xref: /linux/fs/f2fs/data.c (revision 572af9f284669d31d9175122bbef9bc62cea8ded)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/data.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/sched/mm.h>
11 #include <linux/mpage.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/blkdev.h>
15 #include <linux/bio.h>
16 #include <linux/blk-crypto.h>
17 #include <linux/swap.h>
18 #include <linux/prefetch.h>
19 #include <linux/uio.h>
20 #include <linux/sched/signal.h>
21 #include <linux/fiemap.h>
22 #include <linux/iomap.h>
23 
24 #include "f2fs.h"
25 #include "node.h"
26 #include "segment.h"
27 #include "iostat.h"
28 #include <trace/events/f2fs.h>
29 
30 #define NUM_PREALLOC_POST_READ_CTXS	128
31 
32 static struct kmem_cache *bio_post_read_ctx_cache;
33 static struct kmem_cache *bio_entry_slab;
34 static mempool_t *bio_post_read_ctx_pool;
35 static struct bio_set f2fs_bioset;
36 
37 #define	F2FS_BIO_POOL_SIZE	NR_CURSEG_TYPE
38 
39 int __init f2fs_init_bioset(void)
40 {
41 	return bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
42 					0, BIOSET_NEED_BVECS);
43 }
44 
45 void f2fs_destroy_bioset(void)
46 {
47 	bioset_exit(&f2fs_bioset);
48 }
49 
50 bool f2fs_is_cp_guaranteed(struct page *page)
51 {
52 	struct address_space *mapping = page->mapping;
53 	struct inode *inode;
54 	struct f2fs_sb_info *sbi;
55 
56 	if (!mapping)
57 		return false;
58 
59 	inode = mapping->host;
60 	sbi = F2FS_I_SB(inode);
61 
62 	if (inode->i_ino == F2FS_META_INO(sbi) ||
63 			inode->i_ino == F2FS_NODE_INO(sbi) ||
64 			S_ISDIR(inode->i_mode))
65 		return true;
66 
67 	if ((S_ISREG(inode->i_mode) && IS_NOQUOTA(inode)) ||
68 			page_private_gcing(page))
69 		return true;
70 	return false;
71 }
72 
73 static enum count_type __read_io_type(struct page *page)
74 {
75 	struct address_space *mapping = page_file_mapping(page);
76 
77 	if (mapping) {
78 		struct inode *inode = mapping->host;
79 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
80 
81 		if (inode->i_ino == F2FS_META_INO(sbi))
82 			return F2FS_RD_META;
83 
84 		if (inode->i_ino == F2FS_NODE_INO(sbi))
85 			return F2FS_RD_NODE;
86 	}
87 	return F2FS_RD_DATA;
88 }
89 
90 /* postprocessing steps for read bios */
91 enum bio_post_read_step {
92 #ifdef CONFIG_FS_ENCRYPTION
93 	STEP_DECRYPT	= BIT(0),
94 #else
95 	STEP_DECRYPT	= 0,	/* compile out the decryption-related code */
96 #endif
97 #ifdef CONFIG_F2FS_FS_COMPRESSION
98 	STEP_DECOMPRESS	= BIT(1),
99 #else
100 	STEP_DECOMPRESS	= 0,	/* compile out the decompression-related code */
101 #endif
102 #ifdef CONFIG_FS_VERITY
103 	STEP_VERITY	= BIT(2),
104 #else
105 	STEP_VERITY	= 0,	/* compile out the verity-related code */
106 #endif
107 };
108 
109 struct bio_post_read_ctx {
110 	struct bio *bio;
111 	struct f2fs_sb_info *sbi;
112 	struct work_struct work;
113 	unsigned int enabled_steps;
114 	/*
115 	 * decompression_attempted keeps track of whether
116 	 * f2fs_end_read_compressed_page() has been called on the pages in the
117 	 * bio that belong to a compressed cluster yet.
118 	 */
119 	bool decompression_attempted;
120 	block_t fs_blkaddr;
121 };
122 
123 /*
124  * Update and unlock a bio's pages, and free the bio.
125  *
126  * This marks pages up-to-date only if there was no error in the bio (I/O error,
127  * decryption error, or verity error), as indicated by bio->bi_status.
128  *
129  * "Compressed pages" (pagecache pages backed by a compressed cluster on-disk)
130  * aren't marked up-to-date here, as decompression is done on a per-compression-
131  * cluster basis rather than a per-bio basis.  Instead, we only must do two
132  * things for each compressed page here: call f2fs_end_read_compressed_page()
133  * with failed=true if an error occurred before it would have normally gotten
134  * called (i.e., I/O error or decryption error, but *not* verity error), and
135  * release the bio's reference to the decompress_io_ctx of the page's cluster.
136  */
137 static void f2fs_finish_read_bio(struct bio *bio, bool in_task)
138 {
139 	struct bio_vec *bv;
140 	struct bvec_iter_all iter_all;
141 	struct bio_post_read_ctx *ctx = bio->bi_private;
142 
143 	bio_for_each_segment_all(bv, bio, iter_all) {
144 		struct page *page = bv->bv_page;
145 
146 		if (f2fs_is_compressed_page(page)) {
147 			if (ctx && !ctx->decompression_attempted)
148 				f2fs_end_read_compressed_page(page, true, 0,
149 							in_task);
150 			f2fs_put_page_dic(page, in_task);
151 			continue;
152 		}
153 
154 		if (bio->bi_status)
155 			ClearPageUptodate(page);
156 		else
157 			SetPageUptodate(page);
158 		dec_page_count(F2FS_P_SB(page), __read_io_type(page));
159 		unlock_page(page);
160 	}
161 
162 	if (ctx)
163 		mempool_free(ctx, bio_post_read_ctx_pool);
164 	bio_put(bio);
165 }
166 
167 static void f2fs_verify_bio(struct work_struct *work)
168 {
169 	struct bio_post_read_ctx *ctx =
170 		container_of(work, struct bio_post_read_ctx, work);
171 	struct bio *bio = ctx->bio;
172 	bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
173 
174 	/*
175 	 * fsverity_verify_bio() may call readahead() again, and while verity
176 	 * will be disabled for this, decryption and/or decompression may still
177 	 * be needed, resulting in another bio_post_read_ctx being allocated.
178 	 * So to prevent deadlocks we need to release the current ctx to the
179 	 * mempool first.  This assumes that verity is the last post-read step.
180 	 */
181 	mempool_free(ctx, bio_post_read_ctx_pool);
182 	bio->bi_private = NULL;
183 
184 	/*
185 	 * Verify the bio's pages with fs-verity.  Exclude compressed pages,
186 	 * as those were handled separately by f2fs_end_read_compressed_page().
187 	 */
188 	if (may_have_compressed_pages) {
189 		struct bio_vec *bv;
190 		struct bvec_iter_all iter_all;
191 
192 		bio_for_each_segment_all(bv, bio, iter_all) {
193 			struct page *page = bv->bv_page;
194 
195 			if (!f2fs_is_compressed_page(page) &&
196 			    !fsverity_verify_page(page)) {
197 				bio->bi_status = BLK_STS_IOERR;
198 				break;
199 			}
200 		}
201 	} else {
202 		fsverity_verify_bio(bio);
203 	}
204 
205 	f2fs_finish_read_bio(bio, true);
206 }
207 
208 /*
209  * If the bio's data needs to be verified with fs-verity, then enqueue the
210  * verity work for the bio.  Otherwise finish the bio now.
211  *
212  * Note that to avoid deadlocks, the verity work can't be done on the
213  * decryption/decompression workqueue.  This is because verifying the data pages
214  * can involve reading verity metadata pages from the file, and these verity
215  * metadata pages may be encrypted and/or compressed.
216  */
217 static void f2fs_verify_and_finish_bio(struct bio *bio, bool in_task)
218 {
219 	struct bio_post_read_ctx *ctx = bio->bi_private;
220 
221 	if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
222 		INIT_WORK(&ctx->work, f2fs_verify_bio);
223 		fsverity_enqueue_verify_work(&ctx->work);
224 	} else {
225 		f2fs_finish_read_bio(bio, in_task);
226 	}
227 }
228 
229 /*
230  * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
231  * remaining page was read by @ctx->bio.
232  *
233  * Note that a bio may span clusters (even a mix of compressed and uncompressed
234  * clusters) or be for just part of a cluster.  STEP_DECOMPRESS just indicates
235  * that the bio includes at least one compressed page.  The actual decompression
236  * is done on a per-cluster basis, not a per-bio basis.
237  */
238 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx,
239 		bool in_task)
240 {
241 	struct bio_vec *bv;
242 	struct bvec_iter_all iter_all;
243 	bool all_compressed = true;
244 	block_t blkaddr = ctx->fs_blkaddr;
245 
246 	bio_for_each_segment_all(bv, ctx->bio, iter_all) {
247 		struct page *page = bv->bv_page;
248 
249 		if (f2fs_is_compressed_page(page))
250 			f2fs_end_read_compressed_page(page, false, blkaddr,
251 						      in_task);
252 		else
253 			all_compressed = false;
254 
255 		blkaddr++;
256 	}
257 
258 	ctx->decompression_attempted = true;
259 
260 	/*
261 	 * Optimization: if all the bio's pages are compressed, then scheduling
262 	 * the per-bio verity work is unnecessary, as verity will be fully
263 	 * handled at the compression cluster level.
264 	 */
265 	if (all_compressed)
266 		ctx->enabled_steps &= ~STEP_VERITY;
267 }
268 
269 static void f2fs_post_read_work(struct work_struct *work)
270 {
271 	struct bio_post_read_ctx *ctx =
272 		container_of(work, struct bio_post_read_ctx, work);
273 	struct bio *bio = ctx->bio;
274 
275 	if ((ctx->enabled_steps & STEP_DECRYPT) && !fscrypt_decrypt_bio(bio)) {
276 		f2fs_finish_read_bio(bio, true);
277 		return;
278 	}
279 
280 	if (ctx->enabled_steps & STEP_DECOMPRESS)
281 		f2fs_handle_step_decompress(ctx, true);
282 
283 	f2fs_verify_and_finish_bio(bio, true);
284 }
285 
286 static void f2fs_read_end_io(struct bio *bio)
287 {
288 	struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
289 	struct bio_post_read_ctx *ctx;
290 	bool intask = in_task();
291 
292 	iostat_update_and_unbind_ctx(bio);
293 	ctx = bio->bi_private;
294 
295 	if (time_to_inject(sbi, FAULT_READ_IO))
296 		bio->bi_status = BLK_STS_IOERR;
297 
298 	if (bio->bi_status) {
299 		f2fs_finish_read_bio(bio, intask);
300 		return;
301 	}
302 
303 	if (ctx) {
304 		unsigned int enabled_steps = ctx->enabled_steps &
305 					(STEP_DECRYPT | STEP_DECOMPRESS);
306 
307 		/*
308 		 * If we have only decompression step between decompression and
309 		 * decrypt, we don't need post processing for this.
310 		 */
311 		if (enabled_steps == STEP_DECOMPRESS &&
312 				!f2fs_low_mem_mode(sbi)) {
313 			f2fs_handle_step_decompress(ctx, intask);
314 		} else if (enabled_steps) {
315 			INIT_WORK(&ctx->work, f2fs_post_read_work);
316 			queue_work(ctx->sbi->post_read_wq, &ctx->work);
317 			return;
318 		}
319 	}
320 
321 	f2fs_verify_and_finish_bio(bio, intask);
322 }
323 
324 static void f2fs_write_end_io(struct bio *bio)
325 {
326 	struct f2fs_sb_info *sbi;
327 	struct bio_vec *bvec;
328 	struct bvec_iter_all iter_all;
329 
330 	iostat_update_and_unbind_ctx(bio);
331 	sbi = bio->bi_private;
332 
333 	if (time_to_inject(sbi, FAULT_WRITE_IO))
334 		bio->bi_status = BLK_STS_IOERR;
335 
336 	bio_for_each_segment_all(bvec, bio, iter_all) {
337 		struct page *page = bvec->bv_page;
338 		enum count_type type = WB_DATA_TYPE(page, false);
339 
340 		fscrypt_finalize_bounce_page(&page);
341 
342 #ifdef CONFIG_F2FS_FS_COMPRESSION
343 		if (f2fs_is_compressed_page(page)) {
344 			f2fs_compress_write_end_io(bio, page);
345 			continue;
346 		}
347 #endif
348 
349 		if (unlikely(bio->bi_status)) {
350 			mapping_set_error(page->mapping, -EIO);
351 			if (type == F2FS_WB_CP_DATA)
352 				f2fs_stop_checkpoint(sbi, true,
353 						STOP_CP_REASON_WRITE_FAIL);
354 		}
355 
356 		f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
357 				page_folio(page)->index != nid_of_node(page));
358 
359 		dec_page_count(sbi, type);
360 		if (f2fs_in_warm_node_list(sbi, page))
361 			f2fs_del_fsync_node_entry(sbi, page);
362 		clear_page_private_gcing(page);
363 		end_page_writeback(page);
364 	}
365 	if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
366 				wq_has_sleeper(&sbi->cp_wait))
367 		wake_up(&sbi->cp_wait);
368 
369 	bio_put(bio);
370 }
371 
372 #ifdef CONFIG_BLK_DEV_ZONED
373 static void f2fs_zone_write_end_io(struct bio *bio)
374 {
375 	struct f2fs_bio_info *io = (struct f2fs_bio_info *)bio->bi_private;
376 
377 	bio->bi_private = io->bi_private;
378 	complete(&io->zone_wait);
379 	f2fs_write_end_io(bio);
380 }
381 #endif
382 
383 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
384 		block_t blk_addr, sector_t *sector)
385 {
386 	struct block_device *bdev = sbi->sb->s_bdev;
387 	int i;
388 
389 	if (f2fs_is_multi_device(sbi)) {
390 		for (i = 0; i < sbi->s_ndevs; i++) {
391 			if (FDEV(i).start_blk <= blk_addr &&
392 			    FDEV(i).end_blk >= blk_addr) {
393 				blk_addr -= FDEV(i).start_blk;
394 				bdev = FDEV(i).bdev;
395 				break;
396 			}
397 		}
398 	}
399 
400 	if (sector)
401 		*sector = SECTOR_FROM_BLOCK(blk_addr);
402 	return bdev;
403 }
404 
405 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
406 {
407 	int i;
408 
409 	if (!f2fs_is_multi_device(sbi))
410 		return 0;
411 
412 	for (i = 0; i < sbi->s_ndevs; i++)
413 		if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
414 			return i;
415 	return 0;
416 }
417 
418 static blk_opf_t f2fs_io_flags(struct f2fs_io_info *fio)
419 {
420 	unsigned int temp_mask = GENMASK(NR_TEMP_TYPE - 1, 0);
421 	unsigned int fua_flag, meta_flag, io_flag;
422 	blk_opf_t op_flags = 0;
423 
424 	if (fio->op != REQ_OP_WRITE)
425 		return 0;
426 	if (fio->type == DATA)
427 		io_flag = fio->sbi->data_io_flag;
428 	else if (fio->type == NODE)
429 		io_flag = fio->sbi->node_io_flag;
430 	else
431 		return 0;
432 
433 	fua_flag = io_flag & temp_mask;
434 	meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
435 
436 	/*
437 	 * data/node io flag bits per temp:
438 	 *      REQ_META     |      REQ_FUA      |
439 	 *    5 |    4 |   3 |    2 |    1 |   0 |
440 	 * Cold | Warm | Hot | Cold | Warm | Hot |
441 	 */
442 	if (BIT(fio->temp) & meta_flag)
443 		op_flags |= REQ_META;
444 	if (BIT(fio->temp) & fua_flag)
445 		op_flags |= REQ_FUA;
446 	return op_flags;
447 }
448 
449 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
450 {
451 	struct f2fs_sb_info *sbi = fio->sbi;
452 	struct block_device *bdev;
453 	sector_t sector;
454 	struct bio *bio;
455 
456 	bdev = f2fs_target_device(sbi, fio->new_blkaddr, &sector);
457 	bio = bio_alloc_bioset(bdev, npages,
458 				fio->op | fio->op_flags | f2fs_io_flags(fio),
459 				GFP_NOIO, &f2fs_bioset);
460 	bio->bi_iter.bi_sector = sector;
461 	if (is_read_io(fio->op)) {
462 		bio->bi_end_io = f2fs_read_end_io;
463 		bio->bi_private = NULL;
464 	} else {
465 		bio->bi_end_io = f2fs_write_end_io;
466 		bio->bi_private = sbi;
467 		bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi,
468 						fio->type, fio->temp);
469 	}
470 	iostat_alloc_and_bind_ctx(sbi, bio, NULL);
471 
472 	if (fio->io_wbc)
473 		wbc_init_bio(fio->io_wbc, bio);
474 
475 	return bio;
476 }
477 
478 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
479 				  pgoff_t first_idx,
480 				  const struct f2fs_io_info *fio,
481 				  gfp_t gfp_mask)
482 {
483 	/*
484 	 * The f2fs garbage collector sets ->encrypted_page when it wants to
485 	 * read/write raw data without encryption.
486 	 */
487 	if (!fio || !fio->encrypted_page)
488 		fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
489 }
490 
491 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
492 				     pgoff_t next_idx,
493 				     const struct f2fs_io_info *fio)
494 {
495 	/*
496 	 * The f2fs garbage collector sets ->encrypted_page when it wants to
497 	 * read/write raw data without encryption.
