1 /* 2 * fs/f2fs/data.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/buffer_head.h> 14 #include <linux/mpage.h> 15 #include <linux/writeback.h> 16 #include <linux/backing-dev.h> 17 #include <linux/pagevec.h> 18 #include <linux/blkdev.h> 19 #include <linux/bio.h> 20 #include <linux/prefetch.h> 21 #include <linux/uio.h> 22 #include <linux/cleancache.h> 23 #include <linux/sched/signal.h> 24 25 #include "f2fs.h" 26 #include "node.h" 27 #include "segment.h" 28 #include "trace.h" 29 #include <trace/events/f2fs.h> 30 31 #define NUM_PREALLOC_POST_READ_CTXS 128 32 33 static struct kmem_cache *bio_post_read_ctx_cache; 34 static mempool_t *bio_post_read_ctx_pool; 35 36 static bool __is_cp_guaranteed(struct page *page) 37 { 38 struct address_space *mapping = page->mapping; 39 struct inode *inode; 40 struct f2fs_sb_info *sbi; 41 42 if (!mapping) 43 return false; 44 45 inode = mapping->host; 46 sbi = F2FS_I_SB(inode); 47 48 if (inode->i_ino == F2FS_META_INO(sbi) || 49 inode->i_ino == F2FS_NODE_INO(sbi) || 50 S_ISDIR(inode->i_mode) || 51 (S_ISREG(inode->i_mode) && 52 is_inode_flag_set(inode, FI_ATOMIC_FILE)) || 53 is_cold_data(page)) 54 return true; 55 return false; 56 } 57 58 /* postprocessing steps for read bios */ 59 enum bio_post_read_step { 60 STEP_INITIAL = 0, 61 STEP_DECRYPT, 62 }; 63 64 struct bio_post_read_ctx { 65 struct bio *bio; 66 struct work_struct work; 67 unsigned int cur_step; 68 unsigned int enabled_steps; 69 }; 70 71 static void __read_end_io(struct bio *bio) 72 { 73 struct page *page; 74 struct bio_vec *bv; 75 int i; 76 77 bio_for_each_segment_all(bv, bio, i) { 78 page = bv->bv_page; 79 80 /* PG_error was set if any post_read step failed */ 81 if (bio->bi_status || PageError(page)) { 82 ClearPageUptodate(page); 83 SetPageError(page); 84 } else { 85 SetPageUptodate(page); 86 } 87 unlock_page(page); 88 } 89 if (bio->bi_private) 90 mempool_free(bio->bi_private, bio_post_read_ctx_pool); 91 bio_put(bio); 92 } 93 94 static void bio_post_read_processing(struct bio_post_read_ctx *ctx); 95 96 static void decrypt_work(struct work_struct *work) 97 { 98 struct bio_post_read_ctx *ctx = 99 container_of(work, struct bio_post_read_ctx, work); 100 101 fscrypt_decrypt_bio(ctx->bio); 102 103 bio_post_read_processing(ctx); 104 } 105 106 static void bio_post_read_processing(struct bio_post_read_ctx *ctx) 107 { 108 switch (++ctx->cur_step) { 109 case STEP_DECRYPT: 110 if (ctx->enabled_steps & (1 << STEP_DECRYPT)) { 111 INIT_WORK(&ctx->work, decrypt_work); 112 fscrypt_enqueue_decrypt_work(&ctx->work); 113 return; 114 } 115 ctx->cur_step++; 116 /* fall-through */ 117 default: 118 __read_end_io(ctx->bio); 119 } 120 } 121 122 static bool f2fs_bio_post_read_required(struct bio *bio) 123 { 124 return bio->bi_private && !bio->bi_status; 125 } 126 127 static void f2fs_read_end_io(struct bio *bio) 128 { 129 if (time_to_inject(F2FS_P_SB(bio_first_page_all(bio)), FAULT_IO)) { 130 f2fs_show_injection_info(FAULT_IO); 131 bio->bi_status = BLK_STS_IOERR; 132 } 133 134 if (f2fs_bio_post_read_required(bio)) { 135 struct bio_post_read_ctx *ctx = bio->bi_private; 136 137 ctx->cur_step = STEP_INITIAL; 138 bio_post_read_processing(ctx); 139 return; 140 } 141 142 __read_end_io(bio); 143 } 144 145 static void f2fs_write_end_io(struct bio *bio) 146 { 147 struct f2fs_sb_info *sbi = bio->bi_private; 148 struct bio_vec *bvec; 149 int i; 150 151 bio_for_each_segment_all(bvec, bio, i) { 152 struct page *page = bvec->bv_page; 153 enum count_type type = WB_DATA_TYPE(page); 154 155 if (IS_DUMMY_WRITTEN_PAGE(page)) { 156 set_page_private(page, (unsigned long)NULL); 157 ClearPagePrivate(page); 158 unlock_page(page); 159 mempool_free(page, sbi->write_io_dummy); 160 161 if (unlikely(bio->bi_status)) 162 f2fs_stop_checkpoint(sbi, true); 163 continue; 164 } 165 166 fscrypt_pullback_bio_page(&page, true); 167 168 if (unlikely(bio->bi_status)) { 169 mapping_set_error(page->mapping, -EIO); 170 if (type == F2FS_WB_CP_DATA) 171 f2fs_stop_checkpoint(sbi, true); 172 } 173 174 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) && 175 page->index != nid_of_node(page)); 176 177 dec_page_count(sbi, type); 178 if (f2fs_in_warm_node_list(sbi, page)) 179 f2fs_del_fsync_node_entry(sbi, page); 180 clear_cold_data(page); 181 end_page_writeback(page); 182 } 183 if (!get_pages(sbi, F2FS_WB_CP_DATA) && 184 wq_has_sleeper(&sbi->cp_wait)) 185 wake_up(&sbi->cp_wait); 186 187 bio_put(bio); 188 } 189 190 /* 191 * Return true, if pre_bio's bdev is same as its target device. 192 */ 193 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 194 block_t blk_addr, struct bio *bio) 195 { 196 struct block_device *bdev = sbi->sb->s_bdev; 197 int i; 198 199 for (i = 0; i < sbi->s_ndevs; i++) { 200 if (FDEV(i).start_blk <= blk_addr && 201 FDEV(i).end_blk >= blk_addr) { 202 blk_addr -= FDEV(i).start_blk; 203 bdev = FDEV(i).bdev; 204 break; 205 } 206 } 207 if (bio) { 208 bio_set_dev(bio, bdev); 209 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr); 210 } 211 return bdev; 212 } 213 214 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr) 215 { 216 int i; 217 218 for (i = 0; i < sbi->s_ndevs; i++) 219 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr) 220 return i; 221 return 0; 222 } 223 224 static bool __same_bdev(struct f2fs_sb_info *sbi, 225 block_t blk_addr, struct bio *bio) 226 { 227 struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL); 228 return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno; 229 } 230 231 /* 232 * Low-level block read/write IO operations. 233 */ 234 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr, 235 struct writeback_control *wbc, 236 int npages, bool is_read, 237 enum page_type type, enum temp_type temp) 238 { 239 struct bio *bio; 240 241 bio = f2fs_bio_alloc(sbi, npages, true); 242 243 f2fs_target_device(sbi, blk_addr, bio); 244 if (is_read) { 245 bio->bi_end_io = f2fs_read_end_io; 246 bio->bi_private = NULL; 247 } else { 248 bio->bi_end_io = f2fs_write_end_io; 249 bio->bi_private = sbi; 250 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, type, temp); 251 } 252 if (wbc) 253 wbc_init_bio(wbc, bio); 254 255 return bio; 256 } 257 258 static inline void __submit_bio(struct f2fs_sb_info *sbi, 259 struct bio *bio, enum page_type type) 260 { 261 if (!is_read_io(bio_op(bio))) { 262 unsigned int start; 263 264 if (type != DATA && type != NODE) 265 goto submit_io; 266 267 if (test_opt(sbi, LFS) && current->plug) 268 blk_finish_plug(current->plug); 269 270 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS; 271 start %= F2FS_IO_SIZE(sbi); 272 273 if (start == 0) 274 goto submit_io; 275 276 /* fill dummy pages */ 277 for (; start < F2FS_IO_SIZE(sbi); start++) { 278 struct page *page = 279 mempool_alloc(sbi->write_io_dummy, 280 GFP_NOIO | __GFP_ZERO | __GFP_NOFAIL); 281 f2fs_bug_on(sbi, !page); 282 283 SetPagePrivate(page); 284 set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE); 285 lock_page(page); 286 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) 287 f2fs_bug_on(sbi, 1); 288 } 289 /* 290 * In the NODE case, we lose next block address chain. So, we 291 * need to do checkpoint in f2fs_sync_file. 292 */ 293 if (type == NODE) 294 set_sbi_flag(sbi, SBI_NEED_CP); 295 } 296 submit_io: 297 if (is_read_io(bio_op(bio))) 298 trace_f2fs_submit_read_bio(sbi->sb, type, bio); 299 else 300 trace_f2fs_submit_write_bio(sbi->sb, type, bio); 301 submit_bio(bio); 302 } 303 304 static void __submit_merged_bio(struct f2fs_bio_info *io) 305 { 306 struct f2fs_io_info *fio = &io->fio; 307 308 if (!io->bio) 309 return; 310 311 bio_set_op_attrs(io->bio, fio->op, fio->op_flags); 312 313 if (is_read_io(fio->op)) 314 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio); 