1 /* 2 * fs/f2fs/data.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/buffer_head.h> 14 #include <linux/mpage.h> 15 #include <linux/writeback.h> 16 #include <linux/backing-dev.h> 17 #include <linux/pagevec.h> 18 #include <linux/blkdev.h> 19 #include <linux/bio.h> 20 #include <linux/prefetch.h> 21 #include <linux/uio.h> 22 #include <linux/mm.h> 23 #include <linux/memcontrol.h> 24 #include <linux/cleancache.h> 25 26 #include "f2fs.h" 27 #include "node.h" 28 #include "segment.h" 29 #include "trace.h" 30 #include <trace/events/f2fs.h> 31 32 static bool __is_cp_guaranteed(struct page *page) 33 { 34 struct address_space *mapping = page->mapping; 35 struct inode *inode; 36 struct f2fs_sb_info *sbi; 37 38 if (!mapping) 39 return false; 40 41 inode = mapping->host; 42 sbi = F2FS_I_SB(inode); 43 44 if (inode->i_ino == F2FS_META_INO(sbi) || 45 inode->i_ino == F2FS_NODE_INO(sbi) || 46 S_ISDIR(inode->i_mode) || 47 is_cold_data(page)) 48 return true; 49 return false; 50 } 51 52 static void f2fs_read_end_io(struct bio *bio) 53 { 54 struct bio_vec *bvec; 55 int i; 56 57 #ifdef CONFIG_F2FS_FAULT_INJECTION 58 if (time_to_inject(F2FS_P_SB(bio->bi_io_vec->bv_page), FAULT_IO)) { 59 f2fs_show_injection_info(FAULT_IO); 60 bio->bi_error = -EIO; 61 } 62 #endif 63 64 if (f2fs_bio_encrypted(bio)) { 65 if (bio->bi_error) { 66 fscrypt_release_ctx(bio->bi_private); 67 } else { 68 fscrypt_decrypt_bio_pages(bio->bi_private, bio); 69 return; 70 } 71 } 72 73 bio_for_each_segment_all(bvec, bio, i) { 74 struct page *page = bvec->bv_page; 75 76 if (!bio->bi_error) { 77 if (!PageUptodate(page)) 78 SetPageUptodate(page); 79 } else { 80 ClearPageUptodate(page); 81 SetPageError(page); 82 } 83 unlock_page(page); 84 } 85 bio_put(bio); 86 } 87 88 static void f2fs_write_end_io(struct bio *bio) 89 { 90 struct f2fs_sb_info *sbi = bio->bi_private; 91 struct bio_vec *bvec; 92 int i; 93 94 bio_for_each_segment_all(bvec, bio, i) { 95 struct page *page = bvec->bv_page; 96 enum count_type type = WB_DATA_TYPE(page); 97 98 if (IS_DUMMY_WRITTEN_PAGE(page)) { 99 set_page_private(page, (unsigned long)NULL); 100 ClearPagePrivate(page); 101 unlock_page(page); 102 mempool_free(page, sbi->write_io_dummy); 103 104 if (unlikely(bio->bi_error)) 105 f2fs_stop_checkpoint(sbi, true); 106 continue; 107 } 108 109 fscrypt_pullback_bio_page(&page, true); 110 111 if (unlikely(bio->bi_error)) { 112 mapping_set_error(page->mapping, -EIO); 113 f2fs_stop_checkpoint(sbi, true); 114 } 115 dec_page_count(sbi, type); 116 clear_cold_data(page); 117 end_page_writeback(page); 118 } 119 if (!get_pages(sbi, F2FS_WB_CP_DATA) && 120 wq_has_sleeper(&sbi->cp_wait)) 121 wake_up(&sbi->cp_wait); 122 123 bio_put(bio); 124 } 125 126 /* 127 * Return true, if pre_bio's bdev is same as its target device. 128 */ 129 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 130 block_t blk_addr, struct bio *bio) 131 { 132 struct block_device *bdev = sbi->sb->s_bdev; 133 int i; 134 135 for (i = 0; i < sbi->s_ndevs; i++) { 136 if (FDEV(i).start_blk <= blk_addr && 137 FDEV(i).end_blk >= blk_addr) { 138 blk_addr -= FDEV(i).start_blk; 139 bdev = FDEV(i).bdev; 140 break; 141 } 142 } 143 if (bio) { 144 bio->bi_bdev = bdev; 145 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr); 146 } 147 return bdev; 148 } 149 150 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr) 151 { 152 int i; 153 154 for (i = 0; i < sbi->s_ndevs; i++) 155 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr) 156 return i; 157 return 0; 158 } 159 160 static bool __same_bdev(struct f2fs_sb_info *sbi, 161 block_t blk_addr, struct bio *bio) 162 { 163 return f2fs_target_device(sbi, blk_addr, NULL) == bio->bi_bdev; 164 } 165 166 /* 167 * Low-level block read/write IO operations. 168 */ 169 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr, 170 int npages, bool is_read) 171 { 172 struct bio *bio; 173 174 bio = f2fs_bio_alloc(npages); 175 176 f2fs_target_device(sbi, blk_addr, bio); 177 bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io; 178 bio->bi_private = is_read ? NULL : sbi; 179 180 return bio; 181 } 182 183 static inline void __submit_bio(struct f2fs_sb_info *sbi, 184 struct bio *bio, enum page_type type) 185 { 186 if (!is_read_io(bio_op(bio))) { 187 unsigned int start; 188 189 if (f2fs_sb_mounted_blkzoned(sbi->sb) && 190 current->plug && (type == DATA || type == NODE)) 191 blk_finish_plug(current->plug); 192 193 if (type != DATA && type != NODE) 194 goto submit_io; 195 196 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS; 197 start %= F2FS_IO_SIZE(sbi); 198 199 if (start == 0) 200 goto submit_io; 201 202 /* fill dummy pages */ 203 for (; start < F2FS_IO_SIZE(sbi); start++) { 204 struct page *page = 205 mempool_alloc(sbi->write_io_dummy, 206 GFP_NOIO | __GFP_ZERO | __GFP_NOFAIL); 207 f2fs_bug_on(sbi, !page); 208 209 SetPagePrivate(page); 210 set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE); 211 lock_page(page); 212 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) 213 f2fs_bug_on(sbi, 1); 214 } 215 /* 216 * In the NODE case, we lose next block address chain. So, we 217 * need to do checkpoint in f2fs_sync_file. 218 */ 219 if (type == NODE) 220 set_sbi_flag(sbi, SBI_NEED_CP); 221 } 222 submit_io: 223 if (is_read_io(bio_op(bio))) 224 trace_f2fs_submit_read_bio(sbi->sb, type, bio); 225 else 226 trace_f2fs_submit_write_bio(sbi->sb, type, bio); 227 submit_bio(bio); 228 } 229 230 static void __submit_merged_bio(struct f2fs_bio_info *io) 231 { 232 struct f2fs_io_info *fio = &io->fio; 233 234 if (!io->bio) 235 return; 236 237 bio_set_op_attrs(io->bio, fio->op, fio->op_flags); 238 239 if (is_read_io(fio->op)) 240 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio); 241 else 242 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio); 243 244 __submit_bio(io->sbi, io->bio, fio->type); 245 io->bio = NULL; 246 } 247 248 static bool __has_merged_page(struct f2fs_bio_info *io, 249 struct inode *inode, nid_t ino, pgoff_t idx) 250 { 251 struct bio_vec *bvec; 252 struct page *target; 253 int i; 254 255 if (!io->bio) 256 return false; 257 258 if (!inode && !ino) 259 return true; 260 261 bio_for_each_segment_all(bvec, io->bio, i) { 262 263 if (bvec->bv_page->mapping) 264 target = bvec->bv_page; 265 else 266 target = fscrypt_control_page(bvec->bv_page); 267 268 if (idx != target->index) 269 continue; 270 271 if (inode && inode == target->mapping->host) 272 return true; 273 if (ino && ino == ino_of_node(target)) 274 return true; 275 } 276 277 return false; 278 } 279 280 static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode, 281 nid_t ino, pgoff_t idx, enum page_type type) 282 { 283 enum page_type btype = PAGE_TYPE_OF_BIO(type); 284 struct f2fs_bio_info *io = &sbi->write_io[btype]; 285 bool ret; 286 287 down_read(&io->io_rwsem); 288 ret = __has_merged_page(io, inode, ino, idx); 289 up_read(&io->io_rwsem); 290 return ret; 291 } 292 293 static void __f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, 294 struct inode *inode, nid_t ino, pgoff_t idx, 295 enum page_type type, int rw) 296 { 297 enum page_type btype = PAGE_TYPE_OF_BIO(type); 298 struct f2fs_bio_info *io; 299 300 io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype]; 301 302 down_write(&io->io_rwsem); 303 304 if (!