) < start) 1959 len = maxbytes - start; 1960 1961 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 1962 ret = f2fs_xattr_fiemap(inode, fieinfo); 1963 goto out; 1964 } 1965 1966 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) { 1967 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len); 1968 if (ret != -EAGAIN) 1969 goto out; 1970 } 1971 1972 if (bytes_to_blks(inode, len) == 0) 1973 len = blks_to_bytes(inode, 1); 1974 1975 start_blk = bytes_to_blks(inode, start); 1976 last_blk = bytes_to_blks(inode, start + len - 1); 1977 1978 next: 1979 memset(&map, 0, sizeof(map)); 1980 map.m_lblk = start_blk; 1981 map.m_len = bytes_to_blks(inode, len); 1982 map.m_next_pgofs = &next_pgofs; 1983 map.m_seg_type = NO_CHECK_TYPE; 1984 1985 if (compr_cluster) { 1986 map.m_lblk += 1; 1987 map.m_len = cluster_size - count_in_cluster; 1988 } 1989 1990 ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP); 1991 if (ret) 1992 goto out; 1993 1994 /* HOLE */ 1995 if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) { 1996 start_blk = next_pgofs; 1997 1998 if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode, 1999 max_inode_blocks(inode))) 2000 goto prep_next; 2001 2002 flags |= FIEMAP_EXTENT_LAST; 2003 } 2004 2005 compr_appended = false; 2006 /* In a case of compressed cluster, append this to the last extent */ 2007 if (compr_cluster && ((map.m_flags & F2FS_MAP_DELALLOC) || 2008 !(map.m_flags & F2FS_MAP_FLAGS))) { 2009 compr_appended = true; 2010 goto skip_fill; 2011 } 2012 2013 if (size) { 2014 flags |= FIEMAP_EXTENT_MERGED; 2015 if (IS_ENCRYPTED(inode)) 2016 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED; 2017 2018 ret = fiemap_fill_next_extent(fieinfo, logical, 2019 phys, size, flags); 2020 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret); 2021 if (ret) 2022 goto out; 2023 size = 0; 2024 } 2025 2026 if (start_blk > last_blk) 2027 goto out; 2028 2029 skip_fill: 2030 if (map.m_pblk == COMPRESS_ADDR) { 2031 compr_cluster = true; 2032 count_in_cluster = 1; 2033 } else if (compr_appended) { 2034 unsigned int appended_blks = cluster_size - 2035 count_in_cluster + 1; 2036 size += blks_to_bytes(inode, appended_blks); 2037 start_blk += appended_blks; 2038 compr_cluster = false; 2039 } else { 2040 logical = blks_to_bytes(inode, start_blk); 2041 phys = __is_valid_data_blkaddr(map.m_pblk) ? 2042 blks_to_bytes(inode, map.m_pblk) : 0; 2043 size = blks_to_bytes(inode, map.m_len); 2044 flags = 0; 2045 2046 if (compr_cluster) { 2047 flags = FIEMAP_EXTENT_ENCODED; 2048 count_in_cluster += map.m_len; 2049 if (count_in_cluster == cluster_size) { 2050 compr_cluster = false; 2051 size += blks_to_bytes(inode, 1); 2052 } 2053 } else if (map.m_flags & F2FS_MAP_DELALLOC) { 2054 flags = FIEMAP_EXTENT_UNWRITTEN; 2055 } 2056 2057 start_blk += bytes_to_blks(inode, size); 2058 } 2059 2060 prep_next: 2061 cond_resched(); 2062 if (fatal_signal_pending(current)) 2063 ret = -EINTR; 2064 else 2065 goto next; 2066 out: 2067 if (ret == 1) 2068 ret = 0; 2069 2070 inode_unlock_shared(inode); 2071 return ret; 2072 } 2073 2074 static inline loff_t f2fs_readpage_limit(struct inode *inode) 2075 { 2076 if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode)) 2077 return F2FS_BLK_TO_BYTES(max_file_blocks(inode)); 2078 2079 return i_size_read(inode); 2080 } 2081 2082 static inline blk_opf_t f2fs_ra_op_flags(struct readahead_control *rac) 2083 { 2084 return rac ? REQ_RAHEAD : 0; 2085 } 2086 2087 static int f2fs_read_single_page(struct inode *inode, struct folio *folio, 2088 unsigned nr_pages, 2089 struct f2fs_map_blocks *map, 2090 struct bio **bio_ret, 2091 sector_t *last_block_in_bio, 2092 struct readahead_control *rac) 2093 { 2094 struct bio *bio = *bio_ret; 2095 const unsigned blocksize = blks_to_bytes(inode, 1); 2096 sector_t block_in_file; 2097 sector_t last_block; 2098 sector_t last_block_in_file; 2099 sector_t block_nr; 2100 pgoff_t index = folio_index(folio); 2101 int ret = 0; 2102 2103 block_in_file = (sector_t)index; 2104 last_block = block_in_file + nr_pages; 2105 last_block_in_file = bytes_to_blks(inode, 2106 f2fs_readpage_limit(inode) + blocksize - 1); 2107 if (last_block > last_block_in_file) 2108 last_block = last_block_in_file; 2109 2110 /* just zeroing out page which is beyond EOF */ 2111 if (block_in_file >= last_block) 2112 goto zero_out; 2113 /* 2114 * Map blocks using the previous result first. 2115 */ 2116 if ((map->m_flags & F2FS_MAP_MAPPED) && 2117 block_in_file > map->m_lblk && 2118 block_in_file < (map->m_lblk + map->m_len)) 2119 goto got_it; 2120 2121 /* 2122 * Then do more f2fs_map_blocks() calls until we are 2123 * done with this page. 2124 */ 2125 map->m_lblk = block_in_file; 2126 map->m_len = last_block - block_in_file; 2127 2128 ret = f2fs_map_blocks(inode, map, F2FS_GET_BLOCK_DEFAULT); 2129 if (ret) 2130 goto out; 2131 got_it: 2132 if ((map->m_flags & F2FS_MAP_MAPPED)) { 2133 block_nr = map->m_pblk + block_in_file - map->m_lblk; 2134 folio_set_mappedtodisk(folio); 2135 2136 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr, 2137 DATA_GENERIC_ENHANCE_READ)) { 2138 ret = -EFSCORRUPTED; 2139 goto out; 2140 } 2141 } else { 2142 zero_out: 2143 folio_zero_segment(folio, 0, folio_size(folio)); 2144 if (f2fs_need_verity(inode, index) && 2145 !fsverity_verify_folio(folio)) { 2146 ret = -EIO; 2147 goto out; 2148 } 2149 if (!folio_test_uptodate(folio)) 2150 folio_mark_uptodate(folio); 2151 folio_unlock(folio); 2152 goto out; 2153 } 2154 2155 /* 2156 * This page will go to BIO. Do we need to send this 2157 * BIO off first? 2158 */ 2159 if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio, 2160 *last_block_in_bio, block_nr) || 2161 !f2fs_crypt_mergeable_bio(bio, inode, index, NULL))) { 2162 submit_and_realloc: 2163 f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA); 2164 bio = NULL; 2165 } 2166 if (bio == NULL) { 2167 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages, 2168 f2fs_ra_op_flags(rac), index, 2169 false); 2170 if (IS_ERR(bio)) { 2171 ret = PTR_ERR(bio); 2172 bio = NULL; 2173 goto out; 2174 } 2175 } 2176 2177 /* 2178 * If the page is under writeback, we need to wait for 2179 * its completion to see the correct decrypted data. 2180 */ 2181 f2fs_wait_on_block_writeback(inode, block_nr); 2182 2183 if (!bio_add_folio(bio, folio, blocksize, 0)) 2184 goto submit_and_realloc; 2185 2186 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA); 2187 f2fs_update_iostat(F2FS_I_SB(inode), NULL, FS_DATA_READ_IO, 2188 F2FS_BLKSIZE); 2189 *last_block_in_bio = block_nr; 2190 out: 2191 *bio_ret = bio; 2192 return ret; 2193 } 2194 2195 #ifdef CONFIG_F2FS_FS_COMPRESSION 2196 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret, 2197 unsigned nr_pages, sector_t *last_block_in_bio, 2198 struct readahead_control *rac, bool for_write) 2199 { 2200 struct dnode_of_data dn; 2201 struct inode *inode = cc->inode; 2202 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2203 struct bio *bio = *bio_ret; 2204 unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size; 2205 sector_t last_block_in_file; 2206 const unsigned blocksize = blks_to_bytes(inode, 1); 2207 struct decompress_io_ctx *dic = NULL; 2208 struct extent_info ei = {}; 2209 bool from_dnode = true; 2210 int i; 2211 int ret = 0; 2212 2213 f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc)); 2214 2215 last_block_in_file = bytes_to_blks(inode, 2216 f2fs_readpage_limit(inode) + blocksize - 1); 2217 2218 /* get rid of pages beyond EOF */ 2219 for (i = 0; i < cc->cluster_size; i++) { 2220 struct page *page = cc->rpages[i]; 2221 struct folio *folio; 2222 2223 if (!page) 2224 continue; 2225 2226 folio = page_folio(page); 2227 if ((sector_t)folio->index >= last_block_in_file) { 2228 folio_zero_segment(folio, 0, folio_size(folio)); 2229 if (!folio_test_uptodate(folio)) 2230 folio_mark_uptodate(folio); 2231 } else if (!folio_test_uptodate(folio)) { 2232 continue; 2233 } 2234 folio_unlock(folio); 2235 if (for_write) 2236 folio_put(folio); 2237 cc->rpages[i] = NULL; 2238 cc->nr_rpages--; 2239 } 2240 2241 /* we are done since all pages are beyond EOF */ 2242 if (f2fs_cluster_is_empty(cc)) 2243 goto out; 2244 2245 if (f2fs_lookup_read_extent_cache(inode, start_idx, &ei)) 2246 from_dnode = false; 2247 2248 if (!from_dnode) 2249 goto skip_reading_dnode; 2250 2251 set_new_dnode(&dn, inode, NULL, NULL, 0); 2252 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 2253 if (ret) 2254 goto out; 2255 2256 if (unlikely(f2fs_cp_error(sbi))) { 2257 ret = -EIO; 2258 goto out_put_dnode; 2259 } 2260 f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR); 2261 2262 skip_reading_dnode: 2263 for (i = 1; i < cc->cluster_size; i++) { 2264 block_t blkaddr; 2265 2266 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page, 2267 dn.ofs_in_node + i) : 2268 ei.blk + i - 1; 2269 2270 if (!