1 /* 2 * fs/f2fs/data.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/buffer_head.h> 14 #include <linux/mpage.h> 15 #include <linux/writeback.h> 16 #include <linux/backing-dev.h> 17 #include <linux/pagevec.h> 18 #include <linux/blkdev.h> 19 #include <linux/bio.h> 20 #include <linux/prefetch.h> 21 #include <linux/uio.h> 22 #include <linux/cleancache.h> 23 24 #include "f2fs.h" 25 #include "node.h" 26 #include "segment.h" 27 #include "trace.h" 28 #include <trace/events/f2fs.h> 29 30 static void f2fs_read_end_io(struct bio *bio) 31 { 32 struct bio_vec *bvec; 33 int i; 34 35 if (f2fs_bio_encrypted(bio)) { 36 if (bio->bi_error) { 37 fscrypt_release_ctx(bio->bi_private); 38 } else { 39 fscrypt_decrypt_bio_pages(bio->bi_private, bio); 40 return; 41 } 42 } 43 44 bio_for_each_segment_all(bvec, bio, i) { 45 struct page *page = bvec->bv_page; 46 47 if (!bio->bi_error) { 48 SetPageUptodate(page); 49 } else { 50 ClearPageUptodate(page); 51 SetPageError(page); 52 } 53 unlock_page(page); 54 } 55 bio_put(bio); 56 } 57 58 static void f2fs_write_end_io(struct bio *bio) 59 { 60 struct f2fs_sb_info *sbi = bio->bi_private; 61 struct bio_vec *bvec; 62 int i; 63 64 bio_for_each_segment_all(bvec, bio, i) { 65 struct page *page = bvec->bv_page; 66 67 fscrypt_pullback_bio_page(&page, true); 68 69 if (unlikely(bio->bi_error)) { 70 set_bit(AS_EIO, &page->mapping->flags); 71 f2fs_stop_checkpoint(sbi, true); 72 } 73 end_page_writeback(page); 74 } 75 if (atomic_dec_and_test(&sbi->nr_wb_bios) && 76 wq_has_sleeper(&sbi->cp_wait)) 77 wake_up(&sbi->cp_wait); 78 79 bio_put(bio); 80 } 81 82 /* 83 * Low-level block read/write IO operations. 84 */ 85 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr, 86 int npages, bool is_read) 87 { 88 struct bio *bio; 89 90 bio = f2fs_bio_alloc(npages); 91 92 bio->bi_bdev = sbi->sb->s_bdev; 93 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr); 94 bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io; 95 bio->bi_private = is_read ? NULL : sbi; 96 97 return bio; 98 } 99 100 static inline void __submit_bio(struct f2fs_sb_info *sbi, int rw, 101 struct bio *bio) 102 { 103 if (!is_read_io(rw)) 104 atomic_inc(&sbi->nr_wb_bios); 105 submit_bio(rw, bio); 106 } 107 108 static void __submit_merged_bio(struct f2fs_bio_info *io) 109 { 110 struct f2fs_io_info *fio = &io->fio; 111 112 if (!io->bio) 113 return; 114 115 if (is_read_io(fio->rw)) 116 trace_f2fs_submit_read_bio(io->sbi->sb, fio, io->bio); 117 else 118 trace_f2fs_submit_write_bio(io->sbi->sb, fio, io->bio); 119 120 __submit_bio(io->sbi, fio->rw, io->bio); 121 io->bio = NULL; 122 } 123 124 static bool __has_merged_page(struct f2fs_bio_info *io, struct inode *inode, 125 struct page *page, nid_t ino) 126 { 127 struct bio_vec *bvec; 128 struct page *target; 129 int i; 130 131 if (!io->bio) 132 return false; 133 134 if (!inode && !page && !ino) 135 return true; 136 137 bio_for_each_segment_all(bvec, io->bio, i) { 138 139 if (bvec->bv_page->mapping) 140 target = bvec->bv_page; 141 else 142 target = fscrypt_control_page(bvec->bv_page); 143 144 if (inode && inode == target->mapping->host) 145 return true; 146 if (page && page == target) 147 return true; 148 if (ino && ino == ino_of_node(target)) 149 return true; 150 } 151 152 return false; 153 } 154 155 static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode, 156 struct page *page, nid_t ino, 157 enum page_type type) 158 { 159 enum page_type btype = PAGE_TYPE_OF_BIO(type); 160 struct f2fs_bio_info *io = &sbi->write_io[btype]; 161 bool ret; 162 163 down_read(&io->io_rwsem); 164 ret = __has_merged_page(io, inode, page, ino); 165 up_read(&io->io_rwsem); 166 return ret; 167 } 168 169 static void __f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, 170 struct inode *inode, struct page *page, 171 nid_t ino, enum page_type type, int rw) 172 { 173 enum page_type btype = PAGE_TYPE_OF_BIO(type); 174 struct f2fs_bio_info *io; 175 176 io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype]; 177 178 down_write(&io->io_rwsem); 179 180 if (!__has_merged_page(io, inode, page, ino)) 181 goto out; 182 183 /* change META to META_FLUSH in the checkpoint procedure */ 184 if (type >= META_FLUSH) { 185 io->fio.type = META_FLUSH; 186 if (test_opt(sbi, NOBARRIER)) 187 io->fio.rw = WRITE_FLUSH | REQ_META | REQ_PRIO; 188 else 189 io->fio.rw = WRITE_FLUSH_FUA | REQ_META | REQ_PRIO; 190 } 191 __submit_merged_bio(io); 192 out: 193 up_write(&io->io_rwsem); 194 } 195 196 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, enum page_type type, 197 int rw) 198 { 199 __f2fs_submit_merged_bio(sbi, NULL, NULL, 0, type, rw); 200 } 201 202 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *sbi, 203 struct inode *inode, struct page *page, 204 nid_t ino, enum page_type type, int rw) 205 { 206 if (has_merged_page(sbi, inode, page, ino, type)) 207 __f2fs_submit_merged_bio(sbi, inode, page, ino, type, rw); 208 } 209 210 void f2fs_flush_merged_bios(struct f2fs_sb_info *sbi) 211 { 212 f2fs_submit_merged_bio(sbi, DATA, WRITE); 213 f2fs_submit_merged_bio(sbi, NODE, WRITE); 214 f2fs_submit_merged_bio(sbi, META, WRITE); 215 } 216 217 /* 218 * Fill the locked page with data located in the block address. 219 * Return unlocked page. 220 */ 221 int f2fs_submit_page_bio(struct f2fs_io_info *fio) 222 { 223 struct bio *bio; 224 struct page *page = fio->encrypted_page ? 