xref: /linux/fs/f2fs/data.c (revision 4c62e9764ab403d42f9b8871b1241fe7812f19d4)
1 /*
2  * fs/f2fs/data.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/writeback.h>
16 #include <linux/backing-dev.h>
17 #include <linux/blkdev.h>
18 #include <linux/bio.h>
19 
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 
24 /*
25  * Lock ordering for the change of data block address:
26  * ->data_page
27  *  ->node_page
28  *    update block addresses in the node page
29  */
30 static void __set_data_blkaddr(struct dnode_of_data *dn, block_t new_addr)
31 {
32 	struct f2fs_node *rn;
33 	__le32 *addr_array;
34 	struct page *node_page = dn->node_page;
35 	unsigned int ofs_in_node = dn->ofs_in_node;
36 
37 	wait_on_page_writeback(node_page);
38 
39 	rn = (struct f2fs_node *)page_address(node_page);
40 
41 	/* Get physical address of data block */
42 	addr_array = blkaddr_in_node(rn);
43 	addr_array[ofs_in_node] = cpu_to_le32(new_addr);
44 	set_page_dirty(node_page);
45 }
46 
47 int reserve_new_block(struct dnode_of_data *dn)
48 {
49 	struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
50 
51 	if (is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC))
52 		return -EPERM;
53 	if (!inc_valid_block_count(sbi, dn->inode, 1))
54 		return -ENOSPC;
55 
56 	__set_data_blkaddr(dn, NEW_ADDR);
57 	dn->data_blkaddr = NEW_ADDR;
58 	sync_inode_page(dn);
59 	return 0;
60 }
61 
62 static int check_extent_cache(struct inode *inode, pgoff_t pgofs,
63 					struct buffer_head *bh_result)
64 {
65 	struct f2fs_inode_info *fi = F2FS_I(inode);
66 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
67 	pgoff_t start_fofs, end_fofs;
68 	block_t start_blkaddr;
69 
70 	read_lock(&fi->ext.ext_lock);
71 	if (fi->ext.len == 0) {
72 		read_unlock(&fi->ext.ext_lock);
73 		return 0;
74 	}
75 
76 	sbi->total_hit_ext++;
77 	start_fofs = fi->ext.fofs;
78 	end_fofs = fi->ext.fofs + fi->ext.len - 1;
79 	start_blkaddr = fi->ext.blk_addr;
80 
81 	if (pgofs >= start_fofs && pgofs <= end_fofs) {
82 		unsigned int blkbits = inode->i_sb->s_blocksize_bits;
83 		size_t count;
84 
85 		clear_buffer_new(bh_result);
86 		map_bh(bh_result, inode->i_sb,
87 				start_blkaddr + pgofs - start_fofs);
88 		count = end_fofs - pgofs + 1;
89 		if (count < (UINT_MAX >> blkbits))
90 			bh_result->b_size = (count << blkbits);
91 		else
92 			bh_result->b_size = UINT_MAX;
93 
94 		sbi->read_hit_ext++;
95 		read_unlock(&fi->ext.ext_lock);
96 		return 1;
97 	}
98 	read_unlock(&fi->ext.ext_lock);
99 	return 0;
100 }
101 
102 void update_extent_cache(block_t blk_addr, struct dnode_of_data *dn)
103 {
104 	struct f2fs_inode_info *fi = F2FS_I(dn->inode);
105 	pgoff_t fofs, start_fofs, end_fofs;
106 	block_t start_blkaddr, end_blkaddr;
107 
108 	BUG_ON(blk_addr == NEW_ADDR);
109 	fofs = start_bidx_of_node(ofs_of_node(dn->node_page)) + dn->ofs_in_node;
110 
111 	/* Update the page address in the parent node */
112 	__set_data_blkaddr(dn, blk_addr);
113 
114 	write_lock(&fi->ext.ext_lock);
115 
116 	start_fofs = fi->ext.fofs;
117 	end_fofs = fi->ext.fofs + fi->ext.len - 1;
118 	start_blkaddr = fi->ext.blk_addr;
119 	end_blkaddr = fi->ext.blk_addr + fi->ext.len - 1;
120 
121 	/* Drop and initialize the matched extent */
122 	if (fi->ext.len == 1 && fofs == start_fofs)
123 		fi->ext.len = 0;
124 
125 	/* Initial extent */
126 	if (fi->ext.len == 0) {
