1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/data.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/buffer_head.h> 11 #include <linux/sched/mm.h> 12 #include <linux/mpage.h> 13 #include <linux/writeback.h> 14 #include <linux/pagevec.h> 15 #include <linux/blkdev.h> 16 #include <linux/bio.h> 17 #include <linux/blk-crypto.h> 18 #include <linux/swap.h> 19 #include <linux/prefetch.h> 20 #include <linux/uio.h> 21 #include <linux/sched/signal.h> 22 #include <linux/fiemap.h> 23 #include <linux/iomap.h> 24 25 #include "f2fs.h" 26 #include "node.h" 27 #include "segment.h" 28 #include "iostat.h" 29 #include <trace/events/f2fs.h> 30 31 #define NUM_PREALLOC_POST_READ_CTXS 128 32 33 static struct kmem_cache *bio_post_read_ctx_cache; 34 static struct kmem_cache *bio_entry_slab; 35 static mempool_t *bio_post_read_ctx_pool; 36 static struct bio_set f2fs_bioset; 37 38 #define F2FS_BIO_POOL_SIZE NR_CURSEG_TYPE 39 40 int __init f2fs_init_bioset(void) 41 { 42 if (bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE, 43 0, BIOSET_NEED_BVECS)) 44 return -ENOMEM; 45 return 0; 46 } 47 48 void f2fs_destroy_bioset(void) 49 { 50 bioset_exit(&f2fs_bioset); 51 } 52 53 static bool __is_cp_guaranteed(struct page *page) 54 { 55 struct address_space *mapping = page->mapping; 56 struct inode *inode; 57 struct f2fs_sb_info *sbi; 58 59 if (!mapping) 60 return false; 61 62 inode = mapping->host; 63 sbi = F2FS_I_SB(inode); 64 65 if (inode->i_ino == F2FS_META_INO(sbi) || 66 inode->i_ino == F2FS_NODE_INO(sbi) || 67 S_ISDIR(inode->i_mode)) 68 return true; 69 70 if (f2fs_is_compressed_page(page)) 71 return false; 72 if ((S_ISREG(inode->i_mode) && IS_NOQUOTA(inode)) || 73 page_private_gcing(page)) 74 return true; 75 return false; 76 } 77 78 static enum count_type __read_io_type(struct page *page) 79 { 80 struct address_space *mapping = page_file_mapping(page); 81 82 if (mapping) { 83 struct inode *inode = mapping->host; 84 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 85 86 if (inode->i_ino == F2FS_META_INO(sbi)) 87 return F2FS_RD_META; 88 89 if (inode->i_ino == F2FS_NODE_INO(sbi)) 90 return F2FS_RD_NODE; 91 } 92 return F2FS_RD_DATA; 93 } 94 95 /* postprocessing steps for read bios */ 96 enum bio_post_read_step { 97 #ifdef CONFIG_FS_ENCRYPTION 98 STEP_DECRYPT = 1 << 0, 99 #else 100 STEP_DECRYPT = 0, /* compile out the decryption-related code */ 101 #endif 102 #ifdef CONFIG_F2FS_FS_COMPRESSION 103 STEP_DECOMPRESS = 1 << 1, 104 #else 105 STEP_DECOMPRESS = 0, /* compile out the decompression-related code */ 106 #endif 107 #ifdef CONFIG_FS_VERITY 108 STEP_VERITY = 1 << 2, 109 #else 110 STEP_VERITY = 0, /* compile out the verity-related code */ 111 #endif 112 }; 113 114 struct bio_post_read_ctx { 115 struct bio *bio; 116 struct f2fs_sb_info *sbi; 117 struct work_struct work; 118 unsigned int enabled_steps; 119 block_t fs_blkaddr; 120 }; 121 122 static void f2fs_finish_read_bio(struct bio *bio, bool in_task) 123 { 124 struct bio_vec *bv; 125 struct bvec_iter_all iter_all; 126 127 /* 128 * Update and unlock the bio's pagecache pages, and put the 129 * decompression context for any compressed pages. 130 */ 131 bio_for_each_segment_all(bv, bio, iter_all) { 132 struct page *page = bv->bv_page; 133 134 if (f2fs_is_compressed_page(page)) { 135 if (bio->bi_status) 136 f2fs_end_read_compressed_page(page, true, 0, 137 in_task); 138 f2fs_put_page_dic(page, in_task); 139 continue; 140 } 141 142 /* PG_error was set if decryption or verity failed. */ 143 if (bio->bi_status || PageError(page)) { 144 ClearPageUptodate(page); 145 /* will re-read again later */ 146 ClearPageError(page); 147 } else { 148 SetPageUptodate(page); 149 } 150 dec_page_count(F2FS_P_SB(page), __read_io_type(page)); 151 unlock_page(page); 152 } 153 154 if (bio->bi_private) 155 mempool_free(bio->bi_private, bio_post_read_ctx_pool); 156 bio_put(bio); 157 } 158 159 static void f2fs_verify_bio(struct work_struct *work) 160 { 161 struct bio_post_read_ctx *ctx = 162 container_of(work, struct bio_post_read_ctx, work); 163 struct bio *bio = ctx->bio; 164 bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS); 165 166 /* 167 * fsverity_verify_bio() may call readahead() again, and while verity 168 * will be disabled for this, decryption and/or decompression may still 169 * be needed, resulting in another bio_post_read_ctx being allocated. 170 * So to prevent deadlocks we need to release the current ctx to the 171 * mempool first. This assumes that verity is the last post-read step. 172 */ 173 mempool_free(ctx, bio_post_read_ctx_pool); 174 bio->bi_private = NULL; 175 176 /* 177 * Verify the bio's pages with fs-verity. Exclude compressed pages, 178 * as those were handled separately by f2fs_end_read_compressed_page(). 179 */ 180 if (may_have_compressed_pages) { 181 struct bio_vec *bv; 182 struct bvec_iter_all iter_all; 183 184 bio_for_each_segment_all(bv, bio, iter_all) { 185 struct page *page = bv->bv_page; 186 187 if (!f2fs_is_compressed_page(page) && 188 !PageError(page) && !fsverity_verify_page(page)) 189 SetPageError(page); 190 } 191 } else { 192 fsverity_verify_bio(bio); 193 } 194 195 f2fs_finish_read_bio(bio, true); 196 } 197 198 /* 199 * If the bio's data needs to be verified with fs-verity, then enqueue the 200 * verity work for the bio. Otherwise finish the bio now. 201 * 202 * Note that to avoid deadlocks, the verity work can't be done on the 203 * decryption/decompression workqueue. This is because verifying the data pages 204 * can involve reading verity metadata pages from the file, and these verity 205 * metadata pages may be encrypted and/or compressed. 206 */ 207 static void f2fs_verify_and_finish_bio(struct bio *bio, bool in_task) 208 { 209 struct bio_post_read_ctx *ctx = bio->bi_private; 210 211 if (ctx && (ctx->enabled_steps & STEP_VERITY)) { 212 INIT_WORK(&ctx->work, f2fs_verify_bio); 213 fsverity_enqueue_verify_work(&ctx->work); 214 } else { 215 f2fs_finish_read_bio(bio, in_task); 216 } 217 } 218 219 /* 220 * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last 221 * remaining page was read by @ctx->bio. 222 * 223 * Note that a bio may span clusters (even a mix of compressed and uncompressed 224 * clusters) or be for just part of a cluster. STEP_DECOMPRESS just indicates 225 * that the bio includes at least one compressed page. The actual decompression 226 * is done on a per-cluster basis, not a per-bio basis. 227 */ 228 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx, 229 bool in_task) 230 { 231 struct bio_vec *bv; 232 struct bvec_iter_all iter_all; 233 bool all_compressed = true; 234 block_t blkaddr = ctx->fs_blkaddr; 235 236 bio_for_each_segment_all(bv, ctx->bio, iter_all) { 237 struct page *page = bv->bv_page; 238 239 /* PG_error was set if decryption failed. */ 240 if (f2fs_is_compressed_page(page)) 241 f2fs_end_read_compressed_page(page, PageError(page), 242 blkaddr, in_task); 243 else 244 all_compressed = false; 245 246 blkaddr++; 247 } 248 249 /* 250 * Optimization: if all the bio's pages are compressed, then scheduling 251 * the per-bio verity work is unnecessary, as verity will be fully 252 * handled at the compression cluster level. 253 */ 254 if (all_compressed) 255 ctx->enabled_steps &= ~STEP_VERITY; 256 } 257 258 static void f2fs_post_read_work(struct work_struct *work) 259 { 260 struct bio_post_read_ctx *ctx = 261 container_of(work, struct bio_post_read_ctx, work); 262 263 if (ctx->enabled_steps & STEP_DECRYPT) 264 fscrypt_decrypt_bio(ctx->bio); 265 266 if (ctx->enabled_steps & STEP_DECOMPRESS) 267 f2fs_handle_step_decompress(ctx, true); 268 269 f2fs_verify_and_finish_bio(ctx->bio, true); 270 } 271 272 static void f2fs_read_end_io(struct bio *bio) 273 { 274 struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio)); 275 struct bio_post_read_ctx *ctx; 276 bool intask = in_task(); 277 278 iostat_update_and_unbind_ctx(bio, 0); 279 ctx = bio->bi_private; 280 281 if (time_to_inject(sbi, FAULT_READ_IO)) { 282 f2fs_show_injection_info(sbi, FAULT_READ_IO); 283 bio->bi_status = BLK_STS_IOERR; 284 } 285 286 if (bio->bi_status) { 287 f2fs_finish_read_bio(bio, intask); 288 return; 289 } 290 291 if (ctx) { 292 unsigned int enabled_steps = ctx->enabled_steps & 293 (STEP_DECRYPT | STEP_DECOMPRESS); 294 295 /* 296 * If we have only decompression step between decompression and 297 * decrypt, we don't need post processing for this. 298 */ 299 if (enabled_steps == STEP_DECOMPRESS && 300 !f2fs_low_mem_mode(sbi)) { 301 f2fs_handle_step_decompress(ctx, intask); 302 } else if (enabled_steps) { 303 INIT_WORK(&ctx->work, f2fs_post_read_work); 304 queue_work(ctx->sbi->post_read_wq, &ctx->work); 305 return; 306 } 307 } 308 309 f2fs_verify_and_finish_bio(bio, intask); 310 } 311 312 static void f2fs_write_end_io(struct bio *bio) 313 { 314 struct f2fs_sb_info *sbi; 315 struct bio_vec *bvec; 316 struct bvec_iter_all iter_all; 317 318 iostat_update_and_unbind_ctx(bio, 1); 319 sbi = bio->bi_private; 320 321 if (time_to_inject(sbi, FAULT_WRITE_IO)) { 322 f2fs_show_injection_info(sbi, FAULT_WRITE_IO); 323 bio->bi_status = BLK_STS_IOERR; 324 } 325 326 bio_for_each_segment_all(bvec, bio, iter_all) { 327 struct page *page = bvec->bv_page; 328 enum count_type type = WB_DATA_TYPE(page); 329 330 if (page_private_dummy(page)) { 331 clear_page_private_dummy(page); 332 unlock_page(page); 333 mempool_free(page, sbi->write_io_dummy); 334 335 if (unlikely(bio->bi_status)) 336 f2fs_stop_checkpoint(sbi, true); 337 continue; 338 } 339 340 fscrypt_finalize_bounce_page(&page); 341 342 #ifdef CONFIG_F2FS_FS_COMPRESSION 343 if (f2fs_is_compressed_page(page)) { 344 f2fs_compress_write_end_io(bio, page); 345 continue; 346 } 347 #endif 348 349 if (unlikely(bio->bi_status)) { 350 mapping_set_error(page->mapping, -EIO); 351 if (type == F2FS_WB_CP_DATA) 352 f2fs_stop_checkpoint(sbi, true); 353 } 354 355 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) && 356 page->index != nid_of_node(page)); 357 358 dec_page_count(sbi, type); 359 if (f2fs_in_warm_node_list(sbi, page)) 360 f2fs_del_fsync_node_entry(sbi, page); 361 clear_page_private_gcing(page); 362 end_page_writeback(page); 363 } 364 if (!get_pages(sbi, F2FS_WB_CP_DATA) && 365 wq_has_sleeper(&sbi->cp_wait)) 366 wake_up(&sbi->cp_wait); 367 368 bio_put(bio); 369 } 370 371 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 372 block_t blk_addr, sector_t *sector) 373 { 374 struct block_device *bdev = sbi->sb->s_bdev; 375 int i; 376 377 if (f2fs_is_multi_device(sbi)) { 378 for (i = 0; i < sbi->s_ndevs; i++) { 379 if (FDEV(i).start_blk <= blk_addr && 380 FDEV(i).end_blk >= blk_addr) { 381 blk_addr -= FDEV(i).start_blk; 382 bdev = FDEV(i).bdev; 383 break; 384 } 385 } 386 } 387 388 if (sector) 389 *sector = SECTOR_FROM_BLOCK(blk_addr); 390 return bdev; 391 } 392 393 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr) 394 { 395 int i; 396 397 if (!f2fs_is_multi_device(sbi)) 398 return 0; 399 400 for (i = 0; i < sbi->s_ndevs; i++) 401 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr) 402 return i; 403 return 0; 404 } 405 406 static blk_opf_t f2fs_io_flags(struct f2fs_io_info *fio) 407 { 408 unsigned int temp_mask = (1 << NR_TEMP_TYPE) - 1; 409 unsigned int fua_flag, meta_flag, io_flag; 410 blk_opf_t op_flags = 0; 411 412 if (fio->op != REQ_OP_WRITE) 413 return 0; 414 if (fio->type == DATA) 415 io_flag = fio->sbi->data_io_flag; 416 else if (fio->type == NODE) 417 io_flag = fio->sbi->node_io_flag; 418 else 419 return 0; 420 421 fua_flag = io_flag & temp_mask; 422 meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask; 423 424 /* 425 * data/node io flag bits per temp: 426 * REQ_META | REQ_FUA | 427 * 5 | 4 | 3 | 2 | 1 | 0 | 428 * Cold | Warm | Hot | Cold | Warm | Hot | 429 */ 430 if ((1 << fio->temp) & meta_flag) 431 op_flags |= REQ_META; 432 if ((1 << fio->temp) & fua_flag) 433 op_flags |= REQ_FUA; 434 return op_flags; 435 } 436 437 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages) 438 { 439 struct f2fs_sb_info *sbi = fio->sbi; 440 struct block_device *bdev; 441 sector_t sector; 442 struct bio *bio; 443 444 bdev = f2fs_target_device(sbi, fio->new_blkaddr, §or); 445 bio = bio_alloc_bioset(bdev, npages, 446 fio->op | fio->op_flags | f2fs_io_flags(fio), 447 GFP_NOIO, &f2fs_bioset); 448 bio->bi_iter.bi_sector = sector; 449 if (is_read_io(fio->op)) { 450 bio->bi_end_io = f2fs_read_end_io; 451 bio->bi_private = NULL; 452 } else { 453 bio->bi_end_io = f2fs_write_end_io; 454 bio->bi_private = sbi; 455 } 456 iostat_alloc_and_bind_ctx(sbi, bio, NULL); 457 458 if (fio->io_wbc) 459 wbc_init_bio(fio->io_wbc, bio); 460 461 return bio; 462 } 463 464 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode, 465 pgoff_t first_idx, 466 const struct f2fs_io_info *fio, 467 gfp_t gfp_mask) 468 { 469 /* 470 * The f2fs garbage collector sets ->encrypted_page when it wants to 471 * read/write raw data without encryption. 472 */ 473 if (!fio || !fio->encrypted_page) 474 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask); 475 } 476 477 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode, 478 pgoff_t next_idx, 479 const struct f2fs_io_info *fio) 480 { 481 /* 482 * The f2fs garbage collector sets ->encrypted_page when it wants to 483 * read/write raw data without encryption. 