1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/data.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/sched/mm.h> 11 #include <linux/mpage.h> 12 #include <linux/writeback.h> 13 #include <linux/pagevec.h> 14 #include <linux/blkdev.h> 15 #include <linux/bio.h> 16 #include <linux/blk-crypto.h> 17 #include <linux/swap.h> 18 #include <linux/prefetch.h> 19 #include <linux/uio.h> 20 #include <linux/sched/signal.h> 21 #include <linux/fiemap.h> 22 #include <linux/iomap.h> 23 24 #include "f2fs.h" 25 #include "node.h" 26 #include "segment.h" 27 #include "iostat.h" 28 #include <trace/events/f2fs.h> 29 30 #define NUM_PREALLOC_POST_READ_CTXS 128 31 32 static struct kmem_cache *bio_post_read_ctx_cache; 33 static struct kmem_cache *bio_entry_slab; 34 static mempool_t *bio_post_read_ctx_pool; 35 static struct bio_set f2fs_bioset; 36 37 #define F2FS_BIO_POOL_SIZE NR_CURSEG_TYPE 38 39 int __init f2fs_init_bioset(void) 40 { 41 return bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE, 42 0, BIOSET_NEED_BVECS); 43 } 44 45 void f2fs_destroy_bioset(void) 46 { 47 bioset_exit(&f2fs_bioset); 48 } 49 50 bool f2fs_is_cp_guaranteed(const struct folio *folio) 51 { 52 struct address_space *mapping = folio->mapping; 53 struct inode *inode; 54 struct f2fs_sb_info *sbi; 55 56 if (fscrypt_is_bounce_folio(folio)) 57 return folio_test_f2fs_gcing(fscrypt_pagecache_folio(folio)); 58 59 inode = mapping->host; 60 sbi = F2FS_I_SB(inode); 61 62 if (inode->i_ino == F2FS_META_INO(sbi) || 63 inode->i_ino == F2FS_NODE_INO(sbi) || 64 S_ISDIR(inode->i_mode)) 65 return true; 66 67 if ((S_ISREG(inode->i_mode) && IS_NOQUOTA(inode)) || 68 folio_test_f2fs_gcing(folio)) 69 return true; 70 return false; 71 } 72 73 static enum count_type __read_io_type(struct folio *folio) 74 { 75 struct address_space *mapping = folio->mapping; 76 77 if (mapping) { 78 struct inode *inode = mapping->host; 79 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 80 81 if (inode->i_ino == F2FS_META_INO(sbi)) 82 return F2FS_RD_META; 83 84 if (inode->i_ino == F2FS_NODE_INO(sbi)) 85 return F2FS_RD_NODE; 86 } 87 return F2FS_RD_DATA; 88 } 89 90 /* postprocessing steps for read bios */ 91 enum bio_post_read_step { 92 #ifdef CONFIG_FS_ENCRYPTION 93 STEP_DECRYPT = BIT(0), 94 #else 95 STEP_DECRYPT = 0, /* compile out the decryption-related code */ 96 #endif 97 #ifdef CONFIG_F2FS_FS_COMPRESSION 98 STEP_DECOMPRESS = BIT(1), 99 #else 100 STEP_DECOMPRESS = 0, /* compile out the decompression-related code */ 101 #endif 102 #ifdef CONFIG_FS_VERITY 103 STEP_VERITY = BIT(2), 104 #else 105 STEP_VERITY = 0, /* compile out the verity-related code */ 106 #endif 107 }; 108 109 struct bio_post_read_ctx { 110 struct bio *bio; 111 struct f2fs_sb_info *sbi; 112 struct work_struct work; 113 unsigned int enabled_steps; 114 /* 115 * decompression_attempted keeps track of whether 116 * f2fs_end_read_compressed_page() has been called on the pages in the 117 * bio that belong to a compressed cluster yet. 118 */ 119 bool decompression_attempted; 120 block_t fs_blkaddr; 121 }; 122 123 /* 124 * Update and unlock a bio's pages, and free the bio. 125 * 126 * This marks pages up-to-date only if there was no error in the bio (I/O error, 127 * decryption error, or verity error), as indicated by bio->bi_status. 128 * 129 * "Compressed pages" (pagecache pages backed by a compressed cluster on-disk) 130 * aren't marked up-to-date here, as decompression is done on a per-compression- 131 * cluster basis rather than a per-bio basis. Instead, we only must do two 132 * things for each compressed page here: call f2fs_end_read_compressed_page() 133 * with failed=true if an error occurred before it would have normally gotten 134 * called (i.e., I/O error or decryption error, but *not* verity error), and 135 * release the bio's reference to the decompress_io_ctx of the page's cluster. 136 */ 137 static void f2fs_finish_read_bio(struct bio *bio, bool in_task) 138 { 139 struct folio_iter fi; 140 struct bio_post_read_ctx *ctx = bio->bi_private; 141 142 bio_for_each_folio_all(fi, bio) { 143 struct folio *folio = fi.folio; 144 145 if (f2fs_is_compressed_page(folio)) { 146 if (ctx && !ctx->decompression_attempted) 147 f2fs_end_read_compressed_page(folio, true, 0, 148 in_task); 149 f2fs_put_folio_dic(folio, in_task); 150 continue; 151 } 152 153 dec_page_count(F2FS_F_SB(folio), __read_io_type(folio)); 154 folio_end_read(folio, bio->bi_status == BLK_STS_OK); 155 } 156 157 if (ctx) 158 mempool_free(ctx, bio_post_read_ctx_pool); 159 bio_put(bio); 160 } 161 162 static void f2fs_verify_bio(struct work_struct *work) 163 { 164 struct bio_post_read_ctx *ctx = 165 container_of(work, struct bio_post_read_ctx, work); 166 struct bio *bio = ctx->bio; 167 bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS); 168 169 /* 170 * fsverity_verify_bio() may call readahead() again, and while verity 171 * will be disabled for this, decryption and/or decompression may still 172 * be needed, resulting in another bio_post_read_ctx being allocated. 173 * So to prevent deadlocks we need to release the current ctx to the 174 * mempool first. This assumes that verity is the last post-read step. 175 */ 176 mempool_free(ctx, bio_post_read_ctx_pool); 177 bio->bi_private = NULL; 178 179 /* 180 * Verify the bio's pages with fs-verity. Exclude compressed pages, 181 * as those were handled separately by f2fs_end_read_compressed_page(). 182 */ 183 if (may_have_compressed_pages) { 184 struct folio_iter fi; 185 186 bio_for_each_folio_all(fi, bio) { 187 struct folio *folio = fi.folio; 188 189 if (!f2fs_is_compressed_page(folio) && 190 !fsverity_verify_page(&folio->page)) { 191 bio->bi_status = BLK_STS_IOERR; 192 break; 193 } 194 } 195 } else { 196 fsverity_verify_bio(bio); 197 } 198 199 f2fs_finish_read_bio(bio, true); 200 } 201 202 /* 203 * If the bio's data needs to be verified with fs-verity, then enqueue the 204 * verity work for the bio. Otherwise finish the bio now. 205 * 206 * Note that to avoid deadlocks, the verity work can't be done on the 207 * decryption/decompression workqueue. This is because verifying the data pages 208 * can involve reading verity metadata pages from the file, and these verity 209 * metadata pages may be encrypted and/or compressed. 210 */ 211 static void f2fs_verify_and_finish_bio(struct bio *bio, bool in_task) 212 { 213 struct bio_post_read_ctx *ctx = bio->bi_private; 214 215 if (ctx && (ctx->enabled_steps & STEP_VERITY)) { 216 INIT_WORK(&ctx->work, f2fs_verify_bio); 217 fsverity_enqueue_verify_work(&ctx->work); 218 } else { 219 f2fs_finish_read_bio(bio, in_task); 220 } 221 } 222 223 /* 224 * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last 225 * remaining page was read by @ctx->bio. 226 * 227 * Note that a bio may span clusters (even a mix of compressed and uncompressed 228 * clusters) or be for just part of a cluster. STEP_DECOMPRESS just indicates 229 * that the bio includes at least one compressed page. The actual decompression 230 * is done on a per-cluster basis, not a per-bio basis. 231 */ 232 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx, 233 bool in_task) 234 { 235 struct folio_iter fi; 236 bool all_compressed = true; 237 block_t blkaddr = ctx->fs_blkaddr; 238 239 bio_for_each_folio_all(fi, ctx->bio) { 240 struct folio *folio = fi.folio; 241 242 if (f2fs_is_compressed_page(folio)) 243 f2fs_end_read_compressed_page(folio, false, blkaddr, 244 in_task); 245 else 246 all_compressed = false; 247 248 blkaddr++; 249 } 250 251 ctx->decompression_attempted = true; 252 253 /* 254 * Optimization: if all the bio's pages are compressed, then scheduling 255 * the per-bio verity work is unnecessary, as verity will be fully 256 * handled at the compression cluster level. 257 */ 258 if (all_compressed) 259 ctx->enabled_steps &= ~STEP_VERITY; 260 } 261 262 static void f2fs_post_read_work(struct work_struct *work) 263 { 264 struct bio_post_read_ctx *ctx = 265 container_of(work, struct bio_post_read_ctx, work); 266 struct bio *bio = ctx->bio; 267 268 if ((ctx->enabled_steps & STEP_DECRYPT) && !fscrypt_decrypt_bio(bio)) { 269 f2fs_finish_read_bio(bio, true); 270 return; 271 } 272 273 if (ctx->enabled_steps & STEP_DECOMPRESS) 274 f2fs_handle_step_decompress(ctx, true); 275 276 f2fs_verify_and_finish_bio(bio, true); 277 } 278 279 static void f2fs_read_end_io(struct bio *bio) 280 { 281 struct f2fs_sb_info *sbi = F2FS_F_SB(bio_first_folio_all(bio)); 282 struct bio_post_read_ctx *ctx; 283 bool intask = in_task() && !irqs_disabled(); 284 285 iostat_update_and_unbind_ctx(bio); 286 ctx = bio->bi_private; 287 288 if (time_to_inject(sbi, FAULT_READ_IO)) 289 bio->bi_status = BLK_STS_IOERR; 290 291 if (bio->bi_status != BLK_STS_OK) { 292 f2fs_finish_read_bio(bio, intask); 293 return; 294 } 295 296 if (ctx) { 297 unsigned int enabled_steps = ctx->enabled_steps & 298 (STEP_DECRYPT | STEP_DECOMPRESS); 299 300 /* 301 * If we have only decompression step between decompression and 302 * decrypt, we don't need post processing for this. 303 */ 304 if (enabled_steps == STEP_DECOMPRESS && 305 !f2fs_low_mem_mode(sbi)) { 306 f2fs_handle_step_decompress(ctx, intask); 307 } else if (enabled_steps) { 308 INIT_WORK(&ctx->work, f2fs_post_read_work); 309 queue_work(ctx->sbi->post_read_wq, &ctx->work); 310 return; 311 } 312 } 313 314 f2fs_verify_and_finish_bio(bio, intask); 315 } 316 317 static void f2fs_write_end_io(struct bio *bio) 318 { 319 struct f2fs_sb_info *sbi; 320 struct folio_iter fi; 321 322 iostat_update_and_unbind_ctx(bio); 323 sbi = bio->bi_private; 324 325 if (time_to_inject(sbi, FAULT_WRITE_IO)) 326 bio->bi_status = BLK_STS_IOERR; 327 328 bio_for_each_folio_all(fi, bio) { 329 struct folio *folio = fi.folio; 330 enum count_type type; 331 332 if (fscrypt_is_bounce_folio(folio)) { 333 struct folio *io_folio = folio; 334 335 folio = fscrypt_pagecache_folio(io_folio); 336 fscrypt_free_bounce_page(&io_folio->page); 337 } 338 339 #ifdef CONFIG_F2FS_FS_COMPRESSION 340 if (f2fs_is_compressed_page(folio)) { 341 f2fs_compress_write_end_io(bio, folio); 342 continue; 343 } 344 #endif 345 346 type = WB_DATA_TYPE(folio, false); 347 348 if (unlikely(bio->bi_status != BLK_STS_OK)) { 349 mapping_set_error(folio->mapping, -EIO); 350 if (type == F2FS_WB_CP_DATA) 351 f2fs_stop_checkpoint(sbi, true, 352 STOP_CP_REASON_WRITE_FAIL); 353 } 354 355 f2fs_bug_on(sbi, is_node_folio(folio) && 356 folio->index != nid_of_node(folio)); 357 358 dec_page_count(sbi, type); 359 if (f2fs_in_warm_node_list(sbi, folio)) 360 f2fs_del_fsync_node_entry(sbi, folio); 361 folio_clear_f2fs_gcing(folio); 362 folio_end_writeback(folio); 363 } 364 if (!get_pages(sbi, F2FS_WB_CP_DATA) && 365 wq_has_sleeper(&sbi->cp_wait)) 366 wake_up(&sbi->cp_wait); 367 368 bio_put(bio); 369 } 370 371 #ifdef CONFIG_BLK_DEV_ZONED 372 static void f2fs_zone_write_end_io(struct bio *bio) 373 { 374 struct f2fs_bio_info *io = (struct f2fs_bio_info *)bio->bi_private; 375 376 bio->bi_private = io->bi_private; 377 complete(&io->zone_wait); 378 f2fs_write_end_io(bio); 379 } 380 #endif 381 382 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 383 block_t blk_addr, sector_t *sector) 384 { 385 struct block_device *bdev = sbi->sb->s_bdev; 386 int i; 387 388 if (f2fs_is_multi_device(sbi)) { 389 for (i = 0; i < sbi->s_ndevs; i++) { 390 if (FDEV(i).start_blk <= blk_addr && 391 FDEV(i).end_blk >= blk_addr) { 392 blk_addr -= FDEV(i).start_blk; 393 bdev = FDEV(i).bdev; 394 break; 395 } 396 } 397 } 398 399 if (sector) 400 *sector = SECTOR_FROM_BLOCK(blk_addr); 401 return bdev; 402 } 403 404 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr) 405 { 406 int i; 407 408 if (!f2fs_is_multi_device(sbi)) 409 return 0; 410 411 for (i = 0; i < sbi->s_ndevs; i++) 412 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr) 413 return i; 414 return 0; 415 } 416 417 static blk_opf_t f2fs_io_flags(struct f2fs_io_info *fio) 418 { 419 unsigned int temp_mask = GENMASK(NR_TEMP_TYPE - 1, 0); 420 unsigned int fua_flag, meta_flag, io_flag; 421 blk_opf_t op_flags = 0; 422 423 if (fio->op != REQ_OP_WRITE) 424 return 0; 425 if (fio->type == DATA) 426 io_flag = fio->sbi->data_io_flag; 427 else if (fio->type == NODE) 428 io_flag = fio->sbi->node_io_flag; 429 else 430 return 0; 431 432 fua_flag = io_flag & temp_mask; 433 meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask; 434 435 /* 436 * data/node io flag bits per temp: 437 * REQ_META | REQ_FUA | 438 * 5 | 4 | 3 | 2 | 1 | 0 | 439 * Cold | Warm | Hot | Cold | Warm | Hot | 440 */ 441 if (BIT(fio->temp) & meta_flag) 442 op_flags |= REQ_META; 443 if (BIT(fio->temp) & fua_flag) 444 op_flags |= REQ_FUA; 445 446 if (fio->type == DATA && 447 F2FS_I(fio->folio->mapping->host)->ioprio_hint == F2FS_IOPRIO_WRITE) 448 op_flags |= REQ_PRIO; 449 450 return op_flags; 451 } 452 453 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages) 454 { 455 struct f2fs_sb_info *sbi = fio->sbi; 456 struct block_device *bdev; 457 sector_t sector; 458 struct bio *bio; 459 460 bdev = f2fs_target_device(sbi, fio->new_blkaddr, §or); 461 bio = bio_alloc_bioset(bdev, npages, 462 fio->op | fio->op_flags | f2fs_io_flags(fio), 463 GFP_NOIO, &f2fs_bioset); 464 bio->bi_iter.bi_sector = sector; 465 if (is_read_io(fio->op)) { 466 bio->bi_end_io = f2fs_read_end_io; 467 bio->bi_private = NULL; 468 } else { 469 bio->bi_end_io = f2fs_write_end_io; 470 bio->bi_private = sbi; 471 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, 472 fio->type, fio->temp); 473 } 474 iostat_alloc_and_bind_ctx(sbi, bio, NULL); 475 476 if (fio->io_wbc) 477 wbc_init_bio(fio->io_wbc, bio); 478 479 return bio; 480 } 481 482 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode, 483 pgoff_t first_idx, 484 const struct f2fs_io_info *fio, 485 gfp_t gfp_mask) 486 { 487 /* 488 * The f2fs garbage collector sets ->encrypted_page when it wants to 489 * read/write raw data without encryption. 490 */ 491 if (!fio || !fio->encrypted_page) 492 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask); 493 } 494 495 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode, 496 pgoff_t next_idx, 497 const struct f2fs_io_info *fio) 498 { 499 /* 500 * The f2fs garbage collector sets ->encrypted_page when it wants to 501 * read/write raw data without encryption. 