1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/data.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/buffer_head.h> 11 #include <linux/sched/mm.h> 12 #include <linux/mpage.h> 13 #include <linux/writeback.h> 14 #include <linux/pagevec.h> 15 #include <linux/blkdev.h> 16 #include <linux/bio.h> 17 #include <linux/blk-crypto.h> 18 #include <linux/swap.h> 19 #include <linux/prefetch.h> 20 #include <linux/uio.h> 21 #include <linux/sched/signal.h> 22 #include <linux/fiemap.h> 23 #include <linux/iomap.h> 24 25 #include "f2fs.h" 26 #include "node.h" 27 #include "segment.h" 28 #include "iostat.h" 29 #include <trace/events/f2fs.h> 30 31 #define NUM_PREALLOC_POST_READ_CTXS 128 32 33 static struct kmem_cache *bio_post_read_ctx_cache; 34 static struct kmem_cache *bio_entry_slab; 35 static mempool_t *bio_post_read_ctx_pool; 36 static struct bio_set f2fs_bioset; 37 38 #define F2FS_BIO_POOL_SIZE NR_CURSEG_TYPE 39 40 int __init f2fs_init_bioset(void) 41 { 42 if (bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE, 43 0, BIOSET_NEED_BVECS)) 44 return -ENOMEM; 45 return 0; 46 } 47 48 void f2fs_destroy_bioset(void) 49 { 50 bioset_exit(&f2fs_bioset); 51 } 52 53 static bool __is_cp_guaranteed(struct page *page) 54 { 55 struct address_space *mapping = page->mapping; 56 struct inode *inode; 57 struct f2fs_sb_info *sbi; 58 59 if (!mapping) 60 return false; 61 62 inode = mapping->host; 63 sbi = F2FS_I_SB(inode); 64 65 if (inode->i_ino == F2FS_META_INO(sbi) || 66 inode->i_ino == F2FS_NODE_INO(sbi) || 67 S_ISDIR(inode->i_mode)) 68 return true; 69 70 if (f2fs_is_compressed_page(page)) 71 return false; 72 if ((S_ISREG(inode->i_mode) && 73 (f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) || 74 page_private_gcing(page)) 75 return true; 76 return false; 77 } 78 79 static enum count_type __read_io_type(struct page *page) 80 { 81 struct address_space *mapping = page_file_mapping(page); 82 83 if (mapping) { 84 struct inode *inode = mapping->host; 85 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 86 87 if (inode->i_ino == F2FS_META_INO(sbi)) 88 return F2FS_RD_META; 89 90 if (inode->i_ino == F2FS_NODE_INO(sbi)) 91 return F2FS_RD_NODE; 92 } 93 return F2FS_RD_DATA; 94 } 95 96 /* postprocessing steps for read bios */ 97 enum bio_post_read_step { 98 #ifdef CONFIG_FS_ENCRYPTION 99 STEP_DECRYPT = 1 << 0, 100 #else 101 STEP_DECRYPT = 0, /* compile out the decryption-related code */ 102 #endif 103 #ifdef CONFIG_F2FS_FS_COMPRESSION 104 STEP_DECOMPRESS = 1 << 1, 105 #else 106 STEP_DECOMPRESS = 0, /* compile out the decompression-related code */ 107 #endif 108 #ifdef CONFIG_FS_VERITY 109 STEP_VERITY = 1 << 2, 110 #else 111 STEP_VERITY = 0, /* compile out the verity-related code */ 112 #endif 113 }; 114 115 struct bio_post_read_ctx { 116 struct bio *bio; 117 struct f2fs_sb_info *sbi; 118 struct work_struct work; 119 unsigned int enabled_steps; 120 block_t fs_blkaddr; 121 }; 122 123 static void f2fs_finish_read_bio(struct bio *bio) 124 { 125 struct bio_vec *bv; 126 struct bvec_iter_all iter_all; 127 128 /* 129 * Update and unlock the bio's pagecache pages, and put the 130 * decompression context for any compressed pages. 131 */ 132 bio_for_each_segment_all(bv, bio, iter_all) { 133 struct page *page = bv->bv_page; 134 135 if (f2fs_is_compressed_page(page)) { 136 if (bio->bi_status) 137 f2fs_end_read_compressed_page(page, true, 0); 138 f2fs_put_page_dic(page); 139 continue; 140 } 141 142 /* PG_error was set if decryption or verity failed. */ 143 if (bio->bi_status || PageError(page)) { 144 ClearPageUptodate(page); 145 /* will re-read again later */ 146 ClearPageError(page); 147 } else { 148 SetPageUptodate(page); 149 } 150 dec_page_count(F2FS_P_SB(page), __read_io_type(page)); 151 unlock_page(page); 152 } 153 154 if (bio->bi_private) 155 mempool_free(bio->bi_private, bio_post_read_ctx_pool); 156 bio_put(bio); 157 } 158 159 static void f2fs_verify_bio(struct work_struct *work) 160 { 161 struct bio_post_read_ctx *ctx = 162 container_of(work, struct bio_post_read_ctx, work); 163 struct bio *bio = ctx->bio; 164 bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS); 165 166 /* 167 * fsverity_verify_bio() may call readpages() again, and while verity 168 * will be disabled for this, decryption and/or decompression may still 169 * be needed, resulting in another bio_post_read_ctx being allocated. 170 * So to prevent deadlocks we need to release the current ctx to the 171 * mempool first. This assumes that verity is the last post-read step. 172 */ 173 mempool_free(ctx, bio_post_read_ctx_pool); 174 bio->bi_private = NULL; 175 176 /* 177 * Verify the bio's pages with fs-verity. Exclude compressed pages, 178 * as those were handled separately by f2fs_end_read_compressed_page(). 179 */ 180 if (may_have_compressed_pages) { 181 struct bio_vec *bv; 182 struct bvec_iter_all iter_all; 183 184 bio_for_each_segment_all(bv, bio, iter_all) { 185 struct page *page = bv->bv_page; 186 187 if (!f2fs_is_compressed_page(page) && 188 !PageError(page) && !fsverity_verify_page(page)) 189 SetPageError(page); 190 } 191 } else { 192 fsverity_verify_bio(bio); 193 } 194 195 f2fs_finish_read_bio(bio); 196 } 197 198 /* 199 * If the bio's data needs to be verified with fs-verity, then enqueue the 200 * verity work for the bio. Otherwise finish the bio now. 201 * 202 * Note that to avoid deadlocks, the verity work can't be done on the 203 * decryption/decompression workqueue. This is because verifying the data pages 204 * can involve reading verity metadata pages from the file, and these verity 205 * metadata pages may be encrypted and/or compressed. 206 */ 207 static void f2fs_verify_and_finish_bio(struct bio *bio) 208 { 209 struct bio_post_read_ctx *ctx = bio->bi_private; 210 211 if (ctx && (ctx->enabled_steps & STEP_VERITY)) { 212 INIT_WORK(&ctx->work, f2fs_verify_bio); 213 fsverity_enqueue_verify_work(&ctx->work); 214 } else { 215 f2fs_finish_read_bio(bio); 216 } 217 } 218 219 /* 220 * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last 221 * remaining page was read by @ctx->bio. 222 * 223 * Note that a bio may span clusters (even a mix of compressed and uncompressed 224 * clusters) or be for just part of a cluster. STEP_DECOMPRESS just indicates 225 * that the bio includes at least one compressed page. The actual decompression 226 * is done on a per-cluster basis, not a per-bio basis. 227 */ 228 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx) 229 { 230 struct bio_vec *bv; 231 struct bvec_iter_all iter_all; 232 bool all_compressed = true; 233 block_t blkaddr = ctx->fs_blkaddr; 234 235 bio_for_each_segment_all(bv, ctx->bio, iter_all) { 236 struct page *page = bv->bv_page; 237 238 /* PG_error was set if decryption failed. */ 239 if (f2fs_is_compressed_page(page)) 240 f2fs_end_read_compressed_page(page, PageError(page), 241 blkaddr); 242 else 243 all_compressed = false; 244 245 blkaddr++; 246 } 247 248 /* 249 * Optimization: if all the bio's pages are compressed, then scheduling 250 * the per-bio verity work is unnecessary, as verity will be fully 251 * handled at the compression cluster level. 252 */ 253 if (all_compressed) 254 ctx->enabled_steps &= ~STEP_VERITY; 255 } 256 257 static void f2fs_post_read_work(struct work_struct *work) 258 { 259 struct bio_post_read_ctx *ctx = 260 container_of(work, struct bio_post_read_ctx, work); 261 262 if (ctx->enabled_steps & STEP_DECRYPT) 263 fscrypt_decrypt_bio(ctx->bio); 264 265 if (ctx->enabled_steps & STEP_DECOMPRESS) 266 f2fs_handle_step_decompress(ctx); 267 268 f2fs_verify_and_finish_bio(ctx->bio); 269 } 270 271 static void f2fs_read_end_io(struct bio *bio) 272 { 273 struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio)); 274 struct bio_post_read_ctx *ctx; 275 276 iostat_update_and_unbind_ctx(bio, 0); 277 ctx = bio->bi_private; 278 279 if (time_to_inject(sbi, FAULT_READ_IO)) { 280 f2fs_show_injection_info(sbi, FAULT_READ_IO); 281 bio->bi_status = BLK_STS_IOERR; 282 } 283 284 if (bio->bi_status) { 285 f2fs_finish_read_bio(bio); 286 return; 287 } 288 289 if (ctx && (ctx->enabled_steps & (STEP_DECRYPT | STEP_DECOMPRESS))) { 290 INIT_WORK(&ctx->work, f2fs_post_read_work); 291 queue_work(ctx->sbi->post_read_wq, &ctx->work); 292 } else { 293 f2fs_verify_and_finish_bio(bio); 294 } 295 } 296 297 static void f2fs_write_end_io(struct bio *bio) 298 { 299 struct f2fs_sb_info *sbi; 300 struct bio_vec *bvec; 301 struct bvec_iter_all iter_all; 302 303 iostat_update_and_unbind_ctx(bio, 1); 304 sbi = bio->bi_private; 305 306 if (time_to_inject(sbi, FAULT_WRITE_IO)) { 307 f2fs_show_injection_info(sbi, FAULT_WRITE_IO); 308 bio->bi_status = BLK_STS_IOERR; 309 } 310 311 bio_for_each_segment_all(bvec, bio, iter_all) { 312 struct page *page = bvec->bv_page; 313 enum count_type type = WB_DATA_TYPE(page); 314 315 if (page_private_dummy(page)) { 316 clear_page_private_dummy(page); 317 unlock_page(page); 318 mempool_free(page, sbi->write_io_dummy); 319 320 if (unlikely(bio->bi_status)) 321 f2fs_stop_checkpoint(sbi, true); 322 continue; 323 } 324 325 fscrypt_finalize_bounce_page(&page); 326 327 #ifdef CONFIG_F2FS_FS_COMPRESSION 328 if (f2fs_is_compressed_page(page)) { 329 f2fs_compress_write_end_io(bio, page); 330 continue; 331 } 332 #endif 333 334 if (unlikely(bio->bi_status)) { 335 mapping_set_error(page->mapping, -EIO); 336 if (type == F2FS_WB_CP_DATA) 337 f2fs_stop_checkpoint(sbi, true); 338 } 339 340 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) && 341 page->index != nid_of_node(page)); 342 343 dec_page_count(sbi, type); 344 if (f2fs_in_warm_node_list(sbi, page)) 345 f2fs_del_fsync_node_entry(sbi, page); 346 clear_page_private_gcing(page); 347 end_page_writeback(page); 348 } 349 if (!get_pages(sbi, F2FS_WB_CP_DATA) && 350 wq_has_sleeper(&sbi->cp_wait)) 351 wake_up(&sbi->cp_wait); 352 353 bio_put(bio); 354 } 355 356 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 357 block_t blk_addr, struct bio *bio) 358 { 359 struct block_device *bdev = sbi->sb->s_bdev; 360 int i; 361 362 if (f2fs_is_multi_device(sbi)) { 363 for (i = 0; i < sbi->s_ndevs; i++) { 364 if (FDEV(i).start_blk <= blk_addr && 365 FDEV(i).end_blk >= blk_addr) { 366 blk_addr -= FDEV(i).start_blk; 367 bdev = FDEV(i).bdev; 368 break; 369 } 370 } 371 } 372 if (bio) { 373 bio_set_dev(bio, bdev); 374 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr); 375 } 376 return bdev; 377 } 378 379 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr) 380 { 381 int i; 382 383 if (!f2fs_is_multi_device(sbi)) 384 return 0; 385 386 for (i = 0; i < sbi->s_ndevs; i++) 387 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr) 388 return i; 389 return 0; 390 } 391 392 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages) 393 { 394 struct f2fs_sb_info *sbi = fio->sbi; 395 struct bio *bio; 396 397 bio = bio_alloc_bioset(NULL, npages, 0, GFP_NOIO, &f2fs_bioset); 398 399 f2fs_target_device(sbi, fio->new_blkaddr, bio); 400 if (is_read_io(fio->op)) { 401 bio->bi_end_io = f2fs_read_end_io; 402 bio->bi_private = NULL; 403 } else { 404 bio->bi_end_io = f2fs_write_end_io; 405 bio->bi_private = sbi; 406 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, 407 fio->type, fio->temp); 408 } 409 iostat_alloc_and_bind_ctx(sbi, bio, NULL); 410 411 if (fio->io_wbc) 412 wbc_init_bio(fio->io_wbc, bio); 413 414 return bio; 415 } 416 417 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode, 418 pgoff_t first_idx, 419 const struct f2fs_io_info *fio, 420 gfp_t gfp_mask) 421 { 422 /* 423 * The f2fs garbage collector sets ->encrypted_page when it wants to 424 * read/write raw data without encryption. 425 */ 426 if (!fio || !fio->encrypted_page) 427 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask); 428 } 429 430 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode, 431 pgoff_t next_idx, 432 const struct f2fs_io_info *fio) 433 { 434 /* 435 * The f2fs garbage collector sets ->encrypted_page when it wants to 436 * read/write raw data without encryption. 