127 		if (blk_addr != NULL_ADDR) {
128 			fi->ext.fofs = fofs;
129 			fi->ext.blk_addr = blk_addr;
130 			fi->ext.len = 1;
131 		}
132 		goto end_update;
133 	}
134 
135 	/* Frone merge */
136 	if (fofs == start_fofs - 1 && blk_addr == start_blkaddr - 1) {
137 		fi->ext.fofs--;
138 		fi->ext.blk_addr--;
139 		fi->ext.len++;
140 		goto end_update;
141 	}
142 
143 	/* Back merge */
144 	if (fofs == end_fofs + 1 && blk_addr == end_blkaddr + 1) {
145 		fi->ext.len++;
146 		goto end_update;
147 	}
148 
149 	/* Split the existing extent */
150 	if (fi->ext.len > 1 &&
151 		fofs >= start_fofs && fofs <= end_fofs) {
152 		if ((end_fofs - fofs) < (fi->ext.len >> 1)) {
153 			fi->ext.len = fofs - start_fofs;
154 		} else {
155 			fi->ext.fofs = fofs + 1;
156 			fi->ext.blk_addr = start_blkaddr +
157 					fofs - start_fofs + 1;
158 			fi->ext.len -= fofs - start_fofs + 1;
159 		}
160 		goto end_update;
161 	}
162 	write_unlock(&fi->ext.ext_lock);
163 	return;
164 
165 end_update:
166 	write_unlock(&fi->ext.ext_lock);
167 	sync_inode_page(dn);
168 	return;
169 }
170 
171 struct page *find_data_page(struct inode *inode, pgoff_t index)
172 {
173 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
174 	struct address_space *mapping = inode->i_mapping;
175 	struct dnode_of_data dn;
176 	struct page *page;
177 	int err;
178 
179 	page = find_get_page(mapping, index);
180 	if (page && PageUptodate(page))
181 		return page;
182 	f2fs_put_page(page, 0);
183 
184 	set_new_dnode(&dn, inode, NULL, NULL, 0);
185 	err = get_dnode_of_data(&dn, index, RDONLY_NODE);
186 	if (err)
187 		return ERR_PTR(err);
188 	f2fs_put_dnode(&dn);
189 
190 	if (dn.data_blkaddr == NULL_ADDR)
191 		return ERR_PTR(-ENOENT);
192 
193 	/* By fallocate(), there is no cached page, but with NEW_ADDR */
194 	if (dn.data_blkaddr == NEW_ADDR)
195 		return ERR_PTR(-EINVAL);
196 
197 	page = grab_cache_page(mapping, index);
198 	if (!page)
199 		return ERR_PTR(-ENOMEM);
200 
201 	err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC);
202 	if (err) {
203 		f2fs_put_page(page, 1);
204 		return ERR_PTR(err);
205 	}
206 	unlock_page(page);
207 	return page;
208 }
209 
210 /*
211  * If it tries to access a hole, return an error.
212  * Because, the callers, functions in dir.c and GC, should be able to know
213  * whether this page exists or not.
214  */
215 struct page *get_lock_data_page(struct inode *inode, pgoff_t index)
216 {
217 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
218 	struct address_space *mapping = inode->i_mapping;
219 	struct dnode_of_data dn;
220 	struct page *page;
221 	int err;
222 
223 	set_new_dnode(&dn, inode, NULL, NULL, 0);
224 	err = get_dnode_of_data(&dn, index, RDONLY_NODE);
225 	if (err)
226 		return ERR_PTR(err);
227 	f2fs_put_dnode(&dn);
228 
229 	if (dn.data_blkaddr == NULL_ADDR)
230 		return ERR_PTR(-ENOENT);
231 
232 	page = grab_cache_page(mapping, index);
233 	if (!page)
234 		return ERR_PTR(-ENOMEM);
235 
236 	if (PageUptodate(page))
237 		return page;
238 
239 	BUG_ON(dn.data_blkaddr == NEW_ADDR);
240 	BUG_ON(dn.data_blkaddr == NULL_ADDR);
241 
242 	err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC);
243 	if (err) {
244 		f2fs_put_page(page, 1);
245 		return ERR_PTR(err);
246 	}
247 	return page;
248 }
249 
250 /*
251  * Caller ensures that this data page is never allocated.