502 */ 503 if (fio && fio->encrypted_page) 504 return !bio_has_crypt_ctx(bio); 505 506 return fscrypt_mergeable_bio(bio, inode, next_idx); 507 } 508 509 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio, 510 enum page_type type) 511 { 512 WARN_ON_ONCE(!is_read_io(bio_op(bio))); 513 trace_f2fs_submit_read_bio(sbi->sb, type, bio); 514 515 iostat_update_submit_ctx(bio, type); 516 submit_bio(bio); 517 } 518 519 static void f2fs_submit_write_bio(struct f2fs_sb_info *sbi, struct bio *bio, 520 enum page_type type) 521 { 522 WARN_ON_ONCE(is_read_io(bio_op(bio))); 523 trace_f2fs_submit_write_bio(sbi->sb, type, bio); 524 iostat_update_submit_ctx(bio, type); 525 submit_bio(bio); 526 } 527 528 static void __submit_merged_bio(struct f2fs_bio_info *io) 529 { 530 struct f2fs_io_info *fio = &io->fio; 531 532 if (!io->bio) 533 return; 534 535 if (is_read_io(fio->op)) { 536 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio); 537 f2fs_submit_read_bio(io->sbi, io->bio, fio->type); 538 } else { 539 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio); 540 f2fs_submit_write_bio(io->sbi, io->bio, fio->type); 541 } 542 io->bio = NULL; 543 } 544 545 static bool __has_merged_page(struct bio *bio, struct inode *inode, 546 struct folio *folio, nid_t ino) 547 { 548 struct folio_iter fi; 549 550 if (!bio) 551 return false; 552 553 if (!inode && !folio && !ino) 554 return true; 555 556 bio_for_each_folio_all(fi, bio) { 557 struct folio *target = fi.folio; 558 559 if (fscrypt_is_bounce_folio(target)) { 560 target = fscrypt_pagecache_folio(target); 561 if (IS_ERR(target)) 562 continue; 563 } 564 if (f2fs_is_compressed_page(target)) { 565 target = f2fs_compress_control_folio(target); 566 if (IS_ERR(target)) 567 continue; 568 } 569 570 if (inode && inode == target->mapping->host) 571 return true; 572 if (folio && folio == target) 573 return true; 574 if (ino && ino == ino_of_node(target)) 575 return true; 576 } 577 578 return false; 579 } 580 581 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi) 582 { 583 int i; 584 585 for (i = 0; i < NR_PAGE_TYPE; i++) { 586 int n = (i == META) ? 1 : NR_TEMP_TYPE; 587 int j; 588 589 sbi->write_io[i] = f2fs_kmalloc(sbi, 590 array_size(n, sizeof(struct f2fs_bio_info)), 591 GFP_KERNEL); 592 if (!sbi->write_io[i]) 593 return -ENOMEM; 594 595 for (j = HOT; j < n; j++) { 596 struct f2fs_bio_info *io = &sbi->write_io[i][j]; 597 598 init_f2fs_rwsem(&io->io_rwsem); 599 io->sbi = sbi; 600 io->bio = NULL; 601 io->last_block_in_bio = 0; 602 spin_lock_init(&io->io_lock); 603 INIT_LIST_HEAD(&io->io_list); 604 INIT_LIST_HEAD(&io->bio_list); 605 init_f2fs_rwsem(&io->bio_list_lock); 606 #ifdef CONFIG_BLK_DEV_ZONED 607 init_completion(&io->zone_wait); 608 io->zone_pending_bio = NULL; 609 io->bi_private = NULL; 610 #endif 611 } 612 } 613 614 return 0; 615 } 616 617 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi, 618 enum page_type type, enum temp_type temp) 619 { 620 enum page_type btype = PAGE_TYPE_OF_BIO(type); 621 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 622 623 f2fs_down_write(&io->io_rwsem); 624 625 if (!io->bio) 626 goto unlock_out; 627 628 /* change META to META_FLUSH in the checkpoint procedure */ 629 if (type >= META_FLUSH) { 630 io->fio.type = META_FLUSH; 631 io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC; 632 if (!test_opt(sbi, NOBARRIER)) 633 io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA; 634 } 635 __submit_merged_bio(io); 636 unlock_out: 637 f2fs_up_write(&io->io_rwsem); 638 } 639 640 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi, 641 struct inode *inode, struct folio *folio, 642 nid_t ino, enum page_type type, bool force) 643 { 644 enum temp_type temp; 645 bool ret = true; 646 647 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) { 648 if (!force) { 649 enum page_type btype = PAGE_TYPE_OF_BIO(type); 650 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 651 652 f2fs_down_read(&io->io_rwsem); 653 ret = __has_merged_page(io->bio, inode, folio, ino); 654 f2fs_up_read(&io->io_rwsem); 655 } 656 if (ret) 657 __f2fs_submit_merged_write(sbi, type, temp); 658 659 /* TODO: use HOT temp only for meta pages now. */ 660 if (type >= META) 661 break; 662 } 663 } 664 665 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type) 666 { 667 __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true); 668 } 669 670 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 671 struct inode *inode, struct folio *folio, 672 nid_t ino, enum page_type type) 673 { 674 __submit_merged_write_cond(sbi, inode, folio, ino, type, false); 675 } 676 677 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi) 678 { 679 f2fs_submit_merged_write(sbi, DATA); 680 f2fs_submit_merged_write(sbi, NODE); 681 f2fs_submit_merged_write(sbi, META); 682 } 683 684 /* 685 * Fill the locked page with data located in the block address. 686 * A caller needs to unlock the page on failure. 687 */ 688 int f2fs_submit_page_bio(struct f2fs_io_info *fio) 689 { 690 struct bio *bio; 691 struct folio *fio_folio = fio->folio; 692 struct folio *data_folio = fio->encrypted_page ? 693 page_folio(fio->encrypted_page) : fio_folio; 694 695 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, 696 fio->is_por ? META_POR : (__is_meta_io(fio) ? 697 META_GENERIC : DATA_GENERIC_ENHANCE))) 698 return -EFSCORRUPTED; 699 700 trace_f2fs_submit_folio_bio(data_folio, fio); 701 702 /* Allocate a new bio */ 703 bio = __bio_alloc(fio, 1); 704 705 f2fs_set_bio_crypt_ctx(bio, fio_folio->mapping->host, 706 fio_folio->index, fio, GFP_NOIO); 707 bio_add_folio_nofail(bio, data_folio, folio_size(data_folio), 0); 708 709 if (fio->io_wbc && !is_read_io(fio->op)) 710 wbc_account_cgroup_owner(fio->io_wbc, fio_folio, PAGE_SIZE); 711 712 inc_page_count(fio->sbi, is_read_io(fio->op) ? 713 __read_io_type(data_folio) : WB_DATA_TYPE(fio->folio, false)); 714 715 if (is_read_io(bio_op(bio))) 716 f2fs_submit_read_bio(fio->sbi, bio, fio->type); 717 else 718 f2fs_submit_write_bio(fio->sbi, bio, fio->type); 719 return 0; 720 } 721 722 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio, 723 block_t last_blkaddr, block_t cur_blkaddr) 724 { 725 if (unlikely(sbi->max_io_bytes && 726 bio->bi_iter.bi_size >= sbi->max_io_bytes)) 727 return false; 728 if (last_blkaddr + 1 != cur_blkaddr) 729 return false; 730 return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL); 731 } 732 733 static bool io_type_is_mergeable(struct f2fs_bio_info *io, 734 struct f2fs_io_info *fio) 735 { 736 if (io->fio.op != fio->op) 737 return false; 738 return io->fio.op_flags == fio->op_flags; 739 } 740 741 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio, 742 struct f2fs_bio_info *io, 743 struct f2fs_io_info *fio, 744 block_t last_blkaddr, 745 block_t cur_blkaddr) 746 { 747 if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr)) 748 return false; 749 return io_type_is_mergeable(io, fio); 750 } 751 752 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio, 753 struct page *page, enum temp_type temp) 754 { 755 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 756 struct bio_entry *be; 757 758 be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL); 759 be->bio = bio; 760 bio_get(bio); 761 762 if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE) 763 f2fs_bug_on(sbi, 1); 764 765 f2fs_down_write(&io->bio_list_lock); 766 list_add_tail(&be->list, &io->bio_list); 767 f2fs_up_write(&io->bio_list_lock); 768 } 769 770 static void del_bio_entry(struct bio_entry *be) 771 { 772 list_del(&be->list); 773 kmem_cache_free(bio_entry_slab, be); 774 } 775 776 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio, 777 struct page *page) 778 { 779 struct folio *fio_folio = fio->folio; 780 struct f2fs_sb_info *sbi = fio->sbi; 781 enum temp_type temp; 782 bool found = false; 783 int ret = -EAGAIN; 784 785 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) { 786 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 787 struct list_head *head = &io->bio_list; 788 struct bio_entry *be; 789 790 f2fs_down_write(&io->bio_list_lock); 791 list_for_each_entry(be, head, list) { 792 if (be->bio != *bio) 793 continue; 794 795 found = true; 796 797 f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio, 798 *fio->last_block, 799 fio->new_blkaddr)); 800 if (f2fs_crypt_mergeable_bio(*bio, 801 fio_folio->mapping->host, 802 fio_folio->index, fio) && 803 bio_add_page(*bio, page, PAGE_SIZE, 0) == 804 PAGE_SIZE) { 805 ret = 0; 806 break; 807 } 808 809 /* page can't be merged into bio; submit the bio */ 810 del_bio_entry(be); 811 f2fs_submit_write_bio(sbi, *bio, DATA); 812 break; 813 } 814 f2fs_up_write(&io->bio_list_lock); 815 } 816 817 if (ret) { 818 bio_put(*bio); 819 *bio = NULL; 820 } 821 822 return ret; 823 } 824 825 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi, 826 struct bio **bio, struct folio *folio) 827 { 828 enum temp_type temp; 829 bool found = false; 830 struct bio *target = bio ? *bio : NULL; 831 832 f2fs_bug_on(sbi, !target && !folio); 833 834 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) { 835 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 836 struct list_head *head = &io->bio_list; 837 struct bio_entry *be; 838 839 if (list_empty(head)) 840 continue; 841 842 f2fs_down_read(&io->bio_list_lock); 843 list_for_each_entry(be, head, list) { 844 if (target) 845 found = (target == be->bio); 846 else 847 found = __has_merged_page(be->bio, NULL, 848 folio, 0); 849 if (found) 850 break; 851 } 852 f2fs_up_read(&io->bio_list_lock); 853 854 if (!found) 855 continue; 856 857 found = false; 858 859 f2fs_down_write(&io->bio_list_lock); 860 list_for_each_entry(be, head, list) { 861 if (target) 862 found = (target == be->bio); 863 else 864 found = __has_merged_page(be->bio, NULL, 865 folio, 0); 866 if (found) { 867 target = be->bio; 868 del_bio_entry(be); 869 break; 870 } 871 } 872 f2fs_up_write(&io->bio_list_lock); 873 } 874 875 if (found) 876 f2fs_submit_write_bio(sbi, target, DATA); 877 if (bio && *bio) { 878 bio_put(*bio); 879 *bio = NULL; 880 } 881 } 882 883 int f2fs_merge_page_bio(struct f2fs_io_info *fio) 884 { 885 struct bio *bio = *fio->bio; 886 struct folio *data_folio = fio->encrypted_page ? 887 page_folio(fio->encrypted_page) : fio->folio; 888 struct folio *folio = fio->folio; 889 890 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, 891 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC)) 892 return -EFSCORRUPTED; 893 894 trace_f2fs_submit_folio_bio(data_folio, fio); 895 896 if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block, 897 fio->new_blkaddr)) 898 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL); 899 alloc_new: 900 if (!bio) { 901 bio = __bio_alloc(fio, BIO_MAX_VECS); 902 f2fs_set_bio_crypt_ctx(bio, folio->mapping->host, 903 folio->index, fio, GFP_NOIO); 904 905 add_bio_entry(fio->sbi, bio, &data_folio->page, fio->temp); 906 } else { 907 if (add_ipu_page(fio, &bio, &data_folio->page)) 908 goto alloc_new; 909 } 910 911 if (fio->io_wbc) 912 wbc_account_cgroup_owner(fio->io_wbc, folio, folio_size(folio)); 913 914 inc_page_count(fio->sbi, WB_DATA_TYPE(data_folio, false)); 915 916 *fio->last_block = fio->new_blkaddr; 917 *fio->bio = bio; 918 919 return 0; 920 } 921 922 #ifdef CONFIG_BLK_DEV_ZONED 923 static bool is_end_zone_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr) 924 { 925 struct block_device *bdev = sbi->sb->s_bdev; 926 int devi = 0; 927 928 if (f2fs_is_multi_device(sbi)) { 929 devi = f2fs_target_device_index(sbi, blkaddr); 930 if (blkaddr < FDEV(devi).start_blk || 931 blkaddr > FDEV(devi).end_blk) { 932 f2fs_err(sbi, "Invalid block %x", blkaddr); 933 return false; 934 } 935 blkaddr -= FDEV(devi).start_blk; 936 bdev = FDEV(devi).bdev; 937 } 938 return bdev_is_zoned(bdev) && 939 f2fs_blkz_is_seq(sbi, devi, blkaddr) && 940 (blkaddr % sbi->blocks_per_blkz == sbi->blocks_per_blkz - 1); 941 } 942 #endif 943 944 void f2fs_submit_page_write(struct f2fs_io_info *fio) 945 { 946 struct f2fs_sb_info *sbi = fio->sbi; 947 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type); 948 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp; 949 struct folio *bio_folio; 950 enum count_type type; 951 952 f2fs_bug_on(sbi, is_read_io(fio->op)); 953 954 f2fs_down_write(&io->io_rwsem); 955 next: 956 #ifdef CONFIG_BLK_DEV_ZONED 957 if (f2fs_sb_has_blkzoned(sbi) && btype < META && io->zone_pending_bio) { 958 wait_for_completion_io(&io->zone_wait); 959 bio_put(io->zone_pending_bio); 960 io->zone_pending_bio = NULL; 961 io->bi_private = NULL; 962 } 963 #endif 964 965 if (fio->in_list) { 966 spin_lock(&io->io_lock); 967 if (list_empty(&io->io_list)) { 968 spin_unlock(&io->io_lock); 969 goto out; 970 } 971 fio = list_first_entry(&io->io_list, 972 struct f2fs_io_info, list); 973 list_del(&fio->list); 974 spin_unlock(&io->io_lock); 975 } 976 977 verify_fio_blkaddr(fio); 978 979 if (fio->encrypted_page) 980 bio_folio = page_folio(fio->encrypted_page); 981 else if (fio->compressed_page) 982 bio_folio = page_folio(fio->compressed_page); 983 else 984 bio_folio = fio->folio; 985 986 /* set submitted = true as a return value */ 987 fio->submitted = 1; 988 989 type = WB_DATA_TYPE(bio_folio, fio->compressed_page); 990 inc_page_count(sbi, type); 991 992 if (io->bio && 993 (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio, 994 fio->new_blkaddr) || 995 !f2fs_crypt_mergeable_bio(io->bio, fio_inode(fio), 996 bio_folio->index, fio))) 997 __submit_merged_bio(io); 998 alloc_new: 999 if (io->bio == NULL) { 1000 io->bio = __bio_alloc(fio, BIO_MAX_VECS); 1001 f2fs_set_bio_crypt_ctx(io->bio, fio_inode(fio), 1002 bio_folio->index, fio, GFP_NOIO); 1003 io->fio = *fio; 1004 } 1005 1006 if (!bio_add_folio(io->bio, bio_folio, folio_size(bio_folio), 0)) { 1007 __submit_merged_bio(io); 1008 goto alloc_new; 1009 } 1010 1011 if (fio->io_wbc) 1012 wbc_account_cgroup_owner(fio->io_wbc, fio->folio, 1013 folio_size(fio->folio)); 1014 1015 io->last_block_in_bio = fio->new_blkaddr; 1016 1017 trace_f2fs_submit_folio_write(fio->folio, fio); 1018 #ifdef CONFIG_BLK_DEV_ZONED 1019 if (f2fs_sb_has_blkzoned(sbi) && btype < META && 1020 is_end_zone_blkaddr(sbi, fio->new_blkaddr)) { 1021 bio_get(io->bio); 1022 reinit_completion(&io->zone_wait); 1023 io->bi_private = io->bio->bi_private; 1024 io->bio->bi_private = io; 1025 io->bio->bi_end_io = f2fs_zone_write_end_io; 1026 io->zone_pending_bio = io->bio; 1027 __submit_merged_bio(io); 1028 } 1029 #endif 1030 if (fio->in_list) 1031 goto next; 1032 out: 1033 if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || 1034 !f2fs_is_checkpoint_ready(sbi)) 1035 __submit_merged_bio(io); 1036 f2fs_up_write(&io->io_rwsem); 1037 } 1038 1039 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr, 1040 unsigned nr_pages, blk_opf_t op_flag, 1041 pgoff_t first_idx, bool for_write) 1042 { 1043 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1044 struct bio *bio; 1045 struct bio_post_read_ctx *ctx = NULL; 1046 unsigned int post_read_steps = 0; 1047 sector_t sector; 1048 struct block_device *bdev = f2fs_target_device(sbi, blkaddr, §or); 1049 1050 bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages), 1051 REQ_OP_READ | op_flag, 1052 for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset); 1053 bio->bi_iter.bi_sector = sector; 1054 f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS); 1055 bio->bi_end_io = f2fs_read_end_io; 1056 1057 if (fscrypt_inode_uses_fs_layer_crypto(inode)) 1058 post_read_steps |= STEP_DECRYPT; 1059 1060 if (f2fs_need_verity(inode, first_idx)) 1061 post_read_steps |= STEP_VERITY; 1062 1063 /* 1064 * STEP_DECOMPRESS is handled specially, since a compressed file might 1065 * contain both compressed and uncompressed clusters. We'll allocate a 1066 * bio_post_read_ctx if the file is compressed, but the caller is 1067 * responsible for enabling STEP_DECOMPRESS if it's actually needed. 