437 */ 438 if (fio && fio->encrypted_page) 439 return !bio_has_crypt_ctx(bio); 440 441 return fscrypt_mergeable_bio(bio, inode, next_idx); 442 } 443 444 static inline void __submit_bio(struct f2fs_sb_info *sbi, 445 struct bio *bio, enum page_type type) 446 { 447 if (!is_read_io(bio_op(bio))) { 448 unsigned int start; 449 450 if (type != DATA && type != NODE) 451 goto submit_io; 452 453 if (f2fs_lfs_mode(sbi) && current->plug) 454 blk_finish_plug(current->plug); 455 456 if (!F2FS_IO_ALIGNED(sbi)) 457 goto submit_io; 458 459 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS; 460 start %= F2FS_IO_SIZE(sbi); 461 462 if (start == 0) 463 goto submit_io; 464 465 /* fill dummy pages */ 466 for (; start < F2FS_IO_SIZE(sbi); start++) { 467 struct page *page = 468 mempool_alloc(sbi->write_io_dummy, 469 GFP_NOIO | __GFP_NOFAIL); 470 f2fs_bug_on(sbi, !page); 471 472 lock_page(page); 473 474 zero_user_segment(page, 0, PAGE_SIZE); 475 set_page_private_dummy(page); 476 477 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) 478 f2fs_bug_on(sbi, 1); 479 } 480 /* 481 * In the NODE case, we lose next block address chain. So, we 482 * need to do checkpoint in f2fs_sync_file. 483 */ 484 if (type == NODE) 485 set_sbi_flag(sbi, SBI_NEED_CP); 486 } 487 submit_io: 488 if (is_read_io(bio_op(bio))) 489 trace_f2fs_submit_read_bio(sbi->sb, type, bio); 490 else 491 trace_f2fs_submit_write_bio(sbi->sb, type, bio); 492 493 iostat_update_submit_ctx(bio, type); 494 submit_bio(bio); 495 } 496 497 void f2fs_submit_bio(struct f2fs_sb_info *sbi, 498 struct bio *bio, enum page_type type) 499 { 500 __submit_bio(sbi, bio, type); 501 } 502 503 static void __attach_io_flag(struct f2fs_io_info *fio) 504 { 505 struct f2fs_sb_info *sbi = fio->sbi; 506 unsigned int temp_mask = (1 << NR_TEMP_TYPE) - 1; 507 unsigned int io_flag, fua_flag, meta_flag; 508 509 if (fio->type == DATA) 510 io_flag = sbi->data_io_flag; 511 else if (fio->type == NODE) 512 io_flag = sbi->node_io_flag; 513 else 514 return; 515 516 fua_flag = io_flag & temp_mask; 517 meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask; 518 519 /* 520 * data/node io flag bits per temp: 521 * REQ_META | REQ_FUA | 522 * 5 | 4 | 3 | 2 | 1 | 0 | 523 * Cold | Warm | Hot | Cold | Warm | Hot | 524 */ 525 if ((1 << fio->temp) & meta_flag) 526 fio->op_flags |= REQ_META; 527 if ((1 << fio->temp) & fua_flag) 528 fio->op_flags |= REQ_FUA; 529 } 530 531 static void __submit_merged_bio(struct f2fs_bio_info *io) 532 { 533 struct f2fs_io_info *fio = &io->fio; 534 535 if (!io->bio) 536 return; 537 538 __attach_io_flag(fio); 539 bio_set_op_attrs(io->bio, fio->op, fio->op_flags); 540 541 if (is_read_io(fio->op)) 542 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio); 543 else 544 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio); 545 546 __submit_bio(io->sbi, io->bio, fio->type); 547 io->bio = NULL; 548 } 549 550 static bool __has_merged_page(struct bio *bio, struct inode *inode, 551 struct page *page, nid_t ino) 552 { 553 struct bio_vec *bvec; 554 struct bvec_iter_all iter_all; 555 556 if (!bio) 557 return false; 558 559 if (!inode && !page && !ino) 560 return true; 561 562 bio_for_each_segment_all(bvec, bio, iter_all) { 563 struct page *target = bvec->bv_page; 564 565 if (fscrypt_is_bounce_page(target)) { 566 target = fscrypt_pagecache_page(target); 567 if (IS_ERR(target)) 568 continue; 569 } 570 if (f2fs_is_compressed_page(target)) { 571 target = f2fs_compress_control_page(target); 572 if (IS_ERR(target)) 573 continue; 574 } 575 576 if (inode && inode == target->mapping->host) 577 return true; 578 if (page && page == target) 579 return true; 580 if (ino && ino == ino_of_node(target)) 581 return true; 582 } 583 584 return false; 585 } 586 587 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi, 588 enum page_type type, enum temp_type temp) 589 { 590 enum page_type btype = PAGE_TYPE_OF_BIO(type); 591 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 592 593 down_write(&io->io_rwsem); 594 595 /* change META to META_FLUSH in the checkpoint procedure */ 596 if (type >= META_FLUSH) { 597 io->fio.type = META_FLUSH; 598 io->fio.op = REQ_OP_WRITE; 599 io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC; 600 if (!test_opt(sbi, NOBARRIER)) 601 io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA; 602 } 603 __submit_merged_bio(io); 604 up_write(&io->io_rwsem); 605 } 606 607 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi, 608 struct inode *inode, struct page *page, 609 nid_t ino, enum page_type type, bool force) 610 { 611 enum temp_type temp; 612 bool ret = true; 613 614 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) { 615 if (!force) { 616 enum page_type btype = PAGE_TYPE_OF_BIO(type); 617 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 618 619 down_read(&io->io_rwsem); 620 ret = __has_merged_page(io->bio, inode, page, ino); 621 up_read(&io->io_rwsem); 622 } 623 if (ret) 624 __f2fs_submit_merged_write(sbi, type, temp); 625 626 /* TODO: use HOT temp only for meta pages now. */ 627 if (type >= META) 628 break; 629 } 630 } 631 632 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type) 633 { 634 __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true); 635 } 636 637 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 638 struct inode *inode, struct page *page, 639 nid_t ino, enum page_type type) 640 { 641 __submit_merged_write_cond(sbi, inode, page, ino, type, false); 642 } 643 644 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi) 645 { 646 f2fs_submit_merged_write(sbi, DATA); 647 f2fs_submit_merged_write(sbi, NODE); 648 f2fs_submit_merged_write(sbi, META); 649 } 650 651 /* 652 * Fill the locked page with data located in the block address. 653 * A caller needs to unlock the page on failure. 654 */ 655 int f2fs_submit_page_bio(struct f2fs_io_info *fio) 656 { 657 struct bio *bio; 658 struct page *page = fio->encrypted_page ? 659 fio->encrypted_page : fio->page; 660 661 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, 662 fio->is_por ? META_POR : (__is_meta_io(fio) ? 663 META_GENERIC : DATA_GENERIC_ENHANCE))) 664 return -EFSCORRUPTED; 665 666 trace_f2fs_submit_page_bio(page, fio); 667 668 /* Allocate a new bio */ 669 bio = __bio_alloc(fio, 1); 670 671 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host, 672 fio->page->index, fio, GFP_NOIO); 673 674 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 675 bio_put(bio); 676 return -EFAULT; 677 } 678 679 if (fio->io_wbc && !is_read_io(fio->op)) 680 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE); 681 682 __attach_io_flag(fio); 683 bio_set_op_attrs(bio, fio->op, fio->op_flags); 684 685 inc_page_count(fio->sbi, is_read_io(fio->op) ? 686 __read_io_type(page): WB_DATA_TYPE(fio->page)); 687 688 __submit_bio(fio->sbi, bio, fio->type); 689 return 0; 690 } 691 692 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio, 693 block_t last_blkaddr, block_t cur_blkaddr) 694 { 695 if (unlikely(sbi->max_io_bytes && 696 bio->bi_iter.bi_size >= sbi->max_io_bytes)) 697 return false; 698 if (last_blkaddr + 1 != cur_blkaddr) 699 return false; 700 return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL); 701 } 702 703 static bool io_type_is_mergeable(struct f2fs_bio_info *io, 704 struct f2fs_io_info *fio) 705 { 706 if (io->fio.op != fio->op) 707 return false; 708 return io->fio.op_flags == fio->op_flags; 709 } 710 711 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio, 712 struct f2fs_bio_info *io, 713 struct f2fs_io_info *fio, 714 block_t last_blkaddr, 715 block_t cur_blkaddr) 716 { 717 if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) { 718 unsigned int filled_blocks = 719 F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size); 720 unsigned int io_size = F2FS_IO_SIZE(sbi); 721 unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt; 722 723 /* IOs in bio is aligned and left space of vectors is not enough */ 724 if (!(filled_blocks % io_size) && left_vecs < io_size) 725 return false; 726 } 727 if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr)) 728 return false; 729 return io_type_is_mergeable(io, fio); 730 } 731 732 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio, 733 struct page *page, enum temp_type temp) 734 { 735 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 736 struct bio_entry *be; 737 738 be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL); 739 be->bio = bio; 740 bio_get(bio); 741 742 if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE) 743 f2fs_bug_on(sbi, 1); 744 745 down_write(&io->bio_list_lock); 746 list_add_tail(&be->list, &io->bio_list); 747 up_write(&io->bio_list_lock); 748 } 749 750 static void del_bio_entry(struct bio_entry *be) 751 { 752 list_del(&be->list); 753 kmem_cache_free(bio_entry_slab, be); 754 } 755 756 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio, 757 struct page *page) 758 { 759 struct f2fs_sb_info *sbi = fio->sbi; 760 enum temp_type temp; 761 bool found = false; 762 int ret = -EAGAIN; 763 764 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) { 765 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 766 struct list_head *head = &io->bio_list; 767 struct bio_entry *be; 768 769 down_write(&io->bio_list_lock); 770 list_for_each_entry(be, head, list) { 771 if (be->bio != *bio) 772 continue; 773 774 found = true; 775 776 f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio, 777 *fio->last_block, 778 fio->new_blkaddr)); 779 if (f2fs_crypt_mergeable_bio(*bio, 780 fio->page->mapping->host, 781 fio->page->index, fio) && 782 bio_add_page(*bio, page, PAGE_SIZE, 0) == 783 PAGE_SIZE) { 784 ret = 0; 785 break; 786 } 787 788 /* page can't be merged into bio; submit the bio */ 789 del_bio_entry(be); 790 __submit_bio(sbi, *bio, DATA); 791 break; 792 } 793 up_write(&io->bio_list_lock); 794 } 795 796 if (ret) { 797 bio_put(*bio); 798 *bio = NULL; 799 } 800 801 return ret; 802 } 803 804 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi, 805 struct bio **bio, struct page *page) 806 { 807 enum temp_type temp; 808 bool found = false; 809 struct bio *target = bio ? *bio : NULL; 810 811 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) { 812 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 813 struct list_head *head = &io->bio_list; 814 struct bio_entry *be; 815 816 if (list_empty(head)) 817 continue; 818 819 down_read(&io->bio_list_lock); 820 list_for_each_entry(be, head, list) { 821 if (target) 822 found = (target == be->bio); 823 else 824 found = __has_merged_page(be->bio, NULL, 825 page, 0); 826 if (found) 827 break; 828 } 829 up_read(&io->bio_list_lock); 830 831 if (!found) 832 continue; 833 834 found = false; 835 836 down_write(&io->bio_list_lock); 837 list_for_each_entry(be, head, list) { 838 if (target) 839 found = (target == be->bio); 840 else 841 found = __has_merged_page(be->bio, NULL, 842 page, 0); 843 if (found) { 844 target = be->bio; 845 del_bio_entry(be); 846 break; 847 } 848 } 849 up_write(&io->bio_list_lock); 850 } 851 852 if (found) 853 __submit_bio(sbi, target, DATA); 854 if (bio && *bio) { 855 bio_put(*bio); 856 *bio = NULL; 857 } 858 } 859 860 int f2fs_merge_page_bio(struct f2fs_io_info *fio) 861 { 862 struct bio *bio = *fio->bio; 863 struct page *page = fio->encrypted_page ? 864 fio->encrypted_page : fio->page; 865 866 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, 867 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC)) 868 return -EFSCORRUPTED; 869 870 trace_f2fs_submit_page_bio(page, fio); 871 872 if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block, 873 fio->new_blkaddr)) 874 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL); 875 alloc_new: 876 if (!bio) { 877 bio = __bio_alloc(fio, BIO_MAX_VECS); 878 __attach_io_flag(fio); 879 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host, 880 fio->page->index, fio, GFP_NOIO); 881 bio_set_op_attrs(bio, fio->op, fio->op_flags); 882 883 add_bio_entry(fio->sbi, bio, page, fio->temp); 884 } else { 885 if (add_ipu_page(fio, &bio, page)) 886 goto alloc_new; 887 } 888 889 if (fio->io_wbc) 890 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE); 891 892 inc_page_count(fio->sbi, WB_DATA_TYPE(page)); 893 894 *fio->last_block = fio->new_blkaddr; 895 *fio->bio = bio; 896 897 return 0; 898 } 899 900 void f2fs_submit_page_write(struct f2fs_io_info *fio) 901 { 902 struct f2fs_sb_info *sbi = fio->sbi; 903 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type); 904 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp; 905 struct page *bio_page; 906 907 f2fs_bug_on(sbi, is_read_io(fio->op)); 908 909 down_write(&io->io_rwsem); 910 next: 911 if (fio->in_list) { 912 spin_lock(&io->io_lock); 913 if (list_empty(&io->io_list)) { 914 spin_unlock(&io->io_lock); 915 goto out; 916 } 917 fio = list_first_entry(&io->io_list, 918 struct f2fs_io_info, list); 919 list_del(&fio->list); 920 spin_unlock(&io->io_lock); 921 } 922 923 verify_fio_blkaddr(fio); 924 925 if (fio->encrypted_page) 926 bio_page = fio->encrypted_page; 927 else if (fio->compressed_page) 928 bio_page = fio->compressed_page; 929 else 930 bio_page = fio->page; 931 932 /* set submitted = true as a return value */ 933 fio->submitted = true; 934 935 inc_page_count(sbi, WB_DATA_TYPE(bio_page)); 936 937 if (io->bio && 938 (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio, 939 fio->new_blkaddr) || 940 !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host, 941 bio_page->index, fio))) 942 __submit_merged_bio(io); 943 alloc_new: 944 if (io->bio == NULL) { 945 if (F2FS_IO_ALIGNED(sbi) && 946 (fio->type == DATA || fio->type == NODE) && 947 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) { 948 dec_page_count(sbi, WB_DATA_TYPE(bio_page)); 949 fio->retry = true; 950 goto skip; 951 } 952 io->bio = __bio_alloc(fio, BIO_MAX_VECS); 953 f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host, 954 bio_page->index, fio, GFP_NOIO); 955 io->fio = *fio; 956 } 957 958 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) { 959 __submit_merged_bio(io); 960 goto alloc_new; 961 } 962 963 if (fio->io_wbc) 964 wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE); 965 966 io->last_block_in_bio = fio->new_blkaddr; 967 968 trace_f2fs_submit_page_write(fio->page, fio); 969 skip: 970 if (fio->in_list) 971 goto next; 972 out: 973 if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || 974 !f2fs_is_checkpoint_ready(sbi)) 975 __submit_merged_bio(io); 976 up_write(&io->io_rwsem); 977 } 978 979 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr, 980 unsigned nr_pages, unsigned op_flag, 981 pgoff_t first_idx, bool for_write) 982 { 983 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 984 struct bio *bio; 985 struct bio_post_read_ctx *ctx = NULL; 986 unsigned int post_read_steps = 0; 987 988 bio = bio_alloc_bioset(NULL, bio_max_segs(nr_pages), REQ_OP_READ, 989 for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset); 990 if (!bio) 991 return ERR_PTR(-ENOMEM); 992 993 f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS); 994 995 f2fs_target_device(sbi, blkaddr, bio); 996 bio->bi_end_io = f2fs_read_end_io; 997 998 if (fscrypt_inode_uses_fs_layer_crypto(inode)) 999 post_read_steps |= STEP_DECRYPT; 1000 1001 if (f2fs_need_verity(inode, first_idx)) 1002 post_read_steps |= STEP_VERITY; 1003 1004 /* 1005 * STEP_DECOMPRESS is handled specially, since a compressed file might 1006 * contain both compressed and uncompressed clusters. We'll allocate a 1007 * bio_post_read_ctx if the file is compressed, but the caller is 1008 * responsible for enabling STEP_DECOMPRESS if it's actually needed. 