1 /* 2 * fs/f2fs/data.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/buffer_head.h> 14 #include <linux/mpage.h> 15 #include <linux/writeback.h> 16 #include <linux/backing-dev.h> 17 #include <linux/pagevec.h> 18 #include <linux/blkdev.h> 19 #include <linux/bio.h> 20 #include <linux/prefetch.h> 21 #include <linux/uio.h> 22 #include <linux/mm.h> 23 #include <linux/memcontrol.h> 24 #include <linux/cleancache.h> 25 26 #include "f2fs.h" 27 #include "node.h" 28 #include "segment.h" 29 #include "trace.h" 30 #include <trace/events/f2fs.h> 31 32 static void f2fs_read_end_io(struct bio *bio) 33 { 34 struct bio_vec *bvec; 35 int i; 36 37 #ifdef CONFIG_F2FS_FAULT_INJECTION 38 if (time_to_inject(F2FS_P_SB(bio->bi_io_vec->bv_page), FAULT_IO)) 39 bio->bi_error = -EIO; 40 #endif 41 42 if (f2fs_bio_encrypted(bio)) { 43 if (bio->bi_error) { 44 fscrypt_release_ctx(bio->bi_private); 45 } else { 46 fscrypt_decrypt_bio_pages(bio->bi_private, bio); 47 return; 48 } 49 } 50 51 bio_for_each_segment_all(bvec, bio, i) { 52 struct page *page = bvec->bv_page; 53 54 if (!bio->bi_error) { 55 if (!PageUptodate(page)) 56 SetPageUptodate(page); 57 } else { 58 ClearPageUptodate(page); 59 SetPageError(page); 60 } 61 unlock_page(page); 62 } 63 bio_put(bio); 64 } 65 66 static void f2fs_write_end_io(struct bio *bio) 67 { 68 struct f2fs_sb_info *sbi = bio->bi_private; 69 struct bio_vec *bvec; 70 int i; 71 72 bio_for_each_segment_all(bvec, bio, i) { 73 struct page *page = bvec->bv_page; 74 75 fscrypt_pullback_bio_page(&page, true); 76 77 if (unlikely(bio->bi_error)) { 78 mapping_set_error(page->mapping, -EIO); 79 f2fs_stop_checkpoint(sbi, true); 80 } 81 end_page_writeback(page); 82 } 83 if (atomic_dec_and_test(&sbi->nr_wb_bios) && 84 wq_has_sleeper(&sbi->cp_wait)) 85 wake_up(&sbi->cp_wait); 86 87 bio_put(bio); 88 } 89 90 /* 91 * Low-level block read/write IO operations. 92 */ 93 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr, 94 int npages, bool is_read) 95 { 96 struct bio *bio; 97 98 bio = f2fs_bio_alloc(npages); 99 100 bio->bi_bdev = sbi->sb->s_bdev; 101 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr); 102 bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io; 103 bio->bi_private = is_read ? NULL : sbi; 104 105 return bio; 106 } 107 108 static inline void __submit_bio(struct f2fs_sb_info *sbi, 109 struct bio *bio, enum page_type type) 110 { 111 if (!is_read_io(bio_op(bio))) { 112 atomic_inc(&sbi->nr_wb_bios); 113 if (f2fs_sb_mounted_hmsmr(sbi->sb) && 114 current->plug && (type == DATA || type == NODE)) 115 blk_finish_plug(current->plug); 116 } 117 submit_bio(bio); 118 } 119 120 static void __submit_merged_bio(struct f2fs_bio_info *io) 121 { 122 struct f2fs_io_info *fio = &io->fio; 123 124 if (!io->bio) 125 return; 126 127 if (is_read_io(fio->op)) 128 trace_f2fs_submit_read_bio(io->sbi->sb, fio, io->bio); 129 else 130 trace_f2fs_submit_write_bio(io->sbi->sb, fio, io->bio); 131 132 bio_set_op_attrs(io->bio, fio->op, fio->op_flags); 133 134 __submit_bio(io->sbi, io->bio, fio->type); 135 io->bio = NULL; 136 } 137 138 static bool __has_merged_page(struct f2fs_bio_info *io, struct inode *inode, 139 struct page *page, nid_t ino) 140 { 141 struct bio_vec *bvec; 142 struct page *target; 143 int i; 144 145 if (!io->bio) 146 return false; 147 148 if (!inode && !page && !ino) 149 return true; 150 151 bio_for_each_segment_all(bvec, io->bio, i) { 152 153 if (bvec->bv_page->mapping) 154 target = bvec->bv_page; 155 else 156 target = fscrypt_control_page(bvec->bv_page); 157 158 if (inode && inode == target->mapping->host) 159 return true; 160 if (page && page == target) 161 return true; 162 if (ino && ino == ino_of_node(target)) 163 return true; 164 } 165 166 return false; 167 } 168 169 static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode, 170 struct page *page, nid_t ino, 171 enum page_type type) 172 { 173 enum page_type btype = PAGE_TYPE_OF_BIO(type); 174 struct f2fs_bio_info *io = &sbi->write_io[btype]; 175 bool ret; 176 177 down_read(&io->io_rwsem); 178 ret = __has_merged_page(io, inode, page, ino); 179 up_read(&io->io_rwsem); 180 return ret; 181 } 182 183 static void __f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, 184 struct inode *inode, struct page *page, 185 nid_t ino, enum page_type type, int rw) 186 { 187 enum page_type btype = PAGE_TYPE_OF_BIO(type); 188 struct f2fs_bio_info *io; 189 190 io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype]; 191 192 down_write(&io->io_rwsem); 193 194 if (!__has_merged_page(io, inode, page, ino)) 195 goto out; 196 197 /* change META to META_FLUSH in the checkpoint procedure */ 198 if (type >= META_FLUSH) { 199 io->fio.type = META_FLUSH; 200 io->fio.op = REQ_OP_WRITE; 201 io->fio.op_flags = REQ_PREFLUSH | REQ_META | REQ_PRIO; 202 if (!test_opt(sbi, NOBARRIER)) 203 io->fio.op_flags |= REQ_FUA; 204 } 205 __submit_merged_bio(io); 206 out: 207 up_write(&io->io_rwsem); 208 } 209 210 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, enum page_type type, 211 int rw) 212 { 213 __f2fs_submit_merged_bio(sbi, NULL, NULL, 0, type, rw); 214 } 215 216 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *sbi, 217 struct inode *inode, struct page *page, 218 nid_t ino, enum page_type type, int rw) 219 { 220 if (has_merged_page(sbi, inode, page, ino, type)) 221 __f2fs_submit_merged_bio(sbi, inode, page, ino, type, rw); 222 } 223 224 void f2fs_flush_merged_bios(struct f2fs_sb_info *sbi) 225 { 226 f2fs_submit_merged_bio(sbi, DATA, WRITE); 227 f2fs_submit_merged_bio(sbi, NODE, WRITE); 228 f2fs_submit_merged_bio(sbi, META, WRITE); 229 } 230 231 /* 232 * Fill the locked page with data located in the block address. 233 * Return unlocked page. 234 */ 235 int f2fs_submit_page_bio(struct f2fs_io_info *fio) 236 { 237 struct bio *bio; 238 struct page *page = fio->encrypted_page ? 