252  * A new zero-filled data page is allocated in the page cache.
253  */
254 struct page *get_new_data_page(struct inode *inode, pgoff_t index,
255 						bool new_i_size)
256 {
257 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
258 	struct address_space *mapping = inode->i_mapping;
259 	struct page *page;
260 	struct dnode_of_data dn;
261 	int err;
262 
263 	set_new_dnode(&dn, inode, NULL, NULL, 0);
264 	err = get_dnode_of_data(&dn, index, 0);
265 	if (err)
266 		return ERR_PTR(err);
267 
268 	if (dn.data_blkaddr == NULL_ADDR) {
269 		if (reserve_new_block(&dn)) {
270 			f2fs_put_dnode(&dn);
271 			return ERR_PTR(-ENOSPC);
272 		}
273 	}
274 	f2fs_put_dnode(&dn);
275 
276 	page = grab_cache_page(mapping, index);
277 	if (!page)
278 		return ERR_PTR(-ENOMEM);
279 
280 	if (PageUptodate(page))
281 		return page;
282 
283 	if (dn.data_blkaddr == NEW_ADDR) {
284 		zero_user_segment(page, 0, PAGE_CACHE_SIZE);
285 	} else {
286 		err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC);
287 		if (err) {
288 			f2fs_put_page(page, 1);
289 			return ERR_PTR(err);
290 		}
291 	}
292 	SetPageUptodate(page);
293 
294 	if (new_i_size &&
295 		i_size_read(inode) < ((index + 1) << PAGE_CACHE_SHIFT)) {
296 		i_size_write(inode, ((index + 1) << PAGE_CACHE_SHIFT));
297 		mark_inode_dirty_sync(inode);
298 	}
299 	return page;
300 }
301 
302 static void read_end_io(struct bio *bio, int err)
303 {
304 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
305 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
306 
307 	do {
308 		struct page *page = bvec->bv_page;
309 
310 		if (--bvec >= bio->bi_io_vec)
311 			prefetchw(&bvec->bv_page->flags);
312 
313 		if (uptodate) {
314 			SetPageUptodate(page);
315 		} else {
316 			ClearPageUptodate(page);
317 			SetPageError(page);
318 		}
319 		unlock_page(page);
320 	} while (bvec >= bio->bi_io_vec);
321 	kfree(bio->bi_private);
322 	bio_put(bio);
323 }
324 
325 /*
326  * Fill the locked page with data located in the block address.
327  * Read operation is synchronous, and caller must unlock the page.
328  */
329 int f2fs_readpage(struct f2fs_sb_info *sbi, struct page *page,
330 					block_t blk_addr, int type)
331 {
332 	struct block_device *bdev = sbi->sb->s_bdev;
333 	bool sync = (type == READ_SYNC);
334 	struct bio *bio;
335 
336 	/* This page can be already read by other threads */
337 	if (PageUptodate(page)) {
338 		if (!sync)
339 			unlock_page(page);
340 		return 0;
341 	}
342 
343 	down_read(&sbi->bio_sem);
344 
345 	/* Allocate a new bio */
346 	bio = f2fs_bio_alloc(bdev, 1);
347 
348 	/* Initialize the bio */
349 	bio->bi_sector = SECTOR_FROM_BLOCK(sbi, blk_addr);
350 	bio->bi_end_io = read_end_io;
351 
352 	if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) {
353 		kfree(bio->bi_private);
354 		bio_put(bio);
355 		up_read(&sbi->bio_sem);
356 		return -EFAULT;
357 	}
358 
359 	submit_bio(type, bio);
360 	up_read(&sbi->bio_sem);
361 
362 	/* wait for read completion if sync */
363 	if (sync) {
364 		lock_page(page);
365 		if (PageError(page))
366 			return -EIO;
367 	}
368 	return 0;
369 }
370 
371 /*
372  * This function should be used by the data read flow only where it
373  * does not check the "create" flag that indicates block allocation.