1009 */ 1010 1011 if (post_read_steps || f2fs_compressed_file(inode)) { 1012 /* Due to the mempool, this never fails. */ 1013 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS); 1014 ctx->bio = bio; 1015 ctx->sbi = sbi; 1016 ctx->enabled_steps = post_read_steps; 1017 ctx->fs_blkaddr = blkaddr; 1018 bio->bi_private = ctx; 1019 } 1020 iostat_alloc_and_bind_ctx(sbi, bio, ctx); 1021 1022 return bio; 1023 } 1024 1025 /* This can handle encryption stuffs */ 1026 static int f2fs_submit_page_read(struct inode *inode, struct page *page, 1027 block_t blkaddr, int op_flags, bool for_write) 1028 { 1029 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1030 struct bio *bio; 1031 1032 bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags, 1033 page->index, for_write); 1034 if (IS_ERR(bio)) 1035 return PTR_ERR(bio); 1036 1037 /* wait for GCed page writeback via META_MAPPING */ 1038 f2fs_wait_on_block_writeback(inode, blkaddr); 1039 1040 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 1041 bio_put(bio); 1042 return -EFAULT; 1043 } 1044 ClearPageError(page); 1045 inc_page_count(sbi, F2FS_RD_DATA); 1046 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE); 1047 __submit_bio(sbi, bio, DATA); 1048 return 0; 1049 } 1050 1051 static void __set_data_blkaddr(struct dnode_of_data *dn) 1052 { 1053 struct f2fs_node *rn = F2FS_NODE(dn->node_page); 1054 __le32 *addr_array; 1055 int base = 0; 1056 1057 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode)) 1058 base = get_extra_isize(dn->inode); 1059 1060 /* Get physical address of data block */ 1061 addr_array = blkaddr_in_node(rn); 1062 addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr); 1063 } 1064 1065 /* 1066 * Lock ordering for the change of data block address: 1067 * ->data_page 1068 * ->node_page 1069 * update block addresses in the node page 1070 */ 1071 void f2fs_set_data_blkaddr(struct dnode_of_data *dn) 1072 { 1073 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true); 1074 __set_data_blkaddr(dn); 1075 if (set_page_dirty(dn->node_page)) 1076 dn->node_changed = true; 1077 } 1078 1079 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) 1080 { 1081 dn->data_blkaddr = blkaddr; 1082 f2fs_set_data_blkaddr(dn); 1083 f2fs_update_extent_cache(dn); 1084 } 1085 1086 /* dn->ofs_in_node will be returned with up-to-date last block pointer */ 1087 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count) 1088 { 1089 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1090 int err; 1091 1092 if (!count) 1093 return 0; 1094 1095 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1096 return -EPERM; 1097 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count)))) 1098 return err; 1099 1100 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid, 1101 dn->ofs_in_node, count); 1102 1103 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true); 1104 1105 for (; count > 0; dn->ofs_in_node++) { 1106 block_t blkaddr = f2fs_data_blkaddr(dn); 1107 1108 if (blkaddr == NULL_ADDR) { 1109 dn->data_blkaddr = NEW_ADDR; 1110 __set_data_blkaddr(dn); 1111 count--; 1112 } 1113 } 1114 1115 if (set_page_dirty(dn->node_page)) 1116 dn->node_changed = true; 1117 return 0; 1118 } 1119 1120 /* Should keep dn->ofs_in_node unchanged */ 1121 int f2fs_reserve_new_block(struct dnode_of_data *dn) 1122 { 1123 unsigned int ofs_in_node = dn->ofs_in_node; 1124 int ret; 1125 1126 ret = f2fs_reserve_new_blocks(dn, 1); 1127 dn->ofs_in_node = ofs_in_node; 1128 return ret; 1129 } 1130 1131 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index) 1132 { 1133 bool need_put = dn->inode_page ? false : true; 1134 int err; 1135 1136 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE); 1137 if (err) 1138 return err; 1139 1140 if (dn->data_blkaddr == NULL_ADDR) 1141 err = f2fs_reserve_new_block(dn); 1142 if (err || need_put) 1143 f2fs_put_dnode(dn); 1144 return err; 1145 } 1146 1147 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index) 1148 { 1149 struct extent_info ei = {0, }; 1150 struct inode *inode = dn->inode; 1151 1152 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 1153 dn->data_blkaddr = ei.blk + index - ei.fofs; 1154 return 0; 1155 } 1156 1157 return f2fs_reserve_block(dn, index); 1158 } 1159 1160 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index, 1161 int op_flags, bool for_write) 1162 { 1163 struct address_space *mapping = inode->i_mapping; 1164 struct dnode_of_data dn; 1165 struct page *page; 1166 struct extent_info ei = {0, }; 1167 int err; 1168 1169 page = f2fs_grab_cache_page(mapping, index, for_write); 1170 if (!page) 1171 return ERR_PTR(-ENOMEM); 1172 1173 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 1174 dn.data_blkaddr = ei.blk + index - ei.fofs; 1175 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr, 1176 DATA_GENERIC_ENHANCE_READ)) { 1177 err = -EFSCORRUPTED; 1178 goto put_err; 1179 } 1180 goto got_it; 1181 } 1182 1183 set_new_dnode(&dn, inode, NULL, NULL, 0); 1184 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 1185 if (err) 1186 goto put_err; 1187 f2fs_put_dnode(&dn); 1188 1189 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { 1190 err = -ENOENT; 1191 goto put_err; 1192 } 1193 if (dn.data_blkaddr != NEW_ADDR && 1194 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode), 1195 dn.data_blkaddr, 1196 DATA_GENERIC_ENHANCE)) { 1197 err = -EFSCORRUPTED; 1198 goto put_err; 1199 } 1200 got_it: 1201 if (PageUptodate(page)) { 1202 unlock_page(page); 1203 return page; 1204 } 1205 1206 /* 1207 * A new dentry page is allocated but not able to be written, since its 1208 * new inode page couldn't be allocated due to -ENOSPC. 1209 * In such the case, its blkaddr can be remained as NEW_ADDR. 1210 * see, f2fs_add_link -> f2fs_get_new_data_page -> 1211 * f2fs_init_inode_metadata. 1212 */ 1213 if (dn.data_blkaddr == NEW_ADDR) { 1214 zero_user_segment(page, 0, PAGE_SIZE); 1215 if (!PageUptodate(page)) 1216 SetPageUptodate(page); 1217 unlock_page(page); 1218 return page; 1219 } 1220 1221 err = f2fs_submit_page_read(inode, page, dn.data_blkaddr, 1222 op_flags, for_write); 1223 if (err) 1224 goto put_err; 1225 return page; 1226 1227 put_err: 1228 f2fs_put_page(page, 1); 1229 return ERR_PTR(err); 1230 } 1231 1232 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index) 1233 { 1234 struct address_space *mapping = inode->i_mapping; 1235 struct page *page; 1236 1237 page = find_get_page(mapping, index); 1238 if (page && PageUptodate(page)) 1239 return page; 1240 f2fs_put_page(page, 0); 1241 1242 page = f2fs_get_read_data_page(inode, index, 0, false); 1243 if (IS_ERR(page)) 1244 return page; 1245 1246 if (PageUptodate(page)) 1247 return page; 1248 1249 wait_on_page_locked(page); 1250 if (unlikely(!PageUptodate(page))) { 1251 f2fs_put_page(page, 0); 1252 return ERR_PTR(-EIO); 1253 } 1254 return page; 1255 } 1256 1257 /* 1258 * If it tries to access a hole, return an error. 1259 * Because, the callers, functions in dir.c and GC, should be able to know 1260 * whether this page exists or not. 1261 */ 1262 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index, 1263 bool for_write) 1264 { 1265 struct address_space *mapping = inode->i_mapping; 1266 struct page *page; 1267 repeat: 1268 page = f2fs_get_read_data_page(inode, index, 0, for_write); 1269 if (IS_ERR(page)) 1270 return page; 1271 1272 /* wait for read completion */ 1273 lock_page(page); 1274 if (unlikely(page->mapping != mapping)) { 1275 f2fs_put_page(page, 1); 1276 goto repeat; 1277 } 1278 if (unlikely(!PageUptodate(page))) { 1279 f2fs_put_page(page, 1); 1280 return ERR_PTR(-EIO); 1281 } 1282 return page; 1283 } 1284 1285 /* 1286 * Caller ensures that this data page is never allocated. 1287 * A new zero-filled data page is allocated in the page cache. 1288 * 1289 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and 1290 * f2fs_unlock_op(). 1291 * Note that, ipage is set only by make_empty_dir, and if any error occur, 1292 * ipage should be released by this function. 1293 */ 1294 struct page *f2fs_get_new_data_page(struct inode *inode, 1295 struct page *ipage, pgoff_t index, bool new_i_size) 1296 { 1297 struct address_space *mapping = inode->i_mapping; 1298 struct page *page; 1299 struct dnode_of_data dn; 1300 int err; 1301 1302 page = f2fs_grab_cache_page(mapping, index, true); 1303 if (!page) { 1304 /* 1305 * before exiting, we should make sure ipage will be released 1306 * if any error occur. 1307 */ 1308 f2fs_put_page(ipage, 1); 1309 return ERR_PTR(-ENOMEM); 1310 } 1311 1312 set_new_dnode(&dn, inode, ipage, NULL, 0); 1313 err = f2fs_reserve_block(&dn, index); 1314 if (err) { 1315 f2fs_put_page(page, 1); 1316 return ERR_PTR(err); 1317 } 1318 if (!ipage) 1319 f2fs_put_dnode(&dn); 1320 1321 if (PageUptodate(page)) 1322 goto got_it; 1323 1324 if (dn.data_blkaddr == NEW_ADDR) { 1325 zero_user_segment(page, 0, PAGE_SIZE); 1326 if (!PageUptodate(page)) 1327 SetPageUptodate(page); 1328 } else { 1329 f2fs_put_page(page, 1); 1330 1331 /* if ipage exists, blkaddr should be NEW_ADDR */ 1332 f2fs_bug_on(F2FS_I_SB(inode), ipage); 1333 page = f2fs_get_lock_data_page(inode, index, true); 1334 if (IS_ERR(page)) 1335 return page; 1336 } 1337 got_it: 1338 if (new_i_size && i_size_read(inode) < 1339 ((loff_t)(index + 1) << PAGE_SHIFT)) 1340 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT)); 1341 return page; 1342 } 1343 1344 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type) 1345 { 1346 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1347 struct f2fs_summary sum; 1348 struct node_info ni; 1349 block_t old_blkaddr; 1350 blkcnt_t count = 1; 1351 int err; 1352 1353 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1354 return -EPERM; 1355 1356 err = f2fs_get_node_info(sbi, dn->nid, &ni, false); 1357 if (err) 1358 return err; 1359 1360 dn->data_blkaddr = f2fs_data_blkaddr(dn); 1361 if (dn->data_blkaddr != NULL_ADDR) 1362 goto alloc; 1363 1364 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count)))) 1365 return err; 1366 1367 alloc: 1368 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 1369 old_blkaddr = dn->data_blkaddr; 1370 f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr, 1371 &sum, seg_type, NULL); 1372 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) { 1373 invalidate_mapping_pages(META_MAPPING(sbi), 1374 old_blkaddr, old_blkaddr); 1375 f2fs_invalidate_compress_page(sbi, old_blkaddr); 1376 } 1377 f2fs_update_data_blkaddr(dn, dn->data_blkaddr); 1378 return 0; 1379 } 1380 1381 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock) 1382 { 1383 if (flag == F2FS_GET_BLOCK_PRE_AIO) { 1384 if (lock) 1385 down_read(&sbi->node_change); 1386 else 1387 up_read(&sbi->node_change); 1388 } else { 1389 if (lock) 1390 f2fs_lock_op(sbi); 1391 else 1392 f2fs_unlock_op(sbi); 1393 } 1394 } 1395 1396 /* 1397 * f2fs_map_blocks() tries to find or build mapping relationship which 1398 * maps continuous logical blocks to physical blocks, and return such 1399 * info via f2fs_map_blocks structure. 1400 */ 1401 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 1402 int create, int flag) 1403 { 1404 unsigned int maxblocks = map->m_len; 1405 struct dnode_of_data dn; 1406 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1407 int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE; 1408 pgoff_t pgofs, end_offset, end; 1409 int err = 0, ofs = 1; 1410 unsigned int ofs_in_node, last_ofs_in_node; 1411 blkcnt_t prealloc; 1412 struct extent_info ei = {0, }; 1413 block_t blkaddr; 1414 unsigned int start_pgofs; 1415 int bidx = 0; 1416 1417 if (!maxblocks) 1418 return 0; 1419 1420 map->m_bdev = inode->i_sb->s_bdev; 1421 map->m_multidev_dio = 1422 f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag); 1423 1424 map->m_len = 0; 1425 map->m_flags = 0; 1426 1427 /* it only supports block size == page size */ 1428 pgofs = (pgoff_t)map->m_lblk; 1429 end = pgofs + maxblocks; 1430 1431 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) { 1432 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO && 1433 map->m_may_create) 1434 goto next_dnode; 1435 1436 map->m_pblk = ei.blk + pgofs - ei.fofs; 1437 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs); 1438 map->m_flags = F2FS_MAP_MAPPED; 1439 if (map->m_next_extent) 1440 *map->m_next_extent = pgofs + map->m_len; 1441 1442 /* for hardware encryption, but to avoid potential issue in future */ 1443 if (flag == F2FS_GET_BLOCK_DIO) 1444 f2fs_wait_on_block_writeback_range(inode, 1445 map->m_pblk, map->m_len); 1446 1447 if (map->m_multidev_dio) { 1448 block_t blk_addr = map->m_pblk; 1449 1450 bidx = f2fs_target_device_index(sbi, map->m_pblk); 1451 1452 map->m_bdev = FDEV(bidx).bdev; 1453 map->m_pblk -= FDEV(bidx).start_blk; 1454 map->m_len = min(map->m_len, 1455 FDEV(bidx).end_blk + 1 - map->m_pblk); 1456 1457 if (map->m_may_create) 1458 f2fs_update_device_state(sbi, inode->i_ino, 1459 blk_addr, map->m_len); 1460 } 1461 goto out; 1462 } 1463 1464 next_dnode: 1465 if (map->m_may_create) 1466 f2fs_do_map_lock(sbi, flag, true); 1467 1468 /* When reading holes, we need its node page */ 1469 set_new_dnode(&dn, inode, NULL, NULL, 0); 1470 err = f2fs_get_dnode_of_data(&dn, pgofs, mode); 1471 if (err) { 1472 if (flag == F2FS_GET_BLOCK_BMAP) 1473 map->m_pblk = 0; 1474 1475 if (err == -ENOENT) { 1476 /* 1477 * There is one exceptional case that read_node_page() 1478 * may return -ENOENT due to filesystem has been 1479 * shutdown or cp_error, so force to convert error 1480 * number to EIO for such case. 1481 */ 1482 if (map->m_may_create && 1483 (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || 1484 f2fs_cp_error(sbi))) { 1485 err = -EIO; 1486 goto unlock_out; 1487 } 1488 1489 err = 0; 1490 if (map->m_next_pgofs) 1491 *map->m_next_pgofs = 1492 f2fs_get_next_page_offset(&dn, pgofs); 1493 if (map->m_next_extent) 1494 *map->m_next_extent = 1495 f2fs_get_next_page_offset(&dn, pgofs); 1496 } 1497 goto unlock_out; 1498 } 1499 1500 start_pgofs = pgofs; 1501 prealloc = 0; 1502 last_ofs_in_node = ofs_in_node = dn.ofs_in_node; 1503 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1504 1505 next_block: 1506 blkaddr = f2fs_data_blkaddr(&dn); 1507 1508 if (__is_valid_data_blkaddr(blkaddr) && 1509 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) { 1510 err = -EFSCORRUPTED; 1511 goto sync_out; 1512 } 1513 1514 if (__is_valid_data_blkaddr(blkaddr)) { 1515 /* use out-place-update for driect IO under LFS mode */ 1516 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO && 1517 map->m_may_create) { 1518 err = __allocate_data_block(&dn, map->m_seg_type); 1519 if (err) 1520 goto sync_out; 1521 