xref: /linux/fs/f2fs/data.c (revision 6beeaf48db6c548fcfc2ad32739d33af2fef3a5b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/data.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/mpage.h>
12 #include <linux/writeback.h>
13 #include <linux/backing-dev.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/blk-crypto.h>
18 #include <linux/swap.h>
19 #include <linux/prefetch.h>
20 #include <linux/uio.h>
21 #include <linux/cleancache.h>
22 #include <linux/sched/signal.h>
23 #include <linux/fiemap.h>
24 
25 #include "f2fs.h"
26 #include "node.h"
27 #include "segment.h"
28 #include "iostat.h"
29 #include <trace/events/f2fs.h>
30 
31 #define NUM_PREALLOC_POST_READ_CTXS	128
32 
33 static struct kmem_cache *bio_post_read_ctx_cache;
34 static struct kmem_cache *bio_entry_slab;
35 static mempool_t *bio_post_read_ctx_pool;
36 static struct bio_set f2fs_bioset;
37 
38 #define	F2FS_BIO_POOL_SIZE	NR_CURSEG_TYPE
39 
40 int __init f2fs_init_bioset(void)
41 {
42 	if (bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
43 					0, BIOSET_NEED_BVECS))
44 		return -ENOMEM;
45 	return 0;
46 }
47 
48 void f2fs_destroy_bioset(void)
49 {
50 	bioset_exit(&f2fs_bioset);
51 }
52 
53 static bool __is_cp_guaranteed(struct page *page)
54 {
55 	struct address_space *mapping = page->mapping;
56 	struct inode *inode;
57 	struct f2fs_sb_info *sbi;
58 
59 	if (!mapping)
60 		return false;
61 
62 	inode = mapping->host;
63 	sbi = F2FS_I_SB(inode);
64 
65 	if (inode->i_ino == F2FS_META_INO(sbi) ||
66 			inode->i_ino == F2FS_NODE_INO(sbi) ||
67 			S_ISDIR(inode->i_mode))
68 		return true;
69 
70 	if (f2fs_is_compressed_page(page))
71 		return false;
72 	if ((S_ISREG(inode->i_mode) &&
73 			(f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) ||
74 			page_private_gcing(page))
75 		return true;
76 	return false;
77 }
78 
79 static enum count_type __read_io_type(struct page *page)
80 {
81 	struct address_space *mapping = page_file_mapping(page);
82 
83 	if (mapping) {
84 		struct inode *inode = mapping->host;
85 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
86 
87 		if (inode->i_ino == F2FS_META_INO(sbi))
88 			return F2FS_RD_META;
89 
90 		if (inode->i_ino == F2FS_NODE_INO(sbi))
91 			return F2FS_RD_NODE;
92 	}
93 	return F2FS_RD_DATA;
94 }
95 
96 /* postprocessing steps for read bios */
97 enum bio_post_read_step {
98 #ifdef CONFIG_FS_ENCRYPTION
99 	STEP_DECRYPT	= 1 << 0,
100 #else
101 	STEP_DECRYPT	= 0,	/* compile out the decryption-related code */
102 #endif
103 #ifdef CONFIG_F2FS_FS_COMPRESSION
104 	STEP_DECOMPRESS	= 1 << 1,
105 #else
106 	STEP_DECOMPRESS	= 0,	/* compile out the decompression-related code */
107 #endif
108 #ifdef CONFIG_FS_VERITY
109 	STEP_VERITY	= 1 << 2,
110 #else
111 	STEP_VERITY	= 0,	/* compile out the verity-related code */
112 #endif
113 };
114 
115 struct bio_post_read_ctx {
116 	struct bio *bio;
117 	struct f2fs_sb_info *sbi;
118 	struct work_struct work;
119 	unsigned int enabled_steps;
120 	block_t fs_blkaddr;
121 };
122 
123 static void f2fs_finish_read_bio(struct bio *bio)
124 {
125 	struct bio_vec *bv;
126 	struct bvec_iter_all iter_all;
127 
128 	/*
129 	 * Update and unlock the bio's pagecache pages, and put the
130 	 * decompression context for any compressed pages.
131 	 */
132 	bio_for_each_segment_all(bv, bio, iter_all) {
133 		struct page *page = bv->bv_page;
134 
135 		if (f2fs_is_compressed_page(page)) {
136 			if (bio->bi_status)
137 				f2fs_end_read_compressed_page(page, true, 0);
138 			f2fs_put_page_dic(page);
139 			continue;
140 		}
141 
142 		/* PG_error was set if decryption or verity failed. */
143 		if (bio->bi_status || PageError(page)) {
144 			ClearPageUptodate(page);
145 			/* will re-read again later */
146 			ClearPageError(page);
147 		} else {
148 			SetPageUptodate(page);
149 		}
150 		dec_page_count(F2FS_P_SB(page), __read_io_type(page));
151 		unlock_page(page);
152 	}
153 
154 	if (bio->bi_private)
155 		mempool_free(bio->bi_private, bio_post_read_ctx_pool);
156 	bio_put(bio);
157 }
158 
159 static void f2fs_verify_bio(struct work_struct *work)
160 {
161 	struct bio_post_read_ctx *ctx =
162 		container_of(work, struct bio_post_read_ctx, work);
163 	struct bio *bio = ctx->bio;
164 	bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
165 
166 	/*
167 	 * fsverity_verify_bio() may call readpages() again, and while verity
168 	 * will be disabled for this, decryption and/or decompression may still
169 	 * be needed, resulting in another bio_post_read_ctx being allocated.
170 	 * So to prevent deadlocks we need to release the current ctx to the
171 	 * mempool first.  This assumes that verity is the last post-read step.
172 	 */
173 	mempool_free(ctx, bio_post_read_ctx_pool);
174 	bio->bi_private = NULL;
175 
176 	/*
177 	 * Verify the bio's pages with fs-verity.  Exclude compressed pages,
178 	 * as those were handled separately by f2fs_end_read_compressed_page().
179 	 */
180 	if (may_have_compressed_pages) {
181 		struct bio_vec *bv;
182 		struct bvec_iter_all iter_all;
183 
184 		bio_for_each_segment_all(bv, bio, iter_all) {
185 			struct page *page = bv->bv_page;
186 
187 			if (!f2fs_is_compressed_page(page) &&
188 			    !PageError(page) && !fsverity_verify_page(page))
189 				SetPageError(page);
190 		}
191 	} else {
192 		fsverity_verify_bio(bio);
193 	}
194 
195 	f2fs_finish_read_bio(bio);
196 }
197 
198 /*
199  * If the bio's data needs to be verified with fs-verity, then enqueue the
200  * verity work for the bio.  Otherwise finish the bio now.
201  *
202  * Note that to avoid deadlocks, the verity work can't be done on the
203  * decryption/decompression workqueue.  This is because verifying the data pages
204  * can involve reading verity metadata pages from the file, and these verity
205  * metadata pages may be encrypted and/or compressed.
206  */
207 static void f2fs_verify_and_finish_bio(struct bio *bio)
208 {
209 	struct bio_post_read_ctx *ctx = bio->bi_private;
210 
211 	if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
212 		INIT_WORK(&ctx->work, f2fs_verify_bio);
213 		fsverity_enqueue_verify_work(&ctx->work);
214 	} else {
215 		f2fs_finish_read_bio(bio);
216 	}
217 }
218 
219 /*
220  * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
221  * remaining page was read by @ctx->bio.
222  *
223  * Note that a bio may span clusters (even a mix of compressed and uncompressed
224  * clusters) or be for just part of a cluster.  STEP_DECOMPRESS just indicates
225  * that the bio includes at least one compressed page.  The actual decompression
226  * is done on a per-cluster basis, not a per-bio basis.
227  */
228 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx)
229 {
230 	struct bio_vec *bv;
231 	struct bvec_iter_all iter_all;
232 	bool all_compressed = true;
233 	block_t blkaddr = ctx->fs_blkaddr;
234 
235 	bio_for_each_segment_all(bv, ctx->bio, iter_all) {
236 		struct page *page = bv->bv_page;
237 
238 		/* PG_error was set if decryption failed. */
239 		if (f2fs_is_compressed_page(page))
240 			f2fs_end_read_compressed_page(page, PageError(page),
241 						blkaddr);
242 		else
243 			all_compressed = false;
244 
245 		blkaddr++;
246 	}
247 
248 	/*
249 	 * Optimization: if all the bio's pages are compressed, then scheduling
250 	 * the per-bio verity work is unnecessary, as verity will be fully
251 	 * handled at the compression cluster level.
252 	 */
253 	if (all_compressed)
254 		ctx->enabled_steps &= ~STEP_VERITY;
255 }
256 
257 static void f2fs_post_read_work(struct work_struct *work)
258 {
259 	struct bio_post_read_ctx *ctx =
260 		container_of(work, struct bio_post_read_ctx, work);
261 
262 	if (ctx->enabled_steps & STEP_DECRYPT)
263 		fscrypt_decrypt_bio(ctx->bio);
264 
265 	if (ctx->enabled_steps & STEP_DECOMPRESS)
266 		f2fs_handle_step_decompress(ctx);
267 
268 	f2fs_verify_and_finish_bio(ctx->bio);
269 }
270 
271 static void f2fs_read_end_io(struct bio *bio)
272 {
273 	struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
274 	struct bio_post_read_ctx *ctx;
275 
276 	iostat_update_and_unbind_ctx(bio, 0);
277 	ctx = bio->bi_private;
278 
279 	if (time_to_inject(sbi, FAULT_READ_IO)) {
280 		f2fs_show_injection_info(sbi, FAULT_READ_IO);
281 		bio->bi_status = BLK_STS_IOERR;
282 	}
283 
284 	if (bio->bi_status) {
285 		f2fs_finish_read_bio(bio);
286 		return;
287 	}
288 
289 	if (ctx && (ctx->enabled_steps & (STEP_DECRYPT | STEP_DECOMPRESS))) {
290 		INIT_WORK(&ctx->work, f2fs_post_read_work);
291 		queue_work(ctx->sbi->post_read_wq, &ctx->work);
292 	} else {
293 		f2fs_verify_and_finish_bio(bio);
294 	}
295 }
296 
297 static void f2fs_write_end_io(struct bio *bio)
298 {
299 	struct f2fs_sb_info *sbi;
300 	struct bio_vec *bvec;
301 	struct bvec_iter_all iter_all;
302 
303 	iostat_update_and_unbind_ctx(bio, 1);
304 	sbi = bio->bi_private;
305 
306 	if (time_to_inject(sbi, FAULT_WRITE_IO)) {
307 		f2fs_show_injection_info(sbi, FAULT_WRITE_IO);
308 		bio->bi_status = BLK_STS_IOERR;
309 	}
310 
311 	bio_for_each_segment_all(bvec, bio, iter_all) {
312 		struct page *page = bvec->bv_page;
313 		enum count_type type = WB_DATA_TYPE(page);
314 
315 		if (page_private_dummy(page)) {
316 			clear_page_private_dummy(page);
317 			unlock_page(page);
318 			mempool_free(page, sbi->write_io_dummy);
319 
320 			if (unlikely(bio->bi_status))
321 				f2fs_stop_checkpoint(sbi, true);
322 			continue;
323 		}
324 
325 		fscrypt_finalize_bounce_page(&page);
326 
327 #ifdef CONFIG_F2FS_FS_COMPRESSION
328 		if (f2fs_is_compressed_page(page)) {
329 			f2fs_compress_write_end_io(bio, page);
330 			continue;
331 		}
332 #endif
333 
334 		if (unlikely(bio->bi_status)) {
335 			mapping_set_error(page->mapping, -EIO);
336 			if (type == F2FS_WB_CP_DATA)
337 				f2fs_stop_checkpoint(sbi, true);
338 		}
339 
340 		f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
341 					page->index != nid_of_node(page));
342 
343 		dec_page_count(sbi, type);
344 		if (f2fs_in_warm_node_list(sbi, page))
345 			f2fs_del_fsync_node_entry(sbi, page);
346 		clear_page_private_gcing(page);
347 		end_page_writeback(page);
348 	}
349 	if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
350 				wq_has_sleeper(&sbi->cp_wait))
351 		wake_up(&sbi->cp_wait);
352 
353 	bio_put(bio);
354 }
355 
356 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
357 				block_t blk_addr, struct bio *bio)
358 {
359 	struct block_device *bdev = sbi->sb->s_bdev;
360 	int i;
361 
362 	if (f2fs_is_multi_device(sbi)) {
363 		for (i = 0; i < sbi->s_ndevs; i++) {
364 			if (FDEV(i).start_blk <= blk_addr &&
365 			    FDEV(i).end_blk >= blk_addr) {
366 				blk_addr -= FDEV(i).start_blk;
367 				bdev = FDEV(i).bdev;
368 				break;
369 			}
370 		}
371 	}
372 	if (bio) {
373 		bio_set_dev(bio, bdev);
374 		bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
375 	}
376 	return bdev;
377 }
378 
379 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
380 {
381 	int i;
382 
383 	if (!f2fs_is_multi_device(sbi))
384 		return 0;
385 
386 	for (i = 0; i < sbi->s_ndevs; i++)
387 		if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
388 			return i;
389 	return 0;
390 }
391 
392 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
393 {
394 	struct f2fs_sb_info *sbi = fio->sbi;
395 	struct bio *bio;
396 
397 	bio = bio_alloc_bioset(GFP_NOIO, npages, &f2fs_bioset);
398 
399 	f2fs_target_device(sbi, fio->new_blkaddr, bio);
400 	if (is_read_io(fio->op)) {
401 		bio->bi_end_io = f2fs_read_end_io;
402 		bio->bi_private = NULL;
403 	} else {
404 		bio->bi_end_io = f2fs_write_end_io;
405 		bio->bi_private = sbi;
406 		bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi,
407 						fio->type, fio->temp);
408 	}
409 	iostat_alloc_and_bind_ctx(sbi, bio, NULL);
410 
411 	if (fio->io_wbc)
412 		wbc_init_bio(fio->io_wbc, bio);
413 
414 	return bio;
415 }
416 
417 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
418 				  pgoff_t first_idx,
419 				  const struct f2fs_io_info *fio,
420 				  gfp_t gfp_mask)
421 {
422 	/*
423 	 * The f2fs garbage collector sets ->encrypted_page when it wants to
424 	 * read/write raw data without encryption.
425 	 */
426 	if (!fio || !fio->encrypted_page)
427 		fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
428 }
429 
430 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
431 				     pgoff_t next_idx,
432 				     const struct f2fs_io_info *fio)
433 {
434 	/*
435 	 * The f2fs garbage collector sets ->encrypted_page when it wants to
436 	 * read/write raw data without encryption.
437 	 */
438 	if (fio && fio->encrypted_page)
439 		return !bio_has_crypt_ctx(bio);
440 
441 	return fscrypt_mergeable_bio(bio, inode, next_idx);
442 }
443 
444 static inline void __submit_bio(struct f2fs_sb_info *sbi,
445 				struct bio *bio, enum page_type type)
446 {
447 	if (!is_read_io(bio_op(bio))) {
448 		unsigned int start;
449 
450 		if (type != DATA && type != NODE)
451 			goto submit_io;
452 
453 		if (f2fs_lfs_mode(sbi) && current->plug)
454 			blk_finish_plug(current->plug);
455 
456 		if (!F2FS_IO_ALIGNED(sbi))
457 			goto submit_io;
458 
459 		start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
460 		start %= F2FS_IO_SIZE(sbi);
461 
462 		if (start == 0)
463 			goto submit_io;
464 
465 		/* fill dummy pages */
466 		for (; start < F2FS_IO_SIZE(sbi); start++) {
467 			struct page *page =
468 				mempool_alloc(sbi->write_io_dummy,
469 					      GFP_NOIO | __GFP_NOFAIL);
470 			f2fs_bug_on(sbi, !page);
471 
472 			lock_page(page);
473 
474 			zero_user_segment(page, 0, PAGE_SIZE);
475 			set_page_private_dummy(page);
476 
477 			if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
478 				f2fs_bug_on(sbi, 1);
479 		}
480 		/*
481 		 * In the NODE case, we lose next block address chain. So, we
482 		 * need to do checkpoint in f2fs_sync_file.