374  * The reason for this special functionality is to exploit VFS readahead
375  * mechanism.
376  */
377 static int get_data_block_ro(struct inode *inode, sector_t iblock,
378 			struct buffer_head *bh_result, int create)
379 {
380 	unsigned int blkbits = inode->i_sb->s_blocksize_bits;
381 	unsigned maxblocks = bh_result->b_size >> blkbits;
382 	struct dnode_of_data dn;
383 	pgoff_t pgofs;
384 	int err;
385 
386 	/* Get the page offset from the block offset(iblock) */
387 	pgofs =	(pgoff_t)(iblock >> (PAGE_CACHE_SHIFT - blkbits));
388 
389 	if (check_extent_cache(inode, pgofs, bh_result))
390 		return 0;
391 
392 	/* When reading holes, we need its node page */
393 	set_new_dnode(&dn, inode, NULL, NULL, 0);
394 	err = get_dnode_of_data(&dn, pgofs, RDONLY_NODE);
395 	if (err)
396 		return (err == -ENOENT) ? 0 : err;
397 
398 	/* It does not support data allocation */
399 	BUG_ON(create);
400 
401 	if (dn.data_blkaddr != NEW_ADDR && dn.data_blkaddr != NULL_ADDR) {
402 		int i;
403 		unsigned int end_offset;
404 
405 		end_offset = IS_INODE(dn.node_page) ?
406 				ADDRS_PER_INODE :
407 				ADDRS_PER_BLOCK;
408 
409 		clear_buffer_new(bh_result);
410 
411 		/* Give more consecutive addresses for the read ahead */
412 		for (i = 0; i < end_offset - dn.ofs_in_node; i++)
413 			if (((datablock_addr(dn.node_page,
414 							dn.ofs_in_node + i))
415 				!= (dn.data_blkaddr + i)) || maxblocks == i)
416 				break;
417 		map_bh(bh_result, inode->i_sb, dn.data_blkaddr);
418 		bh_result->b_size = (i << blkbits);
419 	}
420 	f2fs_put_dnode(&dn);
421 	return 0;
422 }
423 
424 static int f2fs_read_data_page(struct file *file, struct page *page)
425 {
426 	return mpage_readpage(page, get_data_block_ro);
427 }
428 
429 static int f2fs_read_data_pages(struct file *file,
430 			struct address_space *mapping,
431 			struct list_head *pages, unsigned nr_pages)
432 {
433 	return mpage_readpages(mapping, pages, nr_pages, get_data_block_ro);
434 }
435 
436 int do_write_data_page(struct page *page)
437 {
438 	struct inode *inode = page->mapping->host;
439 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
440 	block_t old_blk_addr, new_blk_addr;
441 	struct dnode_of_data dn;
442 	int err = 0;
443 
444 	set_new_dnode(&dn, inode, NULL, NULL, 0);
445 	err = get_dnode_of_data(&dn, page->index, RDONLY_NODE);
446 	if (err)
447 		return err;
448 
449 	old_blk_addr = dn.data_blkaddr;
450 
451 	/* This page is already truncated */
452 	if (old_blk_addr == NULL_ADDR)
453 		goto out_writepage;
454 
455 	set_page_writeback(page);
456 
457 	/*
458 	 * If current allocation needs SSR,
459 	 * it had better in-place writes for updated data.