__has_merged_page(io, inode, ino, idx)) 305 goto out; 306 307 /* change META to META_FLUSH in the checkpoint procedure */ 308 if (type >= META_FLUSH) { 309 io->fio.type = META_FLUSH; 310 io->fio.op = REQ_OP_WRITE; 311 io->fio.op_flags = REQ_META | REQ_PRIO; 312 if (!test_opt(sbi, NOBARRIER)) 313 io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA; 314 } 315 __submit_merged_bio(io); 316 out: 317 up_write(&io->io_rwsem); 318 } 319 320 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, enum page_type type, 321 int rw) 322 { 323 __f2fs_submit_merged_bio(sbi, NULL, 0, 0, type, rw); 324 } 325 326 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *sbi, 327 struct inode *inode, nid_t ino, pgoff_t idx, 328 enum page_type type, int rw) 329 { 330 if (has_merged_page(sbi, inode, ino, idx, type)) 331 __f2fs_submit_merged_bio(sbi, inode, ino, idx, type, rw); 332 } 333 334 void f2fs_flush_merged_bios(struct f2fs_sb_info *sbi) 335 { 336 f2fs_submit_merged_bio(sbi, DATA, WRITE); 337 f2fs_submit_merged_bio(sbi, NODE, WRITE); 338 f2fs_submit_merged_bio(sbi, META, WRITE); 339 } 340 341 /* 342 * Fill the locked page with data located in the block address. 343 * Return unlocked page. 344 */ 345 int f2fs_submit_page_bio(struct f2fs_io_info *fio) 346 { 347 struct bio *bio; 348 struct page *page = fio->encrypted_page ? 349 fio->encrypted_page : fio->page; 350 351 trace_f2fs_submit_page_bio(page, fio); 352 f2fs_trace_ios(fio, 0); 353 354 /* Allocate a new bio */ 355 bio = __bio_alloc(fio->sbi, fio->new_blkaddr, 1, is_read_io(fio->op)); 356 357 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 358 bio_put(bio); 359 return -EFAULT; 360 } 361 bio_set_op_attrs(bio, fio->op, fio->op_flags); 362 363 __submit_bio(fio->sbi, bio, fio->type); 364 return 0; 365 } 366 367 int f2fs_submit_page_mbio(struct f2fs_io_info *fio) 368 { 369 struct f2fs_sb_info *sbi = fio->sbi; 370 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type); 371 struct f2fs_bio_info *io; 372 bool is_read = is_read_io(fio->op); 373 struct page *bio_page; 374 int err = 0; 375 376 io = is_read ? &sbi->read_io : &sbi->write_io[btype]; 377 378 if (fio->old_blkaddr != NEW_ADDR) 379 verify_block_addr(sbi, fio->old_blkaddr); 380 verify_block_addr(sbi, fio->new_blkaddr); 381 382 bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page; 383 384 /* set submitted = 1 as a return value */ 385 fio->submitted = 1; 386 387 if (!is_read) 388 inc_page_count(sbi, WB_DATA_TYPE(bio_page)); 389 390 down_write(&io->io_rwsem); 391 392 if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 || 393 (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags) || 394 !__same_bdev(sbi, fio->new_blkaddr, io->bio))) 395 __submit_merged_bio(io); 396 alloc_new: 397 if (io->bio == NULL) { 398 if ((fio->type == DATA || fio->type == NODE) && 399 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) { 400 err = -EAGAIN; 401 if (!is_read) 402 dec_page_count(sbi, WB_DATA_TYPE(bio_page)); 403 goto out_fail; 404 } 405 io->bio = __bio_alloc(sbi, fio->new_blkaddr, 406 BIO_MAX_PAGES, is_read); 407 io->fio = *fio; 408 } 409 410 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < 411 PAGE_SIZE) { 412 __submit_merged_bio(io); 413 goto alloc_new; 414 } 415 416 io->last_block_in_bio = fio->new_blkaddr; 417 f2fs_trace_ios(fio, 0); 418 out_fail: 419 up_write(&io->io_rwsem); 420 trace_f2fs_submit_page_mbio(fio->page, fio); 421 return err; 422 } 423 424 static void __set_data_blkaddr(struct dnode_of_data *dn) 425 { 426 struct f2fs_node *rn = F2FS_NODE(dn->node_page); 427 __le32 *addr_array; 428 429 /* Get physical address of data block */ 430 addr_array = blkaddr_in_node(rn); 431 addr_array[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr); 432 } 433 434 /* 435 * Lock ordering for the change of data block address: 436 * ->data_page 437 * ->node_page 438 * update block addresses in the node page 439 */ 440 void set_data_blkaddr(struct dnode_of_data *dn) 441 { 442 f2fs_wait_on_page_writeback(dn->node_page, NODE, true); 443 __set_data_blkaddr(dn); 444 if (set_page_dirty(dn->node_page)) 445 dn->node_changed = true; 446 } 447 448 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) 449 { 450 dn->data_blkaddr = blkaddr; 451 set_data_blkaddr(dn); 452 f2fs_update_extent_cache(dn); 453 } 454 455 /* dn->ofs_in_node will be returned with up-to-date last block pointer */ 456 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count) 457 { 458 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 459 460 if (!count) 461 return 0; 462 463 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 464 return -EPERM; 465 if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count))) 466 return -ENOSPC; 467 468 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid, 469 dn->ofs_in_node, count); 470 471 f2fs_wait_on_page_writeback(dn->node_page, NODE, true); 472 473 for (; count > 0; dn->ofs_in_node++) { 474 block_t blkaddr = 475 datablock_addr(dn->node_page, dn->ofs_in_node); 476 if (blkaddr == NULL_ADDR) { 477 dn->data_blkaddr = NEW_ADDR; 478 __set_data_blkaddr(dn); 479 count--; 480 } 481 } 482 483 if (set_page_dirty(dn->node_page)) 484 dn->node_changed = true; 485 return 0; 486 } 487 488 /* Should keep dn->ofs_in_node unchanged */ 489 int reserve_new_block(struct dnode_of_data *dn) 490 { 491 unsigned int ofs_in_node = dn->ofs_in_node; 492 int ret; 493 494 ret = reserve_new_blocks(dn, 1); 495 dn->ofs_in_node = ofs_in_node; 496 return ret; 497 } 498 499 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index) 500 { 501 bool need_put = dn->inode_page ? false : true; 502 int err; 503 504 err = get_dnode_of_data(dn, index, ALLOC_NODE); 505 if (err) 506 return err; 507 508 if (dn->data_blkaddr == NULL_ADDR) 509 err = reserve_new_block(dn); 510 if (err || need_put) 511 f2fs_put_dnode(dn); 512 return err; 513 } 514 515 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index) 516 { 517 struct extent_info ei = {0,0,0}; 518 struct inode *inode = dn->inode; 519 520 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 521 dn->data_blkaddr = ei.blk + index - ei.fofs; 522 return 0; 523 } 524 525 return f2fs_reserve_block(dn, index); 526 } 527 528 struct page *get_read_data_page(struct inode *inode, pgoff_t index, 529 int op_flags, bool for_write) 530 { 531 struct address_space *mapping = inode->i_mapping; 532 struct dnode_of_data dn; 533 struct page *page; 534 struct extent_info ei = {0,0,0}; 535 int err; 536 struct f2fs_io_info fio = { 537 .sbi = F2FS_I_SB(inode), 538 .type = DATA, 539 .op = REQ_OP_READ, 540 .op_flags = op_flags, 541 .encrypted_page = NULL, 542 }; 543 544 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) 545 return read_mapping_page(mapping, index, NULL); 546 547 page = f2fs_grab_cache_page(mapping, index, for_write); 548 if (!page) 549 return ERR_PTR(-ENOMEM); 550 551 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 552 dn.data_blkaddr = ei.blk + index - ei.fofs; 553 goto got_it; 554 } 555 556 set_new_dnode(&dn, inode, NULL, NULL, 0); 557 err = get_dnode_of_data(&dn, index, LOOKUP_NODE); 558 if (err) 559 goto put_err; 560 f2fs_put_dnode(&dn); 561 562 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { 563 err = -ENOENT; 564 goto put_err; 565 } 566 got_it: 567 if (PageUptodate(page)) { 568 unlock_page(page); 569 return page; 570 } 571 572 /* 573 * A new dentry page is allocated but not able to be written, since its 574 * new inode page couldn't be allocated due to -ENOSPC. 