239 fio->encrypted_page : fio->page; 240 241 trace_f2fs_submit_page_bio(page, fio); 242 f2fs_trace_ios(fio, 0); 243 244 /* Allocate a new bio */ 245 bio = __bio_alloc(fio->sbi, fio->new_blkaddr, 1, is_read_io(fio->op)); 246 247 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 248 bio_put(bio); 249 return -EFAULT; 250 } 251 bio_set_op_attrs(bio, fio->op, fio->op_flags); 252 253 __submit_bio(fio->sbi, bio, fio->type); 254 return 0; 255 } 256 257 void f2fs_submit_page_mbio(struct f2fs_io_info *fio) 258 { 259 struct f2fs_sb_info *sbi = fio->sbi; 260 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type); 261 struct f2fs_bio_info *io; 262 bool is_read = is_read_io(fio->op); 263 struct page *bio_page; 264 265 io = is_read ? &sbi->read_io : &sbi->write_io[btype]; 266 267 if (fio->old_blkaddr != NEW_ADDR) 268 verify_block_addr(sbi, fio->old_blkaddr); 269 verify_block_addr(sbi, fio->new_blkaddr); 270 271 down_write(&io->io_rwsem); 272 273 if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 || 274 (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags))) 275 __submit_merged_bio(io); 276 alloc_new: 277 if (io->bio == NULL) { 278 int bio_blocks = MAX_BIO_BLOCKS(sbi); 279 280 io->bio = __bio_alloc(sbi, fio->new_blkaddr, 281 bio_blocks, is_read); 282 io->fio = *fio; 283 } 284 285 bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page; 286 287 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < 288 PAGE_SIZE) { 289 __submit_merged_bio(io); 290 goto alloc_new; 291 } 292 293 io->last_block_in_bio = fio->new_blkaddr; 294 f2fs_trace_ios(fio, 0); 295 296 up_write(&io->io_rwsem); 297 trace_f2fs_submit_page_mbio(fio->page, fio); 298 } 299 300 static void __set_data_blkaddr(struct dnode_of_data *dn) 301 { 302 struct f2fs_node *rn = F2FS_NODE(dn->node_page); 303 __le32 *addr_array; 304 305 /* Get physical address of data block */ 306 addr_array = blkaddr_in_node(rn); 307 addr_array[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr); 308 } 309 310 /* 311 * Lock ordering for the change of data block address: 312 * ->data_page 313 * ->node_page 314 * update block addresses in the node page 315 */ 316 void set_data_blkaddr(struct dnode_of_data *dn) 317 { 318 f2fs_wait_on_page_writeback(dn->node_page, NODE, true); 319 __set_data_blkaddr(dn); 320 if (set_page_dirty(dn->node_page)) 321 dn->node_changed = true; 322 } 323 324 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) 325 { 326 dn->data_blkaddr = blkaddr; 327 set_data_blkaddr(dn); 328 f2fs_update_extent_cache(dn); 329 } 330 331 /* dn->ofs_in_node will be returned with up-to-date last block pointer */ 332 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count) 333 { 334 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 335 336 if (!count) 337 return 0; 338 339 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 340 return -EPERM; 341 if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count))) 342 return -ENOSPC; 343 344 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid, 345 dn->ofs_in_node, count); 346 347 f2fs_wait_on_page_writeback(dn->node_page, NODE, true); 348 349 for (; count > 0; dn->ofs_in_node++) { 350 block_t blkaddr = 351 datablock_addr(dn->node_page, dn->ofs_in_node); 352 if (blkaddr == NULL_ADDR) { 353 dn->data_blkaddr = NEW_ADDR; 354 __set_data_blkaddr(dn); 355 count--; 356 } 357 } 358 359 if (set_page_dirty(dn->node_page)) 360 dn->node_changed = true; 361 return 0; 362 } 363 364 /* Should keep dn->ofs_in_node unchanged */ 365 int reserve_new_block(struct dnode_of_data *dn) 366 { 367 unsigned int ofs_in_node = dn->ofs_in_node; 368 int ret; 369 370 ret = reserve_new_blocks(dn, 1); 371 dn->ofs_in_node = ofs_in_node; 372 return ret; 373 } 374 375 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index) 376 { 377 bool need_put = dn->inode_page ? false : true; 378 int err; 379 380 err = get_dnode_of_data(dn, index, ALLOC_NODE); 381 if (err) 382 return err; 383 384 if (dn->data_blkaddr == NULL_ADDR) 385 err = reserve_new_block(dn); 386 if (err || need_put) 387 f2fs_put_dnode(dn); 388 return err; 389 } 390 391 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index) 392 { 393 struct extent_info ei; 394 struct inode *inode = dn->inode; 395 396 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 397 dn->data_blkaddr = ei.blk + index - ei.fofs; 398 return 0; 399 } 400 401 return f2fs_reserve_block(dn, index); 402 } 403 404 struct page *get_read_data_page(struct inode *inode, pgoff_t index, 405 int op_flags, bool for_write) 406 { 407 struct address_space *mapping = inode->i_mapping; 408 struct dnode_of_data dn; 409 struct page *page; 410 struct extent_info ei; 411 int err; 412 struct f2fs_io_info fio = { 413 .sbi = F2FS_I_SB(inode), 414 .type = DATA, 415 .op = REQ_OP_READ, 416 .op_flags = op_flags, 417 .encrypted_page = NULL, 418 }; 419 420 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) 421 return read_mapping_page(mapping, index, NULL); 422 423 page = f2fs_grab_cache_page(mapping, index, for_write); 424 if (!page) 425 return ERR_PTR(-ENOMEM); 426 427 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 428 dn.data_blkaddr = ei.blk + index - ei.fofs; 429 goto got_it; 430 } 431 432 set_new_dnode(&dn, inode, NULL, NULL, 0); 433 err = get_dnode_of_data(&dn, index, LOOKUP_NODE); 434 if (err) 435 goto put_err; 436 f2fs_put_dnode(&dn); 437 438 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { 439 err = -ENOENT; 440 goto put_err; 441 } 442 got_it: 443 if (PageUptodate(page)) { 444 unlock_page(page); 445 return page; 446 } 447 448 /* 449 * A new dentry page is allocated but not able to be written, since its 450 * new inode page couldn't be allocated due to -ENOSPC. 451 * In such the case, its blkaddr can be remained as NEW_ADDR. 452 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata. 453 */ 454 if (dn.data_blkaddr == NEW_ADDR) { 455 zero_user_segment(page, 0, PAGE_SIZE); 456 if (!PageUptodate(page)) 457 SetPageUptodate(page); 458 unlock_page(page); 459 return page; 460 } 461 462 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr; 463 fio.page = page; 464 err = f2fs_submit_page_bio(&fio); 465 if (err) 466 goto put_err; 467 return page; 468 469 put_err: 470 f2fs_put_page(page, 1); 471 return ERR_PTR(err); 472 } 473 474 struct page *find_data_page(struct inode *inode, pgoff_t index) 475 { 476 struct address_space *mapping = inode->i_mapping; 477 struct page *page; 478 479 page = find_get_page(mapping, index); 480 if (page && PageUptodate(page)) 481 return page; 482 f2fs_put_page(page, 0); 483 484 page = get_read_data_page(inode, index, 0, false); 485 if (IS_ERR(page)) 486 return page; 487 488 if (PageUptodate(page)) 489 return page; 490 491 wait_on_page_locked(page); 492 if (unlikely(!PageUptodate(page))) { 493 f2fs_put_page(page, 0); 494 return ERR_PTR(-EIO); 495 } 496 return page; 497 } 498 499 /* 500 * If it tries to access a hole, return an error. 501 * Because, the callers, functions in dir.c and GC, should be able to know 502 * whether this page exists or not. 503 */ 504 struct page *get_lock_data_page(struct inode *inode, pgoff_t index, 505 bool for_write) 506 { 507 struct address_space *mapping = inode->i_mapping; 508 struct page *page; 509 repeat: 510 page = get_read_data_page(inode, index, 0, for_write); 511 if (IS_ERR(page)) 512 return page; 513 514 /* wait for read completion */ 515 lock_page(page); 516 if (unlikely(page->mapping != mapping)) { 517 f2fs_put_page(page, 1); 518 goto repeat; 519 } 520 if (unlikely(!PageUptodate(page))) { 521 f2fs_put_page(page, 1); 522 return ERR_PTR(-EIO); 523 } 524 return page; 525 } 526 527 /* 528 * Caller ensures that this data page is never allocated. 