225 fio->encrypted_page : fio->page; 226 227 trace_f2fs_submit_page_bio(page, fio); 228 f2fs_trace_ios(fio, 0); 229 230 /* Allocate a new bio */ 231 bio = __bio_alloc(fio->sbi, fio->new_blkaddr, 1, is_read_io(fio->rw)); 232 233 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 234 bio_put(bio); 235 return -EFAULT; 236 } 237 238 __submit_bio(fio->sbi, fio->rw, bio); 239 return 0; 240 } 241 242 void f2fs_submit_page_mbio(struct f2fs_io_info *fio) 243 { 244 struct f2fs_sb_info *sbi = fio->sbi; 245 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type); 246 struct f2fs_bio_info *io; 247 bool is_read = is_read_io(fio->rw); 248 struct page *bio_page; 249 250 io = is_read ? &sbi->read_io : &sbi->write_io[btype]; 251 252 if (fio->old_blkaddr != NEW_ADDR) 253 verify_block_addr(sbi, fio->old_blkaddr); 254 verify_block_addr(sbi, fio->new_blkaddr); 255 256 down_write(&io->io_rwsem); 257 258 if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 || 259 io->fio.rw != fio->rw)) 260 __submit_merged_bio(io); 261 alloc_new: 262 if (io->bio == NULL) { 263 int bio_blocks = MAX_BIO_BLOCKS(sbi); 264 265 io->bio = __bio_alloc(sbi, fio->new_blkaddr, 266 bio_blocks, is_read); 267 io->fio = *fio; 268 } 269 270 bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page; 271 272 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < 273 PAGE_SIZE) { 274 __submit_merged_bio(io); 275 goto alloc_new; 276 } 277 278 io->last_block_in_bio = fio->new_blkaddr; 279 f2fs_trace_ios(fio, 0); 280 281 up_write(&io->io_rwsem); 282 trace_f2fs_submit_page_mbio(fio->page, fio); 283 } 284 285 static void __set_data_blkaddr(struct dnode_of_data *dn) 286 { 287 struct f2fs_node *rn = F2FS_NODE(dn->node_page); 288 __le32 *addr_array; 289 290 /* Get physical address of data block */ 291 addr_array = blkaddr_in_node(rn); 292 addr_array[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr); 293 } 294 295 /* 296 * Lock ordering for the change of data block address: 297 * ->data_page 298 * ->node_page 299 * update block addresses in the node page 300 */ 301 void set_data_blkaddr(struct dnode_of_data *dn) 302 { 303 f2fs_wait_on_page_writeback(dn->node_page, NODE, true); 304 __set_data_blkaddr(dn); 305 if (set_page_dirty(dn->node_page)) 306 dn->node_changed = true; 307 } 308 309 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) 310 { 311 dn->data_blkaddr = blkaddr; 312 set_data_blkaddr(dn); 313 f2fs_update_extent_cache(dn); 314 } 315 316 /* dn->ofs_in_node will be returned with up-to-date last block pointer */ 317 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count) 318 { 319 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 320 321 if (!count) 322 return 0; 323 324 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC))) 325 return -EPERM; 326 if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count))) 327 return -ENOSPC; 328 329 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid, 330 dn->ofs_in_node, count); 331 332 f2fs_wait_on_page_writeback(dn->node_page, NODE, true); 333 334 for (; count > 0; dn->ofs_in_node++) { 335 block_t blkaddr = 336 datablock_addr(dn->node_page, dn->ofs_in_node); 337 if (blkaddr == NULL_ADDR) { 338 dn->data_blkaddr = NEW_ADDR; 339 __set_data_blkaddr(dn); 340 count--; 341 } 342 } 343 344 if (set_page_dirty(dn->node_page)) 345 dn->node_changed = true; 346 347 mark_inode_dirty(dn->inode); 348 sync_inode_page(dn); 349 return 0; 350 } 351 352 /* Should keep dn->ofs_in_node unchanged */ 353 int reserve_new_block(struct dnode_of_data *dn) 354 { 355 unsigned int ofs_in_node = dn->ofs_in_node; 356 int ret; 357 358 ret = reserve_new_blocks(dn, 1); 359 dn->ofs_in_node = ofs_in_node; 360 return ret; 361 } 362 363 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index) 364 { 365 bool need_put = dn->inode_page ? false : true; 366 int err; 367 368 err = get_dnode_of_data(dn, index, ALLOC_NODE); 369 if (err) 370 return err; 371 372 if (dn->data_blkaddr == NULL_ADDR) 373 err = reserve_new_block(dn); 374 if (err || need_put) 375 f2fs_put_dnode(dn); 376 return err; 377 } 378 379 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index) 380 { 381 struct extent_info ei; 382 struct inode *inode = dn->inode; 383 384 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 385 dn->data_blkaddr = ei.blk + index - ei.fofs; 386 return 0; 387 } 388 389 return f2fs_reserve_block(dn, index); 390 } 391 392 struct page *get_read_data_page(struct inode *inode, pgoff_t index, 393 int rw, bool for_write) 394 { 395 struct address_space *mapping = inode->i_mapping; 396 struct dnode_of_data dn; 397 struct page *page; 398 struct extent_info ei; 399 int err; 400 struct f2fs_io_info fio = { 401 .sbi = F2FS_I_SB(inode), 402 .type = DATA, 403 .rw = rw, 404 .encrypted_page = NULL, 405 }; 406 407 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) 408 return read_mapping_page(mapping, index, NULL); 409 410 page = f2fs_grab_cache_page(mapping, index, for_write); 411 if (!page) 412 return ERR_PTR(-ENOMEM); 413 414 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 415 dn.data_blkaddr = ei.blk + index - ei.fofs; 416 goto got_it; 417 } 418 419 set_new_dnode(&dn, inode, NULL, NULL, 0); 420 err = get_dnode_of_data(&dn, index, LOOKUP_NODE); 421 if (err) 422 goto put_err; 423 f2fs_put_dnode(&dn); 424 425 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { 426 err = -ENOENT; 427 goto put_err; 428 } 429 got_it: 430 if (PageUptodate(page)) { 431 unlock_page(page); 432 return page; 433 } 434 435 /* 436 * A new dentry page is allocated but not able to be written, since its 437 * new inode page couldn't be allocated due to -ENOSPC. 438 * In such the case, its blkaddr can be remained as NEW_ADDR. 439 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata. 440 */ 441 if (dn.data_blkaddr == NEW_ADDR) { 442 zero_user_segment(page, 0, PAGE_SIZE); 443 SetPageUptodate(page); 444 unlock_page(page); 445 return page; 446 } 447 448 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr; 449 fio.page = page; 450 err = f2fs_submit_page_bio(&fio); 451 if (err) 452 goto put_err; 453 return page; 454 455 put_err: 456 f2fs_put_page(page, 1); 457 return ERR_PTR(err); 458 } 459 460 struct page *find_data_page(struct inode *inode, pgoff_t index) 461 { 462 struct address_space *mapping = inode->i_mapping; 463 struct page *page; 464 465 page = find_get_page(mapping, index); 466 if (page && PageUptodate(page)) 467 return page; 468 f2fs_put_page(page, 0); 469 470 page = get_read_data_page(inode, index, READ_SYNC, false); 471 if (IS_ERR(page)) 472 return page; 473 474 if (PageUptodate(page)) 475 return page; 476 477 wait_on_page_locked(page); 478 if (unlikely(!PageUptodate(page))) { 479 f2fs_put_page(page, 0); 480 return ERR_PTR(-EIO); 481 } 482 return page; 483 } 484 485 /* 486 * If it tries to access a hole, return an error. 