__is_valid_data_blkaddr(blkaddr)) 2271 break; 2272 2273 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) { 2274 ret = -EFAULT; 2275 goto out_put_dnode; 2276 } 2277 cc->nr_cpages++; 2278 2279 if (!from_dnode && i >= ei.c_len) 2280 break; 2281 } 2282 2283 /* nothing to decompress */ 2284 if (cc->nr_cpages == 0) { 2285 ret = 0; 2286 goto out_put_dnode; 2287 } 2288 2289 dic = f2fs_alloc_dic(cc); 2290 if (IS_ERR(dic)) { 2291 ret = PTR_ERR(dic); 2292 goto out_put_dnode; 2293 } 2294 2295 for (i = 0; i < cc->nr_cpages; i++) { 2296 struct folio *folio = page_folio(dic->cpages[i]); 2297 block_t blkaddr; 2298 struct bio_post_read_ctx *ctx; 2299 2300 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page, 2301 dn.ofs_in_node + i + 1) : 2302 ei.blk + i; 2303 2304 f2fs_wait_on_block_writeback(inode, blkaddr); 2305 2306 if (f2fs_load_compressed_page(sbi, folio_page(folio, 0), 2307 blkaddr)) { 2308 if (atomic_dec_and_test(&dic->remaining_pages)) { 2309 f2fs_decompress_cluster(dic, true); 2310 break; 2311 } 2312 continue; 2313 } 2314 2315 if (bio && (!page_is_mergeable(sbi, bio, 2316 *last_block_in_bio, blkaddr) || 2317 !f2fs_crypt_mergeable_bio(bio, inode, folio->index, NULL))) { 2318 submit_and_realloc: 2319 f2fs_submit_read_bio(sbi, bio, DATA); 2320 bio = NULL; 2321 } 2322 2323 if (!bio) { 2324 bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages, 2325 f2fs_ra_op_flags(rac), 2326 folio->index, for_write); 2327 if (IS_ERR(bio)) { 2328 ret = PTR_ERR(bio); 2329 f2fs_decompress_end_io(dic, ret, true); 2330 f2fs_put_dnode(&dn); 2331 *bio_ret = NULL; 2332 return ret; 2333 } 2334 } 2335 2336 if (!bio_add_folio(bio, folio, blocksize, 0)) 2337 goto submit_and_realloc; 2338 2339 ctx = get_post_read_ctx(bio); 2340 ctx->enabled_steps |= STEP_DECOMPRESS; 2341 refcount_inc(&dic->refcnt); 2342 2343 inc_page_count(sbi, F2FS_RD_DATA); 2344 f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE); 2345 *last_block_in_bio = blkaddr; 2346 } 2347 2348 if (from_dnode) 2349 f2fs_put_dnode(&dn); 2350 2351 *bio_ret = bio; 2352 return 0; 2353 2354 out_put_dnode: 2355 if (from_dnode) 2356 f2fs_put_dnode(&dn); 2357 out: 2358 for (i = 0; i < cc->cluster_size; i++) { 2359 if (cc->rpages[i]) { 2360 ClearPageUptodate(cc->rpages[i]); 2361 unlock_page(cc->rpages[i]); 2362 } 2363 } 2364 *bio_ret = bio; 2365 return ret; 2366 } 2367 #endif 2368 2369 /* 2370 * This function was originally taken from fs/mpage.c, and customized for f2fs. 2371 * Major change was from block_size == page_size in f2fs by default. 2372 */ 2373 static int f2fs_mpage_readpages(struct inode *inode, 2374 struct readahead_control *rac, struct folio *folio) 2375 { 2376 struct bio *bio = NULL; 2377 sector_t last_block_in_bio = 0; 2378 struct f2fs_map_blocks map; 2379 #ifdef CONFIG_F2FS_FS_COMPRESSION 2380 struct compress_ctx cc = { 2381 .inode = inode, 2382 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 2383 .cluster_size = F2FS_I(inode)->i_cluster_size, 2384 .cluster_idx = NULL_CLUSTER, 2385 .rpages = NULL, 2386 .cpages = NULL, 2387 .nr_rpages = 0, 2388 .nr_cpages = 0, 2389 }; 2390 pgoff_t nc_cluster_idx = NULL_CLUSTER; 2391 #endif 2392 unsigned nr_pages = rac ? readahead_count(rac) : 1; 2393 unsigned max_nr_pages = nr_pages; 2394 pgoff_t index; 2395 int ret = 0; 2396 2397 map.m_pblk = 0; 2398 map.m_lblk = 0; 2399 map.m_len = 0; 2400 map.m_flags = 0; 2401 map.m_next_pgofs = NULL; 2402 map.m_next_extent = NULL; 2403 map.m_seg_type = NO_CHECK_TYPE; 2404 map.m_may_create = false; 2405 2406 for (; nr_pages; nr_pages--) { 2407 if (rac) { 2408 folio = readahead_folio(rac); 2409 prefetchw(&folio->flags); 2410 } 2411 2412 index = folio_index(folio); 2413 2414 #ifdef CONFIG_F2FS_FS_COMPRESSION 2415 if (!f2fs_compressed_file(inode)) 2416 goto read_single_page; 2417 2418 /* there are remained compressed pages, submit them */ 2419 if (!f2fs_cluster_can_merge_page(&cc, index)) { 2420 ret = f2fs_read_multi_pages(&cc, &bio, 2421 max_nr_pages, 2422 &last_block_in_bio, 2423 rac, false); 2424 f2fs_destroy_compress_ctx(&cc, false); 2425 if (ret) 2426 goto set_error_page; 2427 } 2428 if (cc.cluster_idx == NULL_CLUSTER) { 2429 if (nc_cluster_idx == index >> cc.log_cluster_size) 2430 goto read_single_page; 2431 2432 ret = f2fs_is_compressed_cluster(inode, index); 2433 if (ret < 0) 2434 goto set_error_page; 2435 else if (!ret) { 2436 nc_cluster_idx = 2437 index >> cc.log_cluster_size; 2438 goto read_single_page; 2439 } 2440 2441 nc_cluster_idx = NULL_CLUSTER; 2442 } 2443 ret = f2fs_init_compress_ctx(&cc); 2444 if (ret) 2445 goto set_error_page; 2446 2447 f2fs_compress_ctx_add_page(&cc, folio); 2448 2449 goto next_page; 2450 read_single_page: 2451 #endif 2452 2453 ret = f2fs_read_single_page(inode, folio, max_nr_pages, &map, 2454 &bio, &last_block_in_bio, rac); 2455 if (ret) { 2456 #ifdef CONFIG_F2FS_FS_COMPRESSION 2457 set_error_page: 2458 #endif 2459 folio_zero_segment(folio, 0, folio_size(folio)); 2460 folio_unlock(folio); 2461 } 2462 #ifdef CONFIG_F2FS_FS_COMPRESSION 2463 next_page: 2464 #endif 2465 2466 #ifdef CONFIG_F2FS_FS_COMPRESSION 2467 if (f2fs_compressed_file(inode)) { 2468 /* last page */ 2469 if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) { 2470 ret = f2fs_read_multi_pages(&cc, &bio, 2471 max_nr_pages, 2472 &last_block_in_bio, 2473 rac, false); 2474 f2fs_destroy_compress_ctx(&cc, false); 2475 } 2476 } 2477 #endif 2478 } 2479 if (bio) 2480 f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA); 2481 return ret; 2482 } 2483 2484 static int f2fs_read_data_folio(struct file *file, struct folio *folio) 2485 { 2486 struct inode *inode = folio_file_mapping(folio)->host; 2487 int ret = -EAGAIN; 2488 2489 trace_f2fs_readpage(folio, DATA); 2490 2491 if (!f2fs_is_compress_backend_ready(inode)) { 2492 folio_unlock(folio); 2493 return -EOPNOTSUPP; 2494 } 2495 2496 /* If the file has inline data, try to read it directly */ 2497 if (f2fs_has_inline_data(inode)) 2498 ret = f2fs_read_inline_data(inode, folio); 2499 if (ret == -EAGAIN) 2500 ret = f2fs_mpage_readpages(inode, NULL, folio); 2501 return ret; 2502 } 2503 2504 static void f2fs_readahead(struct readahead_control *rac) 2505 { 2506 struct inode *inode = rac->mapping->host; 2507 2508 trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac)); 2509 2510 if (!f2fs_is_compress_backend_ready(inode)) 2511 return; 2512 2513 /* If the file has inline data, skip readahead */ 2514 if (f2fs_has_inline_data(inode)) 2515 return; 2516 2517 f2fs_mpage_readpages(inode, rac, NULL); 2518 } 2519 2520 int f2fs_encrypt_one_page(struct f2fs_io_info *fio) 2521 { 2522 struct inode *inode = fio->page->mapping->host; 2523 struct page *mpage, *page; 2524 gfp_t gfp_flags = GFP_NOFS; 2525 2526 if (!f2fs_encrypted_file(inode)) 2527 return 0; 2528 2529 page = fio->compressed_page ? fio->compressed_page : fio->page; 2530 2531 if (fscrypt_inode_uses_inline_crypto(inode)) 2532 return 0; 2533 2534 retry_encrypt: 2535 fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page, 2536 PAGE_SIZE, 0, gfp_flags); 2537 if (IS_ERR(fio->encrypted_page)) { 2538 /* flush pending IOs and wait for a while in the ENOMEM case */ 2539 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) { 2540 f2fs_flush_merged_writes(fio->sbi); 2541 memalloc_retry_wait(GFP_NOFS); 2542 gfp_flags |= __GFP_NOFAIL; 2543 goto retry_encrypt; 2544 } 2545 return PTR_ERR(fio->encrypted_page); 2546 } 2547 2548 mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr); 2549 if (mpage) { 2550 if (PageUptodate(mpage)) 2551 memcpy(page_address(mpage), 2552 page_address(fio->encrypted_page), PAGE_SIZE); 2553 f2fs_put_page(mpage, 1); 2554 } 2555 return 0; 2556 } 2557 2558 static inline bool check_inplace_update_policy(struct inode *inode, 2559 struct f2fs_io_info *fio) 2560 { 2561 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2562 2563 if (IS_F2FS_IPU_HONOR_OPU_WRITE(sbi) && 2564 is_inode_flag_set(inode, FI_OPU_WRITE)) 2565 return false; 2566 if (IS_F2FS_IPU_FORCE(sbi)) 2567 return true; 2568 if (IS_F2FS_IPU_SSR(sbi) && f2fs_need_SSR(sbi)) 2569 return true; 2570 if (IS_F2FS_IPU_UTIL(sbi) && utilization(sbi) > SM_I(sbi)->min_ipu_util) 2571 return true; 2572 if (IS_F2FS_IPU_SSR_UTIL(sbi) && f2fs_need_SSR(sbi) && 2573 utilization(sbi) > SM_I(sbi)->min_ipu_util) 2574 return true; 2575 2576 /* 2577 * IPU for rewrite async pages 2578 */ 2579 if (IS_F2FS_IPU_ASYNC(sbi) && fio && fio->op == REQ_OP_WRITE && 2580 !