529 * A new zero-filled data page is allocated in the page cache. 530 * 531 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and 532 * f2fs_unlock_op(). 533 * Note that, ipage is set only by make_empty_dir, and if any error occur, 534 * ipage should be released by this function. 535 */ 536 struct page *get_new_data_page(struct inode *inode, 537 struct page *ipage, pgoff_t index, bool new_i_size) 538 { 539 struct address_space *mapping = inode->i_mapping; 540 struct page *page; 541 struct dnode_of_data dn; 542 int err; 543 544 page = f2fs_grab_cache_page(mapping, index, true); 545 if (!page) { 546 /* 547 * before exiting, we should make sure ipage will be released 548 * if any error occur. 549 */ 550 f2fs_put_page(ipage, 1); 551 return ERR_PTR(-ENOMEM); 552 } 553 554 set_new_dnode(&dn, inode, ipage, NULL, 0); 555 err = f2fs_reserve_block(&dn, index); 556 if (err) { 557 f2fs_put_page(page, 1); 558 return ERR_PTR(err); 559 } 560 if (!ipage) 561 f2fs_put_dnode(&dn); 562 563 if (PageUptodate(page)) 564 goto got_it; 565 566 if (dn.data_blkaddr == NEW_ADDR) { 567 zero_user_segment(page, 0, PAGE_SIZE); 568 if (!PageUptodate(page)) 569 SetPageUptodate(page); 570 } else { 571 f2fs_put_page(page, 1); 572 573 /* if ipage exists, blkaddr should be NEW_ADDR */ 574 f2fs_bug_on(F2FS_I_SB(inode), ipage); 575 page = get_lock_data_page(inode, index, true); 576 if (IS_ERR(page)) 577 return page; 578 } 579 got_it: 580 if (new_i_size && i_size_read(inode) < 581 ((loff_t)(index + 1) << PAGE_SHIFT)) 582 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT)); 583 return page; 584 } 585 586 static int __allocate_data_block(struct dnode_of_data *dn) 587 { 588 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 589 struct f2fs_summary sum; 590 struct node_info ni; 591 int seg = CURSEG_WARM_DATA; 592 pgoff_t fofs; 593 blkcnt_t count = 1; 594 595 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 596 return -EPERM; 597 598 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node); 599 if (dn->data_blkaddr == NEW_ADDR) 600 goto alloc; 601 602 if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count))) 603 return -ENOSPC; 604 605 alloc: 606 get_node_info(sbi, dn->nid, &ni); 607 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 608 609 if (dn->ofs_in_node == 0 && dn->inode_page == dn->node_page) 610 seg = CURSEG_DIRECT_IO; 611 612 allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr, 613 &sum, seg); 614 set_data_blkaddr(dn); 615 616 /* update i_size */ 617 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) + 618 dn->ofs_in_node; 619 if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_SHIFT)) 620 f2fs_i_size_write(dn->inode, 621 ((loff_t)(fofs + 1) << PAGE_SHIFT)); 622 return 0; 623 } 624 625 ssize_t f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from) 626 { 627 struct inode *inode = file_inode(iocb->ki_filp); 628 struct f2fs_map_blocks map; 629 ssize_t ret = 0; 630 631 map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos); 632 map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from)); 633 if (map.m_len > map.m_lblk) 634 map.m_len -= map.m_lblk; 635 else 636 map.m_len = 0; 637 638 map.m_next_pgofs = NULL; 639 640 if (iocb->ki_flags & IOCB_DIRECT) { 641 ret = f2fs_convert_inline_inode(inode); 642 if (ret) 643 return ret; 644 return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_DIO); 645 } 646 if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA) { 647 ret = f2fs_convert_inline_inode(inode); 648 if (ret) 649 return ret; 650 } 651 if (!f2fs_has_inline_data(inode)) 652 return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO); 653 return ret; 654 } 655 656 /* 657 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with 658 * f2fs_map_blocks structure. 659 * If original data blocks are allocated, then give them to blockdev. 660 * Otherwise, 661 * a. preallocate requested block addresses 662 * b. do not use extent cache for better performance 663 * c. give the block addresses to blockdev 664 */ 665 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 666 int create, int flag) 667 { 668 unsigned int maxblocks = map->m_len; 669 struct dnode_of_data dn; 670 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 671 int mode = create ? ALLOC_NODE : LOOKUP_NODE; 672 pgoff_t pgofs, end_offset, end; 673 int err = 0, ofs = 1; 674 unsigned int ofs_in_node, last_ofs_in_node; 675 blkcnt_t prealloc; 676 struct extent_info ei; 677 bool allocated = false; 678 block_t blkaddr; 679 680 if (!maxblocks) 681 return 0; 682 683 map->m_len = 0; 684 map->m_flags = 0; 685 686 /* it only supports block size == page size */ 687 pgofs = (pgoff_t)map->m_lblk; 688 end = pgofs + maxblocks; 689 690 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) { 691 map->m_pblk = ei.blk + pgofs - ei.fofs; 692 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs); 693 map->m_flags = F2FS_MAP_MAPPED; 694 goto out; 695 } 696 697 next_dnode: 698 if (create) 699 f2fs_lock_op(sbi); 700 701 /* When reading holes, we need its node page */ 702 set_new_dnode(&dn, inode, NULL, NULL, 0); 703 err = get_dnode_of_data(&dn, pgofs, mode); 704 if (err) { 705 if (flag == F2FS_GET_BLOCK_BMAP) 706 map->m_pblk = 0; 707 if (err == -ENOENT) { 708 err = 0; 709 if (map->m_next_pgofs) 710 *map->m_next_pgofs = 711 get_next_page_offset(&dn, pgofs); 712 } 713 goto unlock_out; 714 } 715 716 prealloc = 0; 717 ofs_in_node = dn.ofs_in_node; 718 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 719 720 next_block: 721 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node); 722 723 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) { 724 if (create) { 725 if (unlikely(f2fs_cp_error(sbi))) { 726 err = -EIO; 727 goto sync_out; 728 } 729 if (flag == F2FS_GET_BLOCK_PRE_AIO) { 730 if (blkaddr == NULL_ADDR) { 731 prealloc++; 732 last_ofs_in_node = dn.ofs_in_node; 733 } 734 } else { 735 err = __allocate_data_block(&dn); 736 if (!err) { 737 set_inode_flag(inode, FI_APPEND_WRITE); 738 allocated = true; 739 } 740 } 741 if (err) 742 goto sync_out; 743 map->m_flags = F2FS_MAP_NEW; 744 blkaddr = dn.data_blkaddr; 745 } else { 746 if (flag == F2FS_GET_BLOCK_BMAP) { 747 map->m_pblk = 0; 748 goto sync_out; 749 } 750 if (flag == F2FS_GET_BLOCK_FIEMAP && 751 blkaddr == NULL_ADDR) { 752 if (map->m_next_pgofs) 753 *map->m_next_pgofs = pgofs + 1; 754 } 755 if (flag != F2FS_GET_BLOCK_FIEMAP || 756 blkaddr != NEW_ADDR) 757 goto sync_out; 758 } 759 } 760 761 if (flag == F2FS_GET_BLOCK_PRE_AIO) 762 goto skip; 763 764 if (map->m_len == 0) { 765 /* preallocated unwritten block should be mapped for fiemap. */ 766 if (blkaddr == NEW_ADDR) 767 map->m_flags |= F2FS_MAP_UNWRITTEN; 768 map->m_flags |= F2FS_MAP_MAPPED; 769 770 map->m_pblk = blkaddr; 771 map->m_len = 1; 772 } else if ((map->m_pblk != NEW_ADDR && 773 blkaddr == (map->m_pblk + ofs)) || 774 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) || 775 flag == F2FS_GET_BLOCK_PRE_DIO) { 776 ofs++; 777 map->m_len++; 778 } else { 779 goto sync_out; 780 } 781 782 skip: 783 dn.ofs_in_node++; 784 pgofs++; 785 786 /* preallocate blocks in batch for one dnode page */ 787 if (flag == F2FS_GET_BLOCK_PRE_AIO && 788 (pgofs == end || dn.ofs_in_node == end_offset)) { 789 790 dn.ofs_in_node = ofs_in_node; 791 err = reserve_new_blocks(&dn, prealloc); 792 if (err) 793 goto sync_out; 794 allocated = dn.node_changed; 795 796 map->m_len += dn.ofs_in_node - ofs_in_node; 797 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) { 798 err = -ENOSPC; 799 goto sync_out; 800 } 801 dn.ofs_in_node = end_offset; 802 } 803 804 if (pgofs >= end) 805 goto sync_out; 806 else if (dn.ofs_in_node < end_offset) 807 goto next_block; 808 809 f2fs_put_dnode(&dn); 810 811 if (create) { 812 f2fs_unlock_op(sbi); 813 f2fs_balance_fs(sbi, allocated); 814 } 815 allocated = false; 816 goto next_dnode; 817 818 sync_out: 819 f2fs_put_dnode(&dn); 820 unlock_out: 821 if (create) { 822 f2fs_unlock_op(sbi); 823 f2fs_balance_fs(sbi, allocated); 824 } 825 out: 826 trace_f2fs_map_blocks(inode, map, err); 827 return err; 828 } 829 830 static int __get_data_block(struct inode *inode, sector_t iblock, 831 struct buffer_head *bh, int create, int flag, 832 pgoff_t *next_pgofs) 833 { 834 struct f2fs_map_blocks map; 835 int ret; 836 837 map.m_lblk = iblock; 838 map.m_len = bh->b_size >> inode->i_blkbits; 839 map.m_next_pgofs = next_pgofs; 840 841 ret = f2fs_map_blocks(inode, &map, create, flag); 842 if (!ret) { 843 map_bh(bh, inode->i_sb, map.m_pblk); 844 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags; 845 bh->b_size = map.m_len << inode->i_blkbits; 846 } 847 return ret; 848 } 849 850 static int get_data_block(struct inode *inode, sector_t iblock, 851 struct buffer_head *bh_result, int create, int flag, 852 pgoff_t *next_pgofs) 853 { 854 return __get_data_block(inode, iblock, bh_result, create, 855 flag, next_pgofs); 856 } 857 858 static int get_data_block_dio(struct inode *inode, sector_t iblock, 859 struct buffer_head *bh_result, int create) 860 { 861 return __get_data_block(inode, iblock, bh_result, create, 862 F2FS_GET_BLOCK_DIO, NULL); 863 } 864 865 static int get_data_block_bmap(struct inode *inode, sector_t iblock, 866 struct buffer_head *bh_result, int create) 867 { 868 /* Block number less than F2FS MAX BLOCKS */ 869 if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks)) 870 return -EFBIG; 871 872 return __get_data_block(inode, iblock, bh_result, create, 873 F2FS_GET_BLOCK_BMAP, NULL); 874 } 875 876 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset) 877 { 878 return (offset >> inode->i_blkbits); 879 } 880 881 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk) 882 { 883 return (blk << inode->i_blkbits); 884 } 885 886 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 887 u64 start, u64 len) 888 { 889 struct buffer_head map_bh; 890 sector_t start_blk, last_blk; 891 pgoff_t next_pgofs; 892 loff_t isize; 893 u64 logical = 0, phys = 0, size = 0; 894 u32 flags = 0; 895 int ret = 0; 896 897 ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC); 898 if (ret) 899 return ret; 900 901 if (f2fs_has_inline_data(inode)) { 902 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len); 903 if (ret != -EAGAIN) 904 return ret; 905 } 906 907 inode_lock(inode); 908 909 isize = i_size_read(inode); 910 if (start >= isize) 911 goto out; 912 913 if (start + len > isize) 914 len = isize - start; 915 916 if (logical_to_blk(inode, len) == 0) 917 len = blk_to_logical(inode, 1); 918 919 start_blk = logical_to_blk(inode, start); 920 last_blk = logical_to_blk(inode, start + len - 1); 921 922 next: 923 memset(&map_bh, 0, sizeof(struct buffer_head)); 924 map_bh.b_size = len; 925 926 ret = get_data_block(inode, start_blk, &map_bh, 0, 927 F2FS_GET_BLOCK_FIEMAP, &next_pgofs); 928 if (ret) 929 goto out; 930 931 /* HOLE */ 932 if (!buffer_mapped(&map_bh)) { 933 start_blk = next_pgofs; 934 /* Go through holes util pass the EOF */ 935 if (blk_to_logical(inode, start_blk) < isize) 936 goto prep_next; 937 /* Found a hole beyond isize means no more extents. 938 * Note that the premise is that filesystems don't 939 * punch holes beyond isize and keep size unchanged. 940 */ 941 flags |= FIEMAP_EXTENT_LAST; 942 } 943 944 if (size) { 945 if (f2fs_encrypted_inode(inode)) 946 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED; 947 948 ret = fiemap_fill_next_extent(fieinfo, logical, 949 phys, size, flags); 950 } 951 952 if (start_blk > last_blk || ret) 953 goto out; 954 955 logical = blk_to_logical(inode, start_blk); 956 phys = blk_to_logical(inode, map_bh.b_blocknr); 957 size = map_bh.b_size; 958 flags = 0; 959 if (buffer_unwritten(&map_bh)) 960 flags = FIEMAP_EXTENT_UNWRITTEN; 961 962 start_blk += logical_to_blk(inode, size); 963 964 prep_next: 965 cond_resched(); 966 if (fatal_signal_pending(current)) 967 ret = -EINTR; 968 else 969 goto next; 970 out: 971 if (ret == 1) 972 ret = 0; 973 974 inode_unlock(inode); 975 return ret; 976 } 977 978 static struct bio *f2fs_grab_bio(struct inode *inode, block_t blkaddr, 979 unsigned nr_pages) 980 { 981 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 982 struct fscrypt_ctx *ctx = NULL; 983 struct block_device *bdev = sbi->sb->s_bdev; 984 struct bio *bio; 985 986 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) { 987 ctx = fscrypt_get_ctx(inode, GFP_NOFS); 988 if (IS_ERR(ctx)) 989 return ERR_CAST(ctx); 990 991 /* wait the page to be moved by cleaning */ 992 f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr); 993 } 994 995 bio = bio_alloc(GFP_KERNEL, min_t(int, nr_pages, BIO_MAX_PAGES)); 996 if (!bio) { 997 if (ctx) 998 fscrypt_release_ctx(ctx); 999 return ERR_PTR(-ENOMEM); 1000 } 1001 bio->bi_bdev = bdev; 1002 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blkaddr); 1003 bio->bi_end_io = f2fs_read_end_io; 1004 bio->bi_private = ctx; 1005 1006 return bio; 1007 } 1008 1009 /* 1010 * This function was originally taken from fs/mpage.c, and customized for f2fs. 1011 * Major change was from block_size == page_size in f2fs by default. 