484 */ 485 if (fio && fio->encrypted_page) 486 return !bio_has_crypt_ctx(bio); 487 488 return fscrypt_mergeable_bio(bio, inode, next_idx); 489 } 490 491 static inline void __submit_bio(struct f2fs_sb_info *sbi, 492 struct bio *bio, enum page_type type) 493 { 494 if (!is_read_io(bio_op(bio))) { 495 unsigned int start; 496 497 if (type != DATA && type != NODE) 498 goto submit_io; 499 500 if (f2fs_lfs_mode(sbi) && current->plug) 501 blk_finish_plug(current->plug); 502 503 if (!F2FS_IO_ALIGNED(sbi)) 504 goto submit_io; 505 506 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS; 507 start %= F2FS_IO_SIZE(sbi); 508 509 if (start == 0) 510 goto submit_io; 511 512 /* fill dummy pages */ 513 for (; start < F2FS_IO_SIZE(sbi); start++) { 514 struct page *page = 515 mempool_alloc(sbi->write_io_dummy, 516 GFP_NOIO | __GFP_NOFAIL); 517 f2fs_bug_on(sbi, !page); 518 519 lock_page(page); 520 521 zero_user_segment(page, 0, PAGE_SIZE); 522 set_page_private_dummy(page); 523 524 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) 525 f2fs_bug_on(sbi, 1); 526 } 527 /* 528 * In the NODE case, we lose next block address chain. So, we 529 * need to do checkpoint in f2fs_sync_file. 530 */ 531 if (type == NODE) 532 set_sbi_flag(sbi, SBI_NEED_CP); 533 } 534 submit_io: 535 if (is_read_io(bio_op(bio))) 536 trace_f2fs_submit_read_bio(sbi->sb, type, bio); 537 else 538 trace_f2fs_submit_write_bio(sbi->sb, type, bio); 539 540 iostat_update_submit_ctx(bio, type); 541 submit_bio(bio); 542 } 543 544 void f2fs_submit_bio(struct f2fs_sb_info *sbi, 545 struct bio *bio, enum page_type type) 546 { 547 __submit_bio(sbi, bio, type); 548 } 549 550 static void __submit_merged_bio(struct f2fs_bio_info *io) 551 { 552 struct f2fs_io_info *fio = &io->fio; 553 554 if (!io->bio) 555 return; 556 557 if (is_read_io(fio->op)) 558 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio); 559 else 560 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio); 561 562 __submit_bio(io->sbi, io->bio, fio->type); 563 io->bio = NULL; 564 } 565 566 static bool __has_merged_page(struct bio *bio, struct inode *inode, 567 struct page *page, nid_t ino) 568 { 569 struct bio_vec *bvec; 570 struct bvec_iter_all iter_all; 571 572 if (!bio) 573 return false; 574 575 if (!inode && !page && !ino) 576 return true; 577 578 bio_for_each_segment_all(bvec, bio, iter_all) { 579 struct page *target = bvec->bv_page; 580 581 if (fscrypt_is_bounce_page(target)) { 582 target = fscrypt_pagecache_page(target); 583 if (IS_ERR(target)) 584 continue; 585 } 586 if (f2fs_is_compressed_page(target)) { 587 target = f2fs_compress_control_page(target); 588 if (IS_ERR(target)) 589 continue; 590 } 591 592 if (inode && inode == target->mapping->host) 593 return true; 594 if (page && page == target) 595 return true; 596 if (ino && ino == ino_of_node(target)) 597 return true; 598 } 599 600 return false; 601 } 602 603 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi) 604 { 605 int i; 606 607 for (i = 0; i < NR_PAGE_TYPE; i++) { 608 int n = (i == META) ? 1 : NR_TEMP_TYPE; 609 int j; 610 611 sbi->write_io[i] = f2fs_kmalloc(sbi, 612 array_size(n, sizeof(struct f2fs_bio_info)), 613 GFP_KERNEL); 614 if (!sbi->write_io[i]) 615 return -ENOMEM; 616 617 for (j = HOT; j < n; j++) { 618 init_f2fs_rwsem(&sbi->write_io[i][j].io_rwsem); 619 sbi->write_io[i][j].sbi = sbi; 620 sbi->write_io[i][j].bio = NULL; 621 spin_lock_init(&sbi->write_io[i][j].io_lock); 622 INIT_LIST_HEAD(&sbi->write_io[i][j].io_list); 623 INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list); 624 init_f2fs_rwsem(&sbi->write_io[i][j].bio_list_lock); 625 } 626 } 627 628 return 0; 629 } 630 631 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi, 632 enum page_type type, enum temp_type temp) 633 { 634 enum page_type btype = PAGE_TYPE_OF_BIO(type); 635 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 636 637 f2fs_down_write(&io->io_rwsem); 638 639 /* change META to META_FLUSH in the checkpoint procedure */ 640 if (type >= META_FLUSH) { 641 io->fio.type = META_FLUSH; 642 io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC; 643 if (!test_opt(sbi, NOBARRIER)) 644 io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA; 645 } 646 __submit_merged_bio(io); 647 f2fs_up_write(&io->io_rwsem); 648 } 649 650 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi, 651 struct inode *inode, struct page *page, 652 nid_t ino, enum page_type type, bool force) 653 { 654 enum temp_type temp; 655 bool ret = true; 656 657 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) { 658 if (!force) { 659 enum page_type btype = PAGE_TYPE_OF_BIO(type); 660 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 661 662 f2fs_down_read(&io->io_rwsem); 663 ret = __has_merged_page(io->bio, inode, page, ino); 664 f2fs_up_read(&io->io_rwsem); 665 } 666 if (ret) 667 __f2fs_submit_merged_write(sbi, type, temp); 668 669 /* TODO: use HOT temp only for meta pages now. */ 670 if (type >= META) 671 break; 672 } 673 } 674 675 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type) 676 { 677 __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true); 678 } 679 680 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 681 struct inode *inode, struct page *page, 682 nid_t ino, enum page_type type) 683 { 684 __submit_merged_write_cond(sbi, inode, page, ino, type, false); 685 } 686 687 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi) 688 { 689 f2fs_submit_merged_write(sbi, DATA); 690 f2fs_submit_merged_write(sbi, NODE); 691 f2fs_submit_merged_write(sbi, META); 692 } 693 694 /* 695 * Fill the locked page with data located in the block address. 696 * A caller needs to unlock the page on failure. 697 */ 698 int f2fs_submit_page_bio(struct f2fs_io_info *fio) 699 { 700 struct bio *bio; 701 struct page *page = fio->encrypted_page ? 702 fio->encrypted_page : fio->page; 703 704 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, 705 fio->is_por ? META_POR : (__is_meta_io(fio) ? 706 META_GENERIC : DATA_GENERIC_ENHANCE))) 707 return -EFSCORRUPTED; 708 709 trace_f2fs_submit_page_bio(page, fio); 710 711 /* Allocate a new bio */ 712 bio = __bio_alloc(fio, 1); 713 714 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host, 715 fio->page->index, fio, GFP_NOIO); 716 717 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 718 bio_put(bio); 719 return -EFAULT; 720 } 721 722 if (fio->io_wbc && !is_read_io(fio->op)) 723 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE); 724 725 inc_page_count(fio->sbi, is_read_io(fio->op) ? 726 __read_io_type(page): WB_DATA_TYPE(fio->page)); 727 728 __submit_bio(fio->sbi, bio, fio->type); 729 return 0; 730 } 731 732 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio, 733 block_t last_blkaddr, block_t cur_blkaddr) 734 { 735 if (unlikely(sbi->max_io_bytes && 736 bio->bi_iter.bi_size >= sbi->max_io_bytes)) 737 return false; 738 if (last_blkaddr + 1 != cur_blkaddr) 739 return false; 740 return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL); 741 } 742 743 static bool io_type_is_mergeable(struct f2fs_bio_info *io, 744 struct f2fs_io_info *fio) 745 { 746 if (io->fio.op != fio->op) 747 return false; 748 return io->fio.op_flags == fio->op_flags; 749 } 750 751 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio, 752 struct f2fs_bio_info *io, 753 struct f2fs_io_info *fio, 754 block_t last_blkaddr, 755 block_t cur_blkaddr) 756 { 757 if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) { 758 unsigned int filled_blocks = 759 F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size); 760 unsigned int io_size = F2FS_IO_SIZE(sbi); 761 unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt; 762 763 /* IOs in bio is aligned and left space of vectors is not enough */ 764 if (!(filled_blocks % io_size) && left_vecs < io_size) 765 return false; 766 } 767 if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr)) 768 return false; 769 return io_type_is_mergeable(io, fio); 770 } 771 772 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio, 773 struct page *page, enum temp_type temp) 774 { 775 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 776 struct bio_entry *be; 777 778 be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL); 779 be->bio = bio; 780 bio_get(bio); 781 782 if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE) 783 f2fs_bug_on(sbi, 1); 784 785 f2fs_down_write(&io->bio_list_lock); 786 list_add_tail(&be->list, &io->bio_list); 787 f2fs_up_write(&io->bio_list_lock); 788 } 789 790 static void del_bio_entry(struct bio_entry *be) 791 { 792 list_del(&be->list); 793 kmem_cache_free(bio_entry_slab, be); 794 } 795 796 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio, 797 struct page *page) 798 { 799 struct f2fs_sb_info *sbi = fio->sbi; 800 enum temp_type temp; 801 bool found = false; 802 int ret = -EAGAIN; 803 804 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) { 805 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 806 struct list_head *head = &io->bio_list; 807 struct bio_entry *be; 808 809 f2fs_down_write(&io->bio_list_lock); 810 list_for_each_entry(be, head, list) { 811 if (be->bio != *bio) 812 continue; 813 814 found = true; 815 816 f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio, 817 *fio->last_block, 818 fio->new_blkaddr)); 819 if (f2fs_crypt_mergeable_bio(*bio, 820 fio->page->mapping->host, 821 fio->page->index, fio) && 822 bio_add_page(*bio, page, PAGE_SIZE, 0) == 823 PAGE_SIZE) { 824 ret = 0; 825 break; 826 } 827 828 /* page can't be merged into bio; submit the bio */ 829 del_bio_entry(be); 830 __submit_bio(sbi, *bio, DATA); 831 break; 832 } 833 f2fs_up_write(&io->bio_list_lock); 834 } 835 836 if (ret) { 837 bio_put(*bio); 838 *bio = NULL; 839 } 840 841 return ret; 842 } 843 844 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi, 845 struct bio **bio, struct page *page) 846 { 847 enum temp_type temp; 848 bool found = false; 849 struct bio *target = bio ? *bio : NULL; 850 851 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) { 852 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 853 struct list_head *head = &io->bio_list; 854 struct bio_entry *be; 855 856 if (list_empty(head)) 857 continue; 858 859 f2fs_down_read(&io->bio_list_lock); 860 list_for_each_entry(be, head, list) { 861 if (target) 862 found = (target == be->bio); 863 else 864 found = __has_merged_page(be->bio, NULL, 865 page, 0); 866 if (found) 867 break; 868 } 869 f2fs_up_read(&io->bio_list_lock); 870 871 if (!found) 872 continue; 873 874 found = false; 875 876 f2fs_down_write(&io->bio_list_lock); 877 list_for_each_entry(be, head, list) { 878 if (target) 879 found = (target == be->bio); 880 else 881 found = __has_merged_page(be->bio, NULL, 882 page, 0); 883 if (found) { 884 target = be->bio; 885 del_bio_entry(be); 886 break; 887 } 888 } 889 f2fs_up_write(&io->bio_list_lock); 890 } 891 892 if (found) 893 __submit_bio(sbi, target, DATA); 894 if (bio && *bio) { 895 bio_put(*bio); 896 *bio = NULL; 897 } 898 } 899 900 int f2fs_merge_page_bio(struct f2fs_io_info *fio) 901 { 902 struct bio *bio = *fio->bio; 903 struct page *page = fio->encrypted_page ? 904 fio->encrypted_page : fio->page; 905 906 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, 907 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC)) 908 return -EFSCORRUPTED; 909 910 trace_f2fs_submit_page_bio(page, fio); 911 912 if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block, 913 fio->new_blkaddr)) 914 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL); 915 alloc_new: 916 if (!bio) { 917 bio = __bio_alloc(fio, BIO_MAX_VECS); 918 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host, 919 fio->page->index, fio, GFP_NOIO); 920 921 add_bio_entry(fio->sbi, bio, page, fio->temp); 922 } else { 923 if (add_ipu_page(fio, &bio, page)) 924 goto alloc_new; 925 } 926 927 if (fio->io_wbc) 928 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE); 929 930 inc_page_count(fio->sbi, WB_DATA_TYPE(page)); 931 932 *fio->last_block = fio->new_blkaddr; 933 *fio->bio = bio; 934 935 return 0; 936 } 937 938 void f2fs_submit_page_write(struct f2fs_io_info *fio) 939 { 940 struct f2fs_sb_info *sbi = fio->sbi; 941 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type); 942 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp; 943 struct page *bio_page; 944 945 f2fs_bug_on(sbi, is_read_io(fio->op)); 946 947 f2fs_down_write(&io->io_rwsem); 948 next: 949 if (fio->in_list) { 950 spin_lock(&io->io_lock); 951 if (list_empty(&io->io_list)) { 952 spin_unlock(&io->io_lock); 953 goto out; 954 } 955 fio = list_first_entry(&io->io_list, 956 struct f2fs_io_info, list); 957 list_del(&fio->list); 958 spin_unlock(&io->io_lock); 959 } 960 961 verify_fio_blkaddr(fio); 962 963 if (fio->encrypted_page) 964 bio_page = fio->encrypted_page; 965 else if (fio->compressed_page) 966 bio_page = fio->compressed_page; 967 else 968 bio_page = fio->page; 969 970 /* set submitted = true as a return value */ 971 fio->submitted = true; 972 973 inc_page_count(sbi, WB_DATA_TYPE(bio_page)); 974 975 if (io->bio && 976 (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio, 977 fio->new_blkaddr) || 978 !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host, 979 bio_page->index, fio))) 980 __submit_merged_bio(io); 981 alloc_new: 982 if (io->bio == NULL) { 983 if (F2FS_IO_ALIGNED(sbi) && 984 (fio->type == DATA || fio->type == NODE) && 985 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) { 986 dec_page_count(sbi, WB_DATA_TYPE(bio_page)); 987 fio->retry = true; 988 goto skip; 989 } 990 io->bio = __bio_alloc(fio, BIO_MAX_VECS); 991 f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host, 992 bio_page->index, fio, GFP_NOIO); 993 io->fio = *fio; 994 } 995 996 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) { 997 __submit_merged_bio(io); 998 goto alloc_new; 999 } 1000 1001 if (fio->io_wbc) 1002 wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE); 1003 1004 io->last_block_in_bio = fio->new_blkaddr; 1005 1006 trace_f2fs_submit_page_write(fio->page, fio); 1007 skip: 1008 if (fio->in_list) 1009 goto next; 1010 out: 1011 if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || 1012 !f2fs_is_checkpoint_ready(sbi)) 1013 __submit_merged_bio(io); 1014 f2fs_up_write(&io->io_rwsem); 1015 } 1016 1017 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr, 1018 unsigned nr_pages, blk_opf_t op_flag, 1019 pgoff_t first_idx, bool for_write) 1020 { 1021 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1022 struct bio *bio; 1023 struct bio_post_read_ctx *ctx = NULL; 1024 unsigned int post_read_steps = 0; 1025 sector_t sector; 1026 struct block_device *bdev = f2fs_target_device(sbi, blkaddr, §or); 1027 1028 bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages), 1029 REQ_OP_READ | op_flag, 1030 for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset); 1031 if (!bio) 1032 return ERR_PTR(-ENOMEM); 1033 bio->bi_iter.bi_sector = sector; 1034 f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS); 1035 bio->bi_end_io = f2fs_read_end_io; 1036 1037 if (fscrypt_inode_uses_fs_layer_crypto(inode)) 1038 post_read_steps |= STEP_DECRYPT; 1039 1040 if (f2fs_need_verity(inode, first_idx)) 1041 post_read_steps |= STEP_VERITY; 1042 1043 /* 1044 * STEP_DECOMPRESS is handled specially, since a compressed file might 1045 * contain both compressed and uncompressed clusters. We'll allocate a 1046 * bio_post_read_ctx if the file is compressed, but the caller is 1047 * responsible for enabling STEP_DECOMPRESS if it's actually needed. 