487 * Because, the callers, functions in dir.c and GC, should be able to know 488 * whether this page exists or not. 489 */ 490 struct page *get_lock_data_page(struct inode *inode, pgoff_t index, 491 bool for_write) 492 { 493 struct address_space *mapping = inode->i_mapping; 494 struct page *page; 495 repeat: 496 page = get_read_data_page(inode, index, READ_SYNC, for_write); 497 if (IS_ERR(page)) 498 return page; 499 500 /* wait for read completion */ 501 lock_page(page); 502 if (unlikely(!PageUptodate(page))) { 503 f2fs_put_page(page, 1); 504 return ERR_PTR(-EIO); 505 } 506 if (unlikely(page->mapping != mapping)) { 507 f2fs_put_page(page, 1); 508 goto repeat; 509 } 510 return page; 511 } 512 513 /* 514 * Caller ensures that this data page is never allocated. 515 * A new zero-filled data page is allocated in the page cache. 516 * 517 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and 518 * f2fs_unlock_op(). 519 * Note that, ipage is set only by make_empty_dir, and if any error occur, 520 * ipage should be released by this function. 521 */ 522 struct page *get_new_data_page(struct inode *inode, 523 struct page *ipage, pgoff_t index, bool new_i_size) 524 { 525 struct address_space *mapping = inode->i_mapping; 526 struct page *page; 527 struct dnode_of_data dn; 528 int err; 529 530 page = f2fs_grab_cache_page(mapping, index, true); 531 if (!page) { 532 /* 533 * before exiting, we should make sure ipage will be released 534 * if any error occur. 535 */ 536 f2fs_put_page(ipage, 1); 537 return ERR_PTR(-ENOMEM); 538 } 539 540 set_new_dnode(&dn, inode, ipage, NULL, 0); 541 err = f2fs_reserve_block(&dn, index); 542 if (err) { 543 f2fs_put_page(page, 1); 544 return ERR_PTR(err); 545 } 546 if (!ipage) 547 f2fs_put_dnode(&dn); 548 549 if (PageUptodate(page)) 550 goto got_it; 551 552 if (dn.data_blkaddr == NEW_ADDR) { 553 zero_user_segment(page, 0, PAGE_SIZE); 554 SetPageUptodate(page); 555 } else { 556 f2fs_put_page(page, 1); 557 558 /* if ipage exists, blkaddr should be NEW_ADDR */ 559 f2fs_bug_on(F2FS_I_SB(inode), ipage); 560 page = get_lock_data_page(inode, index, true); 561 if (IS_ERR(page)) 562 return page; 563 } 564 got_it: 565 if (new_i_size && i_size_read(inode) < 566 ((loff_t)(index + 1) << PAGE_SHIFT)) { 567 i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT)); 568 /* Only the directory inode sets new_i_size */ 569 set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR); 570 } 571 return page; 572 } 573 574 static int __allocate_data_block(struct dnode_of_data *dn) 575 { 576 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 577 struct f2fs_summary sum; 578 struct node_info ni; 579 int seg = CURSEG_WARM_DATA; 580 pgoff_t fofs; 581 blkcnt_t count = 1; 582 583 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC))) 584 return -EPERM; 585 586 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node); 587 if (dn->data_blkaddr == NEW_ADDR) 588 goto alloc; 589 590 if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count))) 591 return -ENOSPC; 592 593 alloc: 594 get_node_info(sbi, dn->nid, &ni); 595 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 596 597 if (dn->ofs_in_node == 0 && dn->inode_page == dn->node_page) 598 seg = CURSEG_DIRECT_IO; 599 600 allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr, 601 &sum, seg); 602 set_data_blkaddr(dn); 603 604 /* update i_size */ 605 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) + 606 dn->ofs_in_node; 607 if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_SHIFT)) 608 i_size_write(dn->inode, 609 ((loff_t)(fofs + 1) << PAGE_SHIFT)); 610 return 0; 611 } 612 613 ssize_t f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from) 614 { 615 struct inode *inode = file_inode(iocb->ki_filp); 616 struct f2fs_map_blocks map; 617 ssize_t ret = 0; 618 619 map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos); 620 map.m_len = F2FS_BYTES_TO_BLK(iov_iter_count(from)); 621 map.m_next_pgofs = NULL; 622 623 if (f2fs_encrypted_inode(inode)) 624 return 0; 625 626 if (iocb->ki_flags & IOCB_DIRECT) { 627 ret = f2fs_convert_inline_inode(inode); 628 if (ret) 629 return ret; 630 return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_DIO); 631 } 632 if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA) { 633 ret = f2fs_convert_inline_inode(inode); 634 if (ret) 635 return ret; 636 } 637 if (!f2fs_has_inline_data(inode)) 638 return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO); 639 return ret; 640 } 641 642 /* 643 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with 644 * f2fs_map_blocks structure. 645 * If original data blocks are allocated, then give them to blockdev. 646 * Otherwise, 647 * a. preallocate requested block addresses 648 * b. do not use extent cache for better performance 649 * c. give the block addresses to blockdev 650 */ 651 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 652 int create, int flag) 653 { 654 unsigned int maxblocks = map->m_len; 655 struct dnode_of_data dn; 656 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 657 int mode = create ? ALLOC_NODE : LOOKUP_NODE_RA; 658 pgoff_t pgofs, end_offset, end; 659 int err = 0, ofs = 1; 660 unsigned int ofs_in_node, last_ofs_in_node; 661 blkcnt_t prealloc; 662 struct extent_info ei; 663 bool allocated = false; 664 block_t blkaddr; 665 666 map->m_len = 0; 667 map->m_flags = 0; 668 669 /* it only supports block size == page size */ 670 pgofs = (pgoff_t)map->m_lblk; 671 end = pgofs + maxblocks; 672 673 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) { 674 map->m_pblk = ei.blk + pgofs - ei.fofs; 675 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs); 676 map->m_flags = F2FS_MAP_MAPPED; 677 goto out; 678 } 679 680 next_dnode: 681 if (create) 682 f2fs_lock_op(sbi); 683 684 /* When reading holes, we need its node page */ 685 set_new_dnode(&dn, inode, NULL, NULL, 0); 686 err = get_dnode_of_data(&dn, pgofs, mode); 687 if (err) { 688 if (flag == F2FS_GET_BLOCK_BMAP) 689 map->m_pblk = 0; 690 if (err == -ENOENT) { 691 err = 0; 692 if (map->m_next_pgofs) 693 *map->m_next_pgofs = 694 get_next_page_offset(&dn, pgofs); 695 } 696 goto unlock_out; 697 } 698 699 prealloc = 0; 700 ofs_in_node = dn.ofs_in_node; 701 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 702 703 next_block: 704 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node); 705 706 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) { 707 if (create) { 708 if (unlikely(f2fs_cp_error(sbi))) { 709 err = -EIO; 710 goto sync_out; 