1068 */ 1069 1070 if (post_read_steps || f2fs_compressed_file(inode)) { 1071 /* Due to the mempool, this never fails. */ 1072 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS); 1073 ctx->bio = bio; 1074 ctx->sbi = sbi; 1075 ctx->enabled_steps = post_read_steps; 1076 ctx->fs_blkaddr = blkaddr; 1077 ctx->decompression_attempted = false; 1078 bio->bi_private = ctx; 1079 } 1080 iostat_alloc_and_bind_ctx(sbi, bio, ctx); 1081 1082 return bio; 1083 } 1084 1085 /* This can handle encryption stuffs */ 1086 static int f2fs_submit_page_read(struct inode *inode, struct folio *folio, 1087 block_t blkaddr, blk_opf_t op_flags, 1088 bool for_write) 1089 { 1090 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1091 struct bio *bio; 1092 1093 bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags, 1094 folio->index, for_write); 1095 if (IS_ERR(bio)) 1096 return PTR_ERR(bio); 1097 1098 /* wait for GCed page writeback via META_MAPPING */ 1099 f2fs_wait_on_block_writeback(inode, blkaddr); 1100 1101 if (!bio_add_folio(bio, folio, PAGE_SIZE, 0)) { 1102 iostat_update_and_unbind_ctx(bio); 1103 if (bio->bi_private) 1104 mempool_free(bio->bi_private, bio_post_read_ctx_pool); 1105 bio_put(bio); 1106 return -EFAULT; 1107 } 1108 inc_page_count(sbi, F2FS_RD_DATA); 1109 f2fs_update_iostat(sbi, NULL, FS_DATA_READ_IO, F2FS_BLKSIZE); 1110 f2fs_submit_read_bio(sbi, bio, DATA); 1111 return 0; 1112 } 1113 1114 static void __set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) 1115 { 1116 __le32 *addr = get_dnode_addr(dn->inode, dn->node_folio); 1117 1118 dn->data_blkaddr = blkaddr; 1119 addr[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr); 1120 } 1121 1122 /* 1123 * Lock ordering for the change of data block address: 1124 * ->data_page 1125 * ->node_folio 1126 * update block addresses in the node page 1127 */ 1128 void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) 1129 { 1130 f2fs_folio_wait_writeback(dn->node_folio, NODE, true, true); 1131 __set_data_blkaddr(dn, blkaddr); 1132 if (folio_mark_dirty(dn->node_folio)) 1133 dn->node_changed = true; 1134 } 1135 1136 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) 1137 { 1138 f2fs_set_data_blkaddr(dn, blkaddr); 1139 f2fs_update_read_extent_cache(dn); 1140 } 1141 1142 /* dn->ofs_in_node will be returned with up-to-date last block pointer */ 1143 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count) 1144 { 1145 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1146 int err; 1147 1148 if (!count) 1149 return 0; 1150 1151 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1152 return -EPERM; 1153 err = inc_valid_block_count(sbi, dn->inode, &count, true); 1154 if (unlikely(err)) 1155 return err; 1156 1157 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid, 1158 dn->ofs_in_node, count); 1159 1160 f2fs_folio_wait_writeback(dn->node_folio, NODE, true, true); 1161 1162 for (; count > 0; dn->ofs_in_node++) { 1163 block_t blkaddr = f2fs_data_blkaddr(dn); 1164 1165 if (blkaddr == NULL_ADDR) { 1166 __set_data_blkaddr(dn, NEW_ADDR); 1167 count--; 1168 } 1169 } 1170 1171 if (folio_mark_dirty(dn->node_folio)) 1172 dn->node_changed = true; 1173 return 0; 1174 } 1175 1176 /* Should keep dn->ofs_in_node unchanged */ 1177 int f2fs_reserve_new_block(struct dnode_of_data *dn) 1178 { 1179 unsigned int ofs_in_node = dn->ofs_in_node; 1180 int ret; 1181 1182 ret = f2fs_reserve_new_blocks(dn, 1); 1183 dn->ofs_in_node = ofs_in_node; 1184 return ret; 1185 } 1186 1187 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index) 1188 { 1189 bool need_put = dn->inode_folio ? false : true; 1190 int err; 1191 1192 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE); 1193 if (err) 1194 return err; 1195 1196 if (dn->data_blkaddr == NULL_ADDR) 1197 err = f2fs_reserve_new_block(dn); 1198 if (err || need_put) 1199 f2fs_put_dnode(dn); 1200 return err; 1201 } 1202 1203 struct folio *f2fs_get_read_data_folio(struct inode *inode, pgoff_t index, 1204 blk_opf_t op_flags, bool for_write, pgoff_t *next_pgofs) 1205 { 1206 struct address_space *mapping = inode->i_mapping; 1207 struct dnode_of_data dn; 1208 struct folio *folio; 1209 int err; 1210 1211 folio = f2fs_grab_cache_folio(mapping, index, for_write); 1212 if (IS_ERR(folio)) 1213 return folio; 1214 1215 if (f2fs_lookup_read_extent_cache_block(inode, index, 1216 &dn.data_blkaddr)) { 1217 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr, 1218 DATA_GENERIC_ENHANCE_READ)) { 1219 err = -EFSCORRUPTED; 1220 goto put_err; 1221 } 1222 goto got_it; 1223 } 1224 1225 set_new_dnode(&dn, inode, NULL, NULL, 0); 1226 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 1227 if (err) { 1228 if (err == -ENOENT && next_pgofs) 1229 *next_pgofs = f2fs_get_next_page_offset(&dn, index); 1230 goto put_err; 1231 } 1232 f2fs_put_dnode(&dn); 1233 1234 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { 1235 err = -ENOENT; 1236 if (next_pgofs) 1237 *next_pgofs = index + 1; 1238 goto put_err; 1239 } 1240 if (dn.data_blkaddr != NEW_ADDR && 1241 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode), 1242 dn.data_blkaddr, 1243 DATA_GENERIC_ENHANCE)) { 1244 err = -EFSCORRUPTED; 1245 goto put_err; 1246 } 1247 got_it: 1248 if (folio_test_uptodate(folio)) { 1249 folio_unlock(folio); 1250 return folio; 1251 } 1252 1253 /* 1254 * A new dentry page is allocated but not able to be written, since its 1255 * new inode page couldn't be allocated due to -ENOSPC. 1256 * In such the case, its blkaddr can be remained as NEW_ADDR. 1257 * see, f2fs_add_link -> f2fs_get_new_data_folio -> 1258 * f2fs_init_inode_metadata. 1259 */ 1260 if (dn.data_blkaddr == NEW_ADDR) { 1261 folio_zero_segment(folio, 0, folio_size(folio)); 1262 if (!folio_test_uptodate(folio)) 1263 folio_mark_uptodate(folio); 1264 folio_unlock(folio); 1265 return folio; 1266 } 1267 1268 err = f2fs_submit_page_read(inode, folio, dn.data_blkaddr, 1269 op_flags, for_write); 1270 if (err) 1271 goto put_err; 1272 return folio; 1273 1274 put_err: 1275 f2fs_folio_put(folio, true); 1276 return ERR_PTR(err); 1277 } 1278 1279 struct folio *f2fs_find_data_folio(struct inode *inode, pgoff_t index, 1280 pgoff_t *next_pgofs) 1281 { 1282 struct address_space *mapping = inode->i_mapping; 1283 struct folio *folio; 1284 1285 folio = __filemap_get_folio(mapping, index, FGP_ACCESSED, 0); 1286 if (IS_ERR(folio)) 1287 goto read; 1288 if (folio_test_uptodate(folio)) 1289 return folio; 1290 f2fs_folio_put(folio, false); 1291 1292 read: 1293 folio = f2fs_get_read_data_folio(inode, index, 0, false, next_pgofs); 1294 if (IS_ERR(folio)) 1295 return folio; 1296 1297 if (folio_test_uptodate(folio)) 1298 return folio; 1299 1300 folio_wait_locked(folio); 1301 if (unlikely(!folio_test_uptodate(folio))) { 1302 f2fs_folio_put(folio, false); 1303 return ERR_PTR(-EIO); 1304 } 1305 return folio; 1306 } 1307 1308 /* 1309 * If it tries to access a hole, return an error. 1310 * Because, the callers, functions in dir.c and GC, should be able to know 1311 * whether this page exists or not. 1312 */ 1313 struct folio *f2fs_get_lock_data_folio(struct inode *inode, pgoff_t index, 1314 bool for_write) 1315 { 1316 struct address_space *mapping = inode->i_mapping; 1317 struct folio *folio; 1318 1319 folio = f2fs_get_read_data_folio(inode, index, 0, for_write, NULL); 1320 if (IS_ERR(folio)) 1321 return folio; 1322 1323 /* wait for read completion */ 1324 folio_lock(folio); 1325 if (unlikely(folio->mapping != mapping || !folio_test_uptodate(folio))) { 1326 f2fs_folio_put(folio, true); 1327 return ERR_PTR(-EIO); 1328 } 1329 return folio; 1330 } 1331 1332 /* 1333 * Caller ensures that this data page is never allocated. 1334 * A new zero-filled data page is allocated in the page cache. 1335 * 1336 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and 1337 * f2fs_unlock_op(). 1338 * Note that, ifolio is set only by make_empty_dir, and if any error occur, 1339 * ifolio should be released by this function. 1340 */ 1341 struct folio *f2fs_get_new_data_folio(struct inode *inode, 1342 struct folio *ifolio, pgoff_t index, bool new_i_size) 1343 { 1344 struct address_space *mapping = inode->i_mapping; 1345 struct folio *folio; 1346 struct dnode_of_data dn; 1347 int err; 1348 1349 folio = f2fs_grab_cache_folio(mapping, index, true); 1350 if (IS_ERR(folio)) { 1351 /* 1352 * before exiting, we should make sure ifolio will be released 1353 * if any error occur. 1354 */ 1355 f2fs_folio_put(ifolio, true); 1356 return ERR_PTR(-ENOMEM); 1357 } 1358 1359 set_new_dnode(&dn, inode, ifolio, NULL, 0); 1360 err = f2fs_reserve_block(&dn, index); 1361 if (err) { 1362 f2fs_folio_put(folio, true); 1363 return ERR_PTR(err); 1364 } 1365 if (!ifolio) 1366 f2fs_put_dnode(&dn); 1367 1368 if (folio_test_uptodate(folio)) 1369 goto got_it; 1370 1371 if (dn.data_blkaddr == NEW_ADDR) { 1372 folio_zero_segment(folio, 0, folio_size(folio)); 1373 if (!folio_test_uptodate(folio)) 1374 folio_mark_uptodate(folio); 1375 } else { 1376 f2fs_folio_put(folio, true); 1377 1378 /* if ifolio exists, blkaddr should be NEW_ADDR */ 1379 f2fs_bug_on(F2FS_I_SB(inode), ifolio); 1380 folio = f2fs_get_lock_data_folio(inode, index, true); 1381 if (IS_ERR(folio)) 1382 return folio; 1383 } 1384 got_it: 1385 if (new_i_size && i_size_read(inode) < 1386 ((loff_t)(index + 1) << PAGE_SHIFT)) 1387 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT)); 1388 return folio; 1389 } 1390 1391 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type) 1392 { 1393 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1394 struct f2fs_summary sum; 1395 struct node_info ni; 1396 block_t old_blkaddr; 1397 blkcnt_t count = 1; 1398 int err; 1399 1400 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1401 return -EPERM; 1402 1403 err = f2fs_get_node_info(sbi, dn->nid, &ni, false); 1404 if (err) 1405 return err; 1406 1407 dn->data_blkaddr = f2fs_data_blkaddr(dn); 1408 if (dn->data_blkaddr == NULL_ADDR) { 1409 err = inc_valid_block_count(sbi, dn->inode, &count, true); 1410 if (unlikely(err)) 1411 return err; 1412 } 1413 1414 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 1415 old_blkaddr = dn->data_blkaddr; 1416 err = f2fs_allocate_data_block(sbi, NULL, old_blkaddr, 1417 &dn->data_blkaddr, &sum, seg_type, NULL); 1418 if (err) 1419 return err; 1420 1421 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 1422 f2fs_invalidate_internal_cache(sbi, old_blkaddr, 1); 1423 1424 f2fs_update_data_blkaddr(dn, dn->data_blkaddr); 1425 return 0; 1426 } 1427 1428 static void f2fs_map_lock(struct f2fs_sb_info *sbi, int flag) 1429 { 1430 if (flag == F2FS_GET_BLOCK_PRE_AIO) 1431 f2fs_down_read(&sbi->node_change); 1432 else 1433 f2fs_lock_op(sbi); 1434 } 1435 1436 static void f2fs_map_unlock(struct f2fs_sb_info *sbi, int flag) 1437 { 1438 if (flag == F2FS_GET_BLOCK_PRE_AIO) 1439 f2fs_up_read(&sbi->node_change); 1440 else 1441 f2fs_unlock_op(sbi); 1442 } 1443 1444 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index) 1445 { 1446 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1447 int err = 0; 1448 1449 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO); 1450 if (!f2fs_lookup_read_extent_cache_block(dn->inode, index, 1451 &dn->data_blkaddr)) 1452 err = f2fs_reserve_block(dn, index); 1453 f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO); 1454 1455 return err; 1456 } 1457 1458 static int f2fs_map_no_dnode(struct inode *inode, 1459 struct f2fs_map_blocks *map, struct dnode_of_data *dn, 1460 pgoff_t pgoff) 1461 { 1462 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1463 1464 /* 1465 * There is one exceptional case that read_node_page() may return 1466 * -ENOENT due to filesystem has been shutdown or cp_error, return 1467 * -EIO in that case. 1468 */ 1469 if (map->m_may_create && 1470 (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || f2fs_cp_error(sbi))) 1471 return -EIO; 1472 1473 if (map->m_next_pgofs) 1474 *map->m_next_pgofs = f2fs_get_next_page_offset(dn, pgoff); 1475 if (map->m_next_extent) 1476 *map->m_next_extent = f2fs_get_next_page_offset(dn, pgoff); 1477 return 0; 1478 } 1479 1480 static bool f2fs_map_blocks_cached(struct inode *inode, 1481 struct f2fs_map_blocks *map, int flag) 1482 { 1483 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1484 unsigned int maxblocks = map->m_len; 1485 pgoff_t pgoff = (pgoff_t)map->m_lblk; 1486 struct extent_info ei = {}; 1487 1488 if (!f2fs_lookup_read_extent_cache(inode, pgoff, &ei)) 1489 return false; 1490 1491 map->m_pblk = ei.blk + pgoff - ei.fofs; 1492 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgoff); 1493 map->m_flags = F2FS_MAP_MAPPED; 1494 if (map->m_next_extent) 1495 *map->m_next_extent = pgoff + map->m_len; 1496 1497 /* for hardware encryption, but to avoid potential issue in future */ 1498 if (flag == F2FS_GET_BLOCK_DIO) 1499 f2fs_wait_on_block_writeback_range(inode, 1500 map->m_pblk, map->m_len); 1501 1502 if (f2fs_allow_multi_device_dio(sbi, flag)) { 1503 int bidx = f2fs_target_device_index(sbi, map->m_pblk); 1504 struct f2fs_dev_info *dev = &sbi->devs[bidx]; 1505 1506 map->m_bdev = dev->bdev; 1507 map->m_pblk -= dev->start_blk; 1508 map->m_len = min(map->m_len, dev->end_blk + 1 - map->m_pblk); 1509 } else { 1510 map->m_bdev = inode->i_sb->s_bdev; 1511 } 1512 return true; 1513 } 1514 1515 static bool map_is_mergeable(struct f2fs_sb_info *sbi, 1516 struct f2fs_map_blocks *map, 1517 block_t blkaddr, int flag, int bidx, 1518 int ofs) 1519 { 1520 if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev) 1521 return false; 1522 if (map->m_pblk != NEW_ADDR && blkaddr == (map->m_pblk + ofs)) 1523 return true; 1524 if (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) 1525 return true; 1526 if (flag == F2FS_GET_BLOCK_PRE_DIO) 1527 return true; 1528 if (flag == F2FS_GET_BLOCK_DIO && 1529 map->m_pblk == NULL_ADDR && blkaddr == NULL_ADDR) 1530 return true; 1531 return false; 1532 } 1533 1534 /* 1535 * f2fs_map_blocks() tries to find or build mapping relationship which 1536 * maps continuous logical blocks to physical blocks, and return such 1537 * info via f2fs_map_blocks structure. 