498 	 */
499 	if (fio && fio->encrypted_page)
500 		return !bio_has_crypt_ctx(bio);
501 
502 	return fscrypt_mergeable_bio(bio, inode, next_idx);
503 }
504 
505 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
506 				 enum page_type type)
507 {
508 	WARN_ON_ONCE(!is_read_io(bio_op(bio)));
509 	trace_f2fs_submit_read_bio(sbi->sb, type, bio);
510 
511 	iostat_update_submit_ctx(bio, type);
512 	submit_bio(bio);
513 }
514 
515 static void f2fs_submit_write_bio(struct f2fs_sb_info *sbi, struct bio *bio,
516 				  enum page_type type)
517 {
518 	WARN_ON_ONCE(is_read_io(bio_op(bio)));
519 
520 	if (f2fs_lfs_mode(sbi) && current->plug && PAGE_TYPE_ON_MAIN(type))
521 		blk_finish_plug(current->plug);
522 
523 	trace_f2fs_submit_write_bio(sbi->sb, type, bio);
524 	iostat_update_submit_ctx(bio, type);
525 	submit_bio(bio);
526 }
527 
528 static void __submit_merged_bio(struct f2fs_bio_info *io)
529 {
530 	struct f2fs_io_info *fio = &io->fio;
531 
532 	if (!io->bio)
533 		return;
534 
535 	if (is_read_io(fio->op)) {
536 		trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
537 		f2fs_submit_read_bio(io->sbi, io->bio, fio->type);
538 	} else {
539 		trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
540 		f2fs_submit_write_bio(io->sbi, io->bio, fio->type);
541 	}
542 	io->bio = NULL;
543 }
544 
545 static bool __has_merged_page(struct bio *bio, struct inode *inode,
546 						struct page *page, nid_t ino)
547 {
548 	struct bio_vec *bvec;
549 	struct bvec_iter_all iter_all;
550 
551 	if (!bio)
552 		return false;
553 
554 	if (!inode && !page && !ino)
555 		return true;
556 
557 	bio_for_each_segment_all(bvec, bio, iter_all) {
558 		struct page *target = bvec->bv_page;
559 
560 		if (fscrypt_is_bounce_page(target)) {
561 			target = fscrypt_pagecache_page(target);
562 			if (IS_ERR(target))
563 				continue;
564 		}
565 		if (f2fs_is_compressed_page(target)) {
566 			target = f2fs_compress_control_page(target);
567 			if (IS_ERR(target))
568 				continue;
569 		}
570 
571 		if (inode && inode == target->mapping->host)
572 			return true;
573 		if (page && page == target)
574 			return true;
575 		if (ino && ino == ino_of_node(target))
576 			return true;
577 	}
578 
579 	return false;
580 }
581 
582 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi)
583 {
584 	int i;
585 
586 	for (i = 0; i < NR_PAGE_TYPE; i++) {
587 		int n = (i == META) ? 1 : NR_TEMP_TYPE;
588 		int j;
589 
590 		sbi->write_io[i] = f2fs_kmalloc(sbi,
591 				array_size(n, sizeof(struct f2fs_bio_info)),
592 				GFP_KERNEL);
593 		if (!sbi->write_io[i])
594 			return -ENOMEM;
595 
596 		for (j = HOT; j < n; j++) {
597 			struct f2fs_bio_info *io = &sbi->write_io[i][j];
598 
599 			init_f2fs_rwsem(&io->io_rwsem);
600 			io->sbi = sbi;
601 			io->bio = NULL;
602 			io->last_block_in_bio = 0;
603 			spin_lock_init(&io->io_lock);
604 			INIT_LIST_HEAD(&io->io_list);
605 			INIT_LIST_HEAD(&io->bio_list);
606 			init_f2fs_rwsem(&io->bio_list_lock);
607 #ifdef CONFIG_BLK_DEV_ZONED
608 			init_completion(&io->zone_wait);
609 			io->zone_pending_bio = NULL;
610 			io->bi_private = NULL;
611 #endif
612 		}
613 	}
614 
615 	return 0;
616 }
617 
618 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
619 				enum page_type type, enum temp_type temp)
620 {
621 	enum page_type btype = PAGE_TYPE_OF_BIO(type);
622 	struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
623 
624 	f2fs_down_write(&io->io_rwsem);
625 
626 	if (!io->bio)
627 		goto unlock_out;
628 
629 	/* change META to META_FLUSH in the checkpoint procedure */
630 	if (type >= META_FLUSH) {
631 		io->fio.type = META_FLUSH;
632 		io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC;
633 		if (!test_opt(sbi, NOBARRIER))
634 			io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA;
635 	}
636 	__submit_merged_bio(io);
637 unlock_out:
638 	f2fs_up_write(&io->io_rwsem);
639 }
640 
641 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
642 				struct inode *inode, struct page *page,
643 				nid_t ino, enum page_type type, bool force)
644 {
645 	enum temp_type temp;
646 	bool ret = true;
647 
648 	for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
649 		if (!force)	{
650 			enum page_type btype = PAGE_TYPE_OF_BIO(type);
651 			struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
652 
653 			f2fs_down_read(&io->io_rwsem);
654 			ret = __has_merged_page(io->bio, inode, page, ino);
655 			f2fs_up_read(&io->io_rwsem);
656 		}
657 		if (ret)
658 			__f2fs_submit_merged_write(sbi, type, temp);
659 
660 		/* TODO: use HOT temp only for meta pages now. */
661 		if (type >= META)
662 			break;
663 	}
664 }
665 
666 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
667 {
668 	__submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
669 }
670 
671 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
672 				struct inode *inode, struct page *page,
673 				nid_t ino, enum page_type type)
674 {
675 	__submit_merged_write_cond(sbi, inode, page, ino, type, false);
676 }
677 
678 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
679 {
680 	f2fs_submit_merged_write(sbi, DATA);
681 	f2fs_submit_merged_write(sbi, NODE);
682 	f2fs_submit_merged_write(sbi, META);
683 }
684 
685 /*
686  * Fill the locked page with data located in the block address.
687  * A caller needs to unlock the page on failure.
688  */
689 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
690 {
691 	struct bio *bio;
692 	struct page *page = fio->encrypted_page ?
693 			fio->encrypted_page : fio->page;
694 
695 	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
696 			fio->is_por ? META_POR : (__is_meta_io(fio) ?
697 			META_GENERIC : DATA_GENERIC_ENHANCE)))
698 		return -EFSCORRUPTED;
699 
700 	trace_f2fs_submit_page_bio(page, fio);
701 
702 	/* Allocate a new bio */
703 	bio = __bio_alloc(fio, 1);
704 
705 	f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
706 			page_folio(fio->page)->index, fio, GFP_NOIO);
707 
708 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
709 		bio_put(bio);
710 		return -EFAULT;
711 	}
712 
713 	if (fio->io_wbc && !is_read_io(fio->op))
714 		wbc_account_cgroup_owner(fio->io_wbc, page_folio(fio->page),
715 					 PAGE_SIZE);
716 
717 	inc_page_count(fio->sbi, is_read_io(fio->op) ?
718 			__read_io_type(page) : WB_DATA_TYPE(fio->page, false));
719 
720 	if (is_read_io(bio_op(bio)))
721 		f2fs_submit_read_bio(fio->sbi, bio, fio->type);
722 	else
723 		f2fs_submit_write_bio(fio->sbi, bio, fio->type);
724 	return 0;
725 }
726 
727 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
728 				block_t last_blkaddr, block_t cur_blkaddr)
729 {
730 	if (unlikely(sbi->max_io_bytes &&
731 			bio->bi_iter.bi_size >= sbi->max_io_bytes))
732 		return false;
733 	if (last_blkaddr + 1 != cur_blkaddr)
734 		return false;
735 	return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL);
736 }
737 
738 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
739 						struct f2fs_io_info *fio)
740 {
741 	if (io->fio.op != fio->op)
742 		return false;
743 	return io->fio.op_flags == fio->op_flags;
744 }
745 
746 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
747 					struct f2fs_bio_info *io,
748 					struct f2fs_io_info *fio,
749 					block_t last_blkaddr,
750 					block_t cur_blkaddr)
751 {
752 	if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
753 		return false;
754 	return io_type_is_mergeable(io, fio);
755 }
756 
757 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
758 				struct page *page, enum temp_type temp)
759 {
760 	struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
761 	struct bio_entry *be;
762 
763 	be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL);
764 	be->bio = bio;
765 	bio_get(bio);
766 
767 	if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
768 		f2fs_bug_on(sbi, 1);
769 
770 	f2fs_down_write(&io->bio_list_lock);
771 	list_add_tail(&be->list, &io->bio_list);
772 	f2fs_up_write(&io->bio_list_lock);
773 }
774 
775 static void del_bio_entry(struct bio_entry *be)
776 {
777 	list_del(&be->list);
778 	kmem_cache_free(bio_entry_slab, be);
779 }
780 
781 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
782 							struct page *page)
783 {
784 	struct f2fs_sb_info *sbi = fio->sbi;
785 	enum temp_type temp;
786 	bool found = false;
787 	int ret = -EAGAIN;
788 
789 	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
790 		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
791 		struct list_head *head = &io->bio_list;
792 		struct bio_entry *be;
793 
794 		f2fs_down_write(&io->bio_list_lock);
795 		list_for_each_entry(be, head, list) {
796 			if (be->bio != *bio)
797 				continue;
798 
799 			found = true;
800 
801 			f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
802 							    *fio->last_block,
803 							    fio->new_blkaddr));
804 			if (f2fs_crypt_mergeable_bio(*bio,
805 					fio->page->mapping->host,
806 					page_folio(fio->page)->index, fio) &&
807 			    bio_add_page(*bio, page, PAGE_SIZE, 0) ==
808 					PAGE_SIZE) {
809 				ret = 0;
810 				break;
811 			}
812 
813 			/* page can't be merged into bio; submit the bio */
814 			del_bio_entry(be);
815 			f2fs_submit_write_bio(sbi, *bio, DATA);
816 			break;
817 		}
818 		f2fs_up_write(&io->bio_list_lock);
819 	}
820 
821 	if (ret) {
822 		bio_put(*bio);
823 		*bio = NULL;
824 	}
825 
826 	return ret;
827 }
828 
829 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
830 					struct bio **bio, struct page *page)
831 {
832 	enum temp_type temp;
833 	bool found = false;
834 	struct bio *target = bio ? *bio : NULL;
835 
836 	f2fs_bug_on(sbi, !target && !page);
837 
838 	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
839 		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
840 		struct list_head *head = &io->bio_list;
841 		struct bio_entry *be;
842 
843 		if (list_empty(head))
844 			continue;
845 
846 		f2fs_down_read(&io->bio_list_lock);
847 		list_for_each_entry(be, head, list) {
848 			if (target)
849 				found = (target == be->bio);
850 			else
851 				found = __has_merged_page(be->bio, NULL,
852 								page, 0);
853 			if (found)
854 				break;
855 		}
856 		f2fs_up_read(&io->bio_list_lock);
857 
858 		if (!found)
859 			continue;
860 
861 		found = false;
862 
863 		f2fs_down_write(&io->bio_list_lock);
864 		list_for_each_entry(be, head, list) {
865 			if (target)
866 				found = (target == be->bio);
867 			else
868 				found = __has_merged_page(be->bio, NULL,
869 								page, 0);
870 			if (found) {
871 				target = be->bio;
872 				del_bio_entry(be);
873 				break;
874 			}
875 		}
876 		f2fs_up_write(&io->bio_list_lock);
877 	}
878 
879 	if (found)
880 		f2fs_submit_write_bio(sbi, target, DATA);
881 	if (bio && *bio) {
882 		bio_put(*bio);
883 		*bio = NULL;
884 	}
885 }
886 
887 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
888 {
889 	struct bio *bio = *fio->bio;
890 	struct page *page = fio->encrypted_page ?
891 			fio->encrypted_page : fio->page;
892 
893 	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
894 			__is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
895 		return -EFSCORRUPTED;
896 
897 	trace_f2fs_submit_page_bio(page, fio);
898 
899 	if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
900 						fio->new_blkaddr))
901 		f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
902 alloc_new:
903 	if (!bio) {
904 		bio = __bio_alloc(fio, BIO_MAX_VECS);
905 		f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
906 				page_folio(fio->page)->index, fio, GFP_NOIO);
907 
908 		add_bio_entry(fio->sbi, bio, page, fio->temp);
909 	} else {
910 		if (add_ipu_page(fio, &bio, page))
911 			goto alloc_new;
912 	}
913 
914 	if (fio->io_wbc)
915 		wbc_account_cgroup_owner(fio->io_wbc, page_folio(fio->page),
916 					 PAGE_SIZE);
917 
918 	inc_page_count(fio->sbi, WB_DATA_TYPE(page, false));
919 
920 	*fio->last_block = fio->new_blkaddr;
921 	*fio->bio = bio;
922 
923 	return 0;
924 }
925 
926 #ifdef CONFIG_BLK_DEV_ZONED
927 static bool is_end_zone_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr)
928 {
929 	struct block_device *bdev = sbi->sb->s_bdev;
930 	int devi = 0;
931 
932 	if (f2fs_is_multi_device(sbi)) {
933 		devi = f2fs_target_device_index(sbi, blkaddr);
934 		if (blkaddr < FDEV(devi).start_blk ||
935 		    blkaddr > FDEV(devi).end_blk) {
936 			f2fs_err(sbi, "Invalid block %x", blkaddr);
937 			return false;
938 		}
939 		blkaddr -= FDEV(devi).start_blk;
940 		bdev = FDEV(devi).bdev;
941 	}
942 	return bdev_is_zoned(bdev) &&
943 		f2fs_blkz_is_seq(sbi, devi, blkaddr) &&
944 		(blkaddr % sbi->blocks_per_blkz == sbi->blocks_per_blkz - 1);
945 }
946 #endif
947 
948 void f2fs_submit_page_write(struct f2fs_io_info *fio)
949 {
950 	struct f2fs_sb_info *sbi = fio->sbi;
951 	enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
952 	struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
953 	struct page *bio_page;
954 	enum count_type type;
955 
956 	f2fs_bug_on(sbi, is_read_io(fio->op));
957 
958 	f2fs_down_write(&io->io_rwsem);
959 next:
960 #ifdef CONFIG_BLK_DEV_ZONED
961 	if (f2fs_sb_has_blkzoned(sbi) && btype < META && io->zone_pending_bio) {
962 		wait_for_completion_io(&io->zone_wait);
963 		bio_put(io->zone_pending_bio);
964 		io->zone_pending_bio = NULL;
965 		io->bi_private = NULL;
966 	}
967 #endif
968 
969 	if (fio->in_list) {
970 		spin_lock(&io->io_lock);
971 		if (list_empty(&io->io_list)) {
972 			spin_unlock(&io->io_lock);
973 			goto out;
974 		}
975 		fio = list_first_entry(&io->io_list,
976 						struct f2fs_io_info, list);
977 		list_del(&fio->list);
978 		spin_unlock(&io->io_lock);
979 	}
980 
981 	verify_fio_blkaddr(fio);
982 
983 	if (fio->encrypted_page)
984 		bio_page = fio->encrypted_page;
985 	else if (fio->compressed_page)
986 		bio_page = fio->compressed_page;
987 	else
988 		bio_page = fio->page;
989 
990 	/* set submitted = true as a return value */
991 	fio->submitted = 1;
992 
993 	type = WB_DATA_TYPE(bio_page, fio->compressed_page);
994 	inc_page_count(sbi, type);
995 
996 	if (io->bio &&
997 	    (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
998 			      fio->new_blkaddr) ||
999 	     !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
1000 				page_folio(bio_page)->index, fio)))
1001 		__submit_merged_bio(io);
1002 alloc_new:
1003 	if (io->bio == NULL) {
1004 		io->bio = __bio_alloc(fio, BIO_MAX_VECS);
1005 		f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
1006 				page_folio(bio_page)->index, fio, GFP_NOIO);
1007 		io->fio = *fio;
1008 	}
1009 
1010 	if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
1011 		__submit_merged_bio(io);
1012 		goto alloc_new;
1013 	}
1014 
1015 	if (fio->io_wbc)
1016 		wbc_account_cgroup_owner(fio->io_wbc, page_folio(fio->page),
1017 					 PAGE_SIZE);
1018 
1019 	io->last_block_in_bio = fio->new_blkaddr;
1020 
1021 	trace_f2fs_submit_page_write(fio->page, fio);
1022 #ifdef CONFIG_BLK_DEV_ZONED
1023 	if (f2fs_sb_has_blkzoned(sbi) && btype < META &&
1024 			is_end_zone_blkaddr(sbi, fio->new_blkaddr)) {
1025 		bio_get(io->bio);
1026 		reinit_completion(&io->zone_wait);
1027 		io->bi_private = io->bio->bi_private;
1028 		io->bio->bi_private = io;
1029 		io->bio->bi_end_io = f2fs_zone_write_end_io;
1030 		io->zone_pending_bio = io->bio;
1031 		__submit_merged_bio(io);
1032 	}
1033 #endif
1034 	if (fio->in_list)
1035 		goto next;
1036 out:
1037 	if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1038 				!f2fs_is_checkpoint_ready(sbi))
1039 		__submit_merged_bio(io);
1040 	f2fs_up_write(&io->io_rwsem);
1041 }
1042 
1043 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
1044 				      unsigned nr_pages, blk_opf_t op_flag,
1045 				      pgoff_t first_idx, bool for_write)
1046 {
1047 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1048 	struct bio *bio;
1049 	struct bio_post_read_ctx *ctx = NULL;
1050 	unsigned int post_read_steps = 0;
1051 	sector_t sector;
1052 	struct block_device *bdev = f2fs_target_device(sbi, blkaddr, &sector);
1053 
1054 	bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages),
1055 			       REQ_OP_READ | op_flag,
1056 			       for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset);
1057 	if (!bio)
1058 		return ERR_PTR(-ENOMEM);
1059 	bio->bi_iter.bi_sector = sector;
1060 	f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
1061 	bio->bi_end_io = f2fs_read_end_io;
1062 
1063 	if (fscrypt_inode_uses_fs_layer_crypto(inode))
1064 		post_read_steps |= STEP_DECRYPT;
1065 
1066 	if (f2fs_need_verity(inode, first_idx))
1067 		post_read_steps |= STEP_VERITY;
1068 
1069 	/*
1070 	 * STEP_DECOMPRESS is handled specially, since a compressed file might
1071 	 * contain both compressed and uncompressed clusters.  We'll allocate a
1072 	 * bio_post_read_ctx if the file is compressed, but the caller is
1073 	 * responsible for enabling STEP_DECOMPRESS if it's actually needed.