483 		 */
484 		if (type == NODE)
485 			set_sbi_flag(sbi, SBI_NEED_CP);
486 	}
487 submit_io:
488 	if (is_read_io(bio_op(bio)))
489 		trace_f2fs_submit_read_bio(sbi->sb, type, bio);
490 	else
491 		trace_f2fs_submit_write_bio(sbi->sb, type, bio);
492 
493 	iostat_update_submit_ctx(bio, type);
494 	submit_bio(bio);
495 }
496 
497 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
498 				struct bio *bio, enum page_type type)
499 {
500 	__submit_bio(sbi, bio, type);
501 }
502 
503 static void __attach_io_flag(struct f2fs_io_info *fio)
504 {
505 	struct f2fs_sb_info *sbi = fio->sbi;
506 	unsigned int temp_mask = (1 << NR_TEMP_TYPE) - 1;
507 	unsigned int io_flag, fua_flag, meta_flag;
508 
509 	if (fio->type == DATA)
510 		io_flag = sbi->data_io_flag;
511 	else if (fio->type == NODE)
512 		io_flag = sbi->node_io_flag;
513 	else
514 		return;
515 
516 	fua_flag = io_flag & temp_mask;
517 	meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
518 
519 	/*
520 	 * data/node io flag bits per temp:
521 	 *      REQ_META     |      REQ_FUA      |
522 	 *    5 |    4 |   3 |    2 |    1 |   0 |
523 	 * Cold | Warm | Hot | Cold | Warm | Hot |
524 	 */
525 	if ((1 << fio->temp) & meta_flag)
526 		fio->op_flags |= REQ_META;
527 	if ((1 << fio->temp) & fua_flag)
528 		fio->op_flags |= REQ_FUA;
529 }
530 
531 static void __submit_merged_bio(struct f2fs_bio_info *io)
532 {
533 	struct f2fs_io_info *fio = &io->fio;
534 
535 	if (!io->bio)
536 		return;
537 
538 	__attach_io_flag(fio);
539 	bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
540 
541 	if (is_read_io(fio->op))
542 		trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
543 	else
544 		trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
545 
546 	__submit_bio(io->sbi, io->bio, fio->type);
547 	io->bio = NULL;
548 }
549 
550 static bool __has_merged_page(struct bio *bio, struct inode *inode,
551 						struct page *page, nid_t ino)
552 {
553 	struct bio_vec *bvec;
554 	struct bvec_iter_all iter_all;
555 
556 	if (!bio)
557 		return false;
558 
559 	if (!inode && !page && !ino)
560 		return true;
561 
562 	bio_for_each_segment_all(bvec, bio, iter_all) {
563 		struct page *target = bvec->bv_page;
564 
565 		if (fscrypt_is_bounce_page(target)) {
566 			target = fscrypt_pagecache_page(target);
567 			if (IS_ERR(target))
568 				continue;
569 		}
570 		if (f2fs_is_compressed_page(target)) {
571 			target = f2fs_compress_control_page(target);
572 			if (IS_ERR(target))
573 				continue;
574 		}
575 
576 		if (inode && inode == target->mapping->host)
577 			return true;
578 		if (page && page == target)
579 			return true;
580 		if (ino && ino == ino_of_node(target))
581 			return true;
582 	}
583 
584 	return false;
585 }
586 
587 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
588 				enum page_type type, enum temp_type temp)
589 {
590 	enum page_type btype = PAGE_TYPE_OF_BIO(type);
591 	struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
592 
593 	down_write(&io->io_rwsem);
594 
595 	/* change META to META_FLUSH in the checkpoint procedure */
596 	if (type >= META_FLUSH) {
597 		io->fio.type = META_FLUSH;
598 		io->fio.op = REQ_OP_WRITE;
599 		io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
600 		if (!test_opt(sbi, NOBARRIER))
601 			io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
602 	}
603 	__submit_merged_bio(io);
604 	up_write(&io->io_rwsem);
605 }
606 
607 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
608 				struct inode *inode, struct page *page,
609 				nid_t ino, enum page_type type, bool force)
610 {
611 	enum temp_type temp;
612 	bool ret = true;
613 
614 	for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
615 		if (!force)	{
616 			enum page_type btype = PAGE_TYPE_OF_BIO(type);
617 			struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
618 
619 			down_read(&io->io_rwsem);
620 			ret = __has_merged_page(io->bio, inode, page, ino);
621 			up_read(&io->io_rwsem);
622 		}
623 		if (ret)
624 			__f2fs_submit_merged_write(sbi, type, temp);
625 
626 		/* TODO: use HOT temp only for meta pages now. */
627 		if (type >= META)
628 			break;
629 	}
630 }
631 
632 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
633 {
634 	__submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
635 }
636 
637 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
638 				struct inode *inode, struct page *page,
639 				nid_t ino, enum page_type type)
640 {
641 	__submit_merged_write_cond(sbi, inode, page, ino, type, false);
642 }
643 
644 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
645 {
646 	f2fs_submit_merged_write(sbi, DATA);
647 	f2fs_submit_merged_write(sbi, NODE);
648 	f2fs_submit_merged_write(sbi, META);
649 }
650 
651 /*
652  * Fill the locked page with data located in the block address.
653  * A caller needs to unlock the page on failure.
654  */
655 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
656 {
657 	struct bio *bio;
658 	struct page *page = fio->encrypted_page ?
659 			fio->encrypted_page : fio->page;
660 
661 	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
662 			fio->is_por ? META_POR : (__is_meta_io(fio) ?
663 			META_GENERIC : DATA_GENERIC_ENHANCE)))
664 		return -EFSCORRUPTED;
665 
666 	trace_f2fs_submit_page_bio(page, fio);
667 
668 	/* Allocate a new bio */
669 	bio = __bio_alloc(fio, 1);
670 
671 	f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
672 			       fio->page->index, fio, GFP_NOIO);
673 
674 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
675 		bio_put(bio);
676 		return -EFAULT;
677 	}
678 
679 	if (fio->io_wbc && !is_read_io(fio->op))
680 		wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
681 
682 	__attach_io_flag(fio);
683 	bio_set_op_attrs(bio, fio->op, fio->op_flags);
684 
685 	inc_page_count(fio->sbi, is_read_io(fio->op) ?
686 			__read_io_type(page): WB_DATA_TYPE(fio->page));
687 
688 	__submit_bio(fio->sbi, bio, fio->type);
689 	return 0;
690 }
691 
692 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
693 				block_t last_blkaddr, block_t cur_blkaddr)
694 {
695 	if (unlikely(sbi->max_io_bytes &&
696 			bio->bi_iter.bi_size >= sbi->max_io_bytes))
697 		return false;
698 	if (last_blkaddr + 1 != cur_blkaddr)
699 		return false;
700 	return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL);
701 }
702 
703 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
704 						struct f2fs_io_info *fio)
705 {
706 	if (io->fio.op != fio->op)
707 		return false;
708 	return io->fio.op_flags == fio->op_flags;
709 }
710 
711 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
712 					struct f2fs_bio_info *io,
713 					struct f2fs_io_info *fio,
714 					block_t last_blkaddr,
715 					block_t cur_blkaddr)
716 {
717 	if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
718 		unsigned int filled_blocks =
719 				F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
720 		unsigned int io_size = F2FS_IO_SIZE(sbi);
721 		unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
722 
723 		/* IOs in bio is aligned and left space of vectors is not enough */
724 		if (!(filled_blocks % io_size) && left_vecs < io_size)
725 			return false;
726 	}
727 	if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
728 		return false;
729 	return io_type_is_mergeable(io, fio);
730 }
731 
732 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
733 				struct page *page, enum temp_type temp)
734 {
735 	struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
736 	struct bio_entry *be;
737 
738 	be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL);
739 	be->bio = bio;
740 	bio_get(bio);
741 
742 	if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
743 		f2fs_bug_on(sbi, 1);
744 
745 	down_write(&io->bio_list_lock);
746 	list_add_tail(&be->list, &io->bio_list);
747 	up_write(&io->bio_list_lock);
748 }
749 
750 static void del_bio_entry(struct bio_entry *be)
751 {
752 	list_del(&be->list);
753 	kmem_cache_free(bio_entry_slab, be);
754 }
755 
756 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
757 							struct page *page)
758 {
759 	struct f2fs_sb_info *sbi = fio->sbi;
760 	enum temp_type temp;
761 	bool found = false;
762 	int ret = -EAGAIN;
763 
764 	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
765 		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
766 		struct list_head *head = &io->bio_list;
767 		struct bio_entry *be;
768 
769 		down_write(&io->bio_list_lock);
770 		list_for_each_entry(be, head, list) {
771 			if (be->bio != *bio)
772 				continue;
773 
774 			found = true;
775 
776 			f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
777 							    *fio->last_block,
778 							    fio->new_blkaddr));
779 			if (f2fs_crypt_mergeable_bio(*bio,
780 					fio->page->mapping->host,
781 					fio->page->index, fio) &&
782 			    bio_add_page(*bio, page, PAGE_SIZE, 0) ==
783 					PAGE_SIZE) {
784 				ret = 0;
785 				break;
786 			}
787 
788 			/* page can't be merged into bio; submit the bio */
789 			del_bio_entry(be);
790 			__submit_bio(sbi, *bio, DATA);
791 			break;
792 		}
793 		up_write(&io->bio_list_lock);
794 	}
795 
796 	if (ret) {
797 		bio_put(*bio);
798 		*bio = NULL;
799 	}
800 
801 	return ret;
802 }
803 
804 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
805 					struct bio **bio, struct page *page)
806 {
807 	enum temp_type temp;
808 	bool found = false;
809 	struct bio *target = bio ? *bio : NULL;
810 
811 	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
812 		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
813 		struct list_head *head = &io->bio_list;
814 		struct bio_entry *be;
815 
816 		if (list_empty(head))
817 			continue;
818 
819 		down_read(&io->bio_list_lock);
820 		list_for_each_entry(be, head, list) {
821 			if (target)
822 				found = (target == be->bio);
823 			else
824 				found = __has_merged_page(be->bio, NULL,
825 								page, 0);
826 			if (found)
827 				break;
828 		}
829 		up_read(&io->bio_list_lock);
830 
831 		if (!found)
832 			continue;
833 
834 		found = false;
835 
836 		down_write(&io->bio_list_lock);
837 		list_for_each_entry(be, head, list) {
838 			if (target)
839 				found = (target == be->bio);
840 			else
841 				found = __has_merged_page(be->bio, NULL,
842 								page, 0);
843 			if (found) {
844 				target = be->bio;
845 				del_bio_entry(be);
846 				break;
847 			}
848 		}
849 		up_write(&io->bio_list_lock);
850 	}
851 
852 	if (found)
853 		__submit_bio(sbi, target, DATA);
854 	if (bio && *bio) {
855 		bio_put(*bio);
856 		*bio = NULL;
857 	}
858 }
859 
860 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
861 {
862 	struct bio *bio = *fio->bio;
863 	struct page *page = fio->encrypted_page ?
864 			fio->encrypted_page : fio->page;
865 
866 	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
867 			__is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
868 		return -EFSCORRUPTED;
869 
870 	trace_f2fs_submit_page_bio(page, fio);
871 
872 	if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
873 						fio->new_blkaddr))
874 		f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
875 alloc_new:
876 	if (!bio) {
877 		bio = __bio_alloc(fio, BIO_MAX_VECS);
878 		__attach_io_flag(fio);
879 		f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
880 				       fio->page->index, fio, GFP_NOIO);
881 		bio_set_op_attrs(bio, fio->op, fio->op_flags);
882 
883 		add_bio_entry(fio->sbi, bio, page, fio->temp);
884 	} else {
885 		if (add_ipu_page(fio, &bio, page))
886 			goto alloc_new;
887 	}
888 
889 	if (fio->io_wbc)
890 		wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
891 
892 	inc_page_count(fio->sbi, WB_DATA_TYPE(page));
893 
894 	*fio->last_block = fio->new_blkaddr;
895 	*fio->bio = bio;
896 
897 	return 0;
898 }
899 
900 void f2fs_submit_page_write(struct f2fs_io_info *fio)
901 {
902 	struct f2fs_sb_info *sbi = fio->sbi;
903 	enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
904 	struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
905 	struct page *bio_page;
906 
907 	f2fs_bug_on(sbi, is_read_io(fio->op));
908 
909 	down_write(&io->io_rwsem);
910 next:
911 	if (fio->in_list) {
912 		spin_lock(&io->io_lock);
913 		if (list_empty(&io->io_list)) {
914 			spin_unlock(&io->io_lock);
915 			goto out;
916 		}
917 		fio = list_first_entry(&io->io_list,
918 						struct f2fs_io_info, list);
919 		list_del(&fio->list);
920 		spin_unlock(&io->io_lock);
921 	}
922 
923 	verify_fio_blkaddr(fio);
924 
925 	if (fio->encrypted_page)
926 		bio_page = fio->encrypted_page;
927 	else if (fio->compressed_page)
928 		bio_page = fio->compressed_page;
929 	else
930 		bio_page = fio->page;
931 
932 	/* set submitted = true as a return value */
933 	fio->submitted = true;
934 
935 	inc_page_count(sbi, WB_DATA_TYPE(bio_page));
936 
937 	if (io->bio &&
938 	    (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
939 			      fio->new_blkaddr) ||
940 	     !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
941 				       bio_page->index, fio)))
942 		__submit_merged_bio(io);
943 alloc_new:
944 	if (io->bio == NULL) {
945 		if (F2FS_IO_ALIGNED(sbi) &&
946 				(fio->type == DATA || fio->type == NODE) &&
947 				fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
948 			dec_page_count(sbi, WB_DATA_TYPE(bio_page));
949 			fio->retry = true;
950 			goto skip;
951 		}
952 		io->bio = __bio_alloc(fio, BIO_MAX_VECS);
953 		f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
954 				       bio_page->index, fio, GFP_NOIO);
955 		io->fio = *fio;
956 	}
957 
958 	if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
959 		__submit_merged_bio(io);
960 		goto alloc_new;
961 	}
962 
963 	if (fio->io_wbc)
964 		wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE);
965 
966 	io->last_block_in_bio = fio->new_blkaddr;
967 
968 	trace_f2fs_submit_page_write(fio->page, fio);
969 skip:
970 	if (fio->in_list)
971 		goto next;
972 out:
973 	if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
974 				!f2fs_is_checkpoint_ready(sbi))
975 		__submit_merged_bio(io);
976 	up_write(&io->io_rwsem);
977 }
978 
979 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
980 				      unsigned nr_pages, unsigned op_flag,
981 				      pgoff_t first_idx, bool for_write)
982 {
983 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
984 	struct bio *bio;
985 	struct bio_post_read_ctx *ctx = NULL;
986 	unsigned int post_read_steps = 0;
987 
988 	bio = bio_alloc_bioset(for_write ? GFP_NOIO : GFP_KERNEL,
989 			       bio_max_segs(nr_pages), &f2fs_bioset);
990 	if (!bio)
991 		return ERR_PTR(-ENOMEM);
992 
993 	f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
994 
995 	f2fs_target_device(sbi, blkaddr, bio);
996 	bio->bi_end_io = f2fs_read_end_io;
997 	bio_set_op_attrs(bio, REQ_OP_READ, op_flag);
998 
999 	if (fscrypt_inode_uses_fs_layer_crypto(inode))
1000 		post_read_steps |= STEP_DECRYPT;
1001 
1002 	if (f2fs_need_verity(inode, first_idx))
1003 		post_read_steps |= STEP_VERITY;
1004 
1005 	/*
1006 	 * STEP_DECOMPRESS is handled specially, since a compressed file might
1007 	 * contain both compressed and uncompressed clusters.  We'll allocate a
1008 	 * bio_post_read_ctx if the file is compressed, but the caller is
1009 	 * responsible for enabling STEP_DECOMPRESS if it's actually needed.
1010 	 */
1011 
1012 	if (post_read_steps || f2fs_compressed_file(inode)) {
1013 		/* Due to the mempool, this never fails. */
1014 		ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1015 		ctx->bio = bio;
1016 		ctx->sbi = sbi;
1017 		ctx->enabled_steps = post_read_steps;
1018 		ctx->fs_blkaddr = blkaddr;
1019 		bio->bi_private = ctx;
1020 	}
1021 	iostat_alloc_and_bind_ctx(sbi, bio, ctx);
1022 
1023 	return bio;
1024 }
1025 
1026 /* This can handle encryption stuffs */
1027 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1028 				 block_t blkaddr, int op_flags, bool for_write)
1029 {
1030 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1031 	struct bio *bio;
1032 
1033 	bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1034 					page->index, for_write);
1035 	if (IS_ERR(bio))
1036 		return PTR_ERR(bio);
1037 
1038 	/* wait for GCed page writeback via META_MAPPING */
1039 	f2fs_wait_on_block_writeback(inode, blkaddr);
1040 
1041 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1042 		bio_put(bio);
1043 		return -EFAULT;
1044 	}
1045 	ClearPageError(page);
1046 	inc_page_count(sbi, F2FS_RD_DATA);
1047 	f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
1048 	__submit_bio(sbi, bio, DATA);
1049 	return 0;
1050 }
1051 
1052 static void __set_data_blkaddr(struct dnode_of_data *dn)
1053 {
1054 	struct f2fs_node *rn = F2FS_NODE(dn->node_page);
1055 	__le32 *addr_array;
1056 	int base = 0;
1057 
1058 	if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
1059 		base = get_extra_isize(dn->inode);
1060 
1061 	/* Get physical address of data block */
1062 	addr_array = blkaddr_in_node(rn);
1063 	addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1064 }
1065 
1066 /*
1067  * Lock ordering for the change of data block address:
1068  * ->data_page
1069  *  ->node_page
1070  *    update block addresses in the node page
1071  */
1072 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
1073 {
1074 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1075 	__set_data_blkaddr(dn);
1076 	if (set_page_dirty(dn->node_page))
1077 		dn->node_changed = true;
1078 }
1079 
1080 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1081 {
1082 	dn->data_blkaddr = blkaddr;
1083 	f2fs_set_data_blkaddr(dn);
1084 	f2fs_update_extent_cache(dn);
1085 }
1086 
1087 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
1088 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1089 {
1090 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1091 	int err;
1092 
1093 	if (!count)
1094 		return 0;
1095 
1096 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1097 		return -EPERM;
1098 	if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1099 		return err;
1100 
1101 	trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1102 						dn->ofs_in_node, count);
1103 
1104 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1105 
1106 	for (; count > 0; dn->ofs_in_node++) {
1107 		block_t blkaddr = f2fs_data_blkaddr(dn);
1108 
1109 		if (blkaddr == NULL_ADDR) {
1110 			dn->data_blkaddr = NEW_ADDR;
1111 			__set_data_blkaddr(dn);
1112 			count--;
1113 		}
1114 	}
1115 
1116 	if (set_page_dirty(dn->node_page))
1117 		dn->node_changed = true;
1118 	return 0;
1119 }
1120 
1121 /* Should keep dn->ofs_in_node unchanged */
1122 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1123 {
1124 	unsigned int ofs_in_node = dn->ofs_in_node;
1125 	int ret;
1126 
1127 	ret = f2fs_reserve_new_blocks(dn, 1);
1128 	dn->ofs_in_node = ofs_in_node;
1129 	return ret;
1130 }
1131 
1132 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1133 {
1134 	bool need_put = dn->inode_page ? false : true;
1135 	int err;
1136 
1137 	err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1138 	if (err)
1139 		return err;
1140 
1141 	if (dn->data_blkaddr == NULL_ADDR)
1142 		err = f2fs_reserve_new_block(dn);
1143 	if (err || need_put)
1144 		f2fs_put_dnode(dn);
1145 	return err;
1146 }
1147 
1148 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
1149 {
1150 	struct extent_info ei = {0, };
1151 	struct inode *inode = dn->inode;
1152 
1153 	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1154 		dn->data_blkaddr = ei.blk + index - ei.fofs;
1155 		return 0;
1156 	}
1157 
1158 	return f2fs_reserve_block(dn, index);
1159 }
1160 
1161 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1162 						int op_flags, bool for_write)
1163 {
1164 	struct address_space *mapping = inode->i_mapping;
1165 	struct dnode_of_data dn;
1166 	struct page *page;
1167 	struct extent_info ei = {0, };
1168 	int err;
1169 
1170 	page = f2fs_grab_cache_page(mapping, index, for_write);
1171 	if (!page)
1172 		return ERR_PTR(-ENOMEM);
1173 
1174 	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1175 		dn.data_blkaddr = ei.blk + index - ei.fofs;
1176 		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1177 						DATA_GENERIC_ENHANCE_READ)) {
1178 			err = -EFSCORRUPTED;
1179 			goto put_err;
1180 		}
1181 		goto got_it;
1182 	}
1183 
1184 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1185 	err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1186 	if (err)
1187 		goto put_err;
1188 	f2fs_put_dnode(&dn);
1189 
1190 	if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1191 		err = -ENOENT;
1192 		goto put_err;
1193 	}
1194 	if (dn.data_blkaddr != NEW_ADDR &&
1195 			!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1196 						dn.data_blkaddr,
1197 						DATA_GENERIC_ENHANCE)) {
1198 		err = -EFSCORRUPTED;
1199 		goto put_err;
1200 	}
1201 got_it:
1202 	if (PageUptodate(page)) {
1203 		unlock_page(page);
1204 		return page;
1205 	}
1206 
1207 	/*
1208 	 * A new dentry page is allocated but not able to be written, since its
1209 	 * new inode page couldn't be allocated due to -ENOSPC.