(fio->op_flags & REQ_SYNC) && !IS_ENCRYPTED(inode)) 2581 return true; 2582 2583 /* this is only set during fdatasync */ 2584 if (IS_F2FS_IPU_FSYNC(sbi) && is_inode_flag_set(inode, FI_NEED_IPU)) 2585 return true; 2586 2587 if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 2588 !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) 2589 return true; 2590 2591 return false; 2592 } 2593 2594 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio) 2595 { 2596 /* swap file is migrating in aligned write mode */ 2597 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE)) 2598 return false; 2599 2600 if (f2fs_is_pinned_file(inode)) 2601 return true; 2602 2603 /* if this is cold file, we should overwrite to avoid fragmentation */ 2604 if (file_is_cold(inode) && !is_inode_flag_set(inode, FI_OPU_WRITE)) 2605 return true; 2606 2607 return check_inplace_update_policy(inode, fio); 2608 } 2609 2610 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio) 2611 { 2612 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2613 2614 /* The below cases were checked when setting it. */ 2615 if (f2fs_is_pinned_file(inode)) 2616 return false; 2617 if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 2618 return true; 2619 if (f2fs_lfs_mode(sbi)) 2620 return true; 2621 if (S_ISDIR(inode->i_mode)) 2622 return true; 2623 if (IS_NOQUOTA(inode)) 2624 return true; 2625 if (f2fs_used_in_atomic_write(inode)) 2626 return true; 2627 /* rewrite low ratio compress data w/ OPU mode to avoid fragmentation */ 2628 if (f2fs_compressed_file(inode) && 2629 F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER && 2630 is_inode_flag_set(inode, FI_ENABLE_COMPRESS)) 2631 return true; 2632 2633 /* swap file is migrating in aligned write mode */ 2634 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE)) 2635 return true; 2636 2637 if (is_inode_flag_set(inode, FI_OPU_WRITE)) 2638 return true; 2639 2640 if (fio) { 2641 if (page_private_gcing(fio->page)) 2642 return true; 2643 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 2644 f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) 2645 return true; 2646 } 2647 return false; 2648 } 2649 2650 static inline bool need_inplace_update(struct f2fs_io_info *fio) 2651 { 2652 struct inode *inode = fio->page->mapping->host; 2653 2654 if (f2fs_should_update_outplace(inode, fio)) 2655 return false; 2656 2657 return f2fs_should_update_inplace(inode, fio); 2658 } 2659 2660 int f2fs_do_write_data_page(struct f2fs_io_info *fio) 2661 { 2662 struct folio *folio = page_folio(fio->page); 2663 struct inode *inode = folio->mapping->host; 2664 struct dnode_of_data dn; 2665 struct node_info ni; 2666 bool ipu_force = false; 2667 bool atomic_commit; 2668 int err = 0; 2669 2670 /* Use COW inode to make dnode_of_data for atomic write */ 2671 atomic_commit = f2fs_is_atomic_file(inode) && 2672 page_private_atomic(folio_page(folio, 0)); 2673 if (atomic_commit) 2674 set_new_dnode(&dn, F2FS_I(inode)->cow_inode, NULL, NULL, 0); 2675 else 2676 set_new_dnode(&dn, inode, NULL, NULL, 0); 2677 2678 if (need_inplace_update(fio) && 2679 f2fs_lookup_read_extent_cache_block(inode, folio->index, 2680 &fio->old_blkaddr)) { 2681 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 2682 DATA_GENERIC_ENHANCE)) 2683 return -EFSCORRUPTED; 2684 2685 ipu_force = true; 2686 fio->need_lock = LOCK_DONE; 2687 goto got_it; 2688 } 2689 2690 /* Deadlock due to between page->lock and f2fs_lock_op */ 2691 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi)) 2692 return -EAGAIN; 2693 2694 err = f2fs_get_dnode_of_data(&dn, folio->index, LOOKUP_NODE); 2695 if (err) 2696 goto out; 2697 2698 fio->old_blkaddr = dn.data_blkaddr; 2699 2700 /* This page is already truncated */ 2701 if (fio->old_blkaddr == NULL_ADDR) { 2702 folio_clear_uptodate(folio); 2703 clear_page_private_gcing(folio_page(folio, 0)); 2704 goto out_writepage; 2705 } 2706 got_it: 2707 if (__is_valid_data_blkaddr(fio->old_blkaddr) && 2708 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 2709 DATA_GENERIC_ENHANCE)) { 2710 err = -EFSCORRUPTED; 2711 goto out_writepage; 2712 } 2713 2714 /* wait for GCed page writeback via META_MAPPING */ 2715 if (fio->meta_gc) 2716 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr); 2717 2718 /* 2719 * If current allocation needs SSR, 2720 * it had better in-place writes for updated data. 2721 */ 2722 if (ipu_force || 2723 (__is_valid_data_blkaddr(fio->old_blkaddr) && 2724 need_inplace_update(fio))) { 2725 err = f2fs_encrypt_one_page(fio); 2726 if (err) 2727 goto out_writepage; 2728 2729 folio_start_writeback(folio); 2730 f2fs_put_dnode(&dn); 2731 if (fio->need_lock == LOCK_REQ) 2732 f2fs_unlock_op(fio->sbi); 2733 err = f2fs_inplace_write_data(fio); 2734 if (err) { 2735 if (fscrypt_inode_uses_fs_layer_crypto(inode)) 2736 fscrypt_finalize_bounce_page(&fio->encrypted_page); 2737 folio_end_writeback(folio); 2738 } else { 2739 set_inode_flag(inode, FI_UPDATE_WRITE); 2740 } 2741 trace_f2fs_do_write_data_page(folio, IPU); 2742 return err; 2743 } 2744 2745 if (fio->need_lock == LOCK_RETRY) { 2746 if (!f2fs_trylock_op(fio->sbi)) { 2747 err = -EAGAIN; 2748 goto out_writepage; 2749 } 2750 fio->need_lock = LOCK_REQ; 2751 } 2752 2753 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false); 2754 if (err) 2755 goto out_writepage; 2756 2757 fio->version = ni.version; 2758 2759 err = f2fs_encrypt_one_page(fio); 2760 if (err) 2761 goto out_writepage; 2762 2763 folio_start_writeback(folio); 2764 2765 if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR) 2766 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false); 2767 2768 /* LFS mode write path */ 2769 f2fs_outplace_write_data(&dn, fio); 2770 trace_f2fs_do_write_data_page(folio, OPU); 2771 set_inode_flag(inode, FI_APPEND_WRITE); 2772 if (atomic_commit) 2773 clear_page_private_atomic(folio_page(folio, 0)); 2774 out_writepage: 2775 f2fs_put_dnode(&dn); 2776 out: 2777 if (fio->need_lock == LOCK_REQ) 2778 f2fs_unlock_op(fio->sbi); 2779 return err; 2780 } 2781 2782 int f2fs_write_single_data_page(struct folio *folio, int *submitted, 2783 struct bio **bio, 2784 sector_t *last_block, 2785 struct writeback_control *wbc, 2786 enum iostat_type io_type, 2787 int compr_blocks, 2788 bool allow_balance) 2789 { 2790 struct inode *inode = folio->mapping->host; 2791 struct page *page = folio_page(folio, 0); 2792 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2793 loff_t i_size = i_size_read(inode); 2794 const pgoff_t end_index = ((unsigned long long)i_size) 2795 >> PAGE_SHIFT; 2796 loff_t psize = (loff_t)(folio->index + 1) << PAGE_SHIFT; 2797 unsigned offset = 0; 2798 bool need_balance_fs = false; 2799 bool quota_inode = IS_NOQUOTA(inode); 2800 int err = 0; 2801 struct f2fs_io_info fio = { 2802 .sbi = sbi, 2803 .ino = inode->i_ino, 2804 .type = DATA, 2805 .op = REQ_OP_WRITE, 2806 .op_flags = wbc_to_write_flags(wbc), 2807 .old_blkaddr = NULL_ADDR, 2808 .page = page, 2809 .encrypted_page = NULL, 2810 .submitted = 0, 2811 .compr_blocks = compr_blocks, 2812 .need_lock = compr_blocks ? LOCK_DONE : LOCK_RETRY, 2813 .meta_gc = f2fs_meta_inode_gc_required(inode) ? 