1074 	 */
1075 
1076 	if (post_read_steps || f2fs_compressed_file(inode)) {
1077 		/* Due to the mempool, this never fails. */
1078 		ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1079 		ctx->bio = bio;
1080 		ctx->sbi = sbi;
1081 		ctx->enabled_steps = post_read_steps;
1082 		ctx->fs_blkaddr = blkaddr;
1083 		ctx->decompression_attempted = false;
1084 		bio->bi_private = ctx;
1085 	}
1086 	iostat_alloc_and_bind_ctx(sbi, bio, ctx);
1087 
1088 	return bio;
1089 }
1090 
1091 /* This can handle encryption stuffs */
1092 static int f2fs_submit_page_read(struct inode *inode, struct folio *folio,
1093 				 block_t blkaddr, blk_opf_t op_flags,
1094 				 bool for_write)
1095 {
1096 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1097 	struct bio *bio;
1098 
1099 	bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1100 					folio->index, for_write);
1101 	if (IS_ERR(bio))
1102 		return PTR_ERR(bio);
1103 
1104 	/* wait for GCed page writeback via META_MAPPING */
1105 	f2fs_wait_on_block_writeback(inode, blkaddr);
1106 
1107 	if (!bio_add_folio(bio, folio, PAGE_SIZE, 0)) {
1108 		iostat_update_and_unbind_ctx(bio);
1109 		if (bio->bi_private)
1110 			mempool_free(bio->bi_private, bio_post_read_ctx_pool);
1111 		bio_put(bio);
1112 		return -EFAULT;
1113 	}
1114 	inc_page_count(sbi, F2FS_RD_DATA);
1115 	f2fs_update_iostat(sbi, NULL, FS_DATA_READ_IO, F2FS_BLKSIZE);
1116 	f2fs_submit_read_bio(sbi, bio, DATA);
1117 	return 0;
1118 }
1119 
1120 static void __set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1121 {
1122 	__le32 *addr = get_dnode_addr(dn->inode, dn->node_page);
1123 
1124 	dn->data_blkaddr = blkaddr;
1125 	addr[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1126 }
1127 
1128 /*
1129  * Lock ordering for the change of data block address:
1130  * ->data_page
1131  *  ->node_page
1132  *    update block addresses in the node page
1133  */
1134 void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1135 {
1136 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1137 	__set_data_blkaddr(dn, blkaddr);
1138 	if (set_page_dirty(dn->node_page))
1139 		dn->node_changed = true;
1140 }
1141 
1142 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1143 {
1144 	f2fs_set_data_blkaddr(dn, blkaddr);
1145 	f2fs_update_read_extent_cache(dn);
1146 }
1147 
1148 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
1149 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1150 {
1151 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1152 	int err;
1153 
1154 	if (!count)
1155 		return 0;
1156 
1157 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1158 		return -EPERM;
1159 	err = inc_valid_block_count(sbi, dn->inode, &count, true);
1160 	if (unlikely(err))
1161 		return err;
1162 
1163 	trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1164 						dn->ofs_in_node, count);
1165 
1166 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1167 
1168 	for (; count > 0; dn->ofs_in_node++) {
1169 		block_t blkaddr = f2fs_data_blkaddr(dn);
1170 
1171 		if (blkaddr == NULL_ADDR) {
1172 			__set_data_blkaddr(dn, NEW_ADDR);
1173 			count--;
1174 		}
1175 	}
1176 
1177 	if (set_page_dirty(dn->node_page))
1178 		dn->node_changed = true;
1179 	return 0;
1180 }
1181 
1182 /* Should keep dn->ofs_in_node unchanged */
1183 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1184 {
1185 	unsigned int ofs_in_node = dn->ofs_in_node;
1186 	int ret;
1187 
1188 	ret = f2fs_reserve_new_blocks(dn, 1);
1189 	dn->ofs_in_node = ofs_in_node;
1190 	return ret;
1191 }
1192 
1193 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1194 {
1195 	bool need_put = dn->inode_page ? false : true;
1196 	int err;
1197 
1198 	err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1199 	if (err)
1200 		return err;
1201 
1202 	if (dn->data_blkaddr == NULL_ADDR)
1203 		err = f2fs_reserve_new_block(dn);
1204 	if (err || need_put)
1205 		f2fs_put_dnode(dn);
1206 	return err;
1207 }
1208 
1209 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1210 				     blk_opf_t op_flags, bool for_write,
1211 				     pgoff_t *next_pgofs)
1212 {
1213 	struct address_space *mapping = inode->i_mapping;
1214 	struct dnode_of_data dn;
1215 	struct page *page;
1216 	int err;
1217 
1218 	page = f2fs_grab_cache_page(mapping, index, for_write);
1219 	if (!page)
1220 		return ERR_PTR(-ENOMEM);
1221 
1222 	if (f2fs_lookup_read_extent_cache_block(inode, index,
1223 						&dn.data_blkaddr)) {
1224 		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1225 						DATA_GENERIC_ENHANCE_READ)) {
1226 			err = -EFSCORRUPTED;
1227 			goto put_err;
1228 		}
1229 		goto got_it;
1230 	}
1231 
1232 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1233 	err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1234 	if (err) {
1235 		if (err == -ENOENT && next_pgofs)
1236 			*next_pgofs = f2fs_get_next_page_offset(&dn, index);
1237 		goto put_err;
1238 	}
1239 	f2fs_put_dnode(&dn);
1240 
1241 	if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1242 		err = -ENOENT;
1243 		if (next_pgofs)
1244 			*next_pgofs = index + 1;
1245 		goto put_err;
1246 	}
1247 	if (dn.data_blkaddr != NEW_ADDR &&
1248 			!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1249 						dn.data_blkaddr,
1250 						DATA_GENERIC_ENHANCE)) {
1251 		err = -EFSCORRUPTED;
1252 		goto put_err;
1253 	}
1254 got_it:
1255 	if (PageUptodate(page)) {
1256 		unlock_page(page);
1257 		return page;
1258 	}
1259 
1260 	/*
1261 	 * A new dentry page is allocated but not able to be written, since its
1262 	 * new inode page couldn't be allocated due to -ENOSPC.
1263 	 * In such the case, its blkaddr can be remained as NEW_ADDR.
1264 	 * see, f2fs_add_link -> f2fs_get_new_data_page ->
1265 	 * f2fs_init_inode_metadata.
1266 	 */
1267 	if (dn.data_blkaddr == NEW_ADDR) {
1268 		zero_user_segment(page, 0, PAGE_SIZE);
1269 		if (!PageUptodate(page))
1270 			SetPageUptodate(page);
1271 		unlock_page(page);
1272 		return page;
1273 	}
1274 
1275 	err = f2fs_submit_page_read(inode, page_folio(page), dn.data_blkaddr,
1276 						op_flags, for_write);
1277 	if (err)
1278 		goto put_err;
1279 	return page;
1280 
1281 put_err:
1282 	f2fs_put_page(page, 1);
1283 	return ERR_PTR(err);
1284 }
1285 
1286 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index,
1287 					pgoff_t *next_pgofs)
1288 {
1289 	struct address_space *mapping = inode->i_mapping;
1290 	struct page *page;
1291 
1292 	page = find_get_page(mapping, index);
1293 	if (page && PageUptodate(page))
1294 		return page;
1295 	f2fs_put_page(page, 0);
1296 
1297 	page = f2fs_get_read_data_page(inode, index, 0, false, next_pgofs);
1298 	if (IS_ERR(page))
1299 		return page;
1300 
1301 	if (PageUptodate(page))
1302 		return page;
1303 
1304 	wait_on_page_locked(page);
1305 	if (unlikely(!PageUptodate(page))) {
1306 		f2fs_put_page(page, 0);
1307 		return ERR_PTR(-EIO);
1308 	}
1309 	return page;
1310 }
1311 
1312 /*
1313  * If it tries to access a hole, return an error.
1314  * Because, the callers, functions in dir.c and GC, should be able to know
1315  * whether this page exists or not.
1316  */
1317 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1318 							bool for_write)
1319 {
1320 	struct address_space *mapping = inode->i_mapping;
1321 	struct page *page;
1322 
1323 	page = f2fs_get_read_data_page(inode, index, 0, for_write, NULL);
1324 	if (IS_ERR(page))
1325 		return page;
1326 
1327 	/* wait for read completion */
1328 	lock_page(page);
1329 	if (unlikely(page->mapping != mapping || !PageUptodate(page))) {
1330 		f2fs_put_page(page, 1);
1331 		return ERR_PTR(-EIO);
1332 	}
1333 	return page;
1334 }
1335 
1336 /*
1337  * Caller ensures that this data page is never allocated.
1338  * A new zero-filled data page is allocated in the page cache.
1339  *
1340  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1341  * f2fs_unlock_op().
1342  * Note that, ipage is set only by make_empty_dir, and if any error occur,
1343  * ipage should be released by this function.
1344  */
1345 struct page *f2fs_get_new_data_page(struct inode *inode,
1346 		struct page *ipage, pgoff_t index, bool new_i_size)
1347 {
1348 	struct address_space *mapping = inode->i_mapping;
1349 	struct page *page;
1350 	struct dnode_of_data dn;
1351 	int err;
1352 
1353 	page = f2fs_grab_cache_page(mapping, index, true);
1354 	if (!page) {
1355 		/*
1356 		 * before exiting, we should make sure ipage will be released
1357 		 * if any error occur.
1358 		 */
1359 		f2fs_put_page(ipage, 1);
1360 		return ERR_PTR(-ENOMEM);
1361 	}
1362 
1363 	set_new_dnode(&dn, inode, ipage, NULL, 0);
1364 	err = f2fs_reserve_block(&dn, index);
1365 	if (err) {
1366 		f2fs_put_page(page, 1);
1367 		return ERR_PTR(err);
1368 	}
1369 	if (!ipage)
1370 		f2fs_put_dnode(&dn);
1371 
1372 	if (PageUptodate(page))
1373 		goto got_it;
1374 
1375 	if (dn.data_blkaddr == NEW_ADDR) {
1376 		zero_user_segment(page, 0, PAGE_SIZE);
1377 		if (!PageUptodate(page))
1378 			SetPageUptodate(page);
1379 	} else {
1380 		f2fs_put_page(page, 1);
1381 
1382 		/* if ipage exists, blkaddr should be NEW_ADDR */
1383 		f2fs_bug_on(F2FS_I_SB(inode), ipage);
1384 		page = f2fs_get_lock_data_page(inode, index, true);
1385 		if (IS_ERR(page))
1386 			return page;
1387 	}
1388 got_it:
1389 	if (new_i_size && i_size_read(inode) <
1390 				((loff_t)(index + 1) << PAGE_SHIFT))
1391 		f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1392 	return page;
1393 }
1394 
1395 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1396 {
1397 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1398 	struct f2fs_summary sum;
1399 	struct node_info ni;
1400 	block_t old_blkaddr;
1401 	blkcnt_t count = 1;
1402 	int err;
1403 
1404 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1405 		return -EPERM;
1406 
1407 	err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
1408 	if (err)
1409 		return err;
1410 
1411 	dn->data_blkaddr = f2fs_data_blkaddr(dn);
1412 	if (dn->data_blkaddr == NULL_ADDR) {
1413 		err = inc_valid_block_count(sbi, dn->inode, &count, true);
1414 		if (unlikely(err))
1415 			return err;
1416 	}
1417 
1418 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1419 	old_blkaddr = dn->data_blkaddr;
1420 	err = f2fs_allocate_data_block(sbi, NULL, old_blkaddr,
1421 				&dn->data_blkaddr, &sum, seg_type, NULL);
1422 	if (err)
1423 		return err;
1424 
1425 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1426 		f2fs_invalidate_internal_cache(sbi, old_blkaddr);
1427 
1428 	f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1429 	return 0;
1430 }
1431 
1432 static void f2fs_map_lock(struct f2fs_sb_info *sbi, int flag)
1433 {
1434 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1435 		f2fs_down_read(&sbi->node_change);
1436 	else
1437 		f2fs_lock_op(sbi);
1438 }
1439 
1440 static void f2fs_map_unlock(struct f2fs_sb_info *sbi, int flag)
1441 {
1442 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1443 		f2fs_up_read(&sbi->node_change);
1444 	else
1445 		f2fs_unlock_op(sbi);
1446 }
1447 
1448 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index)
1449 {
1450 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1451 	int err = 0;
1452 
1453 	f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1454 	if (!f2fs_lookup_read_extent_cache_block(dn->inode, index,
1455 						&dn->data_blkaddr))
1456 		err = f2fs_reserve_block(dn, index);
1457 	f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1458 
1459 	return err;
1460 }
1461 
1462 static int f2fs_map_no_dnode(struct inode *inode,
1463 		struct f2fs_map_blocks *map, struct dnode_of_data *dn,
1464 		pgoff_t pgoff)
1465 {
1466 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1467 
1468 	/*
1469 	 * There is one exceptional case that read_node_page() may return
1470 	 * -ENOENT due to filesystem has been shutdown or cp_error, return
1471 	 * -EIO in that case.
1472 	 */
1473 	if (map->m_may_create &&
1474 	    (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || f2fs_cp_error(sbi)))
1475 		return -EIO;
1476 
1477 	if (map->m_next_pgofs)
1478 		*map->m_next_pgofs = f2fs_get_next_page_offset(dn, pgoff);
1479 	if (map->m_next_extent)
1480 		*map->m_next_extent = f2fs_get_next_page_offset(dn, pgoff);
1481 	return 0;
1482 }
1483 
1484 static bool f2fs_map_blocks_cached(struct inode *inode,
1485 		struct f2fs_map_blocks *map, int flag)
1486 {
1487 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1488 	unsigned int maxblocks = map->m_len;
1489 	pgoff_t pgoff = (pgoff_t)map->m_lblk;
1490 	struct extent_info ei = {};
1491 
1492 	if (!f2fs_lookup_read_extent_cache(inode, pgoff, &ei))
1493 		return false;
1494 
1495 	map->m_pblk = ei.blk + pgoff - ei.fofs;
1496 	map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgoff);
1497 	map->m_flags = F2FS_MAP_MAPPED;
1498 	if (map->m_next_extent)
1499 		*map->m_next_extent = pgoff + map->m_len;
1500 
1501 	/* for hardware encryption, but to avoid potential issue in future */
1502 	if (flag == F2FS_GET_BLOCK_DIO)
1503 		f2fs_wait_on_block_writeback_range(inode,
1504 					map->m_pblk, map->m_len);
1505 
1506 	if (f2fs_allow_multi_device_dio(sbi, flag)) {
1507 		int bidx = f2fs_target_device_index(sbi, map->m_pblk);
1508 		struct f2fs_dev_info *dev = &sbi->devs[bidx];
1509 
1510 		map->m_bdev = dev->bdev;
1511 		map->m_pblk -= dev->start_blk;
1512 		map->m_len = min(map->m_len, dev->end_blk + 1 - map->m_pblk);
1513 	} else {
1514 		map->m_bdev = inode->i_sb->s_bdev;
1515 	}
1516 	return true;
1517 }
1518 
1519 static bool map_is_mergeable(struct f2fs_sb_info *sbi,
1520 				struct f2fs_map_blocks *map,
1521 				block_t blkaddr, int flag, int bidx,
1522 				int ofs)
1523 {
1524 	if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev)
1525 		return false;
1526 	if (map->m_pblk != NEW_ADDR && blkaddr == (map->m_pblk + ofs))
1527 		return true;
1528 	if (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR)
1529 		return true;
1530 	if (flag == F2FS_GET_BLOCK_PRE_DIO)
1531 		return true;
1532 	if (flag == F2FS_GET_BLOCK_DIO &&
1533 		map->m_pblk == NULL_ADDR && blkaddr == NULL_ADDR)
1534 		return true;
1535 	return false;
1536 }
1537 
1538 /*
1539  * f2fs_map_blocks() tries to find or build mapping relationship which
1540  * maps continuous logical blocks to physical blocks, and return such
1541  * info via f2fs_map_blocks structure.