1210 	 * In such the case, its blkaddr can be remained as NEW_ADDR.
1211 	 * see, f2fs_add_link -> f2fs_get_new_data_page ->
1212 	 * f2fs_init_inode_metadata.
1213 	 */
1214 	if (dn.data_blkaddr == NEW_ADDR) {
1215 		zero_user_segment(page, 0, PAGE_SIZE);
1216 		if (!PageUptodate(page))
1217 			SetPageUptodate(page);
1218 		unlock_page(page);
1219 		return page;
1220 	}
1221 
1222 	err = f2fs_submit_page_read(inode, page, dn.data_blkaddr,
1223 						op_flags, for_write);
1224 	if (err)
1225 		goto put_err;
1226 	return page;
1227 
1228 put_err:
1229 	f2fs_put_page(page, 1);
1230 	return ERR_PTR(err);
1231 }
1232 
1233 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
1234 {
1235 	struct address_space *mapping = inode->i_mapping;
1236 	struct page *page;
1237 
1238 	page = find_get_page(mapping, index);
1239 	if (page && PageUptodate(page))
1240 		return page;
1241 	f2fs_put_page(page, 0);
1242 
1243 	page = f2fs_get_read_data_page(inode, index, 0, false);
1244 	if (IS_ERR(page))
1245 		return page;
1246 
1247 	if (PageUptodate(page))
1248 		return page;
1249 
1250 	wait_on_page_locked(page);
1251 	if (unlikely(!PageUptodate(page))) {
1252 		f2fs_put_page(page, 0);
1253 		return ERR_PTR(-EIO);
1254 	}
1255 	return page;
1256 }
1257 
1258 /*
1259  * If it tries to access a hole, return an error.
1260  * Because, the callers, functions in dir.c and GC, should be able to know
1261  * whether this page exists or not.
1262  */
1263 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1264 							bool for_write)
1265 {
1266 	struct address_space *mapping = inode->i_mapping;
1267 	struct page *page;
1268 repeat:
1269 	page = f2fs_get_read_data_page(inode, index, 0, for_write);
1270 	if (IS_ERR(page))
1271 		return page;
1272 
1273 	/* wait for read completion */
1274 	lock_page(page);
1275 	if (unlikely(page->mapping != mapping)) {
1276 		f2fs_put_page(page, 1);
1277 		goto repeat;
1278 	}
1279 	if (unlikely(!PageUptodate(page))) {
1280 		f2fs_put_page(page, 1);
1281 		return ERR_PTR(-EIO);
1282 	}
1283 	return page;
1284 }
1285 
1286 /*
1287  * Caller ensures that this data page is never allocated.
1288  * A new zero-filled data page is allocated in the page cache.
1289  *
1290  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1291  * f2fs_unlock_op().
1292  * Note that, ipage is set only by make_empty_dir, and if any error occur,
1293  * ipage should be released by this function.
1294  */
1295 struct page *f2fs_get_new_data_page(struct inode *inode,
1296 		struct page *ipage, pgoff_t index, bool new_i_size)
1297 {
1298 	struct address_space *mapping = inode->i_mapping;
1299 	struct page *page;
1300 	struct dnode_of_data dn;
1301 	int err;
1302 
1303 	page = f2fs_grab_cache_page(mapping, index, true);
1304 	if (!page) {
1305 		/*
1306 		 * before exiting, we should make sure ipage will be released
1307 		 * if any error occur.
1308 		 */
1309 		f2fs_put_page(ipage, 1);
1310 		return ERR_PTR(-ENOMEM);
1311 	}
1312 
1313 	set_new_dnode(&dn, inode, ipage, NULL, 0);
1314 	err = f2fs_reserve_block(&dn, index);
1315 	if (err) {
1316 		f2fs_put_page(page, 1);
1317 		return ERR_PTR(err);
1318 	}
1319 	if (!ipage)
1320 		f2fs_put_dnode(&dn);
1321 
1322 	if (PageUptodate(page))
1323 		goto got_it;
1324 
1325 	if (dn.data_blkaddr == NEW_ADDR) {
1326 		zero_user_segment(page, 0, PAGE_SIZE);
1327 		if (!PageUptodate(page))
1328 			SetPageUptodate(page);
1329 	} else {
1330 		f2fs_put_page(page, 1);
1331 
1332 		/* if ipage exists, blkaddr should be NEW_ADDR */
1333 		f2fs_bug_on(F2FS_I_SB(inode), ipage);
1334 		page = f2fs_get_lock_data_page(inode, index, true);
1335 		if (IS_ERR(page))
1336 			return page;
1337 	}
1338 got_it:
1339 	if (new_i_size && i_size_read(inode) <
1340 				((loff_t)(index + 1) << PAGE_SHIFT))
1341 		f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1342 	return page;
1343 }
1344 
1345 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1346 {
1347 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1348 	struct f2fs_summary sum;
1349 	struct node_info ni;
1350 	block_t old_blkaddr;
1351 	blkcnt_t count = 1;
1352 	int err;
1353 
1354 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1355 		return -EPERM;
1356 
1357 	err = f2fs_get_node_info(sbi, dn->nid, &ni);
1358 	if (err)
1359 		return err;
1360 
1361 	dn->data_blkaddr = f2fs_data_blkaddr(dn);
1362 	if (dn->data_blkaddr != NULL_ADDR)
1363 		goto alloc;
1364 
1365 	if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1366 		return err;
1367 
1368 alloc:
1369 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1370 	old_blkaddr = dn->data_blkaddr;
1371 	f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1372 				&sum, seg_type, NULL);
1373 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
1374 		invalidate_mapping_pages(META_MAPPING(sbi),
1375 					old_blkaddr, old_blkaddr);
1376 		f2fs_invalidate_compress_page(sbi, old_blkaddr);
1377 	}
1378 	f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1379 
1380 	/*
1381 	 * i_size will be updated by direct_IO. Otherwise, we'll get stale
1382 	 * data from unwritten block via dio_read.
1383 	 */
1384 	return 0;
1385 }
1386 
1387 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
1388 {
1389 	struct inode *inode = file_inode(iocb->ki_filp);
1390 	struct f2fs_map_blocks map;
1391 	int flag;
1392 	int err = 0;
1393 	bool direct_io = iocb->ki_flags & IOCB_DIRECT;
1394 
1395 	map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
1396 	map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
1397 	if (map.m_len > map.m_lblk)
1398 		map.m_len -= map.m_lblk;
1399 	else
1400 		map.m_len = 0;
1401 
1402 	map.m_next_pgofs = NULL;
1403 	map.m_next_extent = NULL;
1404 	map.m_seg_type = NO_CHECK_TYPE;
1405 	map.m_may_create = true;
1406 
1407 	if (direct_io) {
1408 		map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint);
1409 		flag = f2fs_force_buffered_io(inode, iocb, from) ?
1410 					F2FS_GET_BLOCK_PRE_AIO :
1411 					F2FS_GET_BLOCK_PRE_DIO;
1412 		goto map_blocks;
1413 	}
1414 	if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
1415 		err = f2fs_convert_inline_inode(inode);
1416 		if (err)
1417 			return err;
1418 	}
1419 	if (f2fs_has_inline_data(inode))
1420 		return err;
1421 
1422 	flag = F2FS_GET_BLOCK_PRE_AIO;
1423 
1424 map_blocks:
1425 	err = f2fs_map_blocks(inode, &map, 1, flag);
1426 	if (map.m_len > 0 && err == -ENOSPC) {
1427 		if (!direct_io)
1428 			set_inode_flag(inode, FI_NO_PREALLOC);
1429 		err = 0;
1430 	}
1431 	return err;
1432 }
1433 
1434 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
1435 {
1436 	if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1437 		if (lock)
1438 			down_read(&sbi->node_change);
1439 		else
1440 			up_read(&sbi->node_change);
1441 	} else {
1442 		if (lock)
1443 			f2fs_lock_op(sbi);
1444 		else
1445 			f2fs_unlock_op(sbi);
1446 	}
1447 }
1448 
1449 /*
1450  * f2fs_map_blocks() tries to find or build mapping relationship which
1451  * maps continuous logical blocks to physical blocks, and return such
1452  * info via f2fs_map_blocks structure.
1453  */
1454 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1455 						int create, int flag)
1456 {
1457 	unsigned int maxblocks = map->m_len;
1458 	struct dnode_of_data dn;
1459 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1460 	int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1461 	pgoff_t pgofs, end_offset, end;
1462 	int err = 0, ofs = 1;
1463 	unsigned int ofs_in_node, last_ofs_in_node;
1464 	blkcnt_t prealloc;
1465 	struct extent_info ei = {0, };
1466 	block_t blkaddr;
1467 	unsigned int start_pgofs;
1468 
1469 	if (!maxblocks)
1470 		return 0;
1471 
1472 	map->m_len = 0;
1473 	map->m_flags = 0;
1474 
1475 	/* it only supports block size == page size */
1476 	pgofs =	(pgoff_t)map->m_lblk;
1477 	end = pgofs + maxblocks;
1478 
1479 	if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1480 		if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1481 							map->m_may_create)
1482 			goto next_dnode;
1483 
1484 		map->m_pblk = ei.blk + pgofs - ei.fofs;
1485 		map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1486 		map->m_flags = F2FS_MAP_MAPPED;
1487 		if (map->m_next_extent)
1488 			*map->m_next_extent = pgofs + map->m_len;
1489 
1490 		/* for hardware encryption, but to avoid potential issue in future */
1491 		if (flag == F2FS_GET_BLOCK_DIO)
1492 			f2fs_wait_on_block_writeback_range(inode,
1493 						map->m_pblk, map->m_len);
1494 		goto out;
1495 	}
1496 
1497 next_dnode:
1498 	if (map->m_may_create)
1499 		f2fs_do_map_lock(sbi, flag, true);
1500 
1501 	/* When reading holes, we need its node page */
1502 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1503 	err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1504 	if (err) {
1505 		if (flag == F2FS_GET_BLOCK_BMAP)
1506 			map->m_pblk = 0;
1507 
1508 		if (err == -ENOENT) {
1509 			/*
1510 			 * There is one exceptional case that read_node_page()
1511 			 * may return -ENOENT due to filesystem has been
1512 			 * shutdown or cp_error, so force to convert error
1513 			 * number to EIO for such case.