1538 */ 1539 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag) 1540 { 1541 unsigned int maxblocks = map->m_len; 1542 struct dnode_of_data dn; 1543 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1544 int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE; 1545 pgoff_t pgofs, end_offset, end; 1546 int err = 0, ofs = 1; 1547 unsigned int ofs_in_node, last_ofs_in_node; 1548 blkcnt_t prealloc; 1549 block_t blkaddr; 1550 unsigned int start_pgofs; 1551 int bidx = 0; 1552 bool is_hole; 1553 bool lfs_dio_write; 1554 1555 if (!maxblocks) 1556 return 0; 1557 1558 lfs_dio_write = (flag == F2FS_GET_BLOCK_DIO && f2fs_lfs_mode(sbi) && 1559 map->m_may_create); 1560 1561 if (!map->m_may_create && f2fs_map_blocks_cached(inode, map, flag)) 1562 goto out; 1563 1564 map->m_bdev = inode->i_sb->s_bdev; 1565 map->m_multidev_dio = 1566 f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag); 1567 1568 map->m_len = 0; 1569 map->m_flags = 0; 1570 1571 /* it only supports block size == page size */ 1572 pgofs = (pgoff_t)map->m_lblk; 1573 end = pgofs + maxblocks; 1574 1575 next_dnode: 1576 if (map->m_may_create) { 1577 if (f2fs_lfs_mode(sbi)) 1578 f2fs_balance_fs(sbi, true); 1579 f2fs_map_lock(sbi, flag); 1580 } 1581 1582 /* When reading holes, we need its node page */ 1583 set_new_dnode(&dn, inode, NULL, NULL, 0); 1584 err = f2fs_get_dnode_of_data(&dn, pgofs, mode); 1585 if (err) { 1586 if (flag == F2FS_GET_BLOCK_BMAP) 1587 map->m_pblk = 0; 1588 if (err == -ENOENT) 1589 err = f2fs_map_no_dnode(inode, map, &dn, pgofs); 1590 goto unlock_out; 1591 } 1592 1593 start_pgofs = pgofs; 1594 prealloc = 0; 1595 last_ofs_in_node = ofs_in_node = dn.ofs_in_node; 1596 end_offset = ADDRS_PER_PAGE(dn.node_folio, inode); 1597 1598 next_block: 1599 blkaddr = f2fs_data_blkaddr(&dn); 1600 is_hole = !__is_valid_data_blkaddr(blkaddr); 1601 if (!is_hole && 1602 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) { 1603 err = -EFSCORRUPTED; 1604 goto sync_out; 1605 } 1606 1607 /* use out-place-update for direct IO under LFS mode */ 1608 if (map->m_may_create && (is_hole || 1609 (flag == F2FS_GET_BLOCK_DIO && f2fs_lfs_mode(sbi) && 1610 !f2fs_is_pinned_file(inode) && map->m_last_pblk != blkaddr))) { 1611 if (unlikely(f2fs_cp_error(sbi))) { 1612 err = -EIO; 1613 goto sync_out; 1614 } 1615 1616 switch (flag) { 1617 case F2FS_GET_BLOCK_PRE_AIO: 1618 if (blkaddr == NULL_ADDR) { 1619 prealloc++; 1620 last_ofs_in_node = dn.ofs_in_node; 1621 } 1622 break; 1623 case F2FS_GET_BLOCK_PRE_DIO: 1624 case F2FS_GET_BLOCK_DIO: 1625 err = __allocate_data_block(&dn, map->m_seg_type); 1626 if (err) 1627 goto sync_out; 1628 if (flag == F2FS_GET_BLOCK_PRE_DIO) 1629 file_need_truncate(inode); 1630 set_inode_flag(inode, FI_APPEND_WRITE); 1631 break; 1632 default: 1633 WARN_ON_ONCE(1); 1634 err = -EIO; 1635 goto sync_out; 1636 } 1637 1638 blkaddr = dn.data_blkaddr; 1639 if (is_hole) 1640 map->m_flags |= F2FS_MAP_NEW; 1641 } else if (is_hole) { 1642 if (f2fs_compressed_file(inode) && 1643 f2fs_sanity_check_cluster(&dn)) { 1644 err = -EFSCORRUPTED; 1645 f2fs_handle_error(sbi, 1646 ERROR_CORRUPTED_CLUSTER); 1647 goto sync_out; 1648 } 1649 1650 switch (flag) { 1651 case F2FS_GET_BLOCK_PRECACHE: 1652 goto sync_out; 1653 case F2FS_GET_BLOCK_BMAP: 1654 map->m_pblk = 0; 1655 goto sync_out; 1656 case F2FS_GET_BLOCK_FIEMAP: 1657 if (blkaddr == NULL_ADDR) { 1658 if (map->m_next_pgofs) 1659 *map->m_next_pgofs = pgofs + 1; 1660 goto sync_out; 1661 } 1662 break; 1663 case F2FS_GET_BLOCK_DIO: 1664 if (map->m_next_pgofs) 1665 *map->m_next_pgofs = pgofs + 1; 1666 break; 1667 default: 1668 /* for defragment case */ 1669 if (map->m_next_pgofs) 1670 *map->m_next_pgofs = pgofs + 1; 1671 goto sync_out; 1672 } 1673 } 1674 1675 if (flag == F2FS_GET_BLOCK_PRE_AIO) 1676 goto skip; 1677 1678 if (map->m_multidev_dio) 1679 bidx = f2fs_target_device_index(sbi, blkaddr); 1680 1681 if (map->m_len == 0) { 1682 /* reserved delalloc block should be mapped for fiemap. */ 1683 if (blkaddr == NEW_ADDR) 1684 map->m_flags |= F2FS_MAP_DELALLOC; 1685 /* DIO READ and hole case, should not map the blocks. */ 1686 if (!(flag == F2FS_GET_BLOCK_DIO && is_hole && !map->m_may_create)) 1687 map->m_flags |= F2FS_MAP_MAPPED; 1688 1689 map->m_pblk = blkaddr; 1690 map->m_len = 1; 1691 1692 if (map->m_multidev_dio) 1693 map->m_bdev = FDEV(bidx).bdev; 1694 1695 if (lfs_dio_write) 1696 map->m_last_pblk = NULL_ADDR; 1697 } else if (map_is_mergeable(sbi, map, blkaddr, flag, bidx, ofs)) { 1698 ofs++; 1699 map->m_len++; 1700 } else { 1701 if (lfs_dio_write && !f2fs_is_pinned_file(inode)) 1702 map->m_last_pblk = blkaddr; 1703 goto sync_out; 1704 } 1705 1706 skip: 1707 dn.ofs_in_node++; 1708 pgofs++; 1709 1710 /* preallocate blocks in batch for one dnode page */ 1711 if (flag == F2FS_GET_BLOCK_PRE_AIO && 1712 (pgofs == end || dn.ofs_in_node == end_offset)) { 1713 1714 dn.ofs_in_node = ofs_in_node; 1715 err = f2fs_reserve_new_blocks(&dn, prealloc); 1716 if (err) 1717 goto sync_out; 1718 1719 map->m_len += dn.ofs_in_node - ofs_in_node; 1720 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) { 1721 err = -ENOSPC; 1722 goto sync_out; 1723 } 1724 dn.ofs_in_node = end_offset; 1725 } 1726 1727 if (pgofs >= end) 1728 goto sync_out; 1729 else if (dn.ofs_in_node < end_offset) 1730 goto next_block; 1731 1732 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1733 if (map->m_flags & F2FS_MAP_MAPPED) { 1734 unsigned int ofs = start_pgofs - map->m_lblk; 1735 1736 f2fs_update_read_extent_cache_range(&dn, 1737 start_pgofs, map->m_pblk + ofs, 1738 map->m_len - ofs); 1739 } 1740 } 1741 1742 f2fs_put_dnode(&dn); 1743 1744 if (map->m_may_create) { 1745 f2fs_map_unlock(sbi, flag); 1746 f2fs_balance_fs(sbi, dn.node_changed); 1747 } 1748 goto next_dnode; 1749 1750 sync_out: 1751 1752 if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) { 1753 /* 1754 * for hardware encryption, but to avoid potential issue 1755 * in future 1756 */ 1757 f2fs_wait_on_block_writeback_range(inode, 1758 map->m_pblk, map->m_len); 1759 1760 if (map->m_multidev_dio) { 1761 block_t blk_addr = map->m_pblk; 1762 1763 bidx = f2fs_target_device_index(sbi, map->m_pblk); 1764 1765 map->m_bdev = FDEV(bidx).bdev; 1766 map->m_pblk -= FDEV(bidx).start_blk; 1767 1768 if (map->m_may_create) 1769 f2fs_update_device_state(sbi, inode->i_ino, 1770 blk_addr, map->m_len); 1771 1772 f2fs_bug_on(sbi, blk_addr + map->m_len > 1773 FDEV(bidx).end_blk + 1); 1774 } 1775 } 1776 1777 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1778 if (map->m_flags & F2FS_MAP_MAPPED) { 1779 unsigned int ofs = start_pgofs - map->m_lblk; 1780 1781 f2fs_update_read_extent_cache_range(&dn, 1782 start_pgofs, map->m_pblk + ofs, 1783 map->m_len - ofs); 1784 } 1785 if (map->m_next_extent) 1786 *map->m_next_extent = pgofs + 1; 1787 } 1788 f2fs_put_dnode(&dn); 1789 unlock_out: 1790 if (map->m_may_create) { 1791 f2fs_map_unlock(sbi, flag); 1792 f2fs_balance_fs(sbi, dn.node_changed); 1793 } 1794 out: 1795 trace_f2fs_map_blocks(inode, map, flag, err); 1796 return err; 1797 } 1798 1799 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len) 1800 { 1801 struct f2fs_map_blocks map; 1802 block_t last_lblk; 1803 int err; 1804 1805 if (pos + len > i_size_read(inode)) 1806 return false; 1807 1808 map.m_lblk = F2FS_BYTES_TO_BLK(pos); 1809 map.m_next_pgofs = NULL; 1810 map.m_next_extent = NULL; 1811 map.m_seg_type = NO_CHECK_TYPE; 1812 map.m_may_create = false; 1813 last_lblk = F2FS_BLK_ALIGN(pos + len); 1814 1815 while (map.m_lblk < last_lblk) { 1816 map.m_len = last_lblk - map.m_lblk; 1817 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT); 1818 if (err || map.m_len == 0) 1819 return false; 1820 map.m_lblk += map.m_len; 1821 } 1822 return true; 1823 } 1824 1825 static int f2fs_xattr_fiemap(struct inode *inode, 1826 struct fiemap_extent_info *fieinfo) 1827 { 1828 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1829 struct node_info ni; 1830 __u64 phys = 0, len; 1831 __u32 flags; 1832 nid_t xnid = F2FS_I(inode)->i_xattr_nid; 1833 int err = 0; 1834 1835 if (f2fs_has_inline_xattr(inode)) { 1836 int offset; 1837 struct folio *folio = f2fs_grab_cache_folio(NODE_MAPPING(sbi), 1838 inode->i_ino, false); 1839 1840 if (IS_ERR(folio)) 1841 return PTR_ERR(folio); 1842 1843 err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false); 1844 if (err) { 1845 f2fs_folio_put(folio, true); 1846 return err; 1847 } 1848 1849 phys = F2FS_BLK_TO_BYTES(ni.blk_addr); 1850 offset = offsetof(struct f2fs_inode, i_addr) + 1851 sizeof(__le32) * (DEF_ADDRS_PER_INODE - 1852 get_inline_xattr_addrs(inode)); 1853 1854 phys += offset; 1855 len = inline_xattr_size(inode); 1856 1857 f2fs_folio_put(folio, true); 1858 1859 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED; 1860 1861 if (!xnid) 1862 flags |= FIEMAP_EXTENT_LAST; 1863 1864 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1865 trace_f2fs_fiemap(inode, 0, phys, len, flags, err); 1866 if (err) 1867 return err; 1868 } 1869 1870 if (xnid) { 1871 struct folio *folio = f2fs_grab_cache_folio(NODE_MAPPING(sbi), 1872 xnid, false); 1873 1874 if (IS_ERR(folio)) 1875 return PTR_ERR(folio); 1876 1877 err = f2fs_get_node_info(sbi, xnid, &ni, false); 1878 if (err) { 1879 f2fs_folio_put(folio, true); 1880 return err; 1881 } 1882 1883 phys = F2FS_BLK_TO_BYTES(ni.blk_addr); 1884 len = inode->i_sb->s_blocksize; 1885 1886 f2fs_folio_put(folio, true); 1887 1888 flags = FIEMAP_EXTENT_LAST; 1889 } 1890 1891 if (phys) { 1892 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1893 trace_f2fs_fiemap(inode, 0, phys, len, flags, err); 1894 } 1895 1896 return (err < 0 ? err : 0); 1897 } 1898 1899 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 1900 u64 start, u64 len) 1901 { 1902 struct f2fs_map_blocks map; 1903 sector_t start_blk, last_blk, blk_len, max_len; 1904 pgoff_t next_pgofs; 1905 u64 logical = 0, phys = 0, size = 0; 1906 u32 flags = 0; 1907 int ret = 0; 1908 bool compr_cluster = false, compr_appended; 1909 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size; 1910 unsigned int count_in_cluster = 0; 1911 loff_t maxbytes; 1912 1913 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) { 1914 ret = f2fs_precache_extents(inode); 1915 if (ret) 1916 return ret; 1917 } 1918 1919 ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR); 1920 if (ret) 1921 return ret; 1922 1923 inode_lock_shared(inode); 1924 1925 maxbytes = F2FS_BLK_TO_BYTES(max_file_blocks(inode)); 1926 if (start > maxbytes) { 1927 ret = -EFBIG; 1928 goto out; 1929 } 1930 1931 if (len > maxbytes || (maxbytes - len) < start) 1932 len = maxbytes - start; 1933 1934 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 1935 ret = f2fs_xattr_fiemap(inode, fieinfo); 1936 goto out; 1937 } 1938 1939 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) { 1940 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len); 1941 if (ret != -EAGAIN) 1942 goto out; 1943 } 1944 1945 start_blk = F2FS_BYTES_TO_BLK(start); 1946 last_blk = F2FS_BYTES_TO_BLK(start + len - 1); 1947 blk_len = last_blk - start_blk + 1; 1948 max_len = F2FS_BYTES_TO_BLK(maxbytes) - start_blk; 1949 1950 next: 1951 memset(&map, 0, sizeof(map)); 1952 map.m_lblk = start_blk; 1953 map.m_len = blk_len; 1954 map.m_next_pgofs = &next_pgofs; 1955 map.m_seg_type = NO_CHECK_TYPE; 1956 1957 if (compr_cluster) { 1958 map.m_lblk += 1; 1959 map.m_len = cluster_size - count_in_cluster; 1960 } 1961 1962 ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP); 1963 if (ret) 1964 goto out; 1965 1966 /* HOLE */ 1967 if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) { 1968 start_blk = next_pgofs; 1969 1970 if (F2FS_BLK_TO_BYTES(start_blk) < maxbytes) 1971 goto prep_next; 1972 1973 flags |= FIEMAP_EXTENT_LAST; 1974 } 1975 1976 /* 1977 * current extent may cross boundary of inquiry, increase len to 1978 * requery. 1979 */ 1980 if (!compr_cluster && (map.m_flags & F2FS_MAP_MAPPED) && 1981 map.m_lblk + map.m_len - 1 == last_blk && 1982 blk_len != max_len) { 1983 blk_len = max_len; 1984 goto next; 1985 } 1986 1987 compr_appended = false; 1988 /* In a case of compressed cluster, append this to the last extent */ 1989 if (compr_cluster && ((map.m_flags & F2FS_MAP_DELALLOC) || 1990 !(map.m_flags & F2FS_MAP_FLAGS))) { 1991 compr_appended = true; 1992 goto skip_fill; 1993 } 1994 1995 if (size) { 1996 flags |= FIEMAP_EXTENT_MERGED; 1997 if (IS_ENCRYPTED(inode)) 1998 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED; 1999 2000 ret = fiemap_fill_next_extent(fieinfo, logical, 2001 phys, size, flags); 2002 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret); 2003 if (ret) 2004 goto out; 2005 size = 0; 2006 } 2007 2008 if (start_blk > last_blk) 2009 goto out; 2010 2011 skip_fill: 2012 if (map.m_pblk == COMPRESS_ADDR) { 2013 compr_cluster = true; 2014 count_in_cluster = 1; 2015 } else if (compr_appended) { 2016 unsigned int appended_blks = cluster_size - 2017 count_in_cluster + 1; 2018 size += F2FS_BLK_TO_BYTES(appended_blks); 2019 start_blk += appended_blks; 2020 compr_cluster = false; 2021 } else { 2022 logical = F2FS_BLK_TO_BYTES(start_blk); 2023 phys = __is_valid_data_blkaddr(map.m_pblk) ? 2024 F2FS_BLK_TO_BYTES(map.m_pblk) : 0; 2025 size = F2FS_BLK_TO_BYTES(map.m_len); 2026 flags = 0; 2027 2028 if (compr_cluster) { 2029 flags = FIEMAP_EXTENT_ENCODED; 2030 count_in_cluster += map.m_len; 2031 if (count_in_cluster == cluster_size) { 2032 compr_cluster = false; 2033 size += F2FS_BLKSIZE; 2034 } 2035 } else if (map.m_flags & F2FS_MAP_DELALLOC) { 2036 flags = FIEMAP_EXTENT_UNWRITTEN; 2037 } 2038 2039 start_blk += F2FS_BYTES_TO_BLK(size); 2040 } 2041 2042 prep_next: 2043 cond_resched(); 2044 if (fatal_signal_pending(current)) 2045 ret = -EINTR; 2046 else 2047 goto next; 2048 out: 2049 if (ret == 1) 2050 ret = 0; 2051 2052 inode_unlock_shared(inode); 2053 return ret; 2054 } 2055 2056 static inline loff_t f2fs_readpage_limit(struct inode *inode) 2057 { 2058 if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode)) 2059 return F2FS_BLK_TO_BYTES(max_file_blocks(inode)); 2060 2061 return i_size_read(inode); 2062 } 2063 2064 static inline blk_opf_t f2fs_ra_op_flags(struct readahead_control *rac) 2065 { 2066 return rac ? REQ_RAHEAD : 0; 2067 } 2068 2069 static int f2fs_read_single_page(struct inode *inode, struct folio *folio, 2070 unsigned nr_pages, 2071 struct f2fs_map_blocks *map, 2072 struct bio **bio_ret, 2073 sector_t *last_block_in_bio, 2074 struct readahead_control *rac) 2075 { 2076 struct bio *bio = *bio_ret; 2077 const unsigned int blocksize = F2FS_BLKSIZE; 2078 sector_t block_in_file; 2079 sector_t last_block; 2080 sector_t last_block_in_file; 2081 sector_t block_nr; 2082 pgoff_t index = folio->index; 2083 int ret = 0; 2084 2085 block_in_file = (sector_t)index; 2086 last_block = block_in_file + nr_pages; 2087 last_block_in_file = F2FS_BYTES_TO_BLK(f2fs_readpage_limit(inode) + 2088 blocksize - 1); 2089 if (last_block > last_block_in_file) 2090 last_block = last_block_in_file; 2091 2092 /* just zeroing out page which is beyond EOF */ 2093 if (block_in_file >= last_block) 2094 goto zero_out; 2095 /* 2096 * Map blocks using the previous result first. 