1542  */
1543 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag)
1544 {
1545 	unsigned int maxblocks = map->m_len;
1546 	struct dnode_of_data dn;
1547 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1548 	int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1549 	pgoff_t pgofs, end_offset, end;
1550 	int err = 0, ofs = 1;
1551 	unsigned int ofs_in_node, last_ofs_in_node;
1552 	blkcnt_t prealloc;
1553 	block_t blkaddr;
1554 	unsigned int start_pgofs;
1555 	int bidx = 0;
1556 	bool is_hole;
1557 
1558 	if (!maxblocks)
1559 		return 0;
1560 
1561 	if (!map->m_may_create && f2fs_map_blocks_cached(inode, map, flag))
1562 		goto out;
1563 
1564 	map->m_bdev = inode->i_sb->s_bdev;
1565 	map->m_multidev_dio =
1566 		f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag);
1567 
1568 	map->m_len = 0;
1569 	map->m_flags = 0;
1570 
1571 	/* it only supports block size == page size */
1572 	pgofs =	(pgoff_t)map->m_lblk;
1573 	end = pgofs + maxblocks;
1574 
1575 next_dnode:
1576 	if (map->m_may_create)
1577 		f2fs_map_lock(sbi, flag);
1578 
1579 	/* When reading holes, we need its node page */
1580 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1581 	err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1582 	if (err) {
1583 		if (flag == F2FS_GET_BLOCK_BMAP)
1584 			map->m_pblk = 0;
1585 		if (err == -ENOENT)
1586 			err = f2fs_map_no_dnode(inode, map, &dn, pgofs);
1587 		goto unlock_out;
1588 	}
1589 
1590 	start_pgofs = pgofs;
1591 	prealloc = 0;
1592 	last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1593 	end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1594 
1595 next_block:
1596 	blkaddr = f2fs_data_blkaddr(&dn);
1597 	is_hole = !__is_valid_data_blkaddr(blkaddr);
1598 	if (!is_hole &&
1599 	    !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1600 		err = -EFSCORRUPTED;
1601 		goto sync_out;
1602 	}
1603 
1604 	/* use out-place-update for direct IO under LFS mode */
1605 	if (map->m_may_create && (is_hole ||
1606 		(flag == F2FS_GET_BLOCK_DIO && f2fs_lfs_mode(sbi) &&
1607 		!f2fs_is_pinned_file(inode)))) {
1608 		if (unlikely(f2fs_cp_error(sbi))) {
1609 			err = -EIO;
1610 			goto sync_out;
1611 		}
1612 
1613 		switch (flag) {
1614 		case F2FS_GET_BLOCK_PRE_AIO:
1615 			if (blkaddr == NULL_ADDR) {
1616 				prealloc++;
1617 				last_ofs_in_node = dn.ofs_in_node;
1618 			}
1619 			break;
1620 		case F2FS_GET_BLOCK_PRE_DIO:
1621 		case F2FS_GET_BLOCK_DIO:
1622 			err = __allocate_data_block(&dn, map->m_seg_type);
1623 			if (err)
1624 				goto sync_out;
1625 			if (flag == F2FS_GET_BLOCK_PRE_DIO)
1626 				file_need_truncate(inode);
1627 			set_inode_flag(inode, FI_APPEND_WRITE);
1628 			break;
1629 		default:
1630 			WARN_ON_ONCE(1);
1631 			err = -EIO;
1632 			goto sync_out;
1633 		}
1634 
1635 		blkaddr = dn.data_blkaddr;
1636 		if (is_hole)
1637 			map->m_flags |= F2FS_MAP_NEW;
1638 	} else if (is_hole) {
1639 		if (f2fs_compressed_file(inode) &&
1640 		    f2fs_sanity_check_cluster(&dn)) {
1641 			err = -EFSCORRUPTED;
1642 			f2fs_handle_error(sbi,
1643 					ERROR_CORRUPTED_CLUSTER);
1644 			goto sync_out;
1645 		}
1646 
1647 		switch (flag) {
1648 		case F2FS_GET_BLOCK_PRECACHE:
1649 			goto sync_out;
1650 		case F2FS_GET_BLOCK_BMAP:
1651 			map->m_pblk = 0;
1652 			goto sync_out;
1653 		case F2FS_GET_BLOCK_FIEMAP:
1654 			if (blkaddr == NULL_ADDR) {
1655 				if (map->m_next_pgofs)
1656 					*map->m_next_pgofs = pgofs + 1;
1657 				goto sync_out;
1658 			}
1659 			break;
1660 		case F2FS_GET_BLOCK_DIO:
1661 			if (map->m_next_pgofs)
1662 				*map->m_next_pgofs = pgofs + 1;
1663 			break;
1664 		default:
1665 			/* for defragment case */
1666 			if (map->m_next_pgofs)
1667 				*map->m_next_pgofs = pgofs + 1;
1668 			goto sync_out;
1669 		}
1670 	}
1671 
1672 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1673 		goto skip;
1674 
1675 	if (map->m_multidev_dio)
1676 		bidx = f2fs_target_device_index(sbi, blkaddr);
1677 
1678 	if (map->m_len == 0) {
1679 		/* reserved delalloc block should be mapped for fiemap. */
1680 		if (blkaddr == NEW_ADDR)
1681 			map->m_flags |= F2FS_MAP_DELALLOC;
1682 		/* DIO READ and hole case, should not map the blocks. */
1683 		if (!(flag == F2FS_GET_BLOCK_DIO && is_hole && !map->m_may_create))
1684 			map->m_flags |= F2FS_MAP_MAPPED;
1685 
1686 		map->m_pblk = blkaddr;
1687 		map->m_len = 1;
1688 
1689 		if (map->m_multidev_dio)
1690 			map->m_bdev = FDEV(bidx).bdev;
1691 	} else if (map_is_mergeable(sbi, map, blkaddr, flag, bidx, ofs)) {
1692 		ofs++;
1693 		map->m_len++;
1694 	} else {
1695 		goto sync_out;
1696 	}
1697 
1698 skip:
1699 	dn.ofs_in_node++;
1700 	pgofs++;
1701 
1702 	/* preallocate blocks in batch for one dnode page */
1703 	if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1704 			(pgofs == end || dn.ofs_in_node == end_offset)) {
1705 
1706 		dn.ofs_in_node = ofs_in_node;
1707 		err = f2fs_reserve_new_blocks(&dn, prealloc);
1708 		if (err)
1709 			goto sync_out;
1710 
1711 		map->m_len += dn.ofs_in_node - ofs_in_node;
1712 		if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1713 			err = -ENOSPC;
1714 			goto sync_out;
1715 		}
1716 		dn.ofs_in_node = end_offset;
1717 	}
1718 
1719 	if (flag == F2FS_GET_BLOCK_DIO && f2fs_lfs_mode(sbi) &&
1720 	    map->m_may_create) {
1721 		/* the next block to be allocated may not be contiguous. */
1722 		if (GET_SEGOFF_FROM_SEG0(sbi, blkaddr) % BLKS_PER_SEC(sbi) ==
1723 		    CAP_BLKS_PER_SEC(sbi) - 1)
1724 			goto sync_out;
1725 	}
1726 
1727 	if (pgofs >= end)
1728 		goto sync_out;
1729 	else if (dn.ofs_in_node < end_offset)
1730 		goto next_block;
1731 
1732 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1733 		if (map->m_flags & F2FS_MAP_MAPPED) {
1734 			unsigned int ofs = start_pgofs - map->m_lblk;
1735 
1736 			f2fs_update_read_extent_cache_range(&dn,
1737 				start_pgofs, map->m_pblk + ofs,
1738 				map->m_len - ofs);
1739 		}
1740 	}
1741 
1742 	f2fs_put_dnode(&dn);
1743 
1744 	if (map->m_may_create) {
1745 		f2fs_map_unlock(sbi, flag);
1746 		f2fs_balance_fs(sbi, dn.node_changed);
1747 	}
1748 	goto next_dnode;
1749 
1750 sync_out:
1751 
1752 	if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) {
1753 		/*
1754 		 * for hardware encryption, but to avoid potential issue
1755 		 * in future
1756 		 */
1757 		f2fs_wait_on_block_writeback_range(inode,
1758 						map->m_pblk, map->m_len);
1759 
1760 		if (map->m_multidev_dio) {
1761 			block_t blk_addr = map->m_pblk;
1762 
1763 			bidx = f2fs_target_device_index(sbi, map->m_pblk);
1764 
1765 			map->m_bdev = FDEV(bidx).bdev;
1766 			map->m_pblk -= FDEV(bidx).start_blk;
1767 
1768 			if (map->m_may_create)
1769 				f2fs_update_device_state(sbi, inode->i_ino,
1770 							blk_addr, map->m_len);
1771 
1772 			f2fs_bug_on(sbi, blk_addr + map->m_len >
1773 						FDEV(bidx).end_blk + 1);
1774 		}
1775 	}
1776 
1777 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1778 		if (map->m_flags & F2FS_MAP_MAPPED) {
1779 			unsigned int ofs = start_pgofs - map->m_lblk;
1780 
1781 			f2fs_update_read_extent_cache_range(&dn,
1782 				start_pgofs, map->m_pblk + ofs,
1783 				map->m_len - ofs);
1784 		}
1785 		if (map->m_next_extent)
1786 			*map->m_next_extent = pgofs + 1;
1787 	}
1788 	f2fs_put_dnode(&dn);
1789 unlock_out:
1790 	if (map->m_may_create) {
1791 		f2fs_map_unlock(sbi, flag);
1792 		f2fs_balance_fs(sbi, dn.node_changed);
1793 	}
1794 out:
1795 	trace_f2fs_map_blocks(inode, map, flag, err);
1796 	return err;
1797 }
1798 
1799 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1800 {
1801 	struct f2fs_map_blocks map;
1802 	block_t last_lblk;
1803 	int err;
1804 
1805 	if (pos + len > i_size_read(inode))
1806 		return false;
1807 
1808 	map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1809 	map.m_next_pgofs = NULL;
1810 	map.m_next_extent = NULL;
1811 	map.m_seg_type = NO_CHECK_TYPE;
1812 	map.m_may_create = false;
1813 	last_lblk = F2FS_BLK_ALIGN(pos + len);
1814 
1815 	while (map.m_lblk < last_lblk) {
1816 		map.m_len = last_lblk - map.m_lblk;
1817 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
1818 		if (err || map.m_len == 0)
1819 			return false;
1820 		map.m_lblk += map.m_len;
1821 	}
1822 	return true;
1823 }
1824 
1825 static int f2fs_xattr_fiemap(struct inode *inode,
1826 				struct fiemap_extent_info *fieinfo)
1827 {
1828 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1829 	struct page *page;
1830 	struct node_info ni;
1831 	__u64 phys = 0, len;
1832 	__u32 flags;
1833 	nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1834 	int err = 0;
1835 
1836 	if (f2fs_has_inline_xattr(inode)) {
1837 		int offset;
1838 
1839 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1840 						inode->i_ino, false);
1841 		if (!page)
1842 			return -ENOMEM;
1843 
1844 		err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false);
1845 		if (err) {
1846 			f2fs_put_page(page, 1);
1847 			return err;
1848 		}
1849 
1850 		phys = F2FS_BLK_TO_BYTES(ni.blk_addr);
1851 		offset = offsetof(struct f2fs_inode, i_addr) +
1852 					sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1853 					get_inline_xattr_addrs(inode));
1854 
1855 		phys += offset;
1856 		len = inline_xattr_size(inode);
1857 
1858 		f2fs_put_page(page, 1);
1859 
1860 		flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1861 
1862 		if (!xnid)
1863 			flags |= FIEMAP_EXTENT_LAST;
1864 
1865 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1866 		trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1867 		if (err)
1868 			return err;
1869 	}
1870 
1871 	if (xnid) {
1872 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1873 		if (!page)
1874 			return -ENOMEM;
1875 
1876 		err = f2fs_get_node_info(sbi, xnid, &ni, false);
1877 		if (err) {
1878 			f2fs_put_page(page, 1);
1879 			return err;
1880 		}
1881 
1882 		phys = F2FS_BLK_TO_BYTES(ni.blk_addr);
1883 		len = inode->i_sb->s_blocksize;
1884 
1885 		f2fs_put_page(page, 1);
1886 
1887 		flags = FIEMAP_EXTENT_LAST;
1888 	}
1889 
1890 	if (phys) {
1891 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1892 		trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1893 	}
1894 
1895 	return (err < 0 ? err : 0);
1896 }
1897 
1898 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1899 		u64 start, u64 len)
1900 {
1901 	struct f2fs_map_blocks map;
1902 	sector_t start_blk, last_blk, blk_len, max_len;
1903 	pgoff_t next_pgofs;
1904 	u64 logical = 0, phys = 0, size = 0;
1905 	u32 flags = 0;
1906 	int ret = 0;
1907 	bool compr_cluster = false, compr_appended;
1908 	unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1909 	unsigned int count_in_cluster = 0;
1910 	loff_t maxbytes;
1911 
1912 	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1913 		ret = f2fs_precache_extents(inode);
1914 		if (ret)
1915 			return ret;
1916 	}
1917 
1918 	ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1919 	if (ret)
1920 		return ret;
1921 
1922 	inode_lock_shared(inode);
1923 
1924 	maxbytes = F2FS_BLK_TO_BYTES(max_file_blocks(inode));
1925 	if (start > maxbytes) {
1926 		ret = -EFBIG;
1927 		goto out;
1928 	}
1929 
1930 	if (len > maxbytes || (maxbytes - len) < start)
1931 		len = maxbytes - start;
1932 
1933 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1934 		ret = f2fs_xattr_fiemap(inode, fieinfo);
1935 		goto out;
1936 	}
1937 
1938 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1939 		ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1940 		if (ret != -EAGAIN)
1941 			goto out;
1942 	}
1943 
1944 	start_blk = F2FS_BYTES_TO_BLK(start);
1945 	last_blk = F2FS_BYTES_TO_BLK(start + len - 1);
1946 	blk_len = last_blk - start_blk + 1;
1947 	max_len = F2FS_BYTES_TO_BLK(maxbytes) - start_blk;
1948 
1949 next:
1950 	memset(&map, 0, sizeof(map));
1951 	map.m_lblk = start_blk;
1952 	map.m_len = blk_len;
1953 	map.m_next_pgofs = &next_pgofs;
1954 	map.m_seg_type = NO_CHECK_TYPE;
1955 
1956 	if (compr_cluster) {
1957 		map.m_lblk += 1;
1958 		map.m_len = cluster_size - count_in_cluster;
1959 	}
1960 
1961 	ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
1962 	if (ret)
1963 		goto out;
1964 
1965 	/* HOLE */
1966 	if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) {
1967 		start_blk = next_pgofs;
1968 
1969 		if (F2FS_BLK_TO_BYTES(start_blk) < maxbytes)
1970 			goto prep_next;
1971 
1972 		flags |= FIEMAP_EXTENT_LAST;
1973 	}
1974 
1975 	/*
1976 	 * current extent may cross boundary of inquiry, increase len to
1977 	 * requery.
1978 	 */
1979 	if (!compr_cluster && (map.m_flags & F2FS_MAP_MAPPED) &&
1980 				map.m_lblk + map.m_len - 1 == last_blk &&
1981 				blk_len != max_len) {
1982 		blk_len = max_len;
1983 		goto next;
1984 	}
1985 
1986 	compr_appended = false;
1987 	/* In a case of compressed cluster, append this to the last extent */
1988 	if (compr_cluster && ((map.m_flags & F2FS_MAP_DELALLOC) ||
1989 			!(map.m_flags & F2FS_MAP_FLAGS))) {
1990 		compr_appended = true;
1991 		goto skip_fill;
1992 	}
1993 
1994 	if (size) {
1995 		flags |= FIEMAP_EXTENT_MERGED;
1996 		if (IS_ENCRYPTED(inode))
1997 			flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1998 
1999 		ret = fiemap_fill_next_extent(fieinfo, logical,
2000 				phys, size, flags);
2001 		trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
2002 		if (ret)
2003 			goto out;
2004 		size = 0;
2005 	}
2006 
2007 	if (start_blk > last_blk)
2008 		goto out;
2009 
2010 skip_fill:
2011 	if (map.m_pblk == COMPRESS_ADDR) {
2012 		compr_cluster = true;
2013 		count_in_cluster = 1;
2014 	} else if (compr_appended) {
2015 		unsigned int appended_blks = cluster_size -
2016 						count_in_cluster + 1;
2017 		size += F2FS_BLK_TO_BYTES(appended_blks);
2018 		start_blk += appended_blks;
2019 		compr_cluster = false;
2020 	} else {
2021 		logical = F2FS_BLK_TO_BYTES(start_blk);
2022 		phys = __is_valid_data_blkaddr(map.m_pblk) ?
2023 			F2FS_BLK_TO_BYTES(map.m_pblk) : 0;
2024 		size = F2FS_BLK_TO_BYTES(map.m_len);
2025 		flags = 0;
2026 
2027 		if (compr_cluster) {
2028 			flags = FIEMAP_EXTENT_ENCODED;
2029 			count_in_cluster += map.m_len;
2030 			if (count_in_cluster == cluster_size) {
2031 				compr_cluster = false;
2032 				size += F2FS_BLKSIZE;
2033 			}
2034 		} else if (map.m_flags & F2FS_MAP_DELALLOC) {
2035 			flags = FIEMAP_EXTENT_UNWRITTEN;
2036 		}
2037 
2038 		start_blk += F2FS_BYTES_TO_BLK(size);
2039 	}
2040 
2041 prep_next:
2042 	cond_resched();
2043 	if (fatal_signal_pending(current))
2044 		ret = -EINTR;
2045 	else
2046 		goto next;
2047 out:
2048 	if (ret == 1)
2049 		ret = 0;
2050 
2051 	inode_unlock_shared(inode);
2052 	return ret;
2053 }
2054 
2055 static inline loff_t f2fs_readpage_limit(struct inode *inode)
2056 {
2057 	if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2058 		return F2FS_BLK_TO_BYTES(max_file_blocks(inode));
2059 
2060 	return i_size_read(inode);
2061 }
2062 
2063 static inline blk_opf_t f2fs_ra_op_flags(struct readahead_control *rac)
2064 {
2065 	return rac ? REQ_RAHEAD : 0;
2066 }
2067 
2068 static int f2fs_read_single_page(struct inode *inode, struct folio *folio,
2069 					unsigned nr_pages,
2070 					struct f2fs_map_blocks *map,
2071 					struct bio **bio_ret,
2072 					sector_t *last_block_in_bio,
2073 					struct readahead_control *rac)
2074 {
2075 	struct bio *bio = *bio_ret;
2076 	const unsigned int blocksize = F2FS_BLKSIZE;
2077 	sector_t block_in_file;
2078 	sector_t last_block;
2079 	sector_t last_block_in_file;
2080 	sector_t block_nr;
2081 	pgoff_t index = folio_index(folio);
2082 	int ret = 0;
2083 
2084 	block_in_file = (sector_t)index;
2085 	last_block = block_in_file + nr_pages;
2086 	last_block_in_file = F2FS_BYTES_TO_BLK(f2fs_readpage_limit(inode) +
2087 							blocksize - 1);
2088 	if (last_block > last_block_in_file)
2089 		last_block = last_block_in_file;
2090 
2091 	/* just zeroing out page which is beyond EOF */
2092 	if (block_in_file >= last_block)
2093 		goto zero_out;
2094 	/*
2095 	 * Map blocks using the previous result first.
2096 	 */
2097 	if ((map->m_flags & F2FS_MAP_MAPPED) &&
2098 			block_in_file > map->m_lblk &&
2099 			block_in_file < (map->m_lblk + map->m_len))
2100 		goto got_it;
2101 
2102 	/*
2103 	 * Then do more f2fs_map_blocks() calls until we are
2104 	 * done with this page.
2105 	 */
2106 	map->m_lblk = block_in_file;
2107 	map->m_len = last_block - block_in_file;
2108 
2109 	ret = f2fs_map_blocks(inode, map, F2FS_GET_BLOCK_DEFAULT);
2110 	if (ret)
2111 		goto out;
2112 got_it:
2113 	if ((map->m_flags & F2FS_MAP_MAPPED)) {
2114 		block_nr = map->m_pblk + block_in_file - map->m_lblk;
2115 		folio_set_mappedtodisk(folio);
2116 
2117 		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2118 						DATA_GENERIC_ENHANCE_READ)) {
2119 			ret = -EFSCORRUPTED;
2120 			goto out;
2121 		}
2122 	} else {
2123 zero_out:
2124 		folio_zero_segment(folio, 0, folio_size(folio));
2125 		if (f2fs_need_verity(inode, index) &&
2126 		    !fsverity_verify_folio(folio)) {
2127 			ret = -EIO;
2128 			goto out;
2129 		}
2130 		if (!folio_test_uptodate(folio))
2131 			folio_mark_uptodate(folio);
2132 		folio_unlock(folio);
2133 		goto out;
2134 	}
2135 
2136 	/*
2137 	 * This page will go to BIO.  Do we need to send this
2138 	 * BIO off first?
2139 	 */
2140 	if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2141 				       *last_block_in_bio, block_nr) ||
2142 		    !f2fs_crypt_mergeable_bio(bio, inode, index, NULL))) {
2143 submit_and_realloc:
2144 		f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2145 		bio = NULL;
2146 	}
2147 	if (bio == NULL) {
2148 		bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2149 				f2fs_ra_op_flags(rac), index,
2150 				false);
2151 		if (IS_ERR(bio)) {
2152 			ret = PTR_ERR(bio);
2153 			bio = NULL;
2154 			goto out;
2155 		}
2156 	}
2157 
2158 	/*
2159 	 * If the page is under writeback, we need to wait for
2160 	 * its completion to see the correct decrypted data.