1514 			 */
1515 			if (map->m_may_create &&
1516 				(is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1517 				f2fs_cp_error(sbi))) {
1518 				err = -EIO;
1519 				goto unlock_out;
1520 			}
1521 
1522 			err = 0;
1523 			if (map->m_next_pgofs)
1524 				*map->m_next_pgofs =
1525 					f2fs_get_next_page_offset(&dn, pgofs);
1526 			if (map->m_next_extent)
1527 				*map->m_next_extent =
1528 					f2fs_get_next_page_offset(&dn, pgofs);
1529 		}
1530 		goto unlock_out;
1531 	}
1532 
1533 	start_pgofs = pgofs;
1534 	prealloc = 0;
1535 	last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1536 	end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1537 
1538 next_block:
1539 	blkaddr = f2fs_data_blkaddr(&dn);
1540 
1541 	if (__is_valid_data_blkaddr(blkaddr) &&
1542 		!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1543 		err = -EFSCORRUPTED;
1544 		goto sync_out;
1545 	}
1546 
1547 	if (__is_valid_data_blkaddr(blkaddr)) {
1548 		/* use out-place-update for driect IO under LFS mode */
1549 		if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1550 							map->m_may_create) {
1551 			err = __allocate_data_block(&dn, map->m_seg_type);
1552 			if (err)
1553 				goto sync_out;
1554 			blkaddr = dn.data_blkaddr;
1555 			set_inode_flag(inode, FI_APPEND_WRITE);
1556 		}
1557 	} else {
1558 		if (create) {
1559 			if (unlikely(f2fs_cp_error(sbi))) {
1560 				err = -EIO;
1561 				goto sync_out;
1562 			}
1563 			if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1564 				if (blkaddr == NULL_ADDR) {
1565 					prealloc++;
1566 					last_ofs_in_node = dn.ofs_in_node;
1567 				}
1568 			} else {
1569 				WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1570 					flag != F2FS_GET_BLOCK_DIO);
1571 				err = __allocate_data_block(&dn,
1572 							map->m_seg_type);
1573 				if (!err)
1574 					set_inode_flag(inode, FI_APPEND_WRITE);
1575 			}
1576 			if (err)
1577 				goto sync_out;
1578 			map->m_flags |= F2FS_MAP_NEW;
1579 			blkaddr = dn.data_blkaddr;
1580 		} else {
1581 			if (f2fs_compressed_file(inode) &&
1582 					f2fs_sanity_check_cluster(&dn) &&
1583 					(flag != F2FS_GET_BLOCK_FIEMAP ||
1584 					IS_ENABLED(CONFIG_F2FS_CHECK_FS))) {
1585 				err = -EFSCORRUPTED;
1586 				goto sync_out;
1587 			}
1588 			if (flag == F2FS_GET_BLOCK_BMAP) {
1589 				map->m_pblk = 0;
1590 				goto sync_out;
1591 			}
1592 			if (flag == F2FS_GET_BLOCK_PRECACHE)
1593 				goto sync_out;
1594 			if (flag == F2FS_GET_BLOCK_FIEMAP &&
1595 						blkaddr == NULL_ADDR) {
1596 				if (map->m_next_pgofs)
1597 					*map->m_next_pgofs = pgofs + 1;
1598 				goto sync_out;
1599 			}
1600 			if (flag != F2FS_GET_BLOCK_FIEMAP) {
1601 				/* for defragment case */
1602 				if (map->m_next_pgofs)
1603 					*map->m_next_pgofs = pgofs + 1;
1604 				goto sync_out;
1605 			}
1606 		}
1607 	}
1608 
1609 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1610 		goto skip;
1611 
1612 	if (map->m_len == 0) {
1613 		/* preallocated unwritten block should be mapped for fiemap. */
1614 		if (blkaddr == NEW_ADDR)
1615 			map->m_flags |= F2FS_MAP_UNWRITTEN;
1616 		map->m_flags |= F2FS_MAP_MAPPED;
1617 
1618 		map->m_pblk = blkaddr;
1619 		map->m_len = 1;
1620 	} else if ((map->m_pblk != NEW_ADDR &&
1621 			blkaddr == (map->m_pblk + ofs)) ||
1622 			(map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1623 			flag == F2FS_GET_BLOCK_PRE_DIO) {
1624 		ofs++;
1625 		map->m_len++;
1626 	} else {
1627 		goto sync_out;
1628 	}
1629 
1630 skip:
1631 	dn.ofs_in_node++;
1632 	pgofs++;
1633 
1634 	/* preallocate blocks in batch for one dnode page */
1635 	if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1636 			(pgofs == end || dn.ofs_in_node == end_offset)) {
1637 
1638 		dn.ofs_in_node = ofs_in_node;
1639 		err = f2fs_reserve_new_blocks(&dn, prealloc);
1640 		if (err)
1641 			goto sync_out;
1642 
1643 		map->m_len += dn.ofs_in_node - ofs_in_node;
1644 		if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1645 			err = -ENOSPC;
1646 			goto sync_out;
1647 		}
1648 		dn.ofs_in_node = end_offset;
1649 	}
1650 
1651 	if (pgofs >= end)
1652 		goto sync_out;
1653 	else if (dn.ofs_in_node < end_offset)
1654 		goto next_block;
1655 
1656 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1657 		if (map->m_flags & F2FS_MAP_MAPPED) {
1658 			unsigned int ofs = start_pgofs - map->m_lblk;
1659 
1660 			f2fs_update_extent_cache_range(&dn,
1661 				start_pgofs, map->m_pblk + ofs,
1662 				map->m_len - ofs);
1663 		}
1664 	}
1665 
1666 	f2fs_put_dnode(&dn);
1667 
1668 	if (map->m_may_create) {
1669 		f2fs_do_map_lock(sbi, flag, false);
1670 		f2fs_balance_fs(sbi, dn.node_changed);
1671 	}
1672 	goto next_dnode;
1673 
1674 sync_out:
1675 
1676 	/* for hardware encryption, but to avoid potential issue in future */
1677 	if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED)
1678 		f2fs_wait_on_block_writeback_range(inode,
1679 						map->m_pblk, map->m_len);
1680 
1681 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1682 		if (map->m_flags & F2FS_MAP_MAPPED) {
1683 			unsigned int ofs = start_pgofs - map->m_lblk;
1684 
1685 			f2fs_update_extent_cache_range(&dn,
1686 				start_pgofs, map->m_pblk + ofs,
1687 				map->m_len - ofs);
1688 		}
1689 		if (map->m_next_extent)
1690 			*map->m_next_extent = pgofs + 1;
1691 	}
1692 	f2fs_put_dnode(&dn);
1693 unlock_out:
1694 	if (map->m_may_create) {
1695 		f2fs_do_map_lock(sbi, flag, false);
1696 		f2fs_balance_fs(sbi, dn.node_changed);
1697 	}
1698 out:
1699 	trace_f2fs_map_blocks(inode, map, err);
1700 	return err;
1701 }
1702 
1703 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1704 {
1705 	struct f2fs_map_blocks map;
1706 	block_t last_lblk;
1707 	int err;
1708 
1709 	if (pos + len > i_size_read(inode))
1710 		return false;
1711 
1712 	map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1713 	map.m_next_pgofs = NULL;
1714 	map.m_next_extent = NULL;
1715 	map.m_seg_type = NO_CHECK_TYPE;
1716 	map.m_may_create = false;
1717 	last_lblk = F2FS_BLK_ALIGN(pos + len);
1718 
1719 	while (map.m_lblk < last_lblk) {
1720 		map.m_len = last_lblk - map.m_lblk;
1721 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1722 		if (err || map.m_len == 0)
1723 			return false;
1724 		map.m_lblk += map.m_len;
1725 	}
1726 	return true;
1727 }
1728 
1729 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes)
1730 {
1731 	return (bytes >> inode->i_blkbits);
1732 }
1733 
1734 static inline u64 blks_to_bytes(struct inode *inode, u64 blks)
1735 {
1736 	return (blks << inode->i_blkbits);
1737 }
1738 
1739 static int __get_data_block(struct inode *inode, sector_t iblock,
1740 			struct buffer_head *bh, int create, int flag,
1741 			pgoff_t *next_pgofs, int seg_type, bool may_write)
1742 {
1743 	struct f2fs_map_blocks map;
1744 	int err;
1745 
1746 	map.m_lblk = iblock;
1747 	map.m_len = bytes_to_blks(inode, bh->b_size);
1748 	map.m_next_pgofs = next_pgofs;
1749 	map.m_next_extent = NULL;
1750 	map.m_seg_type = seg_type;
1751 	map.m_may_create = may_write;
1752 
1753 	err = f2fs_map_blocks(inode, &map, create, flag);
1754 	if (!err) {
1755 		map_bh(bh, inode->i_sb, map.m_pblk);
1756 		bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1757 		bh->b_size = blks_to_bytes(inode, map.m_len);
1758 	}
1759 	return err;
1760 }
1761 
1762 static int get_data_block_dio_write(struct inode *inode, sector_t iblock,
1763 			struct buffer_head *bh_result, int create)
1764 {
1765 	return __get_data_block(inode, iblock, bh_result, create,
1766 				F2FS_GET_BLOCK_DIO, NULL,
1767 				f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1768 				true);
1769 }
1770 
1771 static int get_data_block_dio(struct inode *inode, sector_t iblock,
1772 			struct buffer_head *bh_result, int create)
1773 {
1774 	return __get_data_block(inode, iblock, bh_result, create,
1775 				F2FS_GET_BLOCK_DIO, NULL,
1776 				f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1777 				false);
1778 }
1779 
1780 static int f2fs_xattr_fiemap(struct inode *inode,
1781 				struct fiemap_extent_info *fieinfo)
1782 {
1783 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1784 	struct page *page;
1785 	struct node_info ni;
1786 	__u64 phys = 0, len;
1787 	__u32 flags;
1788 	nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1789 	int err = 0;
1790 
1791 	if (f2fs_has_inline_xattr(inode)) {
1792 		int offset;
1793 
1794 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1795 						inode->i_ino, false);
1796 		if (!page)
1797 			return -ENOMEM;
1798 
1799 		err = f2fs_get_node_info(sbi, inode->i_ino, &ni);
1800 		if (err) {
1801 			f2fs_put_page(page, 1);
1802 			return err;
1803 		}
1804 
1805 		phys = blks_to_bytes(inode, ni.blk_addr);
1806 		offset = offsetof(struct f2fs_inode, i_addr) +
1807 					sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1808 					get_inline_xattr_addrs(inode));
1809 
1810 		phys += offset;
1811 		len = inline_xattr_size(inode);
1812 
1813 		f2fs_put_page(page, 1);
1814 
1815 		flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1816 
1817 		if (!xnid)
1818 			flags |= FIEMAP_EXTENT_LAST;
1819 
1820 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1821 		trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1822 		if (err || err == 1)
1823 			return err;
1824 	}
1825 
1826 	if (xnid) {
1827 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1828 		if (!page)
1829 			return -ENOMEM;
1830 
1831 		err = f2fs_get_node_info(sbi, xnid, &ni);
1832 		if (err) {
1833 			f2fs_put_page(page, 1);
1834 			return err;
1835 		}
1836 
1837 		phys = blks_to_bytes(inode, ni.blk_addr);
1838 		len = inode->i_sb->s_blocksize;
1839 
1840 		f2fs_put_page(page, 1);
1841 
1842 		flags = FIEMAP_EXTENT_LAST;
1843 	}
1844 
1845 	if (phys) {
1846 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1847 		trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1848 	}
1849 
1850 	return (err < 0 ? err : 0);
1851 }
1852 
1853 static loff_t max_inode_blocks(struct inode *inode)
1854 {
1855 	loff_t result = ADDRS_PER_INODE(inode);
1856 	loff_t leaf_count = ADDRS_PER_BLOCK(inode);
1857 
1858 	/* two direct node blocks */
1859 	result += (leaf_count * 2);
1860 
1861 	/* two indirect node blocks */
1862 	leaf_count *= NIDS_PER_BLOCK;
1863 	result += (leaf_count * 2);
1864 
1865 	/* one double indirect node block */
1866 	leaf_count *= NIDS_PER_BLOCK;
1867 	result += leaf_count;
1868 
1869 	return result;
1870 }
1871 
1872 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1873 		u64 start, u64 len)
1874 {
1875 	struct f2fs_map_blocks map;
1876 	sector_t start_blk, last_blk;
1877 	pgoff_t next_pgofs;
1878 	u64 logical = 0, phys = 0, size = 0;
1879 	u32 flags = 0;
1880 	int ret = 0;
1881 	bool compr_cluster = false, compr_appended;
1882 	unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1883 	unsigned int count_in_cluster = 0;
1884 	loff_t maxbytes;
1885 
1886 	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1887 		ret = f2fs_precache_extents(inode);
1888 		if (ret)
1889 			return ret;
1890 	}
1891 
1892 	ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1893 	if (ret)
1894 		return ret;
1895 
1896 	inode_lock(inode);
1897 
1898 	maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
1899 	if (start > maxbytes) {
1900 		ret = -EFBIG;
1901 		goto out;
1902 	}
1903 
1904 	if (len > maxbytes || (maxbytes - len) < start)
1905 		len = maxbytes - start;
1906 
1907 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1908 		ret = f2fs_xattr_fiemap(inode, fieinfo);
1909 		goto out;
1910 	}
1911 
1912 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1913 		ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1914 		if (ret != -EAGAIN)
1915 			goto out;
1916 	}
1917 
1918 	if (bytes_to_blks(inode, len) == 0)
1919 		len = blks_to_bytes(inode, 1);
1920 
1921 	start_blk = bytes_to_blks(inode, start);
1922 	last_blk = bytes_to_blks(inode, start + len - 1);
1923 
1924 next:
1925 	memset(&map, 0, sizeof(map));
1926 	map.m_lblk = start_blk;
1927 	map.m_len = bytes_to_blks(inode, len);
1928 	map.m_next_pgofs = &next_pgofs;
1929 	map.m_seg_type = NO_CHECK_TYPE;
1930 
1931 	if (compr_cluster) {
1932 		map.m_lblk += 1;
1933 		map.m_len = cluster_size - count_in_cluster;
1934 	}
1935 
1936 	ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
1937 	if (ret)
1938 		goto out;
1939 
1940 	/* HOLE */
1941 	if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) {
1942 		start_blk = next_pgofs;
1943 
1944 		if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode,
1945 						max_inode_blocks(inode)))
1946 			goto prep_next;
1947 
1948 		flags |= FIEMAP_EXTENT_LAST;
1949 	}
1950 
1951 	compr_appended = false;
1952 	/* In a case of compressed cluster, append this to the last extent */
1953 	if (compr_cluster && ((map.m_flags & F2FS_MAP_UNWRITTEN) ||
1954 			!(map.m_flags & F2FS_MAP_FLAGS))) {
1955 		compr_appended = true;
1956 		goto skip_fill;
1957 	}
1958 
1959 	if (size) {
1960 		flags |= FIEMAP_EXTENT_MERGED;
1961 		if (IS_ENCRYPTED(inode))
1962 			flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1963 
1964 		ret = fiemap_fill_next_extent(fieinfo, logical,
1965 				phys, size, flags);
1966 		trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
1967 		if (ret)
1968 			goto out;
1969 		size = 0;
1970 	}
1971 
1972 	if (start_blk > last_blk)
1973 		goto out;
1974 
1975 skip_fill:
1976 	if (map.m_pblk == COMPRESS_ADDR) {
1977 		compr_cluster = true;
1978 		count_in_cluster = 1;
1979 	} else if (compr_appended) {
1980 		unsigned int appended_blks = cluster_size -
1981 						count_in_cluster + 1;
1982 		size += blks_to_bytes(inode, appended_blks);
1983 		start_blk += appended_blks;
1984 		compr_cluster = false;
1985 	} else {
1986 		logical = blks_to_bytes(inode, start_blk);
1987 		phys = __is_valid_data_blkaddr(map.m_pblk) ?
1988 			blks_to_bytes(inode, map.m_pblk) : 0;
1989 		size = blks_to_bytes(inode, map.m_len);
1990 		flags = 0;
1991 
1992 		if (compr_cluster) {
1993 			flags = FIEMAP_EXTENT_ENCODED;
1994 			count_in_cluster += map.m_len;
1995 			if (count_in_cluster == cluster_size) {
1996 				compr_cluster = false;
1997 				size += blks_to_bytes(inode, 1);
1998 			}
1999 		} else if (map.m_flags & F2FS_MAP_UNWRITTEN) {
2000 			flags = FIEMAP_EXTENT_UNWRITTEN;
2001 		}
2002 
2003 		start_blk += bytes_to_blks(inode, size);
2004 	}
2005 
2006 prep_next:
2007 	cond_resched();
2008 	if (fatal_signal_pending(current))
2009 		ret = -EINTR;
2010 	else
2011 		goto next;
2012 out:
2013 	if (ret == 1)
2014 		ret = 0;
2015 
2016 	inode_unlock(inode);
2017 	return ret;
2018 }
2019 
2020 static inline loff_t f2fs_readpage_limit(struct inode *inode)
2021 {
2022 	if (IS_ENABLED(CONFIG_FS_VERITY) &&
2023 	    (IS_VERITY(inode) || f2fs_verity_in_progress(inode)))
2024 		return inode->i_sb->s_maxbytes;
2025 
2026 	return i_size_read(inode);
2027 }
2028 
2029 static int f2fs_read_single_page(struct inode *inode, struct page *page,
2030 					unsigned nr_pages,
2031 					struct f2fs_map_blocks *map,
2032 					struct bio **bio_ret,
2033 					sector_t *last_block_in_bio,
2034 					bool is_readahead)
2035 {
2036 	struct bio *bio = *bio_ret;
2037 	const unsigned blocksize = blks_to_bytes(inode, 1);
2038 	sector_t block_in_file;
2039 	sector_t last_block;
2040 	sector_t last_block_in_file;
2041 	sector_t block_nr;
2042 	int ret = 0;
2043 
2044 	block_in_file = (sector_t)page_index(page);
2045 	last_block = block_in_file + nr_pages;
2046 	last_block_in_file = bytes_to_blks(inode,
2047 			f2fs_readpage_limit(inode) + blocksize - 1);
2048 	if (last_block > last_block_in_file)
2049 		last_block = last_block_in_file;
2050 
2051 	/* just zeroing out page which is beyond EOF */
2052 	if (block_in_file >= last_block)
2053 		goto zero_out;
2054 	/*
2055 	 * Map blocks using the previous result first.
2056 	 */
2057 	if ((map->m_flags & F2FS_MAP_MAPPED) &&
2058 			block_in_file > map->m_lblk &&
2059 			block_in_file < (map->m_lblk + map->m_len))
2060 		goto got_it;
2061 
2062 	/*
2063 	 * Then do more f2fs_map_blocks() calls until we are
2064 	 * done with this page.
2065 	 */
2066 	map->m_lblk = block_in_file;
2067 	map->m_len = last_block - block_in_file;
2068 
2069 	ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT);
2070 	if (ret)
2071 		goto out;
2072 got_it:
2073 	if ((map->m_flags & F2FS_MAP_MAPPED)) {
2074 		block_nr = map->m_pblk + block_in_file - map->m_lblk;
2075 		SetPageMappedToDisk(page);
2076 
2077 		if (!PageUptodate(page) && (!PageSwapCache(page) &&
2078 					!cleancache_get_page(page))) {
2079 			SetPageUptodate(page);
2080 			goto confused;
2081 		}
2082 
2083 		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2084 						DATA_GENERIC_ENHANCE_READ)) {
2085 			ret = -EFSCORRUPTED;
2086 			goto out;
2087 		}
2088 	} else {
2089 zero_out:
2090 		zero_user_segment(page, 0, PAGE_SIZE);
2091 		if (f2fs_need_verity(inode, page->index) &&
2092 		    !fsverity_verify_page(page)) {
2093 			ret = -EIO;
2094 			goto out;
2095 		}
2096 		if (!PageUptodate(page))
2097 			SetPageUptodate(page);
2098 		unlock_page(page);
2099 		goto out;
2100 	}
2101 
2102 	/*
2103 	 * This page will go to BIO.  Do we need to send this
2104 	 * BIO off first?
2105 	 */
2106 	if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2107 				       *last_block_in_bio, block_nr) ||
2108 		    !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2109 submit_and_realloc:
2110 		__submit_bio(F2FS_I_SB(inode), bio, DATA);
2111 		bio = NULL;
2112 	}
2113 	if (bio == NULL) {
2114 		bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2115 				is_readahead ? REQ_RAHEAD : 0, page->index,
2116 				false);
2117 		if (IS_ERR(bio)) {
2118 			ret = PTR_ERR(bio);
2119 			bio = NULL;
2120 			goto out;
2121 		}
2122 	}
2123 
2124 	/*
2125 	 * If the page is under writeback, we need to wait for
2126 	 * its completion to see the correct decrypted data.