711 } 712 if (flag == F2FS_GET_BLOCK_PRE_AIO) { 713 if (blkaddr == NULL_ADDR) { 714 prealloc++; 715 last_ofs_in_node = dn.ofs_in_node; 716 } 717 } else { 718 err = __allocate_data_block(&dn); 719 if (!err) { 720 set_inode_flag(F2FS_I(inode), 721 FI_APPEND_WRITE); 722 allocated = true; 723 } 724 } 725 if (err) 726 goto sync_out; 727 map->m_flags = F2FS_MAP_NEW; 728 blkaddr = dn.data_blkaddr; 729 } else { 730 if (flag == F2FS_GET_BLOCK_BMAP) { 731 map->m_pblk = 0; 732 goto sync_out; 733 } 734 if (flag == F2FS_GET_BLOCK_FIEMAP && 735 blkaddr == NULL_ADDR) { 736 if (map->m_next_pgofs) 737 *map->m_next_pgofs = pgofs + 1; 738 } 739 if (flag != F2FS_GET_BLOCK_FIEMAP || 740 blkaddr != NEW_ADDR) 741 goto sync_out; 742 } 743 } 744 745 if (flag == F2FS_GET_BLOCK_PRE_AIO) 746 goto skip; 747 748 if (map->m_len == 0) { 749 /* preallocated unwritten block should be mapped for fiemap. */ 750 if (blkaddr == NEW_ADDR) 751 map->m_flags |= F2FS_MAP_UNWRITTEN; 752 map->m_flags |= F2FS_MAP_MAPPED; 753 754 map->m_pblk = blkaddr; 755 map->m_len = 1; 756 } else if ((map->m_pblk != NEW_ADDR && 757 blkaddr == (map->m_pblk + ofs)) || 758 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) || 759 flag == F2FS_GET_BLOCK_PRE_DIO) { 760 ofs++; 761 map->m_len++; 762 } else { 763 goto sync_out; 764 } 765 766 skip: 767 dn.ofs_in_node++; 768 pgofs++; 769 770 /* preallocate blocks in batch for one dnode page */ 771 if (flag == F2FS_GET_BLOCK_PRE_AIO && 772 (pgofs == end || dn.ofs_in_node == end_offset)) { 773 774 dn.ofs_in_node = ofs_in_node; 775 err = reserve_new_blocks(&dn, prealloc); 776 if (err) 777 goto sync_out; 778 779 map->m_len += dn.ofs_in_node - ofs_in_node; 780 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) { 781 err = -ENOSPC; 782 goto sync_out; 783 } 784 dn.ofs_in_node = end_offset; 785 } 786 787 if (pgofs >= end) 788 goto sync_out; 789 else if (dn.ofs_in_node < end_offset) 790 goto next_block; 791 792 if (allocated) 793 sync_inode_page(&dn); 794 f2fs_put_dnode(&dn); 795 796 if (create) { 797 f2fs_unlock_op(sbi); 798 f2fs_balance_fs(sbi, allocated); 799 } 800 allocated = false; 801 goto next_dnode; 802 803 sync_out: 804 if (allocated) 805 sync_inode_page(&dn); 806 f2fs_put_dnode(&dn); 807 unlock_out: 808 if (create) { 809 f2fs_unlock_op(sbi); 810 f2fs_balance_fs(sbi, allocated); 811 } 812 out: 813 trace_f2fs_map_blocks(inode, map, err); 814 return err; 815 } 816 817 static int __get_data_block(struct inode *inode, sector_t iblock, 818 struct buffer_head *bh, int create, int flag, 819 pgoff_t *next_pgofs) 820 { 821 struct f2fs_map_blocks map; 822 int ret; 823 824 map.m_lblk = iblock; 825 map.m_len = bh->b_size >> inode->i_blkbits; 826 map.m_next_pgofs = next_pgofs; 827 828 ret = f2fs_map_blocks(inode, &map, create, flag); 829 if (!ret) { 830 map_bh(bh, inode->i_sb, map.m_pblk); 831 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags; 832 bh->b_size = map.m_len << inode->i_blkbits; 833 } 834 return ret; 835 } 836 837 static int get_data_block(struct inode *inode, sector_t iblock, 838 struct buffer_head *bh_result, int create, int flag, 839 pgoff_t *next_pgofs) 840 { 841 return __get_data_block(inode, iblock, bh_result, create, 842 flag, next_pgofs); 843 } 844 845 static int get_data_block_dio(struct inode *inode, sector_t iblock, 846 struct buffer_head *bh_result, int create) 847 { 848 return __get_data_block(inode, iblock, bh_result, create, 849 F2FS_GET_BLOCK_DIO, NULL); 850 } 851 852 static int get_data_block_bmap(struct inode *inode, sector_t iblock, 853 struct buffer_head *bh_result, int create) 854 { 855 /* Block number less than F2FS MAX BLOCKS */ 856 if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks)) 857 return -EFBIG; 858 859 return __get_data_block(inode, iblock, bh_result, create, 860 F2FS_GET_BLOCK_BMAP, NULL); 861 } 862 863 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset) 864 { 865 return (offset >> inode->i_blkbits); 866 } 867 868 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk) 869 { 870 return (blk << inode->i_blkbits); 871 } 872 873 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 874 u64 start, u64 len) 875 { 876 struct buffer_head map_bh; 877 sector_t start_blk, last_blk; 878 pgoff_t next_pgofs; 879 loff_t isize; 880 u64 logical = 0, phys = 0, size = 0; 881 u32 flags = 0; 882 int ret = 0; 883 884 ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC); 885 if (ret) 886 return ret; 887 888 if (f2fs_has_inline_data(inode)) { 889 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len); 890 if (ret != -EAGAIN) 891 return ret; 892 } 893 894 inode_lock(inode); 895 896 isize = i_size_read(inode); 897 if (start >= isize) 898 goto out; 899 900 if (start + len > isize) 901 len = isize - start; 902 903 if (logical_to_blk(inode, len) == 0) 904 len = blk_to_logical(inode, 1); 905 906 start_blk = logical_to_blk(inode, start); 907 last_blk = logical_to_blk(inode, start + len - 1); 908 909 next: 910 memset(&map_bh, 0, sizeof(struct buffer_head)); 911 map_bh.b_size = len; 912 913 ret = get_data_block(inode, start_blk, &map_bh, 0, 914 F2FS_GET_BLOCK_FIEMAP, &next_pgofs); 915 if (ret) 916 goto out; 917 918 /* HOLE */ 919 if (!buffer_mapped(&map_bh)) { 920 start_blk = next_pgofs; 921 /* Go through holes util pass the EOF */ 922 if (blk_to_logical(inode, start_blk) < isize) 923 goto prep_next; 924 /* Found a hole beyond isize means no more extents. 925 * Note that the premise is that filesystems don't 926 * punch holes beyond isize and keep size unchanged. 927 */ 928 flags |= FIEMAP_EXTENT_LAST; 929 } 930 931 if (size) { 932 if (f2fs_encrypted_inode(inode)) 933 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED; 934 935 ret = fiemap_fill_next_extent(fieinfo, logical, 936 phys, size, flags); 937 } 938 939 if (start_blk > last_blk || ret) 940 goto out; 941 942 logical = blk_to_logical(inode, start_blk); 943 phys = blk_to_logical(inode, map_bh.b_blocknr); 944 size = map_bh.b_size; 945 flags = 0; 946 if (buffer_unwritten(&map_bh)) 947 flags = FIEMAP_EXTENT_UNWRITTEN; 948 949 start_blk += logical_to_blk(inode, size); 950 951 prep_next: 952 cond_resched(); 953 if (fatal_signal_pending(current)) 954 ret = -EINTR; 955 else 956 goto next; 957 out: 958 if (ret == 1) 959 ret = 0; 960 961 inode_unlock(inode); 962 return ret; 963 } 964 965 /* 966 * This function was originally taken from fs/mpage.c, and customized for f2fs. 967 * Major change was from block_size == page_size in f2fs by default. 