1048 */ 1049 1050 if (post_read_steps || f2fs_compressed_file(inode)) { 1051 /* Due to the mempool, this never fails. */ 1052 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS); 1053 ctx->bio = bio; 1054 ctx->sbi = sbi; 1055 ctx->enabled_steps = post_read_steps; 1056 ctx->fs_blkaddr = blkaddr; 1057 bio->bi_private = ctx; 1058 } 1059 iostat_alloc_and_bind_ctx(sbi, bio, ctx); 1060 1061 return bio; 1062 } 1063 1064 /* This can handle encryption stuffs */ 1065 static int f2fs_submit_page_read(struct inode *inode, struct page *page, 1066 block_t blkaddr, blk_opf_t op_flags, 1067 bool for_write) 1068 { 1069 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1070 struct bio *bio; 1071 1072 bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags, 1073 page->index, for_write); 1074 if (IS_ERR(bio)) 1075 return PTR_ERR(bio); 1076 1077 /* wait for GCed page writeback via META_MAPPING */ 1078 f2fs_wait_on_block_writeback(inode, blkaddr); 1079 1080 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 1081 bio_put(bio); 1082 return -EFAULT; 1083 } 1084 ClearPageError(page); 1085 inc_page_count(sbi, F2FS_RD_DATA); 1086 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE); 1087 __submit_bio(sbi, bio, DATA); 1088 return 0; 1089 } 1090 1091 static void __set_data_blkaddr(struct dnode_of_data *dn) 1092 { 1093 struct f2fs_node *rn = F2FS_NODE(dn->node_page); 1094 __le32 *addr_array; 1095 int base = 0; 1096 1097 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode)) 1098 base = get_extra_isize(dn->inode); 1099 1100 /* Get physical address of data block */ 1101 addr_array = blkaddr_in_node(rn); 1102 addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr); 1103 } 1104 1105 /* 1106 * Lock ordering for the change of data block address: 1107 * ->data_page 1108 * ->node_page 1109 * update block addresses in the node page 1110 */ 1111 void f2fs_set_data_blkaddr(struct dnode_of_data *dn) 1112 { 1113 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true); 1114 __set_data_blkaddr(dn); 1115 if (set_page_dirty(dn->node_page)) 1116 dn->node_changed = true; 1117 } 1118 1119 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) 1120 { 1121 dn->data_blkaddr = blkaddr; 1122 f2fs_set_data_blkaddr(dn); 1123 f2fs_update_extent_cache(dn); 1124 } 1125 1126 /* dn->ofs_in_node will be returned with up-to-date last block pointer */ 1127 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count) 1128 { 1129 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1130 int err; 1131 1132 if (!count) 1133 return 0; 1134 1135 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1136 return -EPERM; 1137 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count)))) 1138 return err; 1139 1140 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid, 1141 dn->ofs_in_node, count); 1142 1143 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true); 1144 1145 for (; count > 0; dn->ofs_in_node++) { 1146 block_t blkaddr = f2fs_data_blkaddr(dn); 1147 1148 if (blkaddr == NULL_ADDR) { 1149 dn->data_blkaddr = NEW_ADDR; 1150 __set_data_blkaddr(dn); 1151 count--; 1152 } 1153 } 1154 1155 if (set_page_dirty(dn->node_page)) 1156 dn->node_changed = true; 1157 return 0; 1158 } 1159 1160 /* Should keep dn->ofs_in_node unchanged */ 1161 int f2fs_reserve_new_block(struct dnode_of_data *dn) 1162 { 1163 unsigned int ofs_in_node = dn->ofs_in_node; 1164 int ret; 1165 1166 ret = f2fs_reserve_new_blocks(dn, 1); 1167 dn->ofs_in_node = ofs_in_node; 1168 return ret; 1169 } 1170 1171 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index) 1172 { 1173 bool need_put = dn->inode_page ? false : true; 1174 int err; 1175 1176 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE); 1177 if (err) 1178 return err; 1179 1180 if (dn->data_blkaddr == NULL_ADDR) 1181 err = f2fs_reserve_new_block(dn); 1182 if (err || need_put) 1183 f2fs_put_dnode(dn); 1184 return err; 1185 } 1186 1187 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index) 1188 { 1189 struct extent_info ei = {0, }; 1190 struct inode *inode = dn->inode; 1191 1192 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 1193 dn->data_blkaddr = ei.blk + index - ei.fofs; 1194 return 0; 1195 } 1196 1197 return f2fs_reserve_block(dn, index); 1198 } 1199 1200 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index, 1201 blk_opf_t op_flags, bool for_write) 1202 { 1203 struct address_space *mapping = inode->i_mapping; 1204 struct dnode_of_data dn; 1205 struct page *page; 1206 struct extent_info ei = {0, }; 1207 int err; 1208 1209 page = f2fs_grab_cache_page(mapping, index, for_write); 1210 if (!page) 1211 return ERR_PTR(-ENOMEM); 1212 1213 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 1214 dn.data_blkaddr = ei.blk + index - ei.fofs; 1215 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr, 1216 DATA_GENERIC_ENHANCE_READ)) { 1217 err = -EFSCORRUPTED; 1218 goto put_err; 1219 } 1220 goto got_it; 1221 } 1222 1223 set_new_dnode(&dn, inode, NULL, NULL, 0); 1224 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 1225 if (err) 1226 goto put_err; 1227 f2fs_put_dnode(&dn); 1228 1229 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { 1230 err = -ENOENT; 1231 goto put_err; 1232 } 1233 if (dn.data_blkaddr != NEW_ADDR && 1234 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode), 1235 dn.data_blkaddr, 1236 DATA_GENERIC_ENHANCE)) { 1237 err = -EFSCORRUPTED; 1238 goto put_err; 1239 } 1240 got_it: 1241 if (PageUptodate(page)) { 1242 unlock_page(page); 1243 return page; 1244 } 1245 1246 /* 1247 * A new dentry page is allocated but not able to be written, since its 1248 * new inode page couldn't be allocated due to -ENOSPC. 1249 * In such the case, its blkaddr can be remained as NEW_ADDR. 1250 * see, f2fs_add_link -> f2fs_get_new_data_page -> 1251 * f2fs_init_inode_metadata. 1252 */ 1253 if (dn.data_blkaddr == NEW_ADDR) { 1254 zero_user_segment(page, 0, PAGE_SIZE); 1255 if (!PageUptodate(page)) 1256 SetPageUptodate(page); 1257 unlock_page(page); 1258 return page; 1259 } 1260 1261 err = f2fs_submit_page_read(inode, page, dn.data_blkaddr, 1262 op_flags, for_write); 1263 if (err) 1264 goto put_err; 1265 return page; 1266 1267 put_err: 1268 f2fs_put_page(page, 1); 1269 return ERR_PTR(err); 1270 } 1271 1272 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index) 1273 { 1274 struct address_space *mapping = inode->i_mapping; 1275 struct page *page; 1276 1277 page = find_get_page(mapping, index); 1278 if (page && PageUptodate(page)) 1279 return page; 1280 f2fs_put_page(page, 0); 1281 1282 page = f2fs_get_read_data_page(inode, index, 0, false); 1283 if (IS_ERR(page)) 1284 return page; 1285 1286 if (PageUptodate(page)) 1287 return page; 1288 1289 wait_on_page_locked(page); 1290 if (unlikely(!PageUptodate(page))) { 1291 f2fs_put_page(page, 0); 1292 return ERR_PTR(-EIO); 1293 } 1294 return page; 1295 } 1296 1297 /* 1298 * If it tries to access a hole, return an error. 1299 * Because, the callers, functions in dir.c and GC, should be able to know 1300 * whether this page exists or not. 1301 */ 1302 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index, 1303 bool for_write) 1304 { 1305 struct address_space *mapping = inode->i_mapping; 1306 struct page *page; 1307 repeat: 1308 page = f2fs_get_read_data_page(inode, index, 0, for_write); 1309 if (IS_ERR(page)) 1310 return page; 1311 1312 /* wait for read completion */ 1313 lock_page(page); 1314 if (unlikely(page->mapping != mapping)) { 1315 f2fs_put_page(page, 1); 1316 goto repeat; 1317 } 1318 if (unlikely(!PageUptodate(page))) { 1319 f2fs_put_page(page, 1); 1320 return ERR_PTR(-EIO); 1321 } 1322 return page; 1323 } 1324 1325 /* 1326 * Caller ensures that this data page is never allocated. 1327 * A new zero-filled data page is allocated in the page cache. 1328 * 1329 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and 1330 * f2fs_unlock_op(). 1331 * Note that, ipage is set only by make_empty_dir, and if any error occur, 1332 * ipage should be released by this function. 1333 */ 1334 struct page *f2fs_get_new_data_page(struct inode *inode, 1335 struct page *ipage, pgoff_t index, bool new_i_size) 1336 { 1337 struct address_space *mapping = inode->i_mapping; 1338 struct page *page; 1339 struct dnode_of_data dn; 1340 int err; 1341 1342 page = f2fs_grab_cache_page(mapping, index, true); 1343 if (!page) { 1344 /* 1345 * before exiting, we should make sure ipage will be released 1346 * if any error occur. 1347 */ 1348 f2fs_put_page(ipage, 1); 1349 return ERR_PTR(-ENOMEM); 1350 } 1351 1352 set_new_dnode(&dn, inode, ipage, NULL, 0); 1353 err = f2fs_reserve_block(&dn, index); 1354 if (err) { 1355 f2fs_put_page(page, 1); 1356 return ERR_PTR(err); 1357 } 1358 if (!ipage) 1359 f2fs_put_dnode(&dn); 1360 1361 if (PageUptodate(page)) 1362 goto got_it; 1363 1364 if (dn.data_blkaddr == NEW_ADDR) { 1365 zero_user_segment(page, 0, PAGE_SIZE); 1366 if (!PageUptodate(page)) 1367 SetPageUptodate(page); 1368 } else { 1369 f2fs_put_page(page, 1); 1370 1371 /* if ipage exists, blkaddr should be NEW_ADDR */ 1372 f2fs_bug_on(F2FS_I_SB(inode), ipage); 1373 page = f2fs_get_lock_data_page(inode, index, true); 1374 if (IS_ERR(page)) 1375 return page; 1376 } 1377 got_it: 1378 if (new_i_size && i_size_read(inode) < 1379 ((loff_t)(index + 1) << PAGE_SHIFT)) 1380 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT)); 1381 return page; 1382 } 1383 1384 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type) 1385 { 1386 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1387 struct f2fs_summary sum; 1388 struct node_info ni; 1389 block_t old_blkaddr; 1390 blkcnt_t count = 1; 1391 int err; 1392 1393 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1394 return -EPERM; 1395 1396 err = f2fs_get_node_info(sbi, dn->nid, &ni, false); 1397 if (err) 1398 return err; 1399 1400 dn->data_blkaddr = f2fs_data_blkaddr(dn); 1401 if (dn->data_blkaddr != NULL_ADDR) 1402 goto alloc; 1403 1404 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count)))) 1405 return err; 1406 1407 alloc: 1408 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 1409 old_blkaddr = dn->data_blkaddr; 1410 f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr, 1411 &sum, seg_type, NULL); 1412 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) { 1413 invalidate_mapping_pages(META_MAPPING(sbi), 1414 old_blkaddr, old_blkaddr); 1415 f2fs_invalidate_compress_page(sbi, old_blkaddr); 1416 } 1417 f2fs_update_data_blkaddr(dn, dn->data_blkaddr); 1418 return 0; 1419 } 1420 1421 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock) 1422 { 1423 if (flag == F2FS_GET_BLOCK_PRE_AIO) { 1424 if (lock) 1425 f2fs_down_read(&sbi->node_change); 1426 else 1427 f2fs_up_read(&sbi->node_change); 1428 } else { 1429 if (lock) 1430 f2fs_lock_op(sbi); 1431 else 1432 f2fs_unlock_op(sbi); 1433 } 1434 } 1435 1436 /* 1437 * f2fs_map_blocks() tries to find or build mapping relationship which 1438 * maps continuous logical blocks to physical blocks, and return such 1439 * info via f2fs_map_blocks structure. 1440 */ 1441 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 1442 int create, int flag) 1443 { 1444 unsigned int maxblocks = map->m_len; 1445 struct dnode_of_data dn; 1446 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1447 int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE; 1448 pgoff_t pgofs, end_offset, end; 1449 int err = 0, ofs = 1; 1450 unsigned int ofs_in_node, last_ofs_in_node; 1451 blkcnt_t prealloc; 1452 struct extent_info ei = {0, }; 1453 block_t blkaddr; 1454 unsigned int start_pgofs; 1455 int bidx = 0; 1456 1457 if (!maxblocks) 1458 return 0; 1459 1460 map->m_bdev = inode->i_sb->s_bdev; 1461 map->m_multidev_dio = 1462 f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag); 1463 1464 map->m_len = 0; 1465 map->m_flags = 0; 1466 1467 /* it only supports block size == page size */ 1468 pgofs = (pgoff_t)map->m_lblk; 1469 end = pgofs + maxblocks; 1470 1471 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) { 1472 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO && 1473 map->m_may_create) 1474 goto next_dnode; 1475 1476 map->m_pblk = ei.blk + pgofs - ei.fofs; 1477 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs); 1478 map->m_flags = F2FS_MAP_MAPPED; 1479 if (map->m_next_extent) 1480 *map->m_next_extent = pgofs + map->m_len; 1481 1482 /* for hardware encryption, but to avoid potential issue in future */ 1483 if (flag == F2FS_GET_BLOCK_DIO) 1484 f2fs_wait_on_block_writeback_range(inode, 1485 map->m_pblk, map->m_len); 1486 1487 if (map->m_multidev_dio) { 1488 block_t blk_addr = map->m_pblk; 1489 1490 bidx = f2fs_target_device_index(sbi, map->m_pblk); 1491 1492 map->m_bdev = FDEV(bidx).bdev; 1493 map->m_pblk -= FDEV(bidx).start_blk; 1494 map->m_len = min(map->m_len, 1495 FDEV(bidx).end_blk + 1 - map->m_pblk); 1496 1497 if (map->m_may_create) 1498 f2fs_update_device_state(sbi, inode->i_ino, 1499 blk_addr, map->m_len); 1500 } 1501 goto out; 1502 } 1503 1504 next_dnode: 1505 if (map->m_may_create) 1506 f2fs_do_map_lock(sbi, flag, true); 1507 1508 /* When reading holes, we need its node page */ 1509 set_new_dnode(&dn, inode, NULL, NULL, 0); 1510 err = f2fs_get_dnode_of_data(&dn, pgofs, mode); 1511 if (err) { 1512 if (flag == F2FS_GET_BLOCK_BMAP) 1513 map->m_pblk = 0; 1514 1515 if (err == -ENOENT) { 1516 /* 1517 * There is one exceptional case that read_node_page() 1518 * may return -ENOENT due to filesystem has been 1519 * shutdown or cp_error, so force to convert error 1520 * number to EIO for such case. 1521 */ 1522 if (map->m_may_create && 1523 (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || 1524 f2fs_cp_error(sbi))) { 1525 err = -EIO; 1526 goto unlock_out; 1527 } 1528 1529 err = 0; 1530 if (map->m_next_pgofs) 1531 *map->m_next_pgofs = 1532 f2fs_get_next_page_offset(&dn, pgofs); 1533 if (map->m_next_extent) 1534 *map->m_next_extent = 1535 f2fs_get_next_page_offset(&dn, pgofs); 1536 } 1537 goto unlock_out; 1538 } 1539 1540 start_pgofs = pgofs; 1541 prealloc = 0; 1542 last_ofs_in_node = ofs_in_node = dn.ofs_in_node; 1543 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1544 1545 next_block: 1546 blkaddr = f2fs_data_blkaddr(&dn); 1547 1548 if (__is_valid_data_blkaddr(blkaddr) && 1549 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) { 1550 err = -EFSCORRUPTED; 1551 goto sync_out; 1552 } 1553 1554 if (__is_valid_data_blkaddr(blkaddr)) { 1555 /* use out-place-update for driect IO under LFS mode */ 1556 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO && 1557 map->m_may_create) { 1558 err = __allocate_data_block(&dn, map->m_seg_type); 1559 if (err) 1560 goto sync_out; 1561 blkaddr = dn.data_blkaddr; 1562 set_inode_flag(inode, FI_APPEND_WRITE); 1563 } 1564 } else { 1565 if (create) { 1566 if (unlikely(f2fs_cp_error(sbi))) { 1567 err = -EIO; 1568 goto sync_out; 1569 } 1570 if (flag == F2FS_GET_BLOCK_PRE_AIO) { 1571 if (blkaddr == NULL_ADDR) { 1572 prealloc++; 1573 last_ofs_in_node = dn.ofs_in_node; 1574 } 1575 } else { 1576 WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO && 1577 flag != F2FS_GET_BLOCK_DIO); 1578 err = __allocate_data_block(&dn, 1579 map->m_seg_type); 1580 if (!err) { 1581 if (flag == F2FS_GET_BLOCK_PRE_DIO) 1582 file_need_truncate(inode); 1583 set_inode_flag(inode, FI_APPEND_WRITE); 1584 } 1585 } 1586 if (err) 1587 goto sync_out; 1588 map->m_flags |= F2FS_MAP_NEW; 1589 blkaddr = dn.data_blkaddr; 1590 } else { 1591 if (f2fs_compressed_file(inode) && 1592 f2fs_sanity_check_cluster(&dn) && 1593 (flag != F2FS_GET_BLOCK_FIEMAP || 1594 IS_ENABLED(CONFIG_F2FS_CHECK_FS))) { 1595 err = -EFSCORRUPTED; 1596 goto sync_out; 1597 } 1598 if (flag == F2FS_GET_BLOCK_BMAP) { 1599 map->m_pblk = 0; 1600 goto sync_out; 1601 } 1602 if (flag == F2FS_GET_BLOCK_PRECACHE) 1603 goto sync_out; 1604 if (flag == F2FS_GET_BLOCK_FIEMAP && 1605 blkaddr == NULL_ADDR) { 1606 if (map->m_next_pgofs) 1607 *map->m_next_pgofs = pgofs + 1; 1608 goto sync_out; 1609 } 1610 if (flag != F2FS_GET_BLOCK_FIEMAP) { 1611 /* for defragment case */ 1612 if (map->m_next_pgofs) 1613 *map->m_next_pgofs = pgofs + 1; 1614 goto sync_out; 1615 } 1616 } 1617 } 1618 1619 if (flag == F2FS_GET_BLOCK_PRE_AIO) 1620 goto skip; 1621 1622 if (map->m_multidev_dio) 1623 bidx = f2fs_target_device_index(sbi, blkaddr); 1624 1625 if (map->m_len == 0) { 1626 /* preallocated unwritten block should be mapped for fiemap. */ 1627 if (blkaddr == NEW_ADDR) 1628 map->m_flags |= F2FS_MAP_UNWRITTEN; 1629 map->m_flags |= F2FS_MAP_MAPPED; 1630 1631 map->m_pblk = blkaddr; 1632 map->m_len = 1; 1633 1634 if (map->m_multidev_dio) 1635 map->m_bdev = FDEV(bidx).bdev; 1636 } else if ((map->m_pblk != NEW_ADDR && 1637 blkaddr == (map->m_pblk + ofs)) || 1638 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) || 1639 flag == F2FS_GET_BLOCK_PRE_DIO) { 1640 if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev) 1641 goto sync_out; 1642 ofs++; 1643 map->m_len++; 1644 } else { 1645 goto sync_out; 1646 } 1647 1648 skip: 1649 dn.ofs_in_node++; 1650 pgofs++; 1651 1652 /* preallocate blocks in batch for one dnode page */ 1653 if (flag == F2FS_GET_BLOCK_PRE_AIO && 1654 (pgofs == end || dn.ofs_in_node == end_offset)) { 1655 1656 dn.ofs_in_node = ofs_in_node; 1657 err = f2fs_reserve_new_blocks(&dn, prealloc); 1658 if (err) 1659 goto sync_out; 1660 1661 map->m_len += dn.ofs_in_node - ofs_in_node; 1662 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) { 1663 err = -ENOSPC; 1664 goto sync_out; 1665 } 1666 dn.ofs_in_node = end_offset; 1667 } 1668 1669 if (pgofs >= end) 1670 goto sync_out; 1671 else if (dn.ofs_in_node < end_offset) 1672 goto next_block; 1673 1674 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1675 if (map->m_flags & F2FS_MAP_MAPPED) { 1676 unsigned int ofs = start_pgofs - map->m_lblk; 1677 1678 f2fs_update_extent_cache_range(&dn, 1679 start_pgofs, map->m_pblk + ofs, 1680 map->m_len - ofs); 1681 } 1682 } 1683 1684 f2fs_put_dnode(&dn); 1685 1686 if (map->m_may_create) { 1687 f2fs_do_map_lock(sbi, flag, false); 1688 f2fs_balance_fs(sbi, dn.node_changed); 1689 } 1690 goto next_dnode; 1691 1692 sync_out: 1693 1694 if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) { 1695 /* 1696 * for hardware encryption, but to avoid potential issue 1697 * in future 1698 */ 1699 f2fs_wait_on_block_writeback_range(inode, 1700 map->m_pblk, map->m_len); 1701 1702 if (map->m_multidev_dio) { 1703 block_t blk_addr = map->m_pblk; 1704 1705 bidx = f2fs_target_device_index(sbi, map->m_pblk); 1706 1707 map->m_bdev = FDEV(bidx).bdev; 1708 map->m_pblk -= FDEV(bidx).start_blk; 1709 1710 if (map->m_may_create) 1711 f2fs_update_device_state(sbi, inode->i_ino, 1712 blk_addr, map->m_len); 1713 1714 f2fs_bug_on(sbi, blk_addr + map->m_len > 1715 FDEV(bidx).end_blk + 1); 1716 } 1717 } 1718 1719 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1720 if (map->m_flags & F2FS_MAP_MAPPED) { 1721 unsigned int ofs = start_pgofs - map->m_lblk; 1722 1723 f2fs_update_extent_cache_range(&dn, 1724 start_pgofs, map->m_pblk + ofs, 1725 map->m_len - ofs); 1726 } 1727 if (map->m_next_extent) 1728 *map->m_next_extent = pgofs + 1; 1729 } 1730 f2fs_put_dnode(&dn); 1731 unlock_out: 1732 if (map->m_may_create) { 1733 f2fs_do_map_lock(sbi, flag, false); 1734 f2fs_balance_fs(sbi, dn.node_changed); 1735 } 1736 out: 1737 trace_f2fs_map_blocks(inode, map, create, flag, err); 1738 return err; 1739 } 1740 1741 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len) 1742 { 1743 struct f2fs_map_blocks map; 1744 block_t last_lblk; 1745 int err; 1746 1747 if (pos + len > i_size_read(inode)) 1748 return false; 1749 1750 map.m_lblk = F2FS_BYTES_TO_BLK(pos); 1751 map.m_next_pgofs = NULL; 1752 map.m_next_extent = NULL; 1753 map.m_seg_type = NO_CHECK_TYPE; 1754 map.m_may_create = false; 1755 last_lblk = F2FS_BLK_ALIGN(pos + len); 1756 1757 while (map.m_lblk < last_lblk) { 1758 map.m_len = last_lblk - map.m_lblk; 1759 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT); 1760 if (err || map.m_len == 0) 1761 return false; 1762 map.m_lblk += map.m_len; 1763 } 1764 return true; 1765 } 1766 1767 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes) 1768 { 1769 return (bytes >> inode->i_blkbits); 1770 } 1771 1772 static inline u64 blks_to_bytes(struct inode *inode, u64 blks) 1773 { 1774 return (blks << inode->i_blkbits); 1775 } 1776 1777 static int f2fs_xattr_fiemap(struct inode *inode, 1778 struct fiemap_extent_info *fieinfo) 1779 { 1780 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1781 struct page *page; 1782 struct node_info ni; 1783 __u64 phys = 0, len; 1784 __u32 flags; 1785 nid_t xnid = F2FS_I(inode)->i_xattr_nid; 1786 int err = 0; 1787 1788 if (f2fs_has_inline_xattr(inode)) { 1789 int offset; 1790 1791 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), 1792 inode->i_ino, false); 1793 if (!page) 1794 return -ENOMEM; 1795 1796 err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false); 1797 if (err) { 1798 f2fs_put_page(page, 1); 1799 return err; 1800 } 1801 1802 phys = blks_to_bytes(inode, ni.blk_addr); 1803 offset = offsetof(struct f2fs_inode, i_addr) + 1804 sizeof(__le32) * (DEF_ADDRS_PER_INODE - 1805 get_inline_xattr_addrs(inode)); 1806 1807 phys += offset; 1808 len = inline_xattr_size(inode); 1809 1810 f2fs_put_page(page, 1); 1811 1812 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED; 1813 1814 if (!xnid) 1815 flags |= FIEMAP_EXTENT_LAST; 1816 1817 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1818 trace_f2fs_fiemap(inode, 0, phys, len, flags, err); 1819 if (err || err == 1) 1820 return err; 1821 } 1822 1823 if (xnid) { 1824 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false); 1825 if (!page) 1826 return -ENOMEM; 1827 1828 err = f2fs_get_node_info(sbi, xnid, &ni, false); 1829 if (err) { 1830 f2fs_put_page(page, 1); 1831 return err; 1832 } 1833 1834 phys = blks_to_bytes(inode, ni.blk_addr); 1835 len = inode->i_sb->s_blocksize; 1836 1837 f2fs_put_page(page, 1); 1838 1839 flags = FIEMAP_EXTENT_LAST; 1840 } 1841 1842 if (phys) { 1843 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1844 trace_f2fs_fiemap(inode, 0, phys, len, flags, err); 1845 } 1846 1847 return (err < 0 ? err : 0); 1848 } 1849 1850 static loff_t max_inode_blocks(struct inode *inode) 1851 { 1852 loff_t result = ADDRS_PER_INODE(inode); 1853 loff_t leaf_count = ADDRS_PER_BLOCK(inode); 1854 1855 /* two direct node blocks */ 1856 result += (leaf_count * 2); 1857 1858 /* two indirect node blocks */ 1859 leaf_count *= NIDS_PER_BLOCK; 1860 result += (leaf_count * 2); 1861 1862 /* one double indirect node block */ 1863 leaf_count *= NIDS_PER_BLOCK; 1864 result += leaf_count; 1865 1866 return result; 1867 } 1868 1869 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 1870 u64 start, u64 len) 1871 { 1872 struct f2fs_map_blocks map; 1873 sector_t start_blk, last_blk; 1874 pgoff_t next_pgofs; 1875 u64 logical = 0, phys = 0, size = 0; 1876 u32 flags = 0; 1877 int ret = 0; 1878 bool compr_cluster = false, compr_appended; 1879 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size; 1880 unsigned int count_in_cluster = 0; 1881 loff_t maxbytes; 1882 1883 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) { 1884 ret = f2fs_precache_extents(inode); 1885 if (ret) 1886 return ret; 1887 } 1888 1889 ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR); 1890 if (ret) 1891 return ret; 1892 1893 inode_lock(inode); 1894 1895 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS; 1896 if (start > maxbytes) { 1897 ret = -EFBIG; 1898 goto out; 1899 } 1900 1901 if (len > maxbytes || (maxbytes - len) < start) 1902 len = maxbytes - start; 1903 1904 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 1905 ret = f2fs_xattr_fiemap(inode, fieinfo); 1906 goto out; 1907 } 1908 1909 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) { 1910 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len); 1911 if (ret != -EAGAIN) 1912 goto out; 1913 } 1914 1915 if (bytes_to_blks(inode, len) == 0) 1916 len = blks_to_bytes(inode, 1); 1917 1918 start_blk = bytes_to_blks(inode, start); 1919 last_blk = bytes_to_blks(inode, start + len - 1); 1920 1921 next: 1922 memset(&map, 0, sizeof(map)); 1923 map.m_lblk = start_blk; 1924 map.m_len = bytes_to_blks(inode, len); 1925 map.m_next_pgofs = &next_pgofs; 1926 map.m_seg_type = NO_CHECK_TYPE; 1927 1928 if (compr_cluster) { 1929 map.m_lblk += 1; 1930 map.m_len = cluster_size - count_in_cluster; 1931 } 1932 1933 ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP); 1934 if (ret) 1935 goto out; 1936 1937 /* HOLE */ 1938 if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) { 1939 start_blk = next_pgofs; 1940 1941 if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode, 1942 max_inode_blocks(inode))) 1943 goto prep_next; 1944 1945 flags |= FIEMAP_EXTENT_LAST; 1946 } 1947 1948 compr_appended = false; 1949 /* In a case of compressed cluster, append this to the last extent */ 1950 if (compr_cluster && ((map.m_flags & F2FS_MAP_UNWRITTEN) || 1951 !(map.m_flags & F2FS_MAP_FLAGS))) { 1952 compr_appended = true; 1953 goto skip_fill; 1954 } 1955 1956 if (size) { 1957 flags |= FIEMAP_EXTENT_MERGED; 1958 if (IS_ENCRYPTED(inode)) 1959 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED; 1960 1961 ret = fiemap_fill_next_extent(fieinfo, logical, 1962 phys, size, flags); 1963 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret); 1964 if (ret) 1965 goto out; 1966 size = 0; 1967 } 1968 1969 if (start_blk > last_blk) 1970 goto out; 1971 1972 skip_fill: 1973 if (map.m_pblk == COMPRESS_ADDR) { 1974 compr_cluster = true; 1975 count_in_cluster = 1; 1976 } else if (compr_appended) { 1977 unsigned int appended_blks = cluster_size - 1978 count_in_cluster + 1; 1979 size += blks_to_bytes(inode, appended_blks); 1980 start_blk += appended_blks; 1981 compr_cluster = false; 1982 } else { 1983 logical = blks_to_bytes(inode, start_blk); 1984 phys = __is_valid_data_blkaddr(map.m_pblk) ? 1985 blks_to_bytes(inode, map.m_pblk) : 0; 1986 size = blks_to_bytes(inode, map.m_len); 1987 flags = 0; 1988 1989 if (compr_cluster) { 1990 flags = FIEMAP_EXTENT_ENCODED; 1991 count_in_cluster += map.m_len; 1992 if (count_in_cluster == cluster_size) { 1993 compr_cluster = false; 1994 size += blks_to_bytes(inode, 1); 1995 } 1996 } else if (map.m_flags & F2FS_MAP_UNWRITTEN) { 1997 flags = FIEMAP_EXTENT_UNWRITTEN; 1998 } 1999 2000 start_blk += bytes_to_blks(inode, size); 2001 } 2002 2003 prep_next: 2004 cond_resched(); 2005 if (fatal_signal_pending(current)) 2006 ret = -EINTR; 2007 else 2008 goto next; 2009 out: 2010 if (ret == 1) 2011 ret = 0; 2012 2013 inode_unlock(inode); 2014 return ret; 2015 } 2016 2017 static inline loff_t f2fs_readpage_limit(struct inode *inode) 2018 { 2019 if (IS_ENABLED(CONFIG_FS_VERITY) && 2020 (IS_VERITY(inode) || f2fs_verity_in_progress(inode))) 2021 return inode->i_sb->s_maxbytes; 2022 2023 return i_size_read(inode); 2024 } 2025 2026 static int f2fs_read_single_page(struct inode *inode, struct page *page, 2027 unsigned nr_pages, 2028 struct f2fs_map_blocks *map, 2029 struct bio **bio_ret, 2030 sector_t *last_block_in_bio, 2031 bool is_readahead) 2032 { 2033 struct bio *bio = *bio_ret; 2034 const unsigned blocksize = blks_to_bytes(inode, 1); 2035 sector_t block_in_file; 2036 sector_t last_block; 2037 sector_t last_block_in_file; 2038 sector_t block_nr; 2039 int ret = 0; 2040 2041 block_in_file = (sector_t)page_index(page); 2042 last_block = block_in_file + nr_pages; 2043 last_block_in_file = bytes_to_blks(inode, 2044 f2fs_readpage_limit(inode) + blocksize - 1); 2045 if (last_block > last_block_in_file) 2046 last_block = last_block_in_file; 2047 2048 /* just zeroing out page which is beyond EOF */ 2049 if (block_in_file >= last_block) 2050 goto zero_out; 2051 /* 2052 * Map blocks using the previous result first. 2053 */ 2054 if ((map->m_flags & F2FS_MAP_MAPPED) && 2055 block_in_file > map->m_lblk && 2056 block_in_file < (map->m_lblk + map->m_len)) 2057 goto got_it; 2058 2059 /* 2060 * Then do more f2fs_map_blocks() calls until we are 2061 * done with this page. 2062 */ 2063 map->m_lblk = block_in_file; 2064 map->m_len = last_block - block_in_file; 2065 2066 ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT); 2067 if (ret) 2068 goto out; 2069 got_it: 2070 if ((map->m_flags & F2FS_MAP_MAPPED)) { 2071 block_nr = map->m_pblk + block_in_file - map->m_lblk; 2072 SetPageMappedToDisk(page); 2073 2074 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr, 2075 DATA_GENERIC_ENHANCE_READ)) { 2076 ret = -EFSCORRUPTED; 2077 goto out; 2078 } 2079 } else { 2080 zero_out: 2081 zero_user_segment(page, 0, PAGE_SIZE); 2082 if (f2fs_need_verity(inode, page->index) && 2083 !fsverity_verify_page(page)) { 2084 ret = -EIO; 2085 goto out; 2086 } 2087 if (!PageUptodate(page)) 2088 SetPageUptodate(page); 2089 unlock_page(page); 2090 goto out; 2091 } 2092 2093 /* 2094 * This page will go to BIO. Do we need to send this 2095 * BIO off first? 