460 	 */
461 	if (old_blk_addr != NEW_ADDR && !is_cold_data(page) &&
462 				need_inplace_update(inode)) {
463 		rewrite_data_page(F2FS_SB(inode->i_sb), page,
464 						old_blk_addr);
465 	} else {
466 		write_data_page(inode, page, &dn,
467 				old_blk_addr, &new_blk_addr);
468 		update_extent_cache(new_blk_addr, &dn);
469 		F2FS_I(inode)->data_version =
470 			le64_to_cpu(F2FS_CKPT(sbi)->checkpoint_ver);
471 	}
472 out_writepage:
473 	f2fs_put_dnode(&dn);
474 	return err;
475 }
476 
477 static int f2fs_write_data_page(struct page *page,
478 					struct writeback_control *wbc)
479 {
480 	struct inode *inode = page->mapping->host;
481 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
482 	loff_t i_size = i_size_read(inode);
483 	const pgoff_t end_index = ((unsigned long long) i_size)
484 							>> PAGE_CACHE_SHIFT;
485 	unsigned offset;
486 	int err = 0;
487 
488 	if (page->index < end_index)
489 		goto out;
490 
491 	/*
492 	 * If the offset is out-of-range of file size,
493 	 * this page does not have to be written to disk.
494 	 */
495 	offset = i_size & (PAGE_CACHE_SIZE - 1);
496 	if ((page->index >= end_index + 1) || !offset) {
497 		if (S_ISDIR(inode->i_mode)) {
498 			dec_page_count(sbi, F2FS_DIRTY_DENTS);
499 			inode_dec_dirty_dents(inode);
500 		}
501 		goto unlock_out;
502 	}
503 
504 	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
505 out:
506 	if (sbi->por_doing)
507 		goto redirty_out;
508 
509 	if (wbc->for_reclaim && !S_ISDIR(inode->i_mode) && !is_cold_data(page))
510 		goto redirty_out;
511 
512 	mutex_lock_op(sbi, DATA_WRITE);
513 	if (S_ISDIR(inode->i_mode)) {
514 		dec_page_count(sbi, F2FS_DIRTY_DENTS);
515 		inode_dec_dirty_dents(inode);
516 	}
517 	err = do_write_data_page(page);
518 	if (err && err != -ENOENT) {
519 		wbc->pages_skipped++;
520 		set_page_dirty(page);
521 	}
522 	mutex_unlock_op(sbi, DATA_WRITE);
523 
524 	if (wbc->for_reclaim)
525 		f2fs_submit_bio(sbi, DATA, true);
526 
527 	if (err == -ENOENT)
528 		goto unlock_out;
529 
530 	clear_cold_data(page);
531 	unlock_page(page);
532 
533 	if (!wbc->for_reclaim && !S_ISDIR(inode->i_mode))
534 		f2fs_balance_fs(sbi);
535 	return 0;
536 
537 unlock_out:
538 	unlock_page(page);
539 	return (err == -ENOENT) ? 0 : err;
540 
541 redirty_out:
542 	wbc->pages_skipped++;
543 	set_page_dirty(page);
544 	return AOP_WRITEPAGE_ACTIVATE;
545 }
546 
547 #define MAX_DESIRED_PAGES_WP	4096
548 
549 static int f2fs_write_data_pages(struct address_space *mapping,
550 			    struct writeback_control *wbc)
551 {
552 	struct inode *inode = mapping->host;
553 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
554 	int ret;
555 	long excess_nrtw = 0, desired_nrtw;
556 
557 	if (wbc->nr_to_write < MAX_DESIRED_PAGES_WP) {
558 		desired_nrtw = MAX_DESIRED_PAGES_WP;
559 		excess_nrtw = desired_nrtw - wbc->nr_to_write;
560 		wbc->nr_to_write = desired_nrtw;
561 	}
562 
563 	if (!S_ISDIR(inode->i_mode))
564 		mutex_lock(&sbi->writepages);
565 	ret = generic_writepages(mapping, wbc);
566 	if (!S_ISDIR(inode->i_mode))
567 		mutex_unlock(&sbi->writepages);
568 	f2fs_submit_bio(sbi, DATA, (wbc->sync_mode == WB_SYNC_ALL));
569 
570 	remove_dirty_dir_inode(inode);
571 
572 	wbc->nr_to_write -= excess_nrtw;
573 	return ret;
574 }
575 
576 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
577 		loff_t pos, unsigned len, unsigned flags,
578 		struct page **pagep, void **fsdata)
579 {
580 	struct inode *inode = mapping->host;