1 : 0, 2814 .io_type = io_type, 2815 .io_wbc = wbc, 2816 .bio = bio, 2817 .last_block = last_block, 2818 }; 2819 2820 trace_f2fs_writepage(folio, DATA); 2821 2822 /* we should bypass data pages to proceed the kworker jobs */ 2823 if (unlikely(f2fs_cp_error(sbi))) { 2824 mapping_set_error(folio->mapping, -EIO); 2825 /* 2826 * don't drop any dirty dentry pages for keeping lastest 2827 * directory structure. 2828 */ 2829 if (S_ISDIR(inode->i_mode) && 2830 !is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 2831 goto redirty_out; 2832 2833 /* keep data pages in remount-ro mode */ 2834 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY) 2835 goto redirty_out; 2836 goto out; 2837 } 2838 2839 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 2840 goto redirty_out; 2841 2842 if (folio->index < end_index || 2843 f2fs_verity_in_progress(inode) || 2844 compr_blocks) 2845 goto write; 2846 2847 /* 2848 * If the offset is out-of-range of file size, 2849 * this page does not have to be written to disk. 2850 */ 2851 offset = i_size & (PAGE_SIZE - 1); 2852 if ((folio->index >= end_index + 1) || !offset) 2853 goto out; 2854 2855 folio_zero_segment(folio, offset, folio_size(folio)); 2856 write: 2857 /* Dentry/quota blocks are controlled by checkpoint */ 2858 if (S_ISDIR(inode->i_mode) || quota_inode) { 2859 /* 2860 * We need to wait for node_write to avoid block allocation during 2861 * checkpoint. This can only happen to quota writes which can cause 2862 * the below discard race condition. 2863 */ 2864 if (quota_inode) 2865 f2fs_down_read(&sbi->node_write); 2866 2867 fio.need_lock = LOCK_DONE; 2868 err = f2fs_do_write_data_page(&fio); 2869 2870 if (quota_inode) 2871 f2fs_up_read(&sbi->node_write); 2872 2873 goto done; 2874 } 2875 2876 if (!wbc->for_reclaim) 2877 need_balance_fs = true; 2878 else if (has_not_enough_free_secs(sbi, 0, 0)) 2879 goto redirty_out; 2880 else 2881 set_inode_flag(inode, FI_HOT_DATA); 2882 2883 err = -EAGAIN; 2884 if (f2fs_has_inline_data(inode)) { 2885 err = f2fs_write_inline_data(inode, folio); 2886 if (!err) 2887 goto out; 2888 } 2889 2890 if (err == -EAGAIN) { 2891 err = f2fs_do_write_data_page(&fio); 2892 if (err == -EAGAIN) { 2893 f2fs_bug_on(sbi, compr_blocks); 2894 fio.need_lock = LOCK_REQ; 2895 err = f2fs_do_write_data_page(&fio); 2896 } 2897 } 2898 2899 if (err) { 2900 file_set_keep_isize(inode); 2901 } else { 2902 spin_lock(&F2FS_I(inode)->i_size_lock); 2903 if (F2FS_I(inode)->last_disk_size < psize) 2904 F2FS_I(inode)->last_disk_size = psize; 2905 spin_unlock(&F2FS_I(inode)->i_size_lock); 2906 } 2907 2908 done: 2909 if (err && err != -ENOENT) 2910 goto redirty_out; 2911 2912 out: 2913 inode_dec_dirty_pages(inode); 2914 if (err) { 2915 folio_clear_uptodate(folio); 2916 clear_page_private_gcing(page); 2917 } 2918 2919 if (wbc->for_reclaim) { 2920 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA); 2921 clear_inode_flag(inode, FI_HOT_DATA); 2922 f2fs_remove_dirty_inode(inode); 2923 submitted = NULL; 2924 } 2925 folio_unlock(folio); 2926 if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) && 2927 !F2FS_I(inode)->wb_task && allow_balance) 2928 f2fs_balance_fs(sbi, need_balance_fs); 2929 2930 if (unlikely(f2fs_cp_error(sbi))) { 2931 f2fs_submit_merged_write(sbi, DATA); 2932 if (bio && *bio) 2933 f2fs_submit_merged_ipu_write(sbi, bio, NULL); 2934 submitted = NULL; 2935 } 2936 2937 if (submitted) 2938 *submitted = fio.submitted; 2939 2940 return 0; 2941 2942 redirty_out: 2943 folio_redirty_for_writepage(wbc, folio); 2944 /* 2945 * pageout() in MM translates EAGAIN, so calls handle_write_error() 2946 * -> mapping_set_error() -> set_bit(AS_EIO, ...). 2947 * file_write_and_wait_range() will see EIO error, which is critical 2948 * to return value of fsync() followed by atomic_write failure to user. 2949 */ 2950 if (!err || wbc->for_reclaim) 2951 return AOP_WRITEPAGE_ACTIVATE; 2952 folio_unlock(folio); 2953 return err; 2954 } 2955 2956 static int f2fs_write_data_page(struct page *page, 2957 struct writeback_control *wbc) 2958 { 2959 struct folio *folio = page_folio(page); 2960 #ifdef CONFIG_F2FS_FS_COMPRESSION 2961 struct inode *inode = folio->mapping->host; 2962 2963 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 2964 goto out; 2965 2966 if (f2fs_compressed_file(inode)) { 2967 if (f2fs_is_compressed_cluster(inode, folio->index)) { 2968 folio_redirty_for_writepage(wbc, folio); 2969 return AOP_WRITEPAGE_ACTIVATE; 2970 } 2971 } 2972 out: 2973 #endif 2974 2975 return f2fs_write_single_data_page(folio, NULL, NULL, NULL, 2976 wbc, FS_DATA_IO, 0, true); 2977 } 2978 2979 /* 2980 * This function was copied from write_cache_pages from mm/page-writeback.c. 2981 * The major change is making write step of cold data page separately from 2982 * warm/hot data page. 2983 */ 2984 static int f2fs_write_cache_pages(struct address_space *mapping, 2985 struct writeback_control *wbc, 2986 enum iostat_type io_type) 2987 { 2988 int ret = 0; 2989 int done = 0, retry = 0; 2990 struct page *pages_local[F2FS_ONSTACK_PAGES]; 2991 struct page **pages = pages_local; 2992 struct folio_batch fbatch; 2993 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 2994 struct bio *bio = NULL; 2995 sector_t last_block; 2996 #ifdef CONFIG_F2FS_FS_COMPRESSION 2997 struct inode *inode = mapping->host; 2998 struct compress_ctx cc = { 2999 .inode = inode, 3000 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 3001 .cluster_size = F2FS_I(inode)->i_cluster_size, 3002 .cluster_idx = NULL_CLUSTER, 3003 .rpages = NULL, 3004 .nr_rpages = 0, 3005 .cpages = NULL, 3006 .valid_nr_cpages = 0, 3007 .rbuf = NULL, 3008 .cbuf = NULL, 3009 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size, 3010 .private = NULL, 3011 }; 3012 #endif 3013 int nr_folios, p, idx; 3014 int nr_pages; 3015 unsigned int max_pages = F2FS_ONSTACK_PAGES; 3016 pgoff_t index; 3017 pgoff_t end; /* Inclusive */ 3018 pgoff_t done_index; 3019 int range_whole = 0; 3020 xa_mark_t tag; 3021 int nwritten = 0; 3022 int submitted = 0; 3023 int i; 3024 3025 #ifdef CONFIG_F2FS_FS_COMPRESSION 3026 if (f2fs_compressed_file(inode) && 3027 1 << cc.log_cluster_size > F2FS_ONSTACK_PAGES) { 3028 pages = f2fs_kzalloc(sbi, sizeof(struct page *) << 3029 cc.log_cluster_size, GFP_NOFS | __GFP_NOFAIL); 3030 max_pages = 1 << cc.log_cluster_size; 3031 } 3032 #endif 3033 3034 folio_batch_init(&fbatch); 3035 3036 if (get_dirty_pages(mapping->host) <= 3037 SM_I(F2FS_M_SB(mapping))->min_hot_blocks) 3038 set_inode_flag(mapping->host, FI_HOT_DATA); 3039 else 3040 clear_inode_flag(mapping->host, FI_HOT_DATA); 3041 3042 if (wbc->range_cyclic) { 3043 index = mapping->writeback_index; /* prev offset */ 3044 end = -1; 3045 } else { 3046 index = wbc->range_start >> PAGE_SHIFT; 3047 end = wbc->range_end >> PAGE_SHIFT; 3048 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 3049 range_whole = 1; 3050 } 3051 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 3052 tag = PAGECACHE_TAG_TOWRITE; 3053 else 3054 tag = PAGECACHE_TAG_DIRTY; 3055 retry: 3056 retry = 0; 3057 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 3058 tag_pages_for_writeback(mapping, index, end); 3059 done_index = index; 3060 while (!done && !retry && (index <= end)) { 3061 nr_pages = 0; 3062 again: 3063 nr_folios = filemap_get_folios_tag(mapping, &index, end, 3064 tag, &fbatch); 3065 if (nr_folios == 0) { 3066 if (nr_pages) 3067 goto write; 3068 break; 3069 } 3070 3071 for (i = 0; i < nr_folios; i++) { 3072 struct folio *folio = fbatch.folios[i]; 3073 3074 idx = 0; 3075 p = folio_nr_pages(folio); 3076 add_more: 3077 pages[nr_pages] = folio_page(folio, idx); 3078 folio_get(folio); 3079 if (++nr_pages == max_pages) { 3080 index = folio->index + idx + 1; 3081 folio_batch_release(&fbatch); 3082 goto write; 3083 } 3084 if (++idx < p) 3085 goto add_more; 3086 } 3087 folio_batch_release(&fbatch); 3088 goto again; 3089 write: 3090 for (i = 0; i < nr_pages; i++) { 3091 struct page *page = pages[i]; 3092 struct folio *folio = page_folio(page); 3093 bool need_readd; 3094 readd: 3095 need_readd = false; 3096 #ifdef CONFIG_F2FS_FS_COMPRESSION 3097 if (f2fs_compressed_file(inode)) { 3098 void *fsdata = NULL; 3099 struct page *pagep; 3100 int ret2; 3101 3102 ret = f2fs_init_compress_ctx(&cc); 3103 if (ret) { 