968 */ 969 static int f2fs_mpage_readpages(struct address_space *mapping, 970 struct list_head *pages, struct page *page, 971 unsigned nr_pages) 972 { 973 struct bio *bio = NULL; 974 unsigned page_idx; 975 sector_t last_block_in_bio = 0; 976 struct inode *inode = mapping->host; 977 const unsigned blkbits = inode->i_blkbits; 978 const unsigned blocksize = 1 << blkbits; 979 sector_t block_in_file; 980 sector_t last_block; 981 sector_t last_block_in_file; 982 sector_t block_nr; 983 struct block_device *bdev = inode->i_sb->s_bdev; 984 struct f2fs_map_blocks map; 985 986 map.m_pblk = 0; 987 map.m_lblk = 0; 988 map.m_len = 0; 989 map.m_flags = 0; 990 map.m_next_pgofs = NULL; 991 992 for (page_idx = 0; nr_pages; page_idx++, nr_pages--) { 993 994 prefetchw(&page->flags); 995 if (pages) { 996 page = list_entry(pages->prev, struct page, lru); 997 list_del(&page->lru); 998 if (add_to_page_cache_lru(page, mapping, 999 page->index, GFP_KERNEL)) 1000 goto next_page; 1001 } 1002 1003 block_in_file = (sector_t)page->index; 1004 last_block = block_in_file + nr_pages; 1005 last_block_in_file = (i_size_read(inode) + blocksize - 1) >> 1006 blkbits; 1007 if (last_block > last_block_in_file) 1008 last_block = last_block_in_file; 1009 1010 /* 1011 * Map blocks using the previous result first. 1012 */ 1013 if ((map.m_flags & F2FS_MAP_MAPPED) && 1014 block_in_file > map.m_lblk && 1015 block_in_file < (map.m_lblk + map.m_len)) 1016 goto got_it; 1017 1018 /* 1019 * Then do more f2fs_map_blocks() calls until we are 1020 * done with this page. 1021 */ 1022 map.m_flags = 0; 1023 1024 if (block_in_file < last_block) { 1025 map.m_lblk = block_in_file; 1026 map.m_len = last_block - block_in_file; 1027 1028 if (f2fs_map_blocks(inode, &map, 0, 1029 F2FS_GET_BLOCK_READ)) 1030 goto set_error_page; 1031 } 1032 got_it: 1033 if ((map.m_flags & F2FS_MAP_MAPPED)) { 1034 block_nr = map.m_pblk + block_in_file - map.m_lblk; 1035 SetPageMappedToDisk(page); 1036 1037 if (!PageUptodate(page) && !cleancache_get_page(page)) { 1038 SetPageUptodate(page); 1039 goto confused; 1040 } 1041 } else { 1042 zero_user_segment(page, 0, PAGE_SIZE); 1043 SetPageUptodate(page); 1044 unlock_page(page); 1045 goto next_page; 1046 } 1047 1048 /* 1049 * This page will go to BIO. Do we need to send this 1050 * BIO off first? 1051 */ 1052 if (bio && (last_block_in_bio != block_nr - 1)) { 1053 submit_and_realloc: 1054 __submit_bio(F2FS_I_SB(inode), READ, bio); 1055 bio = NULL; 1056 } 1057 if (bio == NULL) { 1058 struct fscrypt_ctx *ctx = NULL; 1059 1060 if (f2fs_encrypted_inode(inode) && 1061 S_ISREG(inode->i_mode)) { 1062 1063 ctx = fscrypt_get_ctx(inode, GFP_NOFS); 1064 if (IS_ERR(ctx)) 1065 goto set_error_page; 1066 1067 /* wait the page to be moved by cleaning */ 1068 f2fs_wait_on_encrypted_page_writeback( 1069 F2FS_I_SB(inode), block_nr); 1070 } 1071 1072 bio = bio_alloc(GFP_KERNEL, 1073 min_t(int, nr_pages, BIO_MAX_PAGES)); 1074 if (!bio) { 1075 if (ctx) 1076 fscrypt_release_ctx(ctx); 1077 goto set_error_page; 1078 } 1079 bio->bi_bdev = bdev; 1080 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(block_nr); 1081 bio->bi_end_io = f2fs_read_end_io; 1082 bio->bi_private = ctx; 1083 } 1084 1085 if (bio_add_page(bio, page, blocksize, 0) < blocksize) 1086 goto submit_and_realloc; 1087 1088 last_block_in_bio = block_nr; 1089 goto next_page; 1090 set_error_page: 1091 SetPageError(page); 1092 zero_user_segment(page, 0, PAGE_SIZE); 1093 unlock_page(page); 1094 goto next_page; 1095 confused: 1096 if (bio) { 1097 __submit_bio(F2FS_I_SB(inode), READ, bio); 1098 bio = NULL; 1099 } 1100 unlock_page(page); 1101 next_page: 1102 if (pages) 1103 put_page(page); 1104 } 1105 BUG_ON(pages && !list_empty(pages)); 1106 if (bio) 1107 __submit_bio(F2FS_I_SB(inode), READ, bio); 1108 return 0; 1109 } 1110 1111 static int f2fs_read_data_page(struct file *file, struct page *page) 1112 { 1113 struct inode *inode = page->mapping->host; 1114 int ret = -EAGAIN; 1115 1116 trace_f2fs_readpage(page, DATA); 1117 1118 /* If the file has inline data, try to read it directly */ 1119 if (f2fs_has_inline_data(inode)) 1120 ret = f2fs_read_inline_data(inode, page); 1121 if (ret == -EAGAIN) 1122 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1); 1123 return ret; 1124 } 1125 1126 static int f2fs_read_data_pages(struct file *file, 1127 struct address_space *mapping, 1128 struct list_head *pages, unsigned nr_pages) 1129 { 1130 struct inode *inode = file->f_mapping->host; 1131 struct page *page = list_entry(pages->prev, struct page, lru); 1132 1133 trace_f2fs_readpages(inode, page, nr_pages); 1134 1135 /* If the file has inline data, skip readpages */ 1136 if (f2fs_has_inline_data(inode)) 1137 return 0; 1138 1139 return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages); 1140 } 1141 1142 int do_write_data_page(struct f2fs_io_info *fio) 1143 { 1144 struct page *page = fio->page; 1145 struct inode *inode = page->mapping->host; 1146 struct dnode_of_data dn; 1147 int err = 0; 1148 1149 set_new_dnode(&dn, inode, NULL, NULL, 0); 1150 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE); 1151 if (err) 1152 return err; 1153 1154 fio->old_blkaddr = dn.data_blkaddr; 1155 1156 /* This page is already truncated */ 1157 if (fio->old_blkaddr == NULL_ADDR) { 1158 ClearPageUptodate(page); 1159 goto out_writepage; 1160 } 1161 1162 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) { 1163 gfp_t gfp_flags = GFP_NOFS; 1164 1165 /* wait for GCed encrypted page writeback */ 1166 f2fs_wait_on_encrypted_page_writeback(F2FS_I_SB(inode), 1167 fio->old_blkaddr); 1168 retry_encrypt: 1169 fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page, 1170 gfp_flags); 1171 if (IS_ERR(fio->encrypted_page)) { 1172 err = PTR_ERR(fio->encrypted_page); 1173 if (err == -ENOMEM) { 1174 /* flush pending ios and wait for a while */ 1175 f2fs_flush_merged_bios(F2FS_I_SB(inode)); 1176 congestion_wait(BLK_RW_ASYNC, HZ/50); 1177 gfp_flags |= __GFP_NOFAIL; 1178 err = 0; 1179 goto retry_encrypt; 