575 * In such the case, its blkaddr can be remained as NEW_ADDR. 576 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata. 577 */ 578 if (dn.data_blkaddr == NEW_ADDR) { 579 zero_user_segment(page, 0, PAGE_SIZE); 580 if (!PageUptodate(page)) 581 SetPageUptodate(page); 582 unlock_page(page); 583 return page; 584 } 585 586 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr; 587 fio.page = page; 588 err = f2fs_submit_page_bio(&fio); 589 if (err) 590 goto put_err; 591 return page; 592 593 put_err: 594 f2fs_put_page(page, 1); 595 return ERR_PTR(err); 596 } 597 598 struct page *find_data_page(struct inode *inode, pgoff_t index) 599 { 600 struct address_space *mapping = inode->i_mapping; 601 struct page *page; 602 603 page = find_get_page(mapping, index); 604 if (page && PageUptodate(page)) 605 return page; 606 f2fs_put_page(page, 0); 607 608 page = get_read_data_page(inode, index, 0, false); 609 if (IS_ERR(page)) 610 return page; 611 612 if (PageUptodate(page)) 613 return page; 614 615 wait_on_page_locked(page); 616 if (unlikely(!PageUptodate(page))) { 617 f2fs_put_page(page, 0); 618 return ERR_PTR(-EIO); 619 } 620 return page; 621 } 622 623 /* 624 * If it tries to access a hole, return an error. 625 * Because, the callers, functions in dir.c and GC, should be able to know 626 * whether this page exists or not. 627 */ 628 struct page *get_lock_data_page(struct inode *inode, pgoff_t index, 629 bool for_write) 630 { 631 struct address_space *mapping = inode->i_mapping; 632 struct page *page; 633 repeat: 634 page = get_read_data_page(inode, index, 0, for_write); 635 if (IS_ERR(page)) 636 return page; 637 638 /* wait for read completion */ 639 lock_page(page); 640 if (unlikely(page->mapping != mapping)) { 641 f2fs_put_page(page, 1); 642 goto repeat; 643 } 644 if (unlikely(!PageUptodate(page))) { 645 f2fs_put_page(page, 1); 646 return ERR_PTR(-EIO); 647 } 648 return page; 649 } 650 651 /* 652 * Caller ensures that this data page is never allocated. 653 * A new zero-filled data page is allocated in the page cache. 654 * 655 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and 656 * f2fs_unlock_op(). 657 * Note that, ipage is set only by make_empty_dir, and if any error occur, 658 * ipage should be released by this function. 659 */ 660 struct page *get_new_data_page(struct inode *inode, 661 struct page *ipage, pgoff_t index, bool new_i_size) 662 { 663 struct address_space *mapping = inode->i_mapping; 664 struct page *page; 665 struct dnode_of_data dn; 666 int err; 667 668 page = f2fs_grab_cache_page(mapping, index, true); 669 if (!page) { 670 /* 671 * before exiting, we should make sure ipage will be released 672 * if any error occur. 673 */ 674 f2fs_put_page(ipage, 1); 675 return ERR_PTR(-ENOMEM); 676 } 677 678 set_new_dnode(&dn, inode, ipage, NULL, 0); 679 err = f2fs_reserve_block(&dn, index); 680 if (err) { 681 f2fs_put_page(page, 1); 682 return ERR_PTR(err); 683 } 684 if (!ipage) 685 f2fs_put_dnode(&dn); 686 687 if (PageUptodate(page)) 688 goto got_it; 689 690 if (dn.data_blkaddr == NEW_ADDR) { 691 zero_user_segment(page, 0, PAGE_SIZE); 692 if (!PageUptodate(page)) 693 SetPageUptodate(page); 694 } else { 695 f2fs_put_page(page, 1); 696 697 /* if ipage exists, blkaddr should be NEW_ADDR */ 698 f2fs_bug_on(F2FS_I_SB(inode), ipage); 699 page = get_lock_data_page(inode, index, true); 700 if (IS_ERR(page)) 701 return page; 702 } 703 got_it: 704 if (new_i_size && i_size_read(inode) < 705 ((loff_t)(index + 1) << PAGE_SHIFT)) 706 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT)); 707 return page; 708 } 709 710 static int __allocate_data_block(struct dnode_of_data *dn) 711 { 712 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 713 struct f2fs_summary sum; 714 struct node_info ni; 715 pgoff_t fofs; 716 blkcnt_t count = 1; 717 718 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 719 return -EPERM; 720 721 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node); 722 if (dn->data_blkaddr == NEW_ADDR) 723 goto alloc; 724 725 if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count))) 726 return -ENOSPC; 727 728 alloc: 729 get_node_info(sbi, dn->nid, &ni); 730 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 731 732 allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr, 733 &sum, CURSEG_WARM_DATA); 734 set_data_blkaddr(dn); 735 736 /* update i_size */ 737 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) + 738 dn->ofs_in_node; 739 if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_SHIFT)) 740 f2fs_i_size_write(dn->inode, 741 ((loff_t)(fofs + 1) << PAGE_SHIFT)); 742 return 0; 743 } 744 745 static inline bool __force_buffered_io(struct inode *inode, int rw) 746 { 747 return ((f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) || 748 (rw == WRITE && test_opt(F2FS_I_SB(inode), LFS)) || 749 F2FS_I_SB(inode)->s_ndevs); 750 } 751 752 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from) 753 { 754 struct inode *inode = file_inode(iocb->ki_filp); 755 struct f2fs_map_blocks map; 756 int err = 0; 757 758 if (is_inode_flag_set(inode, FI_NO_PREALLOC)) 759 return 0; 760 761 map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos); 762 map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from)); 763 if (map.m_len > map.m_lblk) 764 map.m_len -= map.m_lblk; 765 else 766 map.m_len = 0; 767 768 map.m_next_pgofs = NULL; 769 770 if (iocb->ki_flags & IOCB_DIRECT) { 771 err = f2fs_convert_inline_inode(inode); 772 if (err) 773 return err; 774 return f2fs_map_blocks(inode, &map, 1, 775 __force_buffered_io(inode, WRITE) ? 776 F2FS_GET_BLOCK_PRE_AIO : 777 F2FS_GET_BLOCK_PRE_DIO); 778 } 779 if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA) { 780 err = f2fs_convert_inline_inode(inode); 781 if (err) 782 return err; 783 } 784 if (!f2fs_has_inline_data(inode)) 785 return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO); 786 return err; 787 } 788 789 /* 790 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with 791 * f2fs_map_blocks structure. 792 * If original data blocks are allocated, then give them to blockdev. 