blkaddr = dn.data_blkaddr; 1522 set_inode_flag(inode, FI_APPEND_WRITE); 1523 } 1524 } else { 1525 if (create) { 1526 if (unlikely(f2fs_cp_error(sbi))) { 1527 err = -EIO; 1528 goto sync_out; 1529 } 1530 if (flag == F2FS_GET_BLOCK_PRE_AIO) { 1531 if (blkaddr == NULL_ADDR) { 1532 prealloc++; 1533 last_ofs_in_node = dn.ofs_in_node; 1534 } 1535 } else { 1536 WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO && 1537 flag != F2FS_GET_BLOCK_DIO); 1538 err = __allocate_data_block(&dn, 1539 map->m_seg_type); 1540 if (!err) { 1541 if (flag == F2FS_GET_BLOCK_PRE_DIO) 1542 file_need_truncate(inode); 1543 set_inode_flag(inode, FI_APPEND_WRITE); 1544 } 1545 } 1546 if (err) 1547 goto sync_out; 1548 map->m_flags |= F2FS_MAP_NEW; 1549 blkaddr = dn.data_blkaddr; 1550 } else { 1551 if (f2fs_compressed_file(inode) && 1552 f2fs_sanity_check_cluster(&dn) && 1553 (flag != F2FS_GET_BLOCK_FIEMAP || 1554 IS_ENABLED(CONFIG_F2FS_CHECK_FS))) { 1555 err = -EFSCORRUPTED; 1556 goto sync_out; 1557 } 1558 if (flag == F2FS_GET_BLOCK_BMAP) { 1559 map->m_pblk = 0; 1560 goto sync_out; 1561 } 1562 if (flag == F2FS_GET_BLOCK_PRECACHE) 1563 goto sync_out; 1564 if (flag == F2FS_GET_BLOCK_FIEMAP && 1565 blkaddr == NULL_ADDR) { 1566 if (map->m_next_pgofs) 1567 *map->m_next_pgofs = pgofs + 1; 1568 goto sync_out; 1569 } 1570 if (flag != F2FS_GET_BLOCK_FIEMAP) { 1571 /* for defragment case */ 1572 if (map->m_next_pgofs) 1573 *map->m_next_pgofs = pgofs + 1; 1574 goto sync_out; 1575 } 1576 } 1577 } 1578 1579 if (flag == F2FS_GET_BLOCK_PRE_AIO) 1580 goto skip; 1581 1582 if (map->m_multidev_dio) 1583 bidx = f2fs_target_device_index(sbi, blkaddr); 1584 1585 if (map->m_len == 0) { 1586 /* preallocated unwritten block should be mapped for fiemap. */ 1587 if (blkaddr == NEW_ADDR) 1588 map->m_flags |= F2FS_MAP_UNWRITTEN; 1589 map->m_flags |= F2FS_MAP_MAPPED; 1590 1591 map->m_pblk = blkaddr; 1592 map->m_len = 1; 1593 1594 if (map->m_multidev_dio) 1595 map->m_bdev = FDEV(bidx).bdev; 1596 } else if ((map->m_pblk != NEW_ADDR && 1597 blkaddr == (map->m_pblk + ofs)) || 1598 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) || 1599 flag == F2FS_GET_BLOCK_PRE_DIO) { 1600 if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev) 1601 goto sync_out; 1602 ofs++; 1603 map->m_len++; 1604 } else { 1605 goto sync_out; 1606 } 1607 1608 skip: 1609 dn.ofs_in_node++; 1610 pgofs++; 1611 1612 /* preallocate blocks in batch for one dnode page */ 1613 if (flag == F2FS_GET_BLOCK_PRE_AIO && 1614 (pgofs == end || dn.ofs_in_node == end_offset)) { 1615 1616 dn.ofs_in_node = ofs_in_node; 1617 err = f2fs_reserve_new_blocks(&dn, prealloc); 1618 if (err) 1619 goto sync_out; 1620 1621 map->m_len += dn.ofs_in_node - ofs_in_node; 1622 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) { 1623 err = -ENOSPC; 1624 goto sync_out; 1625 } 1626 dn.ofs_in_node = end_offset; 1627 } 1628 1629 if (pgofs >= end) 1630 goto sync_out; 1631 else if (dn.ofs_in_node < end_offset) 1632 goto next_block; 1633 1634 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1635 if (map->m_flags & F2FS_MAP_MAPPED) { 1636 unsigned int ofs = start_pgofs - map->m_lblk; 1637 1638 f2fs_update_extent_cache_range(&dn, 1639 start_pgofs, map->m_pblk + ofs, 1640 map->m_len - ofs); 1641 } 1642 } 1643 1644 f2fs_put_dnode(&dn); 1645 1646 if (map->m_may_create) { 1647 f2fs_do_map_lock(sbi, flag, false); 1648 f2fs_balance_fs(sbi, dn.node_changed); 1649 } 1650 goto next_dnode; 1651 1652 sync_out: 1653 1654 if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) { 1655 /* 1656 * for hardware encryption, but to avoid potential issue 1657 * in future 1658 */ 1659 f2fs_wait_on_block_writeback_range(inode, 1660 map->m_pblk, map->m_len); 1661 invalidate_mapping_pages(META_MAPPING(sbi), 1662 map->m_pblk, map->m_pblk); 1663 1664 if (map->m_multidev_dio) { 1665 block_t blk_addr = map->m_pblk; 1666 1667 bidx = f2fs_target_device_index(sbi, map->m_pblk); 1668 1669 map->m_bdev = FDEV(bidx).bdev; 1670 map->m_pblk -= FDEV(bidx).start_blk; 1671 1672 if (map->m_may_create) 1673 f2fs_update_device_state(sbi, inode->i_ino, 1674 blk_addr, map->m_len); 1675 1676 f2fs_bug_on(sbi, blk_addr + map->m_len > 1677 FDEV(bidx).end_blk + 1); 1678 } 1679 } 1680 1681 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1682 if (map->m_flags & F2FS_MAP_MAPPED) { 1683 unsigned int ofs = start_pgofs - map->m_lblk; 1684 1685 f2fs_update_extent_cache_range(&dn, 1686 start_pgofs, map->m_pblk + ofs, 1687 map->m_len - ofs); 1688 } 1689 if (map->m_next_extent) 1690 *map->m_next_extent = pgofs + 1; 1691 } 1692 f2fs_put_dnode(&dn); 1693 unlock_out: 1694 if (map->m_may_create) { 1695 f2fs_do_map_lock(sbi, flag, false); 1696 f2fs_balance_fs(sbi, dn.node_changed); 1697 } 1698 out: 1699 trace_f2fs_map_blocks(inode, map, create, flag, err); 1700 return err; 1701 } 1702 1703 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len) 1704 { 1705 struct f2fs_map_blocks map; 1706 block_t last_lblk; 1707 int err; 1708 1709 if (pos + len > i_size_read(inode)) 1710 return false; 1711 1712 map.m_lblk = F2FS_BYTES_TO_BLK(pos); 1713 map.m_next_pgofs = NULL; 1714 map.m_next_extent = NULL; 1715 map.m_seg_type = NO_CHECK_TYPE; 1716 map.m_may_create = false; 1717 last_lblk = F2FS_BLK_ALIGN(pos + len); 1718 1719 while (map.m_lblk < last_lblk) { 1720 map.m_len = last_lblk - map.m_lblk; 1721 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT); 1722 if (err || map.m_len == 0) 1723 return false; 1724 map.m_lblk += map.m_len; 1725 } 1726 return true; 1727 } 1728 1729 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes) 1730 { 1731 return (bytes >> inode->i_blkbits); 1732 } 1733 1734 static inline u64 blks_to_bytes(struct inode *inode, u64 blks) 1735 { 1736 return (blks << inode->i_blkbits); 1737 } 1738 1739 static int f2fs_xattr_fiemap(struct inode *inode, 1740 struct fiemap_extent_info *fieinfo) 1741 { 1742 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1743 struct page *page; 1744 struct node_info ni; 1745 __u64 phys = 0, len; 1746 __u32 flags; 1747 nid_t xnid = F2FS_I(inode)->i_xattr_nid; 1748 int err = 0; 1749 1750 if (f2fs_has_inline_xattr(inode)) { 1751 int offset; 1752 1753 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), 1754 inode->i_ino, false); 1755 if (!page) 1756 return -ENOMEM; 1757 1758 err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false); 1759 if (err) { 1760 f2fs_put_page(page, 1); 1761 return err; 1762 } 1763 1764 phys = blks_to_bytes(inode, ni.blk_addr); 1765 offset = offsetof(struct f2fs_inode, i_addr) + 1766 sizeof(__le32) * (DEF_ADDRS_PER_INODE - 1767 get_inline_xattr_addrs(inode)); 1768 1769 phys += offset; 1770 len = inline_xattr_size(inode); 1771 1772 f2fs_put_page(page, 1); 1773 1774 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED; 1775 1776 if (!xnid) 1777 flags |= FIEMAP_EXTENT_LAST; 1778 1779 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1780 trace_f2fs_fiemap(inode, 0, phys, len, flags, err); 1781 if (err || err == 1) 1782 return err; 1783 } 1784 1785 if (xnid) { 1786 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false); 1787 if (!page) 1788 return -ENOMEM; 1789 1790 err = f2fs_get_node_info(sbi, xnid, &ni, false); 1791 if (err) { 1792 f2fs_put_page(page, 1); 1793 return err; 1794 } 1795 1796 phys = blks_to_bytes(inode, ni.blk_addr); 1797 len = inode->i_sb->s_blocksize; 1798 1799 f2fs_put_page(page, 1); 1800 1801 flags = FIEMAP_EXTENT_LAST; 1802 } 1803 1804 if (phys) { 1805 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1806 trace_f2fs_fiemap(inode, 0, phys, len, flags, err); 1807 } 1808 1809 return (err < 0 ? err : 0); 1810 } 1811 1812 static loff_t max_inode_blocks(struct inode *inode) 1813 { 1814 loff_t result = ADDRS_PER_INODE(inode); 1815 loff_t leaf_count = ADDRS_PER_BLOCK(inode); 1816 1817 /* two direct node blocks */ 1818 result += (leaf_count * 2); 1819 1820 /* two indirect node blocks */ 1821 leaf_count *= NIDS_PER_BLOCK; 1822 result += (leaf_count * 2); 1823 1824 /* one double indirect node block */ 1825 leaf_count *= NIDS_PER_BLOCK; 1826 result += leaf_count; 1827 1828 return result; 1829 } 1830 1831 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 1832 u64 start, u64 len) 1833 { 1834 struct f2fs_map_blocks map; 1835 sector_t start_blk, last_blk; 1836 pgoff_t next_pgofs; 1837 u64 logical = 0, phys = 0, size = 0; 1838 u32 flags = 0; 1839 int ret = 0; 1840 bool compr_cluster = false, compr_appended; 1841 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size; 1842 unsigned int count_in_cluster = 0; 1843 loff_t maxbytes; 1844 1845 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) { 1846 ret = f2fs_precache_extents(inode); 1847 if (ret) 1848 return ret; 1849 } 1850 1851 ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR); 1852 if (ret) 1853 return ret; 1854 1855 inode_lock(inode); 1856 1857 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS; 1858 if (start > maxbytes) { 1859 ret = -EFBIG; 1860 goto out; 1861 } 1862 1863 if (len > maxbytes || (maxbytes - len) < start) 1864 len = maxbytes - start; 1865 1866 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 1867 ret = f2fs_xattr_fiemap(inode, fieinfo); 1868 goto out; 1869 } 1870 1871 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) { 1872 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len); 1873 if (ret != -EAGAIN) 1874 goto out; 1875 } 1876 1877 if (bytes_to_blks(inode, len) == 0) 1878 len = blks_to_bytes(inode, 1); 1879 1880 start_blk = bytes_to_blks(inode, start); 1881 last_blk = bytes_to_blks(inode, start + len - 1); 1882 1883 next: 1884 memset(&map, 0, sizeof(map)); 1885 map.m_lblk = start_blk; 1886 map.m_len = bytes_to_blks(inode, len); 1887 map.m_next_pgofs = &next_pgofs; 1888 map.m_seg_type = NO_CHECK_TYPE; 1889 1890 if (compr_cluster) { 1891 map.m_lblk += 1; 1892 map.m_len = cluster_size - count_in_cluster; 1893 } 1894 1895 ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP); 1896 if (ret) 1897 goto out; 1898 1899 /* HOLE */ 1900 if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) { 1901 start_blk = next_pgofs; 1902 1903 if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode, 1904 max_inode_blocks(inode))) 1905 goto prep_next; 1906 1907 flags |= FIEMAP_EXTENT_LAST; 1908 } 1909 1910 compr_appended = false; 1911 /* In a case of compressed cluster, append this to the last extent */ 1912 if (compr_cluster && ((map.m_flags & F2FS_MAP_UNWRITTEN) || 1913 !(map.m_flags & F2FS_MAP_FLAGS))) { 1914 compr_appended = true; 1915 goto skip_fill; 1916 } 1917 1918 if (size) { 1919 flags |= FIEMAP_EXTENT_MERGED; 1920 if (IS_ENCRYPTED(inode)) 1921 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED; 1922 1923 ret = fiemap_fill_next_extent(fieinfo, logical, 1924 phys, size, flags); 1925 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret); 1926 if (ret) 1927 goto out; 1928 size = 0; 1929 } 1930 1931 if (start_blk > last_blk) 1932 goto out; 1933 1934 skip_fill: 1935 if (map.m_pblk == COMPRESS_ADDR) { 1936 compr_cluster = true; 1937 count_in_cluster = 1; 1938 } else if (compr_appended) { 1939 unsigned int appended_blks = cluster_size - 1940 count_in_cluster + 1; 1941 size += blks_to_bytes(inode, appended_blks); 1942 start_blk += appended_blks; 1943 compr_cluster = false; 1944 } else { 1945 logical = blks_to_bytes(inode, start_blk); 1946 phys = __is_valid_data_blkaddr(map.m_pblk) ? 1947 blks_to_bytes(inode, map.m_pblk) : 0; 1948 size = blks_to_bytes(inode, map.m_len); 1949 flags = 0; 1950 1951 if (compr_cluster) { 1952 flags = FIEMAP_EXTENT_ENCODED; 1953 count_in_cluster += map.m_len; 1954 if (count_in_cluster == cluster_size) { 1955 compr_cluster = false; 1956 size += blks_to_bytes(inode, 1); 1957 } 1958 } else if (map.m_flags & F2FS_MAP_UNWRITTEN) { 1959 flags = FIEMAP_EXTENT_UNWRITTEN; 1960 } 1961 1962 start_blk += bytes_to_blks(inode, size); 1963 } 1964 1965 prep_next: 1966 cond_resched(); 1967 if (fatal_signal_pending(current)) 1968 ret = -EINTR; 1969 else 1970 goto next; 1971 out: 1972 if (ret == 1) 1973 ret = 0; 1974 1975 inode_unlock(inode); 1976 return ret; 1977 } 1978 1979 static inline loff_t f2fs_readpage_limit(struct inode *inode) 1980 { 1981 if (IS_ENABLED(CONFIG_FS_VERITY) && 1982 (IS_VERITY(inode) || f2fs_verity_in_progress(inode))) 1983 return inode->i_sb->s_maxbytes; 1984 1985 return i_size_read(inode); 1986 } 1987 1988 static int f2fs_read_single_page(struct inode *inode, struct page *page, 1989 unsigned nr_pages, 1990 struct f2fs_map_blocks *map, 1991 struct bio **bio_ret, 1992 sector_t *last_block_in_bio, 1993 bool is_readahead) 1994 { 1995 struct bio *bio = *bio_ret; 1996 const unsigned blocksize = blks_to_bytes(inode, 1); 1997 sector_t block_in_file; 1998 sector_t last_block; 1999 sector_t last_block_in_file; 2000 sector_t block_nr; 2001 int ret = 0; 2002 2003 block_in_file = (sector_t)page_index(page); 2004 last_block = block_in_file + nr_pages; 2005 last_block_in_file = bytes_to_blks(inode, 2006 f2fs_readpage_limit(inode) + blocksize - 1); 2007 if (last_block > last_block_in_file) 2008 last_block = last_block_in_file; 2009 2010 /* just zeroing out page which is beyond EOF */ 2011 if (block_in_file >= last_block) 2012 goto zero_out; 2013 /* 2014 * Map blocks using the previous result first. 2015 */ 2016 if ((map->m_flags & F2FS_MAP_MAPPED) && 2017 block_in_file > map->m_lblk && 2018 block_in_file < (map->m_lblk + map->m_len)) 2019 goto got_it; 2020 2021 /* 2022 * Then do more f2fs_map_blocks() calls until we are 2023 * done with this page. 2024 */ 2025 map->m_lblk = block_in_file; 2026 map->m_len = last_block - block_in_file; 2027 2028 ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT); 2029 if (ret) 2030 goto out; 2031 got_it: 2032 if ((map->m_flags & F2FS_MAP_MAPPED)) { 2033 block_nr = map->m_pblk + block_in_file - map->m_lblk; 2034 SetPageMappedToDisk(page); 2035 2036 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr, 2037 DATA_GENERIC_ENHANCE_READ)) { 2038 ret = -EFSCORRUPTED; 2039 goto out; 2040 } 2041 } else { 2042 zero_out: 2043 zero_user_segment(page, 0, PAGE_SIZE); 2044 if (f2fs_need_verity(inode, page->index) && 2045 !fsverity_verify_page(page)) { 2046 ret = -EIO; 2047 goto out; 2048 } 2049 if (!PageUptodate(page)) 2050 SetPageUptodate(page); 2051 unlock_page(page); 2052 goto out; 2053 } 2054 2055 /* 2056 * This page will go to BIO. Do we need to send this 2057 * BIO off first? 