2161 	 */
2162 	f2fs_wait_on_block_writeback(inode, block_nr);
2163 
2164 	if (!bio_add_folio(bio, folio, blocksize, 0))
2165 		goto submit_and_realloc;
2166 
2167 	inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2168 	f2fs_update_iostat(F2FS_I_SB(inode), NULL, FS_DATA_READ_IO,
2169 							F2FS_BLKSIZE);
2170 	*last_block_in_bio = block_nr;
2171 out:
2172 	*bio_ret = bio;
2173 	return ret;
2174 }
2175 
2176 #ifdef CONFIG_F2FS_FS_COMPRESSION
2177 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2178 				unsigned nr_pages, sector_t *last_block_in_bio,
2179 				struct readahead_control *rac, bool for_write)
2180 {
2181 	struct dnode_of_data dn;
2182 	struct inode *inode = cc->inode;
2183 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2184 	struct bio *bio = *bio_ret;
2185 	unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2186 	sector_t last_block_in_file;
2187 	const unsigned int blocksize = F2FS_BLKSIZE;
2188 	struct decompress_io_ctx *dic = NULL;
2189 	struct extent_info ei = {};
2190 	bool from_dnode = true;
2191 	int i;
2192 	int ret = 0;
2193 
2194 	f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2195 
2196 	last_block_in_file = F2FS_BYTES_TO_BLK(f2fs_readpage_limit(inode) +
2197 							blocksize - 1);
2198 
2199 	/* get rid of pages beyond EOF */
2200 	for (i = 0; i < cc->cluster_size; i++) {
2201 		struct page *page = cc->rpages[i];
2202 		struct folio *folio;
2203 
2204 		if (!page)
2205 			continue;
2206 
2207 		folio = page_folio(page);
2208 		if ((sector_t)folio->index >= last_block_in_file) {
2209 			folio_zero_segment(folio, 0, folio_size(folio));
2210 			if (!folio_test_uptodate(folio))
2211 				folio_mark_uptodate(folio);
2212 		} else if (!folio_test_uptodate(folio)) {
2213 			continue;
2214 		}
2215 		folio_unlock(folio);
2216 		if (for_write)
2217 			folio_put(folio);
2218 		cc->rpages[i] = NULL;
2219 		cc->nr_rpages--;
2220 	}
2221 
2222 	/* we are done since all pages are beyond EOF */
2223 	if (f2fs_cluster_is_empty(cc))
2224 		goto out;
2225 
2226 	if (f2fs_lookup_read_extent_cache(inode, start_idx, &ei))
2227 		from_dnode = false;
2228 
2229 	if (!from_dnode)
2230 		goto skip_reading_dnode;
2231 
2232 	set_new_dnode(&dn, inode, NULL, NULL, 0);
2233 	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2234 	if (ret)
2235 		goto out;
2236 
2237 	if (unlikely(f2fs_cp_error(sbi))) {
2238 		ret = -EIO;
2239 		goto out_put_dnode;
2240 	}
2241 	f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2242 
2243 skip_reading_dnode:
2244 	for (i = 1; i < cc->cluster_size; i++) {
2245 		block_t blkaddr;
2246 
2247 		blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2248 					dn.ofs_in_node + i) :
2249 					ei.blk + i - 1;
2250 
2251 		if (!__is_valid_data_blkaddr(blkaddr))
2252 			break;
2253 
2254 		if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2255 			ret = -EFAULT;
2256 			goto out_put_dnode;
2257 		}
2258 		cc->nr_cpages++;
2259 
2260 		if (!from_dnode && i >= ei.c_len)
2261 			break;
2262 	}
2263 
2264 	/* nothing to decompress */
2265 	if (cc->nr_cpages == 0) {
2266 		ret = 0;
2267 		goto out_put_dnode;
2268 	}
2269 
2270 	dic = f2fs_alloc_dic(cc);
2271 	if (IS_ERR(dic)) {
2272 		ret = PTR_ERR(dic);
2273 		goto out_put_dnode;
2274 	}
2275 
2276 	for (i = 0; i < cc->nr_cpages; i++) {
2277 		struct folio *folio = page_folio(dic->cpages[i]);
2278 		block_t blkaddr;
2279 		struct bio_post_read_ctx *ctx;
2280 
2281 		blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2282 					dn.ofs_in_node + i + 1) :
2283 					ei.blk + i;
2284 
2285 		f2fs_wait_on_block_writeback(inode, blkaddr);
2286 
2287 		if (f2fs_load_compressed_page(sbi, folio_page(folio, 0),
2288 								blkaddr)) {
2289 			if (atomic_dec_and_test(&dic->remaining_pages)) {
2290 				f2fs_decompress_cluster(dic, true);
2291 				break;
2292 			}
2293 			continue;
2294 		}
2295 
2296 		if (bio && (!page_is_mergeable(sbi, bio,
2297 					*last_block_in_bio, blkaddr) ||
2298 		    !f2fs_crypt_mergeable_bio(bio, inode, folio->index, NULL))) {
2299 submit_and_realloc:
2300 			f2fs_submit_read_bio(sbi, bio, DATA);
2301 			bio = NULL;
2302 		}
2303 
2304 		if (!bio) {
2305 			bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2306 					f2fs_ra_op_flags(rac),
2307 					folio->index, for_write);
2308 			if (IS_ERR(bio)) {
2309 				ret = PTR_ERR(bio);
2310 				f2fs_decompress_end_io(dic, ret, true);
2311 				f2fs_put_dnode(&dn);
2312 				*bio_ret = NULL;
2313 				return ret;
2314 			}
2315 		}
2316 
2317 		if (!bio_add_folio(bio, folio, blocksize, 0))
2318 			goto submit_and_realloc;
2319 
2320 		ctx = get_post_read_ctx(bio);
2321 		ctx->enabled_steps |= STEP_DECOMPRESS;
2322 		refcount_inc(&dic->refcnt);
2323 
2324 		inc_page_count(sbi, F2FS_RD_DATA);
2325 		f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE);
2326 		*last_block_in_bio = blkaddr;
2327 	}
2328 
2329 	if (from_dnode)
2330 		f2fs_put_dnode(&dn);
2331 
2332 	*bio_ret = bio;
2333 	return 0;
2334 
2335 out_put_dnode:
2336 	if (from_dnode)
2337 		f2fs_put_dnode(&dn);
2338 out:
2339 	for (i = 0; i < cc->cluster_size; i++) {
2340 		if (cc->rpages[i]) {
2341 			ClearPageUptodate(cc->rpages[i]);
2342 			unlock_page(cc->rpages[i]);
2343 		}
2344 	}
2345 	*bio_ret = bio;
2346 	return ret;
2347 }
2348 #endif
2349 
2350 /*
2351  * This function was originally taken from fs/mpage.c, and customized for f2fs.
2352  * Major change was from block_size == page_size in f2fs by default.
2353  */
2354 static int f2fs_mpage_readpages(struct inode *inode,
2355 		struct readahead_control *rac, struct folio *folio)
2356 {
2357 	struct bio *bio = NULL;
2358 	sector_t last_block_in_bio = 0;
2359 	struct f2fs_map_blocks map;
2360 #ifdef CONFIG_F2FS_FS_COMPRESSION
2361 	struct compress_ctx cc = {
2362 		.inode = inode,
2363 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2364 		.cluster_size = F2FS_I(inode)->i_cluster_size,
2365 		.cluster_idx = NULL_CLUSTER,
2366 		.rpages = NULL,
2367 		.cpages = NULL,
2368 		.nr_rpages = 0,
2369 		.nr_cpages = 0,
2370 	};
2371 	pgoff_t nc_cluster_idx = NULL_CLUSTER;
2372 	pgoff_t index;
2373 #endif
2374 	unsigned nr_pages = rac ? readahead_count(rac) : 1;
2375 	unsigned max_nr_pages = nr_pages;
2376 	int ret = 0;
2377 
2378 	map.m_pblk = 0;
2379 	map.m_lblk = 0;
2380 	map.m_len = 0;
2381 	map.m_flags = 0;
2382 	map.m_next_pgofs = NULL;
2383 	map.m_next_extent = NULL;
2384 	map.m_seg_type = NO_CHECK_TYPE;
2385 	map.m_may_create = false;
2386 
2387 	for (; nr_pages; nr_pages--) {
2388 		if (rac) {
2389 			folio = readahead_folio(rac);
2390 			prefetchw(&folio->flags);
2391 		}
2392 
2393 #ifdef CONFIG_F2FS_FS_COMPRESSION
2394 		index = folio_index(folio);
2395 
2396 		if (!f2fs_compressed_file(inode))
2397 			goto read_single_page;
2398 
2399 		/* there are remained compressed pages, submit them */
2400 		if (!f2fs_cluster_can_merge_page(&cc, index)) {
2401 			ret = f2fs_read_multi_pages(&cc, &bio,
2402 						max_nr_pages,
2403 						&last_block_in_bio,
2404 						rac, false);
2405 			f2fs_destroy_compress_ctx(&cc, false);
2406 			if (ret)
2407 				goto set_error_page;
2408 		}
2409 		if (cc.cluster_idx == NULL_CLUSTER) {
2410 			if (nc_cluster_idx == index >> cc.log_cluster_size)
2411 				goto read_single_page;
2412 
2413 			ret = f2fs_is_compressed_cluster(inode, index);
2414 			if (ret < 0)
2415 				goto set_error_page;
2416 			else if (!ret) {
2417 				nc_cluster_idx =
2418 					index >> cc.log_cluster_size;
2419 				goto read_single_page;
2420 			}
2421 
2422 			nc_cluster_idx = NULL_CLUSTER;
2423 		}
2424 		ret = f2fs_init_compress_ctx(&cc);
2425 		if (ret)
2426 			goto set_error_page;
2427 
2428 		f2fs_compress_ctx_add_page(&cc, folio);
2429 
2430 		goto next_page;
2431 read_single_page:
2432 #endif
2433 
2434 		ret = f2fs_read_single_page(inode, folio, max_nr_pages, &map,
2435 					&bio, &last_block_in_bio, rac);
2436 		if (ret) {
2437 #ifdef CONFIG_F2FS_FS_COMPRESSION
2438 set_error_page:
2439 #endif
2440 			folio_zero_segment(folio, 0, folio_size(folio));
2441 			folio_unlock(folio);
2442 		}
2443 #ifdef CONFIG_F2FS_FS_COMPRESSION
2444 next_page:
2445 #endif
2446 
2447 #ifdef CONFIG_F2FS_FS_COMPRESSION
2448 		if (f2fs_compressed_file(inode)) {
2449 			/* last page */
2450 			if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2451 				ret = f2fs_read_multi_pages(&cc, &bio,
2452 							max_nr_pages,
2453 							&last_block_in_bio,
2454 							rac, false);
2455 				f2fs_destroy_compress_ctx(&cc, false);
2456 			}
2457 		}
2458 #endif
2459 	}
2460 	if (bio)
2461 		f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2462 	return ret;
2463 }
2464 
2465 static int f2fs_read_data_folio(struct file *file, struct folio *folio)
2466 {
2467 	struct inode *inode = folio_file_mapping(folio)->host;
2468 	int ret = -EAGAIN;
2469 
2470 	trace_f2fs_readpage(folio, DATA);
2471 
2472 	if (!f2fs_is_compress_backend_ready(inode)) {
2473 		folio_unlock(folio);
2474 		return -EOPNOTSUPP;
2475 	}
2476 
2477 	/* If the file has inline data, try to read it directly */
2478 	if (f2fs_has_inline_data(inode))
2479 		ret = f2fs_read_inline_data(inode, folio);
2480 	if (ret == -EAGAIN)
2481 		ret = f2fs_mpage_readpages(inode, NULL, folio);
2482 	return ret;
2483 }
2484 
2485 static void f2fs_readahead(struct readahead_control *rac)
2486 {
2487 	struct inode *inode = rac->mapping->host;
2488 
2489 	trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2490 
2491 	if (!f2fs_is_compress_backend_ready(inode))
2492 		return;
2493 
2494 	/* If the file has inline data, skip readahead */
2495 	if (f2fs_has_inline_data(inode))
2496 		return;
2497 
2498 	f2fs_mpage_readpages(inode, rac, NULL);
2499 }
2500 
2501 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2502 {
2503 	struct inode *inode = fio->page->mapping->host;
2504 	struct page *mpage, *page;
2505 	gfp_t gfp_flags = GFP_NOFS;
2506 
2507 	if (!f2fs_encrypted_file(inode))
2508 		return 0;
2509 
2510 	page = fio->compressed_page ? fio->compressed_page : fio->page;
2511 
2512 	if (fscrypt_inode_uses_inline_crypto(inode))
2513 		return 0;
2514 
2515 retry_encrypt:
2516 	fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2517 					PAGE_SIZE, 0, gfp_flags);
2518 	if (IS_ERR(fio->encrypted_page)) {
2519 		/* flush pending IOs and wait for a while in the ENOMEM case */
2520 		if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2521 			f2fs_flush_merged_writes(fio->sbi);
2522 			memalloc_retry_wait(GFP_NOFS);
2523 			gfp_flags |= __GFP_NOFAIL;
2524 			goto retry_encrypt;
2525 		}
2526 		return PTR_ERR(fio->encrypted_page);
2527 	}
2528 
2529 	mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2530 	if (mpage) {
2531 		if (PageUptodate(mpage))
2532 			memcpy(page_address(mpage),
2533 				page_address(fio->encrypted_page), PAGE_SIZE);
2534 		f2fs_put_page(mpage, 1);
2535 	}
2536 	return 0;
2537 }
2538 
2539 static inline bool check_inplace_update_policy(struct inode *inode,
2540 				struct f2fs_io_info *fio)
2541 {
2542 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2543 
2544 	if (IS_F2FS_IPU_HONOR_OPU_WRITE(sbi) &&
2545 	    is_inode_flag_set(inode, FI_OPU_WRITE))
2546 		return false;
2547 	if (IS_F2FS_IPU_FORCE(sbi))
2548 		return true;
2549 	if (IS_F2FS_IPU_SSR(sbi) && f2fs_need_SSR(sbi))
2550 		return true;
2551 	if (IS_F2FS_IPU_UTIL(sbi) && utilization(sbi) > SM_I(sbi)->min_ipu_util)
2552 		return true;
2553 	if (IS_F2FS_IPU_SSR_UTIL(sbi) && f2fs_need_SSR(sbi) &&
2554 	    utilization(sbi) > SM_I(sbi)->min_ipu_util)
2555 		return true;
2556 
2557 	/*
2558 	 * IPU for rewrite async pages
2559 	 */
2560 	if (IS_F2FS_IPU_ASYNC(sbi) && fio && fio->op == REQ_OP_WRITE &&
2561 	    !(fio->op_flags & REQ_SYNC) && !IS_ENCRYPTED(inode))
2562 		return true;
2563 
2564 	/* this is only set during fdatasync */
2565 	if (IS_F2FS_IPU_FSYNC(sbi) && is_inode_flag_set(inode, FI_NEED_IPU))
2566 		return true;
2567 
2568 	if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2569 			!f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2570 		return true;
2571 
2572 	return false;
2573 }
2574 
2575 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2576 {
2577 	/* swap file is migrating in aligned write mode */
2578 	if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2579 		return false;
2580 
2581 	if (f2fs_is_pinned_file(inode))
2582 		return true;
2583 
2584 	/* if this is cold file, we should overwrite to avoid fragmentation */
2585 	if (file_is_cold(inode) && !is_inode_flag_set(inode, FI_OPU_WRITE))
2586 		return true;
2587 
2588 	return check_inplace_update_policy(inode, fio);
2589 }
2590 
2591 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2592 {
2593 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2594 
2595 	/* The below cases were checked when setting it. */
2596 	if (f2fs_is_pinned_file(inode))
2597 		return false;
2598 	if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK))
2599 		return true;
2600 	if (f2fs_lfs_mode(sbi))
2601 		return true;
2602 	if (S_ISDIR(inode->i_mode))
2603 		return true;
2604 	if (IS_NOQUOTA(inode))
2605 		return true;
2606 	if (f2fs_used_in_atomic_write(inode))
2607 		return true;
2608 	/* rewrite low ratio compress data w/ OPU mode to avoid fragmentation */
2609 	if (f2fs_compressed_file(inode) &&
2610 		F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER &&
2611 		is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
2612 		return true;
2613 
2614 	/* swap file is migrating in aligned write mode */
2615 	if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2616 		return true;
2617 
2618 	if (is_inode_flag_set(inode, FI_OPU_WRITE))
2619 		return true;
2620 
2621 	if (fio) {
2622 		if (page_private_gcing(fio->page))
2623 			return true;
2624 		if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2625 			f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2626 			return true;
2627 	}
2628 	return false;
2629 }
2630 
2631 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2632 {
2633 	struct inode *inode = fio->page->mapping->host;
2634 
2635 	if (f2fs_should_update_outplace(inode, fio))
2636 		return false;
2637 
2638 	return f2fs_should_update_inplace(inode, fio);
2639 }
2640 
2641 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2642 {
2643 	struct folio *folio = page_folio(fio->page);
2644 	struct inode *inode = folio->mapping->host;
2645 	struct dnode_of_data dn;
2646 	struct node_info ni;
2647 	bool ipu_force = false;
2648 	bool atomic_commit;
2649 	int err = 0;
2650 
2651 	/* Use COW inode to make dnode_of_data for atomic write */
2652 	atomic_commit = f2fs_is_atomic_file(inode) &&
2653 				page_private_atomic(folio_page(folio, 0));
2654 	if (atomic_commit)
2655 		set_new_dnode(&dn, F2FS_I(inode)->cow_inode, NULL, NULL, 0);
2656 	else
2657 		set_new_dnode(&dn, inode, NULL, NULL, 0);
2658 
2659 	if (need_inplace_update(fio) &&
2660 	    f2fs_lookup_read_extent_cache_block(inode, folio->index,
2661 						&fio->old_blkaddr)) {
2662 		if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2663 						DATA_GENERIC_ENHANCE))
2664 			return -EFSCORRUPTED;
2665 
2666 		ipu_force = true;
2667 		fio->need_lock = LOCK_DONE;
2668 		goto got_it;
2669 	}
2670 
2671 	/* Deadlock due to between page->lock and f2fs_lock_op */
2672 	if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2673 		return -EAGAIN;
2674 
2675 	err = f2fs_get_dnode_of_data(&dn, folio->index, LOOKUP_NODE);
2676 	if (err)
2677 		goto out;
2678 
2679 	fio->old_blkaddr = dn.data_blkaddr;
2680 
2681 	/* This page is already truncated */
2682 	if (fio->old_blkaddr == NULL_ADDR) {
2683 		folio_clear_uptodate(folio);
2684 		clear_page_private_gcing(folio_page(folio, 0));
2685 		goto out_writepage;
2686 	}
2687 got_it:
2688 	if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2689 		!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2690 						DATA_GENERIC_ENHANCE)) {
2691 		err = -EFSCORRUPTED;
2692 		goto out_writepage;
2693 	}
2694 
2695 	/* wait for GCed page writeback via META_MAPPING */
2696 	if (fio->meta_gc)
2697 		f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2698 
2699 	/*
2700 	 * If current allocation needs SSR,
2701 	 * it had better in-place writes for updated data.