793 * Otherwise, 794 * a. preallocate requested block addresses 795 * b. do not use extent cache for better performance 796 * c. give the block addresses to blockdev 797 */ 798 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 799 int create, int flag) 800 { 801 unsigned int maxblocks = map->m_len; 802 struct dnode_of_data dn; 803 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 804 int mode = create ? ALLOC_NODE : LOOKUP_NODE; 805 pgoff_t pgofs, end_offset, end; 806 int err = 0, ofs = 1; 807 unsigned int ofs_in_node, last_ofs_in_node; 808 blkcnt_t prealloc; 809 struct extent_info ei = {0,0,0}; 810 block_t blkaddr; 811 812 if (!maxblocks) 813 return 0; 814 815 map->m_len = 0; 816 map->m_flags = 0; 817 818 /* it only supports block size == page size */ 819 pgofs = (pgoff_t)map->m_lblk; 820 end = pgofs + maxblocks; 821 822 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) { 823 map->m_pblk = ei.blk + pgofs - ei.fofs; 824 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs); 825 map->m_flags = F2FS_MAP_MAPPED; 826 goto out; 827 } 828 829 next_dnode: 830 if (create) 831 f2fs_lock_op(sbi); 832 833 /* When reading holes, we need its node page */ 834 set_new_dnode(&dn, inode, NULL, NULL, 0); 835 err = get_dnode_of_data(&dn, pgofs, mode); 836 if (err) { 837 if (flag == F2FS_GET_BLOCK_BMAP) 838 map->m_pblk = 0; 839 if (err == -ENOENT) { 840 err = 0; 841 if (map->m_next_pgofs) 842 *map->m_next_pgofs = 843 get_next_page_offset(&dn, pgofs); 844 } 845 goto unlock_out; 846 } 847 848 prealloc = 0; 849 last_ofs_in_node = ofs_in_node = dn.ofs_in_node; 850 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 851 852 next_block: 853 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node); 854 855 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) { 856 if (create) { 857 if (unlikely(f2fs_cp_error(sbi))) { 858 err = -EIO; 859 goto sync_out; 860 } 861 if (flag == F2FS_GET_BLOCK_PRE_AIO) { 862 if (blkaddr == NULL_ADDR) { 863 prealloc++; 864 last_ofs_in_node = dn.ofs_in_node; 865 } 866 } else { 867 err = __allocate_data_block(&dn); 868 if (!err) 869 set_inode_flag(inode, FI_APPEND_WRITE); 870 } 871 if (err) 872 goto sync_out; 873 map->m_flags |= F2FS_MAP_NEW; 874 blkaddr = dn.data_blkaddr; 875 } else { 876 if (flag == F2FS_GET_BLOCK_BMAP) { 877 map->m_pblk = 0; 878 goto sync_out; 879 } 880 if (flag == F2FS_GET_BLOCK_FIEMAP && 881 blkaddr == NULL_ADDR) { 882 if (map->m_next_pgofs) 883 *map->m_next_pgofs = pgofs + 1; 884 } 885 if (flag != F2FS_GET_BLOCK_FIEMAP || 886 blkaddr != NEW_ADDR) 887 goto sync_out; 888 } 889 } 890 891 if (flag == F2FS_GET_BLOCK_PRE_AIO) 892 goto skip; 893 894 if (map->m_len == 0) { 895 /* preallocated unwritten block should be mapped for fiemap. */ 896 if (blkaddr == NEW_ADDR) 897 map->m_flags |= F2FS_MAP_UNWRITTEN; 898 map->m_flags |= F2FS_MAP_MAPPED; 899 900 map->m_pblk = blkaddr; 901 map->m_len = 1; 902 } else if ((map->m_pblk != NEW_ADDR && 903 blkaddr == (map->m_pblk + ofs)) || 904 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) || 905 flag == F2FS_GET_BLOCK_PRE_DIO) { 906 ofs++; 907 map->m_len++; 908 } else { 909 goto sync_out; 910 } 911 912 skip: 913 dn.ofs_in_node++; 914 pgofs++; 915 916 /* preallocate blocks in batch for one dnode page */ 917 if (flag == F2FS_GET_BLOCK_PRE_AIO && 918 (pgofs == end || dn.ofs_in_node == end_offset)) { 919 920 dn.ofs_in_node = ofs_in_node; 921 err = reserve_new_blocks(&dn, prealloc); 922 if (err) 923 goto sync_out; 924 925 map->m_len += dn.ofs_in_node - ofs_in_node; 926 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) { 927 err = -ENOSPC; 928 goto sync_out; 929 } 930 dn.ofs_in_node = end_offset; 931 } 932 933 if (pgofs >= end) 934 goto sync_out; 935 else if (dn.ofs_in_node < end_offset) 936 goto next_block; 937 938 f2fs_put_dnode(&dn); 939 940 if (create) { 941 f2fs_unlock_op(sbi); 942 f2fs_balance_fs(sbi, dn.node_changed); 943 } 944 goto next_dnode; 945 946 sync_out: 947 f2fs_put_dnode(&dn); 948 unlock_out: 949 if (create) { 950 f2fs_unlock_op(sbi); 951 f2fs_balance_fs(sbi, dn.node_changed); 952 } 953 out: 954 trace_f2fs_map_blocks(inode, map, err); 955 return err; 956 } 957 958 static int __get_data_block(struct inode *inode, sector_t iblock, 959 struct buffer_head *bh, int create, int flag, 960 pgoff_t *next_pgofs) 961 { 962 struct f2fs_map_blocks map; 963 int err; 964 965 map.m_lblk = iblock; 966 map.m_len = bh->b_size >> inode->i_blkbits; 967 map.m_next_pgofs = next_pgofs; 968 969 err = f2fs_map_blocks(inode, &map, create, flag); 970 if (!err) { 971 map_bh(bh, inode->i_sb, map.m_pblk); 972 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags; 973 bh->b_size = (u64)map.m_len << inode->i_blkbits; 974 } 975 return err; 976 } 977 978 static int get_data_block(struct inode *inode, sector_t iblock, 979 struct buffer_head *bh_result, int create, int flag, 980 pgoff_t *next_pgofs) 981 { 982 return __get_data_block(inode, iblock, bh_result, create, 983 flag, next_pgofs); 984 } 985 986 static int get_data_block_dio(struct inode *inode, sector_t iblock, 987 struct buffer_head *bh_result, int create) 988 { 989 return __get_data_block(inode, iblock, bh_result, create, 990 F2FS_GET_BLOCK_DIO, NULL); 991 } 992 993 static int get_data_block_bmap(struct inode *inode, sector_t iblock, 994 struct buffer_head *bh_result, int create) 995 { 996 /* Block number less than F2FS MAX BLOCKS */ 997 if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks)) 998 return -EFBIG; 999 1000 return __get_data_block(inode, iblock, bh_result, create, 1001 F2FS_GET_BLOCK_BMAP, NULL); 1002 } 1003 1004 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset) 1005 { 1006 return (offset >> inode->i_blkbits); 1007 } 1008 1009 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk) 1010 { 1011 return (blk << inode->i_blkbits); 1012 } 1013 1014 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 1015 u64 start, u64 len) 1016 { 1017 struct buffer_head map_bh; 1018 sector_t start_blk, last_blk; 1019 pgoff_t next_pgofs; 1020 u64 logical = 0, phys = 0, size = 0; 1021 u32 flags = 0; 1022 int ret = 0; 1023 1024 ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC); 1025 if (ret) 1026 return ret; 1027 1028 if (f2fs_has_inline_data(inode)) { 1029 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len); 1030 if (ret != -EAGAIN) 1031 return ret; 1032 } 1033 1034 inode_lock(inode); 1035 1036 if (logical_to_blk(inode, len) == 0) 1037 len = blk_to_logical(inode, 1); 1038 1039 start_blk = logical_to_blk(inode, start); 1040 last_blk = logical_to_blk(inode, start + len - 1); 1041 1042 next: 1043 memset(&map_bh, 0, sizeof(struct buffer_head)); 1044 map_bh.b_size = len; 1045 1046 ret = get_data_block(inode, start_blk, &map_bh, 0, 1047 F2FS_GET_BLOCK_FIEMAP, &next_pgofs); 1048 if (ret) 1049 goto out; 1050 1051 /* HOLE */ 1052 if (!buffer_mapped(&map_bh)) { 1053 start_blk = next_pgofs; 1054 1055 if (blk_to_logical(inode, start_blk) < blk_to_logical(inode, 1056 F2FS_I_SB(inode)->max_file_blocks)) 1057 goto prep_next; 1058 1059 flags |= FIEMAP_EXTENT_LAST; 1060 } 1061 1062 if (size) { 1063 if (f2fs_encrypted_inode(inode)) 1064 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED; 1065 1066 ret = fiemap_fill_next_extent(fieinfo, logical, 1067 phys, size, flags); 1068 } 1069 1070 if (start_blk > last_blk || ret) 1071 goto out; 1072 1073 logical = blk_to_logical(inode, start_blk); 1074 phys = blk_to_logical(inode, map_bh.b_blocknr); 1075 size = map_bh.b_size; 1076 flags = 0; 1077 if (buffer_unwritten(&map_bh)) 1078 flags = FIEMAP_EXTENT_UNWRITTEN; 1079 1080 start_blk += logical_to_blk(inode, size); 1081 1082 prep_next: 1083 cond_resched(); 1084 if (fatal_signal_pending(current)) 1085 ret = -EINTR; 1086 else 1087 goto next; 1088 out: 1089 if (ret == 1) 1090 ret = 0; 1091 1092 inode_unlock(inode); 1093 return ret; 1094 } 1095 1096 static struct bio *f2fs_grab_bio(struct inode *inode, block_t blkaddr, 1097 unsigned nr_pages) 1098 { 1099 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1100 struct fscrypt_ctx *ctx = NULL; 1101 struct bio *bio; 1102 1103 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) { 1104 ctx = fscrypt_get_ctx(inode, GFP_NOFS); 1105 if (IS_ERR(ctx)) 1106 return ERR_CAST(ctx); 1107 1108 /* wait the page to be moved by cleaning */ 1109 f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr); 1110 } 1111 1112 bio = bio_alloc(GFP_KERNEL, min_t(int, nr_pages, BIO_MAX_PAGES)); 1113 if (!bio) { 1114 if (ctx) 1115 fscrypt_release_ctx(ctx); 1116 return ERR_PTR(-ENOMEM); 1117 } 1118 f2fs_target_device(sbi, blkaddr, bio); 1119 bio->bi_end_io = f2fs_read_end_io; 1120 bio->bi_private = ctx; 1121 1122 return bio; 1123 } 1124 1125 /* 1126 * This function was originally taken from fs/mpage.c, and customized for f2fs. 1127 * Major change was from block_size == page_size in f2fs by default. 1128 */ 1129 static int f2fs_mpage_readpages(struct address_space *mapping, 1130 struct list_head *pages, struct page *page, 1131 unsigned nr_pages) 1132 { 1133 struct bio *bio = NULL; 1134 unsigned page_idx; 1135 sector_t last_block_in_bio = 0; 1136 struct inode *inode = mapping->host; 1137 const unsigned blkbits = inode->i_blkbits; 1138 const unsigned blocksize = 1 << blkbits; 1139 sector_t block_in_file; 1140 sector_t last_block; 1141 sector_t last_block_in_file; 1142 sector_t block_nr; 1143 struct f2fs_map_blocks map; 1144 1145 map.m_pblk = 0; 1146 map.m_lblk = 0; 1147 map.m_len = 0; 1148 map.m_flags = 0; 1149 map.m_next_pgofs = NULL; 1150 1151 for (page_idx = 0; nr_pages; page_idx++, nr_pages--) { 1152 1153 prefetchw(&page->flags); 1154 if (pages) { 1155 page = list_last_entry(pages, struct page, lru); 1156 list_del(&page->lru); 1157 if (add_to_page_cache_lru(page, mapping, 1158 page->index, 1159 readahead_gfp_mask(mapping))) 1160 goto next_page; 1161 } 1162 1163 block_in_file = (sector_t)page->index; 1164 last_block = block_in_file + nr_pages; 1165 last_block_in_file = (i_size_read(inode) + blocksize - 1) >> 1166 blkbits; 1167 if (last_block > last_block_in_file) 1168 last_block = last_block_in_file; 1169 1170 /* 1171 * Map blocks using the previous result first. 1172 */ 1173 if ((map.m_flags & F2FS_MAP_MAPPED) && 1174 block_in_file > map.m_lblk && 1175 block_in_file < (map.m_lblk + map.m_len)) 1176 goto got_it; 1177 1178 /* 1179 * Then do more f2fs_map_blocks() calls until we are 1180 * done with this page. 1181 */ 1182 map.m_flags = 0; 1183 1184 if (block_in_file < last_block) { 1185 map.m_lblk = block_in_file; 1186 map.m_len = last_block - block_in_file; 1187 1188 if (f2fs_map_blocks(inode, &map, 0, 1189 F2FS_GET_BLOCK_READ)) 1190 goto set_error_page; 1191 } 1192 got_it: 1193 if ((map.m_flags & F2FS_MAP_MAPPED)) { 1194 block_nr = map.m_pblk + block_in_file - map.m_lblk; 1195 SetPageMappedToDisk(page); 1196 1197 if (!PageUptodate(page) && !cleancache_get_page(page)) { 1198 SetPageUptodate(page); 1199 goto confused; 1200 } 1201 } else { 1202 zero_user_segment(page, 0, PAGE_SIZE); 1203 if (!PageUptodate(page)) 1204 SetPageUptodate(page); 1205 unlock_page(page); 1206 goto next_page; 1207 } 1208 1209 /* 1210 * This page will go to BIO. Do we need to send this 1211 * BIO off first? 1212 */ 1213 if (bio && (last_block_in_bio != block_nr - 1 || 1214 !__same_bdev(F2FS_I_SB(inode), block_nr, bio))) { 1215 submit_and_realloc: 1216 __submit_bio(F2FS_I_SB(inode), bio, DATA); 1217 bio = NULL; 1218 } 1219 if (bio == NULL) { 1220 bio = f2fs_grab_bio(inode, block_nr, nr_pages); 1221 if (IS_ERR(bio)) { 1222 bio = NULL; 1223 goto set_error_page; 1224 } 1225 bio_set_op_attrs(bio, REQ_OP_READ, 0); 1226 } 1227 1228 if (bio_add_page(bio, page, blocksize, 0) < blocksize) 1229 goto submit_and_realloc; 1230 1231 last_block_in_bio = block_nr; 1232 goto next_page; 1233 set_error_page: 1234 SetPageError(page); 1235 zero_user_segment(page, 0, PAGE_SIZE); 1236 unlock_page(page); 1237 goto next_page; 1238 confused: 1239 if (bio) { 1240 __submit_bio(F2FS_I_SB(inode), bio, DATA); 1241 bio = NULL; 1242 } 1243 unlock_page(page); 1244 next_page: 1245 if (pages) 1246 put_page(page); 1247 } 1248 BUG_ON(pages && !list_empty(pages)); 1249 if (bio) 1250 __submit_bio(F2FS_I_SB(inode), bio, DATA); 1251 return 0; 1252 } 1253 1254 static int f2fs_read_data_page(struct file *file, struct page *page) 1255 { 1256 struct inode *inode = page->mapping->host; 1257 int ret = -EAGAIN; 1258 1259 trace_f2fs_readpage(page, DATA); 1260 1261 /* If the file has inline data, try to read it directly */ 1262 if (f2fs_has_inline_data(inode)) 1263 ret = f2fs_read_inline_data(inode, page); 1264 if (ret == -EAGAIN) 1265 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1); 1266 return ret; 1267 } 1268 1269 static int f2fs_read_data_pages(struct file *file, 1270 struct address_space *mapping, 1271 struct list_head *pages, unsigned nr_pages) 1272 { 1273 struct inode *inode = file->f_mapping->host; 1274 struct page *page = list_last_entry(pages, struct page, lru); 1275 1276 trace_f2fs_readpages(inode, page, nr_pages); 1277 1278 /* If the file has inline data, skip readpages */ 1279 if (f2fs_has_inline_data(inode)) 1280 return 0; 1281 1282 return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages); 1283 } 1284 1285 int do_write_data_page(struct f2fs_io_info *fio) 1286 { 1287 struct page *page = fio->page; 1288 struct inode *inode = page->mapping->host; 1289 struct dnode_of_data dn; 1290 int err = 0; 1291 1292 set_new_dnode(&dn, inode, NULL, NULL, 0); 1293 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE); 1294 if (err) 1295 return err; 1296 1297 fio->old_blkaddr = dn.data_blkaddr; 1298 1299 /* This page is already truncated */ 1300 if (fio->old_blkaddr == NULL_ADDR) { 1301 ClearPageUptodate(page); 1302 goto out_writepage; 1303 } 1304 1305 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) { 1306 gfp_t gfp_flags = GFP_NOFS; 1307 1308 /* wait for GCed encrypted page writeback */ 1309 f2fs_wait_on_encrypted_page_writeback(F2FS_I_SB(inode), 1310 fio->old_blkaddr); 1311 retry_encrypt: 1312 fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page, 1313 PAGE_SIZE, 0, 1314 fio->page->index, 1315 gfp_flags); 1316 if (IS_ERR(fio->encrypted_page)) { 1317 err = PTR_ERR(fio->encrypted_page); 1318 if (err == -ENOMEM) { 1319 /* flush pending ios and wait for a while */ 1320 f2fs_flush_merged_bios(F2FS_I_SB(inode)); 1321 congestion_wait(BLK_RW_ASYNC, HZ/50); 1322 gfp_flags |= __GFP_NOFAIL; 1323 err = 0; 1324 goto retry_encrypt; 1325 } 1326 goto out_writepage; 1327 } 1328 } 1329 1330 set_page_writeback(page); 1331 1332 /* 1333 * If current allocation needs SSR, 1334 * it had better in-place writes for updated data. 1335 */ 1336 if (unlikely(fio->old_blkaddr != NEW_ADDR && 1337 !is_cold_data(page) && 1338 !IS_ATOMIC_WRITTEN_PAGE(page) && 1339 need_inplace_update(inode))) { 1340 rewrite_data_page(fio); 1341 