2096 */ 2097 if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio, 2098 *last_block_in_bio, block_nr) || 2099 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) { 2100 submit_and_realloc: 2101 __submit_bio(F2FS_I_SB(inode), bio, DATA); 2102 bio = NULL; 2103 } 2104 if (bio == NULL) { 2105 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages, 2106 is_readahead ? REQ_RAHEAD : 0, page->index, 2107 false); 2108 if (IS_ERR(bio)) { 2109 ret = PTR_ERR(bio); 2110 bio = NULL; 2111 goto out; 2112 } 2113 } 2114 2115 /* 2116 * If the page is under writeback, we need to wait for 2117 * its completion to see the correct decrypted data. 2118 */ 2119 f2fs_wait_on_block_writeback(inode, block_nr); 2120 2121 if (bio_add_page(bio, page, blocksize, 0) < blocksize) 2122 goto submit_and_realloc; 2123 2124 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA); 2125 f2fs_update_iostat(F2FS_I_SB(inode), FS_DATA_READ_IO, F2FS_BLKSIZE); 2126 ClearPageError(page); 2127 *last_block_in_bio = block_nr; 2128 goto out; 2129 out: 2130 *bio_ret = bio; 2131 return ret; 2132 } 2133 2134 #ifdef CONFIG_F2FS_FS_COMPRESSION 2135 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret, 2136 unsigned nr_pages, sector_t *last_block_in_bio, 2137 bool is_readahead, bool for_write) 2138 { 2139 struct dnode_of_data dn; 2140 struct inode *inode = cc->inode; 2141 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2142 struct bio *bio = *bio_ret; 2143 unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size; 2144 sector_t last_block_in_file; 2145 const unsigned blocksize = blks_to_bytes(inode, 1); 2146 struct decompress_io_ctx *dic = NULL; 2147 struct extent_info ei = {0, }; 2148 bool from_dnode = true; 2149 int i; 2150 int ret = 0; 2151 2152 f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc)); 2153 2154 last_block_in_file = bytes_to_blks(inode, 2155 f2fs_readpage_limit(inode) + blocksize - 1); 2156 2157 /* get rid of pages beyond EOF */ 2158 for (i = 0; i < cc->cluster_size; i++) { 2159 struct page *page = cc->rpages[i]; 2160 2161 if (!page) 2162 continue; 2163 if ((sector_t)page->index >= last_block_in_file) { 2164 zero_user_segment(page, 0, PAGE_SIZE); 2165 if (!PageUptodate(page)) 2166 SetPageUptodate(page); 2167 } else if (!PageUptodate(page)) { 2168 continue; 2169 } 2170 unlock_page(page); 2171 if (for_write) 2172 put_page(page); 2173 cc->rpages[i] = NULL; 2174 cc->nr_rpages--; 2175 } 2176 2177 /* we are done since all pages are beyond EOF */ 2178 if (f2fs_cluster_is_empty(cc)) 2179 goto out; 2180 2181 if (f2fs_lookup_extent_cache(inode, start_idx, &ei)) 2182 from_dnode = false; 2183 2184 if (!from_dnode) 2185 goto skip_reading_dnode; 2186 2187 set_new_dnode(&dn, inode, NULL, NULL, 0); 2188 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 2189 if (ret) 2190 goto out; 2191 2192 f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR); 2193 2194 skip_reading_dnode: 2195 for (i = 1; i < cc->cluster_size; i++) { 2196 block_t blkaddr; 2197 2198 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page, 2199 dn.ofs_in_node + i) : 2200 ei.blk + i - 1; 2201 2202 if (!__is_valid_data_blkaddr(blkaddr)) 2203 break; 2204 2205 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) { 2206 ret = -EFAULT; 2207 goto out_put_dnode; 2208 } 2209 cc->nr_cpages++; 2210 2211 if (!from_dnode && i >= ei.c_len) 2212 break; 2213 } 2214 2215 /* nothing to decompress */ 2216 if (cc->nr_cpages == 0) { 2217 ret = 0; 2218 goto out_put_dnode; 2219 } 2220 2221 dic = f2fs_alloc_dic(cc); 2222 if (IS_ERR(dic)) { 2223 ret = PTR_ERR(dic); 2224 goto out_put_dnode; 2225 } 2226 2227 for (i = 0; i < cc->nr_cpages; i++) { 2228 struct page *page = dic->cpages[i]; 2229 block_t blkaddr; 2230 struct bio_post_read_ctx *ctx; 2231 2232 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page, 2233 dn.ofs_in_node + i + 1) : 2234 ei.blk + i; 2235 2236 f2fs_wait_on_block_writeback(inode, blkaddr); 2237 2238 if (f2fs_load_compressed_page(sbi, page, blkaddr)) { 2239 if (atomic_dec_and_test(&dic->remaining_pages)) 2240 f2fs_decompress_cluster(dic, true); 2241 continue; 2242 } 2243 2244 if (bio && (!page_is_mergeable(sbi, bio, 2245 *last_block_in_bio, blkaddr) || 2246 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) { 2247 submit_and_realloc: 2248 __submit_bio(sbi, bio, DATA); 2249 bio = NULL; 2250 } 2251 2252 if (!bio) { 2253 bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages, 2254 is_readahead ? REQ_RAHEAD : 0, 2255 page->index, for_write); 2256 if (IS_ERR(bio)) { 2257 ret = PTR_ERR(bio); 2258 f2fs_decompress_end_io(dic, ret, true); 2259 f2fs_put_dnode(&dn); 2260 *bio_ret = NULL; 2261 return ret; 2262 } 2263 } 2264 2265 if (bio_add_page(bio, page, blocksize, 0) < blocksize) 2266 goto submit_and_realloc; 2267 2268 ctx = get_post_read_ctx(bio); 2269 ctx->enabled_steps |= STEP_DECOMPRESS; 2270 refcount_inc(&dic->refcnt); 2271 2272 inc_page_count(sbi, F2FS_RD_DATA); 2273 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE); 2274 f2fs_update_iostat(sbi, FS_CDATA_READ_IO, F2FS_BLKSIZE); 2275 ClearPageError(page); 2276 *last_block_in_bio = blkaddr; 2277 } 2278 2279 if (from_dnode) 2280 f2fs_put_dnode(&dn); 2281 2282 *bio_ret = bio; 2283 return 0; 2284 2285 out_put_dnode: 2286 if (from_dnode) 2287 f2fs_put_dnode(&dn); 2288 out: 2289 for (i = 0; i < cc->cluster_size; i++) { 2290 if (cc->rpages[i]) { 2291 ClearPageUptodate(cc->rpages[i]); 2292 ClearPageError(cc->rpages[i]); 2293 unlock_page(cc->rpages[i]); 2294 } 2295 } 2296 *bio_ret = bio; 2297 return ret; 2298 } 2299 #endif 2300 2301 /* 2302 * This function was originally taken from fs/mpage.c, and customized for f2fs. 2303 * Major change was from block_size == page_size in f2fs by default. 2304 */ 2305 static int f2fs_mpage_readpages(struct inode *inode, 2306 struct readahead_control *rac, struct page *page) 2307 { 2308 struct bio *bio = NULL; 2309 sector_t last_block_in_bio = 0; 2310 struct f2fs_map_blocks map; 2311 #ifdef CONFIG_F2FS_FS_COMPRESSION 2312 struct compress_ctx cc = { 2313 .inode = inode, 2314 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 2315 .cluster_size = F2FS_I(inode)->i_cluster_size, 2316 .cluster_idx = NULL_CLUSTER, 2317 .rpages = NULL, 2318 .cpages = NULL, 2319 .nr_rpages = 0, 2320 .nr_cpages = 0, 2321 }; 2322 pgoff_t nc_cluster_idx = NULL_CLUSTER; 2323 #endif 2324 unsigned nr_pages = rac ? readahead_count(rac) : 1; 2325 unsigned max_nr_pages = nr_pages; 2326 int ret = 0; 2327 2328 map.m_pblk = 0; 2329 map.m_lblk = 0; 2330 map.m_len = 0; 2331 map.m_flags = 0; 2332 map.m_next_pgofs = NULL; 2333 map.m_next_extent = NULL; 2334 map.m_seg_type = NO_CHECK_TYPE; 2335 map.m_may_create = false; 2336 2337 for (; nr_pages; nr_pages--) { 2338 if (rac) { 2339 page = readahead_page(rac); 2340 prefetchw(&page->flags); 2341 } 2342 2343 #ifdef CONFIG_F2FS_FS_COMPRESSION 2344 if (f2fs_compressed_file(inode)) { 2345 /* there are remained comressed pages, submit them */ 2346 if (!f2fs_cluster_can_merge_page(&cc, page->index)) { 2347 ret = f2fs_read_multi_pages(&cc, &bio, 2348 max_nr_pages, 2349 &last_block_in_bio, 2350 rac != NULL, false); 2351 f2fs_destroy_compress_ctx(&cc, false); 2352 if (ret) 2353 goto set_error_page; 2354 } 2355 if (cc.cluster_idx == NULL_CLUSTER) { 2356 if (nc_cluster_idx == 2357 page->index >> cc.log_cluster_size) { 2358 goto read_single_page; 2359 } 2360 2361 ret = f2fs_is_compressed_cluster(inode, page->index); 2362 if (ret < 0) 2363 goto set_error_page; 2364 else if (!ret) { 2365 nc_cluster_idx = 2366 page->index >> cc.log_cluster_size; 2367 goto read_single_page; 2368 } 2369 2370 nc_cluster_idx = NULL_CLUSTER; 2371 } 2372 ret = f2fs_init_compress_ctx(&cc); 2373 if (ret) 2374 goto set_error_page; 2375 2376 f2fs_compress_ctx_add_page(&cc, page); 2377 2378 goto next_page; 2379 } 2380 read_single_page: 2381 #endif 2382 2383 ret = f2fs_read_single_page(inode, page, max_nr_pages, &map, 2384 &bio, &last_block_in_bio, rac); 2385 if (ret) { 2386 #ifdef CONFIG_F2FS_FS_COMPRESSION 2387 set_error_page: 2388 #endif 2389 SetPageError(page); 2390 zero_user_segment(page, 0, PAGE_SIZE); 2391 unlock_page(page); 2392 } 2393 #ifdef CONFIG_F2FS_FS_COMPRESSION 2394 next_page: 2395 #endif 2396 if (rac) 2397 put_page(page); 2398 2399 #ifdef CONFIG_F2FS_FS_COMPRESSION 2400 if (f2fs_compressed_file(inode)) { 2401 /* last page */ 2402 if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) { 2403 ret = f2fs_read_multi_pages(&cc, &bio, 2404 max_nr_pages, 2405 &last_block_in_bio, 2406 rac != NULL, false); 2407 f2fs_destroy_compress_ctx(&cc, false); 2408 } 2409 } 2410 #endif 2411 } 2412 if (bio) 2413 __submit_bio(F2FS_I_SB(inode), bio, DATA); 2414 return ret; 2415 } 2416 2417 static int f2fs_read_data_folio(struct file *file, struct folio *folio) 2418 { 2419 struct page *page = &folio->page; 2420 struct inode *inode = page_file_mapping(page)->host; 2421 int ret = -EAGAIN; 2422 2423 trace_f2fs_readpage(page, DATA); 2424 2425 if (!f2fs_is_compress_backend_ready(inode)) { 2426 unlock_page(page); 2427 return -EOPNOTSUPP; 2428 } 2429 2430 /* If the file has inline data, try to read it directly */ 2431 if (f2fs_has_inline_data(inode)) 2432 ret = f2fs_read_inline_data(inode, page); 2433 if (ret == -EAGAIN) 2434 ret = f2fs_mpage_readpages(inode, NULL, page); 2435 return ret; 2436 } 2437 2438 static void f2fs_readahead(struct readahead_control *rac) 2439 { 2440 struct inode *inode = rac->mapping->host; 2441 2442 trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac)); 2443 2444 if (!f2fs_is_compress_backend_ready(inode)) 2445 return; 2446 2447 /* If the file has inline data, skip readahead */ 2448 if (f2fs_has_inline_data(inode)) 2449 return; 2450 2451 f2fs_mpage_readpages(inode, rac, NULL); 2452 } 2453 2454 int f2fs_encrypt_one_page(struct f2fs_io_info *fio) 2455 { 2456 struct inode *inode = fio->page->mapping->host; 2457 struct page *mpage, *page; 2458 gfp_t gfp_flags = GFP_NOFS; 2459 2460 if (!f2fs_encrypted_file(inode)) 2461 return 0; 2462 2463 page = fio->compressed_page ? fio->compressed_page : fio->page; 2464 2465 /* wait for GCed page writeback via META_MAPPING */ 2466 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr); 2467 2468 if (fscrypt_inode_uses_inline_crypto(inode)) 2469 return 0; 2470 2471 retry_encrypt: 2472 fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page, 2473 PAGE_SIZE, 0, gfp_flags); 2474 if (IS_ERR(fio->encrypted_page)) { 2475 /* flush pending IOs and wait for a while in the ENOMEM case */ 2476 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) { 2477 f2fs_flush_merged_writes(fio->sbi); 2478 memalloc_retry_wait(GFP_NOFS); 2479 gfp_flags |= __GFP_NOFAIL; 2480 goto retry_encrypt; 2481 } 2482 return PTR_ERR(fio->encrypted_page); 2483 } 2484 2485 mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr); 2486 if (mpage) { 2487 if (PageUptodate(mpage)) 2488 memcpy(page_address(mpage), 2489 page_address(fio->encrypted_page), PAGE_SIZE); 2490 f2fs_put_page(mpage, 1); 2491 } 2492 return 0; 2493 } 2494 2495 static inline bool check_inplace_update_policy(struct inode *inode, 2496 struct f2fs_io_info *fio) 2497 { 2498 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2499 unsigned int policy = SM_I(sbi)->ipu_policy; 2500 2501 if (policy & (0x1 << F2FS_IPU_HONOR_OPU_WRITE) && 2502 is_inode_flag_set(inode, FI_OPU_WRITE)) 2503 return false; 2504 if (policy & (0x1 << F2FS_IPU_FORCE)) 2505 return true; 2506 if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi)) 2507 return true; 2508 if (policy & (0x1 << F2FS_IPU_UTIL) && 2509 utilization(sbi) > SM_I(sbi)->min_ipu_util) 2510 return true; 2511 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) && 2512 utilization(sbi) > SM_I(sbi)->min_ipu_util) 2513 return true; 2514 2515 /* 2516 * IPU for rewrite async pages 2517 */ 2518 if (policy & (0x1 << F2FS_IPU_ASYNC) && 2519 fio && fio->op == REQ_OP_WRITE && 2520 !(fio->op_flags & REQ_SYNC) && 2521 !IS_ENCRYPTED(inode)) 2522 return true; 2523 2524 /* this is only set during fdatasync */ 2525 if (policy & (0x1 << F2FS_IPU_FSYNC) && 2526 is_inode_flag_set(inode, FI_NEED_IPU)) 2527 return true; 2528 2529 if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 2530 !