2127 	 */
2128 	f2fs_wait_on_block_writeback(inode, block_nr);
2129 
2130 	if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2131 		goto submit_and_realloc;
2132 
2133 	inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2134 	f2fs_update_iostat(F2FS_I_SB(inode), FS_DATA_READ_IO, F2FS_BLKSIZE);
2135 	ClearPageError(page);
2136 	*last_block_in_bio = block_nr;
2137 	goto out;
2138 confused:
2139 	if (bio) {
2140 		__submit_bio(F2FS_I_SB(inode), bio, DATA);
2141 		bio = NULL;
2142 	}
2143 	unlock_page(page);
2144 out:
2145 	*bio_ret = bio;
2146 	return ret;
2147 }
2148 
2149 #ifdef CONFIG_F2FS_FS_COMPRESSION
2150 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2151 				unsigned nr_pages, sector_t *last_block_in_bio,
2152 				bool is_readahead, bool for_write)
2153 {
2154 	struct dnode_of_data dn;
2155 	struct inode *inode = cc->inode;
2156 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2157 	struct bio *bio = *bio_ret;
2158 	unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2159 	sector_t last_block_in_file;
2160 	const unsigned blocksize = blks_to_bytes(inode, 1);
2161 	struct decompress_io_ctx *dic = NULL;
2162 	struct extent_info ei = {0, };
2163 	bool from_dnode = true;
2164 	int i;
2165 	int ret = 0;
2166 
2167 	f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2168 
2169 	last_block_in_file = bytes_to_blks(inode,
2170 			f2fs_readpage_limit(inode) + blocksize - 1);
2171 
2172 	/* get rid of pages beyond EOF */
2173 	for (i = 0; i < cc->cluster_size; i++) {
2174 		struct page *page = cc->rpages[i];
2175 
2176 		if (!page)
2177 			continue;
2178 		if ((sector_t)page->index >= last_block_in_file) {
2179 			zero_user_segment(page, 0, PAGE_SIZE);
2180 			if (!PageUptodate(page))
2181 				SetPageUptodate(page);
2182 		} else if (!PageUptodate(page)) {
2183 			continue;
2184 		}
2185 		unlock_page(page);
2186 		if (for_write)
2187 			put_page(page);
2188 		cc->rpages[i] = NULL;
2189 		cc->nr_rpages--;
2190 	}
2191 
2192 	/* we are done since all pages are beyond EOF */
2193 	if (f2fs_cluster_is_empty(cc))
2194 		goto out;
2195 
2196 	if (f2fs_lookup_extent_cache(inode, start_idx, &ei))
2197 		from_dnode = false;
2198 
2199 	if (!from_dnode)
2200 		goto skip_reading_dnode;
2201 
2202 	set_new_dnode(&dn, inode, NULL, NULL, 0);
2203 	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2204 	if (ret)
2205 		goto out;
2206 
2207 	f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2208 
2209 skip_reading_dnode:
2210 	for (i = 1; i < cc->cluster_size; i++) {
2211 		block_t blkaddr;
2212 
2213 		blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2214 					dn.ofs_in_node + i) :
2215 					ei.blk + i - 1;
2216 
2217 		if (!__is_valid_data_blkaddr(blkaddr))
2218 			break;
2219 
2220 		if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2221 			ret = -EFAULT;
2222 			goto out_put_dnode;
2223 		}
2224 		cc->nr_cpages++;
2225 
2226 		if (!from_dnode && i >= ei.c_len)
2227 			break;
2228 	}
2229 
2230 	/* nothing to decompress */
2231 	if (cc->nr_cpages == 0) {
2232 		ret = 0;
2233 		goto out_put_dnode;
2234 	}
2235 
2236 	dic = f2fs_alloc_dic(cc);
2237 	if (IS_ERR(dic)) {
2238 		ret = PTR_ERR(dic);
2239 		goto out_put_dnode;
2240 	}
2241 
2242 	for (i = 0; i < cc->nr_cpages; i++) {
2243 		struct page *page = dic->cpages[i];
2244 		block_t blkaddr;
2245 		struct bio_post_read_ctx *ctx;
2246 
2247 		blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2248 					dn.ofs_in_node + i + 1) :
2249 					ei.blk + i;
2250 
2251 		f2fs_wait_on_block_writeback(inode, blkaddr);
2252 
2253 		if (f2fs_load_compressed_page(sbi, page, blkaddr)) {
2254 			if (atomic_dec_and_test(&dic->remaining_pages))
2255 				f2fs_decompress_cluster(dic);
2256 			continue;
2257 		}
2258 
2259 		if (bio && (!page_is_mergeable(sbi, bio,
2260 					*last_block_in_bio, blkaddr) ||
2261 		    !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2262 submit_and_realloc:
2263 			__submit_bio(sbi, bio, DATA);
2264 			bio = NULL;
2265 		}
2266 
2267 		if (!bio) {
2268 			bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2269 					is_readahead ? REQ_RAHEAD : 0,
2270 					page->index, for_write);
2271 			if (IS_ERR(bio)) {
2272 				ret = PTR_ERR(bio);
2273 				f2fs_decompress_end_io(dic, ret);
2274 				f2fs_put_dnode(&dn);
2275 				*bio_ret = NULL;
2276 				return ret;
2277 			}
2278 		}
2279 
2280 		if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2281 			goto submit_and_realloc;
2282 
2283 		ctx = get_post_read_ctx(bio);
2284 		ctx->enabled_steps |= STEP_DECOMPRESS;
2285 		refcount_inc(&dic->refcnt);
2286 
2287 		inc_page_count(sbi, F2FS_RD_DATA);
2288 		f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
2289 		f2fs_update_iostat(sbi, FS_CDATA_READ_IO, F2FS_BLKSIZE);
2290 		ClearPageError(page);
2291 		*last_block_in_bio = blkaddr;
2292 	}
2293 
2294 	if (from_dnode)
2295 		f2fs_put_dnode(&dn);
2296 
2297 	*bio_ret = bio;
2298 	return 0;
2299 
2300 out_put_dnode:
2301 	if (from_dnode)
2302 		f2fs_put_dnode(&dn);
2303 out:
2304 	for (i = 0; i < cc->cluster_size; i++) {
2305 		if (cc->rpages[i]) {
2306 			ClearPageUptodate(cc->rpages[i]);
2307 			ClearPageError(cc->rpages[i]);
2308 			unlock_page(cc->rpages[i]);
2309 		}
2310 	}
2311 	*bio_ret = bio;
2312 	return ret;
2313 }
2314 #endif
2315 
2316 /*
2317  * This function was originally taken from fs/mpage.c, and customized for f2fs.
2318  * Major change was from block_size == page_size in f2fs by default.
2319  */
2320 static int f2fs_mpage_readpages(struct inode *inode,
2321 		struct readahead_control *rac, struct page *page)
2322 {
2323 	struct bio *bio = NULL;
2324 	sector_t last_block_in_bio = 0;
2325 	struct f2fs_map_blocks map;
2326 #ifdef CONFIG_F2FS_FS_COMPRESSION
2327 	struct compress_ctx cc = {
2328 		.inode = inode,
2329 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2330 		.cluster_size = F2FS_I(inode)->i_cluster_size,
2331 		.cluster_idx = NULL_CLUSTER,
2332 		.rpages = NULL,
2333 		.cpages = NULL,
2334 		.nr_rpages = 0,
2335 		.nr_cpages = 0,
2336 	};
2337 	pgoff_t nc_cluster_idx = NULL_CLUSTER;
2338 #endif
2339 	unsigned nr_pages = rac ? readahead_count(rac) : 1;
2340 	unsigned max_nr_pages = nr_pages;
2341 	int ret = 0;
2342 
2343 	map.m_pblk = 0;
2344 	map.m_lblk = 0;
2345 	map.m_len = 0;
2346 	map.m_flags = 0;
2347 	map.m_next_pgofs = NULL;
2348 	map.m_next_extent = NULL;
2349 	map.m_seg_type = NO_CHECK_TYPE;
2350 	map.m_may_create = false;
2351 
2352 	for (; nr_pages; nr_pages--) {
2353 		if (rac) {
2354 			page = readahead_page(rac);
2355 			prefetchw(&page->flags);
2356 		}
2357 
2358 #ifdef CONFIG_F2FS_FS_COMPRESSION
2359 		if (f2fs_compressed_file(inode)) {
2360 			/* there are remained comressed pages, submit them */
2361 			if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2362 				ret = f2fs_read_multi_pages(&cc, &bio,
2363 							max_nr_pages,
2364 							&last_block_in_bio,
2365 							rac != NULL, false);
2366 				f2fs_destroy_compress_ctx(&cc, false);
2367 				if (ret)
2368 					goto set_error_page;
2369 			}
2370 			if (cc.cluster_idx == NULL_CLUSTER) {
2371 				if (nc_cluster_idx ==
2372 					page->index >> cc.log_cluster_size) {
2373 					goto read_single_page;
2374 				}
2375 
2376 				ret = f2fs_is_compressed_cluster(inode, page->index);
2377 				if (ret < 0)
2378 					goto set_error_page;
2379 				else if (!ret) {
2380 					nc_cluster_idx =
2381 						page->index >> cc.log_cluster_size;
2382 					goto read_single_page;
2383 				}
2384 
2385 				nc_cluster_idx = NULL_CLUSTER;
2386 			}
2387 			ret = f2fs_init_compress_ctx(&cc);
2388 			if (ret)
2389 				goto set_error_page;
2390 
2391 			f2fs_compress_ctx_add_page(&cc, page);
2392 
2393 			goto next_page;
2394 		}
2395 read_single_page:
2396 #endif
2397 
2398 		ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2399 					&bio, &last_block_in_bio, rac);
2400 		if (ret) {
2401 #ifdef CONFIG_F2FS_FS_COMPRESSION
2402 set_error_page:
2403 #endif
2404 			SetPageError(page);
2405 			zero_user_segment(page, 0, PAGE_SIZE);
2406 			unlock_page(page);
2407 		}
2408 #ifdef CONFIG_F2FS_FS_COMPRESSION
2409 next_page:
2410 #endif
2411 		if (rac)
2412 			put_page(page);
2413 
2414 #ifdef CONFIG_F2FS_FS_COMPRESSION
2415 		if (f2fs_compressed_file(inode)) {
2416 			/* last page */
2417 			if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2418 				ret = f2fs_read_multi_pages(&cc, &bio,
2419 							max_nr_pages,
2420 							&last_block_in_bio,
2421 							rac != NULL, false);
2422 				f2fs_destroy_compress_ctx(&cc, false);
2423 			}
2424 		}
2425 #endif
2426 	}
2427 	if (bio)
2428 		__submit_bio(F2FS_I_SB(inode), bio, DATA);
2429 	return ret;
2430 }
2431 
2432 static int f2fs_read_data_page(struct file *file, struct page *page)
2433 {
2434 	struct inode *inode = page_file_mapping(page)->host;
2435 	int ret = -EAGAIN;
2436 
2437 	trace_f2fs_readpage(page, DATA);
2438 
2439 	if (!f2fs_is_compress_backend_ready(inode)) {
2440 		unlock_page(page);
2441 		return -EOPNOTSUPP;
2442 	}
2443 
2444 	/* If the file has inline data, try to read it directly */
2445 	if (f2fs_has_inline_data(inode))
2446 		ret = f2fs_read_inline_data(inode, page);
2447 	if (ret == -EAGAIN)
2448 		ret = f2fs_mpage_readpages(inode, NULL, page);
2449 	return ret;
2450 }
2451 
2452 static void f2fs_readahead(struct readahead_control *rac)
2453 {
2454 	struct inode *inode = rac->mapping->host;
2455 
2456 	trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2457 
2458 	if (!f2fs_is_compress_backend_ready(inode))
2459 		return;
2460 
2461 	/* If the file has inline data, skip readpages */
2462 	if (f2fs_has_inline_data(inode))
2463 		return;
2464 
2465 	f2fs_mpage_readpages(inode, rac, NULL);
2466 }
2467 
2468 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2469 {
2470 	struct inode *inode = fio->page->mapping->host;
2471 	struct page *mpage, *page;
2472 	gfp_t gfp_flags = GFP_NOFS;
2473 
2474 	if (!f2fs_encrypted_file(inode))
2475 		return 0;
2476 
2477 	page = fio->compressed_page ? fio->compressed_page : fio->page;
2478 
2479 	/* wait for GCed page writeback via META_MAPPING */
2480 	f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2481 
2482 	if (fscrypt_inode_uses_inline_crypto(inode))
2483 		return 0;
2484 
2485 retry_encrypt:
2486 	fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2487 					PAGE_SIZE, 0, gfp_flags);
2488 	if (IS_ERR(fio->encrypted_page)) {
2489 		/* flush pending IOs and wait for a while in the ENOMEM case */
2490 		if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2491 			f2fs_flush_merged_writes(fio->sbi);
2492 			congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2493 			gfp_flags |= __GFP_NOFAIL;
2494 			goto retry_encrypt;
2495 		}
2496 		return PTR_ERR(fio->encrypted_page);
2497 	}
2498 
2499 	mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2500 	if (mpage) {
2501 		if (PageUptodate(mpage))
2502 			memcpy(page_address(mpage),
2503 				page_address(fio->encrypted_page), PAGE_SIZE);
2504 		f2fs_put_page(mpage, 1);
2505 	}
2506 	return 0;
2507 }
2508 
2509 static inline bool check_inplace_update_policy(struct inode *inode,
2510 				struct f2fs_io_info *fio)
2511 {
2512 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2513 	unsigned int policy = SM_I(sbi)->ipu_policy;
2514 
2515 	if (policy & (0x1 << F2FS_IPU_FORCE))
2516 		return true;
2517 	if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
2518 		return true;
2519 	if (policy & (0x1 << F2FS_IPU_UTIL) &&
2520 			utilization(sbi) > SM_I(sbi)->min_ipu_util)
2521 		return true;
2522 	if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
2523 			utilization(sbi) > SM_I(sbi)->min_ipu_util)
2524 		return true;
2525 
2526 	/*
2527 	 * IPU for rewrite async pages
2528 	 */
2529 	if (policy & (0x1 << F2FS_IPU_ASYNC) &&
2530 			fio && fio->op == REQ_OP_WRITE &&
2531 			!(fio->op_flags & REQ_SYNC) &&
2532 			!IS_ENCRYPTED(inode))
2533 		return true;
2534 
2535 	/* this is only set during fdatasync */
2536 	if (policy & (0x1 << F2FS_IPU_FSYNC) &&
2537 			is_inode_flag_set(inode, FI_NEED_IPU))
2538 		return true;
2539 
2540 	if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2541 			!f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2542 		return true;
2543 
2544 	return false;
2545 }
2546 
2547 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2548 {
2549 	/* swap file is migrating in aligned write mode */
2550 	if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2551 		return false;
2552 
2553 	if (f2fs_is_pinned_file(inode))
2554 		return true;
2555 
2556 	/* if this is cold file, we should overwrite to avoid fragmentation */
2557 	if (file_is_cold(inode))
2558 		return true;
2559 
2560 	return check_inplace_update_policy(inode, fio);
2561 }
2562 
2563 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2564 {
2565 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2566 
2567 	if (f2fs_lfs_mode(sbi))
2568 		return true;
2569 	if (S_ISDIR(inode->i_mode))
2570 		return true;
2571 	if (IS_NOQUOTA(inode))
2572 		return true;
2573 	if (f2fs_is_atomic_file(inode))
2574 		return true;
2575 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
2576 		return true;
2577 
2578 	/* swap file is migrating in aligned write mode */
2579 	if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2580 		return true;
2581 
2582 	if (fio) {
2583 		if (page_private_gcing(fio->page))
2584 			return true;
2585 		if (page_private_dummy(fio->page))
2586 			return true;
2587 		if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2588 			f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2589 			return true;
2590 	}
2591 	return false;
2592 }
2593 
2594 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2595 {
2596 	struct inode *inode = fio->page->mapping->host;
2597 
2598 	if (f2fs_should_update_outplace(inode, fio))
2599 		return false;
2600 
2601 	return f2fs_should_update_inplace(inode, fio);
2602 }
2603 
2604 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2605 {
2606 	struct page *page = fio->page;
2607 	struct inode *inode = page->mapping->host;
2608 	struct dnode_of_data dn;
2609 	struct extent_info ei = {0, };
2610 	struct node_info ni;
2611 	bool ipu_force = false;
2612 	int err = 0;
2613 
2614 	set_new_dnode(&dn, inode, NULL, NULL, 0);
2615 	if (need_inplace_update(fio) &&
2616 			f2fs_lookup_extent_cache(inode, page->index, &ei)) {
2617 		fio->old_blkaddr = ei.blk + page->index - ei.fofs;
2618 
2619 		if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2620 						DATA_GENERIC_ENHANCE))
2621 			return -EFSCORRUPTED;
2622 
2623 		ipu_force = true;
2624 		fio->need_lock = LOCK_DONE;
2625 		goto got_it;
2626 	}
2627 
2628 	/* Deadlock due to between page->lock and f2fs_lock_op */
2629 	if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2630 		return -EAGAIN;
2631 
2632 	err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2633 	if (err)
2634 		goto out;
2635 
2636 	fio->old_blkaddr = dn.data_blkaddr;
2637 
2638 	/* This page is already truncated */
2639 	if (fio->old_blkaddr == NULL_ADDR) {
2640 		ClearPageUptodate(page);
2641 		clear_page_private_gcing(page);
2642 		goto out_writepage;
2643 	}
2644 got_it:
2645 	if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2646 		!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2647 						DATA_GENERIC_ENHANCE)) {
2648 		err = -EFSCORRUPTED;
2649 		goto out_writepage;
2650 	}
2651 	/*
2652 	 * If current allocation needs SSR,
2653 	 * it had better in-place writes for updated data.