set_inode_flag(inode, FI_UPDATE_WRITE); 1342 trace_f2fs_do_write_data_page(page, IPU); 1343 } else { 1344 write_data_page(&dn, fio); 1345 trace_f2fs_do_write_data_page(page, OPU); 1346 set_inode_flag(inode, FI_APPEND_WRITE); 1347 if (page->index == 0) 1348 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); 1349 } 1350 out_writepage: 1351 f2fs_put_dnode(&dn); 1352 return err; 1353 } 1354 1355 static int __write_data_page(struct page *page, bool *submitted, 1356 struct writeback_control *wbc) 1357 { 1358 struct inode *inode = page->mapping->host; 1359 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1360 loff_t i_size = i_size_read(inode); 1361 const pgoff_t end_index = ((unsigned long long) i_size) 1362 >> PAGE_SHIFT; 1363 loff_t psize = (page->index + 1) << PAGE_SHIFT; 1364 unsigned offset = 0; 1365 bool need_balance_fs = false; 1366 int err = 0; 1367 struct f2fs_io_info fio = { 1368 .sbi = sbi, 1369 .type = DATA, 1370 .op = REQ_OP_WRITE, 1371 .op_flags = wbc_to_write_flags(wbc), 1372 .page = page, 1373 .encrypted_page = NULL, 1374 .submitted = false, 1375 }; 1376 1377 trace_f2fs_writepage(page, DATA); 1378 1379 if (page->index < end_index) 1380 goto write; 1381 1382 /* 1383 * If the offset is out-of-range of file size, 1384 * this page does not have to be written to disk. 1385 */ 1386 offset = i_size & (PAGE_SIZE - 1); 1387 if ((page->index >= end_index + 1) || !offset) 1388 goto out; 1389 1390 zero_user_segment(page, offset, PAGE_SIZE); 1391 write: 1392 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1393 goto redirty_out; 1394 if (f2fs_is_drop_cache(inode)) 1395 goto out; 1396 /* we should not write 0'th page having journal header */ 1397 if (f2fs_is_volatile_file(inode) && (!page->index || 1398 (!wbc->for_reclaim && 1399 available_free_memory(sbi, BASE_CHECK)))) 1400 goto redirty_out; 1401 1402 /* we should bypass data pages to proceed the kworkder jobs */ 1403 if (unlikely(f2fs_cp_error(sbi))) { 1404 mapping_set_error(page->mapping, -EIO); 1405 goto out; 1406 } 1407 1408 /* Dentry blocks are controlled by checkpoint */ 1409 if (S_ISDIR(inode->i_mode)) { 1410 err = do_write_data_page(&fio); 1411 goto done; 1412 } 1413 1414 if (!wbc->for_reclaim) 1415 need_balance_fs = true; 1416 else if (has_not_enough_free_secs(sbi, 0, 0)) 1417 goto redirty_out; 1418 1419 err = -EAGAIN; 1420 if (f2fs_has_inline_data(inode)) { 1421 err = f2fs_write_inline_data(inode, page); 1422 if (!err) 1423 goto out; 1424 } 1425 f2fs_lock_op(sbi); 1426 if (err == -EAGAIN) 1427 err = do_write_data_page(&fio); 1428 if (F2FS_I(inode)->last_disk_size < psize) 1429 F2FS_I(inode)->last_disk_size = psize; 1430 f2fs_unlock_op(sbi); 1431 done: 1432 if (err && err != -ENOENT) 1433 goto redirty_out; 1434 1435 out: 1436 inode_dec_dirty_pages(inode); 1437 if (err) 1438 ClearPageUptodate(page); 1439 1440 if (wbc->for_reclaim) { 1441 f2fs_submit_merged_bio_cond(sbi, inode, 0, page->index, 1442 DATA, WRITE); 1443 remove_dirty_inode(inode); 1444 submitted = NULL; 1445 } 1446 1447 unlock_page(page); 1448 f2fs_balance_fs(sbi, need_balance_fs); 1449 1450 if (unlikely(f2fs_cp_error(sbi))) { 1451 f2fs_submit_merged_bio(sbi, DATA, WRITE); 1452 submitted = NULL; 1453 } 1454 1455 if (submitted) 1456 *submitted = fio.submitted; 1457 1458 return 0; 1459 1460 redirty_out: 1461 redirty_page_for_writepage(wbc, page); 1462 if (!err) 1463 return AOP_WRITEPAGE_ACTIVATE; 1464 unlock_page(page); 1465 return err; 1466 } 1467 1468 static int f2fs_write_data_page(struct page *page, 1469 struct writeback_control *wbc) 1470 { 1471 return __write_data_page(page, NULL, wbc); 1472 } 1473 1474 /* 1475 * This function was copied from write_cche_pages from mm/page-writeback.c. 1476 * The major change is making write step of cold data page separately from 1477 * warm/hot data page. 1478 */ 1479 static int f2fs_write_cache_pages(struct address_space *mapping, 1480 struct writeback_control *wbc) 1481 { 1482 int ret = 0; 1483 int done = 0; 1484 struct pagevec pvec; 1485 int nr_pages; 1486 pgoff_t uninitialized_var(writeback_index); 1487 pgoff_t index; 1488 pgoff_t end; /* Inclusive */ 1489 pgoff_t done_index; 1490 pgoff_t last_idx = ULONG_MAX; 1491 int cycled; 1492 int range_whole = 0; 1493 int tag; 1494 1495 pagevec_init(&pvec, 0); 1496 1497 if (wbc->range_cyclic) { 1498 writeback_index = mapping->writeback_index; /* prev offset */ 1499 index = writeback_index; 1500 if (index == 0) 1501 cycled = 1; 1502 else 1503 cycled = 0; 1504 end = -1; 1505 } else { 1506 index = wbc->range_start >> PAGE_SHIFT; 1507 end = wbc->range_end >> PAGE_SHIFT; 1508 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 1509 range_whole = 1; 1510 cycled = 1; /* ignore range_cyclic tests */ 1511 } 1512 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 1513 tag = PAGECACHE_TAG_TOWRITE; 1514 else 1515 tag = PAGECACHE_TAG_DIRTY; 1516 retry: 1517 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 1518 tag_pages_for_writeback(mapping, index, end); 1519 done_index = index; 1520 while (!done && (index <= end)) { 1521 int i; 1522 1523 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 1524 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1); 1525 if (nr_pages == 0) 1526 break; 1527 1528 for (i = 0; i < nr_pages; i++) { 1529 struct page *page = pvec.pages[i]; 1530 bool submitted = false; 1531 1532 if (page->index > end) { 1533 done = 1; 1534 break; 1535 } 1536 1537 done_index = page->index; 1538 1539 lock_page(page); 1540 1541 if (unlikely(page->mapping != mapping)) { 1542 continue_unlock: 1543 unlock_page(page); 1544 continue; 1545 } 1546 1547 if (!PageDirty(page)) { 1548 /* someone wrote it for us */ 1549 goto continue_unlock; 1550 } 1551 1552 if (PageWriteback(page)) { 1553 if (wbc->sync_mode != WB_SYNC_NONE) 1554 f2fs_wait_on_page_writeback(page, 1555 DATA, true); 1556 else 1557 goto continue_unlock; 1558 } 1559 1560 BUG_ON(PageWriteback(page)); 1561 if (!clear_page_dirty_for_io(page)) 1562 goto continue_unlock; 1563 1564 ret = __write_data_page(page, &submitted, wbc); 1565 if (unlikely(ret)) { 1566 /* 1567 * keep nr_to_write, since vfs uses this to 1568 * get # of written pages. 