1012 */ 1013 static int f2fs_mpage_readpages(struct address_space *mapping, 1014 struct list_head *pages, struct page *page, 1015 unsigned nr_pages) 1016 { 1017 struct bio *bio = NULL; 1018 unsigned page_idx; 1019 sector_t last_block_in_bio = 0; 1020 struct inode *inode = mapping->host; 1021 const unsigned blkbits = inode->i_blkbits; 1022 const unsigned blocksize = 1 << blkbits; 1023 sector_t block_in_file; 1024 sector_t last_block; 1025 sector_t last_block_in_file; 1026 sector_t block_nr; 1027 struct f2fs_map_blocks map; 1028 1029 map.m_pblk = 0; 1030 map.m_lblk = 0; 1031 map.m_len = 0; 1032 map.m_flags = 0; 1033 map.m_next_pgofs = NULL; 1034 1035 for (page_idx = 0; nr_pages; page_idx++, nr_pages--) { 1036 1037 prefetchw(&page->flags); 1038 if (pages) { 1039 page = list_entry(pages->prev, struct page, lru); 1040 list_del(&page->lru); 1041 if (add_to_page_cache_lru(page, mapping, 1042 page->index, 1043 readahead_gfp_mask(mapping))) 1044 goto next_page; 1045 } 1046 1047 block_in_file = (sector_t)page->index; 1048 last_block = block_in_file + nr_pages; 1049 last_block_in_file = (i_size_read(inode) + blocksize - 1) >> 1050 blkbits; 1051 if (last_block > last_block_in_file) 1052 last_block = last_block_in_file; 1053 1054 /* 1055 * Map blocks using the previous result first. 1056 */ 1057 if ((map.m_flags & F2FS_MAP_MAPPED) && 1058 block_in_file > map.m_lblk && 1059 block_in_file < (map.m_lblk + map.m_len)) 1060 goto got_it; 1061 1062 /* 1063 * Then do more f2fs_map_blocks() calls until we are 1064 * done with this page. 1065 */ 1066 map.m_flags = 0; 1067 1068 if (block_in_file < last_block) { 1069 map.m_lblk = block_in_file; 1070 map.m_len = last_block - block_in_file; 1071 1072 if (f2fs_map_blocks(inode, &map, 0, 1073 F2FS_GET_BLOCK_READ)) 1074 goto set_error_page; 1075 } 1076 got_it: 1077 if ((map.m_flags & F2FS_MAP_MAPPED)) { 1078 block_nr = map.m_pblk + block_in_file - map.m_lblk; 1079 SetPageMappedToDisk(page); 1080 1081 if (!PageUptodate(page) && !cleancache_get_page(page)) { 1082 SetPageUptodate(page); 1083 goto confused; 1084 } 1085 } else { 1086 zero_user_segment(page, 0, PAGE_SIZE); 1087 if (!PageUptodate(page)) 1088 SetPageUptodate(page); 1089 unlock_page(page); 1090 goto next_page; 1091 } 1092 1093 /* 1094 * This page will go to BIO. Do we need to send this 1095 * BIO off first? 1096 */ 1097 if (bio && (last_block_in_bio != block_nr - 1)) { 1098 submit_and_realloc: 1099 __submit_bio(F2FS_I_SB(inode), bio, DATA); 1100 bio = NULL; 1101 } 1102 if (bio == NULL) { 1103 bio = f2fs_grab_bio(inode, block_nr, nr_pages); 1104 if (IS_ERR(bio)) { 1105 bio = NULL; 1106 goto set_error_page; 1107 } 1108 bio_set_op_attrs(bio, REQ_OP_READ, 0); 1109 } 1110 1111 if (bio_add_page(bio, page, blocksize, 0) < blocksize) 1112 goto submit_and_realloc; 1113 1114 last_block_in_bio = block_nr; 1115 goto next_page; 1116 set_error_page: 1117 SetPageError(page); 1118 zero_user_segment(page, 0, PAGE_SIZE); 1119 unlock_page(page); 1120 goto next_page; 1121 confused: 1122 if (bio) { 1123 __submit_bio(F2FS_I_SB(inode), bio, DATA); 1124 bio = NULL; 1125 } 1126 unlock_page(page); 1127 next_page: 1128 if (pages) 1129 put_page(page); 1130 } 1131 BUG_ON(pages && !list_empty(pages)); 1132 if (bio) 1133 __submit_bio(F2FS_I_SB(inode), bio, DATA); 1134 return 0; 1135 } 1136 1137 static int f2fs_read_data_page(struct file *file, struct page *page) 1138 { 1139 struct inode *inode = page->mapping->host; 1140 int ret = -EAGAIN; 1141 1142 trace_f2fs_readpage(page, DATA); 1143 1144 /* If the file has inline data, try to read it directly */ 1145 if (f2fs_has_inline_data(inode)) 1146 ret = f2fs_read_inline_data(inode, page); 1147 if (ret == -EAGAIN) 1148 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1); 1149 return ret; 1150 } 1151 1152 static int f2fs_read_data_pages(struct file *file, 1153 struct address_space *mapping, 1154 struct list_head *pages, unsigned nr_pages) 1155 { 1156 struct inode *inode = file->f_mapping->host; 1157 struct page *page = list_entry(pages->prev, struct page, lru); 1158 1159 trace_f2fs_readpages(inode, page, nr_pages); 1160 1161 /* If the file has inline data, skip readpages */ 1162 if (f2fs_has_inline_data(inode)) 1163 return 0; 1164 1165 return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages); 1166 } 1167 1168 int do_write_data_page(struct f2fs_io_info *fio) 1169 { 1170 struct page *page = fio->page; 1171 struct inode *inode = page->mapping->host; 1172 struct dnode_of_data dn; 1173 int err = 0; 1174 1175 set_new_dnode(&dn, inode, NULL, NULL, 0); 1176 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE); 1177 if (err) 1178 return err; 1179 1180 fio->old_blkaddr = dn.data_blkaddr; 1181 1182 /* This page is already truncated */ 1183 if (fio->old_blkaddr == NULL_ADDR) { 1184 ClearPageUptodate(page); 1185 goto out_writepage; 1186 } 1187 1188 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) { 1189 gfp_t gfp_flags = GFP_NOFS; 1190 1191 /* wait for GCed encrypted page writeback */ 1192 f2fs_wait_on_encrypted_page_writeback(F2FS_I_SB(inode), 1193 fio->old_blkaddr); 1194 retry_encrypt: 1195 fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page, 1196 gfp_flags); 1197 if (IS_ERR(fio->encrypted_page)) { 1198 err = PTR_ERR(fio->encrypted_page); 1199 if (err == -ENOMEM) { 1200 /* flush pending ios and wait for a while */ 1201 f2fs_flush_merged_bios(F2FS_I_SB(inode)); 1202 congestion_wait(BLK_RW_ASYNC, HZ/50); 1203 gfp_flags |= __GFP_NOFAIL; 1204 err = 0; 1205 goto retry_encrypt; 1206 } 1207 goto out_writepage; 1208 } 1209 } 1210 1211 set_page_writeback(page); 1212 1213 /* 1214 * If current allocation needs SSR, 1215 * it had better in-place writes for updated data. 1216 */ 1217 if (unlikely(fio->old_blkaddr != NEW_ADDR && 1218 !is_cold_data(page) && 1219 !IS_ATOMIC_WRITTEN_PAGE(page) && 1220 need_inplace_update(inode))) { 1221 rewrite_data_page(fio); 1222 set_inode_flag(inode, FI_UPDATE_WRITE); 1223 trace_f2fs_do_write_data_page(page, IPU); 1224 } else { 1225 write_data_page(&dn, fio); 1226 trace_f2fs_do_write_data_page(page, OPU); 1227 set_inode_flag(inode, FI_APPEND_WRITE); 1228 if (page->index == 0) 1229 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); 1230 } 1231 out_writepage: 1232 f2fs_put_dnode(&dn); 1233 return err; 1234 } 1235 1236 static int f2fs_write_data_page(struct page *page, 1237 struct writeback_control *wbc) 1238 { 1239 struct inode *inode = page->mapping->host; 1240 