2097 */ 2098 if ((map->m_flags & F2FS_MAP_MAPPED) && 2099 block_in_file > map->m_lblk && 2100 block_in_file < (map->m_lblk + map->m_len)) 2101 goto got_it; 2102 2103 /* 2104 * Then do more f2fs_map_blocks() calls until we are 2105 * done with this page. 2106 */ 2107 map->m_lblk = block_in_file; 2108 map->m_len = last_block - block_in_file; 2109 2110 ret = f2fs_map_blocks(inode, map, F2FS_GET_BLOCK_DEFAULT); 2111 if (ret) 2112 goto out; 2113 got_it: 2114 if ((map->m_flags & F2FS_MAP_MAPPED)) { 2115 block_nr = map->m_pblk + block_in_file - map->m_lblk; 2116 folio_set_mappedtodisk(folio); 2117 2118 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr, 2119 DATA_GENERIC_ENHANCE_READ)) { 2120 ret = -EFSCORRUPTED; 2121 goto out; 2122 } 2123 } else { 2124 zero_out: 2125 folio_zero_segment(folio, 0, folio_size(folio)); 2126 if (f2fs_need_verity(inode, index) && 2127 !fsverity_verify_folio(folio)) { 2128 ret = -EIO; 2129 goto out; 2130 } 2131 if (!folio_test_uptodate(folio)) 2132 folio_mark_uptodate(folio); 2133 folio_unlock(folio); 2134 goto out; 2135 } 2136 2137 /* 2138 * This page will go to BIO. Do we need to send this 2139 * BIO off first? 2140 */ 2141 if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio, 2142 *last_block_in_bio, block_nr) || 2143 !f2fs_crypt_mergeable_bio(bio, inode, index, NULL))) { 2144 submit_and_realloc: 2145 f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA); 2146 bio = NULL; 2147 } 2148 if (bio == NULL) { 2149 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages, 2150 f2fs_ra_op_flags(rac), index, 2151 false); 2152 if (IS_ERR(bio)) { 2153 ret = PTR_ERR(bio); 2154 bio = NULL; 2155 goto out; 2156 } 2157 } 2158 2159 /* 2160 * If the page is under writeback, we need to wait for 2161 * its completion to see the correct decrypted data. 2162 */ 2163 f2fs_wait_on_block_writeback(inode, block_nr); 2164 2165 if (!bio_add_folio(bio, folio, blocksize, 0)) 2166 goto submit_and_realloc; 2167 2168 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA); 2169 f2fs_update_iostat(F2FS_I_SB(inode), NULL, FS_DATA_READ_IO, 2170 F2FS_BLKSIZE); 2171 *last_block_in_bio = block_nr; 2172 out: 2173 *bio_ret = bio; 2174 return ret; 2175 } 2176 2177 #ifdef CONFIG_F2FS_FS_COMPRESSION 2178 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret, 2179 unsigned nr_pages, sector_t *last_block_in_bio, 2180 struct readahead_control *rac, bool for_write) 2181 { 2182 struct dnode_of_data dn; 2183 struct inode *inode = cc->inode; 2184 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2185 struct bio *bio = *bio_ret; 2186 unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size; 2187 sector_t last_block_in_file; 2188 const unsigned int blocksize = F2FS_BLKSIZE; 2189 struct decompress_io_ctx *dic = NULL; 2190 struct extent_info ei = {}; 2191 bool from_dnode = true; 2192 int i; 2193 int ret = 0; 2194 2195 if (unlikely(f2fs_cp_error(sbi))) { 2196 ret = -EIO; 2197 from_dnode = false; 2198 goto out_put_dnode; 2199 } 2200 2201 f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc)); 2202 2203 last_block_in_file = F2FS_BYTES_TO_BLK(f2fs_readpage_limit(inode) + 2204 blocksize - 1); 2205 2206 /* get rid of pages beyond EOF */ 2207 for (i = 0; i < cc->cluster_size; i++) { 2208 struct page *page = cc->rpages[i]; 2209 struct folio *folio; 2210 2211 if (!page) 2212 continue; 2213 2214 folio = page_folio(page); 2215 if ((sector_t)folio->index >= last_block_in_file) { 2216 folio_zero_segment(folio, 0, folio_size(folio)); 2217 if (!folio_test_uptodate(folio)) 2218 folio_mark_uptodate(folio); 2219 } else if (!folio_test_uptodate(folio)) { 2220 continue; 2221 } 2222 folio_unlock(folio); 2223 if (for_write) 2224 folio_put(folio); 2225 cc->rpages[i] = NULL; 2226 cc->nr_rpages--; 2227 } 2228 2229 /* we are done since all pages are beyond EOF */ 2230 if (f2fs_cluster_is_empty(cc)) 2231 goto out; 2232 2233 if (f2fs_lookup_read_extent_cache(inode, start_idx, &ei)) 2234 from_dnode = false; 2235 2236 if (!from_dnode) 2237 goto skip_reading_dnode; 2238 2239 set_new_dnode(&dn, inode, NULL, NULL, 0); 2240 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 2241 if (ret) 2242 goto out; 2243 2244 f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR); 2245 2246 skip_reading_dnode: 2247 for (i = 1; i < cc->cluster_size; i++) { 2248 block_t blkaddr; 2249 2250 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_folio, 2251 dn.ofs_in_node + i) : 2252 ei.blk + i - 1; 2253 2254 if (!__is_valid_data_blkaddr(blkaddr)) 2255 break; 2256 2257 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) { 2258 ret = -EFAULT; 2259 goto out_put_dnode; 2260 } 2261 cc->nr_cpages++; 2262 2263 if (!from_dnode && i >= ei.c_len) 2264 break; 2265 } 2266 2267 /* nothing to decompress */ 2268 if (cc->nr_cpages == 0) { 2269 ret = 0; 2270 goto out_put_dnode; 2271 } 2272 2273 dic = f2fs_alloc_dic(cc); 2274 if (IS_ERR(dic)) { 2275 ret = PTR_ERR(dic); 2276 goto out_put_dnode; 2277 } 2278 2279 for (i = 0; i < cc->nr_cpages; i++) { 2280 struct folio *folio = page_folio(dic->cpages[i]); 2281 block_t blkaddr; 2282 struct bio_post_read_ctx *ctx; 2283 2284 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_folio, 2285 dn.ofs_in_node + i + 1) : 2286 ei.blk + i; 2287 2288 f2fs_wait_on_block_writeback(inode, blkaddr); 2289 2290 if (f2fs_load_compressed_folio(sbi, folio, blkaddr)) { 2291 if (atomic_dec_and_test(&dic->remaining_pages)) { 2292 f2fs_decompress_cluster(dic, true); 2293 break; 2294 } 2295 continue; 2296 } 2297 2298 if (bio && (!page_is_mergeable(sbi, bio, 2299 *last_block_in_bio, blkaddr) || 2300 !f2fs_crypt_mergeable_bio(bio, inode, folio->index, NULL))) { 2301 submit_and_realloc: 2302 f2fs_submit_read_bio(sbi, bio, DATA); 2303 bio = NULL; 2304 } 2305 2306 if (!bio) { 2307 bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages - i, 2308 f2fs_ra_op_flags(rac), 2309 folio->index, for_write); 2310 if (IS_ERR(bio)) { 2311 ret = PTR_ERR(bio); 2312 f2fs_decompress_end_io(dic, ret, true); 2313 f2fs_put_dnode(&dn); 2314 *bio_ret = NULL; 2315 return ret; 2316 } 2317 } 2318 2319 if (!bio_add_folio(bio, folio, blocksize, 0)) 2320 goto submit_and_realloc; 2321 2322 ctx = get_post_read_ctx(bio); 2323 ctx->enabled_steps |= STEP_DECOMPRESS; 2324 refcount_inc(&dic->refcnt); 2325 2326 inc_page_count(sbi, F2FS_RD_DATA); 2327 f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE); 2328 *last_block_in_bio = blkaddr; 2329 } 2330 2331 if (from_dnode) 2332 f2fs_put_dnode(&dn); 2333 2334 *bio_ret = bio; 2335 return 0; 2336 2337 out_put_dnode: 2338 if (from_dnode) 2339 f2fs_put_dnode(&dn); 2340 out: 2341 for (i = 0; i < cc->cluster_size; i++) { 2342 if (cc->rpages[i]) { 2343 ClearPageUptodate(cc->rpages[i]); 2344 unlock_page(cc->rpages[i]); 2345 } 2346 } 2347 *bio_ret = bio; 2348 return ret; 2349 } 2350 #endif 2351 2352 /* 2353 * This function was originally taken from fs/mpage.c, and customized for f2fs. 2354 * Major change was from block_size == page_size in f2fs by default. 2355 */ 2356 static int f2fs_mpage_readpages(struct inode *inode, 2357 struct readahead_control *rac, struct folio *folio) 2358 { 2359 struct bio *bio = NULL; 2360 sector_t last_block_in_bio = 0; 2361 struct f2fs_map_blocks map; 2362 #ifdef CONFIG_F2FS_FS_COMPRESSION 2363 struct compress_ctx cc = { 2364 .inode = inode, 2365 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 2366 .cluster_size = F2FS_I(inode)->i_cluster_size, 2367 .cluster_idx = NULL_CLUSTER, 2368 .rpages = NULL, 2369 .cpages = NULL, 2370 .nr_rpages = 0, 2371 .nr_cpages = 0, 2372 }; 2373 pgoff_t nc_cluster_idx = NULL_CLUSTER; 2374 pgoff_t index; 2375 #endif 2376 unsigned nr_pages = rac ? readahead_count(rac) : 1; 2377 unsigned max_nr_pages = nr_pages; 2378 int ret = 0; 2379 2380 #ifdef CONFIG_F2FS_FS_COMPRESSION 2381 if (f2fs_compressed_file(inode)) { 2382 index = rac ? readahead_index(rac) : folio->index; 2383 max_nr_pages = round_up(index + nr_pages, cc.cluster_size) - 2384 round_down(index, cc.cluster_size); 2385 } 2386 #endif 2387 2388 map.m_pblk = 0; 2389 map.m_lblk = 0; 2390 map.m_len = 0; 2391 map.m_flags = 0; 2392 map.m_next_pgofs = NULL; 2393 map.m_next_extent = NULL; 2394 map.m_seg_type = NO_CHECK_TYPE; 2395 map.m_may_create = false; 2396 2397 for (; nr_pages; nr_pages--) { 2398 if (rac) { 2399 folio = readahead_folio(rac); 2400 prefetchw(&folio->flags); 2401 } 2402 2403 #ifdef CONFIG_F2FS_FS_COMPRESSION 2404 index = folio->index; 2405 2406 if (!f2fs_compressed_file(inode)) 2407 goto read_single_page; 2408 2409 /* there are remained compressed pages, submit them */ 2410 if (!f2fs_cluster_can_merge_page(&cc, index)) { 2411 ret = f2fs_read_multi_pages(&cc, &bio, 2412 max_nr_pages, 2413 &last_block_in_bio, 2414 rac, false); 2415 f2fs_destroy_compress_ctx(&cc, false); 2416 if (ret) 2417 goto set_error_page; 2418 } 2419 if (cc.cluster_idx == NULL_CLUSTER) { 2420 if (nc_cluster_idx == index >> cc.log_cluster_size) 2421 goto read_single_page; 2422 2423 ret = f2fs_is_compressed_cluster(inode, index); 2424 if (ret < 0) 2425 goto set_error_page; 2426 else if (!ret) { 2427 nc_cluster_idx = 2428 index >> cc.log_cluster_size; 2429 goto read_single_page; 2430 } 2431 2432 nc_cluster_idx = NULL_CLUSTER; 2433 } 2434 ret = f2fs_init_compress_ctx(&cc); 2435 if (ret) 2436 goto set_error_page; 2437 2438 f2fs_compress_ctx_add_page(&cc, folio); 2439 2440 goto next_page; 2441 read_single_page: 2442 #endif 2443 2444 ret = f2fs_read_single_page(inode, folio, max_nr_pages, &map, 2445 &bio, &last_block_in_bio, rac); 2446 if (ret) { 2447 #ifdef CONFIG_F2FS_FS_COMPRESSION 2448 set_error_page: 2449 #endif 2450 folio_zero_segment(folio, 0, folio_size(folio)); 2451 folio_unlock(folio); 2452 } 2453 #ifdef CONFIG_F2FS_FS_COMPRESSION 2454 next_page: 2455 #endif 2456 2457 #ifdef CONFIG_F2FS_FS_COMPRESSION 2458 if (f2fs_compressed_file(inode)) { 2459 /* last page */ 2460 if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) { 2461 ret = f2fs_read_multi_pages(&cc, &bio, 2462 max_nr_pages, 2463 &last_block_in_bio, 2464 rac, false); 2465 f2fs_destroy_compress_ctx(&cc, false); 2466 } 2467 } 2468 #endif 2469 } 2470 if (bio) 2471 f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA); 2472 return ret; 2473 } 2474 2475 static int f2fs_read_data_folio(struct file *file, struct folio *folio) 2476 { 2477 struct inode *inode = folio->mapping->host; 2478 int ret = -EAGAIN; 2479 2480 trace_f2fs_readpage(folio, DATA); 2481 2482 if (!f2fs_is_compress_backend_ready(inode)) { 2483 folio_unlock(folio); 2484 return -EOPNOTSUPP; 2485 } 2486 2487 /* If the file has inline data, try to read it directly */ 2488 if (f2fs_has_inline_data(inode)) 2489 ret = f2fs_read_inline_data(inode, folio); 2490 if (ret == -EAGAIN) 2491 ret = f2fs_mpage_readpages(inode, NULL, folio); 2492 return ret; 2493 } 2494 2495 static void f2fs_readahead(struct readahead_control *rac) 2496 { 2497 struct inode *inode = rac->mapping->host; 2498 2499 trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac)); 2500 2501 if (!f2fs_is_compress_backend_ready(inode)) 2502 return; 2503 2504 /* If the file has inline data, skip readahead */ 2505 if (f2fs_has_inline_data(inode)) 2506 return; 2507 2508 f2fs_mpage_readpages(inode, rac, NULL); 2509 } 2510 2511 int f2fs_encrypt_one_page(struct f2fs_io_info *fio) 2512 { 2513 struct inode *inode = fio_inode(fio); 2514 struct folio *mfolio; 2515 struct page *page; 2516 gfp_t gfp_flags = GFP_NOFS; 2517 2518 if (!f2fs_encrypted_file(inode)) 2519 return 0; 2520 2521 page = fio->compressed_page ? fio->compressed_page : fio->page; 2522 2523 if (fscrypt_inode_uses_inline_crypto(inode)) 2524 return 0; 2525 2526 retry_encrypt: 2527 fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page_folio(page), 2528 PAGE_SIZE, 0, gfp_flags); 2529 if (IS_ERR(fio->encrypted_page)) { 2530 /* flush pending IOs and wait for a while in the ENOMEM case */ 2531 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) { 2532 f2fs_flush_merged_writes(fio->sbi); 2533 memalloc_retry_wait(GFP_NOFS); 2534 gfp_flags |= __GFP_NOFAIL; 2535 goto retry_encrypt; 2536 } 2537 return PTR_ERR(fio->encrypted_page); 2538 } 2539 2540 mfolio = filemap_lock_folio(META_MAPPING(fio->sbi), fio->old_blkaddr); 2541 if (!IS_ERR(mfolio)) { 2542 if (folio_test_uptodate(mfolio)) 2543 memcpy(folio_address(mfolio), 2544 page_address(fio->encrypted_page), PAGE_SIZE); 2545 f2fs_folio_put(mfolio, true); 2546 } 2547 return 0; 2548 } 2549 2550 static inline bool check_inplace_update_policy(struct inode *inode, 2551 struct f2fs_io_info *fio) 2552 { 2553 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2554 2555 if (IS_F2FS_IPU_HONOR_OPU_WRITE(sbi) && 2556 is_inode_flag_set(inode, FI_OPU_WRITE)) 2557 return false; 2558 if (IS_F2FS_IPU_FORCE(sbi)) 2559 return true; 2560 if (IS_F2FS_IPU_SSR(sbi) && f2fs_need_SSR(sbi)) 2561 return true; 2562 if (IS_F2FS_IPU_UTIL(sbi) && utilization(sbi) > SM_I(sbi)->min_ipu_util) 2563 return true; 2564 if (IS_F2FS_IPU_SSR_UTIL(sbi) && f2fs_need_SSR(sbi) && 2565 utilization(sbi) > SM_I(sbi)->min_ipu_util) 2566 return true; 2567 2568 /* 2569 * IPU for rewrite async pages 2570 */ 2571 if (IS_F2FS_IPU_ASYNC(sbi) && fio && fio->op == REQ_OP_WRITE && 2572 !(fio->op_flags & REQ_SYNC) && !IS_ENCRYPTED(inode)) 2573 return true; 2574 2575 /* this is only set during fdatasync */ 2576 if (IS_F2FS_IPU_FSYNC(sbi) && is_inode_flag_set(inode, FI_NEED_IPU)) 2577 return true; 2578 2579 if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 2580 !