315 else 316 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio); 317 318 __submit_bio(io->sbi, io->bio, fio->type); 319 io->bio = NULL; 320 } 321 322 static bool __has_merged_page(struct f2fs_bio_info *io, 323 struct inode *inode, nid_t ino, pgoff_t idx) 324 { 325 struct bio_vec *bvec; 326 struct page *target; 327 int i; 328 329 if (!io->bio) 330 return false; 331 332 if (!inode && !ino) 333 return true; 334 335 bio_for_each_segment_all(bvec, io->bio, i) { 336 337 if (bvec->bv_page->mapping) 338 target = bvec->bv_page; 339 else 340 target = fscrypt_control_page(bvec->bv_page); 341 342 if (idx != target->index) 343 continue; 344 345 if (inode && inode == target->mapping->host) 346 return true; 347 if (ino && ino == ino_of_node(target)) 348 return true; 349 } 350 351 return false; 352 } 353 354 static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode, 355 nid_t ino, pgoff_t idx, enum page_type type) 356 { 357 enum page_type btype = PAGE_TYPE_OF_BIO(type); 358 enum temp_type temp; 359 struct f2fs_bio_info *io; 360 bool ret = false; 361 362 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) { 363 io = sbi->write_io[btype] + temp; 364 365 down_read(&io->io_rwsem); 366 ret = __has_merged_page(io, inode, ino, idx); 367 up_read(&io->io_rwsem); 368 369 /* TODO: use HOT temp only for meta pages now. */ 370 if (ret || btype == META) 371 break; 372 } 373 return ret; 374 } 375 376 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi, 377 enum page_type type, enum temp_type temp) 378 { 379 enum page_type btype = PAGE_TYPE_OF_BIO(type); 380 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 381 382 down_write(&io->io_rwsem); 383 384 /* change META to META_FLUSH in the checkpoint procedure */ 385 if (type >= META_FLUSH) { 386 io->fio.type = META_FLUSH; 387 io->fio.op = REQ_OP_WRITE; 388 io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC; 389 if (!test_opt(sbi, NOBARRIER)) 390 io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA; 391 } 392 __submit_merged_bio(io); 393 up_write(&io->io_rwsem); 394 } 395 396 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi, 397 struct inode *inode, nid_t ino, pgoff_t idx, 398 enum page_type type, bool force) 399 { 400 enum temp_type temp; 401 402 if (!force && !has_merged_page(sbi, inode, ino, idx, type)) 403 return; 404 405 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) { 406 407 __f2fs_submit_merged_write(sbi, type, temp); 408 409 /* TODO: use HOT temp only for meta pages now. */ 410 if (type >= META) 411 break; 412 } 413 } 414 415 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type) 416 { 417 __submit_merged_write_cond(sbi, NULL, 0, 0, type, true); 418 } 419 420 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 421 struct inode *inode, nid_t ino, pgoff_t idx, 422 enum page_type type) 423 { 424 __submit_merged_write_cond(sbi, inode, ino, idx, type, false); 425 } 426 427 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi) 428 { 429 f2fs_submit_merged_write(sbi, DATA); 430 f2fs_submit_merged_write(sbi, NODE); 431 f2fs_submit_merged_write(sbi, META); 432 } 433 434 /* 435 * Fill the locked page with data located in the block address. 436 * A caller needs to unlock the page on failure. 437 */ 438 int f2fs_submit_page_bio(struct f2fs_io_info *fio) 439 { 440 struct bio *bio; 441 struct page *page = fio->encrypted_page ? 