2654 	 */
2655 	if (ipu_force ||
2656 		(__is_valid_data_blkaddr(fio->old_blkaddr) &&
2657 					need_inplace_update(fio))) {
2658 		err = f2fs_encrypt_one_page(fio);
2659 		if (err)
2660 			goto out_writepage;
2661 
2662 		set_page_writeback(page);
2663 		ClearPageError(page);
2664 		f2fs_put_dnode(&dn);
2665 		if (fio->need_lock == LOCK_REQ)
2666 			f2fs_unlock_op(fio->sbi);
2667 		err = f2fs_inplace_write_data(fio);
2668 		if (err) {
2669 			if (fscrypt_inode_uses_fs_layer_crypto(inode))
2670 				fscrypt_finalize_bounce_page(&fio->encrypted_page);
2671 			if (PageWriteback(page))
2672 				end_page_writeback(page);
2673 		} else {
2674 			set_inode_flag(inode, FI_UPDATE_WRITE);
2675 		}
2676 		trace_f2fs_do_write_data_page(fio->page, IPU);
2677 		return err;
2678 	}
2679 
2680 	if (fio->need_lock == LOCK_RETRY) {
2681 		if (!f2fs_trylock_op(fio->sbi)) {
2682 			err = -EAGAIN;
2683 			goto out_writepage;
2684 		}
2685 		fio->need_lock = LOCK_REQ;
2686 	}
2687 
2688 	err = f2fs_get_node_info(fio->sbi, dn.nid, &ni);
2689 	if (err)
2690 		goto out_writepage;
2691 
2692 	fio->version = ni.version;
2693 
2694 	err = f2fs_encrypt_one_page(fio);
2695 	if (err)
2696 		goto out_writepage;
2697 
2698 	set_page_writeback(page);
2699 	ClearPageError(page);
2700 
2701 	if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2702 		f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2703 
2704 	/* LFS mode write path */
2705 	f2fs_outplace_write_data(&dn, fio);
2706 	trace_f2fs_do_write_data_page(page, OPU);
2707 	set_inode_flag(inode, FI_APPEND_WRITE);
2708 	if (page->index == 0)
2709 		set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
2710 out_writepage:
2711 	f2fs_put_dnode(&dn);
2712 out:
2713 	if (fio->need_lock == LOCK_REQ)
2714 		f2fs_unlock_op(fio->sbi);
2715 	return err;
2716 }
2717 
2718 int f2fs_write_single_data_page(struct page *page, int *submitted,
2719 				struct bio **bio,
2720 				sector_t *last_block,
2721 				struct writeback_control *wbc,
2722 				enum iostat_type io_type,
2723 				int compr_blocks,
2724 				bool allow_balance)
2725 {
2726 	struct inode *inode = page->mapping->host;
2727 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2728 	loff_t i_size = i_size_read(inode);
2729 	const pgoff_t end_index = ((unsigned long long)i_size)
2730 							>> PAGE_SHIFT;
2731 	loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2732 	unsigned offset = 0;
2733 	bool need_balance_fs = false;
2734 	int err = 0;
2735 	struct f2fs_io_info fio = {
2736 		.sbi = sbi,
2737 		.ino = inode->i_ino,
2738 		.type = DATA,
2739 		.op = REQ_OP_WRITE,
2740 		.op_flags = wbc_to_write_flags(wbc),
2741 		.old_blkaddr = NULL_ADDR,
2742 		.page = page,
2743 		.encrypted_page = NULL,
2744 		.submitted = false,
2745 		.compr_blocks = compr_blocks,
2746 		.need_lock = LOCK_RETRY,
2747 		.io_type = io_type,
2748 		.io_wbc = wbc,
2749 		.bio = bio,
2750 		.last_block = last_block,
2751 	};
2752 
2753 	trace_f2fs_writepage(page, DATA);
2754 
2755 	/* we should bypass data pages to proceed the kworkder jobs */
2756 	if (unlikely(f2fs_cp_error(sbi))) {
2757 		mapping_set_error(page->mapping, -EIO);
2758 		/*
2759 		 * don't drop any dirty dentry pages for keeping lastest
2760 		 * directory structure.
2761 		 */
2762 		if (S_ISDIR(inode->i_mode))
2763 			goto redirty_out;
2764 		goto out;
2765 	}
2766 
2767 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2768 		goto redirty_out;
2769 
2770 	if (page->index < end_index ||
2771 			f2fs_verity_in_progress(inode) ||
2772 			compr_blocks)
2773 		goto write;
2774 
2775 	/*
2776 	 * If the offset is out-of-range of file size,
2777 	 * this page does not have to be written to disk.
2778 	 */
2779 	offset = i_size & (PAGE_SIZE - 1);
2780 	if ((page->index >= end_index + 1) || !offset)
2781 		goto out;
2782 
2783 	zero_user_segment(page, offset, PAGE_SIZE);
2784 write:
2785 	if (f2fs_is_drop_cache(inode))
2786 		goto out;
2787 	/* we should not write 0'th page having journal header */
2788 	if (f2fs_is_volatile_file(inode) && (!page->index ||
2789 			(!wbc->for_reclaim &&
2790 			f2fs_available_free_memory(sbi, BASE_CHECK))))
2791 		goto redirty_out;
2792 
2793 	/* Dentry/quota blocks are controlled by checkpoint */
2794 	if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) {
2795 		/*
2796 		 * We need to wait for node_write to avoid block allocation during
2797 		 * checkpoint. This can only happen to quota writes which can cause
2798 		 * the below discard race condition.
2799 		 */
2800 		if (IS_NOQUOTA(inode))
2801 			down_read(&sbi->node_write);
2802 
2803 		fio.need_lock = LOCK_DONE;
2804 		err = f2fs_do_write_data_page(&fio);
2805 
2806 		if (IS_NOQUOTA(inode))
2807 			up_read(&sbi->node_write);
2808 
2809 		goto done;
2810 	}
2811 
2812 	if (!wbc->for_reclaim)
2813 		need_balance_fs = true;
2814 	else if (has_not_enough_free_secs(sbi, 0, 0))
2815 		goto redirty_out;
2816 	else
2817 		set_inode_flag(inode, FI_HOT_DATA);
2818 
2819 	err = -EAGAIN;
2820 	if (f2fs_has_inline_data(inode)) {
2821 		err = f2fs_write_inline_data(inode, page);
2822 		if (!err)
2823 			goto out;
2824 	}
2825 
2826 	if (err == -EAGAIN) {
2827 		err = f2fs_do_write_data_page(&fio);
2828 		if (err == -EAGAIN) {
2829 			fio.need_lock = LOCK_REQ;
2830 			err = f2fs_do_write_data_page(&fio);
2831 		}
2832 	}
2833 
2834 	if (err) {
2835 		file_set_keep_isize(inode);
2836 	} else {
2837 		spin_lock(&F2FS_I(inode)->i_size_lock);
2838 		if (F2FS_I(inode)->last_disk_size < psize)
2839 			F2FS_I(inode)->last_disk_size = psize;
2840 		spin_unlock(&F2FS_I(inode)->i_size_lock);
2841 	}
2842 
2843 done:
2844 	if (err && err != -ENOENT)
2845 		goto redirty_out;
2846 
2847 out:
2848 	inode_dec_dirty_pages(inode);
2849 	if (err) {
2850 		ClearPageUptodate(page);
2851 		clear_page_private_gcing(page);
2852 	}
2853 
2854 	if (wbc->for_reclaim) {
2855 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2856 		clear_inode_flag(inode, FI_HOT_DATA);
2857 		f2fs_remove_dirty_inode(inode);
2858 		submitted = NULL;
2859 	}
2860 	unlock_page(page);
2861 	if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2862 			!F2FS_I(inode)->cp_task && allow_balance)
2863 		f2fs_balance_fs(sbi, need_balance_fs);
2864 
2865 	if (unlikely(f2fs_cp_error(sbi))) {
2866 		f2fs_submit_merged_write(sbi, DATA);
2867 		f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2868 		submitted = NULL;
2869 	}
2870 
2871 	if (submitted)
2872 		*submitted = fio.submitted ? 1 : 0;
2873 
2874 	return 0;
2875 
2876 redirty_out:
2877 	redirty_page_for_writepage(wbc, page);
2878 	/*
2879 	 * pageout() in MM traslates EAGAIN, so calls handle_write_error()
2880 	 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2881 	 * file_write_and_wait_range() will see EIO error, which is critical
2882 	 * to return value of fsync() followed by atomic_write failure to user.
2883 	 */
2884 	if (!err || wbc->for_reclaim)
2885 		return AOP_WRITEPAGE_ACTIVATE;
2886 	unlock_page(page);
2887 	return err;
2888 }
2889 
2890 static int f2fs_write_data_page(struct page *page,
2891 					struct writeback_control *wbc)
2892 {
2893 #ifdef CONFIG_F2FS_FS_COMPRESSION
2894 	struct inode *inode = page->mapping->host;
2895 
2896 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2897 		goto out;
2898 
2899 	if (f2fs_compressed_file(inode)) {
2900 		if (f2fs_is_compressed_cluster(inode, page->index)) {
2901 			redirty_page_for_writepage(wbc, page);
2902 			return AOP_WRITEPAGE_ACTIVATE;
2903 		}
2904 	}
2905 out:
2906 #endif
2907 
2908 	return f2fs_write_single_data_page(page, NULL, NULL, NULL,
2909 						wbc, FS_DATA_IO, 0, true);
2910 }
2911 
2912 /*
2913  * This function was copied from write_cche_pages from mm/page-writeback.c.
2914  * The major change is making write step of cold data page separately from
2915  * warm/hot data page.
2916  */
2917 static int f2fs_write_cache_pages(struct address_space *mapping,
2918 					struct writeback_control *wbc,
2919 					enum iostat_type io_type)
2920 {
2921 	int ret = 0;
2922 	int done = 0, retry = 0;
2923 	struct pagevec pvec;
2924 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2925 	struct bio *bio = NULL;
2926 	sector_t last_block;
2927 #ifdef CONFIG_F2FS_FS_COMPRESSION
2928 	struct inode *inode = mapping->host;
2929 	struct compress_ctx cc = {
2930 		.inode = inode,
2931 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2932 		.cluster_size = F2FS_I(inode)->i_cluster_size,
2933 		.cluster_idx = NULL_CLUSTER,
2934 		.rpages = NULL,
2935 		.nr_rpages = 0,
2936 		.cpages = NULL,
2937 		.rbuf = NULL,
2938 		.cbuf = NULL,
2939 		.rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2940 		.private = NULL,
2941 	};
2942 #endif
2943 	int nr_pages;
2944 	pgoff_t index;
2945 	pgoff_t end;		/* Inclusive */
2946 	pgoff_t done_index;
2947 	int range_whole = 0;
2948 	xa_mark_t tag;
2949 	int nwritten = 0;
2950 	int submitted = 0;
2951 	int i;
2952 
2953 	pagevec_init(&pvec);
2954 
2955 	if (get_dirty_pages(mapping->host) <=
2956 				SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2957 		set_inode_flag(mapping->host, FI_HOT_DATA);
2958 	else
2959 		clear_inode_flag(mapping->host, FI_HOT_DATA);
2960 
2961 	if (wbc->range_cyclic) {
2962 		index = mapping->writeback_index; /* prev offset */
2963 		end = -1;
2964 	} else {
2965 		index = wbc->range_start >> PAGE_SHIFT;
2966 		end = wbc->range_end >> PAGE_SHIFT;
2967 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2968 			range_whole = 1;
2969 	}
2970 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2971 		tag = PAGECACHE_TAG_TOWRITE;
2972 	else
2973 		tag = PAGECACHE_TAG_DIRTY;
2974 retry:
2975 	retry = 0;
2976 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2977 		tag_pages_for_writeback(mapping, index, end);
2978 	done_index = index;
2979 	while (!done && !retry && (index <= end)) {
2980 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2981 				tag);
2982 		if (nr_pages == 0)
2983 			break;
2984 
2985 		for (i = 0; i < nr_pages; i++) {
2986 			struct page *page = pvec.pages[i];
2987 			bool need_readd;
2988 readd:
2989 			need_readd = false;
2990 #ifdef CONFIG_F2FS_FS_COMPRESSION
2991 			if (f2fs_compressed_file(inode)) {
2992 				ret = f2fs_init_compress_ctx(&cc);
2993 				if (ret) {
2994 					done = 1;
2995 					break;
2996 				}
2997 
2998 				if (!f2fs_cluster_can_merge_page(&cc,
2999 								page->index)) {
3000 					ret = f2fs_write_multi_pages(&cc,
3001 						&submitted, wbc, io_type);
3002 					if (!ret)
3003 						need_readd = true;
3004 					goto result;
3005 				}
3006 
3007 				if (unlikely(f2fs_cp_error(sbi)))
3008 					goto lock_page;
3009 
3010 				if (f2fs_cluster_is_empty(&cc)) {
3011 					void *fsdata = NULL;
3012 					struct page *pagep;
3013 					int ret2;
3014 
3015 					ret2 = f2fs_prepare_compress_overwrite(
3016 							inode, &pagep,
3017 							page->index, &fsdata);
3018 					if (ret2 < 0) {
3019 						ret = ret2;
3020 						done = 1;
3021 						break;
3022 					} else if (ret2 &&
3023 						!f2fs_compress_write_end(inode,
3024 								fsdata, page->index,
3025 								1)) {
3026 						retry = 1;
3027 						break;
3028 					}
3029 				} else {
3030 					goto lock_page;
3031 				}
3032 			}
3033 #endif
3034 			/* give a priority to WB_SYNC threads */
3035 			if (atomic_read(&sbi->wb_sync_req[DATA]) &&
3036 					wbc->sync_mode == WB_SYNC_NONE) {
3037 				done = 1;
3038 				break;
3039 			}
3040 #ifdef CONFIG_F2FS_FS_COMPRESSION
3041 lock_page:
3042 #endif
3043 			done_index = page->index;
3044 retry_write:
3045 			lock_page(page);
3046 
3047 			if (unlikely(page->mapping != mapping)) {
3048 continue_unlock:
3049 				unlock_page(page);
3050 				continue;
3051 			}
3052 
3053 			if (!PageDirty(page)) {
3054 				/* someone wrote it for us */
3055 				goto continue_unlock;
3056 			}
3057 
3058 			if (PageWriteback(page)) {
3059 				if (wbc->sync_mode != WB_SYNC_NONE)
3060 					f2fs_wait_on_page_writeback(page,
3061 							DATA, true, true);
3062 				else
3063 					goto continue_unlock;
3064 			}
3065 
3066 			if (!clear_page_dirty_for_io(page))
3067 				goto continue_unlock;
3068 
3069 #ifdef CONFIG_F2FS_FS_COMPRESSION
3070 			if (f2fs_compressed_file(inode)) {
3071 				get_page(page);
3072 				f2fs_compress_ctx_add_page(&cc, page);
3073 				continue;
3074 			}
3075 #endif
3076 			ret = f2fs_write_single_data_page(page, &submitted,
3077 					&bio, &last_block, wbc, io_type,
3078 					0, true);
3079 			if (ret == AOP_WRITEPAGE_ACTIVATE)
3080 				unlock_page(page);
3081 #ifdef CONFIG_F2FS_FS_COMPRESSION
3082 result:
3083 #endif
3084 			nwritten += submitted;
3085 			wbc->nr_to_write -= submitted;
3086 
3087 			if (unlikely(ret)) {
3088 				/*
3089 				 * keep nr_to_write, since vfs uses this to
3090 				 * get # of written pages.
3091 				 */
3092 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
3093 					ret = 0;
3094 					goto next;
3095 				} else if (ret == -EAGAIN) {
3096 					ret = 0;
3097 					if (wbc->sync_mode == WB_SYNC_ALL) {
3098 						cond_resched();
3099 						congestion_wait(BLK_RW_ASYNC,
3100 							DEFAULT_IO_TIMEOUT);
3101 						goto retry_write;
3102 					}
3103 					goto next;
3104 				}
3105 				done_index = page->index + 1;
3106 				done = 1;
3107 				break;
3108 			}
3109 
3110 			if (wbc->nr_to_write <= 0 &&
3111 					wbc->sync_mode == WB_SYNC_NONE) {
3112 				done = 1;
3113 				break;
3114 			}
3115 next:
3116 			if (need_readd)
3117 				goto readd;
3118 		}
3119 		pagevec_release(&pvec);
3120 		cond_resched();
3121 	}
3122 #ifdef CONFIG_F2FS_FS_COMPRESSION
3123 	/* flush remained pages in compress cluster */
3124 	if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3125 		ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3126 		nwritten += submitted;
3127 		wbc->nr_to_write -= submitted;
3128 		if (ret) {
3129 			done = 1;
3130 			retry = 0;
3131 		}
3132 	}
3133 	if (f2fs_compressed_file(inode))
3134 		f2fs_destroy_compress_ctx(&cc, false);
3135 #endif
3136 	if (retry) {
3137 		index = 0;
3138 		end = -1;
3139 		goto retry;
3140 	}
3141 	if (wbc->range_cyclic && !done)
3142 		done_index = 0;
3143 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3144 		mapping->writeback_index = done_index;
3145 
3146 	if (nwritten)
3147 		f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3148 								NULL, 0, DATA);
3149 	/* submit cached bio of IPU write */
3150 	if (bio)
3151 		f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3152 
3153 	return ret;
3154 }
3155 
3156 static inline bool __should_serialize_io(struct inode *inode,
3157 					struct writeback_control *wbc)
3158 {
3159 	/* to avoid deadlock in path of data flush */
3160 	if (F2FS_I(inode)->cp_task)
3161 		return false;
3162 
3163 	if (!S_ISREG(inode->i_mode))
3164 		return false;
3165 	if (IS_NOQUOTA(inode))
3166 		return false;
3167 
3168 	if (f2fs_need_compress_data(inode))
3169 		return true;
3170 	if (wbc->sync_mode != WB_SYNC_ALL)
3171 		return true;
3172 	if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3173 		return true;
3174 	return false;
3175 }
3176 
3177 static int __f2fs_write_data_pages(struct address_space *mapping,
3178 						struct writeback_control *wbc,
3179 						enum iostat_type io_type)
3180 {
3181 	struct inode *inode = mapping->host;
3182 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3183 	struct blk_plug plug;
3184 	int ret;
3185 	bool locked = false;
3186 
3187 	/* deal with chardevs and other special file */
3188 	if (!mapping->a_ops->writepage)
3189 		return 0;
3190 
3191 	/* skip writing if there is no dirty page in this inode */
3192 	if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3193 		return 0;
3194 
3195 	/* during POR, we don't need to trigger writepage at all. */
3196 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3197 		goto skip_write;
3198 
3199 	if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3200 			wbc->sync_mode == WB_SYNC_NONE &&
3201 			get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3202 			f2fs_available_free_memory(sbi, DIRTY_DENTS))
3203 		goto skip_write;
3204 
3205 	/* skip writing during file defragment */
3206 	if (is_inode_flag_set(inode, FI_DO_DEFRAG))
3207 		goto skip_write;
3208 
3209 	trace_f2fs_writepages(mapping->host, wbc, DATA);
3210 
3211 	/* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3212 	if (wbc->sync_mode == WB_SYNC_ALL)
3213 		atomic_inc(&sbi->wb_sync_req[DATA]);
3214 	else if (atomic_read(&sbi->wb_sync_req[DATA]))
3215 		goto skip_write;
3216 
3217 	if (__should_serialize_io(inode, wbc)) {
3218 		mutex_lock(&sbi->writepages);
3219 		locked = true;
3220 	}
3221 
3222 	blk_start_plug(&plug);
3223 	ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3224 	blk_finish_plug(&plug);
3225 
3226 	if (locked)
3227 		mutex_unlock(&sbi->writepages);
3228 
3229 	if (wbc->sync_mode == WB_SYNC_ALL)
3230 		atomic_dec(&sbi->wb_sync_req[DATA]);
3231 	/*
3232 	 * if some pages were truncated, we cannot guarantee its mapping->host
3233 	 * to detect pending bios.