1180 } 1181 goto out_writepage; 1182 } 1183 } 1184 1185 set_page_writeback(page); 1186 1187 /* 1188 * If current allocation needs SSR, 1189 * it had better in-place writes for updated data. 1190 */ 1191 if (unlikely(fio->old_blkaddr != NEW_ADDR && 1192 !is_cold_data(page) && 1193 !IS_ATOMIC_WRITTEN_PAGE(page) && 1194 need_inplace_update(inode))) { 1195 rewrite_data_page(fio); 1196 set_inode_flag(F2FS_I(inode), FI_UPDATE_WRITE); 1197 trace_f2fs_do_write_data_page(page, IPU); 1198 } else { 1199 write_data_page(&dn, fio); 1200 trace_f2fs_do_write_data_page(page, OPU); 1201 set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE); 1202 if (page->index == 0) 1203 set_inode_flag(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN); 1204 } 1205 out_writepage: 1206 f2fs_put_dnode(&dn); 1207 return err; 1208 } 1209 1210 static int f2fs_write_data_page(struct page *page, 1211 struct writeback_control *wbc) 1212 { 1213 struct inode *inode = page->mapping->host; 1214 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1215 loff_t i_size = i_size_read(inode); 1216 const pgoff_t end_index = ((unsigned long long) i_size) 1217 >> PAGE_SHIFT; 1218 unsigned offset = 0; 1219 bool need_balance_fs = false; 1220 int err = 0; 1221 struct f2fs_io_info fio = { 1222 .sbi = sbi, 1223 .type = DATA, 1224 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE, 1225 .page = page, 1226 .encrypted_page = NULL, 1227 }; 1228 1229 trace_f2fs_writepage(page, DATA); 1230 1231 if (page->index < end_index) 1232 goto write; 1233 1234 /* 1235 * If the offset is out-of-range of file size, 1236 * this page does not have to be written to disk. 1237 */ 1238 offset = i_size & (PAGE_SIZE - 1); 1239 if ((page->index >= end_index + 1) || !offset) 1240 goto out; 1241 1242 zero_user_segment(page, offset, PAGE_SIZE); 1243 write: 1244 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1245 goto redirty_out; 1246 if (f2fs_is_drop_cache(inode)) 1247 goto out; 1248 /* we should not write 0'th page having journal header */ 1249 if (f2fs_is_volatile_file(inode) && (!page->index || 1250 (!wbc->for_reclaim && 1251 available_free_memory(sbi, BASE_CHECK)))) 1252 goto redirty_out; 1253 1254 /* Dentry blocks are controlled by checkpoint */ 1255 if (S_ISDIR(inode->i_mode)) { 1256 if (unlikely(f2fs_cp_error(sbi))) 1257 goto redirty_out; 1258 err = do_write_data_page(&fio); 1259 goto done; 1260 } 1261 1262 /* we should bypass data pages to proceed the kworkder jobs */ 1263 if (unlikely(f2fs_cp_error(sbi))) { 1264 SetPageError(page); 1265 goto out; 1266 } 1267 1268 if (!wbc->for_reclaim) 1269 need_balance_fs = true; 1270 else if (has_not_enough_free_secs(sbi, 0)) 1271 goto redirty_out; 1272 1273 err = -EAGAIN; 1274 f2fs_lock_op(sbi); 1275 if (f2fs_has_inline_data(inode)) 1276 err = f2fs_write_inline_data(inode, page); 1277 if (err == -EAGAIN) 1278 err = do_write_data_page(&fio); 1279 f2fs_unlock_op(sbi); 1280 done: 1281 if (err && err != -ENOENT) 1282 goto redirty_out; 1283 1284 clear_cold_data(page); 1285 out: 1286 inode_dec_dirty_pages(inode); 1287 if (err) 1288 ClearPageUptodate(page); 1289 1290 if (wbc->for_reclaim) { 1291 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, DATA, WRITE); 1292 remove_dirty_inode(inode); 1293 } 1294 1295 unlock_page(page); 1296 f2fs_balance_fs(sbi, need_balance_fs); 1297 1298 if (unlikely(f2fs_cp_error(sbi))) 1299 f2fs_submit_merged_bio(sbi, DATA, WRITE); 1300 1301 return 0; 1302 1303 redirty_out: 1304 redirty_page_for_writepage(wbc, page); 1305 return AOP_WRITEPAGE_ACTIVATE; 1306 } 1307 1308 static int __f2fs_writepage(struct page *page, struct writeback_control *wbc, 1309 void *data) 1310 { 1311 struct address_space *mapping = data; 1312 int ret = mapping->a_ops->writepage(page, wbc); 1313 mapping_set_error(mapping, ret); 1314 return ret; 1315 } 1316 1317 /* 1318 * This function was copied from write_cche_pages from mm/page-writeback.c. 1319 * The major change is making write step of cold data page separately from 1320 * warm/hot data page. 1321 */ 1322 static int f2fs_write_cache_pages(struct address_space *mapping, 1323 struct writeback_control *wbc, writepage_t writepage, 1324 void *data) 1325 { 1326 int ret = 0; 1327 int done = 0; 1328 struct pagevec pvec; 1329 int nr_pages; 1330 pgoff_t uninitialized_var(writeback_index); 1331 pgoff_t index; 1332 pgoff_t end; /* Inclusive */ 1333 pgoff_t done_index; 1334 int cycled; 1335 int range_whole = 0; 1336 int tag; 1337 int step = 0; 1338 1339 pagevec_init(&pvec, 0); 1340 next: 1341 if (wbc->range_cyclic) { 1342 writeback_index = mapping->writeback_index; /* prev offset */ 1343 index = writeback_index; 1344 if (index == 0) 1345 cycled = 1; 1346 else 1347 cycled = 0; 1348 end = -1; 1349 } else { 1350 index = wbc->range_start >> PAGE_SHIFT; 1351 end = wbc->range_end >> PAGE_SHIFT; 1352 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 1353 range_whole = 1; 1354 cycled = 1; /* ignore range_cyclic tests */ 1355 } 1356 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 1357 tag = PAGECACHE_TAG_TOWRITE; 1358 else 1359 tag = PAGECACHE_TAG_DIRTY; 1360 retry: 1361 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 1362 tag_pages_for_writeback(mapping, index, end); 1363 done_index = index; 1364 while (!done && (index <= end)) { 1365 int i; 1366 1367 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 1368 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1); 1369 if (nr_pages == 0) 1370 break; 1371 1372 for (i = 0; i < nr_pages; i++) { 1373 struct page *page = pvec.pages[i]; 1374 1375 if (page->index > end) { 1376 done = 1; 1377 break; 1378 } 1379 1380 done_index = page->index; 1381 1382 lock_page(page); 1383 1384 if (unlikely(page->mapping != mapping)) { 1385 continue_unlock: 1386 unlock_page(page); 1387 continue; 1388 } 1389 1390 if (!PageDirty(page)) { 1391 /* someone wrote it for us */ 1392 goto continue_unlock; 1393 } 1394 1395 if (step == is_cold_data(page)) 1396 goto continue_unlock; 1397 1398 if (PageWriteback(page)) { 1399 if (wbc->sync_mode != WB_SYNC_NONE) 1400 f2fs_wait_on_page_writeback(page, 1401 DATA, true); 1402 else 1403 goto continue_unlock; 1404 } 1405 1406 BUG_ON(PageWriteback(page)); 1407 if (!clear_page_dirty_for_io(page)) 1408 goto