2702 	 */
2703 	if (ipu_force ||
2704 		(__is_valid_data_blkaddr(fio->old_blkaddr) &&
2705 					need_inplace_update(fio))) {
2706 		err = f2fs_encrypt_one_page(fio);
2707 		if (err)
2708 			goto out_writepage;
2709 
2710 		folio_start_writeback(folio);
2711 		f2fs_put_dnode(&dn);
2712 		if (fio->need_lock == LOCK_REQ)
2713 			f2fs_unlock_op(fio->sbi);
2714 		err = f2fs_inplace_write_data(fio);
2715 		if (err) {
2716 			if (fscrypt_inode_uses_fs_layer_crypto(inode))
2717 				fscrypt_finalize_bounce_page(&fio->encrypted_page);
2718 			folio_end_writeback(folio);
2719 		} else {
2720 			set_inode_flag(inode, FI_UPDATE_WRITE);
2721 		}
2722 		trace_f2fs_do_write_data_page(folio, IPU);
2723 		return err;
2724 	}
2725 
2726 	if (fio->need_lock == LOCK_RETRY) {
2727 		if (!f2fs_trylock_op(fio->sbi)) {
2728 			err = -EAGAIN;
2729 			goto out_writepage;
2730 		}
2731 		fio->need_lock = LOCK_REQ;
2732 	}
2733 
2734 	err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false);
2735 	if (err)
2736 		goto out_writepage;
2737 
2738 	fio->version = ni.version;
2739 
2740 	err = f2fs_encrypt_one_page(fio);
2741 	if (err)
2742 		goto out_writepage;
2743 
2744 	folio_start_writeback(folio);
2745 
2746 	if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2747 		f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2748 
2749 	/* LFS mode write path */
2750 	f2fs_outplace_write_data(&dn, fio);
2751 	trace_f2fs_do_write_data_page(folio, OPU);
2752 	set_inode_flag(inode, FI_APPEND_WRITE);
2753 	if (atomic_commit)
2754 		clear_page_private_atomic(folio_page(folio, 0));
2755 out_writepage:
2756 	f2fs_put_dnode(&dn);
2757 out:
2758 	if (fio->need_lock == LOCK_REQ)
2759 		f2fs_unlock_op(fio->sbi);
2760 	return err;
2761 }
2762 
2763 int f2fs_write_single_data_page(struct folio *folio, int *submitted,
2764 				struct bio **bio,
2765 				sector_t *last_block,
2766 				struct writeback_control *wbc,
2767 				enum iostat_type io_type,
2768 				int compr_blocks,
2769 				bool allow_balance)
2770 {
2771 	struct inode *inode = folio->mapping->host;
2772 	struct page *page = folio_page(folio, 0);
2773 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2774 	loff_t i_size = i_size_read(inode);
2775 	const pgoff_t end_index = ((unsigned long long)i_size)
2776 							>> PAGE_SHIFT;
2777 	loff_t psize = (loff_t)(folio->index + 1) << PAGE_SHIFT;
2778 	unsigned offset = 0;
2779 	bool need_balance_fs = false;
2780 	bool quota_inode = IS_NOQUOTA(inode);
2781 	int err = 0;
2782 	struct f2fs_io_info fio = {
2783 		.sbi = sbi,
2784 		.ino = inode->i_ino,
2785 		.type = DATA,
2786 		.op = REQ_OP_WRITE,
2787 		.op_flags = wbc_to_write_flags(wbc),
2788 		.old_blkaddr = NULL_ADDR,
2789 		.page = page,
2790 		.encrypted_page = NULL,
2791 		.submitted = 0,
2792 		.compr_blocks = compr_blocks,
2793 		.need_lock = compr_blocks ? LOCK_DONE : LOCK_RETRY,
2794 		.meta_gc = f2fs_meta_inode_gc_required(inode) ? 1 : 0,
2795 		.io_type = io_type,
2796 		.io_wbc = wbc,
2797 		.bio = bio,
2798 		.last_block = last_block,
2799 	};
2800 
2801 	trace_f2fs_writepage(folio, DATA);
2802 
2803 	/* we should bypass data pages to proceed the kworker jobs */
2804 	if (unlikely(f2fs_cp_error(sbi))) {
2805 		mapping_set_error(folio->mapping, -EIO);
2806 		/*
2807 		 * don't drop any dirty dentry pages for keeping lastest
2808 		 * directory structure.
2809 		 */
2810 		if (S_ISDIR(inode->i_mode) &&
2811 				!is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2812 			goto redirty_out;
2813 
2814 		/* keep data pages in remount-ro mode */
2815 		if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY)
2816 			goto redirty_out;
2817 		goto out;
2818 	}
2819 
2820 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2821 		goto redirty_out;
2822 
2823 	if (folio->index < end_index ||
2824 			f2fs_verity_in_progress(inode) ||
2825 			compr_blocks)
2826 		goto write;
2827 
2828 	/*
2829 	 * If the offset is out-of-range of file size,
2830 	 * this page does not have to be written to disk.
2831 	 */
2832 	offset = i_size & (PAGE_SIZE - 1);
2833 	if ((folio->index >= end_index + 1) || !offset)
2834 		goto out;
2835 
2836 	folio_zero_segment(folio, offset, folio_size(folio));
2837 write:
2838 	/* Dentry/quota blocks are controlled by checkpoint */
2839 	if (S_ISDIR(inode->i_mode) || quota_inode) {
2840 		/*
2841 		 * We need to wait for node_write to avoid block allocation during
2842 		 * checkpoint. This can only happen to quota writes which can cause
2843 		 * the below discard race condition.
2844 		 */
2845 		if (quota_inode)
2846 			f2fs_down_read(&sbi->node_write);
2847 
2848 		fio.need_lock = LOCK_DONE;
2849 		err = f2fs_do_write_data_page(&fio);
2850 
2851 		if (quota_inode)
2852 			f2fs_up_read(&sbi->node_write);
2853 
2854 		goto done;
2855 	}
2856 
2857 	if (!wbc->for_reclaim)
2858 		need_balance_fs = true;
2859 	else if (has_not_enough_free_secs(sbi, 0, 0))
2860 		goto redirty_out;
2861 	else
2862 		set_inode_flag(inode, FI_HOT_DATA);
2863 
2864 	err = -EAGAIN;
2865 	if (f2fs_has_inline_data(inode)) {
2866 		err = f2fs_write_inline_data(inode, folio);
2867 		if (!err)
2868 			goto out;
2869 	}
2870 
2871 	if (err == -EAGAIN) {
2872 		err = f2fs_do_write_data_page(&fio);
2873 		if (err == -EAGAIN) {
2874 			f2fs_bug_on(sbi, compr_blocks);
2875 			fio.need_lock = LOCK_REQ;
2876 			err = f2fs_do_write_data_page(&fio);
2877 		}
2878 	}
2879 
2880 	if (err) {
2881 		file_set_keep_isize(inode);
2882 	} else {
2883 		spin_lock(&F2FS_I(inode)->i_size_lock);
2884 		if (F2FS_I(inode)->last_disk_size < psize)
2885 			F2FS_I(inode)->last_disk_size = psize;
2886 		spin_unlock(&F2FS_I(inode)->i_size_lock);
2887 	}
2888 
2889 done:
2890 	if (err && err != -ENOENT)
2891 		goto redirty_out;
2892 
2893 out:
2894 	inode_dec_dirty_pages(inode);
2895 	if (err) {
2896 		folio_clear_uptodate(folio);
2897 		clear_page_private_gcing(page);
2898 	}
2899 
2900 	if (wbc->for_reclaim) {
2901 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2902 		clear_inode_flag(inode, FI_HOT_DATA);
2903 		f2fs_remove_dirty_inode(inode);
2904 		submitted = NULL;
2905 	}
2906 	folio_unlock(folio);
2907 	if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2908 			!F2FS_I(inode)->wb_task && allow_balance)
2909 		f2fs_balance_fs(sbi, need_balance_fs);
2910 
2911 	if (unlikely(f2fs_cp_error(sbi))) {
2912 		f2fs_submit_merged_write(sbi, DATA);
2913 		if (bio && *bio)
2914 			f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2915 		submitted = NULL;
2916 	}
2917 
2918 	if (submitted)
2919 		*submitted = fio.submitted;
2920 
2921 	return 0;
2922 
2923 redirty_out:
2924 	folio_redirty_for_writepage(wbc, folio);
2925 	/*
2926 	 * pageout() in MM translates EAGAIN, so calls handle_write_error()
2927 	 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2928 	 * file_write_and_wait_range() will see EIO error, which is critical
2929 	 * to return value of fsync() followed by atomic_write failure to user.
2930 	 */
2931 	if (!err || wbc->for_reclaim)
2932 		return AOP_WRITEPAGE_ACTIVATE;
2933 	folio_unlock(folio);
2934 	return err;
2935 }
2936 
2937 static int f2fs_write_data_page(struct page *page,
2938 					struct writeback_control *wbc)
2939 {
2940 	struct folio *folio = page_folio(page);
2941 #ifdef CONFIG_F2FS_FS_COMPRESSION
2942 	struct inode *inode = folio->mapping->host;
2943 
2944 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2945 		goto out;
2946 
2947 	if (f2fs_compressed_file(inode)) {
2948 		if (f2fs_is_compressed_cluster(inode, folio->index)) {
2949 			folio_redirty_for_writepage(wbc, folio);
2950 			return AOP_WRITEPAGE_ACTIVATE;
2951 		}
2952 	}
2953 out:
2954 #endif
2955 
2956 	return f2fs_write_single_data_page(folio, NULL, NULL, NULL,
2957 						wbc, FS_DATA_IO, 0, true);
2958 }
2959 
2960 /*
2961  * This function was copied from write_cache_pages from mm/page-writeback.c.
2962  * The major change is making write step of cold data page separately from
2963  * warm/hot data page.
2964  */
2965 static int f2fs_write_cache_pages(struct address_space *mapping,
2966 					struct writeback_control *wbc,
2967 					enum iostat_type io_type)
2968 {
2969 	int ret = 0;
2970 	int done = 0, retry = 0;
2971 	struct page *pages_local[F2FS_ONSTACK_PAGES];
2972 	struct page **pages = pages_local;
2973 	struct folio_batch fbatch;
2974 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2975 	struct bio *bio = NULL;
2976 	sector_t last_block;
2977 #ifdef CONFIG_F2FS_FS_COMPRESSION
2978 	struct inode *inode = mapping->host;
2979 	struct compress_ctx cc = {
2980 		.inode = inode,
2981 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2982 		.cluster_size = F2FS_I(inode)->i_cluster_size,
2983 		.cluster_idx = NULL_CLUSTER,
2984 		.rpages = NULL,
2985 		.nr_rpages = 0,
2986 		.cpages = NULL,
2987 		.valid_nr_cpages = 0,
2988 		.rbuf = NULL,
2989 		.cbuf = NULL,
2990 		.rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2991 		.private = NULL,
2992 	};
2993 #endif
2994 	int nr_folios, p, idx;
2995 	int nr_pages;
2996 	unsigned int max_pages = F2FS_ONSTACK_PAGES;
2997 	pgoff_t index;
2998 	pgoff_t end;		/* Inclusive */
2999 	pgoff_t done_index;
3000 	int range_whole = 0;
3001 	xa_mark_t tag;
3002 	int nwritten = 0;
3003 	int submitted = 0;
3004 	int i;
3005 
3006 #ifdef CONFIG_F2FS_FS_COMPRESSION
3007 	if (f2fs_compressed_file(inode) &&
3008 		1 << cc.log_cluster_size > F2FS_ONSTACK_PAGES) {
3009 		pages = f2fs_kzalloc(sbi, sizeof(struct page *) <<
3010 				cc.log_cluster_size, GFP_NOFS | __GFP_NOFAIL);
3011 		max_pages = 1 << cc.log_cluster_size;
3012 	}
3013 #endif
3014 
3015 	folio_batch_init(&fbatch);
3016 
3017 	if (get_dirty_pages(mapping->host) <=
3018 				SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
3019 		set_inode_flag(mapping->host, FI_HOT_DATA);
3020 	else
3021 		clear_inode_flag(mapping->host, FI_HOT_DATA);
3022 
3023 	if (wbc->range_cyclic) {
3024 		index = mapping->writeback_index; /* prev offset */
3025 		end = -1;
3026 	} else {
3027 		index = wbc->range_start >> PAGE_SHIFT;
3028 		end = wbc->range_end >> PAGE_SHIFT;
3029 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3030 			range_whole = 1;
3031 	}
3032 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3033 		tag = PAGECACHE_TAG_TOWRITE;
3034 	else
3035 		tag = PAGECACHE_TAG_DIRTY;
3036 retry:
3037 	retry = 0;
3038 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3039 		tag_pages_for_writeback(mapping, index, end);
3040 	done_index = index;
3041 	while (!done && !retry && (index <= end)) {
3042 		nr_pages = 0;
3043 again:
3044 		nr_folios = filemap_get_folios_tag(mapping, &index, end,
3045 				tag, &fbatch);
3046 		if (nr_folios == 0) {
3047 			if (nr_pages)
3048 				goto write;
3049 			break;
3050 		}
3051 
3052 		for (i = 0; i < nr_folios; i++) {
3053 			struct folio *folio = fbatch.folios[i];
3054 
3055 			idx = 0;
3056 			p = folio_nr_pages(folio);
3057 add_more:
3058 			pages[nr_pages] = folio_page(folio, idx);
3059 			folio_get(folio);
3060 			if (++nr_pages == max_pages) {
3061 				index = folio->index + idx + 1;
3062 				folio_batch_release(&fbatch);
3063 				goto write;
3064 			}
3065 			if (++idx < p)
3066 				goto add_more;
3067 		}
3068 		folio_batch_release(&fbatch);
3069 		goto again;
3070 write:
3071 		for (i = 0; i < nr_pages; i++) {
3072 			struct page *page = pages[i];
3073 			struct folio *folio = page_folio(page);
3074 			bool need_readd;
3075 readd:
3076 			need_readd = false;
3077 #ifdef CONFIG_F2FS_FS_COMPRESSION
3078 			if (f2fs_compressed_file(inode)) {
3079 				void *fsdata = NULL;
3080 				struct page *pagep;
3081 				int ret2;
3082 
3083 				ret = f2fs_init_compress_ctx(&cc);
3084 				if (ret) {
3085 					done = 1;
3086 					break;
3087 				}
3088 
3089 				if (!f2fs_cluster_can_merge_page(&cc,
3090 								folio->index)) {
3091 					ret = f2fs_write_multi_pages(&cc,
3092 						&submitted, wbc, io_type);
3093 					if (!ret)
3094 						need_readd = true;
3095 					goto result;
3096 				}
3097 
3098 				if (unlikely(f2fs_cp_error(sbi)))
3099 					goto lock_folio;
3100 
3101 				if (!f2fs_cluster_is_empty(&cc))
3102 					goto lock_folio;
3103 
3104 				if (f2fs_all_cluster_page_ready(&cc,
3105 					pages, i, nr_pages, true))
3106 					goto lock_folio;
3107 
3108 				ret2 = f2fs_prepare_compress_overwrite(
3109 							inode, &pagep,
3110 							folio->index, &fsdata);
3111 				if (ret2 < 0) {
3112 					ret = ret2;
3113 					done = 1;
3114 					break;
3115 				} else if (ret2 &&
3116 					(!f2fs_compress_write_end(inode,
3117 						fsdata, folio->index, 1) ||
3118 					 !f2fs_all_cluster_page_ready(&cc,
3119 						pages, i, nr_pages,
3120 						false))) {
3121 					retry = 1;
3122 					break;
3123 				}
3124 			}
3125 #endif
3126 			/* give a priority to WB_SYNC threads */
3127 			if (atomic_read(&sbi->wb_sync_req[DATA]) &&
3128 					wbc->sync_mode == WB_SYNC_NONE) {
3129 				done = 1;
3130 				break;
3131 			}
3132 #ifdef CONFIG_F2FS_FS_COMPRESSION
3133 lock_folio:
3134 #endif
3135 			done_index = folio->index;
3136 retry_write:
3137 			folio_lock(folio);
3138 
3139 			if (unlikely(folio->mapping != mapping)) {
3140 continue_unlock:
3141 				folio_unlock(folio);
3142 				continue;
3143 			}
3144 
3145 			if (!folio_test_dirty(folio)) {
3146 				/* someone wrote it for us */
3147 				goto continue_unlock;
3148 			}
3149 
3150 			if (folio_test_writeback(folio)) {
3151 				if (wbc->sync_mode == WB_SYNC_NONE)
3152 					goto continue_unlock;
3153 				f2fs_wait_on_page_writeback(&folio->page, DATA, true, true);
3154 			}
3155 
3156 			if (!folio_clear_dirty_for_io(folio))
3157 				goto continue_unlock;
3158 
3159 #ifdef CONFIG_F2FS_FS_COMPRESSION
3160 			if (f2fs_compressed_file(inode)) {
3161 				folio_get(folio);
3162 				f2fs_compress_ctx_add_page(&cc, folio);
3163 				continue;
3164 			}
3165 #endif
3166 			ret = f2fs_write_single_data_page(folio,
3167 					&submitted, &bio, &last_block,
3168 					wbc, io_type, 0, true);
3169 			if (ret == AOP_WRITEPAGE_ACTIVATE)
3170 				folio_unlock(folio);
3171 #ifdef CONFIG_F2FS_FS_COMPRESSION
3172 result:
3173 #endif
3174 			nwritten += submitted;
3175 			wbc->nr_to_write -= submitted;
3176 
3177 			if (unlikely(ret)) {
3178 				/*
3179 				 * keep nr_to_write, since vfs uses this to
3180 				 * get # of written pages.