2058 */ 2059 if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio, 2060 *last_block_in_bio, block_nr) || 2061 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) { 2062 submit_and_realloc: 2063 __submit_bio(F2FS_I_SB(inode), bio, DATA); 2064 bio = NULL; 2065 } 2066 if (bio == NULL) { 2067 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages, 2068 is_readahead ? REQ_RAHEAD : 0, page->index, 2069 false); 2070 if (IS_ERR(bio)) { 2071 ret = PTR_ERR(bio); 2072 bio = NULL; 2073 goto out; 2074 } 2075 } 2076 2077 /* 2078 * If the page is under writeback, we need to wait for 2079 * its completion to see the correct decrypted data. 2080 */ 2081 f2fs_wait_on_block_writeback(inode, block_nr); 2082 2083 if (bio_add_page(bio, page, blocksize, 0) < blocksize) 2084 goto submit_and_realloc; 2085 2086 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA); 2087 f2fs_update_iostat(F2FS_I_SB(inode), FS_DATA_READ_IO, F2FS_BLKSIZE); 2088 ClearPageError(page); 2089 *last_block_in_bio = block_nr; 2090 goto out; 2091 out: 2092 *bio_ret = bio; 2093 return ret; 2094 } 2095 2096 #ifdef CONFIG_F2FS_FS_COMPRESSION 2097 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret, 2098 unsigned nr_pages, sector_t *last_block_in_bio, 2099 bool is_readahead, bool for_write) 2100 { 2101 struct dnode_of_data dn; 2102 struct inode *inode = cc->inode; 2103 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2104 struct bio *bio = *bio_ret; 2105 unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size; 2106 sector_t last_block_in_file; 2107 const unsigned blocksize = blks_to_bytes(inode, 1); 2108 struct decompress_io_ctx *dic = NULL; 2109 struct extent_info ei = {0, }; 2110 bool from_dnode = true; 2111 int i; 2112 int ret = 0; 2113 2114 f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc)); 2115 2116 last_block_in_file = bytes_to_blks(inode, 2117 f2fs_readpage_limit(inode) + blocksize - 1); 2118 2119 /* get rid of pages beyond EOF */ 2120 for (i = 0; i < cc->cluster_size; i++) { 2121 struct page *page = cc->rpages[i]; 2122 2123 if (!page) 2124 continue; 2125 if ((sector_t)page->index >= last_block_in_file) { 2126 zero_user_segment(page, 0, PAGE_SIZE); 2127 if (!PageUptodate(page)) 2128 SetPageUptodate(page); 2129 } else if (!PageUptodate(page)) { 2130 continue; 2131 } 2132 unlock_page(page); 2133 if (for_write) 2134 put_page(page); 2135 cc->rpages[i] = NULL; 2136 cc->nr_rpages--; 2137 } 2138 2139 /* we are done since all pages are beyond EOF */ 2140 if (f2fs_cluster_is_empty(cc)) 2141 goto out; 2142 2143 if (f2fs_lookup_extent_cache(inode, start_idx, &ei)) 2144 from_dnode = false; 2145 2146 if (!from_dnode) 2147 goto skip_reading_dnode; 2148 2149 set_new_dnode(&dn, inode, NULL, NULL, 0); 2150 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 2151 if (ret) 2152 goto out; 2153 2154 f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR); 2155 2156 skip_reading_dnode: 2157 for (i = 1; i < cc->cluster_size; i++) { 2158 block_t blkaddr; 2159 2160 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page, 2161 dn.ofs_in_node + i) : 2162 ei.blk + i - 1; 2163 2164 if (!__is_valid_data_blkaddr(blkaddr)) 2165 break; 2166 2167 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) { 2168 ret = -EFAULT; 2169 goto out_put_dnode; 2170 } 2171 cc->nr_cpages++; 2172 2173 if (!from_dnode && i >= ei.c_len) 2174 break; 2175 } 2176 2177 /* nothing to decompress */ 2178 if (cc->nr_cpages == 0) { 2179 ret = 0; 2180 goto out_put_dnode; 2181 } 2182 2183 dic = f2fs_alloc_dic(cc); 2184 if (IS_ERR(dic)) { 2185 ret = PTR_ERR(dic); 2186 goto out_put_dnode; 2187 } 2188 2189 for (i = 0; i < cc->nr_cpages; i++) { 2190 struct page *page = dic->cpages[i]; 2191 block_t blkaddr; 2192 struct bio_post_read_ctx *ctx; 2193 2194 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page, 2195 dn.ofs_in_node + i + 1) : 2196 ei.blk + i; 2197 2198 f2fs_wait_on_block_writeback(inode, blkaddr); 2199 2200 if (f2fs_load_compressed_page(sbi, page, blkaddr)) { 2201 if (atomic_dec_and_test(&dic->remaining_pages)) 2202 f2fs_decompress_cluster(dic); 2203 continue; 2204 } 2205 2206 if (bio && (!page_is_mergeable(sbi, bio, 2207 *last_block_in_bio, blkaddr) || 2208 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) { 2209 submit_and_realloc: 2210 __submit_bio(sbi, bio, DATA); 2211 bio = NULL; 2212 } 2213 2214 if (!bio) { 2215 bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages, 2216 is_readahead ? REQ_RAHEAD : 0, 2217 page->index, for_write); 2218 if (IS_ERR(bio)) { 2219 ret = PTR_ERR(bio); 2220 f2fs_decompress_end_io(dic, ret); 2221 f2fs_put_dnode(&dn); 2222 *bio_ret = NULL; 2223 return ret; 2224 } 2225 } 2226 2227 if (bio_add_page(bio, page, blocksize, 0) < blocksize) 2228 goto submit_and_realloc; 2229 2230 ctx = get_post_read_ctx(bio); 2231 ctx->enabled_steps |= STEP_DECOMPRESS; 2232 refcount_inc(&dic->refcnt); 2233 2234 inc_page_count(sbi, F2FS_RD_DATA); 2235 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE); 2236 f2fs_update_iostat(sbi, FS_CDATA_READ_IO, F2FS_BLKSIZE); 2237 ClearPageError(page); 2238 *last_block_in_bio = blkaddr; 2239 } 2240 2241 if (from_dnode) 2242 f2fs_put_dnode(&dn); 2243 2244 *bio_ret = bio; 2245 return 0; 2246 2247 out_put_dnode: 2248 if (from_dnode) 2249 f2fs_put_dnode(&dn); 2250 out: 2251 for (i = 0; i < cc->cluster_size; i++) { 2252 if (cc->rpages[i]) { 2253 ClearPageUptodate(cc->rpages[i]); 2254 ClearPageError(cc->rpages[i]); 2255 unlock_page(cc->rpages[i]); 2256 } 2257 } 2258 *bio_ret = bio; 2259 return ret; 2260 } 2261 #endif 2262 2263 /* 2264 * This function was originally taken from fs/mpage.c, and customized for f2fs. 2265 * Major change was from block_size == page_size in f2fs by default. 2266 */ 2267 static int f2fs_mpage_readpages(struct inode *inode, 2268 struct readahead_control *rac, struct page *page) 2269 { 2270 struct bio *bio = NULL; 2271 sector_t last_block_in_bio = 0; 2272 struct f2fs_map_blocks map; 2273 #ifdef CONFIG_F2FS_FS_COMPRESSION 2274 struct compress_ctx cc = { 2275 .inode = inode, 2276 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 2277 .cluster_size = F2FS_I(inode)->i_cluster_size, 2278 .cluster_idx = NULL_CLUSTER, 2279 .rpages = NULL, 2280 .cpages = NULL, 2281 .nr_rpages = 0, 2282 .nr_cpages = 0, 2283 }; 2284 pgoff_t nc_cluster_idx = NULL_CLUSTER; 2285 #endif 2286 unsigned nr_pages = rac ? readahead_count(rac) : 1; 2287 unsigned max_nr_pages = nr_pages; 2288 int ret = 0; 2289 2290 map.m_pblk = 0; 2291 map.m_lblk = 0; 2292 map.m_len = 0; 2293 map.m_flags = 0; 2294 map.m_next_pgofs = NULL; 2295 map.m_next_extent = NULL; 2296 map.m_seg_type = NO_CHECK_TYPE; 2297 map.m_may_create = false; 2298 2299 for (; nr_pages; nr_pages--) { 2300 if (rac) { 2301 page = readahead_page(rac); 2302 prefetchw(&page->flags); 2303 } 2304 2305 #ifdef CONFIG_F2FS_FS_COMPRESSION 2306 if (f2fs_compressed_file(inode)) { 2307 /* there are remained comressed pages, submit them */ 2308 if (!f2fs_cluster_can_merge_page(&cc, page->index)) { 2309 ret = f2fs_read_multi_pages(&cc, &bio, 2310 max_nr_pages, 2311 &last_block_in_bio, 2312 rac != NULL, false); 2313 f2fs_destroy_compress_ctx(&cc, false); 2314 if (ret) 2315 goto set_error_page; 2316 } 2317 if (cc.cluster_idx == NULL_CLUSTER) { 2318 if (nc_cluster_idx == 2319 page->index >> cc.log_cluster_size) { 2320 goto read_single_page; 2321 } 2322 2323 ret = f2fs_is_compressed_cluster(inode, page->index); 2324 if (ret < 0) 2325 goto set_error_page; 2326 else if (!ret) { 2327 nc_cluster_idx = 2328 page->index >> cc.log_cluster_size; 2329 goto read_single_page; 2330 } 2331 2332 nc_cluster_idx = NULL_CLUSTER; 2333 } 2334 ret = f2fs_init_compress_ctx(&cc); 2335 if (ret) 2336 goto set_error_page; 2337 2338 f2fs_compress_ctx_add_page(&cc, page); 2339 2340 goto next_page; 2341 } 2342 read_single_page: 2343 #endif 2344 2345 ret = f2fs_read_single_page(inode, page, max_nr_pages, &map, 2346 &bio, &last_block_in_bio, rac); 2347 if (ret) { 2348 #ifdef CONFIG_F2FS_FS_COMPRESSION 2349 set_error_page: 2350 #endif 2351 SetPageError(page); 2352 zero_user_segment(page, 0, PAGE_SIZE); 2353 unlock_page(page); 2354 } 2355 #ifdef CONFIG_F2FS_FS_COMPRESSION 2356 next_page: 2357 #endif 2358 if (rac) 2359 put_page(page); 2360 2361 #ifdef CONFIG_F2FS_FS_COMPRESSION 2362 if (f2fs_compressed_file(inode)) { 2363 /* last page */ 2364 if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) { 2365 ret = f2fs_read_multi_pages(&cc, &bio, 2366 max_nr_pages, 2367 &last_block_in_bio, 2368 rac != NULL, false); 2369 f2fs_destroy_compress_ctx(&cc, false); 2370 } 2371 } 2372 #endif 2373 } 2374 if (bio) 2375 __submit_bio(F2FS_I_SB(inode), bio, DATA); 2376 return ret; 2377 } 2378 2379 static int f2fs_read_data_page(struct file *file, struct page *page) 2380 { 2381 struct inode *inode = page_file_mapping(page)->host; 2382 int ret = -EAGAIN; 2383 2384 trace_f2fs_readpage(page, DATA); 2385 2386 if (!f2fs_is_compress_backend_ready(inode)) { 2387 unlock_page(page); 2388 return -EOPNOTSUPP; 2389 } 2390 2391 /* If the file has inline data, try to read it directly */ 2392 if (f2fs_has_inline_data(inode)) 2393 ret = f2fs_read_inline_data(inode, page); 2394 if (ret == -EAGAIN) 2395 ret = f2fs_mpage_readpages(inode, NULL, page); 2396 return ret; 2397 } 2398 2399 static void f2fs_readahead(struct readahead_control *rac) 2400 { 2401 struct inode *inode = rac->mapping->host; 2402 2403 trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac)); 2404 2405 if (!f2fs_is_compress_backend_ready(inode)) 2406 return; 2407 2408 /* If the file has inline data, skip readpages */ 2409 if (f2fs_has_inline_data(inode)) 2410 return; 2411 2412 f2fs_mpage_readpages(inode, rac, NULL); 2413 } 2414 2415 int f2fs_encrypt_one_page(struct f2fs_io_info *fio) 2416 { 2417 struct inode *inode = fio->page->mapping->host; 2418 struct page *mpage, *page; 2419 gfp_t gfp_flags = GFP_NOFS; 2420 2421 if (!f2fs_encrypted_file(inode)) 2422 return 0; 2423 2424 page = fio->compressed_page ? fio->compressed_page : fio->page; 2425 2426 /* wait for GCed page writeback via META_MAPPING */ 2427 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr); 2428 2429 if (fscrypt_inode_uses_inline_crypto(inode)) 2430 return 0; 2431 2432 retry_encrypt: 2433 fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page, 2434 PAGE_SIZE, 0, gfp_flags); 2435 if (IS_ERR(fio->encrypted_page)) { 2436 /* flush pending IOs and wait for a while in the ENOMEM case */ 2437 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) { 2438 f2fs_flush_merged_writes(fio->sbi); 2439 memalloc_retry_wait(GFP_NOFS); 2440 gfp_flags |= __GFP_NOFAIL; 2441 goto retry_encrypt; 2442 } 2443 return PTR_ERR(fio->encrypted_page); 2444 } 2445 2446 mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr); 2447 if (mpage) { 2448 if (PageUptodate(mpage)) 2449 memcpy(page_address(mpage), 2450 page_address(fio->encrypted_page), PAGE_SIZE); 2451 f2fs_put_page(mpage, 1); 2452 } 2453 return 0; 2454 } 2455 2456 static inline bool check_inplace_update_policy(struct inode *inode, 2457 struct f2fs_io_info *fio) 2458 { 2459 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2460 unsigned int policy = SM_I(sbi)->ipu_policy; 2461 2462 if (policy & (0x1 << F2FS_IPU_FORCE)) 2463 return true; 2464 if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi)) 2465 return true; 2466 if (policy & (0x1 << F2FS_IPU_UTIL) && 2467 utilization(sbi) > SM_I(sbi)->min_ipu_util) 2468 return true; 2469 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) && 2470 utilization(sbi) > SM_I(sbi)->min_ipu_util) 2471 return true; 2472 2473 /* 2474 * IPU for rewrite async pages 2475 */ 2476 if (policy & (0x1 << F2FS_IPU_ASYNC) && 2477 fio && fio->op == REQ_OP_WRITE && 2478 !(fio->op_flags & REQ_SYNC) && 2479 !IS_ENCRYPTED(inode)) 2480 return true; 2481 2482 /* this is only set during fdatasync */ 2483 if (policy & (0x1 << F2FS_IPU_FSYNC) && 2484 is_inode_flag_set(inode, FI_NEED_IPU)) 2485 return true; 2486 2487 if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 2488 !