3234 	 */
3235 
3236 	f2fs_remove_dirty_inode(inode);
3237 	return ret;
3238 
3239 skip_write:
3240 	wbc->pages_skipped += get_dirty_pages(inode);
3241 	trace_f2fs_writepages(mapping->host, wbc, DATA);
3242 	return 0;
3243 }
3244 
3245 static int f2fs_write_data_pages(struct address_space *mapping,
3246 			    struct writeback_control *wbc)
3247 {
3248 	struct inode *inode = mapping->host;
3249 
3250 	return __f2fs_write_data_pages(mapping, wbc,
3251 			F2FS_I(inode)->cp_task == current ?
3252 			FS_CP_DATA_IO : FS_DATA_IO);
3253 }
3254 
3255 static void f2fs_write_failed(struct inode *inode, loff_t to)
3256 {
3257 	loff_t i_size = i_size_read(inode);
3258 
3259 	if (IS_NOQUOTA(inode))
3260 		return;
3261 
3262 	/* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3263 	if (to > i_size && !f2fs_verity_in_progress(inode)) {
3264 		down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3265 		filemap_invalidate_lock(inode->i_mapping);
3266 
3267 		truncate_pagecache(inode, i_size);
3268 		f2fs_truncate_blocks(inode, i_size, true);
3269 
3270 		filemap_invalidate_unlock(inode->i_mapping);
3271 		up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3272 	}
3273 }
3274 
3275 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3276 			struct page *page, loff_t pos, unsigned len,
3277 			block_t *blk_addr, bool *node_changed)
3278 {
3279 	struct inode *inode = page->mapping->host;
3280 	pgoff_t index = page->index;
3281 	struct dnode_of_data dn;
3282 	struct page *ipage;
3283 	bool locked = false;
3284 	struct extent_info ei = {0, };
3285 	int err = 0;
3286 	int flag;
3287 
3288 	/*
3289 	 * we already allocated all the blocks, so we don't need to get
3290 	 * the block addresses when there is no need to fill the page.
3291 	 */
3292 	if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
3293 	    !is_inode_flag_set(inode, FI_NO_PREALLOC) &&
3294 	    !f2fs_verity_in_progress(inode))
3295 		return 0;
3296 
3297 	/* f2fs_lock_op avoids race between write CP and convert_inline_page */
3298 	if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
3299 		flag = F2FS_GET_BLOCK_DEFAULT;
3300 	else
3301 		flag = F2FS_GET_BLOCK_PRE_AIO;
3302 
3303 	if (f2fs_has_inline_data(inode) ||
3304 			(pos & PAGE_MASK) >= i_size_read(inode)) {
3305 		f2fs_do_map_lock(sbi, flag, true);
3306 		locked = true;
3307 	}
3308 
3309 restart:
3310 	/* check inline_data */
3311 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
3312 	if (IS_ERR(ipage)) {
3313 		err = PTR_ERR(ipage);
3314 		goto unlock_out;
3315 	}
3316 
3317 	set_new_dnode(&dn, inode, ipage, ipage, 0);
3318 
3319 	if (f2fs_has_inline_data(inode)) {
3320 		if (pos + len <= MAX_INLINE_DATA(inode)) {
3321 			f2fs_do_read_inline_data(page, ipage);
3322 			set_inode_flag(inode, FI_DATA_EXIST);
3323 			if (inode->i_nlink)
3324 				set_page_private_inline(ipage);
3325 		} else {
3326 			err = f2fs_convert_inline_page(&dn, page);
3327 			if (err)
3328 				goto out;
3329 			if (dn.data_blkaddr == NULL_ADDR)
3330 				err = f2fs_get_block(&dn, index);
3331 		}
3332 	} else if (locked) {
3333 		err = f2fs_get_block(&dn, index);
3334 	} else {
3335 		if (f2fs_lookup_extent_cache(inode, index, &ei)) {
3336 			dn.data_blkaddr = ei.blk + index - ei.fofs;
3337 		} else {
3338 			/* hole case */
3339 			err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3340 			if (err || dn.data_blkaddr == NULL_ADDR) {
3341 				f2fs_put_dnode(&dn);
3342 				f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
3343 								true);
3344 				WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3345 				locked = true;
3346 				goto restart;
3347 			}
3348 		}
3349 	}
3350 
3351 	/* convert_inline_page can make node_changed */
3352 	*blk_addr = dn.data_blkaddr;
3353 	*node_changed = dn.node_changed;
3354 out:
3355 	f2fs_put_dnode(&dn);
3356 unlock_out:
3357 	if (locked)
3358 		f2fs_do_map_lock(sbi, flag, false);
3359 	return err;
3360 }
3361 
3362 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3363 		loff_t pos, unsigned len, unsigned flags,
3364 		struct page **pagep, void **fsdata)
3365 {
3366 	struct inode *inode = mapping->host;
3367 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3368 	struct page *page = NULL;
3369 	pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3370 	bool need_balance = false, drop_atomic = false;
3371 	block_t blkaddr = NULL_ADDR;
3372 	int err = 0;
3373 
3374 	trace_f2fs_write_begin(inode, pos, len, flags);
3375 
3376 	if (!f2fs_is_checkpoint_ready(sbi)) {
3377 		err = -ENOSPC;
3378 		goto fail;
3379 	}
3380 
3381 	if ((f2fs_is_atomic_file(inode) &&
3382 			!f2fs_available_free_memory(sbi, INMEM_PAGES)) ||
3383 			is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
3384 		err = -ENOMEM;
3385 		drop_atomic = true;
3386 		goto fail;
3387 	}
3388 
3389 	/*
3390 	 * We should check this at this moment to avoid deadlock on inode page
3391 	 * and #0 page. The locking rule for inline_data conversion should be:
3392 	 * lock_page(page #0) -> lock_page(inode_page)
3393 	 */
3394 	if (index != 0) {
3395 		err = f2fs_convert_inline_inode(inode);
3396 		if (err)
3397 			goto fail;
3398 	}
3399 
3400 #ifdef CONFIG_F2FS_FS_COMPRESSION
3401 	if (f2fs_compressed_file(inode)) {
3402 		int ret;
3403 
3404 		*fsdata = NULL;
3405 
3406 		if (len == PAGE_SIZE)
3407 			goto repeat;
3408 
3409 		ret = f2fs_prepare_compress_overwrite(inode, pagep,
3410 							index, fsdata);
3411 		if (ret < 0) {
3412 			err = ret;
3413 			goto fail;
3414 		} else if (ret) {
3415 			return 0;
3416 		}
3417 	}
3418 #endif
3419 
3420 repeat:
3421 	/*
3422 	 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3423 	 * wait_for_stable_page. Will wait that below with our IO control.
3424 	 */
3425 	page = f2fs_pagecache_get_page(mapping, index,
3426 				FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3427 	if (!page) {
3428 		err = -ENOMEM;
3429 		goto fail;
3430 	}
3431 
3432 	/* TODO: cluster can be compressed due to race with .writepage */
3433 
3434 	*pagep = page;
3435 
3436 	err = prepare_write_begin(sbi, page, pos, len,
3437 					&blkaddr, &need_balance);
3438 	if (err)
3439 		goto fail;
3440 
3441 	if (need_balance && !IS_NOQUOTA(inode) &&
3442 			has_not_enough_free_secs(sbi, 0, 0)) {
3443 		unlock_page(page);
3444 		f2fs_balance_fs(sbi, true);
3445 		lock_page(page);
3446 		if (page->mapping != mapping) {
3447 			/* The page got truncated from under us */
3448 			f2fs_put_page(page, 1);
3449 			goto repeat;
3450 		}
3451 	}
3452 
3453 	f2fs_wait_on_page_writeback(page, DATA, false, true);
3454 
3455 	if (len == PAGE_SIZE || PageUptodate(page))
3456 		return 0;
3457 
3458 	if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3459 	    !f2fs_verity_in_progress(inode)) {
3460 		zero_user_segment(page, len, PAGE_SIZE);
3461 		return 0;
3462 	}
3463 
3464 	if (blkaddr == NEW_ADDR) {
3465 		zero_user_segment(page, 0, PAGE_SIZE);
3466 		SetPageUptodate(page);
3467 	} else {
3468 		if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3469 				DATA_GENERIC_ENHANCE_READ)) {
3470 			err = -EFSCORRUPTED;
3471 			goto fail;
3472 		}
3473 		err = f2fs_submit_page_read(inode, page, blkaddr, 0, true);
3474 		if (err)
3475 			goto fail;
3476 
3477 		lock_page(page);
3478 		if (unlikely(page->mapping != mapping)) {
3479 			f2fs_put_page(page, 1);
3480 			goto repeat;
3481 		}
3482 		if (unlikely(!PageUptodate(page))) {
3483 			err = -EIO;
3484 			goto fail;
3485 		}
3486 	}
3487 	return 0;
3488 
3489 fail:
3490 	f2fs_put_page(page, 1);
3491 	f2fs_write_failed(inode, pos + len);
3492 	if (drop_atomic)
3493 		f2fs_drop_inmem_pages_all(sbi, false);
3494 	return err;
3495 }
3496 
3497 static int f2fs_write_end(struct file *file,
3498 			struct address_space *mapping,
3499 			loff_t pos, unsigned len, unsigned copied,
3500 			struct page *page, void *fsdata)
3501 {
3502 	struct inode *inode = page->mapping->host;
3503 
3504 	trace_f2fs_write_end(inode, pos, len, copied);
3505 
3506 	/*
3507 	 * This should be come from len == PAGE_SIZE, and we expect copied
3508 	 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3509 	 * let generic_perform_write() try to copy data again through copied=0.
3510 	 */
3511 	if (!PageUptodate(page)) {
3512 		if (unlikely(copied != len))
3513 			copied = 0;
3514 		else
3515 			SetPageUptodate(page);
3516 	}
3517 
3518 #ifdef CONFIG_F2FS_FS_COMPRESSION
3519 	/* overwrite compressed file */
3520 	if (f2fs_compressed_file(inode) && fsdata) {
3521 		f2fs_compress_write_end(inode, fsdata, page->index, copied);
3522 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3523 
3524 		if (pos + copied > i_size_read(inode) &&
3525 				!f2fs_verity_in_progress(inode))
3526 			f2fs_i_size_write(inode, pos + copied);
3527 		return copied;
3528 	}
3529 #endif
3530 
3531 	if (!copied)
3532 		goto unlock_out;
3533 
3534 	set_page_dirty(page);
3535 
3536 	if (pos + copied > i_size_read(inode) &&
3537 	    !f2fs_verity_in_progress(inode))
3538 		f2fs_i_size_write(inode, pos + copied);
3539 unlock_out:
3540 	f2fs_put_page(page, 1);
3541 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3542 	return copied;
3543 }
3544 
3545 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
3546 			   loff_t offset)
3547 {
3548 	unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
3549 	unsigned blkbits = i_blkbits;
3550 	unsigned blocksize_mask = (1 << blkbits) - 1;
3551 	unsigned long align = offset | iov_iter_alignment(iter);
3552 	struct block_device *bdev = inode->i_sb->s_bdev;
3553 
3554 	if (iov_iter_rw(iter) == READ && offset >= i_size_read(inode))
3555 		return 1;
3556 
3557 	if (align & blocksize_mask) {
3558 		if (bdev)
3559 			blkbits = blksize_bits(bdev_logical_block_size(bdev));
3560 		blocksize_mask = (1 << blkbits) - 1;
3561 		if (align & blocksize_mask)
3562 			return -EINVAL;
3563 		return 1;
3564 	}
3565 	return 0;
3566 }
3567 
3568 static void f2fs_dio_end_io(struct bio *bio)
3569 {
3570 	struct f2fs_private_dio *dio = bio->bi_private;
3571 
3572 	dec_page_count(F2FS_I_SB(dio->inode),
3573 			dio->write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
3574 
3575 	bio->bi_private = dio->orig_private;
3576 	bio->bi_end_io = dio->orig_end_io;
3577 
3578 	kfree(dio);
3579 
3580 	bio_endio(bio);
3581 }
3582 
3583 static void f2fs_dio_submit_bio(struct bio *bio, struct inode *inode,
3584 							loff_t file_offset)
3585 {
3586 	struct f2fs_private_dio *dio;
3587 	bool write = (bio_op(bio) == REQ_OP_WRITE);
3588 
3589 	dio = f2fs_kzalloc(F2FS_I_SB(inode),
3590 			sizeof(struct f2fs_private_dio), GFP_NOFS);
3591 	if (!dio)
3592 		goto out;
3593 
3594 	dio->inode = inode;
3595 	dio->orig_end_io = bio->bi_end_io;
3596 	dio->orig_private = bio->bi_private;
3597 	dio->write = write;
3598 
3599 	bio->bi_end_io = f2fs_dio_end_io;
3600 	bio->bi_private = dio;
3601 
3602 	inc_page_count(F2FS_I_SB(inode),
3603 			write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
3604 
3605 	submit_bio(bio);
3606 	return;
3607 out:
3608 	bio->bi_status = BLK_STS_IOERR;
3609 	bio_endio(bio);
3610 }
3611 
3612 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3613 {
3614 	struct address_space *mapping = iocb->ki_filp->f_mapping;
3615 	struct inode *inode = mapping->host;
3616 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3617 	struct f2fs_inode_info *fi = F2FS_I(inode);
3618 	size_t count = iov_iter_count(iter);
3619 	loff_t offset = iocb->ki_pos;
3620 	int rw = iov_iter_rw(iter);
3621 	int err;
3622 	enum rw_hint hint = iocb->ki_hint;
3623 	int whint_mode = F2FS_OPTION(sbi).whint_mode;
3624 	bool do_opu;
3625 
3626 	err = check_direct_IO(inode, iter, offset);
3627 	if (err)
3628 		return err < 0 ? err : 0;
3629 
3630 	if (f2fs_force_buffered_io(inode, iocb, iter))
3631 		return 0;
3632 
3633 	do_opu = rw == WRITE && f2fs_lfs_mode(sbi);
3634 
3635 	trace_f2fs_direct_IO_enter(inode, offset, count, rw);
3636 
3637 	if (rw == WRITE && whint_mode == WHINT_MODE_OFF)
3638 		iocb->ki_hint = WRITE_LIFE_NOT_SET;
3639 
3640 	if (iocb->ki_flags & IOCB_NOWAIT) {
3641 		if (!down_read_trylock(&fi->i_gc_rwsem[rw])) {
3642 			iocb->ki_hint = hint;
3643 			err = -EAGAIN;
3644 			goto out;
3645 		}
3646 		if (do_opu && !down_read_trylock(&fi->i_gc_rwsem[READ])) {
3647 			up_read(&fi->i_gc_rwsem[rw]);
3648 			iocb->ki_hint = hint;
3649 			err = -EAGAIN;
3650 			goto out;
3651 		}
3652 	} else {
3653 		down_read(&fi->i_gc_rwsem[rw]);
3654 		if (do_opu)
3655 			down_read(&fi->i_gc_rwsem[READ]);
3656 	}
3657 
3658 	err = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3659 			iter, rw == WRITE ? get_data_block_dio_write :
3660 			get_data_block_dio, NULL, f2fs_dio_submit_bio,
3661 			rw == WRITE ? DIO_LOCKING | DIO_SKIP_HOLES :
3662 			DIO_SKIP_HOLES);
3663 
3664 	if (do_opu)
3665 		up_read(&fi->i_gc_rwsem[READ]);
3666 
3667 	up_read(&fi->i_gc_rwsem[rw]);
3668 
3669 	if (rw == WRITE) {
3670 		if (whint_mode == WHINT_MODE_OFF)
3671 			iocb->ki_hint = hint;
3672 		if (err > 0) {
3673 			f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
3674 									err);
3675 			if (!do_opu)
3676 				set_inode_flag(inode, FI_UPDATE_WRITE);
3677 		} else if (err == -EIOCBQUEUED) {
3678 			f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
3679 						count - iov_iter_count(iter));
3680 		} else if (err < 0) {
3681 			f2fs_write_failed(inode, offset + count);
3682 		}
3683 	} else {
3684 		if (err > 0)
3685 			f2fs_update_iostat(sbi, APP_DIRECT_READ_IO, err);
3686 		else if (err == -EIOCBQUEUED)
3687 			f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_READ_IO,
3688 						count - iov_iter_count(iter));
3689 	}
3690 
3691 out:
3692 	trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
3693 
3694 	return err;
3695 }
3696 
3697 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3698 							unsigned int length)
3699 {
3700 	struct inode *inode = page->mapping->host;
3701 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3702 
3703 	if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3704 		(offset % PAGE_SIZE || length != PAGE_SIZE))
3705 		return;
3706 
3707 	if (PageDirty(page)) {
3708 		if (inode->i_ino == F2FS_META_INO(sbi)) {
3709 			dec_page_count(sbi, F2FS_DIRTY_META);
3710 		} else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3711 			dec_page_count(sbi, F2FS_DIRTY_NODES);
3712 		} else {
3713 			inode_dec_dirty_pages(inode);
3714 			f2fs_remove_dirty_inode(inode);
3715 		}
3716 	}
3717 
3718 	clear_page_private_gcing(page);
3719 
3720 	if (test_opt(sbi, COMPRESS_CACHE)) {
3721 		if (f2fs_compressed_file(inode))
3722 			f2fs_invalidate_compress_pages(sbi, inode->i_ino);
3723 		if (inode->i_ino == F2FS_COMPRESS_INO(sbi))
3724 			clear_page_private_data(page);
3725 	}
3726 
3727 	if (page_private_atomic(page))
3728 		return f2fs_drop_inmem_page(inode, page);
3729 
3730 	detach_page_private(page);
3731 	set_page_private(page, 0);
3732 }
3733 
3734 int f2fs_release_page(struct page *page, gfp_t wait)
3735 {
3736 	/* If this is dirty page, keep PagePrivate */
3737 	if (PageDirty(page))
3738 		return 0;
3739 
3740 	/* This is atomic written page, keep Private */
3741 	if (page_private_atomic(page))
3742 		return 0;
3743 
3744 	if (test_opt(F2FS_P_SB(page), COMPRESS_CACHE)) {
3745 		struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3746 		struct inode *inode = page->mapping->host;
3747 
3748 		if (f2fs_compressed_file(inode))
3749 			f2fs_invalidate_compress_pages(sbi, inode->i_ino);
3750 		if (inode->i_ino == F2FS_COMPRESS_INO(sbi))
3751 			clear_page_private_data(page);
3752 	}
3753 
3754 	clear_page_private_gcing(page);
3755 
3756 	detach_page_private(page);
3757 	set_page_private(page, 0);
3758 	return 1;
3759 }
3760 
3761 static int f2fs_set_data_page_dirty(struct page *page)
3762 {
3763 	struct inode *inode = page_file_mapping(page)->host;
3764 
3765 	trace_f2fs_set_page_dirty(page, DATA);
3766 
3767 	if (!PageUptodate(page))
3768 		SetPageUptodate(page);
3769 	if (PageSwapCache(page))
3770 		return __set_page_dirty_nobuffers(page);
3771 
3772 	if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
3773 		if (!page_private_atomic(page)) {
3774 			f2fs_register_inmem_page(inode, page);
3775 			return 1;
3776 		}
3777 		/*
3778 		 * Previously, this page has been registered, we just
3779 		 * return here.