442 fio->encrypted_page : fio->page; 443 444 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, 445 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC)) 446 return -EFAULT; 447 448 trace_f2fs_submit_page_bio(page, fio); 449 f2fs_trace_ios(fio, 0); 450 451 /* Allocate a new bio */ 452 bio = __bio_alloc(fio->sbi, fio->new_blkaddr, fio->io_wbc, 453 1, is_read_io(fio->op), fio->type, fio->temp); 454 455 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 456 bio_put(bio); 457 return -EFAULT; 458 } 459 bio_set_op_attrs(bio, fio->op, fio->op_flags); 460 461 __submit_bio(fio->sbi, bio, fio->type); 462 463 if (!is_read_io(fio->op)) 464 inc_page_count(fio->sbi, WB_DATA_TYPE(fio->page)); 465 return 0; 466 } 467 468 void f2fs_submit_page_write(struct f2fs_io_info *fio) 469 { 470 struct f2fs_sb_info *sbi = fio->sbi; 471 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type); 472 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp; 473 struct page *bio_page; 474 475 f2fs_bug_on(sbi, is_read_io(fio->op)); 476 477 down_write(&io->io_rwsem); 478 next: 479 if (fio->in_list) { 480 spin_lock(&io->io_lock); 481 if (list_empty(&io->io_list)) { 482 spin_unlock(&io->io_lock); 483 goto out; 484 } 485 fio = list_first_entry(&io->io_list, 486 struct f2fs_io_info, list); 487 list_del(&fio->list); 488 spin_unlock(&io->io_lock); 489 } 490 491 if (__is_valid_data_blkaddr(fio->old_blkaddr)) 492 verify_block_addr(fio, fio->old_blkaddr); 493 verify_block_addr(fio, fio->new_blkaddr); 494 495 bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page; 496 497 /* set submitted = true as a return value */ 498 fio->submitted = true; 499 500 inc_page_count(sbi, WB_DATA_TYPE(bio_page)); 501 502 if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 || 503 (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags) || 504 !__same_bdev(sbi, fio->new_blkaddr, io->bio))) 505 __submit_merged_bio(io); 506 alloc_new: 507 if (io->bio == NULL) { 508 if ((fio->type == DATA || fio->type == NODE) && 509 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) { 510 dec_page_count(sbi, WB_DATA_TYPE(bio_page)); 511 fio->retry = true; 512 goto skip; 513 } 514 io->bio = __bio_alloc(sbi, fio->new_blkaddr, fio->io_wbc, 515 BIO_MAX_PAGES, false, 516 fio->type, fio->temp); 517 io->fio = *fio; 518 } 519 520 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) { 521 __submit_merged_bio(io); 522 goto alloc_new; 523 } 524 525 if (fio->io_wbc) 526 wbc_account_io(fio->io_wbc, bio_page, PAGE_SIZE); 527 528 io->last_block_in_bio = fio->new_blkaddr; 529 f2fs_trace_ios(fio, 0); 530 531 trace_f2fs_submit_page_write(fio->page, fio); 532 skip: 533 if (fio->in_list) 534 goto next; 535 out: 536 up_write(&io->io_rwsem); 537 } 538 539 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr, 540 unsigned nr_pages, unsigned op_flag) 541 { 542 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 543 struct bio *bio; 544 struct bio_post_read_ctx *ctx; 545 unsigned int post_read_steps = 0; 546 547 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) 548 return ERR_PTR(-EFAULT); 549 550 bio = f2fs_bio_alloc(sbi, min_t(int, nr_pages, BIO_MAX_PAGES), false); 551 if (!bio) 552 return ERR_PTR(-ENOMEM); 553 f2fs_target_device(sbi, blkaddr, bio); 554 bio->bi_end_io = f2fs_read_end_io; 555 bio_set_op_attrs(bio, REQ_OP_READ, op_flag); 556 557 if (f2fs_encrypted_file(inode)) 558 post_read_steps |= 1 << STEP_DECRYPT; 559 if (post_read_steps) { 560 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS); 561 if (!ctx) { 562 bio_put(bio); 563 return ERR_PTR(-ENOMEM); 564 } 565 ctx->bio = bio; 566 ctx->enabled_steps = post_read_steps; 567 bio->bi_private = ctx; 568 569 /* wait the page to be moved by cleaning */ 570 f2fs_wait_on_block_writeback(sbi, blkaddr); 571 } 572 573 return bio; 574 } 575 576 /* This can handle encryption stuffs */ 577 static int f2fs_submit_page_read(struct inode *inode, struct page *page, 578 block_t blkaddr) 579 { 580 struct bio *bio = f2fs_grab_read_bio(inode, blkaddr, 1, 0); 581 582 if (IS_ERR(bio)) 583 return PTR_ERR(bio); 584 585 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 586 bio_put(bio); 587 return -EFAULT; 588 } 589 __submit_bio(F2FS_I_SB(inode), bio, DATA); 590 return 0; 591 } 592 593 static void __set_data_blkaddr(struct dnode_of_data *dn) 594 { 595 struct f2fs_node *rn = F2FS_NODE(dn->node_page); 596 __le32 *addr_array; 597 int base = 0; 598 599 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode)) 600 base = get_extra_isize(dn->inode); 601 602 /* Get physical address of data block */ 603 addr_array = blkaddr_in_node(rn); 604 addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr); 605 } 606 607 /* 608 * Lock ordering for the change of data block address: 609 * ->data_page 610 * ->node_page 611 * update block addresses in the node page 612 */ 613 void f2fs_set_data_blkaddr(struct dnode_of_data *dn) 614 { 615 f2fs_wait_on_page_writeback(dn->node_page, NODE, true); 616 __set_data_blkaddr(dn); 617 if (set_page_dirty(dn->node_page)) 618 dn->node_changed = true; 619 } 620 621 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) 622 { 623 dn->data_blkaddr = blkaddr; 624 f2fs_set_data_blkaddr(dn); 625 f2fs_update_extent_cache(dn); 626 } 627 628 /* dn->ofs_in_node will be returned with up-to-date last block pointer */ 629 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count) 630 { 631 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 632 int err; 633 634 if (!count) 635 return 0; 636 637 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 638 return -EPERM; 639 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count)))) 640 return err; 641 642 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid, 643 dn->ofs_in_node, count); 644 645 f2fs_wait_on_page_writeback(dn->node_page, NODE, true); 646 647 for (; count > 0; dn->ofs_in_node++) { 648 block_t blkaddr = datablock_addr(dn->inode, 649 dn->node_page, dn->ofs_in_node); 650 if (blkaddr == NULL_ADDR) { 651 dn->data_blkaddr = NEW_ADDR; 652 __set_data_blkaddr(dn); 653 count--; 654 } 655 } 656 657 if (set_page_dirty(dn->node_page)) 658 dn->node_changed = true; 659 return 0; 660 } 661 662 /* Should keep dn->ofs_in_node unchanged */ 663 int f2fs_reserve_new_block(struct dnode_of_data *dn) 664 { 665 unsigned int ofs_in_node = dn->ofs_in_node; 666 int ret; 667 668 ret = f2fs_reserve_new_blocks(dn, 1); 669 dn->ofs_in_node = ofs_in_node; 670 return ret; 671 } 672 673 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index) 674 { 675 bool need_put = dn->inode_page ? false : true; 676 int err; 677 678 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE); 679 if (err) 680 return err; 681 682 if (dn->data_blkaddr == NULL_ADDR) 683 err = f2fs_reserve_new_block(dn); 684 if (err || need_put) 685 f2fs_put_dnode(dn); 686 return err; 687 } 688 689 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index) 690 { 691 struct extent_info ei = {0,0,0}; 692 struct inode *inode = dn->inode; 693 694 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 695 dn->data_blkaddr = ei.blk + index - ei.fofs; 696 return 0; 697 } 698 699 return f2fs_reserve_block(dn, index); 700 } 701 702 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index, 703 int op_flags, bool for_write) 704 { 705 struct address_space *mapping = inode->i_mapping; 706 struct dnode_of_data dn; 707 struct page *page; 708 struct extent_info ei = {0,0,0}; 709 int err; 710 711 page = f2fs_grab_cache_page(mapping, index, for_write); 712 if (!page) 713 return ERR_PTR(-ENOMEM); 714 715 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 716 dn.data_blkaddr = ei.blk + index - ei.fofs; 717 goto got_it; 718 } 719 720 set_new_dnode(&dn, inode, NULL, NULL, 0); 721 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 722 if (err) 723 goto put_err; 724 f2fs_put_dnode(&dn); 725 726 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { 727 err = -ENOENT; 728 goto put_err; 729 } 730 got_it: 731 if (PageUptodate(page)) { 732 unlock_page(page); 733 return page; 734 } 735 736 /* 737 * A new dentry page is allocated but not able to be written, since its 738 * new inode page couldn't be allocated due to -ENOSPC. 