continue_unlock; 1409 1410 ret = (*writepage)(page, wbc, data); 1411 if (unlikely(ret)) { 1412 if (ret == AOP_WRITEPAGE_ACTIVATE) { 1413 unlock_page(page); 1414 ret = 0; 1415 } else { 1416 done_index = page->index + 1; 1417 done = 1; 1418 break; 1419 } 1420 } 1421 1422 if (--wbc->nr_to_write <= 0 && 1423 wbc->sync_mode == WB_SYNC_NONE) { 1424 done = 1; 1425 break; 1426 } 1427 } 1428 pagevec_release(&pvec); 1429 cond_resched(); 1430 } 1431 1432 if (step < 1) { 1433 step++; 1434 goto next; 1435 } 1436 1437 if (!cycled && !done) { 1438 cycled = 1; 1439 index = 0; 1440 end = writeback_index - 1; 1441 goto retry; 1442 } 1443 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 1444 mapping->writeback_index = done_index; 1445 1446 return ret; 1447 } 1448 1449 static int f2fs_write_data_pages(struct address_space *mapping, 1450 struct writeback_control *wbc) 1451 { 1452 struct inode *inode = mapping->host; 1453 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1454 bool locked = false; 1455 int ret; 1456 long diff; 1457 1458 /* deal with chardevs and other special file */ 1459 if (!mapping->a_ops->writepage) 1460 return 0; 1461 1462 /* skip writing if there is no dirty page in this inode */ 1463 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE) 1464 return 0; 1465 1466 if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE && 1467 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) && 1468 available_free_memory(sbi, DIRTY_DENTS)) 1469 goto skip_write; 1470 1471 /* skip writing during file defragment */ 1472 if (is_inode_flag_set(F2FS_I(inode), FI_DO_DEFRAG)) 1473 goto skip_write; 1474 1475 /* during POR, we don't need to trigger writepage at all. */ 1476 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1477 goto skip_write; 1478 1479 trace_f2fs_writepages(mapping->host, wbc, DATA); 1480 1481 diff = nr_pages_to_write(sbi, DATA, wbc); 1482 1483 if (!S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_ALL) { 1484 mutex_lock(&sbi->writepages); 1485 locked = true; 1486 } 1487 ret = f2fs_write_cache_pages(mapping, wbc, __f2fs_writepage, mapping); 1488 f2fs_submit_merged_bio_cond(sbi, inode, NULL, 0, DATA, WRITE); 1489 if (locked) 1490 mutex_unlock(&sbi->writepages); 1491 1492 remove_dirty_inode(inode); 1493 1494 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff); 1495 return ret; 1496 1497 skip_write: 1498 wbc->pages_skipped += get_dirty_pages(inode); 1499 trace_f2fs_writepages(mapping->host, wbc, DATA); 1500 return 0; 1501 } 1502 1503 static void f2fs_write_failed(struct address_space *mapping, loff_t to) 1504 { 1505 struct inode *inode = mapping->host; 1506 loff_t i_size = i_size_read(inode); 1507 1508 if (to > i_size) { 1509 truncate_pagecache(inode, i_size); 1510 truncate_blocks(inode, i_size, true); 1511 } 1512 } 1513 1514 static int prepare_write_begin(struct f2fs_sb_info *sbi, 1515 struct page *page, loff_t pos, unsigned len, 1516 block_t *blk_addr, bool *node_changed) 1517 { 1518 struct inode *inode = page->mapping->host; 1519 pgoff_t index = page->index; 1520 struct dnode_of_data dn; 1521 struct page *ipage; 1522 bool locked = false; 1523 struct extent_info ei; 1524 int err = 0; 1525 1526 /* 1527 * we already allocated all the blocks, so we don't need to get 1528 * the block addresses when there is no need to fill the page. 1529 */ 1530 if (!f2fs_has_inline_data(inode) && !f2fs_encrypted_inode(inode) && 1531 len == PAGE_SIZE) 1532 return 0; 1533 1534 if (f2fs_has_inline_data(inode) || 1535 (pos & PAGE_MASK) >= i_size_read(inode)) { 1536 f2fs_lock_op(sbi); 1537 locked = true; 1538 } 1539 restart: 1540 /* check inline_data */ 1541 ipage = get_node_page(sbi, inode->i_ino); 1542 if (IS_ERR(ipage)) { 1543 err = PTR_ERR(ipage); 1544 goto unlock_out; 1545 } 1546 1547 set_new_dnode(&dn, inode, ipage, ipage, 0); 1548 1549 if (f2fs_has_inline_data(inode)) { 1550 if (pos + len <= MAX_INLINE_DATA) { 1551 read_inline_data(page, ipage); 1552 set_inode_flag(F2FS_I(inode), FI_DATA_EXIST); 1553 if (inode->i_nlink) 1554 set_inline_node(ipage); 1555 } else { 1556 err = f2fs_convert_inline_page(&dn, page); 1557 if (err) 1558 goto out; 1559 if (dn.data_blkaddr == NULL_ADDR) 1560 err = f2fs_get_block(&dn, index); 1561 } 1562 } else if (locked) { 1563 err = f2fs_get_block(&dn, index); 1564 } else { 1565 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 1566 dn.data_blkaddr = ei.blk + index - ei.fofs; 1567 } else { 1568 /* hole case */ 1569 err = get_dnode_of_data(&dn, index, LOOKUP_NODE); 1570 if (err || dn.data_blkaddr == NULL_ADDR) { 1571 f2fs_put_dnode(&dn); 1572 f2fs_lock_op(sbi); 1573 locked = true; 1574 goto restart; 1575 } 1576 } 1577 } 1578 1579 /* convert_inline_page can make node_changed */ 1580 *blk_addr = dn.data_blkaddr; 1581 *node_changed = dn.node_changed; 1582 out: 1583 f2fs_put_dnode(&dn); 1584 unlock_out: 1585 if (locked) 1586 f2fs_unlock_op(sbi); 1587 return err; 1588 } 1589 1590 static int f2fs_write_begin(struct file *file, struct address_space *mapping, 1591 loff_t pos, unsigned len, unsigned flags, 1592 struct page **pagep, void **fsdata) 1593 { 1594 struct inode *inode = mapping->host; 1595 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1596 struct page *page = NULL; 1597 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT; 1598 bool need_balance = false; 1599 block_t blkaddr = NULL_ADDR; 1600 int err = 0; 1601 1602 trace_f2fs_write_begin(inode, pos, len, flags); 1603 1604 /* 1605 * We should check this at this moment to avoid deadlock on inode page 1606 * and #0 page. The locking rule for inline_data conversion should be: 1607 * lock_page(page #0) -> lock_page(inode_page) 1608 */ 1609 if (index != 0) { 1610 err = f2fs_convert_inline_inode(inode); 1611 if (err) 1612 goto fail; 1613 } 1614 repeat: 1615 page = grab_cache_page_write_begin(mapping, index, flags); 1616 if (!page) { 1617 err = -ENOMEM; 1618 goto fail; 1619 } 1620 1621 *pagep = page; 1622 1623 err = prepare_write_begin(sbi, page, pos, len, 1624 &blkaddr, &need_balance); 1625 if (err) 1626 goto fail; 1627 1628 if (need_balance && has_not_enough_free_secs(sbi, 0)) { 1629 unlock_page(page); 1630 f2fs_balance_fs(sbi, true); 1631 lock_page(page); 1632 if (page->mapping != mapping) { 1633 /* The