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) 2531 return true; 2532 2533 return false; 2534 } 2535 2536 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio) 2537 { 2538 /* swap file is migrating in aligned write mode */ 2539 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE)) 2540 return false; 2541 2542 if (f2fs_is_pinned_file(inode)) 2543 return true; 2544 2545 /* if this is cold file, we should overwrite to avoid fragmentation */ 2546 if (file_is_cold(inode)) 2547 return true; 2548 2549 return check_inplace_update_policy(inode, fio); 2550 } 2551 2552 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio) 2553 { 2554 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2555 2556 /* The below cases were checked when setting it. */ 2557 if (f2fs_is_pinned_file(inode)) 2558 return false; 2559 if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 2560 return true; 2561 if (f2fs_lfs_mode(sbi)) 2562 return true; 2563 if (S_ISDIR(inode->i_mode)) 2564 return true; 2565 if (IS_NOQUOTA(inode)) 2566 return true; 2567 if (f2fs_is_atomic_file(inode)) 2568 return true; 2569 2570 /* swap file is migrating in aligned write mode */ 2571 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE)) 2572 return true; 2573 2574 if (is_inode_flag_set(inode, FI_OPU_WRITE)) 2575 return true; 2576 2577 if (fio) { 2578 if (page_private_gcing(fio->page)) 2579 return true; 2580 if (page_private_dummy(fio->page)) 2581 return true; 2582 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 2583 f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) 2584 return true; 2585 } 2586 return false; 2587 } 2588 2589 static inline bool need_inplace_update(struct f2fs_io_info *fio) 2590 { 2591 struct inode *inode = fio->page->mapping->host; 2592 2593 if (f2fs_should_update_outplace(inode, fio)) 2594 return false; 2595 2596 return f2fs_should_update_inplace(inode, fio); 2597 } 2598 2599 int f2fs_do_write_data_page(struct f2fs_io_info *fio) 2600 { 2601 struct page *page = fio->page; 2602 struct inode *inode = page->mapping->host; 2603 struct dnode_of_data dn; 2604 struct extent_info ei = {0, }; 2605 struct node_info ni; 2606 bool ipu_force = false; 2607 int err = 0; 2608 2609 /* Use COW inode to make dnode_of_data for atomic write */ 2610 if (f2fs_is_atomic_file(inode)) 2611 set_new_dnode(&dn, F2FS_I(inode)->cow_inode, NULL, NULL, 0); 2612 else 2613 set_new_dnode(&dn, inode, NULL, NULL, 0); 2614 2615 if (need_inplace_update(fio) && 2616 f2fs_lookup_extent_cache(inode, page->index, &ei)) { 2617 fio->old_blkaddr = ei.blk + page->index - ei.fofs; 2618 2619 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 2620 DATA_GENERIC_ENHANCE)) 2621 return -EFSCORRUPTED; 2622 2623 ipu_force = true; 2624 fio->need_lock = LOCK_DONE; 2625 goto got_it; 2626 } 2627 2628 /* Deadlock due to between page->lock and f2fs_lock_op */ 2629 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi)) 2630 return -EAGAIN; 2631 2632 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE); 2633 if (err) 2634 goto out; 2635 2636 fio->old_blkaddr = dn.data_blkaddr; 2637 2638 /* This page is already truncated */ 2639 if (fio->old_blkaddr == NULL_ADDR) { 2640 ClearPageUptodate(page); 2641 clear_page_private_gcing(page); 2642 goto out_writepage; 2643 } 2644 got_it: 2645 if (__is_valid_data_blkaddr(fio->old_blkaddr) && 2646 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 2647 DATA_GENERIC_ENHANCE)) { 2648 err = -EFSCORRUPTED; 2649 goto out_writepage; 2650 } 2651 2652 /* 2653 * If current allocation needs SSR, 2654 * it had better in-place writes for updated data. 2655 */ 2656 if (ipu_force || 2657 (__is_valid_data_blkaddr(fio->old_blkaddr) && 2658 need_inplace_update(fio))) { 2659 err = f2fs_encrypt_one_page(fio); 2660 if (err) 2661 goto out_writepage; 2662 2663 set_page_writeback(page); 2664 ClearPageError(page); 2665 f2fs_put_dnode(&dn); 2666 if (fio->need_lock == LOCK_REQ) 2667 f2fs_unlock_op(fio->sbi); 2668 err = f2fs_inplace_write_data(fio); 2669 if (err) { 2670 if (fscrypt_inode_uses_fs_layer_crypto(inode)) 2671 fscrypt_finalize_bounce_page(&fio->encrypted_page); 2672 if (PageWriteback(page)) 2673 end_page_writeback(page); 2674 } else { 2675 set_inode_flag(inode, FI_UPDATE_WRITE); 2676 } 2677 trace_f2fs_do_write_data_page(fio->page, IPU); 2678 return err; 2679 } 2680 2681 if (fio->need_lock == LOCK_RETRY) { 2682 if (!f2fs_trylock_op(fio->sbi)) { 2683 err = -EAGAIN; 2684 goto out_writepage; 2685 } 2686 fio->need_lock = LOCK_REQ; 2687 } 2688 2689 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false); 2690 if (err) 2691 goto out_writepage; 2692 2693 fio->version = ni.version; 2694 2695 err = f2fs_encrypt_one_page(fio); 2696 if (err) 2697 goto out_writepage; 2698 2699 set_page_writeback(page); 2700 ClearPageError(page); 2701 2702 if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR) 2703 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false); 2704 2705 /* LFS mode write path */ 2706 f2fs_outplace_write_data(&dn, fio); 2707 trace_f2fs_do_write_data_page(page, OPU); 2708 set_inode_flag(inode, FI_APPEND_WRITE); 2709 if (page->index == 0) 2710 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); 2711 out_writepage: 2712 f2fs_put_dnode(&dn); 2713 out: 2714 if (fio->need_lock == LOCK_REQ) 2715 f2fs_unlock_op(fio->sbi); 2716 return err; 2717 } 2718 2719 int f2fs_write_single_data_page(struct page *page, int *submitted, 2720 struct bio **bio, 2721 sector_t *last_block, 2722 struct writeback_control *wbc, 2723 enum iostat_type io_type, 2724 int compr_blocks, 2725 bool allow_balance) 2726 { 2727 struct inode *inode = page->mapping->host; 2728 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2729 loff_t i_size = i_size_read(inode); 2730 const pgoff_t end_index = ((unsigned long long)i_size) 2731 >> PAGE_SHIFT; 2732 loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT; 2733 unsigned offset = 0; 2734 bool need_balance_fs = false; 2735 int err = 0; 2736 struct f2fs_io_info fio = { 2737 .sbi = sbi, 2738 .ino = inode->i_ino, 2739 .type = DATA, 2740 .op = REQ_OP_WRITE, 2741 .op_flags = wbc_to_write_flags(wbc), 2742 .old_blkaddr = NULL_ADDR, 2743 .page = page, 2744 .encrypted_page = NULL, 2745 .submitted = false, 2746 .compr_blocks = compr_blocks, 2747 .need_lock = LOCK_RETRY, 2748 .post_read = f2fs_post_read_required(inode), 2749 .io_type = io_type, 2750 .io_wbc = wbc, 2751 .bio = bio, 2752 .last_block = last_block, 2753 }; 2754 2755 trace_f2fs_writepage(page, DATA); 2756 2757 /* we should bypass data pages to proceed the kworkder jobs */ 2758 if (unlikely(f2fs_cp_error(sbi))) { 2759 mapping_set_error(page->mapping, -EIO); 2760 /* 2761 * don't drop any dirty dentry pages for keeping lastest 2762 * directory structure. 2763 */ 2764 if (S_ISDIR(inode->i_mode)) 2765 goto redirty_out; 2766 goto out; 2767 } 2768 2769 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 2770 goto redirty_out; 2771 2772 if (page->index < end_index || 2773 f2fs_verity_in_progress(inode) || 2774 compr_blocks) 2775 goto write; 2776 2777 /* 2778 * If the offset is out-of-range of file size, 2779 * this page does not have to be written to disk. 2780 */ 2781 offset = i_size & (PAGE_SIZE - 1); 2782 if ((page->index >= end_index + 1) || !offset) 2783 goto out; 2784 2785 zero_user_segment(page, offset, PAGE_SIZE); 2786 write: 2787 if (f2fs_is_drop_cache(inode)) 2788 goto out; 2789 2790 /* Dentry/quota blocks are controlled by checkpoint */ 2791 if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) { 2792 /* 2793 * We need to wait for node_write to avoid block allocation during 2794 * checkpoint. This can only happen to quota writes which can cause 2795 * the below discard race condition. 2796 */ 2797 if (IS_NOQUOTA(inode)) 2798 f2fs_down_read(&sbi->node_write); 2799 2800 fio.need_lock = LOCK_DONE; 2801 err = f2fs_do_write_data_page(&fio); 2802 2803 if (IS_NOQUOTA(inode)) 2804 f2fs_up_read(&sbi->node_write); 2805 2806 goto done; 2807 } 2808 2809 if (!wbc->for_reclaim) 2810 need_balance_fs = true; 2811 else if (has_not_enough_free_secs(sbi, 0, 0)) 2812 goto redirty_out; 2813 else 2814 set_inode_flag(inode, FI_HOT_DATA); 2815 2816 err = -EAGAIN; 2817 if (f2fs_has_inline_data(inode)) { 2818 err = f2fs_write_inline_data(inode, page); 2819 if (!err) 2820 goto out; 2821 } 2822 2823 if (err == -EAGAIN) { 2824 err = f2fs_do_write_data_page(&fio); 2825 if (err == -EAGAIN) { 2826 fio.need_lock = LOCK_REQ; 2827 err = f2fs_do_write_data_page(&fio); 2828 } 2829 } 2830 2831 if (err) { 2832 file_set_keep_isize(inode); 2833 } else { 2834 spin_lock(&F2FS_I(inode)->i_size_lock); 2835 if (F2FS_I(inode)->last_disk_size < psize) 2836 F2FS_I(inode)->last_disk_size = psize; 2837 spin_unlock(&F2FS_I(inode)->i_size_lock); 2838 } 2839 2840 done: 2841 if (err && err != -ENOENT) 2842 goto redirty_out; 2843 2844 out: 2845 inode_dec_dirty_pages(inode); 2846 if (err) { 2847 ClearPageUptodate(page); 2848 clear_page_private_gcing(page); 2849 } 2850 2851 if (wbc->for_reclaim) { 2852 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA); 2853 clear_inode_flag(inode, FI_HOT_DATA); 2854 f2fs_remove_dirty_inode(inode); 2855 submitted = NULL; 2856 } 2857 unlock_page(page); 2858 if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) && 2859 !F2FS_I(inode)->cp_task && allow_balance) 2860 f2fs_balance_fs(sbi, need_balance_fs); 2861 2862 if (unlikely(f2fs_cp_error(sbi))) { 2863 f2fs_submit_merged_write(sbi, DATA); 2864 f2fs_submit_merged_ipu_write(sbi, bio, NULL); 2865 submitted = NULL; 2866 } 2867 2868 if (submitted) 2869 *submitted = fio.submitted ? 1 : 0; 2870 2871 return 0; 2872 2873 redirty_out: 2874 redirty_page_for_writepage(wbc, page); 2875 /* 2876 * pageout() in MM traslates EAGAIN, so calls handle_write_error() 2877 * -> mapping_set_error() -> set_bit(AS_EIO, ...). 2878 * file_write_and_wait_range() will see EIO error, which is critical 2879 * to return value of fsync() followed by atomic_write failure to user. 2880 */ 2881 if (!err || wbc->for_reclaim) 2882 return AOP_WRITEPAGE_ACTIVATE; 2883 unlock_page(page); 2884 return err; 2885 } 2886 2887 static int f2fs_write_data_page(struct page *page, 2888 struct writeback_control *wbc) 2889 { 2890 #ifdef CONFIG_F2FS_FS_COMPRESSION 2891 struct inode *inode = page->mapping->host; 2892 2893 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 2894 goto out; 2895 2896 if (f2fs_compressed_file(inode)) { 2897 if (f2fs_is_compressed_cluster(inode, page->index)) { 2898 redirty_page_for_writepage(wbc, page); 2899 return AOP_WRITEPAGE_ACTIVATE; 2900 } 2901 } 2902 out: 2903 #endif 2904 2905 return f2fs_write_single_data_page(page, NULL, NULL, NULL, 2906 wbc, FS_DATA_IO, 0, true); 2907 } 2908 2909 /* 2910 * This function was copied from write_cche_pages from mm/page-writeback.c. 2911 * The major change is making write step of cold data page separately from 2912 * warm/hot data page. 2913 */ 2914 static int f2fs_write_cache_pages(struct address_space *mapping, 2915 struct writeback_control *wbc, 2916 enum iostat_type io_type) 2917 { 2918 int ret = 0; 2919 int done = 0, retry = 0; 2920 struct page *pages[F2FS_ONSTACK_PAGES]; 2921 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 2922 struct bio *bio = NULL; 2923 sector_t last_block; 2924 #ifdef CONFIG_F2FS_FS_COMPRESSION 2925 struct inode *inode = mapping->host; 2926 struct compress_ctx cc = { 2927 .inode = inode, 2928 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 2929 .cluster_size = F2FS_I(inode)->i_cluster_size, 2930 .cluster_idx = NULL_CLUSTER, 2931 .rpages = NULL, 2932 .nr_rpages = 0, 2933 .cpages = NULL, 2934 .valid_nr_cpages = 0, 2935 .rbuf = NULL, 2936 .cbuf = NULL, 2937 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size, 2938 .private = NULL, 2939 }; 2940 #endif 2941 int nr_pages; 2942 pgoff_t index; 2943 pgoff_t end; /* Inclusive */ 2944 pgoff_t done_index; 2945 int range_whole = 0; 2946 xa_mark_t tag; 2947 int nwritten = 0; 2948 int submitted = 0; 2949 int i; 2950 2951 if (get_dirty_pages(mapping->host) <= 2952 SM_I(F2FS_M_SB(mapping))->min_hot_blocks) 2953 set_inode_flag(mapping->host, FI_HOT_DATA); 2954 else 2955 clear_inode_flag(mapping->host, FI_HOT_DATA); 2956 2957 if (wbc->range_cyclic) { 2958 index = mapping->writeback_index; /* prev offset */ 2959 end = -1; 2960 } else { 2961 index = wbc->range_start >> PAGE_SHIFT; 2962 end = wbc->range_end >> PAGE_SHIFT; 2963 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2964 range_whole = 1; 2965 } 2966 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2967 tag = PAGECACHE_TAG_TOWRITE; 2968 else 2969 tag = PAGECACHE_TAG_DIRTY; 2970 retry: 2971 retry = 0; 2972 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2973 tag_pages_for_writeback(mapping, index, end); 2974 done_index = index; 2975 while (!done && !retry && (index <= end)) { 2976 nr_pages = find_get_pages_range_tag(mapping, &index, end, 2977 tag, F2FS_ONSTACK_PAGES, pages); 2978 if (nr_pages == 0) 2979 break; 2980 2981 for (i = 0; i < nr_pages; i++) { 2982 struct page *page = pages[i]; 2983 bool need_readd; 2984 readd: 2985 need_readd = false; 2986 #ifdef CONFIG_F2FS_FS_COMPRESSION 2987 if (f2fs_compressed_file(inode)) { 2988 void *fsdata = NULL; 2989 struct page *pagep; 2990 int ret2; 2991 2992 ret = f2fs_init_compress_ctx(&cc); 2993 if (ret) { 2994 done = 1; 2995 break; 2996 } 2997 2998 if (!f2fs_cluster_can_merge_page(&cc, 2999 page->index)) { 3000 ret = f2fs_write_multi_pages(&cc, 3001 &submitted, wbc, io_type); 3002 if (!ret) 3003 need_readd = true; 3004 goto result; 3005 } 3006 3007 if (unlikely(f2fs_cp_error(sbi))) 3008 goto lock_page; 3009 3010 if (!f2fs_cluster_is_empty(&cc)) 3011 goto lock_page; 3012 3013 if (f2fs_all_cluster_page_ready(&cc, 3014 pages, i, nr_pages, true)) 3015 goto lock_page; 3016 3017 ret2 = f2fs_prepare_compress_overwrite( 3018 inode, &pagep, 3019 page->index, &fsdata); 3020 if (ret2 < 0) { 3021 ret = ret2; 3022 done = 1; 3023 break; 3024 } else if (ret2 && 3025 (!f2fs_compress_write_end(inode, 3026 fsdata, page->index, 1) || 3027 !f2fs_all_cluster_page_ready(&cc, 3028 pages, i, nr_pages, false))) { 3029 retry = 1; 3030 break; 3031 } 3032 } 3033 #endif 3034 /* give a priority to WB_SYNC threads */ 3035 if (atomic_read(&sbi->wb_sync_req[DATA]) && 3036 wbc->sync_mode == WB_SYNC_NONE) { 3037 done = 1; 3038 break; 3039 } 3040 #ifdef CONFIG_F2FS_FS_COMPRESSION 3041 lock_page: 3042 #endif 3043 done_index = page->index; 3044 retry_write: 3045 lock_page(page); 3046 3047 if (unlikely(page->mapping != mapping)) { 3048 continue_unlock: 3049 unlock_page(page); 3050 continue; 3051 } 3052 3053 if (!PageDirty(page)) { 3054 /* someone wrote it for us */ 3055 goto continue_unlock; 3056 } 3057 3058 if (PageWriteback(page)) { 3059 if (wbc->sync_mode != WB_SYNC_NONE) 3060 f2fs_wait_on_page_writeback(page, 3061 DATA, true, true); 3062 else 3063 goto continue_unlock; 3064 } 3065 3066 if (!clear_page_dirty_for_io(page)) 3067 goto continue_unlock; 3068 3069 #ifdef CONFIG_F2FS_FS_COMPRESSION 3070 if (f2fs_compressed_file(inode)) { 3071 get_page(page); 3072 f2fs_compress_ctx_add_page(&cc, page); 3073 continue; 3074 } 3075 #endif 3076 ret = f2fs_write_single_data_page(page, &submitted, 3077 &bio, &last_block, wbc, io_type, 3078 0, true); 3079 if (ret == AOP_WRITEPAGE_ACTIVATE) 3080 unlock_page(page); 3081 #ifdef CONFIG_F2FS_FS_COMPRESSION 3082 result: 3083 #endif 3084 nwritten += submitted; 3085 wbc->nr_to_write -= submitted; 3086 3087 if (unlikely(ret)) { 3088 /* 3089 * keep nr_to_write, since vfs uses this to 3090 * get # of written pages. 