581 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
582 	struct page *page;
583 	pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT;
584 	struct dnode_of_data dn;
585 	int err = 0;
586 
587 	/* for nobh_write_end */
588 	*fsdata = NULL;
589 
590 	f2fs_balance_fs(sbi);
591 
592 	page = grab_cache_page_write_begin(mapping, index, flags);
593 	if (!page)
594 		return -ENOMEM;
595 	*pagep = page;
596 
597 	mutex_lock_op(sbi, DATA_NEW);
598 
599 	set_new_dnode(&dn, inode, NULL, NULL, 0);
600 	err = get_dnode_of_data(&dn, index, 0);
601 	if (err) {
602 		mutex_unlock_op(sbi, DATA_NEW);
603 		f2fs_put_page(page, 1);
604 		return err;
605 	}
606 
607 	if (dn.data_blkaddr == NULL_ADDR) {
608 		err = reserve_new_block(&dn);
609 		if (err) {
610 			f2fs_put_dnode(&dn);
611 			mutex_unlock_op(sbi, DATA_NEW);
612 			f2fs_put_page(page, 1);
613 			return err;
614 		}
615 	}
616 	f2fs_put_dnode(&dn);
617 
618 	mutex_unlock_op(sbi, DATA_NEW);
619 
620 	if ((len == PAGE_CACHE_SIZE) || PageUptodate(page))
621 		return 0;
622 
623 	if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
624 		unsigned start = pos & (PAGE_CACHE_SIZE - 1);
625 		unsigned end = start + len;
626 
627 		/* Reading beyond i_size is simple: memset to zero */
628 		zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE);
629 		return 0;
630 	}
631 
632 	if (dn.data_blkaddr == NEW_ADDR) {
633 		zero_user_segment(page, 0, PAGE_CACHE_SIZE);
634 	} else {
635 		err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC);
636 		if (err) {
637 			f2fs_put_page(page, 1);
638 			return err;
639 		}
640 	}
641 	SetPageUptodate(page);
642 	clear_cold_data(page);
643 	return 0;
644 }
645 
646 static ssize_t f2fs_direct_IO(int rw, struct kiocb *iocb,
647 		const struct iovec *iov, loff_t offset, unsigned long nr_segs)
648 {
649 	struct file *file = iocb->ki_filp;
650 	struct inode *inode = file->f_mapping->host;
651 
652 	if (rw == WRITE)
653 		return 0;
654 
655 	/* Needs synchronization with the cleaner */
656 	return blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
657 						  get_data_block_ro);
658 }
659 
660 static void f2fs_invalidate_data_page(struct page *page, unsigned long offset)
661 {
662 	struct inode *inode = page->mapping->host;
663 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
664 	if (S_ISDIR(inode->i_mode) && PageDirty(page)) {
665 		dec_page_count(sbi, F2FS_DIRTY_DENTS);
666 		inode_dec_dirty_dents(inode);
667 	}
668 	ClearPagePrivate(page);
669 }
670 
671 static int f2fs_release_data_page(struct page *page, gfp_t wait)
672 {
673 	ClearPagePrivate(page);
674 	return 0;
675 }
676 
677 static int f2fs_set_data_page_dirty(struct page *page)
678 {
679 	struct address_space *mapping = page->mapping;
680 	struct inode *inode = mapping->host;
681 
682 	SetPageUptodate(page);
683 	if (!PageDirty(page)) {
684 		__set_page_dirty_nobuffers(page);
685 		set_dirty_dir_page(inode, page);
686 		return 1;
687 	}
688 	return 0;
689 }
690 
691 const struct address_space_operations f2fs_dblock_aops = {
692 	.readpage	= f2fs_read_data_page,
693 	.readpages	= f2fs_read_data_pages,
694 	.writepage	= f2fs_write_data_page,
695 	.writepages	= f2fs_write_data_pages,
696 	.write_begin	= f2fs_write_begin,
697 	.write_end	= nobh_write_end,
698 	.set_page_dirty	= f2fs_set_data_page_dirty,
699 	.invalidatepage	= f2fs_invalidate_data_page,
700 	.releasepage	= f2fs_release_data_page,
701 	.direct_IO	= f2fs_direct_IO,
702 };
703