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) 2489 return true; 2490 2491 return false; 2492 } 2493 2494 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio) 2495 { 2496 /* swap file is migrating in aligned write mode */ 2497 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE)) 2498 return false; 2499 2500 if (f2fs_is_pinned_file(inode)) 2501 return true; 2502 2503 /* if this is cold file, we should overwrite to avoid fragmentation */ 2504 if (file_is_cold(inode)) 2505 return true; 2506 2507 return check_inplace_update_policy(inode, fio); 2508 } 2509 2510 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio) 2511 { 2512 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2513 2514 /* The below cases were checked when setting it. */ 2515 if (f2fs_is_pinned_file(inode)) 2516 return false; 2517 if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 2518 return true; 2519 if (f2fs_lfs_mode(sbi)) 2520 return true; 2521 if (S_ISDIR(inode->i_mode)) 2522 return true; 2523 if (IS_NOQUOTA(inode)) 2524 return true; 2525 if (f2fs_is_atomic_file(inode)) 2526 return true; 2527 2528 /* swap file is migrating in aligned write mode */ 2529 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE)) 2530 return true; 2531 2532 if (fio) { 2533 if (page_private_gcing(fio->page)) 2534 return true; 2535 if (page_private_dummy(fio->page)) 2536 return true; 2537 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 2538 f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) 2539 return true; 2540 } 2541 return false; 2542 } 2543 2544 static inline bool need_inplace_update(struct f2fs_io_info *fio) 2545 { 2546 struct inode *inode = fio->page->mapping->host; 2547 2548 if (f2fs_should_update_outplace(inode, fio)) 2549 return false; 2550 2551 return f2fs_should_update_inplace(inode, fio); 2552 } 2553 2554 int f2fs_do_write_data_page(struct f2fs_io_info *fio) 2555 { 2556 struct page *page = fio->page; 2557 struct inode *inode = page->mapping->host; 2558 struct dnode_of_data dn; 2559 struct extent_info ei = {0, }; 2560 struct node_info ni; 2561 bool ipu_force = false; 2562 int err = 0; 2563 2564 set_new_dnode(&dn, inode, NULL, NULL, 0); 2565 if (need_inplace_update(fio) && 2566 f2fs_lookup_extent_cache(inode, page->index, &ei)) { 2567 fio->old_blkaddr = ei.blk + page->index - ei.fofs; 2568 2569 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 2570 DATA_GENERIC_ENHANCE)) 2571 return -EFSCORRUPTED; 2572 2573 ipu_force = true; 2574 fio->need_lock = LOCK_DONE; 2575 goto got_it; 2576 } 2577 2578 /* Deadlock due to between page->lock and f2fs_lock_op */ 2579 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi)) 2580 return -EAGAIN; 2581 2582 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE); 2583 if (err) 2584 goto out; 2585 2586 fio->old_blkaddr = dn.data_blkaddr; 2587 2588 /* This page is already truncated */ 2589 if (fio->old_blkaddr == NULL_ADDR) { 2590 ClearPageUptodate(page); 2591 clear_page_private_gcing(page); 2592 goto out_writepage; 2593 } 2594 got_it: 2595 if (__is_valid_data_blkaddr(fio->old_blkaddr) && 2596 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 2597 DATA_GENERIC_ENHANCE)) { 2598 err = -EFSCORRUPTED; 2599 goto out_writepage; 2600 } 2601 /* 2602 * If current allocation needs SSR, 2603 * it had better in-place writes for updated data. 2604 */ 2605 if (ipu_force || 2606 (__is_valid_data_blkaddr(fio->old_blkaddr) && 2607 need_inplace_update(fio))) { 2608 err = f2fs_encrypt_one_page(fio); 2609 if (err) 2610 goto out_writepage; 2611 2612 set_page_writeback(page); 2613 ClearPageError(page); 2614 f2fs_put_dnode(&dn); 2615 if (fio->need_lock == LOCK_REQ) 2616 f2fs_unlock_op(fio->sbi); 2617 err = f2fs_inplace_write_data(fio); 2618 if (err) { 2619 if (fscrypt_inode_uses_fs_layer_crypto(inode)) 2620 fscrypt_finalize_bounce_page(&fio->encrypted_page); 2621 if (PageWriteback(page)) 2622 end_page_writeback(page); 2623 } else { 2624 set_inode_flag(inode, FI_UPDATE_WRITE); 2625 } 2626 trace_f2fs_do_write_data_page(fio->page, IPU); 2627 return err; 2628 } 2629 2630 if (fio->need_lock == LOCK_RETRY) { 2631 if (!f2fs_trylock_op(fio->sbi)) { 2632 err = -EAGAIN; 2633 goto out_writepage; 2634 } 2635 fio->need_lock = LOCK_REQ; 2636 } 2637 2638 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false); 2639 if (err) 2640 goto out_writepage; 2641 2642 fio->version = ni.version; 2643 2644 err = f2fs_encrypt_one_page(fio); 2645 if (err) 2646 goto out_writepage; 2647 2648 set_page_writeback(page); 2649 ClearPageError(page); 2650 2651 if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR) 2652 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false); 2653 2654 /* LFS mode write path */ 2655 f2fs_outplace_write_data(&dn, fio); 2656 trace_f2fs_do_write_data_page(page, OPU); 2657 set_inode_flag(inode, FI_APPEND_WRITE); 2658 if (page->index == 0) 2659 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); 2660 out_writepage: 2661 f2fs_put_dnode(&dn); 2662 out: 2663 if (fio->need_lock == LOCK_REQ) 2664 f2fs_unlock_op(fio->sbi); 2665 return err; 2666 } 2667 2668 int f2fs_write_single_data_page(struct page *page, int *submitted, 2669 struct bio **bio, 2670 sector_t *last_block, 2671 struct writeback_control *wbc, 2672 enum iostat_type io_type, 2673 int compr_blocks, 2674 bool allow_balance) 2675 { 2676 struct inode *inode = page->mapping->host; 2677 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2678 loff_t i_size = i_size_read(inode); 2679 const pgoff_t end_index = ((unsigned long long)i_size) 2680 >> PAGE_SHIFT; 2681 loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT; 2682 unsigned offset = 0; 2683 bool need_balance_fs = false; 2684 int err = 0; 2685 struct f2fs_io_info fio = { 2686 .sbi = sbi, 2687 .ino = inode->i_ino, 2688 .type = DATA, 2689 .op = REQ_OP_WRITE, 2690 .op_flags = wbc_to_write_flags(wbc), 2691 .old_blkaddr = NULL_ADDR, 2692 .page = page, 2693 .encrypted_page = NULL, 2694 .submitted = false, 2695 .compr_blocks = compr_blocks, 2696 .need_lock = LOCK_RETRY, 2697 .io_type = io_type, 2698 .io_wbc = wbc, 2699 .bio = bio, 2700 .last_block = last_block, 2701 }; 2702 2703 trace_f2fs_writepage(page, DATA); 2704 2705 /* we should bypass data pages to proceed the kworkder jobs */ 2706 if (unlikely(f2fs_cp_error(sbi))) { 2707 mapping_set_error(page->mapping, -EIO); 2708 /* 2709 * don't drop any dirty dentry pages for keeping lastest 2710 * directory structure. 2711 */ 2712 if (S_ISDIR(inode->i_mode)) 2713 goto redirty_out; 2714 goto out; 2715 } 2716 2717 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 2718 goto redirty_out; 2719 2720 if (page->index < end_index || 2721 f2fs_verity_in_progress(inode) || 2722 compr_blocks) 2723 goto write; 2724 2725 /* 2726 * If the offset is out-of-range of file size, 2727 * this page does not have to be written to disk. 2728 */ 2729 offset = i_size & (PAGE_SIZE - 1); 2730 if ((page->index >= end_index + 1) || !offset) 2731 goto out; 2732 2733 zero_user_segment(page, offset, PAGE_SIZE); 2734 write: 2735 if (f2fs_is_drop_cache(inode)) 2736 goto out; 2737 /* we should not write 0'th page having journal header */ 2738 if (f2fs_is_volatile_file(inode) && (!page->index || 2739 (!wbc->for_reclaim && 2740 f2fs_available_free_memory(sbi, BASE_CHECK)))) 2741 goto redirty_out; 2742 2743 /* Dentry/quota blocks are controlled by checkpoint */ 2744 if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) { 2745 /* 2746 * We need to wait for node_write to avoid block allocation during 2747 * checkpoint. This can only happen to quota writes which can cause 2748 * the below discard race condition. 2749 */ 2750 if (IS_NOQUOTA(inode)) 2751 down_read(&sbi->node_write); 2752 2753 fio.need_lock = LOCK_DONE; 2754 err = f2fs_do_write_data_page(&fio); 2755 2756 if (IS_NOQUOTA(inode)) 2757 up_read(&sbi->node_write); 2758 2759 goto done; 2760 } 2761 2762 if (!wbc->for_reclaim) 2763 need_balance_fs = true; 2764 else if (has_not_enough_free_secs(sbi, 0, 0)) 2765 goto redirty_out; 2766 else 2767 set_inode_flag(inode, FI_HOT_DATA); 2768 2769 err = -EAGAIN; 2770 if (f2fs_has_inline_data(inode)) { 2771 err = f2fs_write_inline_data(inode, page); 2772 if (!err) 2773 goto out; 2774 } 2775 2776 if (err == -EAGAIN) { 2777 err = f2fs_do_write_data_page(&fio); 2778 if (err == -EAGAIN) { 2779 fio.need_lock = LOCK_REQ; 2780 err = f2fs_do_write_data_page(&fio); 2781 } 2782 } 2783 2784 if (err) { 2785 file_set_keep_isize(inode); 2786 } else { 2787 spin_lock(&F2FS_I(inode)->i_size_lock); 2788 if (F2FS_I(inode)->last_disk_size < psize) 2789 F2FS_I(inode)->last_disk_size = psize; 2790 spin_unlock(&F2FS_I(inode)->i_size_lock); 2791 } 2792 2793 done: 2794 if (err && err != -ENOENT) 2795 goto redirty_out; 2796 2797 out: 2798 inode_dec_dirty_pages(inode); 2799 if (err) { 2800 ClearPageUptodate(page); 2801 clear_page_private_gcing(page); 2802 } 2803 2804 if (wbc->for_reclaim) { 2805 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA); 2806 clear_inode_flag(inode, FI_HOT_DATA); 2807 f2fs_remove_dirty_inode(inode); 2808 submitted = NULL; 2809 } 2810 unlock_page(page); 2811 if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) && 2812 !F2FS_I(inode)->cp_task && allow_balance) 2813 f2fs_balance_fs(sbi, need_balance_fs); 2814 2815 if (unlikely(f2fs_cp_error(sbi))) { 2816 f2fs_submit_merged_write(sbi, DATA); 2817 f2fs_submit_merged_ipu_write(sbi, bio, NULL); 2818 submitted = NULL; 2819 } 2820 2821 if (submitted) 2822 *submitted = fio.submitted ? 1 : 0; 2823 2824 return 0; 2825 2826 redirty_out: 2827 redirty_page_for_writepage(wbc, page); 2828 /* 2829 * pageout() in MM traslates EAGAIN, so calls handle_write_error() 2830 * -> mapping_set_error() -> set_bit(AS_EIO, ...). 2831 * file_write_and_wait_range() will see EIO error, which is critical 2832 * to return value of fsync() followed by atomic_write failure to user. 2833 */ 2834 if (!err || wbc->for_reclaim) 2835 return AOP_WRITEPAGE_ACTIVATE; 2836 unlock_page(page); 2837 return err; 2838 } 2839 2840 static int f2fs_write_data_page(struct page *page, 2841 struct writeback_control *wbc) 2842 { 2843 #ifdef CONFIG_F2FS_FS_COMPRESSION 2844 struct inode *inode = page->mapping->host; 2845 2846 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 2847 goto out; 2848 2849 if (f2fs_compressed_file(inode)) { 2850 if (f2fs_is_compressed_cluster(inode, page->index)) { 2851 redirty_page_for_writepage(wbc, page); 2852 return AOP_WRITEPAGE_ACTIVATE; 2853 } 2854 } 2855 out: 2856 #endif 2857 2858 return f2fs_write_single_data_page(page, NULL, NULL, NULL, 2859 wbc, FS_DATA_IO, 0, true); 2860 } 2861 2862 /* 2863 * This function was copied from write_cche_pages from mm/page-writeback.c. 2864 * The major change is making write step of cold data page separately from 2865 * warm/hot data page. 2866 */ 2867 static int f2fs_write_cache_pages(struct address_space *mapping, 2868 struct writeback_control *wbc, 2869 enum iostat_type io_type) 2870 { 2871 int ret = 0; 2872 int done = 0, retry = 0; 2873 struct pagevec pvec; 2874 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 2875 struct bio *bio = NULL; 2876 sector_t last_block; 2877 #ifdef CONFIG_F2FS_FS_COMPRESSION 2878 struct inode *inode = mapping->host; 2879 struct compress_ctx cc = { 2880 .inode = inode, 2881 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 2882 .cluster_size = F2FS_I(inode)->i_cluster_size, 2883 .cluster_idx = NULL_CLUSTER, 2884 .rpages = NULL, 2885 .nr_rpages = 0, 2886 .cpages = NULL, 2887 .valid_nr_cpages = 0, 2888 .rbuf = NULL, 2889 .cbuf = NULL, 2890 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size, 2891 .private = NULL, 2892 }; 2893 #endif 2894 int nr_pages; 2895 pgoff_t index; 2896 pgoff_t end; /* Inclusive */ 2897 pgoff_t done_index; 2898 int range_whole = 0; 2899 xa_mark_t tag; 2900 int nwritten = 0; 2901 int submitted = 0; 2902 int i; 2903 2904 pagevec_init(&pvec); 2905 2906 if (get_dirty_pages(mapping->host) <= 2907 SM_I(F2FS_M_SB(mapping))->min_hot_blocks) 2908 set_inode_flag(mapping->host, FI_HOT_DATA); 2909 else 2910 clear_inode_flag(mapping->host, FI_HOT_DATA); 2911 2912 if (wbc->range_cyclic) { 2913 index = mapping->writeback_index; /* prev offset */ 2914 end = -1; 2915 } else { 2916 index = wbc->range_start >> PAGE_SHIFT; 2917 end = wbc->range_end >> PAGE_SHIFT; 2918 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2919 range_whole = 1; 2920 } 2921 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2922 tag = PAGECACHE_TAG_TOWRITE; 2923 else 2924 tag = PAGECACHE_TAG_DIRTY; 2925 retry: 2926 retry = 0; 2927 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2928 tag_pages_for_writeback(mapping, index, end); 2929 done_index = index; 2930 while (!done && !retry && (index <= end)) { 2931 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 2932 tag); 2933 if (nr_pages == 0) 2934 break; 2935 2936 for (i = 0; i < nr_pages; i++) { 2937 struct page *page = pvec.pages[i]; 2938 bool need_readd; 2939 readd: 2940 need_readd = false; 2941 #ifdef CONFIG_F2FS_FS_COMPRESSION 2942 if (f2fs_compressed_file(inode)) { 2943 void *fsdata = NULL; 2944 struct page *pagep; 2945 int ret2; 2946 2947 ret = f2fs_init_compress_ctx(&cc); 2948 if (ret) { 2949 done = 1; 2950 break; 2951 } 2952 2953 if (!f2fs_cluster_can_merge_page(&cc, 2954 page->index)) { 2955 ret = f2fs_write_multi_pages(&cc, 2956 &submitted, wbc, io_type); 2957 if (!ret) 2958 need_readd = true; 2959 goto result; 2960 } 2961 2962 if (unlikely(f2fs_cp_error(sbi))) 2963 goto lock_page; 2964 2965 if (!f2fs_cluster_is_empty(&cc)) 2966 goto lock_page; 2967 2968 ret2 = f2fs_prepare_compress_overwrite( 2969 inode, &pagep, 2970 page->index, &fsdata); 2971 if (ret2 < 0) { 2972 ret = ret2; 2973 done = 1; 2974 break; 2975 } else if (ret2 && 2976 (!f2fs_compress_write_end(inode, 2977 fsdata, page->index, 1) || 2978 !f2fs_all_cluster_page_loaded(&cc, 2979 &pvec, i, nr_pages))) { 2980 retry = 1; 2981 break; 2982 } 2983 } 2984 #endif 2985 /* give a priority to WB_SYNC threads */ 2986 if (atomic_read(&sbi->wb_sync_req[DATA]) && 2987 wbc->sync_mode == WB_SYNC_NONE) { 2988 done = 1; 2989 break; 2990 } 2991 #ifdef CONFIG_F2FS_FS_COMPRESSION 2992 lock_page: 2993 #endif 2994 done_index = page->index; 2995 retry_write: 2996 lock_page(page); 2997 2998 if (unlikely(page->mapping != mapping)) { 2999 continue_unlock: 3000 unlock_page(page); 3001 continue; 3002 } 3003 3004 if (!PageDirty(page)) { 3005 /* someone wrote it for us */ 3006 goto continue_unlock; 3007 } 3008 3009 if (PageWriteback(page)) { 3010 if (wbc->sync_mode != WB_SYNC_NONE) 3011 f2fs_wait_on_page_writeback(page, 3012 DATA, true, true); 3013 else 3014 goto continue_unlock; 3015 } 3016 3017 if (!clear_page_dirty_for_io(page)) 3018 goto continue_unlock; 3019 3020 #ifdef CONFIG_F2FS_FS_COMPRESSION 3021 if (f2fs_compressed_file(inode)) { 3022 get_page(page); 3023 f2fs_compress_ctx_add_page(&cc, page); 3024 continue; 3025 } 3026 #endif 3027 ret = f2fs_write_single_data_page(page, &submitted, 3028 &bio, &last_block, wbc, io_type, 3029 0, true); 3030 if (ret == AOP_WRITEPAGE_ACTIVATE) 3031 unlock_page(page); 3032 #ifdef CONFIG_F2FS_FS_COMPRESSION 3033 result: 3034 #endif 3035 nwritten += submitted; 3036 wbc->nr_to_write -= submitted; 3037 3038 if (unlikely(ret)) { 3039 /* 3040 * keep nr_to_write, since vfs uses this to 3041 * get # of written pages. 