1569 */ 1570 if (ret == AOP_WRITEPAGE_ACTIVATE) { 1571 unlock_page(page); 1572 ret = 0; 1573 continue; 1574 } 1575 done_index = page->index + 1; 1576 done = 1; 1577 break; 1578 } else if (submitted) { 1579 last_idx = page->index; 1580 } 1581 1582 if (--wbc->nr_to_write <= 0 && 1583 wbc->sync_mode == WB_SYNC_NONE) { 1584 done = 1; 1585 break; 1586 } 1587 } 1588 pagevec_release(&pvec); 1589 cond_resched(); 1590 } 1591 1592 if (!cycled && !done) { 1593 cycled = 1; 1594 index = 0; 1595 end = writeback_index - 1; 1596 goto retry; 1597 } 1598 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 1599 mapping->writeback_index = done_index; 1600 1601 if (last_idx != ULONG_MAX) 1602 f2fs_submit_merged_bio_cond(F2FS_M_SB(mapping), mapping->host, 1603 0, last_idx, DATA, WRITE); 1604 1605 return ret; 1606 } 1607 1608 static int f2fs_write_data_pages(struct address_space *mapping, 1609 struct writeback_control *wbc) 1610 { 1611 struct inode *inode = mapping->host; 1612 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1613 struct blk_plug plug; 1614 int ret; 1615 1616 /* deal with chardevs and other special file */ 1617 if (!mapping->a_ops->writepage) 1618 return 0; 1619 1620 /* skip writing if there is no dirty page in this inode */ 1621 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE) 1622 return 0; 1623 1624 if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE && 1625 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) && 1626 available_free_memory(sbi, DIRTY_DENTS)) 1627 goto skip_write; 1628 1629 /* skip writing during file defragment */ 1630 if (is_inode_flag_set(inode, FI_DO_DEFRAG)) 1631 goto skip_write; 1632 1633 /* during POR, we don't need to trigger writepage at all. */ 1634 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1635 goto skip_write; 1636 1637 trace_f2fs_writepages(mapping->host, wbc, DATA); 1638 1639 blk_start_plug(&plug); 1640 ret = f2fs_write_cache_pages(mapping, wbc); 1641 blk_finish_plug(&plug); 1642 /* 1643 * if some pages were truncated, we cannot guarantee its mapping->host 1644 * to detect pending bios. 1645 */ 1646 1647 remove_dirty_inode(inode); 1648 return ret; 1649 1650 skip_write: 1651 wbc->pages_skipped += get_dirty_pages(inode); 1652 trace_f2fs_writepages(mapping->host, wbc, DATA); 1653 return 0; 1654 } 1655 1656 static void f2fs_write_failed(struct address_space *mapping, loff_t to) 1657 { 1658 struct inode *inode = mapping->host; 1659 loff_t i_size = i_size_read(inode); 1660 1661 if (to > i_size) { 1662 truncate_pagecache(inode, i_size); 1663 truncate_blocks(inode, i_size, true); 1664 } 1665 } 1666 1667 static int prepare_write_begin(struct f2fs_sb_info *sbi, 1668 struct page *page, loff_t pos, unsigned len, 1669 block_t *blk_addr, bool *node_changed) 1670 { 1671 struct inode *inode = page->mapping->host; 1672 pgoff_t index = page->index; 1673 struct dnode_of_data dn; 1674 struct page *ipage; 1675 bool locked = false; 1676 struct extent_info ei = {0,0,0}; 1677 int err = 0; 1678 1679 /* 1680 * we already allocated all the blocks, so we don't need to get 1681 * the block addresses when there is no need to fill the page. 1682 */ 1683 if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE && 1684 !is_inode_flag_set(inode, FI_NO_PREALLOC)) 1685 return 0; 1686 1687 if (f2fs_has_inline_data(inode) || 1688 (pos & PAGE_MASK) >= i_size_read(inode)) { 1689 f2fs_lock_op(sbi); 1690 locked = true; 1691 } 1692 restart: 1693 /* check inline_data */ 1694 ipage = get_node_page(sbi, inode->i_ino); 1695 if (IS_ERR(ipage)) { 1696 err = PTR_ERR(ipage); 1697 goto unlock_out; 1698 } 1699 1700 set_new_dnode(&dn, inode, ipage, ipage, 0); 1701 1702 if (f2fs_has_inline_data(inode)) { 1703 if (pos + len <= MAX_INLINE_DATA) { 1704 read_inline_data(page, ipage); 1705 set_inode_flag(inode, FI_DATA_EXIST); 1706 if (inode->i_nlink) 1707 set_inline_node(ipage); 1708 } else { 1709 err = f2fs_convert_inline_page(&dn, page); 1710 if (err) 1711 goto out; 1712 if (dn.data_blkaddr == NULL_ADDR) 1713 err = f2fs_get_block(&dn, index); 1714 } 1715 } else if (locked) { 1716 err = f2fs_get_block(&dn, index); 1717 } else { 1718 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 1719 dn.data_blkaddr = ei.blk + index - ei.fofs; 1720 } else { 1721 /* hole case */ 1722 err = get_dnode_of_data(&dn, index, LOOKUP_NODE); 1723 if (err || dn.data_blkaddr == NULL_ADDR) { 1724 f2fs_put_dnode(&dn); 1725 f2fs_lock_op(sbi); 1726 locked = true; 1727 goto restart; 1728 } 1729 } 1730 } 1731 1732 /* convert_inline_page can make node_changed */ 1733 *blk_addr = dn.data_blkaddr; 1734 *node_changed = dn.node_changed; 1735 out: 1736 f2fs_put_dnode(&dn); 1737 unlock_out: 1738 if (locked) 1739 f2fs_unlock_op(sbi); 1740 return err; 1741 } 1742 1743 static int f2fs_write_begin(struct file *file, struct address_space *mapping, 1744 loff_t pos, unsigned len, unsigned flags, 1745 struct page **pagep, void **fsdata) 1746 { 1747 struct inode *inode = mapping->host; 1748 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1749 struct page *page = NULL; 1750 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT; 1751 bool need_balance = false; 1752 block_t blkaddr = NULL_ADDR; 1753 int err = 0; 1754 1755 trace_f2fs_write_begin(inode, pos, len, flags); 1756 1757 /* 1758 * We should check this at this moment to avoid deadlock on inode page 1759 * and #0 page. The locking rule for inline_data conversion should be: 1760 * lock_page(page #0) -> lock_page(inode_page) 1761 */ 1762 if (index != 0) { 1763 err = f2fs_convert_inline_inode(inode); 1764 if (err) 1765 goto fail; 1766 } 1767 repeat: 1768 /* 1769 * Do not use grab_cache_page_write_begin() to avoid deadlock due to 1770 * wait_for_stable_page. Will wait that below with our IO control. 1771 */ 1772 page = pagecache_get_page(mapping, index, 1773 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS); 1774 if (!page) { 1775 err = -ENOMEM; 1776 goto fail; 1777 } 1778 1779 *pagep = page; 1780 1781 err = prepare_write_begin(sbi, page, pos, len, 1782 &blkaddr, &need_balance); 1783 if (err) 1784 goto fail; 1785 1786 if (need_balance && has_not_enough_free_secs(sbi, 0, 0)) { 1787 unlock_page(page); 1788 f2fs_balance_fs(sbi, true); 1789 lock_page(page); 1790 if (page->mapping != mapping) { 1791 /* The page got truncated from under us */ 1792 f2fs_put_page(page, 1); 1793 goto repeat; 1794 } 1795 } 1796 1797 f2fs_wait_on_page_writeback(page, DATA, false); 1798 1799 /* wait for GCed encrypted page writeback */ 1800 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) 1801 f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr); 1802 1803 if (len == PAGE_SIZE || PageUptodate(page)) 1804 return 0; 1805 1806 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode)) { 1807 zero_user_segment(page, len, PAGE_SIZE); 1808 return 0; 1809 } 1810 1811 if (blkaddr == NEW_ADDR) { 1812 zero_user_segment(page, 0, PAGE_SIZE); 1813 SetPageUptodate(page); 1814 } else { 1815 struct bio *bio; 1816 1817 bio = f2fs_grab_bio(inode, blkaddr, 1); 1818 if (IS_ERR(bio)) { 1819 err = PTR_ERR(bio); 1820 goto fail; 1821 } 1822 bio->bi_opf = REQ_OP_READ; 1823 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 1824 bio_put(bio); 1825 err = -EFAULT; 1826 goto fail; 1827 } 1828 1829 __submit_bio(sbi, bio, DATA); 1830 1831 lock_page(page); 1832 if (unlikely(page->mapping != mapping)) { 1833 f2fs_put_page(page, 1); 1834 goto repeat; 1835 } 1836 if (unlikely(!PageUptodate(page))) { 1837 err = -EIO; 1838 goto fail; 1839 } 1840 } 1841 return 0; 1842 1843 fail: 1844 f2fs_put_page(page, 1); 1845 f2fs_write_failed(mapping, pos + len); 1846 return err; 1847 } 1848 1849 static int f2fs_write_end(struct file *file, 1850 struct address_space *mapping, 1851 loff_t pos, unsigned len, unsigned copied, 1852 struct page *page, void *fsdata) 1853 { 1854 struct inode *inode = page->mapping->host; 1855 1856 trace_f2fs_write_end(inode, pos, len, copied); 1857 1858 /* 1859 * This should be come from len == PAGE_SIZE, and we expect copied 1860 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and 1861 * let generic_perform_write() try to copy data again through copied=0. 