3091 */ 3092 if (ret == AOP_WRITEPAGE_ACTIVATE) { 3093 ret = 0; 3094 goto next; 3095 } else if (ret == -EAGAIN) { 3096 ret = 0; 3097 if (wbc->sync_mode == WB_SYNC_ALL) { 3098 f2fs_io_schedule_timeout( 3099 DEFAULT_IO_TIMEOUT); 3100 goto retry_write; 3101 } 3102 goto next; 3103 } 3104 done_index = page->index + 1; 3105 done = 1; 3106 break; 3107 } 3108 3109 if (wbc->nr_to_write <= 0 && 3110 wbc->sync_mode == WB_SYNC_NONE) { 3111 done = 1; 3112 break; 3113 } 3114 next: 3115 if (need_readd) 3116 goto readd; 3117 } 3118 release_pages(pages, nr_pages); 3119 cond_resched(); 3120 } 3121 #ifdef CONFIG_F2FS_FS_COMPRESSION 3122 /* flush remained pages in compress cluster */ 3123 if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) { 3124 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type); 3125 nwritten += submitted; 3126 wbc->nr_to_write -= submitted; 3127 if (ret) { 3128 done = 1; 3129 retry = 0; 3130 } 3131 } 3132 if (f2fs_compressed_file(inode)) 3133 f2fs_destroy_compress_ctx(&cc, false); 3134 #endif 3135 if (retry) { 3136 index = 0; 3137 end = -1; 3138 goto retry; 3139 } 3140 if (wbc->range_cyclic && !done) 3141 done_index = 0; 3142 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 3143 mapping->writeback_index = done_index; 3144 3145 if (nwritten) 3146 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host, 3147 NULL, 0, DATA); 3148 /* submit cached bio of IPU write */ 3149 if (bio) 3150 f2fs_submit_merged_ipu_write(sbi, &bio, NULL); 3151 3152 return ret; 3153 } 3154 3155 static inline bool __should_serialize_io(struct inode *inode, 3156 struct writeback_control *wbc) 3157 { 3158 /* to avoid deadlock in path of data flush */ 3159 if (F2FS_I(inode)->cp_task) 3160 return false; 3161 3162 if (!S_ISREG(inode->i_mode)) 3163 return false; 3164 if (IS_NOQUOTA(inode)) 3165 return false; 3166 3167 if (f2fs_need_compress_data(inode)) 3168 return true; 3169 if (wbc->sync_mode != WB_SYNC_ALL) 3170 return true; 3171 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks) 3172 return true; 3173 return false; 3174 } 3175 3176 static int __f2fs_write_data_pages(struct address_space *mapping, 3177 struct writeback_control *wbc, 3178 enum iostat_type io_type) 3179 { 3180 struct inode *inode = mapping->host; 3181 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3182 struct blk_plug plug; 3183 int ret; 3184 bool locked = false; 3185 3186 /* deal with chardevs and other special file */ 3187 if (!mapping->a_ops->writepage) 3188 return 0; 3189 3190 /* skip writing if there is no dirty page in this inode */ 3191 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE) 3192 return 0; 3193 3194 /* during POR, we don't need to trigger writepage at all. */ 3195 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 3196 goto skip_write; 3197 3198 if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) && 3199 wbc->sync_mode == WB_SYNC_NONE && 3200 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) && 3201 f2fs_available_free_memory(sbi, DIRTY_DENTS)) 3202 goto skip_write; 3203 3204 /* skip writing in file defragment preparing stage */ 3205 if (is_inode_flag_set(inode, FI_SKIP_WRITES)) 3206 goto skip_write; 3207 3208 trace_f2fs_writepages(mapping->host, wbc, DATA); 3209 3210 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */ 3211 if (wbc->sync_mode == WB_SYNC_ALL) 3212 atomic_inc(&sbi->wb_sync_req[DATA]); 3213 else if (atomic_read(&sbi->wb_sync_req[DATA])) { 3214 /* to avoid potential deadlock */ 3215 if (current->plug) 3216 blk_finish_plug(current->plug); 3217 goto skip_write; 3218 } 3219 3220 if (__should_serialize_io(inode, wbc)) { 3221 mutex_lock(&sbi->writepages); 3222 locked = true; 3223 } 3224 3225 blk_start_plug(&plug); 3226 ret = f2fs_write_cache_pages(mapping, wbc, io_type); 3227 blk_finish_plug(&plug); 3228 3229 if (locked) 3230 mutex_unlock(&sbi->writepages); 3231 3232 if (wbc->sync_mode == WB_SYNC_ALL) 3233 atomic_dec(&sbi->wb_sync_req[DATA]); 3234 /* 3235 * if some pages were truncated, we cannot guarantee its mapping->host 3236 * to detect pending bios. 3237 */ 3238 3239 f2fs_remove_dirty_inode(inode); 3240 return ret; 3241 3242 skip_write: 3243 wbc->pages_skipped += get_dirty_pages(inode); 3244 trace_f2fs_writepages(mapping->host, wbc, DATA); 3245 return 0; 3246 } 3247 3248 static int f2fs_write_data_pages(struct address_space *mapping, 3249 struct writeback_control *wbc) 3250 { 3251 struct inode *inode = mapping->host; 3252 3253 return __f2fs_write_data_pages(mapping, wbc, 3254 F2FS_I(inode)->cp_task == current ? 3255 FS_CP_DATA_IO : FS_DATA_IO); 3256 } 3257 3258 void f2fs_write_failed(struct inode *inode, loff_t to) 3259 { 3260 loff_t i_size = i_size_read(inode); 3261 3262 if (IS_NOQUOTA(inode)) 3263 return; 3264 3265 /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */ 3266 if (to > i_size && !f2fs_verity_in_progress(inode)) { 3267 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3268 filemap_invalidate_lock(inode->i_mapping); 3269 3270 truncate_pagecache(inode, i_size); 3271 f2fs_truncate_blocks(inode, i_size, true); 3272 3273 filemap_invalidate_unlock(inode->i_mapping); 3274 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3275 } 3276 } 3277 3278 static int prepare_write_begin(struct f2fs_sb_info *sbi, 3279 struct page *page, loff_t pos, unsigned len, 3280 block_t *blk_addr, bool *node_changed) 3281 { 3282 struct inode *inode = page->mapping->host; 3283 pgoff_t index = page->index; 3284 struct dnode_of_data dn; 3285 struct page *ipage; 3286 bool locked = false; 3287 struct extent_info ei = {0, }; 3288 int err = 0; 3289 int flag; 3290 3291 /* 3292 * If a whole page is being written and we already preallocated all the 3293 * blocks, then there is no need to get a block address now. 3294 */ 3295 if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL)) 3296 return 0; 3297 3298 /* f2fs_lock_op avoids race between write CP and convert_inline_page */ 3299 if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode)) 3300 flag = F2FS_GET_BLOCK_DEFAULT; 3301 else 3302 flag = F2FS_GET_BLOCK_PRE_AIO; 3303 3304 if (f2fs_has_inline_data(inode) || 3305 (pos & PAGE_MASK) >= i_size_read(inode)) { 3306 f2fs_do_map_lock(sbi, flag, true); 3307 locked = true; 3308 } 3309 3310 restart: 3311 /* check inline_data */ 3312 ipage = f2fs_get_node_page(sbi, inode->i_ino); 3313 if (IS_ERR(ipage)) { 3314 err = PTR_ERR(ipage); 3315 goto unlock_out; 3316 } 3317 3318 set_new_dnode(&dn, inode, ipage, ipage, 0); 3319 3320 if (f2fs_has_inline_data(inode)) { 3321 if (pos + len <= MAX_INLINE_DATA(inode)) { 3322 f2fs_do_read_inline_data(page, ipage); 3323 set_inode_flag(inode, FI_DATA_EXIST); 3324 if (inode->i_nlink) 3325 set_page_private_inline(ipage); 3326 } else { 3327 err = f2fs_convert_inline_page(&dn, page); 3328 if (err) 3329 goto out; 3330 if (dn.data_blkaddr == NULL_ADDR) 3331 err = f2fs_get_block(&dn, index); 3332 } 3333 } else if (locked) { 3334 err = f2fs_get_block(&dn, index); 3335 } else { 3336 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 3337 dn.data_blkaddr = ei.blk + index - ei.fofs; 3338 } else { 3339 /* hole case */ 3340 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 3341 if (err || dn.data_blkaddr == NULL_ADDR) { 3342 f2fs_put_dnode(&dn); 3343 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, 3344 true); 3345 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO); 3346 locked = true; 3347 goto restart; 3348 } 3349 } 3350 } 3351 3352 /* convert_inline_page can make node_changed */ 3353 *blk_addr = dn.data_blkaddr; 3354 *node_changed = dn.node_changed; 3355 out: 3356 f2fs_put_dnode(&dn); 3357 unlock_out: 3358 if (locked) 3359 f2fs_do_map_lock(sbi, flag, false); 3360 return err; 3361 } 3362 3363 static int __find_data_block(struct inode *inode, pgoff_t index, 3364 block_t *blk_addr) 3365 { 3366 struct dnode_of_data dn; 3367 struct page *ipage; 3368 struct extent_info ei = {0, }; 3369 int err = 0; 3370 3371 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino); 3372 if (IS_ERR(ipage)) 3373 return PTR_ERR(ipage); 3374 3375 set_new_dnode(&dn, inode, ipage, ipage, 0); 3376 3377 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 3378 dn.data_blkaddr = ei.blk + index - ei.fofs; 3379 } else { 3380 /* hole case */ 3381 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 3382 if (err) { 3383 dn.data_blkaddr = NULL_ADDR; 3384 err = 0; 3385 } 3386 } 3387 *blk_addr = dn.data_blkaddr; 3388 f2fs_put_dnode(&dn); 3389 return err; 3390 } 3391 3392 static int __reserve_data_block(struct inode *inode, pgoff_t index, 3393 block_t *blk_addr, bool *node_changed) 3394 { 3395 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3396 struct dnode_of_data dn; 3397 struct page *ipage; 3398 int err = 0; 3399 3400 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true); 3401 3402 ipage = f2fs_get_node_page(sbi, inode->i_ino); 3403 if (IS_ERR(ipage)) { 3404 err = PTR_ERR(ipage); 3405 goto unlock_out; 3406 } 3407 set_new_dnode(&dn, inode, ipage, ipage, 0); 3408 3409 err = f2fs_get_block(&dn, index); 3410 3411 *blk_addr = dn.data_blkaddr; 3412 *node_changed = dn.node_changed; 3413 f2fs_put_dnode(&dn); 3414 3415 unlock_out: 3416 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false); 3417 return err; 3418 } 3419 3420 static int prepare_atomic_write_begin(struct f2fs_sb_info *sbi, 3421 struct page *page, loff_t pos, unsigned int len, 3422 block_t *blk_addr, bool *node_changed) 3423 { 3424 struct inode *inode = page->mapping->host; 3425 struct inode *cow_inode = F2FS_I(inode)->cow_inode; 3426 pgoff_t index = page->index; 3427 int err = 0; 3428 block_t ori_blk_addr = NULL_ADDR; 3429 3430 /* If pos is beyond the end of file, reserve a new block in COW inode */ 3431 if ((pos & PAGE_MASK) >= i_size_read(inode)) 3432 goto reserve_block; 3433 3434 /* Look for the block in COW inode first */ 3435 err = __find_data_block(cow_inode, index, blk_addr); 3436 if (err) 3437 return err; 3438 else if (*blk_addr != NULL_ADDR) 3439 return 0; 3440 3441 /* Look for the block in the original inode */ 3442 err = __find_data_block(inode, index, &ori_blk_addr); 3443 if (err) 3444 return err; 3445 3446 reserve_block: 3447 /* Finally, we should reserve a new block in COW inode for the update */ 3448 err = __reserve_data_block(cow_inode, index, blk_addr, node_changed); 3449 if (err) 3450 return err; 3451 inc_atomic_write_cnt(inode); 3452 3453 if (ori_blk_addr != NULL_ADDR) 3454 *blk_addr = ori_blk_addr; 3455 return 0; 3456 } 3457 3458 static int f2fs_write_begin(struct file *file, struct address_space *mapping, 3459 loff_t pos, unsigned len, struct page **pagep, void **fsdata) 3460 { 3461 struct inode *inode = mapping->host; 3462 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3463 struct page *page = NULL; 3464 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT; 3465 bool need_balance = false; 3466 block_t blkaddr = NULL_ADDR; 3467 int err = 0; 3468 3469 trace_f2fs_write_begin(inode, pos, len); 3470 3471 if (!f2fs_is_checkpoint_ready(sbi)) { 3472 err = -ENOSPC; 3473 goto fail; 3474 } 3475 3476 /* 3477 * We should check this at this moment to avoid deadlock on inode page 3478 * and #0 page. The locking rule for inline_data conversion should be: 3479 * lock_page(page #0) -> lock_page(inode_page) 3480 */ 3481 if (index != 0) { 3482 err = f2fs_convert_inline_inode(inode); 3483 if (err) 3484 goto fail; 3485 } 3486 3487 #ifdef CONFIG_F2FS_FS_COMPRESSION 3488 if (f2fs_compressed_file(inode)) { 3489 int ret; 3490 3491 *fsdata = NULL; 3492 3493 if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode))) 3494 goto repeat; 3495 3496 ret = f2fs_prepare_compress_overwrite(inode, pagep, 3497 index, fsdata); 3498 if (ret < 0) { 3499 err = ret; 3500 goto fail; 3501 } else if (ret) { 3502 return 0; 3503 } 3504 } 3505 #endif 3506 3507 repeat: 3508 /* 3509 * Do not use grab_cache_page_write_begin() to avoid deadlock due to 3510 * wait_for_stable_page. Will wait that below with our IO control. 3511 */ 3512 page = f2fs_pagecache_get_page(mapping, index, 3513 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS); 3514 if (!page) { 3515 err = -ENOMEM; 3516 goto fail; 3517 } 3518 3519 /* TODO: cluster can be compressed due to race with .writepage */ 3520 3521 *pagep = page; 3522 3523 if (f2fs_is_atomic_file(inode)) 3524 err = prepare_atomic_write_begin(sbi, page, pos, len, 3525 &blkaddr, &need_balance); 3526 else 3527 err = prepare_write_begin(sbi, page, pos, len, 3528 &blkaddr, &need_balance); 3529 if (err) 3530 goto fail; 3531 3532 if (need_balance && !IS_NOQUOTA(inode) && 3533 has_not_enough_free_secs(sbi, 0, 0)) { 3534 unlock_page(page); 3535 f2fs_balance_fs(sbi, true); 3536 lock_page(page); 3537 if (page->mapping != mapping) { 3538 /* The page got truncated from under us */ 3539 f2fs_put_page(page, 1); 3540 goto repeat; 3541 } 3542 } 3543 3544 f2fs_wait_on_page_writeback(page, DATA, false, true); 3545 3546 if (len == PAGE_SIZE || PageUptodate(page)) 3547 return 0; 3548 3549 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) && 3550 !f2fs_verity_in_progress(inode)) { 3551 zero_user_segment(page, len, PAGE_SIZE); 3552 return 0; 3553 } 3554 3555 if (blkaddr == NEW_ADDR) { 3556 zero_user_segment(page, 0, PAGE_SIZE); 3557 SetPageUptodate(page); 3558 } else { 3559 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 3560 DATA_GENERIC_ENHANCE_READ)) { 3561 err = -EFSCORRUPTED; 3562 goto fail; 3563 } 3564 err = f2fs_submit_page_read(inode, page, blkaddr, 0, true); 3565 if (err) 3566 goto fail; 3567 3568 lock_page(page); 3569 if (unlikely(page->mapping != mapping)) { 3570 f2fs_put_page(page, 1); 3571 goto repeat; 3572 } 3573 if (unlikely(!PageUptodate(page))) { 3574 err = -EIO; 3575 goto fail; 3576 } 3577 } 3578 return 0; 3579 3580 fail: 3581 f2fs_put_page(page, 1); 3582 f2fs_write_failed(inode, pos + len); 3583 return err; 3584 } 3585 3586 static int f2fs_write_end(struct file *file, 3587 struct address_space *mapping, 3588 loff_t pos, unsigned len, unsigned copied, 3589 struct page *page, void *fsdata) 3590 { 3591 struct inode *inode = page->mapping->host; 3592 3593 trace_f2fs_write_end(inode, pos, len, copied); 3594 3595 /* 3596 * This should be come from len == PAGE_SIZE, and we expect copied 3597 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and 3598 * let generic_perform_write() try to copy data again through copied=0. 