3780 		 */
3781 		return 0;
3782 	}
3783 
3784 	if (!PageDirty(page)) {
3785 		__set_page_dirty_nobuffers(page);
3786 		f2fs_update_dirty_page(inode, page);
3787 		return 1;
3788 	}
3789 	return 0;
3790 }
3791 
3792 
3793 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3794 {
3795 #ifdef CONFIG_F2FS_FS_COMPRESSION
3796 	struct dnode_of_data dn;
3797 	sector_t start_idx, blknr = 0;
3798 	int ret;
3799 
3800 	start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3801 
3802 	set_new_dnode(&dn, inode, NULL, NULL, 0);
3803 	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3804 	if (ret)
3805 		return 0;
3806 
3807 	if (dn.data_blkaddr != COMPRESS_ADDR) {
3808 		dn.ofs_in_node += block - start_idx;
3809 		blknr = f2fs_data_blkaddr(&dn);
3810 		if (!__is_valid_data_blkaddr(blknr))
3811 			blknr = 0;
3812 	}
3813 
3814 	f2fs_put_dnode(&dn);
3815 	return blknr;
3816 #else
3817 	return 0;
3818 #endif
3819 }
3820 
3821 
3822 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3823 {
3824 	struct inode *inode = mapping->host;
3825 	sector_t blknr = 0;
3826 
3827 	if (f2fs_has_inline_data(inode))
3828 		goto out;
3829 
3830 	/* make sure allocating whole blocks */
3831 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3832 		filemap_write_and_wait(mapping);
3833 
3834 	/* Block number less than F2FS MAX BLOCKS */
3835 	if (unlikely(block >= max_file_blocks(inode)))
3836 		goto out;
3837 
3838 	if (f2fs_compressed_file(inode)) {
3839 		blknr = f2fs_bmap_compress(inode, block);
3840 	} else {
3841 		struct f2fs_map_blocks map;
3842 
3843 		memset(&map, 0, sizeof(map));
3844 		map.m_lblk = block;
3845 		map.m_len = 1;
3846 		map.m_next_pgofs = NULL;
3847 		map.m_seg_type = NO_CHECK_TYPE;
3848 
3849 		if (!f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_BMAP))
3850 			blknr = map.m_pblk;
3851 	}
3852 out:
3853 	trace_f2fs_bmap(inode, block, blknr);
3854 	return blknr;
3855 }
3856 
3857 #ifdef CONFIG_MIGRATION
3858 #include <linux/migrate.h>
3859 
3860 int f2fs_migrate_page(struct address_space *mapping,
3861 		struct page *newpage, struct page *page, enum migrate_mode mode)
3862 {
3863 	int rc, extra_count;
3864 	struct f2fs_inode_info *fi = F2FS_I(mapping->host);
3865 	bool atomic_written = page_private_atomic(page);
3866 
3867 	BUG_ON(PageWriteback(page));
3868 
3869 	/* migrating an atomic written page is safe with the inmem_lock hold */
3870 	if (atomic_written) {
3871 		if (mode != MIGRATE_SYNC)
3872 			return -EBUSY;
3873 		if (!mutex_trylock(&fi->inmem_lock))
3874 			return -EAGAIN;
3875 	}
3876 
3877 	/* one extra reference was held for atomic_write page */
3878 	extra_count = atomic_written ? 1 : 0;
3879 	rc = migrate_page_move_mapping(mapping, newpage,
3880 				page, extra_count);
3881 	if (rc != MIGRATEPAGE_SUCCESS) {
3882 		if (atomic_written)
3883 			mutex_unlock(&fi->inmem_lock);
3884 		return rc;
3885 	}
3886 
3887 	if (atomic_written) {
3888 		struct inmem_pages *cur;
3889 
3890 		list_for_each_entry(cur, &fi->inmem_pages, list)
3891 			if (cur->page == page) {
3892 				cur->page = newpage;
3893 				break;
3894 			}
3895 		mutex_unlock(&fi->inmem_lock);
3896 		put_page(page);
3897 		get_page(newpage);
3898 	}
3899 
3900 	/* guarantee to start from no stale private field */
3901 	set_page_private(newpage, 0);
3902 	if (PagePrivate(page)) {
3903 		set_page_private(newpage, page_private(page));
3904 		SetPagePrivate(newpage);
3905 		get_page(newpage);
3906 
3907 		set_page_private(page, 0);
3908 		ClearPagePrivate(page);
3909 		put_page(page);
3910 	}
3911 
3912 	if (mode != MIGRATE_SYNC_NO_COPY)
3913 		migrate_page_copy(newpage, page);
3914 	else
3915 		migrate_page_states(newpage, page);
3916 
3917 	return MIGRATEPAGE_SUCCESS;
3918 }
3919 #endif
3920 
3921 #ifdef CONFIG_SWAP
3922 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk,
3923 							unsigned int blkcnt)
3924 {
3925 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3926 	unsigned int blkofs;
3927 	unsigned int blk_per_sec = BLKS_PER_SEC(sbi);
3928 	unsigned int secidx = start_blk / blk_per_sec;
3929 	unsigned int end_sec = secidx + blkcnt / blk_per_sec;
3930 	int ret = 0;
3931 
3932 	down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3933 	filemap_invalidate_lock(inode->i_mapping);
3934 
3935 	set_inode_flag(inode, FI_ALIGNED_WRITE);
3936 
3937 	for (; secidx < end_sec; secidx++) {
3938 		down_write(&sbi->pin_sem);
3939 
3940 		f2fs_lock_op(sbi);
3941 		f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
3942 		f2fs_unlock_op(sbi);
3943 
3944 		set_inode_flag(inode, FI_DO_DEFRAG);
3945 
3946 		for (blkofs = 0; blkofs < blk_per_sec; blkofs++) {
3947 			struct page *page;
3948 			unsigned int blkidx = secidx * blk_per_sec + blkofs;
3949 
3950 			page = f2fs_get_lock_data_page(inode, blkidx, true);
3951 			if (IS_ERR(page)) {
3952 				up_write(&sbi->pin_sem);
3953 				ret = PTR_ERR(page);
3954 				goto done;
3955 			}
3956 
3957 			set_page_dirty(page);
3958 			f2fs_put_page(page, 1);
3959 		}
3960 
3961 		clear_inode_flag(inode, FI_DO_DEFRAG);
3962 
3963 		ret = filemap_fdatawrite(inode->i_mapping);
3964 
3965 		up_write(&sbi->pin_sem);
3966 
3967 		if (ret)
3968 			break;
3969 	}
3970 
3971 done:
3972 	clear_inode_flag(inode, FI_DO_DEFRAG);
3973 	clear_inode_flag(inode, FI_ALIGNED_WRITE);
3974 
3975 	filemap_invalidate_unlock(inode->i_mapping);
3976 	up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3977 
3978 	return ret;
3979 }
3980 
3981 static int check_swap_activate(struct swap_info_struct *sis,
3982 				struct file *swap_file, sector_t *span)
3983 {
3984 	struct address_space *mapping = swap_file->f_mapping;
3985 	struct inode *inode = mapping->host;
3986 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3987 	sector_t cur_lblock;
3988 	sector_t last_lblock;
3989 	sector_t pblock;
3990 	sector_t lowest_pblock = -1;
3991 	sector_t highest_pblock = 0;
3992 	int nr_extents = 0;
3993 	unsigned long nr_pblocks;
3994 	unsigned int blks_per_sec = BLKS_PER_SEC(sbi);
3995 	unsigned int sec_blks_mask = BLKS_PER_SEC(sbi) - 1;
3996 	unsigned int not_aligned = 0;
3997 	int ret = 0;
3998 
3999 	/*
4000 	 * Map all the blocks into the extent list.  This code doesn't try
4001 	 * to be very smart.
4002 	 */
4003 	cur_lblock = 0;
4004 	last_lblock = bytes_to_blks(inode, i_size_read(inode));
4005 
4006 	while (cur_lblock < last_lblock && cur_lblock < sis->max) {
4007 		struct f2fs_map_blocks map;
4008 retry:
4009 		cond_resched();
4010 
4011 		memset(&map, 0, sizeof(map));
4012 		map.m_lblk = cur_lblock;
4013 		map.m_len = last_lblock - cur_lblock;
4014 		map.m_next_pgofs = NULL;
4015 		map.m_next_extent = NULL;
4016 		map.m_seg_type = NO_CHECK_TYPE;
4017 		map.m_may_create = false;
4018 
4019 		ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
4020 		if (ret)
4021 			goto out;
4022 
4023 		/* hole */
4024 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
4025 			f2fs_err(sbi, "Swapfile has holes");
4026 			ret = -EINVAL;
4027 			goto out;
4028 		}
4029 
4030 		pblock = map.m_pblk;
4031 		nr_pblocks = map.m_len;
4032 
4033 		if ((pblock - SM_I(sbi)->main_blkaddr) & sec_blks_mask ||
4034 				nr_pblocks & sec_blks_mask) {
4035 			not_aligned++;
4036 
4037 			nr_pblocks = roundup(nr_pblocks, blks_per_sec);
4038 			if (cur_lblock + nr_pblocks > sis->max)
4039 				nr_pblocks -= blks_per_sec;
4040 
4041 			if (!nr_pblocks) {
4042 				/* this extent is last one */
4043 				nr_pblocks = map.m_len;
4044 				f2fs_warn(sbi, "Swapfile: last extent is not aligned to section");
4045 				goto next;
4046 			}
4047 
4048 			ret = f2fs_migrate_blocks(inode, cur_lblock,
4049 							nr_pblocks);
4050 			if (ret)
4051 				goto out;
4052 			goto retry;
4053 		}
4054 next:
4055 		if (cur_lblock + nr_pblocks >= sis->max)
4056 			nr_pblocks = sis->max - cur_lblock;
4057 
4058 		if (cur_lblock) {	/* exclude the header page */
4059 			if (pblock < lowest_pblock)
4060 				lowest_pblock = pblock;
4061 			if (pblock + nr_pblocks - 1 > highest_pblock)
4062 				highest_pblock = pblock + nr_pblocks - 1;
4063 		}
4064 
4065 		/*
4066 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
4067 		 */
4068 		ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
4069 		if (ret < 0)
4070 			goto out;
4071 		nr_extents += ret;
4072 		cur_lblock += nr_pblocks;
4073 	}
4074 	ret = nr_extents;
4075 	*span = 1 + highest_pblock - lowest_pblock;
4076 	if (cur_lblock == 0)
4077 		cur_lblock = 1;	/* force Empty message */
4078 	sis->max = cur_lblock;
4079 	sis->pages = cur_lblock - 1;
4080 	sis->highest_bit = cur_lblock - 1;
4081 out:
4082 	if (not_aligned)
4083 		f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%u * N)",
4084 			  not_aligned, blks_per_sec * F2FS_BLKSIZE);
4085 	return ret;
4086 }
4087 
4088 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4089 				sector_t *span)
4090 {
4091 	struct inode *inode = file_inode(file);
4092 	int ret;
4093 
4094 	if (!S_ISREG(inode->i_mode))
4095 		return -EINVAL;
4096 
4097 	if (f2fs_readonly(F2FS_I_SB(inode)->sb))
4098 		return -EROFS;
4099 
4100 	if (f2fs_lfs_mode(F2FS_I_SB(inode))) {
4101 		f2fs_err(F2FS_I_SB(inode),
4102 			"Swapfile not supported in LFS mode");
4103 		return -EINVAL;
4104 	}
4105 
4106 	ret = f2fs_convert_inline_inode(inode);
4107 	if (ret)
4108 		return ret;
4109 
4110 	if (!f2fs_disable_compressed_file(inode))
4111 		return -EINVAL;
4112 
4113 	f2fs_precache_extents(inode);
4114 
4115 	ret = check_swap_activate(sis, file, span);
4116 	if (ret < 0)
4117 		return ret;
4118 
4119 	set_inode_flag(inode, FI_PIN_FILE);
4120 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
4121 	return ret;
4122 }
4123 
4124 static void f2fs_swap_deactivate(struct file *file)
4125 {
4126 	struct inode *inode = file_inode(file);
4127 
4128 	clear_inode_flag(inode, FI_PIN_FILE);
4129 }
4130 #else
4131 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4132 				sector_t *span)
4133 {
4134 	return -EOPNOTSUPP;
4135 }
4136 
4137 static void f2fs_swap_deactivate(struct file *file)
4138 {
4139 }
4140 #endif
4141 
4142 const struct address_space_operations f2fs_dblock_aops = {
4143 	.readpage	= f2fs_read_data_page,
4144 	.readahead	= f2fs_readahead,
4145 	.writepage	= f2fs_write_data_page,
4146 	.writepages	= f2fs_write_data_pages,
4147 	.write_begin	= f2fs_write_begin,
4148 	.write_end	= f2fs_write_end,
4149 	.set_page_dirty	= f2fs_set_data_page_dirty,
4150 	.invalidatepage	= f2fs_invalidate_page,
4151 	.releasepage	= f2fs_release_page,
4152 	.direct_IO	= f2fs_direct_IO,
4153 	.bmap		= f2fs_bmap,
4154 	.swap_activate  = f2fs_swap_activate,
4155 	.swap_deactivate = f2fs_swap_deactivate,
4156 #ifdef CONFIG_MIGRATION
4157 	.migratepage    = f2fs_migrate_page,
4158 #endif
4159 };
4160 
4161 void f2fs_clear_page_cache_dirty_tag(struct page *page)
4162 {
4163 	struct address_space *mapping = page_mapping(page);
4164 	unsigned long flags;
4165 
4166 	xa_lock_irqsave(&mapping->i_pages, flags);
4167 	__xa_clear_mark(&mapping->i_pages, page_index(page),
4168 						PAGECACHE_TAG_DIRTY);
4169 	xa_unlock_irqrestore(&mapping->i_pages, flags);
4170 }
4171 
4172 int __init f2fs_init_post_read_processing(void)
4173 {
4174 	bio_post_read_ctx_cache =
4175 		kmem_cache_create("f2fs_bio_post_read_ctx",
4176 				  sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4177 	if (!bio_post_read_ctx_cache)
4178 		goto fail;
4179 	bio_post_read_ctx_pool =
4180 		mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4181 					 bio_post_read_ctx_cache);
4182 	if (!bio_post_read_ctx_pool)
4183 		goto fail_free_cache;
4184 	return 0;
4185 
4186 fail_free_cache:
4187 	kmem_cache_destroy(bio_post_read_ctx_cache);
4188 fail:
4189 	return -ENOMEM;
4190 }
4191 
4192 void f2fs_destroy_post_read_processing(void)
4193 {
4194 	mempool_destroy(bio_post_read_ctx_pool);
4195 	kmem_cache_destroy(bio_post_read_ctx_cache);
4196 }
4197 
4198 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4199 {
4200 	if (!f2fs_sb_has_encrypt(sbi) &&
4201 		!f2fs_sb_has_verity(sbi) &&
4202 		!f2fs_sb_has_compression(sbi))
4203 		return 0;
4204 
4205 	sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4206 						 WQ_UNBOUND | WQ_HIGHPRI,
4207 						 num_online_cpus());
4208 	if (!sbi->post_read_wq)
4209 		return -ENOMEM;
4210 	return 0;
4211 }
4212 
4213 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4214 {
4215 	if (sbi->post_read_wq)
4216 		destroy_workqueue(sbi->post_read_wq);
4217 }
4218 
4219 int __init f2fs_init_bio_entry_cache(void)
4220 {
4221 	bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4222 			sizeof(struct bio_entry));
4223 	if (!bio_entry_slab)
4224 		return -ENOMEM;
4225 	return 0;
4226 }
4227 
4228 void f2fs_destroy_bio_entry_cache(void)
4229 {
4230 	kmem_cache_destroy(bio_entry_slab);
4231 }
4232