3042 */ 3043 if (ret == AOP_WRITEPAGE_ACTIVATE) { 3044 ret = 0; 3045 goto next; 3046 } else if (ret == -EAGAIN) { 3047 ret = 0; 3048 if (wbc->sync_mode == WB_SYNC_ALL) { 3049 cond_resched(); 3050 congestion_wait(BLK_RW_ASYNC, 3051 DEFAULT_IO_TIMEOUT); 3052 goto retry_write; 3053 } 3054 goto next; 3055 } 3056 done_index = page->index + 1; 3057 done = 1; 3058 break; 3059 } 3060 3061 if (wbc->nr_to_write <= 0 && 3062 wbc->sync_mode == WB_SYNC_NONE) { 3063 done = 1; 3064 break; 3065 } 3066 next: 3067 if (need_readd) 3068 goto readd; 3069 } 3070 pagevec_release(&pvec); 3071 cond_resched(); 3072 } 3073 #ifdef CONFIG_F2FS_FS_COMPRESSION 3074 /* flush remained pages in compress cluster */ 3075 if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) { 3076 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type); 3077 nwritten += submitted; 3078 wbc->nr_to_write -= submitted; 3079 if (ret) { 3080 done = 1; 3081 retry = 0; 3082 } 3083 } 3084 if (f2fs_compressed_file(inode)) 3085 f2fs_destroy_compress_ctx(&cc, false); 3086 #endif 3087 if (retry) { 3088 index = 0; 3089 end = -1; 3090 goto retry; 3091 } 3092 if (wbc->range_cyclic && !done) 3093 done_index = 0; 3094 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 3095 mapping->writeback_index = done_index; 3096 3097 if (nwritten) 3098 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host, 3099 NULL, 0, DATA); 3100 /* submit cached bio of IPU write */ 3101 if (bio) 3102 f2fs_submit_merged_ipu_write(sbi, &bio, NULL); 3103 3104 return ret; 3105 } 3106 3107 static inline bool __should_serialize_io(struct inode *inode, 3108 struct writeback_control *wbc) 3109 { 3110 /* to avoid deadlock in path of data flush */ 3111 if (F2FS_I(inode)->cp_task) 3112 return false; 3113 3114 if (!S_ISREG(inode->i_mode)) 3115 return false; 3116 if (IS_NOQUOTA(inode)) 3117 return false; 3118 3119 if (f2fs_need_compress_data(inode)) 3120 return true; 3121 if (wbc->sync_mode != WB_SYNC_ALL) 3122 return true; 3123 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks) 3124 return true; 3125 return false; 3126 } 3127 3128 static int __f2fs_write_data_pages(struct address_space *mapping, 3129 struct writeback_control *wbc, 3130 enum iostat_type io_type) 3131 { 3132 struct inode *inode = mapping->host; 3133 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3134 struct blk_plug plug; 3135 int ret; 3136 bool locked = false; 3137 3138 /* deal with chardevs and other special file */ 3139 if (!mapping->a_ops->writepage) 3140 return 0; 3141 3142 /* skip writing if there is no dirty page in this inode */ 3143 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE) 3144 return 0; 3145 3146 /* during POR, we don't need to trigger writepage at all. */ 3147 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 3148 goto skip_write; 3149 3150 if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) && 3151 wbc->sync_mode == WB_SYNC_NONE && 3152 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) && 3153 f2fs_available_free_memory(sbi, DIRTY_DENTS)) 3154 goto skip_write; 3155 3156 /* skip writing during file defragment */ 3157 if (is_inode_flag_set(inode, FI_DO_DEFRAG)) 3158 goto skip_write; 3159 3160 trace_f2fs_writepages(mapping->host, wbc, DATA); 3161 3162 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */ 3163 if (wbc->sync_mode == WB_SYNC_ALL) 3164 atomic_inc(&sbi->wb_sync_req[DATA]); 3165 else if (atomic_read(&sbi->wb_sync_req[DATA])) 3166 goto skip_write; 3167 3168 if (__should_serialize_io(inode, wbc)) { 3169 mutex_lock(&sbi->writepages); 3170 locked = true; 3171 } 3172 3173 blk_start_plug(&plug); 3174 ret = f2fs_write_cache_pages(mapping, wbc, io_type); 3175 blk_finish_plug(&plug); 3176 3177 if (locked) 3178 mutex_unlock(&sbi->writepages); 3179 3180 if (wbc->sync_mode == WB_SYNC_ALL) 3181 atomic_dec(&sbi->wb_sync_req[DATA]); 3182 /* 3183 * if some pages were truncated, we cannot guarantee its mapping->host 3184 * to detect pending bios. 3185 */ 3186 3187 f2fs_remove_dirty_inode(inode); 3188 return ret; 3189 3190 skip_write: 3191 wbc->pages_skipped += get_dirty_pages(inode); 3192 trace_f2fs_writepages(mapping->host, wbc, DATA); 3193 return 0; 3194 } 3195 3196 static int f2fs_write_data_pages(struct address_space *mapping, 3197 struct writeback_control *wbc) 3198 { 3199 struct inode *inode = mapping->host; 3200 3201 return __f2fs_write_data_pages(mapping, wbc, 3202 F2FS_I(inode)->cp_task == current ? 3203 FS_CP_DATA_IO : FS_DATA_IO); 3204 } 3205 3206 void f2fs_write_failed(struct inode *inode, loff_t to) 3207 { 3208 loff_t i_size = i_size_read(inode); 3209 3210 if (IS_NOQUOTA(inode)) 3211 return; 3212 3213 /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */ 3214 if (to > i_size && !f2fs_verity_in_progress(inode)) { 3215 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3216 filemap_invalidate_lock(inode->i_mapping); 3217 3218 truncate_pagecache(inode, i_size); 3219 f2fs_truncate_blocks(inode, i_size, true); 3220 3221 filemap_invalidate_unlock(inode->i_mapping); 3222 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3223 } 3224 } 3225 3226 static int prepare_write_begin(struct f2fs_sb_info *sbi, 3227 struct page *page, loff_t pos, unsigned len, 3228 block_t *blk_addr, bool *node_changed) 3229 { 3230 struct inode *inode = page->mapping->host; 3231 pgoff_t index = page->index; 3232 struct dnode_of_data dn; 3233 struct page *ipage; 3234 bool locked = false; 3235 struct extent_info ei = {0, }; 3236 int err = 0; 3237 int flag; 3238 3239 /* 3240 * If a whole page is being written and we already preallocated all the 3241 * blocks, then there is no need to get a block address now. 3242 */ 3243 if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL)) 3244 return 0; 3245 3246 /* f2fs_lock_op avoids race between write CP and convert_inline_page */ 3247 if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode)) 3248 flag = F2FS_GET_BLOCK_DEFAULT; 3249 else 3250 flag = F2FS_GET_BLOCK_PRE_AIO; 3251 3252 if (f2fs_has_inline_data(inode) || 3253 (pos & PAGE_MASK) >= i_size_read(inode)) { 3254 f2fs_do_map_lock(sbi, flag, true); 3255 locked = true; 3256 } 3257 3258 restart: 3259 /* check inline_data */ 3260 ipage = f2fs_get_node_page(sbi, inode->i_ino); 3261 if (IS_ERR(ipage)) { 3262 err = PTR_ERR(ipage); 3263 goto unlock_out; 3264 } 3265 3266 set_new_dnode(&dn, inode, ipage, ipage, 0); 3267 3268 if (f2fs_has_inline_data(inode)) { 3269 if (pos + len <= MAX_INLINE_DATA(inode)) { 3270 f2fs_do_read_inline_data(page, ipage); 3271 set_inode_flag(inode, FI_DATA_EXIST); 3272 if (inode->i_nlink) 3273 set_page_private_inline(ipage); 3274 } else { 3275 err = f2fs_convert_inline_page(&dn, page); 3276 if (err) 3277 goto out; 3278 if (dn.data_blkaddr == NULL_ADDR) 3279 err = f2fs_get_block(&dn, index); 3280 } 3281 } else if (locked) { 3282 err = f2fs_get_block(&dn, index); 3283 } else { 3284 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 3285 dn.data_blkaddr = ei.blk + index - ei.fofs; 3286 } else { 3287 /* hole case */ 3288 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 3289 if (err || dn.data_blkaddr == NULL_ADDR) { 3290 f2fs_put_dnode(&dn); 3291 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, 3292 true); 3293 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO); 3294 locked = true; 3295 goto restart; 3296 } 3297 } 3298 } 3299 3300 /* convert_inline_page can make node_changed */ 3301 *blk_addr = dn.data_blkaddr; 3302 *node_changed = dn.node_changed; 3303 out: 3304 f2fs_put_dnode(&dn); 3305 unlock_out: 3306 if (locked) 3307 f2fs_do_map_lock(sbi, flag, false); 3308 return err; 3309 } 3310 3311 static int f2fs_write_begin(struct file *file, struct address_space *mapping, 3312 loff_t pos, unsigned len, unsigned flags, 3313 struct page **pagep, void **fsdata) 3314 { 3315 struct inode *inode = mapping->host; 3316 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3317 struct page *page = NULL; 3318 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT; 3319 bool need_balance = false, drop_atomic = false; 3320 block_t blkaddr = NULL_ADDR; 3321 int err = 0; 3322 3323 trace_f2fs_write_begin(inode, pos, len, flags); 3324 3325 if (!f2fs_is_checkpoint_ready(sbi)) { 3326 err = -ENOSPC; 3327 goto fail; 3328 } 3329 3330 if ((f2fs_is_atomic_file(inode) && 3331 !f2fs_available_free_memory(sbi, INMEM_PAGES)) || 3332 is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) { 3333 err = -ENOMEM; 3334 drop_atomic = true; 3335 goto fail; 3336 } 3337 3338 /* 3339 * We should check this at this moment to avoid deadlock on inode page 3340 * and #0 page. The locking rule for inline_data conversion should be: 3341 * lock_page(page #0) -> lock_page(inode_page) 3342 */ 3343 if (index != 0) { 3344 err = f2fs_convert_inline_inode(inode); 3345 if (err) 3346 goto fail; 3347 } 3348 3349 #ifdef CONFIG_F2FS_FS_COMPRESSION 3350 if (f2fs_compressed_file(inode)) { 3351 int ret; 3352 3353 *fsdata = NULL; 3354 3355 if (len == PAGE_SIZE) 3356 goto repeat; 3357 3358 ret = f2fs_prepare_compress_overwrite(inode, pagep, 3359 index, fsdata); 3360 if (ret < 0) { 3361 err = ret; 3362 goto fail; 3363 } else if (ret) { 3364 return 0; 3365 } 3366 } 3367 #endif 3368 3369 repeat: 3370 /* 3371 * Do not use grab_cache_page_write_begin() to avoid deadlock due to 3372 * wait_for_stable_page. Will wait that below with our IO control. 3373 */ 3374 page = f2fs_pagecache_get_page(mapping, index, 3375 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS); 3376 if (!page) { 3377 err = -ENOMEM; 3378 goto fail; 3379 } 3380 3381 /* TODO: cluster can be compressed due to race with .writepage */ 3382 3383 *pagep = page; 3384 3385 err = prepare_write_begin(sbi, page, pos, len, 3386 &blkaddr, &need_balance); 3387 if (err) 3388 goto fail; 3389 3390 if (need_balance && !IS_NOQUOTA(inode) && 3391 has_not_enough_free_secs(sbi, 0, 0)) { 3392 unlock_page(page); 3393 f2fs_balance_fs(sbi, true); 3394 lock_page(page); 3395 if (page->mapping != mapping) { 3396 /* The page got truncated from under us */ 3397 f2fs_put_page(page, 1); 3398 goto repeat; 3399 } 3400 } 3401 3402 f2fs_wait_on_page_writeback(page, DATA, false, true); 3403 3404 if (len == PAGE_SIZE || PageUptodate(page)) 3405 return 0; 3406 3407 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) && 3408 !f2fs_verity_in_progress(inode)) { 3409 zero_user_segment(page, len, PAGE_SIZE); 3410 return 0; 3411 } 3412 3413 if (blkaddr == NEW_ADDR) { 3414 zero_user_segment(page, 0, PAGE_SIZE); 3415 SetPageUptodate(page); 3416 } else { 3417 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 3418 DATA_GENERIC_ENHANCE_READ)) { 3419 err = -EFSCORRUPTED; 3420 goto fail; 3421 } 3422 err = f2fs_submit_page_read(inode, page, blkaddr, 0, true); 3423 if (err) 3424 goto fail; 3425 3426 lock_page(page); 3427 if (unlikely(page->mapping != mapping)) { 3428 f2fs_put_page(page, 1); 3429 goto repeat; 3430 } 3431 if (unlikely(!PageUptodate(page))) { 3432 err = -EIO; 3433 goto fail; 3434 } 3435 } 3436 return 0; 3437 3438 fail: 3439 f2fs_put_page(page, 1); 3440 f2fs_write_failed(inode, pos + len); 3441 if (drop_atomic) 3442 f2fs_drop_inmem_pages_all(sbi, false); 3443 return err; 3444 } 3445 3446 static int f2fs_write_end(struct file *file, 3447 struct address_space *mapping, 3448 loff_t pos, unsigned len, unsigned copied, 3449 struct page *page, void *fsdata) 3450 { 3451 struct inode *inode = page->mapping->host; 3452 3453 trace_f2fs_write_end(inode, pos, len, copied); 3454 3455 /* 3456 * This should be come from len == PAGE_SIZE, and we expect copied 3457 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and 3458 * let generic_perform_write() try to copy data again through copied=0. 3459 */ 3460 if (!PageUptodate(page)) { 3461 if (unlikely(copied != len)) 3462 copied = 0; 3463 else 3464 SetPageUptodate(page); 3465 } 3466 3467 #ifdef CONFIG_F2FS_FS_COMPRESSION 3468 /* overwrite compressed file */ 3469 if (f2fs_compressed_file(inode) && fsdata) { 3470 f2fs_compress_write_end(inode, fsdata, page->index, copied); 3471 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3472 3473 if (pos + copied > i_size_read(inode) && 3474 !f2fs_verity_in_progress(inode)) 3475 f2fs_i_size_write(inode, pos + copied); 3476 return copied; 3477 } 3478 #endif 3479 3480 if (!copied) 3481 goto unlock_out; 3482 3483 set_page_dirty(page); 3484 3485 if (pos + copied > i_size_read(inode) && 3486 !f2fs_verity_in_progress(inode)) 3487 f2fs_i_size_write(inode, pos + copied); 3488 unlock_out: 3489 f2fs_put_page(page, 1); 3490 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3491 return copied; 3492 } 3493 3494 void f2fs_invalidate_page(struct page *page, unsigned int offset, 3495 unsigned int length) 3496 { 3497 struct inode *inode = page->mapping->host; 3498 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3499 3500 if (inode->i_ino >= F2FS_ROOT_INO(sbi) && 3501 (offset % PAGE_SIZE || length != PAGE_SIZE)) 3502 return; 3503 3504 if (PageDirty(page)) { 3505 if (inode->i_ino == F2FS_META_INO(sbi)) { 3506 dec_page_count(sbi, F2FS_DIRTY_META); 3507 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) { 3508 dec_page_count(sbi, F2FS_DIRTY_NODES); 3509 } else { 3510 inode_dec_dirty_pages(inode); 3511 f2fs_remove_dirty_inode(inode); 3512 } 3513 } 3514 3515 clear_page_private_gcing(page); 3516 3517 if (test_opt(sbi, COMPRESS_CACHE) && 3518 inode->i_ino == F2FS_COMPRESS_INO(sbi)) 3519 clear_page_private_data(page); 3520 3521 if (page_private_atomic(page)) 3522 return f2fs_drop_inmem_page(inode, page); 3523 3524 detach_page_private(page); 3525 set_page_private(page, 0); 3526 } 3527 3528 int f2fs_release_page(struct page *page, gfp_t wait) 3529 { 3530 /* If this is dirty page, keep PagePrivate */ 3531 if (PageDirty(page)) 3532 return 0; 3533 3534 /* This is atomic written page, keep Private */ 3535 if (page_private_atomic(page)) 3536 return 0; 3537 3538 if (test_opt(F2FS_P_SB(page), COMPRESS_CACHE)) { 3539 struct inode *inode = page->mapping->host; 3540 3541 if (inode->i_ino == F2FS_COMPRESS_INO(F2FS_I_SB(inode))) 3542 clear_page_private_data(page); 3543 } 3544 3545 clear_page_private_gcing(page); 3546 3547 detach_page_private(page); 3548 set_page_private(page, 0); 3549 return 1; 3550 } 3551 3552 static int f2fs_set_data_page_dirty(struct page *page) 3553 { 3554 struct inode *inode = page_file_mapping(page)->host; 3555 3556 trace_f2fs_set_page_dirty(page, DATA); 3557 3558 if (!PageUptodate(page)) 3559 SetPageUptodate(page); 3560 if (PageSwapCache(page)) 3561 return __set_page_dirty_nobuffers(page); 3562 3563 if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) { 3564 if (!page_private_atomic(page)) { 3565 f2fs_register_inmem_page(inode, page); 3566 return 1; 3567 } 3568 /* 3569 * Previously, this page has been registered, we just 3570 * return here. 3571 */ 3572 return 0; 3573 } 3574 3575 if (!PageDirty(page)) { 3576 __set_page_dirty_nobuffers(page); 3577 f2fs_update_dirty_page(inode, page); 3578 return 1; 3579 } 3580 return 0; 3581 } 3582 3583 3584 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block) 3585 { 3586 #ifdef CONFIG_F2FS_FS_COMPRESSION 3587 struct dnode_of_data dn; 3588 sector_t start_idx, blknr = 0; 3589 int ret; 3590 3591 start_idx = round_down(block, F2FS_I(inode)->i_cluster_size); 3592 3593 set_new_dnode(&dn, inode, NULL, NULL, 0); 3594 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 3595 if (ret) 3596 return 0; 3597 3598 if (dn.data_blkaddr != COMPRESS_ADDR) { 3599 dn.ofs_in_node += block - start_idx; 3600 blknr = f2fs_data_blkaddr(&dn); 3601 if (!