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) 2581 return true; 2582 2583 return false; 2584 } 2585 2586 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio) 2587 { 2588 /* swap file is migrating in aligned write mode */ 2589 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE)) 2590 return false; 2591 2592 if (f2fs_is_pinned_file(inode)) 2593 return true; 2594 2595 /* if this is cold file, we should overwrite to avoid fragmentation */ 2596 if (file_is_cold(inode) && !is_inode_flag_set(inode, FI_OPU_WRITE)) 2597 return true; 2598 2599 return check_inplace_update_policy(inode, fio); 2600 } 2601 2602 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio) 2603 { 2604 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2605 2606 /* The below cases were checked when setting it. */ 2607 if (f2fs_is_pinned_file(inode)) 2608 return false; 2609 if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 2610 return true; 2611 if (f2fs_lfs_mode(sbi)) 2612 return true; 2613 if (S_ISDIR(inode->i_mode)) 2614 return true; 2615 if (IS_NOQUOTA(inode)) 2616 return true; 2617 if (f2fs_used_in_atomic_write(inode)) 2618 return true; 2619 /* rewrite low ratio compress data w/ OPU mode to avoid fragmentation */ 2620 if (f2fs_compressed_file(inode) && 2621 F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER && 2622 is_inode_flag_set(inode, FI_ENABLE_COMPRESS)) 2623 return true; 2624 2625 /* swap file is migrating in aligned write mode */ 2626 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE)) 2627 return true; 2628 2629 if (is_inode_flag_set(inode, FI_OPU_WRITE)) 2630 return true; 2631 2632 if (fio) { 2633 if (page_private_gcing(fio->page)) 2634 return true; 2635 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 2636 f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) 2637 return true; 2638 } 2639 return false; 2640 } 2641 2642 static inline bool need_inplace_update(struct f2fs_io_info *fio) 2643 { 2644 struct inode *inode = fio_inode(fio); 2645 2646 if (f2fs_should_update_outplace(inode, fio)) 2647 return false; 2648 2649 return f2fs_should_update_inplace(inode, fio); 2650 } 2651 2652 int f2fs_do_write_data_page(struct f2fs_io_info *fio) 2653 { 2654 struct folio *folio = fio->folio; 2655 struct inode *inode = folio->mapping->host; 2656 struct dnode_of_data dn; 2657 struct node_info ni; 2658 bool ipu_force = false; 2659 bool atomic_commit; 2660 int err = 0; 2661 2662 /* Use COW inode to make dnode_of_data for atomic write */ 2663 atomic_commit = f2fs_is_atomic_file(inode) && 2664 folio_test_f2fs_atomic(folio); 2665 if (atomic_commit) 2666 set_new_dnode(&dn, F2FS_I(inode)->cow_inode, NULL, NULL, 0); 2667 else 2668 set_new_dnode(&dn, inode, NULL, NULL, 0); 2669 2670 if (need_inplace_update(fio) && 2671 f2fs_lookup_read_extent_cache_block(inode, folio->index, 2672 &fio->old_blkaddr)) { 2673 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 2674 DATA_GENERIC_ENHANCE)) 2675 return -EFSCORRUPTED; 2676 2677 ipu_force = true; 2678 fio->need_lock = LOCK_DONE; 2679 goto got_it; 2680 } 2681 2682 /* Deadlock due to between page->lock and f2fs_lock_op */ 2683 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi)) 2684 return -EAGAIN; 2685 2686 err = f2fs_get_dnode_of_data(&dn, folio->index, LOOKUP_NODE); 2687 if (err) 2688 goto out; 2689 2690 fio->old_blkaddr = dn.data_blkaddr; 2691 2692 /* This page is already truncated */ 2693 if (fio->old_blkaddr == NULL_ADDR) { 2694 folio_clear_uptodate(folio); 2695 folio_clear_f2fs_gcing(folio); 2696 goto out_writepage; 2697 } 2698 got_it: 2699 if (__is_valid_data_blkaddr(fio->old_blkaddr) && 2700 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 2701 DATA_GENERIC_ENHANCE)) { 2702 err = -EFSCORRUPTED; 2703 goto out_writepage; 2704 } 2705 2706 /* wait for GCed page writeback via META_MAPPING */ 2707 if (fio->meta_gc) 2708 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr); 2709 2710 /* 2711 * If current allocation needs SSR, 2712 * it had better in-place writes for updated data. 2713 */ 2714 if (ipu_force || 2715 (__is_valid_data_blkaddr(fio->old_blkaddr) && 2716 need_inplace_update(fio))) { 2717 err = f2fs_encrypt_one_page(fio); 2718 if (err) 2719 goto out_writepage; 2720 2721 folio_start_writeback(folio); 2722 f2fs_put_dnode(&dn); 2723 if (fio->need_lock == LOCK_REQ) 2724 f2fs_unlock_op(fio->sbi); 2725 err = f2fs_inplace_write_data(fio); 2726 if (err) { 2727 if (fscrypt_inode_uses_fs_layer_crypto(inode)) 2728 fscrypt_finalize_bounce_page(&fio->encrypted_page); 2729 folio_end_writeback(folio); 2730 } else { 2731 set_inode_flag(inode, FI_UPDATE_WRITE); 2732 } 2733 trace_f2fs_do_write_data_page(folio, IPU); 2734 return err; 2735 } 2736 2737 if (fio->need_lock == LOCK_RETRY) { 2738 if (!f2fs_trylock_op(fio->sbi)) { 2739 err = -EAGAIN; 2740 goto out_writepage; 2741 } 2742 fio->need_lock = LOCK_REQ; 2743 } 2744 2745 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false); 2746 if (err) 2747 goto out_writepage; 2748 2749 fio->version = ni.version; 2750 2751 err = f2fs_encrypt_one_page(fio); 2752 if (err) 2753 goto out_writepage; 2754 2755 folio_start_writeback(folio); 2756 2757 if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR) 2758 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false); 2759 2760 /* LFS mode write path */ 2761 f2fs_outplace_write_data(&dn, fio); 2762 trace_f2fs_do_write_data_page(folio, OPU); 2763 set_inode_flag(inode, FI_APPEND_WRITE); 2764 if (atomic_commit) 2765 folio_clear_f2fs_atomic(folio); 2766 out_writepage: 2767 f2fs_put_dnode(&dn); 2768 out: 2769 if (fio->need_lock == LOCK_REQ) 2770 f2fs_unlock_op(fio->sbi); 2771 return err; 2772 } 2773 2774 int f2fs_write_single_data_page(struct folio *folio, int *submitted, 2775 struct bio **bio, 2776 sector_t *last_block, 2777 struct writeback_control *wbc, 2778 enum iostat_type io_type, 2779 int compr_blocks, 2780 bool allow_balance) 2781 { 2782 struct inode *inode = folio->mapping->host; 2783 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2784 loff_t i_size = i_size_read(inode); 2785 const pgoff_t end_index = ((unsigned long long)i_size) 2786 >> PAGE_SHIFT; 2787 loff_t psize = (loff_t)(folio->index + 1) << PAGE_SHIFT; 2788 unsigned offset = 0; 2789 bool need_balance_fs = false; 2790 bool quota_inode = IS_NOQUOTA(inode); 2791 int err = 0; 2792 struct f2fs_io_info fio = { 2793 .sbi = sbi, 2794 .ino = inode->i_ino, 2795 .type = DATA, 2796 .op = REQ_OP_WRITE, 2797 .op_flags = wbc_to_write_flags(wbc), 2798 .old_blkaddr = NULL_ADDR, 2799 .folio = folio, 2800 .encrypted_page = NULL, 2801 .submitted = 0, 2802 .compr_blocks = compr_blocks, 2803 .need_lock = compr_blocks ? LOCK_DONE : LOCK_RETRY, 2804 .meta_gc = f2fs_meta_inode_gc_required(inode) ? 1 : 0, 2805 .io_type = io_type, 2806 .io_wbc = wbc, 2807 .bio = bio, 2808 .last_block = last_block, 2809 }; 2810 2811 trace_f2fs_writepage(folio, DATA); 2812 2813 /* we should bypass data pages to proceed the kworker jobs */ 2814 if (unlikely(f2fs_cp_error(sbi))) { 2815 mapping_set_error(folio->mapping, -EIO); 2816 /* 2817 * don't drop any dirty dentry pages for keeping lastest 2818 * directory structure. 2819 */ 2820 if (S_ISDIR(inode->i_mode) && 2821 !is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 2822 goto redirty_out; 2823 2824 /* keep data pages in remount-ro mode */ 2825 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY) 2826 goto redirty_out; 2827 goto out; 2828 } 2829 2830 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 2831 goto redirty_out; 2832 2833 if (folio->index < end_index || 2834 f2fs_verity_in_progress(inode) || 2835 compr_blocks) 2836 goto write; 2837 2838 /* 2839 * If the offset is out-of-range of file size, 2840 * this page does not have to be written to disk. 2841 */ 2842 offset = i_size & (PAGE_SIZE - 1); 2843 if ((folio->index >= end_index + 1) || !offset) 2844 goto out; 2845 2846 folio_zero_segment(folio, offset, folio_size(folio)); 2847 write: 2848 /* Dentry/quota blocks are controlled by checkpoint */ 2849 if (S_ISDIR(inode->i_mode) || quota_inode) { 2850 /* 2851 * We need to wait for node_write to avoid block allocation during 2852 * checkpoint. This can only happen to quota writes which can cause 2853 * the below discard race condition. 2854 */ 2855 if (quota_inode) 2856 f2fs_down_read(&sbi->node_write); 2857 2858 fio.need_lock = LOCK_DONE; 2859 err = f2fs_do_write_data_page(&fio); 2860 2861 if (quota_inode) 2862 f2fs_up_read(&sbi->node_write); 2863 2864 goto done; 2865 } 2866 2867 need_balance_fs = true; 2868 err = -EAGAIN; 2869 if (f2fs_has_inline_data(inode)) { 2870 err = f2fs_write_inline_data(inode, folio); 2871 if (!err) 2872 goto out; 2873 } 2874 2875 if (err == -EAGAIN) { 2876 err = f2fs_do_write_data_page(&fio); 2877 if (err == -EAGAIN) { 2878 f2fs_bug_on(sbi, compr_blocks); 2879 fio.need_lock = LOCK_REQ; 2880 err = f2fs_do_write_data_page(&fio); 2881 } 2882 } 2883 2884 if (err) { 2885 file_set_keep_isize(inode); 2886 } else { 2887 spin_lock(&F2FS_I(inode)->i_size_lock); 2888 if (F2FS_I(inode)->last_disk_size < psize) 2889 F2FS_I(inode)->last_disk_size = psize; 2890 spin_unlock(&F2FS_I(inode)->i_size_lock); 2891 } 2892 2893 done: 2894 if (err && err != -ENOENT) 2895 goto redirty_out; 2896 2897 out: 2898 inode_dec_dirty_pages(inode); 2899 if (err) { 2900 folio_clear_uptodate(folio); 2901 folio_clear_f2fs_gcing(folio); 2902 } 2903 folio_unlock(folio); 2904 if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) && 2905 !F2FS_I(inode)->wb_task && allow_balance) 2906 f2fs_balance_fs(sbi, need_balance_fs); 2907 2908 if (unlikely(f2fs_cp_error(sbi))) { 2909 f2fs_submit_merged_write(sbi, DATA); 2910 if (bio && *bio) 2911 f2fs_submit_merged_ipu_write(sbi, bio, NULL); 2912 submitted = NULL; 2913 } 2914 2915 if (submitted) 2916 *submitted = fio.submitted; 2917 2918 return 0; 2919 2920 redirty_out: 2921 folio_redirty_for_writepage(wbc, folio); 2922 /* 2923 * pageout() in MM translates EAGAIN, so calls handle_write_error() 2924 * -> mapping_set_error() -> set_bit(AS_EIO, ...). 2925 * file_write_and_wait_range() will see EIO error, which is critical 2926 * to return value of fsync() followed by atomic_write failure to user. 2927 */ 2928 folio_unlock(folio); 2929 if (!err) 2930 return 1; 2931 return err; 2932 } 2933 2934 /* 2935 * This function was copied from write_cache_pages from mm/page-writeback.c. 2936 * The major change is making write step of cold data page separately from 2937 * warm/hot data page. 2938 */ 2939 static int f2fs_write_cache_pages(struct address_space *mapping, 2940 struct writeback_control *wbc, 2941 enum iostat_type io_type) 2942 { 2943 int ret = 0; 2944 int done = 0, retry = 0; 2945 struct page *pages_local[F2FS_ONSTACK_PAGES]; 2946 struct page **pages = pages_local; 2947 struct folio_batch fbatch; 2948 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 2949 struct bio *bio = NULL; 2950 sector_t last_block; 2951 #ifdef CONFIG_F2FS_FS_COMPRESSION 2952 struct inode *inode = mapping->host; 2953 struct compress_ctx cc = { 2954 .inode = inode, 2955 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 2956 .cluster_size = F2FS_I(inode)->i_cluster_size, 2957 .cluster_idx = NULL_CLUSTER, 2958 .rpages = NULL, 2959 .nr_rpages = 0, 2960 .cpages = NULL, 2961 .valid_nr_cpages = 0, 2962 .rbuf = NULL, 2963 .cbuf = NULL, 2964 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size, 2965 .private = NULL, 2966 }; 2967 #endif 2968 int nr_folios, p, idx; 2969 int nr_pages; 2970 unsigned int max_pages = F2FS_ONSTACK_PAGES; 2971 pgoff_t index; 2972 pgoff_t end; /* Inclusive */ 2973 pgoff_t done_index; 2974 int range_whole = 0; 2975 xa_mark_t tag; 2976 int nwritten = 0; 2977 int submitted = 0; 2978 int i; 2979 2980 #ifdef CONFIG_F2FS_FS_COMPRESSION 2981 if (f2fs_compressed_file(inode) && 2982 1 << cc.log_cluster_size > F2FS_ONSTACK_PAGES) { 2983 pages = f2fs_kzalloc(sbi, sizeof(struct page *) << 2984 cc.log_cluster_size, GFP_NOFS | __GFP_NOFAIL); 2985 max_pages = 1 << cc.log_cluster_size; 2986 } 2987 #endif 2988 2989 folio_batch_init(&fbatch); 2990 2991 if (get_dirty_pages(mapping->host) <= 2992 SM_I(F2FS_M_SB(mapping))->min_hot_blocks) 2993 set_inode_flag(mapping->host, FI_HOT_DATA); 2994 else 2995 clear_inode_flag(mapping->host, FI_HOT_DATA); 2996 2997 if (wbc->range_cyclic) { 2998 index = mapping->writeback_index; /* prev offset */ 2999 end = -1; 3000 } else { 3001 index = wbc->range_start >> PAGE_SHIFT; 3002 end = wbc->range_end >> PAGE_SHIFT; 3003 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 3004 range_whole = 1; 3005 } 3006 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 3007 tag = PAGECACHE_TAG_TOWRITE; 3008 else 3009 tag = PAGECACHE_TAG_DIRTY; 3010 retry: 3011 retry = 0; 3012 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 3013 tag_pages_for_writeback(mapping, index, end); 3014 done_index = index; 3015 while (!done && !retry && (index <= end)) { 3016 nr_pages = 0; 3017 again: 3018 nr_folios = filemap_get_folios_tag(mapping, &index, end, 3019 tag, &fbatch); 3020 if (nr_folios == 0) { 3021 if (nr_pages) 3022 goto write; 3023 break; 3024 } 3025 3026 for (i = 0; i < nr_folios; i++) { 3027 struct folio *folio = fbatch.folios[i]; 3028 3029 idx = 0; 3030 p = folio_nr_pages(folio); 3031 add_more: 3032 pages[nr_pages] = folio_page(folio, idx); 3033 folio_get(folio); 3034 if (++nr_pages == max_pages) { 3035 index = folio->index + idx + 1; 3036 folio_batch_release(&fbatch); 3037 goto write; 3038 } 3039 if (++idx < p) 3040 goto add_more; 3041 } 3042 folio_batch_release(&fbatch); 3043 goto again; 3044 write: 3045 for (i = 0; i < nr_pages; i++) { 3046 struct page *page = pages[i]; 3047 struct folio *folio = page_folio(page); 3048 bool need_readd; 3049 readd: 3050 need_readd = false; 3051 #ifdef CONFIG_F2FS_FS_COMPRESSION 3052 if (f2fs_compressed_file(inode)) { 3053 void *fsdata = NULL; 3054 struct page *pagep; 3055 int ret2; 3056 3057 ret = f2fs_init_compress_ctx(&cc); 3058 if (ret) { 3059 done = 1; 3060 break; 3061 } 3062 3063 if (!f2fs_cluster_can_merge_page(&cc, 3064 folio->index)) { 3065 ret = f2fs_write_multi_pages(&cc, 3066 &submitted, wbc, io_type); 3067 if (!ret) 3068 need_readd = true; 3069 goto result; 3070 } 3071 3072 if (unlikely(f2fs_cp_error(sbi))) 3073 goto lock_folio; 3074 3075 if (!f2fs_cluster_is_empty(&cc)) 3076 goto lock_folio; 3077 3078 if (f2fs_all_cluster_page_ready(&cc, 3079 pages, i, nr_pages, true)) 3080 goto lock_folio; 3081 3082 ret2 = f2fs_prepare_compress_overwrite( 3083 inode, &pagep, 3084 folio->index, &fsdata); 3085 if (ret2 < 0) { 3086 ret = ret2; 3087 done = 1; 3088 break; 3089 } else if (ret2 && 3090 (!f2fs_compress_write_end(inode, 3091 fsdata, folio->index, 1) || 3092 !f2fs_all_cluster_page_ready(&cc, 3093 pages, i, nr_pages, 3094 false))) { 3095 retry = 1; 3096 break; 3097 } 3098 } 3099 #endif 3100 /* give a priority to WB_SYNC threads */ 3101 if (atomic_read(&sbi->wb_sync_req[DATA]) && 3102 wbc->sync_mode == WB_SYNC_NONE) { 3103 done = 1; 3104 break; 3105 } 3106 #ifdef CONFIG_F2FS_FS_COMPRESSION 3107 lock_folio: 3108 #endif 3109 done_index = folio->index; 3110 retry_write: 3111 folio_lock(folio); 3112 3113 if (unlikely(folio->mapping != mapping)) { 3114 continue_unlock: 3115 folio_unlock(folio); 3116 continue; 3117 } 3118 3119 if (!folio_test_dirty(folio)) { 3120 /* someone wrote it for us */ 3121 goto continue_unlock; 3122 } 3123 3124 if (folio_test_writeback(folio)) { 3125 if (wbc->sync_mode == WB_SYNC_NONE) 3126 goto continue_unlock; 3127 f2fs_folio_wait_writeback(folio, DATA, true, true); 3128 } 3129 3130 if (!folio_clear_dirty_for_io(folio)) 3131 goto continue_unlock; 3132 3133 #ifdef CONFIG_F2FS_FS_COMPRESSION 3134 if (f2fs_compressed_file(inode)) { 3135 folio_get(folio); 3136 f2fs_compress_ctx_add_page(&cc, folio); 3137 continue; 3138 } 3139 #endif 3140 submitted = 0; 3141 ret = f2fs_write_single_data_page(folio, 3142 &submitted, &bio, &last_block, 3143 wbc, io_type, 0, true); 3144 #ifdef CONFIG_F2FS_FS_COMPRESSION 3145 result: 3146 #endif 3147 nwritten += submitted; 3148 wbc->nr_to_write -= submitted; 3149 3150 if (unlikely(ret)) { 3151 /* 3152 * keep nr_to_write, since vfs uses this to 3153 * get # of written pages. 