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1241 loff_t i_size = i_size_read(inode); 1242 const pgoff_t end_index = ((unsigned long long) i_size) 1243 >> PAGE_SHIFT; 1244 loff_t psize = (page->index + 1) << PAGE_SHIFT; 1245 unsigned offset = 0; 1246 bool need_balance_fs = false; 1247 int err = 0; 1248 struct f2fs_io_info fio = { 1249 .sbi = sbi, 1250 .type = DATA, 1251 .op = REQ_OP_WRITE, 1252 .op_flags = wbc_to_write_flags(wbc), 1253 .page = page, 1254 .encrypted_page = NULL, 1255 }; 1256 1257 trace_f2fs_writepage(page, DATA); 1258 1259 if (page->index < end_index) 1260 goto write; 1261 1262 /* 1263 * If the offset is out-of-range of file size, 1264 * this page does not have to be written to disk. 1265 */ 1266 offset = i_size & (PAGE_SIZE - 1); 1267 if ((page->index >= end_index + 1) || !offset) 1268 goto out; 1269 1270 zero_user_segment(page, offset, PAGE_SIZE); 1271 write: 1272 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1273 goto redirty_out; 1274 if (f2fs_is_drop_cache(inode)) 1275 goto out; 1276 /* we should not write 0'th page having journal header */ 1277 if (f2fs_is_volatile_file(inode) && (!page->index || 1278 (!wbc->for_reclaim && 1279 available_free_memory(sbi, BASE_CHECK)))) 1280 goto redirty_out; 1281 1282 /* we should bypass data pages to proceed the kworkder jobs */ 1283 if (unlikely(f2fs_cp_error(sbi))) { 1284 mapping_set_error(page->mapping, -EIO); 1285 goto out; 1286 } 1287 1288 /* Dentry blocks are controlled by checkpoint */ 1289 if (S_ISDIR(inode->i_mode)) { 1290 err = do_write_data_page(&fio); 1291 goto done; 1292 } 1293 1294 if (!wbc->for_reclaim) 1295 need_balance_fs = true; 1296 else if (has_not_enough_free_secs(sbi, 0, 0)) 1297 goto redirty_out; 1298 1299 err = -EAGAIN; 1300 f2fs_lock_op(sbi); 1301 if (f2fs_has_inline_data(inode)) 1302 err = f2fs_write_inline_data(inode, page); 1303 if (err == -EAGAIN) 1304 err = do_write_data_page(&fio); 1305 if (F2FS_I(inode)->last_disk_size < psize) 1306 F2FS_I(inode)->last_disk_size = psize; 1307 f2fs_unlock_op(sbi); 1308 done: 1309 if (err && err != -ENOENT) 1310 goto redirty_out; 1311 1312 clear_cold_data(page); 1313 out: 1314 inode_dec_dirty_pages(inode); 1315 if (err) 1316 ClearPageUptodate(page); 1317 1318 if (wbc->for_reclaim) { 1319 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, DATA, WRITE); 1320 remove_dirty_inode(inode); 1321 } 1322 1323 unlock_page(page); 1324 f2fs_balance_fs(sbi, need_balance_fs); 1325 1326 if (unlikely(f2fs_cp_error(sbi))) 1327 f2fs_submit_merged_bio(sbi, DATA, WRITE); 1328 1329 return 0; 1330 1331 redirty_out: 1332 redirty_page_for_writepage(wbc, page); 1333 unlock_page(page); 1334 return err; 1335 } 1336 1337 /* 1338 * This function was copied from write_cche_pages from mm/page-writeback.c. 1339 * The major change is making write step of cold data page separately from 1340 * warm/hot data page. 1341 */ 1342 static int f2fs_write_cache_pages(struct address_space *mapping, 1343 struct writeback_control *wbc) 1344 { 1345 int ret = 0; 1346 int done = 0; 1347 struct pagevec pvec; 1348 int nr_pages; 1349 pgoff_t uninitialized_var(writeback_index); 1350 pgoff_t index; 1351 pgoff_t end; /* Inclusive */ 1352 pgoff_t done_index; 1353 int cycled; 1354 int range_whole = 0; 1355 int tag; 1356 int nwritten = 0; 1357 1358 pagevec_init(&pvec, 0); 1359 1360 if (wbc->range_cyclic) { 1361 writeback_index = mapping->writeback_index; /* prev offset */ 1362 index = writeback_index; 1363 if (index == 0) 1364 cycled = 1; 1365 else 1366 cycled = 0; 1367 end = -1; 1368 } else { 1369 index = wbc->range_start >> PAGE_SHIFT; 1370 end = wbc->range_end >> PAGE_SHIFT; 1371 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 1372 range_whole = 1; 1373 cycled = 1; /* ignore range_cyclic tests */ 1374 } 1375 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 1376 tag = PAGECACHE_TAG_TOWRITE; 1377 else 1378 tag = PAGECACHE_TAG_DIRTY; 1379 retry: 1380 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 1381 tag_pages_for_writeback(mapping, index, end); 1382 done_index = index; 1383 while (!done && (index <= end)) { 1384 int i; 1385 1386 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 1387 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1); 1388 if (nr_pages == 0) 1389 break; 1390 1391 for (i = 0; i < nr_pages; i++) { 1392 struct page *page = pvec.pages[i]; 1393 1394 if (page->index > end) { 1395 done = 1; 1396 break; 1397 } 1398 1399 done_index = page->index; 1400 1401 lock_page(page); 1402 1403 if (unlikely(page->mapping != mapping)) { 1404 continue_unlock: 1405 unlock_page(page); 1406 continue; 1407 } 1408 1409 if (!PageDirty(page)) { 1410 /* someone wrote it for us */ 1411 goto continue_unlock; 1412 } 1413 1414 if (PageWriteback(page)) { 1415 if (wbc->sync_mode != WB_SYNC_NONE) 1416 f2fs_wait_on_page_writeback(page, 1417 DATA, true); 1418 else 1419 goto continue_unlock; 1420 } 1421 1422 BUG_ON(PageWriteback(page)); 1423 if (!clear_page_dirty_for_io(page)) 1424 goto continue_unlock; 1425 1426 ret = mapping->a_ops->writepage(page, wbc); 1427 if (unlikely(ret)) { 1428 done_index = page->index + 1; 1429 done = 1; 1430 break; 1431 } else { 1432 nwritten++; 1433 } 1434 1435 if (--wbc->nr_to_write <= 0 && 1436 wbc->sync_mode == WB_SYNC_NONE) { 1437 done = 1; 1438 break; 1439 } 1440 } 1441 pagevec_release(&pvec); 1442 cond_resched(); 1443 } 1444 1445 if (!cycled && !done) { 1446 cycled = 1; 1447 index = 0; 1448 end = writeback_index - 1; 1449 goto retry; 1450 } 1451 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 1452 mapping->writeback_index = done_index; 1453 1454 if (nwritten) 1455 f2fs_submit_merged_bio_cond(F2FS_M_SB(mapping), mapping->host, 1456 NULL, 0, DATA, WRITE); 1457 1458 return ret; 1459 } 1460 1461 static int f2fs_write_data_pages(struct address_space *mapping, 1462 struct writeback_control *wbc) 1463 { 1464 struct inode *inode = mapping->host; 1465 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1466 struct blk_plug plug; 1467 int ret; 1468 1469 /* deal with chardevs and other special file */ 1470 if (!mapping->a_ops->writepage) 1471 return 0; 1472 1473 /* skip writing if there is no dirty page in this inode */ 1474 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE) 1475 return 0; 1476 1477 if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE && 1478 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) && 1479 available_free_memory(sbi, DIRTY_DENTS)) 1480 goto skip_write; 1481 1482 /* skip writing during file defragment */ 1483 if (is_inode_flag_set(inode, FI_DO_DEFRAG)) 1484 goto skip_write; 1485 1486 /* during