__is_valid_data_blkaddr(blknr)) 3602 blknr = 0; 3603 } 3604 3605 f2fs_put_dnode(&dn); 3606 return blknr; 3607 #else 3608 return 0; 3609 #endif 3610 } 3611 3612 3613 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block) 3614 { 3615 struct inode *inode = mapping->host; 3616 sector_t blknr = 0; 3617 3618 if (f2fs_has_inline_data(inode)) 3619 goto out; 3620 3621 /* make sure allocating whole blocks */ 3622 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 3623 filemap_write_and_wait(mapping); 3624 3625 /* Block number less than F2FS MAX BLOCKS */ 3626 if (unlikely(block >= max_file_blocks(inode))) 3627 goto out; 3628 3629 if (f2fs_compressed_file(inode)) { 3630 blknr = f2fs_bmap_compress(inode, block); 3631 } else { 3632 struct f2fs_map_blocks map; 3633 3634 memset(&map, 0, sizeof(map)); 3635 map.m_lblk = block; 3636 map.m_len = 1; 3637 map.m_next_pgofs = NULL; 3638 map.m_seg_type = NO_CHECK_TYPE; 3639 3640 if (!f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_BMAP)) 3641 blknr = map.m_pblk; 3642 } 3643 out: 3644 trace_f2fs_bmap(inode, block, blknr); 3645 return blknr; 3646 } 3647 3648 #ifdef CONFIG_MIGRATION 3649 #include <linux/migrate.h> 3650 3651 int f2fs_migrate_page(struct address_space *mapping, 3652 struct page *newpage, struct page *page, enum migrate_mode mode) 3653 { 3654 int rc, extra_count; 3655 struct f2fs_inode_info *fi = F2FS_I(mapping->host); 3656 bool atomic_written = page_private_atomic(page); 3657 3658 BUG_ON(PageWriteback(page)); 3659 3660 /* migrating an atomic written page is safe with the inmem_lock hold */ 3661 if (atomic_written) { 3662 if (mode != MIGRATE_SYNC) 3663 return -EBUSY; 3664 if (!mutex_trylock(&fi->inmem_lock)) 3665 return -EAGAIN; 3666 } 3667 3668 /* one extra reference was held for atomic_write page */ 3669 extra_count = atomic_written ? 1 : 0; 3670 rc = migrate_page_move_mapping(mapping, newpage, 3671 page, extra_count); 3672 if (rc != MIGRATEPAGE_SUCCESS) { 3673 if (atomic_written) 3674 mutex_unlock(&fi->inmem_lock); 3675 return rc; 3676 } 3677 3678 if (atomic_written) { 3679 struct inmem_pages *cur; 3680 3681 list_for_each_entry(cur, &fi->inmem_pages, list) 3682 if (cur->page == page) { 3683 cur->page = newpage; 3684 break; 3685 } 3686 mutex_unlock(&fi->inmem_lock); 3687 put_page(page); 3688 get_page(newpage); 3689 } 3690 3691 /* guarantee to start from no stale private field */ 3692 set_page_private(newpage, 0); 3693 if (PagePrivate(page)) { 3694 set_page_private(newpage, page_private(page)); 3695 SetPagePrivate(newpage); 3696 get_page(newpage); 3697 3698 set_page_private(page, 0); 3699 ClearPagePrivate(page); 3700 put_page(page); 3701 } 3702 3703 if (mode != MIGRATE_SYNC_NO_COPY) 3704 migrate_page_copy(newpage, page); 3705 else 3706 migrate_page_states(newpage, page); 3707 3708 return MIGRATEPAGE_SUCCESS; 3709 } 3710 #endif 3711 3712 #ifdef CONFIG_SWAP 3713 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk, 3714 unsigned int blkcnt) 3715 { 3716 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3717 unsigned int blkofs; 3718 unsigned int blk_per_sec = BLKS_PER_SEC(sbi); 3719 unsigned int secidx = start_blk / blk_per_sec; 3720 unsigned int end_sec = secidx + blkcnt / blk_per_sec; 3721 int ret = 0; 3722 3723 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3724 filemap_invalidate_lock(inode->i_mapping); 3725 3726 set_inode_flag(inode, FI_ALIGNED_WRITE); 3727 3728 for (; secidx < end_sec; secidx++) { 3729 down_write(&sbi->pin_sem); 3730 3731 f2fs_lock_op(sbi); 3732 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false); 3733 f2fs_unlock_op(sbi); 3734 3735 set_inode_flag(inode, FI_DO_DEFRAG); 3736 3737 for (blkofs = 0; blkofs < blk_per_sec; blkofs++) { 3738 struct page *page; 3739 unsigned int blkidx = secidx * blk_per_sec + blkofs; 3740 3741 page = f2fs_get_lock_data_page(inode, blkidx, true); 3742 if (IS_ERR(page)) { 3743 up_write(&sbi->pin_sem); 3744 ret = PTR_ERR(page); 3745 goto done; 3746 } 3747 3748 set_page_dirty(page); 3749 f2fs_put_page(page, 1); 3750 } 3751 3752 clear_inode_flag(inode, FI_DO_DEFRAG); 3753 3754 ret = filemap_fdatawrite(inode->i_mapping); 3755 3756 up_write(&sbi->pin_sem); 3757 3758 if (ret) 3759 break; 3760 } 3761 3762 done: 3763 clear_inode_flag(inode, FI_DO_DEFRAG); 3764 clear_inode_flag(inode, FI_ALIGNED_WRITE); 3765 3766 filemap_invalidate_unlock(inode->i_mapping); 3767 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3768 3769 return ret; 3770 } 3771 3772 static int check_swap_activate(struct swap_info_struct *sis, 3773 struct file *swap_file, sector_t *span) 3774 { 3775 struct address_space *mapping = swap_file->f_mapping; 3776 struct inode *inode = mapping->host; 3777 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3778 sector_t cur_lblock; 3779 sector_t last_lblock; 3780 sector_t pblock; 3781 sector_t lowest_pblock = -1; 3782 sector_t highest_pblock = 0; 3783 int nr_extents = 0; 3784 unsigned long nr_pblocks; 3785 unsigned int blks_per_sec = BLKS_PER_SEC(sbi); 3786 unsigned int sec_blks_mask = BLKS_PER_SEC(sbi) - 1; 3787 unsigned int not_aligned = 0; 3788 int ret = 0; 3789 3790 /* 3791 * Map all the blocks into the extent list. This code doesn't try 3792 * to be very smart. 3793 */ 3794 cur_lblock = 0; 3795 last_lblock = bytes_to_blks(inode, i_size_read(inode)); 3796 3797 while (cur_lblock < last_lblock && cur_lblock < sis->max) { 3798 struct f2fs_map_blocks map; 3799 retry: 3800 cond_resched(); 3801 3802 memset(&map, 0, sizeof(map)); 3803 map.m_lblk = cur_lblock; 3804 map.m_len = last_lblock - cur_lblock; 3805 map.m_next_pgofs = NULL; 3806 map.m_next_extent = NULL; 3807 map.m_seg_type = NO_CHECK_TYPE; 3808 map.m_may_create = false; 3809 3810 ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP); 3811 if (ret) 3812 goto out; 3813 3814 /* hole */ 3815 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 3816 f2fs_err(sbi, "Swapfile has holes"); 3817 ret = -EINVAL; 3818 goto out; 3819 } 3820 3821 pblock = map.m_pblk; 3822 nr_pblocks = map.m_len; 3823 3824 if ((pblock - SM_I(sbi)->main_blkaddr) & sec_blks_mask || 3825 nr_pblocks & sec_blks_mask) { 3826 not_aligned++; 3827 3828 nr_pblocks = roundup(nr_pblocks, blks_per_sec); 3829 if (cur_lblock + nr_pblocks > sis->max) 3830 nr_pblocks -= blks_per_sec; 3831 3832 if (!nr_pblocks) { 3833 /* this extent is last one */ 3834 nr_pblocks = map.m_len; 3835 f2fs_warn(sbi, "Swapfile: last extent is not aligned to section"); 3836 goto next; 3837 } 3838 3839 ret = f2fs_migrate_blocks(inode, cur_lblock, 3840 nr_pblocks); 3841 if (ret) 3842 goto out; 3843 goto retry; 3844 } 3845 next: 3846 if (cur_lblock + nr_pblocks >= sis->max) 3847 nr_pblocks = sis->max - cur_lblock; 3848 3849 if (cur_lblock) { /* exclude the header page */ 3850 if (pblock < lowest_pblock) 3851 lowest_pblock = pblock; 3852 if (pblock + nr_pblocks - 1 > highest_pblock) 3853 highest_pblock = pblock + nr_pblocks - 1; 3854 } 3855 3856 /* 3857 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks 3858 */ 3859 ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock); 3860 if (ret < 0) 3861 goto out; 3862 nr_extents += ret; 3863 cur_lblock += nr_pblocks; 3864 } 3865 ret = nr_extents; 3866 *span = 1 + highest_pblock - lowest_pblock; 3867 if (cur_lblock == 0) 3868 cur_lblock = 1; /* force Empty message */ 3869 sis->max = cur_lblock; 3870 sis->pages = cur_lblock - 1; 3871 sis->highest_bit = cur_lblock - 1; 3872 out: 3873 if (not_aligned) 3874 f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%u * N)", 3875 not_aligned, blks_per_sec * F2FS_BLKSIZE); 3876 return ret; 3877 } 3878 3879 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, 3880 sector_t *span) 3881 { 3882 struct inode *inode = file_inode(file); 3883 int ret; 3884 3885 if (!S_ISREG(inode->i_mode)) 3886 return -EINVAL; 3887 3888 if (f2fs_readonly(F2FS_I_SB(inode)->sb)) 3889 return -EROFS; 3890 3891 if (f2fs_lfs_mode(F2FS_I_SB(inode))) { 3892 f2fs_err(F2FS_I_SB(inode), 3893 "Swapfile not supported in LFS mode"); 3894 return -EINVAL; 3895 } 3896 3897 ret = f2fs_convert_inline_inode(inode); 3898 if (ret) 3899 return ret; 3900 3901 if (!f2fs_disable_compressed_file(inode)) 3902 return -EINVAL; 3903 3904 f2fs_precache_extents(inode); 3905 3906 ret = check_swap_activate(sis, file, span); 3907 if (ret < 0) 3908 return ret; 3909 3910 set_inode_flag(inode, FI_PIN_FILE); 3911 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3912 return ret; 3913 } 3914 3915 static void f2fs_swap_deactivate(struct file *file) 3916 { 3917 struct inode *inode = file_inode(file); 3918 3919 clear_inode_flag(inode, FI_PIN_FILE); 3920 } 3921 #else 3922 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, 3923 sector_t *span) 3924 { 3925 return -EOPNOTSUPP; 3926 } 3927 3928 static void f2fs_swap_deactivate(struct file *file) 3929 { 3930 } 3931 #endif 3932 3933 const struct address_space_operations f2fs_dblock_aops = { 3934 .readpage = f2fs_read_data_page, 3935 .readahead = f2fs_readahead, 3936 .writepage = f2fs_write_data_page, 3937 .writepages = f2fs_write_data_pages, 3938 .write_begin = f2fs_write_begin, 3939 .write_end = f2fs_write_end, 3940 .set_page_dirty = f2fs_set_data_page_dirty, 3941 .invalidatepage = f2fs_invalidate_page, 3942 .releasepage = f2fs_release_page, 3943 .direct_IO = noop_direct_IO, 3944 .bmap = f2fs_bmap, 3945 .swap_activate = f2fs_swap_activate, 3946 .swap_deactivate = f2fs_swap_deactivate, 3947 #ifdef CONFIG_MIGRATION 3948 .migratepage = f2fs_migrate_page, 3949 #endif 3950 }; 3951 3952 void f2fs_clear_page_cache_dirty_tag(struct page *page) 3953 { 3954 struct address_space *mapping = page_mapping(page); 3955 unsigned long flags; 3956 3957 xa_lock_irqsave(&mapping->i_pages, flags); 3958 __xa_clear_mark(&mapping->i_pages, page_index(page), 3959 PAGECACHE_TAG_DIRTY); 3960 xa_unlock_irqrestore(&mapping->i_pages, flags); 3961 } 3962 3963 int __init f2fs_init_post_read_processing(void) 3964 { 3965 bio_post_read_ctx_cache = 3966 kmem_cache_create("f2fs_bio_post_read_ctx", 3967 sizeof(struct bio_post_read_ctx), 0, 0, NULL); 3968 if (!bio_post_read_ctx_cache) 3969 goto fail; 3970 bio_post_read_ctx_pool = 3971 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS, 3972 bio_post_read_ctx_cache); 3973 if (!bio_post_read_ctx_pool) 3974 goto fail_free_cache; 3975 return 0; 3976 3977 fail_free_cache: 3978 kmem_cache_destroy(bio_post_read_ctx_cache); 3979 fail: 3980 return -ENOMEM; 3981 } 3982 3983 void f2fs_destroy_post_read_processing(void) 3984 { 3985 mempool_destroy(bio_post_read_ctx_pool); 3986 kmem_cache_destroy(bio_post_read_ctx_cache); 3987 } 3988 3989 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi) 3990 { 3991 if (!f2fs_sb_has_encrypt(sbi) && 3992 !f2fs_sb_has_verity(sbi) && 3993 !f2fs_sb_has_compression(sbi)) 3994 return 0; 3995 3996 sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq", 3997 WQ_UNBOUND | WQ_HIGHPRI, 3998 num_online_cpus()); 3999 if (!sbi->post_read_wq) 4000 return -ENOMEM; 4001 return 0; 4002 } 4003 4004 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi) 4005 { 4006 if (sbi->post_read_wq) 4007 destroy_workqueue(sbi->post_read_wq); 4008 } 4009 4010 int __init f2fs_init_bio_entry_cache(void) 4011 { 4012 bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab", 4013 sizeof(struct bio_entry)); 4014 if (!bio_entry_slab) 4015 return -ENOMEM; 4016 return 0; 4017 } 4018 4019 void f2fs_destroy_bio_entry_cache(void) 4020 { 4021 kmem_cache_destroy(bio_entry_slab); 4022 } 4023 4024 static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 4025 unsigned int flags, struct iomap *iomap, 4026 struct iomap *srcmap) 4027 { 4028 struct f2fs_map_blocks map = {}; 4029 pgoff_t next_pgofs = 0; 4030 int err; 4031 4032 map.m_lblk = bytes_to_blks(inode, offset); 4033 map.m_len = bytes_to_blks(inode, offset + length - 1) - map.m_lblk + 1; 4034 map.m_next_pgofs = &next_pgofs; 4035 map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint); 4036 if (flags & IOMAP_WRITE) 4037 map.m_may_create = true; 4038 4039 err = f2fs_map_blocks(inode, &map, flags & IOMAP_WRITE, 4040 F2FS_GET_BLOCK_DIO); 4041 if (err) 4042 return err; 4043 4044 iomap->offset = blks_to_bytes(inode, map.m_lblk); 4045 4046 if (map.m_flags & (F2FS_MAP_MAPPED | F2FS_MAP_UNWRITTEN)) { 4047 iomap->length = blks_to_bytes(inode, map.m_len); 4048 if (map.m_flags & F2FS_MAP_MAPPED) { 4049 iomap->type = IOMAP_MAPPED; 4050 iomap->flags |= IOMAP_F_MERGED; 4051 } else { 4052 iomap->type = IOMAP_UNWRITTEN; 4053 } 4054 if (WARN_ON_ONCE(!__is_valid_data_blkaddr(map.m_pblk))) 4055 return -EINVAL; 4056 4057 iomap->bdev = map.m_bdev; 4058 iomap->addr = blks_to_bytes(inode, map.m_pblk); 4059 } else { 4060 iomap->length = blks_to_bytes(inode, next_pgofs) - 4061 iomap->offset; 4062 iomap->type = IOMAP_HOLE; 4063 iomap->addr = IOMAP_NULL_ADDR; 4064 } 4065 4066 if (map.m_flags & F2FS_MAP_NEW) 4067 iomap->flags |= IOMAP_F_NEW; 4068 if ((inode->i_state & I_DIRTY_DATASYNC) || 4069 offset + length > i_size_read(inode)) 4070 iomap->flags |= IOMAP_F_DIRTY; 4071 4072 return 0; 4073 } 4074 4075 const struct iomap_ops f2fs_iomap_ops = { 4076 .iomap_begin = f2fs_iomap_begin, 4077 }; 4078