3154 */ 3155 if (ret == 1) { 3156 ret = 0; 3157 goto next; 3158 } else if (ret == -EAGAIN) { 3159 ret = 0; 3160 if (wbc->sync_mode == WB_SYNC_ALL) { 3161 f2fs_io_schedule_timeout( 3162 DEFAULT_IO_TIMEOUT); 3163 goto retry_write; 3164 } 3165 goto next; 3166 } 3167 done_index = folio_next_index(folio); 3168 done = 1; 3169 break; 3170 } 3171 3172 if (wbc->nr_to_write <= 0 && 3173 wbc->sync_mode == WB_SYNC_NONE) { 3174 done = 1; 3175 break; 3176 } 3177 next: 3178 if (need_readd) 3179 goto readd; 3180 } 3181 release_pages(pages, nr_pages); 3182 cond_resched(); 3183 } 3184 #ifdef CONFIG_F2FS_FS_COMPRESSION 3185 /* flush remained pages in compress cluster */ 3186 if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) { 3187 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type); 3188 nwritten += submitted; 3189 wbc->nr_to_write -= submitted; 3190 if (ret) { 3191 done = 1; 3192 retry = 0; 3193 } 3194 } 3195 if (f2fs_compressed_file(inode)) 3196 f2fs_destroy_compress_ctx(&cc, false); 3197 #endif 3198 if (retry) { 3199 index = 0; 3200 end = -1; 3201 goto retry; 3202 } 3203 if (wbc->range_cyclic && !done) 3204 done_index = 0; 3205 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 3206 mapping->writeback_index = done_index; 3207 3208 if (nwritten) 3209 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host, 3210 NULL, 0, DATA); 3211 /* submit cached bio of IPU write */ 3212 if (bio) 3213 f2fs_submit_merged_ipu_write(sbi, &bio, NULL); 3214 3215 #ifdef CONFIG_F2FS_FS_COMPRESSION 3216 if (pages != pages_local) 3217 kfree(pages); 3218 #endif 3219 3220 return ret; 3221 } 3222 3223 static inline bool __should_serialize_io(struct inode *inode, 3224 struct writeback_control *wbc) 3225 { 3226 /* to avoid deadlock in path of data flush */ 3227 if (F2FS_I(inode)->wb_task) 3228 return false; 3229 3230 if (!S_ISREG(inode->i_mode)) 3231 return false; 3232 if (IS_NOQUOTA(inode)) 3233 return false; 3234 3235 if (f2fs_need_compress_data(inode)) 3236 return true; 3237 if (wbc->sync_mode != WB_SYNC_ALL) 3238 return true; 3239 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks) 3240 return true; 3241 return false; 3242 } 3243 3244 static int __f2fs_write_data_pages(struct address_space *mapping, 3245 struct writeback_control *wbc, 3246 enum iostat_type io_type) 3247 { 3248 struct inode *inode = mapping->host; 3249 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3250 struct blk_plug plug; 3251 int ret; 3252 bool locked = false; 3253 3254 /* skip writing if there is no dirty page in this inode */ 3255 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE) 3256 return 0; 3257 3258 /* during POR, we don't need to trigger writepage at all. */ 3259 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 3260 goto skip_write; 3261 3262 if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) && 3263 wbc->sync_mode == WB_SYNC_NONE && 3264 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) && 3265 f2fs_available_free_memory(sbi, DIRTY_DENTS)) 3266 goto skip_write; 3267 3268 /* skip writing in file defragment preparing stage */ 3269 if (is_inode_flag_set(inode, FI_SKIP_WRITES)) 3270 goto skip_write; 3271 3272 trace_f2fs_writepages(mapping->host, wbc, DATA); 3273 3274 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */ 3275 if (wbc->sync_mode == WB_SYNC_ALL) 3276 atomic_inc(&sbi->wb_sync_req[DATA]); 3277 else if (atomic_read(&sbi->wb_sync_req[DATA])) { 3278 /* to avoid potential deadlock */ 3279 if (current->plug) 3280 blk_finish_plug(current->plug); 3281 goto skip_write; 3282 } 3283 3284 if (__should_serialize_io(inode, wbc)) { 3285 mutex_lock(&sbi->writepages); 3286 locked = true; 3287 } 3288 3289 blk_start_plug(&plug); 3290 ret = f2fs_write_cache_pages(mapping, wbc, io_type); 3291 blk_finish_plug(&plug); 3292 3293 if (locked) 3294 mutex_unlock(&sbi->writepages); 3295 3296 if (wbc->sync_mode == WB_SYNC_ALL) 3297 atomic_dec(&sbi->wb_sync_req[DATA]); 3298 /* 3299 * if some pages were truncated, we cannot guarantee its mapping->host 3300 * to detect pending bios. 3301 */ 3302 3303 f2fs_remove_dirty_inode(inode); 3304 return ret; 3305 3306 skip_write: 3307 wbc->pages_skipped += get_dirty_pages(inode); 3308 trace_f2fs_writepages(mapping->host, wbc, DATA); 3309 return 0; 3310 } 3311 3312 static int f2fs_write_data_pages(struct address_space *mapping, 3313 struct writeback_control *wbc) 3314 { 3315 struct inode *inode = mapping->host; 3316 3317 return __f2fs_write_data_pages(mapping, wbc, 3318 F2FS_I(inode)->cp_task == current ? 3319 FS_CP_DATA_IO : FS_DATA_IO); 3320 } 3321 3322 void f2fs_write_failed(struct inode *inode, loff_t to) 3323 { 3324 loff_t i_size = i_size_read(inode); 3325 3326 if (IS_NOQUOTA(inode)) 3327 return; 3328 3329 /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */ 3330 if (to > i_size && !f2fs_verity_in_progress(inode)) { 3331 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3332 filemap_invalidate_lock(inode->i_mapping); 3333 3334 truncate_pagecache(inode, i_size); 3335 f2fs_truncate_blocks(inode, i_size, true); 3336 3337 filemap_invalidate_unlock(inode->i_mapping); 3338 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3339 } 3340 } 3341 3342 static int prepare_write_begin(struct f2fs_sb_info *sbi, 3343 struct folio *folio, loff_t pos, unsigned int len, 3344 block_t *blk_addr, bool *node_changed) 3345 { 3346 struct inode *inode = folio->mapping->host; 3347 pgoff_t index = folio->index; 3348 struct dnode_of_data dn; 3349 struct folio *ifolio; 3350 bool locked = false; 3351 int flag = F2FS_GET_BLOCK_PRE_AIO; 3352 int err = 0; 3353 3354 /* 3355 * If a whole page is being written and we already preallocated all the 3356 * blocks, then there is no need to get a block address now. 3357 */ 3358 if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL)) 3359 return 0; 3360 3361 /* f2fs_lock_op avoids race between write CP and convert_inline_page */ 3362 if (f2fs_has_inline_data(inode)) { 3363 if (pos + len > MAX_INLINE_DATA(inode)) 3364 flag = F2FS_GET_BLOCK_DEFAULT; 3365 f2fs_map_lock(sbi, flag); 3366 locked = true; 3367 } else if ((pos & PAGE_MASK) >= i_size_read(inode)) { 3368 f2fs_map_lock(sbi, flag); 3369 locked = true; 3370 } 3371 3372 restart: 3373 /* check inline_data */ 3374 ifolio = f2fs_get_inode_folio(sbi, inode->i_ino); 3375 if (IS_ERR(ifolio)) { 3376 err = PTR_ERR(ifolio); 3377 goto unlock_out; 3378 } 3379 3380 set_new_dnode(&dn, inode, ifolio, ifolio, 0); 3381 3382 if (f2fs_has_inline_data(inode)) { 3383 if (pos + len <= MAX_INLINE_DATA(inode)) { 3384 f2fs_do_read_inline_data(folio, ifolio); 3385 set_inode_flag(inode, FI_DATA_EXIST); 3386 if (inode->i_nlink) 3387 folio_set_f2fs_inline(ifolio); 3388 goto out; 3389 } 3390 err = f2fs_convert_inline_folio(&dn, folio); 3391 if (err || dn.data_blkaddr != NULL_ADDR) 3392 goto out; 3393 } 3394 3395 if (!f2fs_lookup_read_extent_cache_block(inode, index, 3396 &dn.data_blkaddr)) { 3397 if (IS_DEVICE_ALIASING(inode)) { 3398 err = -ENODATA; 3399 goto out; 3400 } 3401 3402 if (locked) { 3403 err = f2fs_reserve_block(&dn, index); 3404 goto out; 3405 } 3406 3407 /* hole case */ 3408 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 3409 if (!err && dn.data_blkaddr != NULL_ADDR) 3410 goto out; 3411 f2fs_put_dnode(&dn); 3412 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO); 3413 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO); 3414 locked = true; 3415 goto restart; 3416 } 3417 out: 3418 if (!err) { 3419 /* convert_inline_page can make node_changed */ 3420 *blk_addr = dn.data_blkaddr; 3421 *node_changed = dn.node_changed; 3422 } 3423 f2fs_put_dnode(&dn); 3424 unlock_out: 3425 if (locked) 3426 f2fs_map_unlock(sbi, flag); 3427 return err; 3428 } 3429 3430 static int __find_data_block(struct inode *inode, pgoff_t index, 3431 block_t *blk_addr) 3432 { 3433 struct dnode_of_data dn; 3434 struct folio *ifolio; 3435 int err = 0; 3436 3437 ifolio = f2fs_get_inode_folio(F2FS_I_SB(inode), inode->i_ino); 3438 if (IS_ERR(ifolio)) 3439 return PTR_ERR(ifolio); 3440 3441 set_new_dnode(&dn, inode, ifolio, ifolio, 0); 3442 3443 if (!f2fs_lookup_read_extent_cache_block(inode, index, 3444 &dn.data_blkaddr)) { 3445 /* hole case */ 3446 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 3447 if (err) { 3448 dn.data_blkaddr = NULL_ADDR; 3449 err = 0; 3450 } 3451 } 3452 *blk_addr = dn.data_blkaddr; 3453 f2fs_put_dnode(&dn); 3454 return err; 3455 } 3456 3457 static int __reserve_data_block(struct inode *inode, pgoff_t index, 3458 block_t *blk_addr, bool *node_changed) 3459 { 3460 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3461 struct dnode_of_data dn; 3462 struct folio *ifolio; 3463 int err = 0; 3464 3465 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO); 3466 3467 ifolio = f2fs_get_inode_folio(sbi, inode->i_ino); 3468 if (IS_ERR(ifolio)) { 3469 err = PTR_ERR(ifolio); 3470 goto unlock_out; 3471 } 3472 set_new_dnode(&dn, inode, ifolio, ifolio, 0); 3473 3474 if (!f2fs_lookup_read_extent_cache_block(dn.inode, index, 3475 &dn.data_blkaddr)) 3476 err = f2fs_reserve_block(&dn, index); 3477 3478 *blk_addr = dn.data_blkaddr; 3479 *node_changed = dn.node_changed; 3480 f2fs_put_dnode(&dn); 3481 3482 unlock_out: 3483 f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO); 3484 return err; 3485 } 3486 3487 static int prepare_atomic_write_begin(struct f2fs_sb_info *sbi, 3488 struct folio *folio, loff_t pos, unsigned int len, 3489 block_t *blk_addr, bool *node_changed, bool *use_cow) 3490 { 3491 struct inode *inode = folio->mapping->host; 3492 struct inode *cow_inode = F2FS_I(inode)->cow_inode; 3493 pgoff_t index = folio->index; 3494 int err = 0; 3495 block_t ori_blk_addr = NULL_ADDR; 3496 3497 /* If pos is beyond the end of file, reserve a new block in COW inode */ 3498 if ((pos & PAGE_MASK) >= i_size_read(inode)) 3499 goto reserve_block; 3500 3501 /* Look for the block in COW inode first */ 3502 err = __find_data_block(cow_inode, index, blk_addr); 3503 if (err) { 3504 return err; 3505 } else if (*blk_addr != NULL_ADDR) { 3506 *use_cow = true; 3507 return 0; 3508 } 3509 3510 if (is_inode_flag_set(inode, FI_ATOMIC_REPLACE)) 3511 goto reserve_block; 3512 3513 /* Look for the block in the original inode */ 3514 err = __find_data_block(inode, index, &ori_blk_addr); 3515 if (err) 3516 return err; 3517 3518 reserve_block: 3519 /* Finally, we should reserve a new block in COW inode for the update */ 3520 err = __reserve_data_block(cow_inode, index, blk_addr, node_changed); 3521 if (err) 3522 return err; 3523 inc_atomic_write_cnt(inode); 3524 3525 if (ori_blk_addr != NULL_ADDR) 3526 *blk_addr = ori_blk_addr; 3527 return 0; 3528 } 3529 3530 static int f2fs_write_begin(const struct kiocb *iocb, 3531 struct address_space *mapping, 3532 loff_t pos, unsigned len, struct folio **foliop, 3533 void **fsdata) 3534 { 3535 struct inode *inode = mapping->host; 3536 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3537 struct folio *folio; 3538 pgoff_t index = pos >> PAGE_SHIFT; 3539 bool need_balance = false; 3540 bool use_cow = false; 3541 block_t blkaddr = NULL_ADDR; 3542 int err = 0; 3543 3544 trace_f2fs_write_begin(inode, pos, len); 3545 3546 if (!f2fs_is_checkpoint_ready(sbi)) { 3547 err = -ENOSPC; 3548 goto fail; 3549 } 3550 3551 /* 3552 * We should check this at this moment to avoid deadlock on inode page 3553 * and #0 page. The locking rule for inline_data conversion should be: 3554 * folio_lock(folio #0) -> folio_lock(inode_page) 3555 */ 3556 if (index != 0) { 3557 err = f2fs_convert_inline_inode(inode); 3558 if (err) 3559 goto fail; 3560 } 3561 3562 #ifdef CONFIG_F2FS_FS_COMPRESSION 3563 if (f2fs_compressed_file(inode)) { 3564 int ret; 3565 struct page *page; 3566 3567 *fsdata = NULL; 3568 3569 if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode))) 3570 goto repeat; 3571 3572 ret = f2fs_prepare_compress_overwrite(inode, &page, 3573 index, fsdata); 3574 if (ret < 0) { 3575 err = ret; 3576 goto fail; 3577 } else if (ret) { 3578 *foliop = page_folio(page); 3579 return 0; 3580 } 3581 } 3582 #endif 3583 3584 repeat: 3585 /* 3586 * Do not use FGP_STABLE to avoid deadlock. 3587 * Will wait that below with our IO control. 3588 */ 3589 folio = __filemap_get_folio(mapping, index, 3590 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS); 3591 if (IS_ERR(folio)) { 3592 err = PTR_ERR(folio); 3593 goto fail; 3594 } 3595 3596 /* TODO: cluster can be compressed due to race with .writepage */ 3597 3598 *foliop = folio; 3599 3600 if (f2fs_is_atomic_file(inode)) 3601 err = prepare_atomic_write_begin(sbi, folio, pos, len, 3602 &blkaddr, &need_balance, &use_cow); 3603 else 3604 err = prepare_write_begin(sbi, folio, pos, len, 3605 &blkaddr, &need_balance); 3606 if (err) 3607 goto put_folio; 3608 3609 if (need_balance && !IS_NOQUOTA(inode) && 3610 has_not_enough_free_secs(sbi, 0, 0)) { 3611 folio_unlock(folio); 3612 f2fs_balance_fs(sbi, true); 3613 folio_lock(folio); 3614 if (folio->mapping != mapping) { 3615 /* The folio got truncated from under us */ 3616 folio_unlock(folio); 3617 folio_put(folio); 3618 goto repeat; 3619 } 3620 } 3621 3622 f2fs_folio_wait_writeback(folio, DATA, false, true); 3623 3624 if (len == folio_size(folio) || folio_test_uptodate(folio)) 3625 return 0; 3626 3627 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) && 3628 !f2fs_verity_in_progress(inode)) { 3629 folio_zero_segment(folio, len, folio_size(folio)); 3630 return 0; 3631 } 3632 3633 if (blkaddr == NEW_ADDR) { 3634 folio_zero_segment(folio, 0, folio_size(folio)); 3635 folio_mark_uptodate(folio); 3636 } else { 3637 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 3638 DATA_GENERIC_ENHANCE_READ)) { 3639 err = -EFSCORRUPTED; 3640 goto put_folio; 3641 } 3642 err = f2fs_submit_page_read(use_cow ? 3643 F2FS_I(inode)->cow_inode : inode, 3644 folio, blkaddr, 0, true); 3645 if (err) 3646 goto put_folio; 3647 3648 folio_lock(folio); 3649 if (unlikely(folio->mapping != mapping)) { 3650 folio_unlock(folio); 3651 folio_put(folio); 3652 goto repeat; 3653 } 3654 if (unlikely(!folio_test_uptodate(folio))) { 3655 err = -EIO; 3656 goto put_folio; 3657 } 3658 } 3659 return 0; 3660 3661 put_folio: 3662 folio_unlock(folio); 3663 folio_put(folio); 3664 fail: 3665 f2fs_write_failed(inode, pos + len); 3666 return err; 3667 } 3668 3669 static int f2fs_write_end(const struct kiocb *iocb, 3670 struct address_space *mapping, 3671 loff_t pos, unsigned len, unsigned copied, 3672 struct folio *folio, void *fsdata) 3673 { 3674 struct inode *inode = folio->mapping->host; 3675 3676 trace_f2fs_write_end(inode, pos, len, copied); 3677 3678 /* 3679 * This should be come from len == PAGE_SIZE, and we expect copied 3680 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and 3681 * let generic_perform_write() try to copy data again through copied=0. 