POR, we don't need to trigger writepage at all. */ 1487 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1488 goto skip_write; 1489 1490 trace_f2fs_writepages(mapping->host, wbc, DATA); 1491 1492 blk_start_plug(&plug); 1493 ret = f2fs_write_cache_pages(mapping, wbc); 1494 blk_finish_plug(&plug); 1495 /* 1496 * if some pages were truncated, we cannot guarantee its mapping->host 1497 * to detect pending bios. 1498 */ 1499 1500 remove_dirty_inode(inode); 1501 return ret; 1502 1503 skip_write: 1504 wbc->pages_skipped += get_dirty_pages(inode); 1505 trace_f2fs_writepages(mapping->host, wbc, DATA); 1506 return 0; 1507 } 1508 1509 static void f2fs_write_failed(struct address_space *mapping, loff_t to) 1510 { 1511 struct inode *inode = mapping->host; 1512 loff_t i_size = i_size_read(inode); 1513 1514 if (to > i_size) { 1515 truncate_pagecache(inode, i_size); 1516 truncate_blocks(inode, i_size, true); 1517 } 1518 } 1519 1520 static int prepare_write_begin(struct f2fs_sb_info *sbi, 1521 struct page *page, loff_t pos, unsigned len, 1522 block_t *blk_addr, bool *node_changed) 1523 { 1524 struct inode *inode = page->mapping->host; 1525 pgoff_t index = page->index; 1526 struct dnode_of_data dn; 1527 struct page *ipage; 1528 bool locked = false; 1529 struct extent_info ei; 1530 int err = 0; 1531 1532 /* 1533 * we already allocated all the blocks, so we don't need to get 1534 * the block addresses when there is no need to fill the page. 1535 */ 1536 if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE) 1537 return 0; 1538 1539 if (f2fs_has_inline_data(inode) || 1540 (pos & PAGE_MASK) >= i_size_read(inode)) { 1541 f2fs_lock_op(sbi); 1542 locked = true; 1543 } 1544 restart: 1545 /* check inline_data */ 1546 ipage = get_node_page(sbi, inode->i_ino); 1547 if (IS_ERR(ipage)) { 1548 err = PTR_ERR(ipage); 1549 goto unlock_out; 1550 } 1551 1552 set_new_dnode(&dn, inode, ipage, ipage, 0); 1553 1554 if (f2fs_has_inline_data(inode)) { 1555 if (pos + len <= MAX_INLINE_DATA) { 1556 read_inline_data(page, ipage); 1557 set_inode_flag(inode, FI_DATA_EXIST); 1558 if (inode->i_nlink) 1559 set_inline_node(ipage); 1560 } else { 1561 err = f2fs_convert_inline_page(&dn, page); 1562 if (err) 1563 goto out; 1564 if (dn.data_blkaddr == NULL_ADDR) 1565 err = f2fs_get_block(&dn, index); 1566 } 1567 } else if (locked) { 1568 err = f2fs_get_block(&dn, index); 1569 } else { 1570 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 1571 dn.data_blkaddr = ei.blk + index - ei.fofs; 1572 } else { 1573 /* hole case */ 1574 err = get_dnode_of_data(&dn, index, LOOKUP_NODE); 1575 if (err || dn.data_blkaddr == NULL_ADDR) { 1576 f2fs_put_dnode(&dn); 1577 f2fs_lock_op(sbi); 1578 locked = true; 1579 goto restart; 1580 } 1581 } 1582 } 1583 1584 /* convert_inline_page can make node_changed */ 1585 *blk_addr = dn.data_blkaddr; 1586 *node_changed = dn.node_changed; 1587 out: 1588 f2fs_put_dnode(&dn); 1589 unlock_out: 1590 if (locked) 1591 f2fs_unlock_op(sbi); 1592 return err; 1593 } 1594 1595 static int f2fs_write_begin(struct file *file, struct address_space *mapping, 1596 loff_t pos, unsigned len, unsigned flags, 1597 struct page **pagep, void **fsdata) 1598 { 1599 struct inode *inode = mapping->host; 1600 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1601 struct page *page = NULL; 1602 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT; 1603 bool need_balance = false; 1604 block_t blkaddr = NULL_ADDR; 1605 int err = 0; 1606 1607 trace_f2fs_write_begin(inode, pos, len, flags); 1608 1609 /* 1610 * We should check this at this moment to avoid deadlock on inode page 1611 * and #0 page. The locking rule for inline_data conversion should be: 1612 * lock_page(page #0) -> lock_page(inode_page) 1613 */ 1614 if (index != 0) { 1615 err = f2fs_convert_inline_inode(inode); 1616 if (err) 1617 goto fail; 1618 } 1619 repeat: 1620 page = grab_cache_page_write_begin(mapping, index, flags); 1621 if (!page) { 1622 err = -ENOMEM; 1623 goto fail; 1624 } 1625 1626 *pagep = page; 1627 1628 err = prepare_write_begin(sbi, page, pos, len, 1629 &blkaddr, &need_balance); 1630 if (err) 1631 goto fail; 1632 1633 if (need_balance && has_not_enough_free_secs(sbi, 0, 0)) { 1634 unlock_page(page); 1635 f2fs_balance_fs(sbi, true); 1636 lock_page(page); 1637 if (page->mapping != mapping) { 1638 /* The page got truncated from under us */ 1639 f2fs_put_page(page, 1); 1640 goto repeat; 1641 } 1642 } 1643 1644 f2fs_wait_on_page_writeback(page, DATA, false); 1645 1646 /* wait for GCed encrypted page writeback */ 1647 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) 1648 f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr); 1649 1650 if (len == PAGE_SIZE || PageUptodate(page)) 1651 return 0; 1652 1653 if (blkaddr == NEW_ADDR) { 1654 zero_user_segment(page, 0, PAGE_SIZE); 1655 SetPageUptodate(page); 1656 } else { 1657 struct bio *bio; 1658 1659 bio = f2fs_grab_bio(inode, blkaddr, 1); 1660 if (IS_ERR(bio)) { 1661 err = PTR_ERR(bio); 1662 goto fail; 1663 } 1664 bio->bi_opf = REQ_OP_READ; 1665 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 1666 bio_put(bio); 1667 err = -EFAULT; 1668 goto fail; 1669 } 1670 1671 __submit_bio(sbi, bio, DATA); 1672 1673 lock_page(page); 1674 if (unlikely(page->mapping != mapping)) { 1675 f2fs_put_page(page, 1); 1676 goto repeat; 1677 } 1678 if (unlikely(!PageUptodate(page))) { 1679 err = -EIO; 1680 goto fail; 1681 } 1682 } 1683 return 0; 1684 1685 fail: 1686 f2fs_put_page(page, 1); 1687 f2fs_write_failed(mapping, pos + len); 1688 return err; 1689 } 1690 1691 static int f2fs_write_end(struct file *file, 1692 struct address_space *mapping, 1693 loff_t pos, unsigned len, unsigned copied, 1694 struct page *page, void *fsdata) 1695 { 1696 struct inode *inode = page->mapping->host; 1697 1698 trace_f2fs_write_end(inode, pos, len, copied); 1699 1700 /* 1701 * This should be come from len == PAGE_SIZE, and we expect copied 1702 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and 1703 * let generic_perform_write() try to copy data again through copied=0. 