page got truncated from under us */ 1634 f2fs_put_page(page, 1); 1635 goto repeat; 1636 } 1637 } 1638 1639 f2fs_wait_on_page_writeback(page, DATA, false); 1640 1641 /* wait for GCed encrypted page writeback */ 1642 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) 1643 f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr); 1644 1645 if (len == PAGE_SIZE) 1646 goto out_update; 1647 if (PageUptodate(page)) 1648 goto out_clear; 1649 1650 if ((pos & PAGE_MASK) >= i_size_read(inode)) { 1651 unsigned start = pos & (PAGE_SIZE - 1); 1652 unsigned end = start + len; 1653 1654 /* Reading beyond i_size is simple: memset to zero */ 1655 zero_user_segments(page, 0, start, end, PAGE_SIZE); 1656 goto out_update; 1657 } 1658 1659 if (blkaddr == NEW_ADDR) { 1660 zero_user_segment(page, 0, PAGE_SIZE); 1661 } else { 1662 struct f2fs_io_info fio = { 1663 .sbi = sbi, 1664 .type = DATA, 1665 .rw = READ_SYNC, 1666 .old_blkaddr = blkaddr, 1667 .new_blkaddr = blkaddr, 1668 .page = page, 1669 .encrypted_page = NULL, 1670 }; 1671 err = f2fs_submit_page_bio(&fio); 1672 if (err) 1673 goto fail; 1674 1675 lock_page(page); 1676 if (unlikely(!PageUptodate(page))) { 1677 err = -EIO; 1678 goto fail; 1679 } 1680 if (unlikely(page->mapping != mapping)) { 1681 f2fs_put_page(page, 1); 1682 goto repeat; 1683 } 1684 1685 /* avoid symlink page */ 1686 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) { 1687 err = fscrypt_decrypt_page(page); 1688 if (err) 1689 goto fail; 1690 } 1691 } 1692 out_update: 1693 SetPageUptodate(page); 1694 out_clear: 1695 clear_cold_data(page); 1696 return 0; 1697 1698 fail: 1699 f2fs_put_page(page, 1); 1700 f2fs_write_failed(mapping, pos + len); 1701 return err; 1702 } 1703 1704 static int f2fs_write_end(struct file *file, 1705 struct address_space *mapping, 1706 loff_t pos, unsigned len, unsigned copied, 1707 struct page *page, void *fsdata) 1708 { 1709 struct inode *inode = page->mapping->host; 1710 1711 trace_f2fs_write_end(inode, pos, len, copied); 1712 1713 set_page_dirty(page); 1714 1715 if (pos + copied > i_size_read(inode)) { 1716 i_size_write(inode, pos + copied); 1717 mark_inode_dirty(inode); 1718 } 1719 1720 f2fs_put_page(page, 1); 1721 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 1722 return copied; 1723 } 1724 1725 static int check_direct_IO(struct inode *inode, struct iov_iter *iter, 1726 loff_t offset) 1727 { 1728 unsigned blocksize_mask = inode->i_sb->s_blocksize - 1; 1729 1730 if (offset & blocksize_mask) 1731 return -EINVAL; 1732 1733 if (iov_iter_alignment(iter) & blocksize_mask) 1734 return -EINVAL; 1735 1736 return 0; 1737 } 1738 1739 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 1740 { 1741 struct address_space *mapping = iocb->ki_filp->f_mapping; 1742 struct inode *inode = mapping->host; 1743 size_t count = iov_iter_count(iter); 1744 loff_t offset = iocb->ki_pos; 1745 int err; 1746 1747 err = check_direct_IO(inode, iter, offset); 1748 if (err) 1749 return err; 1750 1751 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) 1752 return 0; 1753 1754 trace_f2fs_direct_IO_enter(inode, offset, count, iov_iter_rw(iter)); 1755 1756 err = blockdev_direct_IO(iocb, inode, iter, get_data_block_dio); 1757 if (iov_iter_rw(iter) == WRITE) { 1758 if (err > 0) 1759 set_inode_flag(F2FS_I(inode), FI_UPDATE_WRITE); 1760 else if (err < 0) 1761 f2fs_write_failed(mapping, offset + count); 1762 } 1763 1764 trace_f2fs_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), err); 1765 1766 return err; 1767 } 1768 1769 void f2fs_invalidate_page(struct page *page, unsigned int offset, 1770 unsigned int length) 1771 { 1772 struct inode *inode = page->mapping->host; 1773 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1774 1775 if (inode->i_ino >= F2FS_ROOT_INO(sbi) && 1776 (offset % PAGE_SIZE || length != PAGE_SIZE)) 1777 return; 1778 1779 if (PageDirty(page)) { 1780 if (inode->i_ino == F2FS_META_INO(sbi)) 1781 dec_page_count(sbi, F2FS_DIRTY_META); 1782 else if (inode->i_ino == F2FS_NODE_INO(sbi)) 1783 dec_page_count(sbi, F2FS_DIRTY_NODES); 1784 else 1785 inode_dec_dirty_pages(inode); 1786 } 1787 1788 /* This is atomic written page, keep Private */ 1789 if (IS_ATOMIC_WRITTEN_PAGE(page)) 1790 return; 1791 1792 set_page_private(page, 0); 1793 ClearPagePrivate(page); 1794 } 1795 1796 int f2fs_release_page(struct page *page, gfp_t wait) 1797 { 1798 /* If this is dirty page, keep PagePrivate */ 1799 if (PageDirty(page)) 1800 return 0; 1801 1802 /* This is atomic written page, keep Private */ 1803 if (IS_ATOMIC_WRITTEN_PAGE(page)) 1804 return 0; 1805 1806 set_page_private(page, 0); 1807 ClearPagePrivate(page); 1808 return 1; 1809 } 1810 1811 static int f2fs_set_data_page_dirty(struct page *page) 1812 { 1813 struct address_space *mapping = page->mapping; 1814 struct inode *inode = mapping->host; 1815 1816 trace_f2fs_set_page_dirty(page, DATA); 1817 1818 SetPageUptodate(page); 1819 1820 if (f2fs_is_atomic_file(inode)) { 1821 if (!IS_ATOMIC_WRITTEN_PAGE(page)) { 1822 register_inmem_page(inode, page); 1823 return 1; 1824 } 1825 /* 1826 * Previously, this page has been registered, we just 1827 * return here. 1828 */ 1829 return 0; 1830 } 1831 1832 if (!PageDirty(page)) { 1833 __set_page_dirty_nobuffers(page); 1834 update_dirty_page(inode, page); 1835 return 1; 1836 } 1837 return 0; 1838 } 1839 1840 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block) 1841 { 1842 struct inode *inode = mapping->host; 1843 1844 if (f2fs_has_inline_data(inode)) 1845 return 0; 1846 1847 /* make sure allocating whole blocks */ 1848 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 1849 filemap_write_and_wait(mapping); 1850 1851 return generic_block_bmap(mapping, block, get_data_block_bmap); 1852 } 1853 1854 const struct address_space_operations f2fs_dblock_aops = { 1855 .readpage = f2fs_read_data_page, 1856 .readpages = f2fs_read_data_pages, 1857 .writepage = f2fs_write_data_page, 1858 .writepages = f2fs_write_data_pages, 1859 .write_begin = f2fs_write_begin, 1860 .write_end = f2fs_write_end, 1861 .set_page_dirty = f2fs_set_data_page_dirty, 1862 .invalidatepage = f2fs_invalidate_page, 1863 .releasepage = f2fs_release_page, 1864 .direct_IO = f2fs_direct_IO, 1865 .bmap = f2fs_bmap, 1866 }; 1867