739 * In such the case, its blkaddr can be remained as NEW_ADDR. 740 * see, f2fs_add_link -> f2fs_get_new_data_page -> 741 * f2fs_init_inode_metadata. 742 */ 743 if (dn.data_blkaddr == NEW_ADDR) { 744 zero_user_segment(page, 0, PAGE_SIZE); 745 if (!PageUptodate(page)) 746 SetPageUptodate(page); 747 unlock_page(page); 748 return page; 749 } 750 751 err = f2fs_submit_page_read(inode, page, dn.data_blkaddr); 752 if (err) 753 goto put_err; 754 return page; 755 756 put_err: 757 f2fs_put_page(page, 1); 758 return ERR_PTR(err); 759 } 760 761 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index) 762 { 763 struct address_space *mapping = inode->i_mapping; 764 struct page *page; 765 766 page = find_get_page(mapping, index); 767 if (page && PageUptodate(page)) 768 return page; 769 f2fs_put_page(page, 0); 770 771 page = f2fs_get_read_data_page(inode, index, 0, false); 772 if (IS_ERR(page)) 773 return page; 774 775 if (PageUptodate(page)) 776 return page; 777 778 wait_on_page_locked(page); 779 if (unlikely(!PageUptodate(page))) { 780 f2fs_put_page(page, 0); 781 return ERR_PTR(-EIO); 782 } 783 return page; 784 } 785 786 /* 787 * If it tries to access a hole, return an error. 788 * Because, the callers, functions in dir.c and GC, should be able to know 789 * whether this page exists or not. 790 */ 791 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index, 792 bool for_write) 793 { 794 struct address_space *mapping = inode->i_mapping; 795 struct page *page; 796 repeat: 797 page = f2fs_get_read_data_page(inode, index, 0, for_write); 798 if (IS_ERR(page)) 799 return page; 800 801 /* wait for read completion */ 802 lock_page(page); 803 if (unlikely(page->mapping != mapping)) { 804 f2fs_put_page(page, 1); 805 goto repeat; 806 } 807 if (unlikely(!PageUptodate(page))) { 808 f2fs_put_page(page, 1); 809 return ERR_PTR(-EIO); 810 } 811 return page; 812 } 813 814 /* 815 * Caller ensures that this data page is never allocated. 816 * A new zero-filled data page is allocated in the page cache. 817 * 818 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and 819 * f2fs_unlock_op(). 820 * Note that, ipage is set only by make_empty_dir, and if any error occur, 821 * ipage should be released by this function. 822 */ 823 struct page *f2fs_get_new_data_page(struct inode *inode, 824 struct page *ipage, pgoff_t index, bool new_i_size) 825 { 826 struct address_space *mapping = inode->i_mapping; 827 struct page *page; 828 struct dnode_of_data dn; 829 int err; 830 831 page = f2fs_grab_cache_page(mapping, index, true); 832 if (!page) { 833 /* 834 * before exiting, we should make sure ipage will be released 835 * if any error occur. 836 */ 837 f2fs_put_page(ipage, 1); 838 return ERR_PTR(-ENOMEM); 839 } 840 841 set_new_dnode(&dn, inode, ipage, NULL, 0); 842 err = f2fs_reserve_block(&dn, index); 843 if (err) { 844 f2fs_put_page(page, 1); 845 return ERR_PTR(err); 846 } 847 if (!ipage) 848 f2fs_put_dnode(&dn); 849 850 if (PageUptodate(page)) 851 goto got_it; 852 853 if (dn.data_blkaddr == NEW_ADDR) { 854 zero_user_segment(page, 0, PAGE_SIZE); 855 if (!PageUptodate(page)) 856 SetPageUptodate(page); 857 } else { 858 f2fs_put_page(page, 1); 859 860 /* if ipage exists, blkaddr should be NEW_ADDR */ 861 f2fs_bug_on(F2FS_I_SB(inode), ipage); 862 page = f2fs_get_lock_data_page(inode, index, true); 863 if (IS_ERR(page)) 864 return page; 865 } 866 got_it: 867 if (new_i_size && i_size_read(inode) < 868 ((loff_t)(index + 1) << PAGE_SHIFT)) 869 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT)); 870 return page; 871 } 872 873 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type) 874 { 875 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 876 struct f2fs_summary sum; 877 struct node_info ni; 878 block_t old_blkaddr; 879 pgoff_t fofs; 880 blkcnt_t count = 1; 881 int err; 882 883 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 