3104 done = 1; 3105 break; 3106 } 3107 3108 if (!f2fs_cluster_can_merge_page(&cc, 3109 folio->index)) { 3110 ret = f2fs_write_multi_pages(&cc, 3111 &submitted, wbc, io_type); 3112 if (!ret) 3113 need_readd = true; 3114 goto result; 3115 } 3116 3117 if (unlikely(f2fs_cp_error(sbi))) 3118 goto lock_folio; 3119 3120 if (!f2fs_cluster_is_empty(&cc)) 3121 goto lock_folio; 3122 3123 if (f2fs_all_cluster_page_ready(&cc, 3124 pages, i, nr_pages, true)) 3125 goto lock_folio; 3126 3127 ret2 = f2fs_prepare_compress_overwrite( 3128 inode, &pagep, 3129 folio->index, &fsdata); 3130 if (ret2 < 0) { 3131 ret = ret2; 3132 done = 1; 3133 break; 3134 } else if (ret2 && 3135 (!f2fs_compress_write_end(inode, 3136 fsdata, folio->index, 1) || 3137 !f2fs_all_cluster_page_ready(&cc, 3138 pages, i, nr_pages, 3139 false))) { 3140 retry = 1; 3141 break; 3142 } 3143 } 3144 #endif 3145 /* give a priority to WB_SYNC threads */ 3146 if (atomic_read(&sbi->wb_sync_req[DATA]) && 3147 wbc->sync_mode == WB_SYNC_NONE) { 3148 done = 1; 3149 break; 3150 } 3151 #ifdef CONFIG_F2FS_FS_COMPRESSION 3152 lock_folio: 3153 #endif 3154 done_index = folio->index; 3155 retry_write: 3156 folio_lock(folio); 3157 3158 if (unlikely(folio->mapping != mapping)) { 3159 continue_unlock: 3160 folio_unlock(folio); 3161 continue; 3162 } 3163 3164 if (!folio_test_dirty(folio)) { 3165 /* someone wrote it for us */ 3166 goto continue_unlock; 3167 } 3168 3169 if (folio_test_writeback(folio)) { 3170 if (wbc->sync_mode == WB_SYNC_NONE) 3171 goto continue_unlock; 3172 f2fs_wait_on_page_writeback(&folio->page, DATA, true, true); 3173 } 3174 3175 if (!folio_clear_dirty_for_io(folio)) 3176 goto continue_unlock; 3177 3178 #ifdef CONFIG_F2FS_FS_COMPRESSION 3179 if (f2fs_compressed_file(inode)) { 3180 folio_get(folio); 3181 f2fs_compress_ctx_add_page(&cc, folio); 3182 continue; 3183 } 3184 #endif 3185 ret = f2fs_write_single_data_page(folio, 3186 &submitted, &bio, &last_block, 3187 wbc, io_type, 0, true); 3188 if (ret == AOP_WRITEPAGE_ACTIVATE) 3189 folio_unlock(folio); 3190 #ifdef CONFIG_F2FS_FS_COMPRESSION 3191 result: 3192 #endif 3193 nwritten += submitted; 3194 wbc->nr_to_write -= submitted; 3195 3196 if (unlikely(ret)) { 3197 /* 3198 * keep nr_to_write, since vfs uses this to 3199 * get # of written pages. 3200 */ 3201 if (ret == AOP_WRITEPAGE_ACTIVATE) { 3202 ret = 0; 3203 goto next; 3204 } else if (ret == -EAGAIN) { 3205 ret = 0; 3206 if (wbc->sync_mode == WB_SYNC_ALL) { 3207 f2fs_io_schedule_timeout( 3208 DEFAULT_IO_TIMEOUT); 3209 goto retry_write; 3210 } 3211 goto next; 3212 } 3213 done_index = folio_next_index(folio); 3214 done = 1; 3215 break; 3216 } 3217 3218 if (wbc->nr_to_write <= 0 && 3219 wbc->sync_mode == WB_SYNC_NONE) { 3220 done = 1; 3221 break; 3222 } 3223 next: 3224 if (need_readd) 3225 goto readd; 3226 } 3227 release_pages(pages, nr_pages); 3228 cond_resched(); 3229 } 3230 #ifdef CONFIG_F2FS_FS_COMPRESSION 3231 /* flush remained pages in compress cluster */ 3232 if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) { 3233 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type); 3234 nwritten += submitted; 3235 wbc->nr_to_write -= submitted; 3236 if (ret) { 3237 done = 1; 3238 retry = 0; 3239 } 3240 } 3241 if (f2fs_compressed_file(inode)) 3242 f2fs_destroy_compress_ctx(&cc, false); 3243 #endif 3244 if (retry) { 3245 index = 0; 3246 end = -1; 3247 goto retry; 3248 } 3249 if (wbc->range_cyclic && !done) 3250 done_index = 0; 3251 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 3252 mapping->writeback_index = done_index; 3253 3254 if (nwritten) 3255 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host, 3256 NULL, 0, DATA); 3257 /* submit cached bio of IPU write */ 3258 if (bio) 3259 f2fs_submit_merged_ipu_write(sbi, &bio, NULL); 3260 3261 #ifdef CONFIG_F2FS_FS_COMPRESSION 3262 if (pages != pages_local) 3263 kfree(pages); 3264 #endif 3265 3266 return ret; 3267 } 3268 3269 static inline bool __should_serialize_io(struct inode *inode, 3270 struct writeback_control *wbc) 3271 { 3272 /* to avoid deadlock in path of data flush */ 3273 if (F2FS_I(inode)->wb_task) 3274 return false; 3275 3276 if (!S_ISREG(inode->i_mode)) 3277 return false; 3278 if (IS_NOQUOTA(inode)) 3279 return false; 3280 3281 if (f2fs_need_compress_data(inode)) 3282 return true; 3283 if (wbc->sync_mode != WB_SYNC_ALL) 3284 return true; 3285 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks) 3286 return true; 3287 return false; 3288 } 3289 3290 static int __f2fs_write_data_pages(struct address_space *mapping, 3291 struct writeback_control *wbc, 3292 enum iostat_type io_type) 3293 { 3294 struct inode *inode = mapping->host; 3295 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3296 struct blk_plug plug; 3297 int ret; 3298 bool locked = false; 3299 3300 /* deal with chardevs and other special file */ 3301 if (!mapping->a_ops->writepage) 3302 return 0; 3303 3304 /* skip writing if there is no dirty page in this inode */ 3305 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE) 3306 return 0; 3307 3308 /* during POR, we don't need to trigger writepage at all. */ 3309 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 3310 goto skip_write; 3311 3312 if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) && 3313 wbc->sync_mode == WB_SYNC_NONE && 3314 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) && 3315 f2fs_available_free_memory(sbi, DIRTY_DENTS)) 3316 goto skip_write; 3317 3318 /* skip writing in file defragment preparing stage */ 3319 if (is_inode_flag_set(inode, FI_SKIP_WRITES)) 3320 goto skip_write; 3321 3322 trace_f2fs_writepages(mapping->host, wbc, DATA); 3323 3324 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */ 3325 if (wbc->sync_mode == WB_SYNC_ALL) 3326 atomic_inc(&sbi->wb_sync_req[DATA]); 3327 else if (atomic_read(&sbi->wb_sync_req[DATA])) { 3328 /* to avoid potential deadlock */ 3329 if (current->plug) 3330 blk_finish_plug(current->plug); 3331 goto skip_write; 3332 } 3333 3334 if (__should_serialize_io(inode, wbc)) { 3335 mutex_lock(&sbi->writepages); 3336 locked = true; 3337 } 3338 3339 blk_start_plug(&plug); 3340 ret = f2fs_write_cache_pages(mapping, wbc, io_type); 3341 blk_finish_plug(&plug); 3342 3343 if (locked) 3344 mutex_unlock(&sbi->writepages); 3345 3346 if (wbc->sync_mode == WB_SYNC_ALL) 3347 atomic_dec(&sbi->wb_sync_req[DATA]); 3348 /* 3349 * if some pages were truncated, we cannot guarantee its mapping->host 3350 * to detect pending bios. 3351 */ 3352 3353 f2fs_remove_dirty_inode(inode); 3354 return ret; 3355 3356 skip_write: 3357 wbc->pages_skipped += get_dirty_pages(inode); 3358 trace_f2fs_writepages(mapping->host, wbc, DATA); 3359 return 0; 3360 } 3361 3362 static int f2fs_write_data_pages(struct address_space *mapping, 3363 struct writeback_control *wbc) 3364 { 3365 struct inode *inode = mapping->host; 3366 3367 return __f2fs_write_data_pages(mapping, wbc, 3368 F2FS_I(inode)->cp_task == current ? 3369 FS_CP_DATA_IO : FS_DATA_IO); 3370 } 3371 3372 void f2fs_write_failed(struct inode *inode, loff_t to) 3373 { 3374 loff_t i_size = i_size_read(inode); 3375 3376 if (IS_NOQUOTA(inode)) 3377 return; 3378 3379 /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */ 3380 if (to > i_size && !f2fs_verity_in_progress(inode)) { 3381 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3382 filemap_invalidate_lock(inode->i_mapping); 3383 3384 truncate_pagecache(inode, i_size); 3385 f2fs_truncate_blocks(inode, i_size, true); 3386 3387 filemap_invalidate_unlock(inode->i_mapping); 3388 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3389 } 3390 } 3391 3392 static int prepare_write_begin(struct f2fs_sb_info *sbi, 3393 struct folio *folio, loff_t pos, unsigned int len, 3394 block_t *blk_addr, bool *node_changed) 3395 { 3396 struct inode *inode = folio->mapping->host; 3397 pgoff_t index = folio->index; 3398 struct dnode_of_data dn; 3399 struct page *ipage; 3400 bool locked = false; 3401 int flag = F2FS_GET_BLOCK_PRE_AIO; 3402 int err = 0; 3403 3404 /* 3405 * If a whole page is being written and we already preallocated all the 3406 * blocks, then there is no need to get a block address now. 3407 */ 3408 