3599 */ 3600 if (!PageUptodate(page)) { 3601 if (unlikely(copied != len)) 3602 copied = 0; 3603 else 3604 SetPageUptodate(page); 3605 } 3606 3607 #ifdef CONFIG_F2FS_FS_COMPRESSION 3608 /* overwrite compressed file */ 3609 if (f2fs_compressed_file(inode) && fsdata) { 3610 f2fs_compress_write_end(inode, fsdata, page->index, copied); 3611 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3612 3613 if (pos + copied > i_size_read(inode) && 3614 !f2fs_verity_in_progress(inode)) 3615 f2fs_i_size_write(inode, pos + copied); 3616 return copied; 3617 } 3618 #endif 3619 3620 if (!copied) 3621 goto unlock_out; 3622 3623 set_page_dirty(page); 3624 3625 if (pos + copied > i_size_read(inode) && 3626 !f2fs_verity_in_progress(inode)) { 3627 f2fs_i_size_write(inode, pos + copied); 3628 if (f2fs_is_atomic_file(inode)) 3629 f2fs_i_size_write(F2FS_I(inode)->cow_inode, 3630 pos + copied); 3631 } 3632 unlock_out: 3633 f2fs_put_page(page, 1); 3634 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3635 return copied; 3636 } 3637 3638 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length) 3639 { 3640 struct inode *inode = folio->mapping->host; 3641 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3642 3643 if (inode->i_ino >= F2FS_ROOT_INO(sbi) && 3644 (offset || length != folio_size(folio))) 3645 return; 3646 3647 if (folio_test_dirty(folio)) { 3648 if (inode->i_ino == F2FS_META_INO(sbi)) { 3649 dec_page_count(sbi, F2FS_DIRTY_META); 3650 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) { 3651 dec_page_count(sbi, F2FS_DIRTY_NODES); 3652 } else { 3653 inode_dec_dirty_pages(inode); 3654 f2fs_remove_dirty_inode(inode); 3655 } 3656 } 3657 3658 clear_page_private_gcing(&folio->page); 3659 3660 if (test_opt(sbi, COMPRESS_CACHE) && 3661 inode->i_ino == F2FS_COMPRESS_INO(sbi)) 3662 clear_page_private_data(&folio->page); 3663 3664 folio_detach_private(folio); 3665 } 3666 3667 bool f2fs_release_folio(struct folio *folio, gfp_t wait) 3668 { 3669 struct f2fs_sb_info *sbi; 3670 3671 /* If this is dirty folio, keep private data */ 3672 if (folio_test_dirty(folio)) 3673 return false; 3674 3675 sbi = F2FS_M_SB(folio->mapping); 3676 if (test_opt(sbi, COMPRESS_CACHE)) { 3677 struct inode *inode = folio->mapping->host; 3678 3679 if (inode->i_ino == F2FS_COMPRESS_INO(sbi)) 3680 clear_page_private_data(&folio->page); 3681 } 3682 3683 clear_page_private_gcing(&folio->page); 3684 3685 folio_detach_private(folio); 3686 return true; 3687 } 3688 3689 static bool f2fs_dirty_data_folio(struct address_space *mapping, 3690 struct folio *folio) 3691 { 3692 struct inode *inode = mapping->host; 3693 3694 trace_f2fs_set_page_dirty(&folio->page, DATA); 3695 3696 if (!folio_test_uptodate(folio)) 3697 folio_mark_uptodate(folio); 3698 BUG_ON(folio_test_swapcache(folio)); 3699 3700 if (!folio_test_dirty(folio)) { 3701 filemap_dirty_folio(mapping, folio); 3702 f2fs_update_dirty_folio(inode, folio); 3703 return true; 3704 } 3705 return false; 3706 } 3707 3708 3709 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block) 3710 { 3711 #ifdef CONFIG_F2FS_FS_COMPRESSION 3712 struct dnode_of_data dn; 3713 sector_t start_idx, blknr = 0; 3714 int ret; 3715 3716 start_idx = round_down(block, F2FS_I(inode)->i_cluster_size); 3717 3718 set_new_dnode(&dn, inode, NULL, NULL, 0); 3719 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 3720 if (ret) 3721 return 0; 3722 3723 if (dn.data_blkaddr != COMPRESS_ADDR) { 3724 dn.ofs_in_node += block - start_idx; 3725 blknr = f2fs_data_blkaddr(&dn); 3726 if (!__is_valid_data_blkaddr(blknr)) 3727 blknr = 0; 3728 } 3729 3730 f2fs_put_dnode(&dn); 3731 return blknr; 3732 #else 3733 return 0; 3734 #endif 3735 } 3736 3737 3738 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block) 3739 { 3740 struct inode *inode = mapping->host; 3741 sector_t blknr = 0; 3742 3743 if (f2fs_has_inline_data(inode)) 3744 goto out; 3745 3746 /* make sure allocating whole blocks */ 3747 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 3748 filemap_write_and_wait(mapping); 3749 3750 /* Block number less than F2FS MAX BLOCKS */ 3751 if (unlikely(block >= max_file_blocks(inode))) 3752 goto out; 3753 3754 if (f2fs_compressed_file(inode)) { 3755 blknr = f2fs_bmap_compress(inode, block); 3756 } else { 3757 struct f2fs_map_blocks map; 3758 3759 memset(&map, 0, sizeof(map)); 3760 map.m_lblk = block; 3761 map.m_len = 1; 3762 map.m_next_pgofs = NULL; 3763 map.m_seg_type = NO_CHECK_TYPE; 3764 3765 if (!f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_BMAP)) 3766 blknr = map.m_pblk; 3767 } 3768 out: 3769 trace_f2fs_bmap(inode, block, blknr); 3770 return blknr; 3771 } 3772 3773 #ifdef CONFIG_SWAP 3774 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk, 3775 unsigned int blkcnt) 3776 { 3777 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3778 unsigned int blkofs; 3779 unsigned int blk_per_sec = BLKS_PER_SEC(sbi); 3780 unsigned int secidx = start_blk / blk_per_sec; 3781 unsigned int end_sec = secidx + blkcnt / blk_per_sec; 3782 int ret = 0; 3783 3784 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3785 filemap_invalidate_lock(inode->i_mapping); 3786 3787 set_inode_flag(inode, FI_ALIGNED_WRITE); 3788 set_inode_flag(inode, FI_OPU_WRITE); 3789 3790 for (; secidx < end_sec; secidx++) { 3791 f2fs_down_write(&sbi->pin_sem); 3792 3793 f2fs_lock_op(sbi); 3794 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false); 3795 f2fs_unlock_op(sbi); 3796 3797 set_inode_flag(inode, FI_SKIP_WRITES); 3798 3799 for (blkofs = 0; blkofs < blk_per_sec; blkofs++) { 3800 struct page *page; 3801 unsigned int blkidx = secidx * blk_per_sec + blkofs; 3802 3803 page = f2fs_get_lock_data_page(inode, blkidx, true); 3804 if (IS_ERR(page)) { 3805 f2fs_up_write(&sbi->pin_sem); 3806 ret = PTR_ERR(page); 3807 goto done; 3808 } 3809 3810 set_page_dirty(page); 3811 f2fs_put_page(page, 1); 3812 } 3813 3814 clear_inode_flag(inode, FI_SKIP_WRITES); 3815 3816 ret = filemap_fdatawrite(inode->i_mapping); 3817 3818 f2fs_up_write(&sbi->pin_sem); 3819 3820 if (ret) 3821 break; 3822 } 3823 3824 done: 3825 clear_inode_flag(inode, FI_SKIP_WRITES); 3826 clear_inode_flag(inode, FI_OPU_WRITE); 3827 clear_inode_flag(inode, FI_ALIGNED_WRITE); 3828 3829 filemap_invalidate_unlock(inode->i_mapping); 3830 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3831 3832 return ret; 3833 } 3834 3835 static int check_swap_activate(struct swap_info_struct *sis, 3836 struct file *swap_file, sector_t *span) 3837 { 3838 struct address_space *mapping = swap_file->f_mapping; 3839 struct inode *inode = mapping->host; 3840 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3841 sector_t cur_lblock; 3842 sector_t last_lblock; 3843 sector_t pblock; 3844 sector_t lowest_pblock = -1; 3845 sector_t highest_pblock = 0; 3846 int nr_extents = 0; 3847 unsigned long nr_pblocks; 3848 unsigned int blks_per_sec = BLKS_PER_SEC(sbi); 3849 unsigned int sec_blks_mask = BLKS_PER_SEC(sbi) - 1; 3850 unsigned int not_aligned = 0; 3851 int ret = 0; 3852 3853 /* 3854 * Map all the blocks into the extent list. This code doesn't try 3855 * to be very smart. 3856 */ 3857 cur_lblock = 0; 3858 last_lblock = bytes_to_blks(inode, i_size_read(inode)); 3859 3860 while (cur_lblock < last_lblock && cur_lblock < sis->max) { 3861 struct f2fs_map_blocks map; 3862 retry: 3863 cond_resched(); 3864 3865 memset(&map, 0, sizeof(map)); 3866 map.m_lblk = cur_lblock; 3867 map.m_len = last_lblock - cur_lblock; 3868 map.m_next_pgofs = NULL; 3869 map.m_next_extent = NULL; 3870 map.m_seg_type = NO_CHECK_TYPE; 3871 map.m_may_create = false; 3872 3873 ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP); 3874 if (ret) 3875 goto out; 3876 3877 /* hole */ 3878 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 3879 f2fs_err(sbi, "Swapfile has holes"); 3880 ret = -EINVAL; 3881 goto out; 3882 } 3883 3884 pblock = map.m_pblk; 3885 nr_pblocks = map.m_len; 3886 3887 if ((pblock - SM_I(sbi)->main_blkaddr) & sec_blks_mask || 3888 nr_pblocks & sec_blks_mask) { 3889 not_aligned++; 3890 3891 nr_pblocks = roundup(nr_pblocks, blks_per_sec); 3892 if (cur_lblock + nr_pblocks > sis->max) 3893 nr_pblocks -= blks_per_sec; 3894 3895 if (!nr_pblocks) { 3896 /* this extent is last one */ 3897 nr_pblocks = map.m_len; 3898 f2fs_warn(sbi, "Swapfile: last extent is not aligned to section"); 3899 goto next; 3900 } 3901 3902 ret = f2fs_migrate_blocks(inode, cur_lblock, 3903 nr_pblocks); 3904 if (ret) 3905 goto out; 3906 goto retry; 3907 } 3908 next: 3909 if (cur_lblock + nr_pblocks >= sis->max) 3910 nr_pblocks = sis->max - cur_lblock; 3911 3912 if (cur_lblock) { /* exclude the header page */ 3913 if (pblock < lowest_pblock) 3914 lowest_pblock = pblock; 3915 if (pblock + nr_pblocks - 1 > highest_pblock) 3916 highest_pblock = pblock + nr_pblocks - 1; 3917 } 3918 3919 /* 3920 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks 3921 */ 3922 ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock); 3923 if (ret < 0) 3924 goto out; 3925 nr_extents += ret; 3926 cur_lblock += nr_pblocks; 3927 } 3928 ret = nr_extents; 3929 *span = 1 + highest_pblock - lowest_pblock; 3930 if (cur_lblock == 0) 3931 cur_lblock = 1; /* force Empty message */ 3932 sis->max = cur_lblock; 3933 sis->pages = cur_lblock - 1; 3934 sis->highest_bit = cur_lblock - 1; 3935 out: 3936 if (not_aligned) 3937 f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%u * N)", 3938 not_aligned, blks_per_sec * F2FS_BLKSIZE); 3939 return ret; 3940 } 3941 3942 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, 3943 sector_t *span) 3944 { 3945 struct inode *inode = file_inode(file); 3946 int ret; 3947 3948 if (!S_ISREG(inode->i_mode)) 3949 return -EINVAL; 3950 3951 if (f2fs_readonly(F2FS_I_SB(inode)->sb)) 3952 return -EROFS; 3953 3954 if (f2fs_lfs_mode(F2FS_I_SB(inode))) { 3955 f2fs_err(F2FS_I_SB(inode), 3956 "Swapfile not supported in LFS mode"); 3957 return -EINVAL; 3958 } 3959 3960 ret = f2fs_convert_inline_inode(inode); 3961 if (ret) 3962 return ret; 3963 3964 if (!f2fs_disable_compressed_file(inode)) 3965 return -EINVAL; 3966 3967 f2fs_precache_extents(inode); 3968 3969 ret = check_swap_activate(sis, file, span); 3970 if (ret < 0) 3971 return ret; 3972 3973 set_inode_flag(inode, FI_PIN_FILE); 3974 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3975 return ret; 3976 } 3977 3978 static void f2fs_swap_deactivate(struct file *file) 3979 { 3980 struct inode *inode = file_inode(file); 3981 3982 clear_inode_flag(inode, FI_PIN_FILE); 3983 } 3984 #else 3985 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, 3986 sector_t *span) 3987 { 3988 return -EOPNOTSUPP; 3989 } 3990 3991 static void f2fs_swap_deactivate(struct file *file) 3992 { 3993 } 3994 #endif 3995 3996 const struct address_space_operations f2fs_dblock_aops = { 3997 .read_folio = f2fs_read_data_folio, 3998 .readahead = f2fs_readahead, 3999 .writepage = f2fs_write_data_page, 4000 .writepages = f2fs_write_data_pages, 4001 .write_begin = f2fs_write_begin, 4002 .write_end = f2fs_write_end, 4003 .dirty_folio = f2fs_dirty_data_folio, 4004 .migrate_folio = filemap_migrate_folio, 4005 .invalidate_folio = f2fs_invalidate_folio, 4006 .release_folio = f2fs_release_folio, 4007 .direct_IO = noop_direct_IO, 4008 .bmap = f2fs_bmap, 4009 .swap_activate = f2fs_swap_activate, 4010 .swap_deactivate = f2fs_swap_deactivate, 4011 }; 4012 4013 void f2fs_clear_page_cache_dirty_tag(struct page *page) 4014 { 4015 struct address_space *mapping = page_mapping(page); 4016 unsigned long flags; 4017 4018 xa_lock_irqsave(&mapping->i_pages, flags); 4019 __xa_clear_mark(&mapping->i_pages, page_index(page), 4020 PAGECACHE_TAG_DIRTY); 4021 xa_unlock_irqrestore(&mapping->i_pages, flags); 4022 } 4023 4024 int __init f2fs_init_post_read_processing(void) 4025 { 4026 bio_post_read_ctx_cache = 4027 kmem_cache_create("f2fs_bio_post_read_ctx", 4028 sizeof(struct bio_post_read_ctx), 0, 0, NULL); 4029 if (!bio_post_read_ctx_cache) 4030 goto fail; 4031 bio_post_read_ctx_pool = 4032 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS, 4033 bio_post_read_ctx_cache); 4034 if (!bio_post_read_ctx_pool) 4035 goto fail_free_cache; 4036 return 0; 4037 4038 fail_free_cache: 4039 kmem_cache_destroy(bio_post_read_ctx_cache); 4040 fail: 4041 return -ENOMEM; 4042 } 4043 4044 void f2fs_destroy_post_read_processing(void) 4045 { 4046 mempool_destroy(bio_post_read_ctx_pool); 4047 kmem_cache_destroy(bio_post_read_ctx_cache); 4048 } 4049 4050 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi) 4051 { 4052 if (!f2fs_sb_has_encrypt(sbi) && 4053 !f2fs_sb_has_verity(sbi) && 4054 !f2fs_sb_has_compression(sbi)) 4055 return 0; 4056 4057 sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq", 4058 WQ_UNBOUND | WQ_HIGHPRI, 4059 num_online_cpus()); 4060 if (!sbi->post_read_wq) 4061 return -ENOMEM; 4062 return 0; 4063 } 4064 4065 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi) 4066 { 4067 if (sbi->post_read_wq) 4068 destroy_workqueue(sbi->post_read_wq); 4069 } 4070 4071 int __init f2fs_init_bio_entry_cache(void) 4072 { 4073 bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab", 4074 sizeof(struct bio_entry)); 4075 if (!bio_entry_slab) 4076 return -ENOMEM; 4077 return 0; 4078 } 4079 4080 void f2fs_destroy_bio_entry_cache(void) 4081 { 4082 kmem_cache_destroy(bio_entry_slab); 4083 } 4084 4085 static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 4086 unsigned int flags, struct iomap *iomap, 4087 struct iomap *srcmap) 4088 { 4089 struct f2fs_map_blocks map = {}; 4090 pgoff_t next_pgofs = 0; 4091 int err; 4092 4093 map.m_lblk = bytes_to_blks(inode, offset); 4094 map.m_len = bytes_to_blks(inode, offset + length - 1) - map.m_lblk + 1; 4095 map.m_next_pgofs = &next_pgofs; 4096 map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint); 4097 if (flags & IOMAP_WRITE) 4098 map.m_may_create = true; 4099 4100 err = f2fs_map_blocks(inode, &map, flags & IOMAP_WRITE, 4101 F2FS_GET_BLOCK_DIO); 4102 if (err) 4103 return err; 4104 4105 iomap->offset = blks_to_bytes(inode, map.m_lblk); 4106 4107 /* 4108 * When inline encryption is enabled, sometimes I/O to an encrypted file 4109 * has to be broken up to guarantee DUN contiguity. Handle this by 4110 * limiting the length of the mapping returned. 4111 */ 4112 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len); 4113 4114 if (map.m_flags & (F2FS_MAP_MAPPED | F2FS_MAP_UNWRITTEN)) { 4115 iomap->length = blks_to_bytes(inode, map.m_len); 4116 if (map.m_flags & F2FS_MAP_MAPPED) { 4117 iomap->type = IOMAP_MAPPED; 4118 iomap->flags |= IOMAP_F_MERGED; 4119 } else { 4120 iomap->type = IOMAP_UNWRITTEN; 4121 } 4122 if (WARN_ON_ONCE(!__is_valid_data_blkaddr(map.m_pblk))) 4123 return -EINVAL; 4124 4125 iomap->bdev = map.m_bdev; 4126 iomap->addr = blks_to_bytes(inode, map.m_pblk); 4127 } else { 4128 iomap->length = blks_to_bytes(inode, next_pgofs) - 4129 iomap->offset; 4130 iomap->type = IOMAP_HOLE; 4131 iomap->addr = IOMAP_NULL_ADDR; 4132 } 4133 4134 if (map.m_flags & F2FS_MAP_NEW) 4135 iomap->flags |= IOMAP_F_NEW; 4136 if ((inode->i_state & I_DIRTY_DATASYNC) || 4137 offset + length > i_size_read(inode)) 4138 iomap->flags |= IOMAP_F_DIRTY; 4139 4140 return 0; 4141 } 4142 4143 const struct iomap_ops f2fs_iomap_ops = { 4144 .iomap_begin = f2fs_iomap_begin, 4145 }; 4146