3682 */ 3683 if (!folio_test_uptodate(folio)) { 3684 if (unlikely(copied != len)) 3685 copied = 0; 3686 else 3687 folio_mark_uptodate(folio); 3688 } 3689 3690 #ifdef CONFIG_F2FS_FS_COMPRESSION 3691 /* overwrite compressed file */ 3692 if (f2fs_compressed_file(inode) && fsdata) { 3693 f2fs_compress_write_end(inode, fsdata, folio->index, copied); 3694 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3695 3696 if (pos + copied > i_size_read(inode) && 3697 !f2fs_verity_in_progress(inode)) 3698 f2fs_i_size_write(inode, pos + copied); 3699 return copied; 3700 } 3701 #endif 3702 3703 if (!copied) 3704 goto unlock_out; 3705 3706 folio_mark_dirty(folio); 3707 3708 if (f2fs_is_atomic_file(inode)) 3709 folio_set_f2fs_atomic(folio); 3710 3711 if (pos + copied > i_size_read(inode) && 3712 !f2fs_verity_in_progress(inode)) { 3713 f2fs_i_size_write(inode, pos + copied); 3714 if (f2fs_is_atomic_file(inode)) 3715 f2fs_i_size_write(F2FS_I(inode)->cow_inode, 3716 pos + copied); 3717 } 3718 unlock_out: 3719 folio_unlock(folio); 3720 folio_put(folio); 3721 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3722 return copied; 3723 } 3724 3725 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length) 3726 { 3727 struct inode *inode = folio->mapping->host; 3728 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3729 3730 if (inode->i_ino >= F2FS_ROOT_INO(sbi) && 3731 (offset || length != folio_size(folio))) 3732 return; 3733 3734 if (folio_test_dirty(folio)) { 3735 if (inode->i_ino == F2FS_META_INO(sbi)) { 3736 dec_page_count(sbi, F2FS_DIRTY_META); 3737 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) { 3738 dec_page_count(sbi, F2FS_DIRTY_NODES); 3739 } else { 3740 inode_dec_dirty_pages(inode); 3741 f2fs_remove_dirty_inode(inode); 3742 } 3743 } 3744 folio_detach_private(folio); 3745 } 3746 3747 bool f2fs_release_folio(struct folio *folio, gfp_t wait) 3748 { 3749 /* If this is dirty folio, keep private data */ 3750 if (folio_test_dirty(folio)) 3751 return false; 3752 3753 folio_detach_private(folio); 3754 return true; 3755 } 3756 3757 static bool f2fs_dirty_data_folio(struct address_space *mapping, 3758 struct folio *folio) 3759 { 3760 struct inode *inode = mapping->host; 3761 3762 trace_f2fs_set_page_dirty(folio, DATA); 3763 3764 if (!folio_test_uptodate(folio)) 3765 folio_mark_uptodate(folio); 3766 BUG_ON(folio_test_swapcache(folio)); 3767 3768 if (filemap_dirty_folio(mapping, folio)) { 3769 f2fs_update_dirty_folio(inode, folio); 3770 return true; 3771 } 3772 return false; 3773 } 3774 3775 3776 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block) 3777 { 3778 #ifdef CONFIG_F2FS_FS_COMPRESSION 3779 struct dnode_of_data dn; 3780 sector_t start_idx, blknr = 0; 3781 int ret; 3782 3783 start_idx = round_down(block, F2FS_I(inode)->i_cluster_size); 3784 3785 set_new_dnode(&dn, inode, NULL, NULL, 0); 3786 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 3787 if (ret) 3788 return 0; 3789 3790 if (dn.data_blkaddr != COMPRESS_ADDR) { 3791 dn.ofs_in_node += block - start_idx; 3792 blknr = f2fs_data_blkaddr(&dn); 3793 if (!__is_valid_data_blkaddr(blknr)) 3794 blknr = 0; 3795 } 3796 3797 f2fs_put_dnode(&dn); 3798 return blknr; 3799 #else 3800 return 0; 3801 #endif 3802 } 3803 3804 3805 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block) 3806 { 3807 struct inode *inode = mapping->host; 3808 sector_t blknr = 0; 3809 3810 if (f2fs_has_inline_data(inode)) 3811 goto out; 3812 3813 /* make sure allocating whole blocks */ 3814 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 3815 filemap_write_and_wait(mapping); 3816 3817 /* Block number less than F2FS MAX BLOCKS */ 3818 if (unlikely(block >= max_file_blocks(inode))) 3819 goto out; 3820 3821 if (f2fs_compressed_file(inode)) { 3822 blknr = f2fs_bmap_compress(inode, block); 3823 } else { 3824 struct f2fs_map_blocks map; 3825 3826 memset(&map, 0, sizeof(map)); 3827 map.m_lblk = block; 3828 map.m_len = 1; 3829 map.m_next_pgofs = NULL; 3830 map.m_seg_type = NO_CHECK_TYPE; 3831 3832 if (!f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_BMAP)) 3833 blknr = map.m_pblk; 3834 } 3835 out: 3836 trace_f2fs_bmap(inode, block, blknr); 3837 return blknr; 3838 } 3839 3840 #ifdef CONFIG_SWAP 3841 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk, 3842 unsigned int blkcnt) 3843 { 3844 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3845 unsigned int blkofs; 3846 unsigned int blk_per_sec = BLKS_PER_SEC(sbi); 3847 unsigned int end_blk = start_blk + blkcnt - 1; 3848 unsigned int secidx = start_blk / blk_per_sec; 3849 unsigned int end_sec; 3850 int ret = 0; 3851 3852 if (!blkcnt) 3853 return 0; 3854 end_sec = end_blk / blk_per_sec; 3855 3856 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3857 filemap_invalidate_lock(inode->i_mapping); 3858 3859 set_inode_flag(inode, FI_ALIGNED_WRITE); 3860 set_inode_flag(inode, FI_OPU_WRITE); 3861 3862 for (; secidx <= end_sec; secidx++) { 3863 unsigned int blkofs_end = secidx == end_sec ? 3864 end_blk % blk_per_sec : blk_per_sec - 1; 3865 3866 f2fs_down_write(&sbi->pin_sem); 3867 3868 ret = f2fs_allocate_pinning_section(sbi); 3869 if (ret) { 3870 f2fs_up_write(&sbi->pin_sem); 3871 break; 3872 } 3873 3874 set_inode_flag(inode, FI_SKIP_WRITES); 3875 3876 for (blkofs = 0; blkofs <= blkofs_end; blkofs++) { 3877 struct folio *folio; 3878 unsigned int blkidx = secidx * blk_per_sec + blkofs; 3879 3880 folio = f2fs_get_lock_data_folio(inode, blkidx, true); 3881 if (IS_ERR(folio)) { 3882 f2fs_up_write(&sbi->pin_sem); 3883 ret = PTR_ERR(folio); 3884 goto done; 3885 } 3886 3887 folio_mark_dirty(folio); 3888 f2fs_folio_put(folio, true); 3889 } 3890 3891 clear_inode_flag(inode, FI_SKIP_WRITES); 3892 3893 ret = filemap_fdatawrite(inode->i_mapping); 3894 3895 f2fs_up_write(&sbi->pin_sem); 3896 3897 if (ret) 3898 break; 3899 } 3900 3901 done: 3902 clear_inode_flag(inode, FI_SKIP_WRITES); 3903 clear_inode_flag(inode, FI_OPU_WRITE); 3904 clear_inode_flag(inode, FI_ALIGNED_WRITE); 3905 3906 filemap_invalidate_unlock(inode->i_mapping); 3907 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3908 3909 return ret; 3910 } 3911 3912 static int check_swap_activate(struct swap_info_struct *sis, 3913 struct file *swap_file, sector_t *span) 3914 { 3915 struct address_space *mapping = swap_file->f_mapping; 3916 struct inode *inode = mapping->host; 3917 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3918 block_t cur_lblock; 3919 block_t last_lblock; 3920 block_t pblock; 3921 block_t lowest_pblock = -1; 3922 block_t highest_pblock = 0; 3923 int nr_extents = 0; 3924 unsigned int nr_pblocks; 3925 unsigned int blks_per_sec = BLKS_PER_SEC(sbi); 3926 unsigned int not_aligned = 0; 3927 int ret = 0; 3928 3929 /* 3930 * Map all the blocks into the extent list. This code doesn't try 3931 * to be very smart. 3932 */ 3933 cur_lblock = 0; 3934 last_lblock = F2FS_BYTES_TO_BLK(i_size_read(inode)); 3935 3936 while (cur_lblock < last_lblock && cur_lblock < sis->max) { 3937 struct f2fs_map_blocks map; 3938 retry: 3939 cond_resched(); 3940 3941 memset(&map, 0, sizeof(map)); 3942 map.m_lblk = cur_lblock; 3943 map.m_len = last_lblock - cur_lblock; 3944 map.m_next_pgofs = NULL; 3945 map.m_next_extent = NULL; 3946 map.m_seg_type = NO_CHECK_TYPE; 3947 map.m_may_create = false; 3948 3949 ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP); 3950 if (ret) 3951 goto out; 3952 3953 /* hole */ 3954 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 3955 f2fs_err(sbi, "Swapfile has holes"); 3956 ret = -EINVAL; 3957 goto out; 3958 } 3959 3960 pblock = map.m_pblk; 3961 nr_pblocks = map.m_len; 3962 3963 if ((pblock - SM_I(sbi)->main_blkaddr) % blks_per_sec || 3964 nr_pblocks % blks_per_sec || 3965 f2fs_is_sequential_zone_area(sbi, pblock)) { 3966 bool last_extent = false; 3967 3968 not_aligned++; 3969 3970 nr_pblocks = roundup(nr_pblocks, blks_per_sec); 3971 if (cur_lblock + nr_pblocks > sis->max) 3972 nr_pblocks -= blks_per_sec; 3973 3974 /* this extent is last one */ 3975 if (!nr_pblocks) { 3976 nr_pblocks = last_lblock - cur_lblock; 3977 last_extent = true; 3978 } 3979 3980 ret = f2fs_migrate_blocks(inode, cur_lblock, 3981 nr_pblocks); 3982 if (ret) { 3983 if (ret == -ENOENT) 3984 ret = -EINVAL; 3985 goto out; 3986 } 3987 3988 if (!last_extent) 3989 goto retry; 3990 } 3991 3992 if (cur_lblock + nr_pblocks >= sis->max) 3993 nr_pblocks = sis->max - cur_lblock; 3994 3995 if (cur_lblock) { /* exclude the header page */ 3996 if (pblock < lowest_pblock) 3997 lowest_pblock = pblock; 3998 if (pblock + nr_pblocks - 1 > highest_pblock) 3999 highest_pblock = pblock + nr_pblocks - 1; 4000 } 4001 4002 /* 4003 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks 4004 */ 4005 ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock); 4006 if (ret < 0) 4007 goto out; 4008 nr_extents += ret; 4009 cur_lblock += nr_pblocks; 4010 } 4011 ret = nr_extents; 4012 *span = 1 + highest_pblock - lowest_pblock; 4013 if (cur_lblock == 0) 4014 cur_lblock = 1; /* force Empty message */ 4015 sis->max = cur_lblock; 4016 sis->pages = cur_lblock - 1; 4017 out: 4018 if (not_aligned) 4019 f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%lu * N)", 4020 not_aligned, blks_per_sec * F2FS_BLKSIZE); 4021 return ret; 4022 } 4023 4024 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, 4025 sector_t *span) 4026 { 4027 struct inode *inode = file_inode(file); 4028 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4029 int ret; 4030 4031 if (!S_ISREG(inode->i_mode)) 4032 return -EINVAL; 4033 4034 if (f2fs_readonly(sbi->sb)) 4035 return -EROFS; 4036 4037 if (f2fs_lfs_mode(sbi) && !f2fs_sb_has_blkzoned(sbi)) { 4038 f2fs_err(sbi, "Swapfile not supported in LFS mode"); 4039 return -EINVAL; 4040 } 4041 4042 ret = f2fs_convert_inline_inode(inode); 4043 if (ret) 4044 return ret; 4045 4046 if (!f2fs_disable_compressed_file(inode)) 4047 return -EINVAL; 4048 4049 ret = filemap_fdatawrite(inode->i_mapping); 4050 if (ret < 0) 4051 return ret; 4052 4053 f2fs_precache_extents(inode); 4054 4055 ret = check_swap_activate(sis, file, span); 4056 if (ret < 0) 4057 return ret; 4058 4059 stat_inc_swapfile_inode(inode); 4060 set_inode_flag(inode, FI_PIN_FILE); 4061 f2fs_update_time(sbi, REQ_TIME); 4062 return ret; 4063 } 4064 4065 static void f2fs_swap_deactivate(struct file *file) 4066 { 4067 struct inode *inode = file_inode(file); 4068 4069 stat_dec_swapfile_inode(inode); 4070 clear_inode_flag(inode, FI_PIN_FILE); 4071 } 4072 #else 4073 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, 4074 sector_t *span) 4075 { 4076 return -EOPNOTSUPP; 4077 } 4078 4079 static void f2fs_swap_deactivate(struct file *file) 4080 { 4081 } 4082 #endif 4083 4084 const struct address_space_operations f2fs_dblock_aops = { 4085 .read_folio = f2fs_read_data_folio, 4086 .readahead = f2fs_readahead, 4087 .writepages = f2fs_write_data_pages, 4088 .write_begin = f2fs_write_begin, 4089 .write_end = f2fs_write_end, 4090 .dirty_folio = f2fs_dirty_data_folio, 4091 .migrate_folio = filemap_migrate_folio, 4092 .invalidate_folio = f2fs_invalidate_folio, 4093 .release_folio = f2fs_release_folio, 4094 .bmap = f2fs_bmap, 4095 .swap_activate = f2fs_swap_activate, 4096 .swap_deactivate = f2fs_swap_deactivate, 4097 }; 4098 4099 void f2fs_clear_page_cache_dirty_tag(struct folio *folio) 4100 { 4101 struct address_space *mapping = folio->mapping; 4102 unsigned long flags; 4103 4104 xa_lock_irqsave(&mapping->i_pages, flags); 4105 __xa_clear_mark(&mapping->i_pages, folio->index, 4106 PAGECACHE_TAG_DIRTY); 4107 xa_unlock_irqrestore(&mapping->i_pages, flags); 4108 } 4109 4110 int __init f2fs_init_post_read_processing(void) 4111 { 4112 bio_post_read_ctx_cache = 4113 kmem_cache_create("f2fs_bio_post_read_ctx", 4114 sizeof(struct bio_post_read_ctx), 0, 0, NULL); 4115 if (!bio_post_read_ctx_cache) 4116 goto fail; 4117 bio_post_read_ctx_pool = 4118 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS, 4119 bio_post_read_ctx_cache); 4120 if (!bio_post_read_ctx_pool) 4121 goto fail_free_cache; 4122 return 0; 4123 4124 fail_free_cache: 4125 kmem_cache_destroy(bio_post_read_ctx_cache); 4126 fail: 4127 return -ENOMEM; 4128 } 4129 4130 void f2fs_destroy_post_read_processing(void) 4131 { 4132 mempool_destroy(bio_post_read_ctx_pool); 4133 kmem_cache_destroy(bio_post_read_ctx_cache); 4134 } 4135 4136 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi) 4137 { 4138 if (!f2fs_sb_has_encrypt(sbi) && 4139 !f2fs_sb_has_verity(sbi) && 4140 !f2fs_sb_has_compression(sbi)) 4141 return 0; 4142 4143 sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq", 4144 WQ_UNBOUND | WQ_HIGHPRI, 4145 num_online_cpus()); 4146 return sbi->post_read_wq ? 0 : -ENOMEM; 4147 } 4148 4149 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi) 4150 { 4151 if (sbi->post_read_wq) 4152 destroy_workqueue(sbi->post_read_wq); 4153 } 4154 4155 int __init f2fs_init_bio_entry_cache(void) 4156 { 4157 bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab", 4158 sizeof(struct bio_entry)); 4159 return bio_entry_slab ? 0 : -ENOMEM; 4160 } 4161 4162 void f2fs_destroy_bio_entry_cache(void) 4163 { 4164 kmem_cache_destroy(bio_entry_slab); 4165 } 4166 4167 static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 4168 unsigned int flags, struct iomap *iomap, 4169 struct iomap *srcmap) 4170 { 4171 struct f2fs_map_blocks map = { NULL, }; 4172 pgoff_t next_pgofs = 0; 4173 int err; 4174 4175 map.m_lblk = F2FS_BYTES_TO_BLK(offset); 4176 map.m_len = F2FS_BYTES_TO_BLK(offset + length - 1) - map.m_lblk + 1; 4177 map.m_next_pgofs = &next_pgofs; 4178 map.m_seg_type = f2fs_rw_hint_to_seg_type(F2FS_I_SB(inode), 4179 inode->i_write_hint); 4180 if (flags & IOMAP_WRITE && iomap->private) { 4181 map.m_last_pblk = (unsigned long)iomap->private; 4182 iomap->private = NULL; 4183 } 4184 4185 /* 4186 * If the blocks being overwritten are already allocated, 4187 * f2fs_map_lock and f2fs_balance_fs are not necessary. 4188 */ 4189 if ((flags & IOMAP_WRITE) && 4190 !f2fs_overwrite_io(inode, offset, length)) 4191 map.m_may_create = true; 4192 4193 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DIO); 4194 if (err) 4195 return err; 4196 4197 iomap->offset = F2FS_BLK_TO_BYTES(map.m_lblk); 4198 4199 /* 4200 * When inline encryption is enabled, sometimes I/O to an encrypted file 4201 * has to be broken up to guarantee DUN contiguity. Handle this by 4202 * limiting the length of the mapping returned. 4203 */ 4204 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len); 4205 4206 /* 4207 * We should never see delalloc or compressed extents here based on 4208 * prior flushing and checks. 4209 */ 4210 if (WARN_ON_ONCE(map.m_pblk == COMPRESS_ADDR)) 4211 return -EINVAL; 4212 4213 if (map.m_flags & F2FS_MAP_MAPPED) { 4214 if (WARN_ON_ONCE(map.m_pblk == NEW_ADDR)) 4215 return -EINVAL; 4216 4217 iomap->length = F2FS_BLK_TO_BYTES(map.m_len); 4218 iomap->type = IOMAP_MAPPED; 4219 iomap->flags |= IOMAP_F_MERGED; 4220 iomap->bdev = map.m_bdev; 4221 iomap->addr = F2FS_BLK_TO_BYTES(map.m_pblk); 4222 4223 if (flags & IOMAP_WRITE && map.m_last_pblk) 4224 iomap->private = (void *)map.m_last_pblk; 4225 } else { 4226 if (flags & IOMAP_WRITE) 4227 return -ENOTBLK; 4228 4229 if (map.m_pblk == NULL_ADDR) { 4230 iomap->length = F2FS_BLK_TO_BYTES(next_pgofs) - 4231 iomap->offset; 4232 iomap->type = IOMAP_HOLE; 4233 } else if (map.m_pblk == NEW_ADDR) { 4234 iomap->length = F2FS_BLK_TO_BYTES(map.m_len); 4235 iomap->type = IOMAP_UNWRITTEN; 4236 } else { 4237 f2fs_bug_on(F2FS_I_SB(inode), 1); 4238 } 4239 iomap->addr = IOMAP_NULL_ADDR; 4240 } 4241 4242 if (map.m_flags & F2FS_MAP_NEW) 4243 iomap->flags |= IOMAP_F_NEW; 4244 if ((inode->i_state & I_DIRTY_DATASYNC) || 4245 offset + length > i_size_read(inode)) 4246 iomap->flags |= IOMAP_F_DIRTY; 4247 4248 return 0; 4249 } 4250 4251 const struct iomap_ops f2fs_iomap_ops = { 4252 .iomap_begin = f2fs_iomap_begin, 4253 }; 4254