if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL)) 3409 return 0; 3410 3411 /* f2fs_lock_op avoids race between write CP and convert_inline_page */ 3412 if (f2fs_has_inline_data(inode)) { 3413 if (pos + len > MAX_INLINE_DATA(inode)) 3414 flag = F2FS_GET_BLOCK_DEFAULT; 3415 f2fs_map_lock(sbi, flag); 3416 locked = true; 3417 } else if ((pos & PAGE_MASK) >= i_size_read(inode)) { 3418 f2fs_map_lock(sbi, flag); 3419 locked = true; 3420 } 3421 3422 restart: 3423 /* check inline_data */ 3424 ipage = f2fs_get_node_page(sbi, inode->i_ino); 3425 if (IS_ERR(ipage)) { 3426 err = PTR_ERR(ipage); 3427 goto unlock_out; 3428 } 3429 3430 set_new_dnode(&dn, inode, ipage, ipage, 0); 3431 3432 if (f2fs_has_inline_data(inode)) { 3433 if (pos + len <= MAX_INLINE_DATA(inode)) { 3434 f2fs_do_read_inline_data(folio, ipage); 3435 set_inode_flag(inode, FI_DATA_EXIST); 3436 if (inode->i_nlink) 3437 set_page_private_inline(ipage); 3438 goto out; 3439 } 3440 err = f2fs_convert_inline_page(&dn, folio_page(folio, 0)); 3441 if (err || dn.data_blkaddr != NULL_ADDR) 3442 goto out; 3443 } 3444 3445 if (!f2fs_lookup_read_extent_cache_block(inode, index, 3446 &dn.data_blkaddr)) { 3447 if (locked) { 3448 err = f2fs_reserve_block(&dn, index); 3449 goto out; 3450 } 3451 3452 /* hole case */ 3453 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 3454 if (!err && dn.data_blkaddr != NULL_ADDR) 3455 goto out; 3456 f2fs_put_dnode(&dn); 3457 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO); 3458 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO); 3459 locked = true; 3460 goto restart; 3461 } 3462 out: 3463 if (!err) { 3464 /* convert_inline_page can make node_changed */ 3465 *blk_addr = dn.data_blkaddr; 3466 *node_changed = dn.node_changed; 3467 } 3468 f2fs_put_dnode(&dn); 3469 unlock_out: 3470 if (locked) 3471 f2fs_map_unlock(sbi, flag); 3472 return err; 3473 } 3474 3475 static int __find_data_block(struct inode *inode, pgoff_t index, 3476 block_t *blk_addr) 3477 { 3478 struct dnode_of_data dn; 3479 struct page *ipage; 3480 int err = 0; 3481 3482 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino); 3483 if (IS_ERR(ipage)) 3484 return PTR_ERR(ipage); 3485 3486 set_new_dnode(&dn, inode, ipage, ipage, 0); 3487 3488 if (!f2fs_lookup_read_extent_cache_block(inode, index, 3489 &dn.data_blkaddr)) { 3490 /* hole case */ 3491 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 3492 if (err) { 3493 dn.data_blkaddr = NULL_ADDR; 3494 err = 0; 3495 } 3496 } 3497 *blk_addr = dn.data_blkaddr; 3498 f2fs_put_dnode(&dn); 3499 return err; 3500 } 3501 3502 static int __reserve_data_block(struct inode *inode, pgoff_t index, 3503 block_t *blk_addr, bool *node_changed) 3504 { 3505 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3506 struct dnode_of_data dn; 3507 struct page *ipage; 3508 int err = 0; 3509 3510 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO); 3511 3512 ipage = f2fs_get_node_page(sbi, inode->i_ino); 3513 if (IS_ERR(ipage)) { 3514 err = PTR_ERR(ipage); 3515 goto unlock_out; 3516 } 3517 set_new_dnode(&dn, inode, ipage, ipage, 0); 3518 3519 if (!f2fs_lookup_read_extent_cache_block(dn.inode, index, 3520 &dn.data_blkaddr)) 3521 err = f2fs_reserve_block(&dn, index); 3522 3523 *blk_addr = dn.data_blkaddr; 3524 *node_changed = dn.node_changed; 3525 f2fs_put_dnode(&dn); 3526 3527 unlock_out: 3528 f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO); 3529 return err; 3530 } 3531 3532 static int prepare_atomic_write_begin(struct f2fs_sb_info *sbi, 3533 struct folio *folio, loff_t pos, unsigned int len, 3534 block_t *blk_addr, bool *node_changed, bool *use_cow) 3535 { 3536 struct inode *inode = folio->mapping->host; 3537 struct inode *cow_inode = F2FS_I(inode)->cow_inode; 3538 pgoff_t index = folio->index; 3539 int err = 0; 3540 block_t ori_blk_addr = NULL_ADDR; 3541 3542 /* If pos is beyond the end of file, reserve a new block in COW inode */ 3543 if ((pos & PAGE_MASK) >= i_size_read(inode)) 3544 goto reserve_block; 3545 3546 /* Look for the block in COW inode first */ 3547 err = __find_data_block(cow_inode, index, blk_addr); 3548 if (err) { 3549 return err; 3550 } else if (*blk_addr != NULL_ADDR) { 3551 *use_cow = true; 3552 return 0; 3553 } 3554 3555 if (is_inode_flag_set(inode, FI_ATOMIC_REPLACE)) 3556 goto reserve_block; 3557 3558 /* Look for the block in the original inode */ 3559 err = __find_data_block(inode, index, &ori_blk_addr); 3560 if (err) 3561 return err; 3562 3563 reserve_block: 3564 /* Finally, we should reserve a new block in COW inode for the update */ 3565 err = __reserve_data_block(cow_inode, index, blk_addr, node_changed); 3566 if (err) 3567 return err; 3568 inc_atomic_write_cnt(inode); 3569 3570 if (ori_blk_addr != NULL_ADDR) 3571 *blk_addr = ori_blk_addr; 3572 return 0; 3573 } 3574 3575 static int f2fs_write_begin(struct file *file, struct address_space *mapping, 3576 loff_t pos, unsigned len, struct folio **foliop, void **fsdata) 3577 { 3578 struct inode *inode = mapping->host; 3579 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3580 struct folio *folio; 3581 pgoff_t index = pos >> PAGE_SHIFT; 3582 bool need_balance = false; 3583 bool use_cow = false; 3584 block_t blkaddr = NULL_ADDR; 3585 int err = 0; 3586 3587 trace_f2fs_write_begin(inode, pos, len); 3588 3589 if (!f2fs_is_checkpoint_ready(sbi)) { 3590 err = -ENOSPC; 3591 goto fail; 3592 } 3593 3594 /* 3595 * We should check this at this moment to avoid deadlock on inode page 3596 * and #0 page. The locking rule for inline_data conversion should be: 3597 * folio_lock(folio #0) -> folio_lock(inode_page) 3598 */ 3599 if (index != 0) { 3600 err = f2fs_convert_inline_inode(inode); 3601 if (err) 3602 goto fail; 3603 } 3604 3605 #ifdef CONFIG_F2FS_FS_COMPRESSION 3606 if (f2fs_compressed_file(inode)) { 3607 int ret; 3608 struct page *page; 3609 3610 *fsdata = NULL; 3611 3612 if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode))) 3613 goto repeat; 3614 3615 ret = f2fs_prepare_compress_overwrite(inode, &page, 3616 index, fsdata); 3617 if (ret < 0) { 3618 err = ret; 3619 goto fail; 3620 } else if (ret) { 3621 *foliop = page_folio(page); 3622 return 0; 3623 } 3624 } 3625 #endif 3626 3627 repeat: 3628 /* 3629 * Do not use FGP_STABLE to avoid deadlock. 3630 * Will wait that below with our IO control. 3631 */ 3632 folio = __filemap_get_folio(mapping, index, 3633 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS); 3634 if (IS_ERR(folio)) { 3635 err = PTR_ERR(folio); 3636 goto fail; 3637 } 3638 3639 /* TODO: cluster can be compressed due to race with .writepage */ 3640 3641 *foliop = folio; 3642 3643 if (f2fs_is_atomic_file(inode)) 3644 err = prepare_atomic_write_begin(sbi, folio, pos, len, 3645 &blkaddr, &need_balance, &use_cow); 3646 else 3647 err = prepare_write_begin(sbi, folio, pos, len, 3648 &blkaddr, &need_balance); 3649 if (err) 3650 goto put_folio; 3651 3652 if (need_balance && !IS_NOQUOTA(inode) && 3653 has_not_enough_free_secs(sbi, 0, 0)) { 3654 folio_unlock(folio); 3655 f2fs_balance_fs(sbi, true); 3656 folio_lock(folio); 3657 if (folio->mapping != mapping) { 3658 /* The folio got truncated from under us */ 3659 folio_unlock(folio); 3660 folio_put(folio); 3661 goto repeat; 3662 } 3663 } 3664 3665 f2fs_wait_on_page_writeback(&folio->page, DATA, false, true); 3666 3667 if (len == folio_size(folio) || folio_test_uptodate(folio)) 3668 return 0; 3669 3670 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) && 3671 !f2fs_verity_in_progress(inode)) { 3672 folio_zero_segment(folio, len, folio_size(folio)); 3673 return 0; 3674 } 3675 3676 if (blkaddr == NEW_ADDR) { 3677 folio_zero_segment(folio, 0, folio_size(folio)); 3678 folio_mark_uptodate(folio); 3679 } else { 3680 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 3681 DATA_GENERIC_ENHANCE_READ)) { 3682 err = -EFSCORRUPTED; 3683 goto put_folio; 3684 } 3685 err = f2fs_submit_page_read(use_cow ? 