3181 				 */
3182 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
3183 					ret = 0;
3184 					goto next;
3185 				} else if (ret == -EAGAIN) {
3186 					ret = 0;
3187 					if (wbc->sync_mode == WB_SYNC_ALL) {
3188 						f2fs_io_schedule_timeout(
3189 							DEFAULT_IO_TIMEOUT);
3190 						goto retry_write;
3191 					}
3192 					goto next;
3193 				}
3194 				done_index = folio_next_index(folio);
3195 				done = 1;
3196 				break;
3197 			}
3198 
3199 			if (wbc->nr_to_write <= 0 &&
3200 					wbc->sync_mode == WB_SYNC_NONE) {
3201 				done = 1;
3202 				break;
3203 			}
3204 next:
3205 			if (need_readd)
3206 				goto readd;
3207 		}
3208 		release_pages(pages, nr_pages);
3209 		cond_resched();
3210 	}
3211 #ifdef CONFIG_F2FS_FS_COMPRESSION
3212 	/* flush remained pages in compress cluster */
3213 	if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3214 		ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3215 		nwritten += submitted;
3216 		wbc->nr_to_write -= submitted;
3217 		if (ret) {
3218 			done = 1;
3219 			retry = 0;
3220 		}
3221 	}
3222 	if (f2fs_compressed_file(inode))
3223 		f2fs_destroy_compress_ctx(&cc, false);
3224 #endif
3225 	if (retry) {
3226 		index = 0;
3227 		end = -1;
3228 		goto retry;
3229 	}
3230 	if (wbc->range_cyclic && !done)
3231 		done_index = 0;
3232 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3233 		mapping->writeback_index = done_index;
3234 
3235 	if (nwritten)
3236 		f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3237 								NULL, 0, DATA);
3238 	/* submit cached bio of IPU write */
3239 	if (bio)
3240 		f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3241 
3242 #ifdef CONFIG_F2FS_FS_COMPRESSION
3243 	if (pages != pages_local)
3244 		kfree(pages);
3245 #endif
3246 
3247 	return ret;
3248 }
3249 
3250 static inline bool __should_serialize_io(struct inode *inode,
3251 					struct writeback_control *wbc)
3252 {
3253 	/* to avoid deadlock in path of data flush */
3254 	if (F2FS_I(inode)->wb_task)
3255 		return false;
3256 
3257 	if (!S_ISREG(inode->i_mode))
3258 		return false;
3259 	if (IS_NOQUOTA(inode))
3260 		return false;
3261 
3262 	if (f2fs_need_compress_data(inode))
3263 		return true;
3264 	if (wbc->sync_mode != WB_SYNC_ALL)
3265 		return true;
3266 	if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3267 		return true;
3268 	return false;
3269 }
3270 
3271 static int __f2fs_write_data_pages(struct address_space *mapping,
3272 						struct writeback_control *wbc,
3273 						enum iostat_type io_type)
3274 {
3275 	struct inode *inode = mapping->host;
3276 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3277 	struct blk_plug plug;
3278 	int ret;
3279 	bool locked = false;
3280 
3281 	/* deal with chardevs and other special file */
3282 	if (!mapping->a_ops->writepage)
3283 		return 0;
3284 
3285 	/* skip writing if there is no dirty page in this inode */
3286 	if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3287 		return 0;
3288 
3289 	/* during POR, we don't need to trigger writepage at all. */
3290 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3291 		goto skip_write;
3292 
3293 	if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3294 			wbc->sync_mode == WB_SYNC_NONE &&
3295 			get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3296 			f2fs_available_free_memory(sbi, DIRTY_DENTS))
3297 		goto skip_write;
3298 
3299 	/* skip writing in file defragment preparing stage */
3300 	if (is_inode_flag_set(inode, FI_SKIP_WRITES))
3301 		goto skip_write;
3302 
3303 	trace_f2fs_writepages(mapping->host, wbc, DATA);
3304 
3305 	/* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3306 	if (wbc->sync_mode == WB_SYNC_ALL)
3307 		atomic_inc(&sbi->wb_sync_req[DATA]);
3308 	else if (atomic_read(&sbi->wb_sync_req[DATA])) {
3309 		/* to avoid potential deadlock */
3310 		if (current->plug)
3311 			blk_finish_plug(current->plug);
3312 		goto skip_write;
3313 	}
3314 
3315 	if (__should_serialize_io(inode, wbc)) {
3316 		mutex_lock(&sbi->writepages);
3317 		locked = true;
3318 	}
3319 
3320 	blk_start_plug(&plug);
3321 	ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3322 	blk_finish_plug(&plug);
3323 
3324 	if (locked)
3325 		mutex_unlock(&sbi->writepages);
3326 
3327 	if (wbc->sync_mode == WB_SYNC_ALL)
3328 		atomic_dec(&sbi->wb_sync_req[DATA]);
3329 	/*
3330 	 * if some pages were truncated, we cannot guarantee its mapping->host
3331 	 * to detect pending bios.
3332 	 */
3333 
3334 	f2fs_remove_dirty_inode(inode);
3335 	return ret;
3336 
3337 skip_write:
3338 	wbc->pages_skipped += get_dirty_pages(inode);
3339 	trace_f2fs_writepages(mapping->host, wbc, DATA);
3340 	return 0;
3341 }
3342 
3343 static int f2fs_write_data_pages(struct address_space *mapping,
3344 			    struct writeback_control *wbc)
3345 {
3346 	struct inode *inode = mapping->host;
3347 
3348 	return __f2fs_write_data_pages(mapping, wbc,
3349 			F2FS_I(inode)->cp_task == current ?
3350 			FS_CP_DATA_IO : FS_DATA_IO);
3351 }
3352 
3353 void f2fs_write_failed(struct inode *inode, loff_t to)
3354 {
3355 	loff_t i_size = i_size_read(inode);
3356 
3357 	if (IS_NOQUOTA(inode))
3358 		return;
3359 
3360 	/* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3361 	if (to > i_size && !f2fs_verity_in_progress(inode)) {
3362 		f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3363 		filemap_invalidate_lock(inode->i_mapping);
3364 
3365 		truncate_pagecache(inode, i_size);
3366 		f2fs_truncate_blocks(inode, i_size, true);
3367 
3368 		filemap_invalidate_unlock(inode->i_mapping);
3369 		f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3370 	}
3371 }
3372 
3373 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3374 			struct folio *folio, loff_t pos, unsigned int len,
3375 			block_t *blk_addr, bool *node_changed)
3376 {
3377 	struct inode *inode = folio->mapping->host;
3378 	pgoff_t index = folio->index;
3379 	struct dnode_of_data dn;
3380 	struct page *ipage;
3381 	bool locked = false;
3382 	int flag = F2FS_GET_BLOCK_PRE_AIO;
3383 	int err = 0;
3384 
3385 	/*
3386 	 * If a whole page is being written and we already preallocated all the
3387 	 * blocks, then there is no need to get a block address now.
3388 	 */
3389 	if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL))
3390 		return 0;
3391 
3392 	/* f2fs_lock_op avoids race between write CP and convert_inline_page */
3393 	if (f2fs_has_inline_data(inode)) {
3394 		if (pos + len > MAX_INLINE_DATA(inode))
3395 			flag = F2FS_GET_BLOCK_DEFAULT;
3396 		f2fs_map_lock(sbi, flag);
3397 		locked = true;
3398 	} else if ((pos & PAGE_MASK) >= i_size_read(inode)) {
3399 		f2fs_map_lock(sbi, flag);
3400 		locked = true;
3401 	}
3402 
3403 restart:
3404 	/* check inline_data */
3405 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
3406 	if (IS_ERR(ipage)) {
3407 		err = PTR_ERR(ipage);
3408 		goto unlock_out;
3409 	}
3410 
3411 	set_new_dnode(&dn, inode, ipage, ipage, 0);
3412 
3413 	if (f2fs_has_inline_data(inode)) {
3414 		if (pos + len <= MAX_INLINE_DATA(inode)) {
3415 			f2fs_do_read_inline_data(folio, ipage);
3416 			set_inode_flag(inode, FI_DATA_EXIST);
3417 			if (inode->i_nlink)
3418 				set_page_private_inline(ipage);
3419 			goto out;
3420 		}
3421 		err = f2fs_convert_inline_page(&dn, folio_page(folio, 0));
3422 		if (err || dn.data_blkaddr != NULL_ADDR)
3423 			goto out;
3424 	}
3425 
3426 	if (!f2fs_lookup_read_extent_cache_block(inode, index,
3427 						 &dn.data_blkaddr)) {
3428 		if (IS_DEVICE_ALIASING(inode)) {
3429 			err = -ENODATA;
3430 			goto out;
3431 		}
3432 
3433 		if (locked) {
3434 			err = f2fs_reserve_block(&dn, index);
3435 			goto out;
3436 		}
3437 
3438 		/* hole case */
3439 		err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3440 		if (!err && dn.data_blkaddr != NULL_ADDR)
3441 			goto out;
3442 		f2fs_put_dnode(&dn);
3443 		f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3444 		WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3445 		locked = true;
3446 		goto restart;
3447 	}
3448 out:
3449 	if (!err) {
3450 		/* convert_inline_page can make node_changed */
3451 		*blk_addr = dn.data_blkaddr;
3452 		*node_changed = dn.node_changed;
3453 	}
3454 	f2fs_put_dnode(&dn);
3455 unlock_out:
3456 	if (locked)
3457 		f2fs_map_unlock(sbi, flag);
3458 	return err;
3459 }
3460 
3461 static int __find_data_block(struct inode *inode, pgoff_t index,
3462 				block_t *blk_addr)
3463 {
3464 	struct dnode_of_data dn;
3465 	struct page *ipage;
3466 	int err = 0;
3467 
3468 	ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
3469 	if (IS_ERR(ipage))
3470 		return PTR_ERR(ipage);
3471 
3472 	set_new_dnode(&dn, inode, ipage, ipage, 0);
3473 
3474 	if (!f2fs_lookup_read_extent_cache_block(inode, index,
3475 						 &dn.data_blkaddr)) {
3476 		/* hole case */
3477 		err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3478 		if (err) {
3479 			dn.data_blkaddr = NULL_ADDR;
3480 			err = 0;
3481 		}
3482 	}
3483 	*blk_addr = dn.data_blkaddr;
3484 	f2fs_put_dnode(&dn);
3485 	return err;
3486 }
3487 
3488 static int __reserve_data_block(struct inode *inode, pgoff_t index,
3489 				block_t *blk_addr, bool *node_changed)
3490 {
3491 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3492 	struct dnode_of_data dn;
3493 	struct page *ipage;
3494 	int err = 0;
3495 
3496 	f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3497 
3498 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
3499 	if (IS_ERR(ipage)) {
3500 		err = PTR_ERR(ipage);
3501 		goto unlock_out;
3502 	}
3503 	set_new_dnode(&dn, inode, ipage, ipage, 0);
3504 
3505 	if (!f2fs_lookup_read_extent_cache_block(dn.inode, index,
3506 						&dn.data_blkaddr))
3507 		err = f2fs_reserve_block(&dn, index);
3508 
3509 	*blk_addr = dn.data_blkaddr;
3510 	*node_changed = dn.node_changed;
3511 	f2fs_put_dnode(&dn);
3512 
3513 unlock_out:
3514 	f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3515 	return err;
3516 }
3517 
3518 static int prepare_atomic_write_begin(struct f2fs_sb_info *sbi,
3519 			struct folio *folio, loff_t pos, unsigned int len,
3520 			block_t *blk_addr, bool *node_changed, bool *use_cow)
3521 {
3522 	struct inode *inode = folio->mapping->host;
3523 	struct inode *cow_inode = F2FS_I(inode)->cow_inode;
3524 	pgoff_t index = folio->index;
3525 	int err = 0;
3526 	block_t ori_blk_addr = NULL_ADDR;
3527 
3528 	/* If pos is beyond the end of file, reserve a new block in COW inode */
3529 	if ((pos & PAGE_MASK) >= i_size_read(inode))
3530 		goto reserve_block;
3531 
3532 	/* Look for the block in COW inode first */
3533 	err = __find_data_block(cow_inode, index, blk_addr);
3534 	if (err) {
3535 		return err;
3536 	} else if (*blk_addr != NULL_ADDR) {
3537 		*use_cow = true;
3538 		return 0;
3539 	}
3540 
3541 	if (is_inode_flag_set(inode, FI_ATOMIC_REPLACE))
3542 		goto reserve_block;
3543 
3544 	/* Look for the block in the original inode */
3545 	err = __find_data_block(inode, index, &ori_blk_addr);
3546 	if (err)
3547 		return err;
3548 
3549 reserve_block:
3550 	/* Finally, we should reserve a new block in COW inode for the update */
3551 	err = __reserve_data_block(cow_inode, index, blk_addr, node_changed);
3552 	if (err)
3553 		return err;
3554 	inc_atomic_write_cnt(inode);
3555 
3556 	if (ori_blk_addr != NULL_ADDR)
3557 		*blk_addr = ori_blk_addr;
3558 	return 0;
3559 }
3560 
3561 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3562 		loff_t pos, unsigned len, struct folio **foliop, void **fsdata)
3563 {
3564 	struct inode *inode = mapping->host;
3565 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3566 	struct folio *folio;
3567 	pgoff_t index = pos >> PAGE_SHIFT;
3568 	bool need_balance = false;
3569 	bool use_cow = false;
3570 	block_t blkaddr = NULL_ADDR;
3571 	int err = 0;
3572 
3573 	trace_f2fs_write_begin(inode, pos, len);
3574 
3575 	if (!f2fs_is_checkpoint_ready(sbi)) {
3576 		err = -ENOSPC;
3577 		goto fail;
3578 	}
3579 
3580 	/*
3581 	 * We should check this at this moment to avoid deadlock on inode page
3582 	 * and #0 page. The locking rule for inline_data conversion should be:
3583 	 * folio_lock(folio #0) -> folio_lock(inode_page)
3584 	 */
3585 	if (index != 0) {
3586 		err = f2fs_convert_inline_inode(inode);
3587 		if (err)
3588 			goto fail;
3589 	}
3590 
3591 #ifdef CONFIG_F2FS_FS_COMPRESSION
3592 	if (f2fs_compressed_file(inode)) {
3593 		int ret;
3594 		struct page *page;
3595 
3596 		*fsdata = NULL;
3597 
3598 		if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode)))
3599 			goto repeat;
3600 
3601 		ret = f2fs_prepare_compress_overwrite(inode, &page,
3602 							index, fsdata);
3603 		if (ret < 0) {
3604 			err = ret;
3605 			goto fail;
3606 		} else if (ret) {
3607 			*foliop = page_folio(page);
3608 			return 0;
3609 		}
3610 	}
3611 #endif
3612 
3613 repeat:
3614 	/*
3615 	 * Do not use FGP_STABLE to avoid deadlock.
3616 	 * Will wait that below with our IO control.
3617 	 */
3618 	folio = __filemap_get_folio(mapping, index,
3619 				FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3620 	if (IS_ERR(folio)) {
3621 		err = PTR_ERR(folio);
3622 		goto fail;
3623 	}
3624 
3625 	/* TODO: cluster can be compressed due to race with .writepage */
3626 
3627 	*foliop = folio;
3628 
3629 	if (f2fs_is_atomic_file(inode))
3630 		err = prepare_atomic_write_begin(sbi, folio, pos, len,
3631 					&blkaddr, &need_balance, &use_cow);
3632 	else
3633 		err = prepare_write_begin(sbi, folio, pos, len,
3634 					&blkaddr, &need_balance);
3635 	if (err)
3636 		goto put_folio;
3637 
3638 	if (need_balance && !IS_NOQUOTA(inode) &&
3639 			has_not_enough_free_secs(sbi, 0, 0)) {
3640 		folio_unlock(folio);
3641 		f2fs_balance_fs(sbi, true);
3642 		folio_lock(folio);
3643 		if (folio->mapping != mapping) {
3644 			/* The folio got truncated from under us */
3645 			folio_unlock(folio);
3646 			folio_put(folio);
3647 			goto repeat;
3648 		}
3649 	}
3650 
3651 	f2fs_wait_on_page_writeback(&folio->page, DATA, false, true);
3652 
3653 	if (len == folio_size(folio) || folio_test_uptodate(folio))
3654 		return 0;
3655 
3656 	if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3657 	    !f2fs_verity_in_progress(inode)) {
3658 		folio_zero_segment(folio, len, folio_size(folio));
3659 		return 0;
3660 	}
3661 
3662 	if (blkaddr == NEW_ADDR) {
3663 		folio_zero_segment(folio, 0, folio_size(folio));
3664 		folio_mark_uptodate(folio);
3665 	} else {
3666 		if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3667 				DATA_GENERIC_ENHANCE_READ)) {
3668 			err = -EFSCORRUPTED;
3669 			goto put_folio;
3670 		}
3671 		err = f2fs_submit_page_read(use_cow ?
3672 				F2FS_I(inode)->cow_inode : inode,
3673 				folio, blkaddr, 0, true);
3674 		if (err)
3675 			goto put_folio;
3676 
3677 		folio_lock(folio);
3678 		if (unlikely(folio->mapping != mapping)) {
3679 			folio_unlock(folio);
3680 			folio_put(folio);
3681 			goto repeat;
3682 		}
3683 		if (unlikely(!folio_test_uptodate(folio))) {
3684 			err = -EIO;
3685 			goto put_folio;
3686 		}
3687 	}
3688 	return 0;
3689 
3690 put_folio:
3691 	folio_unlock(folio);
3692 	folio_put(folio);
3693 fail:
3694 	f2fs_write_failed(inode, pos + len);
3695 	return err;
3696 }
3697 
3698 static int f2fs_write_end(struct file *file,
3699 			struct address_space *mapping,
3700 			loff_t pos, unsigned len, unsigned copied,
3701 			struct folio *folio, void *fsdata)
3702 {
3703 	struct inode *inode = folio->mapping->host;
3704 
3705 	trace_f2fs_write_end(inode, pos, len, copied);
3706 
3707 	/*
3708 	 * This should be come from len == PAGE_SIZE, and we expect copied
3709 	 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3710 	 * let generic_perform_write() try to copy data again through copied=0.