1704 */ 1705 if (!PageUptodate(page)) { 1706 if (unlikely(copied != PAGE_SIZE)) 1707 copied = 0; 1708 else 1709 SetPageUptodate(page); 1710 } 1711 if (!copied) 1712 goto unlock_out; 1713 1714 set_page_dirty(page); 1715 clear_cold_data(page); 1716 1717 if (pos + copied > i_size_read(inode)) 1718 f2fs_i_size_write(inode, pos + copied); 1719 unlock_out: 1720 f2fs_put_page(page, 1); 1721 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 1722 return copied; 1723 } 1724 1725 static int check_direct_IO(struct inode *inode, struct iov_iter *iter, 1726 loff_t offset) 1727 { 1728 unsigned blocksize_mask = inode->i_sb->s_blocksize - 1; 1729 1730 if (offset & blocksize_mask) 1731 return -EINVAL; 1732 1733 if (iov_iter_alignment(iter) & blocksize_mask) 1734 return -EINVAL; 1735 1736 return 0; 1737 } 1738 1739 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 1740 { 1741 struct address_space *mapping = iocb->ki_filp->f_mapping; 1742 struct inode *inode = mapping->host; 1743 size_t count = iov_iter_count(iter); 1744 loff_t offset = iocb->ki_pos; 1745 int rw = iov_iter_rw(iter); 1746 int err; 1747 1748 err = check_direct_IO(inode, iter, offset); 1749 if (err) 1750 return err; 1751 1752 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) 1753 return 0; 1754 if (test_opt(F2FS_I_SB(inode), LFS)) 1755 return 0; 1756 1757 trace_f2fs_direct_IO_enter(inode, offset, count, rw); 1758 1759 down_read(&F2FS_I(inode)->dio_rwsem[rw]); 1760 err = blockdev_direct_IO(iocb, inode, iter, get_data_block_dio); 1761 up_read(&F2FS_I(inode)->dio_rwsem[rw]); 1762 1763 if (rw == WRITE) { 1764 if (err > 0) 1765 set_inode_flag(inode, FI_UPDATE_WRITE); 1766 else if (err < 0) 1767 f2fs_write_failed(mapping, offset + count); 1768 } 1769 1770 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err); 1771 1772 return err; 1773 } 1774 1775 void f2fs_invalidate_page(struct page *page, unsigned int offset, 1776 unsigned int length) 1777 { 1778 struct inode *inode = page->mapping->host; 1779 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1780 1781 if (inode->i_ino >= F2FS_ROOT_INO(sbi) && 1782 (offset % PAGE_SIZE || length != PAGE_SIZE)) 1783 return; 1784 1785 if (PageDirty(page)) { 1786 if (inode->i_ino == F2FS_META_INO(sbi)) 1787 dec_page_count(sbi, F2FS_DIRTY_META); 1788 else if (inode->i_ino == F2FS_NODE_INO(sbi)) 1789 dec_page_count(sbi, F2FS_DIRTY_NODES); 1790 else 1791 inode_dec_dirty_pages(inode); 1792 } 1793 1794 /* This is atomic written page, keep Private */ 1795 if (IS_ATOMIC_WRITTEN_PAGE(page)) 1796 return; 1797 1798 set_page_private(page, 0); 1799 ClearPagePrivate(page); 1800 } 1801 1802 int f2fs_release_page(struct page *page, gfp_t wait) 1803 { 1804 /* If this is dirty page, keep PagePrivate */ 1805 if (PageDirty(page)) 1806 return 0; 1807 1808 /* This is atomic written page, keep Private */ 1809 if (IS_ATOMIC_WRITTEN_PAGE(page)) 1810 return 0; 1811 1812 set_page_private(page, 0); 1813 ClearPagePrivate(page); 1814 return 1; 1815 } 1816 1817 /* 1818 * This was copied from __set_page_dirty_buffers which gives higher performance 1819 * in very high speed storages. (e.g., pmem) 1820 */ 1821 void f2fs_set_page_dirty_nobuffers(struct page *page) 1822 { 1823 struct address_space *mapping = page->mapping; 1824 unsigned long flags; 1825 1826 if (unlikely(!mapping)) 1827 return; 1828 1829 spin_lock(&mapping->private_lock); 1830 lock_page_memcg(page); 1831 SetPageDirty(page); 1832 spin_unlock(&mapping->private_lock); 1833 1834 spin_lock_irqsave(&mapping->tree_lock, flags); 1835 WARN_ON_ONCE(!PageUptodate(page)); 1836 account_page_dirtied(page, mapping); 1837 radix_tree_tag_set(&mapping->page_tree, 1838 page_index(page), PAGECACHE_TAG_DIRTY); 1839 spin_unlock_irqrestore(&mapping->tree_lock, flags); 1840 unlock_page_memcg(page); 1841 1842 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1843 return; 1844 } 1845 1846 static int f2fs_set_data_page_dirty(struct page *page) 1847 { 1848 struct address_space *mapping = page->mapping; 1849 struct inode *inode = mapping->host; 1850 1851 trace_f2fs_set_page_dirty(page, DATA); 1852 1853 if (!PageUptodate(page)) 1854 SetPageUptodate(page); 1855 1856 if (f2fs_is_atomic_file(inode)) { 1857 if (!IS_ATOMIC_WRITTEN_PAGE(page)) { 1858 register_inmem_page(inode, page); 1859 return 1; 1860 } 1861 /* 1862 * Previously, this page has been registered, we just 1863 * return here. 1864 */ 1865 return 0; 1866 } 1867 1868 if (!PageDirty(page)) { 1869 f2fs_set_page_dirty_nobuffers(page); 1870 update_dirty_page(inode, page); 1871 return 1; 1872 } 1873 return 0; 1874 } 1875 1876 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block) 1877 { 1878 struct inode *inode = mapping->host; 1879 1880 if (f2fs_has_inline_data(inode)) 1881 return 0; 1882 1883 /* make sure allocating whole blocks */ 1884 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 1885 filemap_write_and_wait(mapping); 1886 1887 return generic_block_bmap(mapping, block, get_data_block_bmap); 1888 } 1889 1890 #ifdef CONFIG_MIGRATION 1891 #include <linux/migrate.h> 1892 1893 int f2fs_migrate_page(struct address_space *mapping, 1894 struct page *newpage, struct page *page, enum migrate_mode mode) 1895 { 1896 int rc, extra_count; 1897 struct f2fs_inode_info *fi = F2FS_I(mapping->host); 1898 bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page); 1899 1900 BUG_ON(PageWriteback(page)); 1901 1902 /* migrating an atomic written page is safe with the inmem_lock hold */ 1903 if (atomic_written && !mutex_trylock(&fi->inmem_lock)) 1904 return -EAGAIN; 1905 1906 /* 1907 * A reference is expected if PagePrivate set when move mapping, 1908 * however F2FS breaks this for maintaining dirty page counts when 1909 * truncating pages. So here adjusting the 'extra_count' make it work. 1910 */ 1911 extra_count = (atomic_written ? 1 : 0) - page_has_private(page); 1912 rc = migrate_page_move_mapping(mapping, newpage, 1913 page, NULL, mode, extra_count); 1914 if (rc != MIGRATEPAGE_SUCCESS) { 1915 if (atomic_written) 1916 mutex_unlock(&fi->inmem_lock); 1917 return rc; 1918 } 1919 1920 if (atomic_written) { 1921 struct inmem_pages *cur; 1922 list_for_each_entry(cur, &fi->inmem_pages, list) 1923 if (cur->page == page) { 1924 cur->page = newpage; 1925 break; 1926 } 1927 mutex_unlock(&fi->inmem_lock); 1928 put_page(page); 1929 get_page(newpage); 1930 } 1931 1932 if (PagePrivate(page)) 1933 SetPagePrivate(newpage); 1934 set_page_private(newpage, page_private(page)); 1935 1936 migrate_page_copy(newpage, page); 1937 1938 return MIGRATEPAGE_SUCCESS; 1939 } 1940 #endif 1941 1942 const struct address_space_operations f2fs_dblock_aops = { 1943 .readpage = f2fs_read_data_page, 1944 .readpages = f2fs_read_data_pages, 1945 .writepage = f2fs_write_data_page, 1946 .writepages = f2fs_write_data_pages, 1947 .write_begin = f2fs_write_begin, 1948 .write_end = f2fs_write_end, 1949 .set_page_dirty = f2fs_set_data_page_dirty, 1950 .invalidatepage = f2fs_invalidate_page, 1951 .releasepage = f2fs_release_page, 1952 .direct_IO = f2fs_direct_IO, 1953 .bmap = f2fs_bmap, 1954 #ifdef CONFIG_MIGRATION 1955 .migratepage = f2fs_migrate_page, 1956 #endif 1957 }; 1958