3686 F2FS_I(inode)->cow_inode : inode, 3687 folio, blkaddr, 0, true); 3688 if (err) 3689 goto put_folio; 3690 3691 folio_lock(folio); 3692 if (unlikely(folio->mapping != mapping)) { 3693 folio_unlock(folio); 3694 folio_put(folio); 3695 goto repeat; 3696 } 3697 if (unlikely(!folio_test_uptodate(folio))) { 3698 err = -EIO; 3699 goto put_folio; 3700 } 3701 } 3702 return 0; 3703 3704 put_folio: 3705 folio_unlock(folio); 3706 folio_put(folio); 3707 fail: 3708 f2fs_write_failed(inode, pos + len); 3709 return err; 3710 } 3711 3712 static int f2fs_write_end(struct file *file, 3713 struct address_space *mapping, 3714 loff_t pos, unsigned len, unsigned copied, 3715 struct folio *folio, void *fsdata) 3716 { 3717 struct inode *inode = folio->mapping->host; 3718 3719 trace_f2fs_write_end(inode, pos, len, copied); 3720 3721 /* 3722 * This should be come from len == PAGE_SIZE, and we expect copied 3723 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and 3724 * let generic_perform_write() try to copy data again through copied=0. 3725 */ 3726 if (!folio_test_uptodate(folio)) { 3727 if (unlikely(copied != len)) 3728 copied = 0; 3729 else 3730 folio_mark_uptodate(folio); 3731 } 3732 3733 #ifdef CONFIG_F2FS_FS_COMPRESSION 3734 /* overwrite compressed file */ 3735 if (f2fs_compressed_file(inode) && fsdata) { 3736 f2fs_compress_write_end(inode, fsdata, folio->index, copied); 3737 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3738 3739 if (pos + copied > i_size_read(inode) && 3740 !f2fs_verity_in_progress(inode)) 3741 f2fs_i_size_write(inode, pos + copied); 3742 return copied; 3743 } 3744 #endif 3745 3746 if (!copied) 3747 goto unlock_out; 3748 3749 folio_mark_dirty(folio); 3750 3751 if (f2fs_is_atomic_file(inode)) 3752 set_page_private_atomic(folio_page(folio, 0)); 3753 3754 if (pos + copied > i_size_read(inode) && 3755 !f2fs_verity_in_progress(inode)) { 3756 f2fs_i_size_write(inode, pos + copied); 3757 if (f2fs_is_atomic_file(inode)) 3758 f2fs_i_size_write(F2FS_I(inode)->cow_inode, 3759 pos + copied); 3760 } 3761 unlock_out: 3762 folio_unlock(folio); 3763 folio_put(folio); 3764 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3765 return copied; 3766 } 3767 3768 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length) 3769 { 3770 struct inode *inode = folio->mapping->host; 3771 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3772 3773 if (inode->i_ino >= F2FS_ROOT_INO(sbi) && 3774 (offset || length != folio_size(folio))) 3775 return; 3776 3777 if (folio_test_dirty(folio)) { 3778 if (inode->i_ino == F2FS_META_INO(sbi)) { 3779 dec_page_count(sbi, F2FS_DIRTY_META); 3780 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) { 3781 dec_page_count(sbi, F2FS_DIRTY_NODES); 3782 } else { 3783 inode_dec_dirty_pages(inode); 3784 f2fs_remove_dirty_inode(inode); 3785 } 3786 } 3787 clear_page_private_all(&folio->page); 3788 } 3789 3790 bool f2fs_release_folio(struct folio *folio, gfp_t wait) 3791 { 3792 /* If this is dirty folio, keep private data */ 3793 if (folio_test_dirty(folio)) 3794 return false; 3795 3796 clear_page_private_all(&folio->page); 3797 return true; 3798 } 3799 3800 static bool f2fs_dirty_data_folio(struct address_space *mapping, 3801 struct folio *folio) 3802 { 3803 struct inode *inode = mapping->host; 3804 3805 trace_f2fs_set_page_dirty(folio, DATA); 3806 3807 if (!folio_test_uptodate(folio)) 3808 folio_mark_uptodate(folio); 3809 BUG_ON(folio_test_swapcache(folio)); 3810 3811 if (filemap_dirty_folio(mapping, folio)) { 3812 f2fs_update_dirty_folio(inode, folio); 3813 return true; 3814 } 3815 return false; 3816 } 3817 3818 3819 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block) 3820 { 3821 #ifdef CONFIG_F2FS_FS_COMPRESSION 3822 struct dnode_of_data dn; 3823 sector_t start_idx, blknr = 0; 3824 int ret; 3825 3826 start_idx = round_down(block, F2FS_I(inode)->i_cluster_size); 3827 3828 set_new_dnode(&dn, inode, NULL, NULL, 0); 3829 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 3830 if (ret) 3831 return 0; 3832 3833 if (dn.data_blkaddr != COMPRESS_ADDR) { 3834 dn.ofs_in_node += block - start_idx; 3835 blknr = f2fs_data_blkaddr(&dn); 3836 if (!__is_valid_data_blkaddr(blknr)) 3837 blknr = 0; 3838 } 3839 3840 f2fs_put_dnode(&dn); 3841 return blknr; 3842 #else 3843 return 0; 3844 #endif 3845 } 3846 3847 3848 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block) 3849 { 3850 struct inode *inode = mapping->host; 3851 sector_t blknr = 0; 3852 3853 if (f2fs_has_inline_data(inode)) 3854 goto out; 3855 3856 /* make sure allocating whole blocks */ 3857 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 3858 filemap_write_and_wait(mapping); 3859 3860 /* Block number less than F2FS MAX BLOCKS */ 3861 if (unlikely(block >= max_file_blocks(inode))) 3862 goto out; 3863 3864 if (f2fs_compressed_file(inode)) { 3865 blknr = f2fs_bmap_compress(inode, block); 3866 } else { 3867 struct f2fs_map_blocks map; 3868 3869 memset(&map, 0, sizeof(map)); 3870 map.m_lblk = block; 3871 map.m_len = 1; 3872 map.m_next_pgofs = NULL; 3873 map.m_seg_type = NO_CHECK_TYPE; 3874 3875 if (!f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_BMAP)) 3876 blknr = map.m_pblk; 3877 } 3878 out: 3879 trace_f2fs_bmap(inode, block, blknr); 3880 return blknr; 3881 } 3882 3883 #ifdef CONFIG_SWAP 3884 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk, 3885 unsigned int blkcnt) 3886 { 3887 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3888 unsigned int blkofs; 3889 unsigned int blk_per_sec = BLKS_PER_SEC(sbi); 3890 unsigned int end_blk = start_blk + blkcnt - 1; 3891 unsigned int secidx = start_blk / blk_per_sec; 3892 unsigned int end_sec; 3893 int ret = 0; 3894 3895 if (!blkcnt) 3896 return 0; 3897 end_sec = end_blk / blk_per_sec; 3898 3899 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3900 filemap_invalidate_lock(inode->i_mapping); 3901 3902 set_inode_flag(inode, FI_ALIGNED_WRITE); 3903 set_inode_flag(inode, FI_OPU_WRITE); 3904 3905 for (; secidx <= end_sec; secidx++) { 3906 unsigned int blkofs_end = secidx == end_sec ? 3907 end_blk % blk_per_sec : blk_per_sec - 1; 3908 3909 f2fs_down_write(&sbi->pin_sem); 3910 3911 ret = f2fs_allocate_pinning_section(sbi); 3912 if (ret) { 3913 f2fs_up_write(&sbi->pin_sem); 3914 break; 3915 } 3916 3917 set_inode_flag(inode, FI_SKIP_WRITES); 3918 3919 for (blkofs = 0; blkofs <= blkofs_end; blkofs++) { 3920 struct page *page; 3921 unsigned int blkidx = secidx * blk_per_sec + blkofs; 3922 3923 page = f2fs_get_lock_data_page(inode, blkidx, true); 3924 if (IS_ERR(page)) { 3925 f2fs_up_write(&sbi->pin_sem); 3926 ret = PTR_ERR(page); 3927 goto done; 3928 } 3929 3930 set_page_dirty(page); 3931 f2fs_put_page(page, 1); 3932 } 3933 3934 clear_inode_flag(inode, FI_SKIP_WRITES); 3935 3936 ret = filemap_fdatawrite(inode->i_mapping); 3937 3938 f2fs_up_write(&sbi->pin_sem); 3939 3940 if (ret) 3941 break; 3942 } 3943 3944 done: 3945 clear_inode_flag(inode, FI_SKIP_WRITES); 3946 clear_inode_flag(inode, FI_OPU_WRITE); 3947 clear_inode_flag(inode, FI_ALIGNED_WRITE); 3948 3949 filemap_invalidate_unlock(inode->i_mapping); 3950 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3951 3952 return ret; 3953 } 3954 3955 static int check_swap_activate(struct swap_info_struct *sis, 3956 struct file *swap_file, sector_t *span) 3957 { 3958 struct address_space *mapping = swap_file->f_mapping; 3959 struct inode *inode = mapping->host; 3960 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3961 block_t cur_lblock; 3962 block_t last_lblock; 3963 block_t pblock; 3964 block_t lowest_pblock = -1; 3965 block_t highest_pblock = 0; 3966 int nr_extents = 0; 3967 unsigned int nr_pblocks; 3968 unsigned int blks_per_sec = BLKS_PER_SEC(sbi); 3969 unsigned int not_aligned = 0; 3970 int ret = 0; 3971 3972 /* 3973 * Map all the blocks into the extent list. This code doesn't try 3974 * to be very smart. 