884 return -EPERM; 885 886 err = f2fs_get_node_info(sbi, dn->nid, &ni); 887 if (err) 888 return err; 889 890 dn->data_blkaddr = datablock_addr(dn->inode, 891 dn->node_page, dn->ofs_in_node); 892 if (dn->data_blkaddr == NEW_ADDR) 893 goto alloc; 894 895 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count)))) 896 return err; 897 898 alloc: 899 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 900 old_blkaddr = dn->data_blkaddr; 901 f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr, 902 &sum, seg_type, NULL, false); 903 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 904 invalidate_mapping_pages(META_MAPPING(sbi), 905 old_blkaddr, old_blkaddr); 906 f2fs_set_data_blkaddr(dn); 907 908 /* update i_size */ 909 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) + 910 dn->ofs_in_node; 911 if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_SHIFT)) 912 f2fs_i_size_write(dn->inode, 913 ((loff_t)(fofs + 1) << PAGE_SHIFT)); 914 return 0; 915 } 916 917 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from) 918 { 919 struct inode *inode = file_inode(iocb->ki_filp); 920 struct f2fs_map_blocks map; 921 int flag; 922 int err = 0; 923 bool direct_io = iocb->ki_flags & IOCB_DIRECT; 924 925 /* convert inline data for Direct I/O*/ 926 if (direct_io) { 927 err = f2fs_convert_inline_inode(inode); 928 if (err) 929 return err; 930 } 931 932 if (is_inode_flag_set(inode, FI_NO_PREALLOC)) 933 return 0; 934 935 map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos); 936 map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from)); 937 if (map.m_len > map.m_lblk) 938 map.m_len -= map.m_lblk; 939 else 940 map.m_len = 0; 941 942 map.m_next_pgofs = NULL; 943 map.m_next_extent = NULL; 944 map.m_seg_type = NO_CHECK_TYPE; 945 946 if (direct_io) { 947 map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint); 948 flag = f2fs_force_buffered_io(inode, WRITE) ? 949 F2FS_GET_BLOCK_PRE_AIO : 950 F2FS_GET_BLOCK_PRE_DIO; 951 goto map_blocks; 952 } 953 if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) { 954 err = f2fs_convert_inline_inode(inode); 955 if (err) 956 return err; 957 } 958 if (f2fs_has_inline_data(inode)) 959 return err; 960 961 flag = F2FS_GET_BLOCK_PRE_AIO; 962 963 map_blocks: 964 err = f2fs_map_blocks(inode, &map, 1, flag); 965 if (map.m_len > 0 && err == -ENOSPC) { 966 if (!direct_io) 967 set_inode_flag(inode, FI_NO_PREALLOC); 968 err = 0; 969 } 970 return err; 971 } 972 973 static inline void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock) 974 { 975 if (flag == F2FS_GET_BLOCK_PRE_AIO) { 976 if (lock) 977 down_read(&sbi->node_change); 978 else 979 up_read(&sbi->node_change); 980 } else { 981 if (lock) 982 f2fs_lock_op(sbi); 983 else 984 f2fs_unlock_op(sbi); 985 } 986 } 987 988 /* 989 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with 990 * f2fs_map_blocks structure. 991 * If original data blocks are allocated, then give them to blockdev. 992 * Otherwise, 993 * a. preallocate requested block addresses 994 * b. do not use extent cache for better performance 995 * c. give the block addresses to blockdev 996 */ 997 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 998 int create, int flag) 999 { 1000 unsigned int maxblocks = map->m_len; 1001 struct dnode_of_data dn; 1002 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1003 int mode = create ? ALLOC_NODE : LOOKUP_NODE; 1004 pgoff_t pgofs, end_offset, end; 1005 int err = 0, ofs = 1; 1006 unsigned int ofs_in_node, last_ofs_in_node; 1007 blkcnt_t prealloc; 1008 struct extent_info ei = {0,0,0}; 1009 block_t blkaddr; 1010 unsigned int start_pgofs; 1011 1012 if (!maxblocks) 1013 return 0; 1014 1015 map->m_len = 0; 1016 map->m_flags = 0; 1017 1018 /* it only supports block size == page size */ 1019 pgofs = (pgoff_t)map->m_lblk; 1020 end = pgofs + maxblocks; 1021 1022 