3711 	 */
3712 	if (!folio_test_uptodate(folio)) {
3713 		if (unlikely(copied != len))
3714 			copied = 0;
3715 		else
3716 			folio_mark_uptodate(folio);
3717 	}
3718 
3719 #ifdef CONFIG_F2FS_FS_COMPRESSION
3720 	/* overwrite compressed file */
3721 	if (f2fs_compressed_file(inode) && fsdata) {
3722 		f2fs_compress_write_end(inode, fsdata, folio->index, copied);
3723 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3724 
3725 		if (pos + copied > i_size_read(inode) &&
3726 				!f2fs_verity_in_progress(inode))
3727 			f2fs_i_size_write(inode, pos + copied);
3728 		return copied;
3729 	}
3730 #endif
3731 
3732 	if (!copied)
3733 		goto unlock_out;
3734 
3735 	folio_mark_dirty(folio);
3736 
3737 	if (f2fs_is_atomic_file(inode))
3738 		set_page_private_atomic(folio_page(folio, 0));
3739 
3740 	if (pos + copied > i_size_read(inode) &&
3741 	    !f2fs_verity_in_progress(inode)) {
3742 		f2fs_i_size_write(inode, pos + copied);
3743 		if (f2fs_is_atomic_file(inode))
3744 			f2fs_i_size_write(F2FS_I(inode)->cow_inode,
3745 					pos + copied);
3746 	}
3747 unlock_out:
3748 	folio_unlock(folio);
3749 	folio_put(folio);
3750 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3751 	return copied;
3752 }
3753 
3754 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length)
3755 {
3756 	struct inode *inode = folio->mapping->host;
3757 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3758 
3759 	if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3760 				(offset || length != folio_size(folio)))
3761 		return;
3762 
3763 	if (folio_test_dirty(folio)) {
3764 		if (inode->i_ino == F2FS_META_INO(sbi)) {
3765 			dec_page_count(sbi, F2FS_DIRTY_META);
3766 		} else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3767 			dec_page_count(sbi, F2FS_DIRTY_NODES);
3768 		} else {
3769 			inode_dec_dirty_pages(inode);
3770 			f2fs_remove_dirty_inode(inode);
3771 		}
3772 	}
3773 	clear_page_private_all(&folio->page);
3774 }
3775 
3776 bool f2fs_release_folio(struct folio *folio, gfp_t wait)
3777 {
3778 	/* If this is dirty folio, keep private data */
3779 	if (folio_test_dirty(folio))
3780 		return false;
3781 
3782 	clear_page_private_all(&folio->page);
3783 	return true;
3784 }
3785 
3786 static bool f2fs_dirty_data_folio(struct address_space *mapping,
3787 		struct folio *folio)
3788 {
3789 	struct inode *inode = mapping->host;
3790 
3791 	trace_f2fs_set_page_dirty(folio, DATA);
3792 
3793 	if (!folio_test_uptodate(folio))
3794 		folio_mark_uptodate(folio);
3795 	BUG_ON(folio_test_swapcache(folio));
3796 
3797 	if (filemap_dirty_folio(mapping, folio)) {
3798 		f2fs_update_dirty_folio(inode, folio);
3799 		return true;
3800 	}
3801 	return false;
3802 }
3803 
3804 
3805 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3806 {
3807 #ifdef CONFIG_F2FS_FS_COMPRESSION
3808 	struct dnode_of_data dn;
3809 	sector_t start_idx, blknr = 0;
3810 	int ret;
3811 
3812 	start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3813 
3814 	set_new_dnode(&dn, inode, NULL, NULL, 0);
3815 	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3816 	if (ret)
3817 		return 0;
3818 
3819 	if (dn.data_blkaddr != COMPRESS_ADDR) {
3820 		dn.ofs_in_node += block - start_idx;
3821 		blknr = f2fs_data_blkaddr(&dn);
3822 		if (!__is_valid_data_blkaddr(blknr))
3823 			blknr = 0;
3824 	}
3825 
3826 	f2fs_put_dnode(&dn);
3827 	return blknr;
3828 #else
3829 	return 0;
3830 #endif
3831 }
3832 
3833 
3834 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3835 {
3836 	struct inode *inode = mapping->host;
3837 	sector_t blknr = 0;
3838 
3839 	if (f2fs_has_inline_data(inode))
3840 		goto out;
3841 
3842 	/* make sure allocating whole blocks */
3843 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3844 		filemap_write_and_wait(mapping);
3845 
3846 	/* Block number less than F2FS MAX BLOCKS */
3847 	if (unlikely(block >= max_file_blocks(inode)))
3848 		goto out;
3849 
3850 	if (f2fs_compressed_file(inode)) {
3851 		blknr = f2fs_bmap_compress(inode, block);
3852 	} else {
3853 		struct f2fs_map_blocks map;
3854 
3855 		memset(&map, 0, sizeof(map));
3856 		map.m_lblk = block;
3857 		map.m_len = 1;
3858 		map.m_next_pgofs = NULL;
3859 		map.m_seg_type = NO_CHECK_TYPE;
3860 
3861 		if (!f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_BMAP))
3862 			blknr = map.m_pblk;
3863 	}
3864 out:
3865 	trace_f2fs_bmap(inode, block, blknr);
3866 	return blknr;
3867 }
3868 
3869 #ifdef CONFIG_SWAP
3870 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk,
3871 							unsigned int blkcnt)
3872 {
3873 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3874 	unsigned int blkofs;
3875 	unsigned int blk_per_sec = BLKS_PER_SEC(sbi);
3876 	unsigned int end_blk = start_blk + blkcnt - 1;
3877 	unsigned int secidx = start_blk / blk_per_sec;
3878 	unsigned int end_sec;
3879 	int ret = 0;
3880 
3881 	if (!blkcnt)
3882 		return 0;
3883 	end_sec = end_blk / blk_per_sec;
3884 
3885 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3886 	filemap_invalidate_lock(inode->i_mapping);
3887 
3888 	set_inode_flag(inode, FI_ALIGNED_WRITE);
3889 	set_inode_flag(inode, FI_OPU_WRITE);
3890 
3891 	for (; secidx <= end_sec; secidx++) {
3892 		unsigned int blkofs_end = secidx == end_sec ?
3893 				end_blk % blk_per_sec : blk_per_sec - 1;
3894 
3895 		f2fs_down_write(&sbi->pin_sem);
3896 
3897 		ret = f2fs_allocate_pinning_section(sbi);
3898 		if (ret) {
3899 			f2fs_up_write(&sbi->pin_sem);
3900 			break;
3901 		}
3902 
3903 		set_inode_flag(inode, FI_SKIP_WRITES);
3904 
3905 		for (blkofs = 0; blkofs <= blkofs_end; blkofs++) {
3906 			struct page *page;
3907 			unsigned int blkidx = secidx * blk_per_sec + blkofs;
3908 
3909 			page = f2fs_get_lock_data_page(inode, blkidx, true);
3910 			if (IS_ERR(page)) {
3911 				f2fs_up_write(&sbi->pin_sem);
3912 				ret = PTR_ERR(page);
3913 				goto done;
3914 			}
3915 
3916 			set_page_dirty(page);
3917 			f2fs_put_page(page, 1);
3918 		}
3919 
3920 		clear_inode_flag(inode, FI_SKIP_WRITES);
3921 
3922 		ret = filemap_fdatawrite(inode->i_mapping);
3923 
3924 		f2fs_up_write(&sbi->pin_sem);
3925 
3926 		if (ret)
3927 			break;
3928 	}
3929 
3930 done:
3931 	clear_inode_flag(inode, FI_SKIP_WRITES);
3932 	clear_inode_flag(inode, FI_OPU_WRITE);
3933 	clear_inode_flag(inode, FI_ALIGNED_WRITE);
3934 
3935 	filemap_invalidate_unlock(inode->i_mapping);
3936 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3937 
3938 	return ret;
3939 }
3940 
3941 static int check_swap_activate(struct swap_info_struct *sis,
3942 				struct file *swap_file, sector_t *span)
3943 {
3944 	struct address_space *mapping = swap_file->f_mapping;
3945 	struct inode *inode = mapping->host;
3946 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3947 	block_t cur_lblock;
3948 	block_t last_lblock;
3949 	block_t pblock;
3950 	block_t lowest_pblock = -1;
3951 	block_t highest_pblock = 0;
3952 	int nr_extents = 0;
3953 	unsigned int nr_pblocks;
3954 	unsigned int blks_per_sec = BLKS_PER_SEC(sbi);
3955 	unsigned int not_aligned = 0;
3956 	int ret = 0;
3957 
3958 	/*
3959 	 * Map all the blocks into the extent list.  This code doesn't try
3960 	 * to be very smart.
3961 	 */
3962 	cur_lblock = 0;
3963 	last_lblock = F2FS_BYTES_TO_BLK(i_size_read(inode));
3964 
3965 	while (cur_lblock < last_lblock && cur_lblock < sis->max) {
3966 		struct f2fs_map_blocks map;
3967 retry:
3968 		cond_resched();
3969 
3970 		memset(&map, 0, sizeof(map));
3971 		map.m_lblk = cur_lblock;
3972 		map.m_len = last_lblock - cur_lblock;
3973 		map.m_next_pgofs = NULL;
3974 		map.m_next_extent = NULL;
3975 		map.m_seg_type = NO_CHECK_TYPE;
3976 		map.m_may_create = false;
3977 
3978 		ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
3979 		if (ret)
3980 			goto out;
3981 
3982 		/* hole */
3983 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
3984 			f2fs_err(sbi, "Swapfile has holes");
3985 			ret = -EINVAL;
3986 			goto out;
3987 		}
3988 
3989 		pblock = map.m_pblk;
3990 		nr_pblocks = map.m_len;
3991 
3992 		if ((pblock - SM_I(sbi)->main_blkaddr) % blks_per_sec ||
3993 				nr_pblocks % blks_per_sec ||
3994 				!f2fs_valid_pinned_area(sbi, pblock)) {
3995 			bool last_extent = false;
3996 
3997 			not_aligned++;
3998 
3999 			nr_pblocks = roundup(nr_pblocks, blks_per_sec);
4000 			if (cur_lblock + nr_pblocks > sis->max)
4001 				nr_pblocks -= blks_per_sec;
4002 
4003 			/* this extent is last one */
4004 			if (!nr_pblocks) {
4005 				nr_pblocks = last_lblock - cur_lblock;
4006 				last_extent = true;
4007 			}
4008 
4009 			ret = f2fs_migrate_blocks(inode, cur_lblock,
4010 							nr_pblocks);
4011 			if (ret) {
4012 				if (ret == -ENOENT)
4013 					ret = -EINVAL;
4014 				goto out;
4015 			}
4016 
4017 			if (!last_extent)
4018 				goto retry;
4019 		}
4020 
4021 		if (cur_lblock + nr_pblocks >= sis->max)
4022 			nr_pblocks = sis->max - cur_lblock;
4023 
4024 		if (cur_lblock) {	/* exclude the header page */
4025 			if (pblock < lowest_pblock)
4026 				lowest_pblock = pblock;
4027 			if (pblock + nr_pblocks - 1 > highest_pblock)
4028 				highest_pblock = pblock + nr_pblocks - 1;
4029 		}
4030 
4031 		/*
4032 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
4033 		 */
4034 		ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
4035 		if (ret < 0)
4036 			goto out;
4037 		nr_extents += ret;
4038 		cur_lblock += nr_pblocks;
4039 	}
4040 	ret = nr_extents;
4041 	*span = 1 + highest_pblock - lowest_pblock;
4042 	if (cur_lblock == 0)
4043 		cur_lblock = 1;	/* force Empty message */
4044 	sis->max = cur_lblock;
4045 	sis->pages = cur_lblock - 1;
4046 	sis->highest_bit = cur_lblock - 1;
4047 out:
4048 	if (not_aligned)
4049 		f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%lu * N)",
4050 			  not_aligned, blks_per_sec * F2FS_BLKSIZE);
4051 	return ret;
4052 }
4053 
4054 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4055 				sector_t *span)
4056 {
4057 	struct inode *inode = file_inode(file);
4058 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4059 	int ret;
4060 
4061 	if (!S_ISREG(inode->i_mode))
4062 		return -EINVAL;
4063 
4064 	if (f2fs_readonly(sbi->sb))
4065 		return -EROFS;
4066 
4067 	if (f2fs_lfs_mode(sbi) && !f2fs_sb_has_blkzoned(sbi)) {
4068 		f2fs_err(sbi, "Swapfile not supported in LFS mode");
4069 		return -EINVAL;
4070 	}
4071 
4072 	ret = f2fs_convert_inline_inode(inode);
4073 	if (ret)
4074 		return ret;
4075 
4076 	if (!f2fs_disable_compressed_file(inode))
4077 		return -EINVAL;
4078 
4079 	ret = filemap_fdatawrite(inode->i_mapping);
4080 	if (ret < 0)
4081 		return ret;
4082 
4083 	f2fs_precache_extents(inode);
4084 
4085 	ret = check_swap_activate(sis, file, span);
4086 	if (ret < 0)
4087 		return ret;
4088 
4089 	stat_inc_swapfile_inode(inode);
4090 	set_inode_flag(inode, FI_PIN_FILE);
4091 	f2fs_update_time(sbi, REQ_TIME);
4092 	return ret;
4093 }
4094 
4095 static void f2fs_swap_deactivate(struct file *file)
4096 {
4097 	struct inode *inode = file_inode(file);
4098 
4099 	stat_dec_swapfile_inode(inode);
4100 	clear_inode_flag(inode, FI_PIN_FILE);
4101 }
4102 #else
4103 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4104 				sector_t *span)
4105 {
4106 	return -EOPNOTSUPP;
4107 }
4108 
4109 static void f2fs_swap_deactivate(struct file *file)
4110 {
4111 }
4112 #endif
4113 
4114 const struct address_space_operations f2fs_dblock_aops = {
4115 	.read_folio	= f2fs_read_data_folio,
4116 	.readahead	= f2fs_readahead,
4117 	.writepage	= f2fs_write_data_page,
4118 	.writepages	= f2fs_write_data_pages,
4119 	.write_begin	= f2fs_write_begin,
4120 	.write_end	= f2fs_write_end,
4121 	.dirty_folio	= f2fs_dirty_data_folio,
4122 	.migrate_folio	= filemap_migrate_folio,
4123 	.invalidate_folio = f2fs_invalidate_folio,
4124 	.release_folio	= f2fs_release_folio,
4125 	.bmap		= f2fs_bmap,
4126 	.swap_activate  = f2fs_swap_activate,
4127 	.swap_deactivate = f2fs_swap_deactivate,
4128 };
4129 
4130 void f2fs_clear_page_cache_dirty_tag(struct folio *folio)
4131 {
4132 	struct address_space *mapping = folio->mapping;
4133 	unsigned long flags;
4134 
4135 	xa_lock_irqsave(&mapping->i_pages, flags);
4136 	__xa_clear_mark(&mapping->i_pages, folio->index,
4137 						PAGECACHE_TAG_DIRTY);
4138 	xa_unlock_irqrestore(&mapping->i_pages, flags);
4139 }
4140 
4141 int __init f2fs_init_post_read_processing(void)
4142 {
4143 	bio_post_read_ctx_cache =
4144 		kmem_cache_create("f2fs_bio_post_read_ctx",
4145 				  sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4146 	if (!bio_post_read_ctx_cache)
4147 		goto fail;
4148 	bio_post_read_ctx_pool =
4149 		mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4150 					 bio_post_read_ctx_cache);
4151 	if (!bio_post_read_ctx_pool)
4152 		goto fail_free_cache;
4153 	return 0;
4154 
4155 fail_free_cache:
4156 	kmem_cache_destroy(bio_post_read_ctx_cache);
4157 fail:
4158 	return -ENOMEM;
4159 }
4160 
4161 void f2fs_destroy_post_read_processing(void)
4162 {
4163 	mempool_destroy(bio_post_read_ctx_pool);
4164 	kmem_cache_destroy(bio_post_read_ctx_cache);
4165 }
4166 
4167 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4168 {
4169 	if (!f2fs_sb_has_encrypt(sbi) &&
4170 		!f2fs_sb_has_verity(sbi) &&
4171 		!f2fs_sb_has_compression(sbi))
4172 		return 0;
4173 
4174 	sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4175 						 WQ_UNBOUND | WQ_HIGHPRI,
4176 						 num_online_cpus());
4177 	return sbi->post_read_wq ? 0 : -ENOMEM;
4178 }
4179 
4180 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4181 {
4182 	if (sbi->post_read_wq)
4183 		destroy_workqueue(sbi->post_read_wq);
4184 }
4185 
4186 int __init f2fs_init_bio_entry_cache(void)
4187 {
4188 	bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4189 			sizeof(struct bio_entry));
4190 	return bio_entry_slab ? 0 : -ENOMEM;
4191 }
4192 
4193 void f2fs_destroy_bio_entry_cache(void)
4194 {
4195 	kmem_cache_destroy(bio_entry_slab);
4196 }
4197 
4198 static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
4199 			    unsigned int flags, struct iomap *iomap,
4200 			    struct iomap *srcmap)
4201 {
4202 	struct f2fs_map_blocks map = {};
4203 	pgoff_t next_pgofs = 0;
4204 	int err;
4205 
4206 	map.m_lblk = F2FS_BYTES_TO_BLK(offset);
4207 	map.m_len = F2FS_BYTES_TO_BLK(offset + length - 1) - map.m_lblk + 1;
4208 	map.m_next_pgofs = &next_pgofs;
4209 	map.m_seg_type = f2fs_rw_hint_to_seg_type(F2FS_I_SB(inode),
4210 						inode->i_write_hint);
4211 	if (flags & IOMAP_WRITE)
4212 		map.m_may_create = true;
4213 
4214 	err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DIO);
4215 	if (err)
4216 		return err;
4217 
4218 	iomap->offset = F2FS_BLK_TO_BYTES(map.m_lblk);
4219 
4220 	/*
4221 	 * When inline encryption is enabled, sometimes I/O to an encrypted file
4222 	 * has to be broken up to guarantee DUN contiguity.  Handle this by
4223 	 * limiting the length of the mapping returned.
4224 	 */
4225 	map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
4226 
4227 	/*
4228 	 * We should never see delalloc or compressed extents here based on
4229 	 * prior flushing and checks.
4230 	 */
4231 	if (WARN_ON_ONCE(map.m_pblk == COMPRESS_ADDR))
4232 		return -EINVAL;
4233 
4234 	if (map.m_flags & F2FS_MAP_MAPPED) {
4235 		if (WARN_ON_ONCE(map.m_pblk == NEW_ADDR))
4236 			return -EINVAL;
4237 
4238 		iomap->length = F2FS_BLK_TO_BYTES(map.m_len);
4239 		iomap->type = IOMAP_MAPPED;
4240 		iomap->flags |= IOMAP_F_MERGED;
4241 		iomap->bdev = map.m_bdev;
4242 		iomap->addr = F2FS_BLK_TO_BYTES(map.m_pblk);
4243 	} else {
4244 		if (flags & IOMAP_WRITE)
4245 			return -ENOTBLK;
4246 
4247 		if (map.m_pblk == NULL_ADDR) {
4248 			iomap->length = F2FS_BLK_TO_BYTES(next_pgofs) -
4249 							iomap->offset;
4250 			iomap->type = IOMAP_HOLE;
4251 		} else if (map.m_pblk == NEW_ADDR) {
4252 			iomap->length = F2FS_BLK_TO_BYTES(map.m_len);
4253 			iomap->type = IOMAP_UNWRITTEN;
4254 		} else {
4255 			f2fs_bug_on(F2FS_I_SB(inode), 1);
4256 		}
4257 		iomap->addr = IOMAP_NULL_ADDR;
4258 	}
4259 
4260 	if (map.m_flags & F2FS_MAP_NEW)
4261 		iomap->flags |= IOMAP_F_NEW;
4262 	if ((inode->i_state & I_DIRTY_DATASYNC) ||
4263 	    offset + length > i_size_read(inode))
4264 		iomap->flags |= IOMAP_F_DIRTY;
4265 
4266 	return 0;
4267 }
4268 
4269 const struct iomap_ops f2fs_iomap_ops = {
4270 	.iomap_begin	= f2fs_iomap_begin,
4271 };
4272