3975 */ 3976 cur_lblock = 0; 3977 last_lblock = bytes_to_blks(inode, i_size_read(inode)); 3978 3979 while (cur_lblock < last_lblock && cur_lblock < sis->max) { 3980 struct f2fs_map_blocks map; 3981 retry: 3982 cond_resched(); 3983 3984 memset(&map, 0, sizeof(map)); 3985 map.m_lblk = cur_lblock; 3986 map.m_len = last_lblock - cur_lblock; 3987 map.m_next_pgofs = NULL; 3988 map.m_next_extent = NULL; 3989 map.m_seg_type = NO_CHECK_TYPE; 3990 map.m_may_create = false; 3991 3992 ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP); 3993 if (ret) 3994 goto out; 3995 3996 /* hole */ 3997 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 3998 f2fs_err(sbi, "Swapfile has holes"); 3999 ret = -EINVAL; 4000 goto out; 4001 } 4002 4003 pblock = map.m_pblk; 4004 nr_pblocks = map.m_len; 4005 4006 if ((pblock - SM_I(sbi)->main_blkaddr) % blks_per_sec || 4007 nr_pblocks % blks_per_sec || 4008 !f2fs_valid_pinned_area(sbi, pblock)) { 4009 bool last_extent = false; 4010 4011 not_aligned++; 4012 4013 nr_pblocks = roundup(nr_pblocks, blks_per_sec); 4014 if (cur_lblock + nr_pblocks > sis->max) 4015 nr_pblocks -= blks_per_sec; 4016 4017 /* this extent is last one */ 4018 if (!nr_pblocks) { 4019 nr_pblocks = last_lblock - cur_lblock; 4020 last_extent = true; 4021 } 4022 4023 ret = f2fs_migrate_blocks(inode, cur_lblock, 4024 nr_pblocks); 4025 if (ret) { 4026 if (ret == -ENOENT) 4027 ret = -EINVAL; 4028 goto out; 4029 } 4030 4031 if (!last_extent) 4032 goto retry; 4033 } 4034 4035 if (cur_lblock + nr_pblocks >= sis->max) 4036 nr_pblocks = sis->max - cur_lblock; 4037 4038 if (cur_lblock) { /* exclude the header page */ 4039 if (pblock < lowest_pblock) 4040 lowest_pblock = pblock; 4041 if (pblock + nr_pblocks - 1 > highest_pblock) 4042 highest_pblock = pblock + nr_pblocks - 1; 4043 } 4044 4045 /* 4046 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks 4047 */ 4048 ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock); 4049 if (ret < 0) 4050 goto out; 4051 nr_extents += ret; 4052 cur_lblock += nr_pblocks; 4053 } 4054 ret = nr_extents; 4055 *span = 1 + highest_pblock - lowest_pblock; 4056 if (cur_lblock == 0) 4057 cur_lblock = 1; /* force Empty message */ 4058 sis->max = cur_lblock; 4059 sis->pages = cur_lblock - 1; 4060 sis->highest_bit = cur_lblock - 1; 4061 out: 4062 if (not_aligned) 4063 f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%lu * N)", 4064 not_aligned, blks_per_sec * F2FS_BLKSIZE); 4065 return ret; 4066 } 4067 4068 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, 4069 sector_t *span) 4070 { 4071 struct inode *inode = file_inode(file); 4072 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4073 int ret; 4074 4075 if (!S_ISREG(inode->i_mode)) 4076 return -EINVAL; 4077 4078 if (f2fs_readonly(sbi->sb)) 4079 return -EROFS; 4080 4081 if (f2fs_lfs_mode(sbi) && !f2fs_sb_has_blkzoned(sbi)) { 4082 f2fs_err(sbi, "Swapfile not supported in LFS mode"); 4083 return -EINVAL; 4084 } 4085 4086 ret = f2fs_convert_inline_inode(inode); 4087 if (ret) 4088 return ret; 4089 4090 if (!f2fs_disable_compressed_file(inode)) 4091 return -EINVAL; 4092 4093 ret = filemap_fdatawrite(inode->i_mapping); 4094 if (ret < 0) 4095 return ret; 4096 4097 f2fs_precache_extents(inode); 4098 4099 ret = check_swap_activate(sis, file, span); 4100 if (ret < 0) 4101 return ret; 4102 4103 stat_inc_swapfile_inode(inode); 4104 set_inode_flag(inode, FI_PIN_FILE); 4105 f2fs_update_time(sbi, REQ_TIME); 4106 return ret; 4107 } 4108 4109 static void f2fs_swap_deactivate(struct file *file) 4110 { 4111 struct inode *inode = file_inode(file); 4112 4113 stat_dec_swapfile_inode(inode); 4114 clear_inode_flag(inode, FI_PIN_FILE); 4115 } 4116 #else 4117 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, 4118 sector_t *span) 4119 { 4120 return -EOPNOTSUPP; 4121 } 4122 4123 static void f2fs_swap_deactivate(struct file *file) 4124 { 4125 } 4126 #endif 4127 4128 const struct address_space_operations f2fs_dblock_aops = { 4129 .read_folio = f2fs_read_data_folio, 4130 .readahead = f2fs_readahead, 4131 .writepage = f2fs_write_data_page, 4132 .writepages = f2fs_write_data_pages, 4133 .write_begin = f2fs_write_begin, 4134 .write_end = f2fs_write_end, 4135 .dirty_folio = f2fs_dirty_data_folio, 4136 .migrate_folio = filemap_migrate_folio, 4137 .invalidate_folio = f2fs_invalidate_folio, 4138 .release_folio = f2fs_release_folio, 4139 .bmap = f2fs_bmap, 4140 .swap_activate = f2fs_swap_activate, 4141 .swap_deactivate = f2fs_swap_deactivate, 4142 }; 4143 4144 void f2fs_clear_page_cache_dirty_tag(struct folio *folio) 4145 { 4146 struct address_space *mapping = folio->mapping; 4147 unsigned long flags; 4148 4149 xa_lock_irqsave(&mapping->i_pages, flags); 4150 __xa_clear_mark(&mapping->i_pages, folio->index, 4151 PAGECACHE_TAG_DIRTY); 4152 xa_unlock_irqrestore(&mapping->i_pages, flags); 4153 } 4154 4155 int __init f2fs_init_post_read_processing(void) 4156 { 4157 bio_post_read_ctx_cache = 4158 kmem_cache_create("f2fs_bio_post_read_ctx", 4159 sizeof(struct bio_post_read_ctx), 0, 0, NULL); 4160 if (!bio_post_read_ctx_cache) 4161 goto fail; 4162 bio_post_read_ctx_pool = 4163 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS, 4164 bio_post_read_ctx_cache); 4165 if (!bio_post_read_ctx_pool) 4166 goto fail_free_cache; 4167 return 0; 4168 4169 fail_free_cache: 4170 kmem_cache_destroy(bio_post_read_ctx_cache); 4171 fail: 4172 return -ENOMEM; 4173 } 4174 4175 void f2fs_destroy_post_read_processing(void) 4176 { 4177 mempool_destroy(bio_post_read_ctx_pool); 4178 kmem_cache_destroy(bio_post_read_ctx_cache); 4179 } 4180 4181 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi) 4182 { 4183 if (!f2fs_sb_has_encrypt(sbi) && 4184 !f2fs_sb_has_verity(sbi) && 4185 !f2fs_sb_has_compression(sbi)) 4186 return 0; 4187 4188 sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq", 4189 WQ_UNBOUND | WQ_HIGHPRI, 4190 num_online_cpus()); 4191 return sbi->post_read_wq ? 0 : -ENOMEM; 4192 } 4193 4194 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi) 4195 { 4196 if (sbi->post_read_wq) 4197 destroy_workqueue(sbi->post_read_wq); 4198 } 4199 4200 int __init f2fs_init_bio_entry_cache(void) 4201 { 4202 bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab", 4203 sizeof(struct bio_entry)); 4204 return bio_entry_slab ? 0 : -ENOMEM; 4205 } 4206 4207 void f2fs_destroy_bio_entry_cache(void) 4208 { 4209 kmem_cache_destroy(bio_entry_slab); 4210 } 4211 4212 static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 4213 unsigned int flags, struct iomap *iomap, 4214 struct iomap *srcmap) 4215 { 4216 struct f2fs_map_blocks map = {}; 4217 pgoff_t next_pgofs = 0; 4218 int err; 4219 4220 map.m_lblk = bytes_to_blks(inode, offset); 4221 map.m_len = bytes_to_blks(inode, offset + length - 1) - map.m_lblk + 1; 4222 map.m_next_pgofs = &next_pgofs; 4223 map.m_seg_type = f2fs_rw_hint_to_seg_type(F2FS_I_SB(inode), 4224 inode->i_write_hint); 4225 if (flags & IOMAP_WRITE) 4226 map.m_may_create = true; 4227 4228 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DIO); 4229 if (err) 4230 return err; 4231 4232 iomap->offset = blks_to_bytes(inode, map.m_lblk); 4233 4234 /* 4235 * When inline encryption is enabled, sometimes I/O to an encrypted file 4236 * has to be broken up to guarantee DUN contiguity. Handle this by 4237 * limiting the length of the mapping returned. 4238 */ 4239 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len); 4240 4241 /* 4242 * We should never see delalloc or compressed extents here based on 4243 * prior flushing and checks. 4244 */ 4245 if (WARN_ON_ONCE(map.m_pblk == COMPRESS_ADDR)) 4246 return -EINVAL; 4247 4248 if (map.m_flags & F2FS_MAP_MAPPED) { 4249 if (WARN_ON_ONCE(map.m_pblk == NEW_ADDR)) 4250 return -EINVAL; 4251 4252 iomap->length = blks_to_bytes(inode, map.m_len); 4253 iomap->type = IOMAP_MAPPED; 4254 iomap->flags |= IOMAP_F_MERGED; 4255 iomap->bdev = map.m_bdev; 4256 iomap->addr = blks_to_bytes(inode, map.m_pblk); 4257 } else { 4258 if (flags & IOMAP_WRITE) 4259 return -ENOTBLK; 4260 4261 if (map.m_pblk == NULL_ADDR) { 4262 iomap->length = blks_to_bytes(inode, next_pgofs) - 4263 iomap->offset; 4264 iomap->type = IOMAP_HOLE; 4265 } else if (map.m_pblk == NEW_ADDR) { 4266 iomap->length = blks_to_bytes(inode, map.m_len); 4267 iomap->type = IOMAP_UNWRITTEN; 4268 } else { 4269 f2fs_bug_on(F2FS_I_SB(inode), 1); 4270 } 4271 iomap->addr = IOMAP_NULL_ADDR; 4272 } 4273 4274 if (map.m_flags & F2FS_MAP_NEW) 4275 iomap->flags |= IOMAP_F_NEW; 4276 if ((inode->i_state & I_DIRTY_DATASYNC) || 4277 offset + length > i_size_read(inode)) 4278 iomap->flags |= IOMAP_F_DIRTY; 4279 4280 return 0; 4281 } 4282 4283 const struct iomap_ops f2fs_iomap_ops = { 4284 .iomap_begin = f2fs_iomap_begin, 4285 }; 4286