1862 */ 1863 if (!PageUptodate(page)) { 1864 if (unlikely(copied != len)) 1865 copied = 0; 1866 else 1867 SetPageUptodate(page); 1868 } 1869 if (!copied) 1870 goto unlock_out; 1871 1872 set_page_dirty(page); 1873 1874 if (pos + copied > i_size_read(inode)) 1875 f2fs_i_size_write(inode, pos + copied); 1876 unlock_out: 1877 f2fs_put_page(page, 1); 1878 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 1879 return copied; 1880 } 1881 1882 static int check_direct_IO(struct inode *inode, struct iov_iter *iter, 1883 loff_t offset) 1884 { 1885 unsigned blocksize_mask = inode->i_sb->s_blocksize - 1; 1886 1887 if (offset & blocksize_mask) 1888 return -EINVAL; 1889 1890 if (iov_iter_alignment(iter) & blocksize_mask) 1891 return -EINVAL; 1892 1893 return 0; 1894 } 1895 1896 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 1897 { 1898 struct address_space *mapping = iocb->ki_filp->f_mapping; 1899 struct inode *inode = mapping->host; 1900 size_t count = iov_iter_count(iter); 1901 loff_t offset = iocb->ki_pos; 1902 int rw = iov_iter_rw(iter); 1903 int err; 1904 1905 err = check_direct_IO(inode, iter, offset); 1906 if (err) 1907 return err; 1908 1909 if (__force_buffered_io(inode, rw)) 1910 return 0; 1911 1912 trace_f2fs_direct_IO_enter(inode, offset, count, rw); 1913 1914 down_read(&F2FS_I(inode)->dio_rwsem[rw]); 1915 err = blockdev_direct_IO(iocb, inode, iter, get_data_block_dio); 1916 up_read(&F2FS_I(inode)->dio_rwsem[rw]); 1917 1918 if (rw == WRITE) { 1919 if (err > 0) 1920 set_inode_flag(inode, FI_UPDATE_WRITE); 1921 else if (err < 0) 1922 f2fs_write_failed(mapping, offset + count); 1923 } 1924 1925 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err); 1926 1927 return err; 1928 } 1929 1930 void f2fs_invalidate_page(struct page *page, unsigned int offset, 1931 unsigned int length) 1932 { 1933 struct inode *inode = page->mapping->host; 1934 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1935 1936 if (inode->i_ino >= F2FS_ROOT_INO(sbi) && 1937 (offset % PAGE_SIZE || length != PAGE_SIZE)) 1938 return; 1939 1940 if (PageDirty(page)) { 1941 if (inode->i_ino == F2FS_META_INO(sbi)) { 1942 dec_page_count(sbi, F2FS_DIRTY_META); 1943 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) { 1944 dec_page_count(sbi, F2FS_DIRTY_NODES); 1945 } else { 1946 inode_dec_dirty_pages(inode); 1947 remove_dirty_inode(inode); 1948 } 1949 } 1950 1951 /* This is atomic written page, keep Private */ 1952 if (IS_ATOMIC_WRITTEN_PAGE(page)) 1953 return; 1954 1955 set_page_private(page, 0); 1956 ClearPagePrivate(page); 1957 } 1958 1959 int f2fs_release_page(struct page *page, gfp_t wait) 1960 { 1961 /* If this is dirty page, keep PagePrivate */ 1962 if (PageDirty(page)) 1963 return 0; 1964 1965 /* This is atomic written page, keep Private */ 1966 if (IS_ATOMIC_WRITTEN_PAGE(page)) 1967 return 0; 1968 1969 set_page_private(page, 0); 1970 ClearPagePrivate(page); 1971 return 1; 1972 } 1973 1974 /* 1975 * This was copied from __set_page_dirty_buffers which gives higher performance 1976 * in very high speed storages. (e.g., pmem) 1977 */ 1978 void f2fs_set_page_dirty_nobuffers(struct page *page) 1979 { 1980 struct address_space *mapping = page->mapping; 1981 unsigned long flags; 1982 1983 if (unlikely(!mapping)) 1984 return; 1985 1986 spin_lock(&mapping->private_lock); 1987 lock_page_memcg(page); 1988 SetPageDirty(page); 1989 spin_unlock(&mapping->private_lock); 1990 1991 spin_lock_irqsave(&mapping->tree_lock, flags); 1992 WARN_ON_ONCE(!PageUptodate(page)); 1993 account_page_dirtied(page, mapping); 1994 radix_tree_tag_set(&mapping->page_tree, 1995 page_index(page), PAGECACHE_TAG_DIRTY); 1996 spin_unlock_irqrestore(&mapping->tree_lock, flags); 1997 unlock_page_memcg(page); 1998 1999 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 2000 return; 2001 } 2002 2003 static int f2fs_set_data_page_dirty(struct page *page) 2004 { 2005 struct address_space *mapping = page->mapping; 2006 struct inode *inode = mapping->host; 2007 2008 trace_f2fs_set_page_dirty(page, DATA); 2009 2010 if (!PageUptodate(page)) 2011 SetPageUptodate(page); 2012 2013 if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) { 2014 if (!IS_ATOMIC_WRITTEN_PAGE(page)) { 2015 register_inmem_page(inode, page); 2016 return 1; 2017 } 2018 /* 2019 * Previously, this page has been registered, we just 2020 * return here. 2021 */ 2022 return 0; 2023 } 2024 2025 if (!PageDirty(page)) { 2026 f2fs_set_page_dirty_nobuffers(page); 2027 update_dirty_page(inode, page); 2028 return 1; 2029 } 2030 return 0; 2031 } 2032 2033 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block) 2034 { 2035 struct inode *inode = mapping->host; 2036 2037 if (f2fs_has_inline_data(inode)) 2038 return 0; 2039 2040 /* make sure allocating whole blocks */ 2041 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2042 filemap_write_and_wait(mapping); 2043 2044 return generic_block_bmap(mapping, block, get_data_block_bmap); 2045 } 2046 2047 #ifdef CONFIG_MIGRATION 2048 #include <linux/migrate.h> 2049 2050 int f2fs_migrate_page(struct address_space *mapping, 2051 struct page *newpage, struct page *page, enum migrate_mode mode) 2052 { 2053 int rc, extra_count; 2054 struct f2fs_inode_info *fi = F2FS_I(mapping->host); 2055 bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page); 2056 2057 BUG_ON(PageWriteback(page)); 2058 2059 /* migrating an atomic written page is safe with the inmem_lock hold */ 2060 if (atomic_written && !mutex_trylock(&fi->inmem_lock)) 2061 return -EAGAIN; 2062 2063 /* 2064 * A reference is expected if PagePrivate set when move mapping, 2065 * however F2FS breaks this for maintaining dirty page counts when 2066 * truncating pages. So here adjusting the 'extra_count' make it work. 2067 */ 2068 extra_count = (atomic_written ? 1 : 0) - page_has_private(page); 2069 rc = migrate_page_move_mapping(mapping, newpage, 2070 page, NULL, mode, extra_count); 2071 if (rc != MIGRATEPAGE_SUCCESS) { 2072 if (atomic_written) 2073 mutex_unlock(&fi->inmem_lock); 2074 return rc; 2075 } 2076 2077 if (atomic_written) { 2078 struct inmem_pages *cur; 2079 list_for_each_entry(cur, &fi->inmem_pages, list) 2080 if (cur->page == page) { 2081 cur->page = newpage; 2082 break; 2083 } 2084 mutex_unlock(&fi->inmem_lock); 2085 put_page(page); 2086 get_page(newpage); 2087 } 2088 2089 if (PagePrivate(page)) 2090 SetPagePrivate(newpage); 2091 set_page_private(newpage, page_private(page)); 2092 2093 migrate_page_copy(newpage, page); 2094 2095 return MIGRATEPAGE_SUCCESS; 2096 } 2097 #endif 2098 2099 const struct address_space_operations f2fs_dblock_aops = { 2100 .readpage = f2fs_read_data_page, 2101 .readpages = f2fs_read_data_pages, 2102 .writepage = f2fs_write_data_page, 2103 .writepages = f2fs_write_data_pages, 2104 .write_begin = f2fs_write_begin, 2105 .write_end = f2fs_write_end, 2106 .set_page_dirty = f2fs_set_data_page_dirty, 2107 .invalidatepage = f2fs_invalidate_page, 2108 .releasepage = f2fs_release_page, 2109 .direct_IO = f2fs_direct_IO, 2110 .bmap = f2fs_bmap, 2111 #ifdef CONFIG_MIGRATION 2112 .migratepage = f2fs_migrate_page, 2113 #endif 2114 }; 2115