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) { 1023 map->m_pblk = ei.blk + pgofs - ei.fofs; 1024 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs); 1025 map->m_flags = F2FS_MAP_MAPPED; 1026 if (map->m_next_extent) 1027 *map->m_next_extent = pgofs + map->m_len; 1028 goto out; 1029 } 1030 1031 next_dnode: 1032 if (create) 1033 __do_map_lock(sbi, flag, true); 1034 1035 /* When reading holes, we need its node page */ 1036 set_new_dnode(&dn, inode, NULL, NULL, 0); 1037 err = f2fs_get_dnode_of_data(&dn, pgofs, mode); 1038 if (err) { 1039 if (flag == F2FS_GET_BLOCK_BMAP) 1040 map->m_pblk = 0; 1041 if (err == -ENOENT) { 1042 err = 0; 1043 if (map->m_next_pgofs) 1044 *map->m_next_pgofs = 1045 f2fs_get_next_page_offset(&dn, pgofs); 1046 if (map->m_next_extent) 1047 *map->m_next_extent = 1048 f2fs_get_next_page_offset(&dn, pgofs); 1049 } 1050 goto unlock_out; 1051 } 1052 1053 start_pgofs = pgofs; 1054 prealloc = 0; 1055 last_ofs_in_node = ofs_in_node = dn.ofs_in_node; 1056 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1057 1058 next_block: 1059 blkaddr = datablock_addr(dn.inode, dn.node_page, dn.ofs_in_node); 1060 1061 if (__is_valid_data_blkaddr(blkaddr) && 1062 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) { 1063 err = -EFAULT; 1064 goto sync_out; 1065 } 1066 1067 if (!is_valid_data_blkaddr(sbi, blkaddr)) { 1068 if (create) { 1069 if (unlikely(f2fs_cp_error(sbi))) { 1070 err = -EIO; 1071 goto sync_out; 1072 } 1073 if (flag == F2FS_GET_BLOCK_PRE_AIO) { 1074 if (blkaddr == NULL_ADDR) { 1075 prealloc++; 1076 last_ofs_in_node = dn.ofs_in_node; 1077 } 1078 } else { 1079 err = __allocate_data_block(&dn, 1080 map->m_seg_type); 1081 if (!err) 1082 set_inode_flag(inode, FI_APPEND_WRITE); 1083 } 1084 if (err) 1085 goto sync_out; 1086 map->m_flags |= F2FS_MAP_NEW; 1087 blkaddr = dn.data_blkaddr; 1088 } else { 1089 if (flag == F2FS_GET_BLOCK_BMAP) { 1090 map->m_pblk = 0; 1091 goto sync_out; 1092 } 1093 if (flag == F2FS_GET_BLOCK_PRECACHE) 1094 goto sync_out; 1095 if (flag == F2FS_GET_BLOCK_FIEMAP && 1096 blkaddr == NULL_ADDR) { 1097 if (map->m_next_pgofs) 1098 *map->m_next_pgofs = pgofs + 1; 1099 goto sync_out; 1100 } 1101 if (flag != F2FS_GET_BLOCK_FIEMAP) { 1102 /* for defragment case */ 1103 if (map->m_next_pgofs) 1104 *map->m_next_pgofs = pgofs + 1; 1105 goto sync_out; 1106 } 1107 } 1108 } 1109 1110 if (flag == F2FS_GET_BLOCK_PRE_AIO) 1111 goto skip; 1112 1113 if (map->m_len == 0) { 1114 /* preallocated unwritten block should be mapped for fiemap. */ 1115 if (blkaddr == NEW_ADDR) 1116 map->m_flags |= F2FS_MAP_UNWRITTEN; 1117 map->m_flags |= F2FS_MAP_MAPPED; 1118 1119 map->m_pblk = blkaddr; 1120 map->m_len = 1; 1121 } else if ((map->m_pblk != NEW_ADDR && 1122 blkaddr == (map->m_pblk + ofs)) || 1123 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) || 1124 flag == F2FS_GET_BLOCK_PRE_DIO) { 1125 ofs++; 1126 map->m_len++; 1127 } else { 1128 goto sync_out; 1129 } 1130 1131 skip: 1132 dn.ofs_in_node++; 1133 pgofs++; 1134 1135 /* preallocate blocks in batch for one dnode page */ 1136 if (flag == F2FS_GET_BLOCK_PRE_AIO && 1137 (pgofs == end || dn.ofs_in_node == end_offset)) { 1138 1139 dn.ofs_in_node = ofs_in_node; 1140 err = f2fs_reserve_new_blocks(&dn, prealloc); 1141 if (err) 1142 goto sync_out; 1143 1144 map->m_len += dn.ofs_in_node - ofs_in_node; 1145 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) { 1146 err = -ENOSPC; 1147 goto sync_out; 1148 } 1149 dn.ofs_in_node = end_offset; 1150 } 1151 1152 if (pgofs >= end) 1153 goto sync_out; 1154 else if (dn.ofs_in_node < end_offset) 1155 goto next_block; 1156 1157 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1158 if (map->m_flags & F2FS_MAP_MAPPED) { 1159 unsigned int ofs = start_pgofs - map->m_lblk; 1160 1161 f2fs_update_extent_cache_range(&dn, 1162 start_pgofs, map->m_pblk + ofs, 1163 map->m_len - ofs); 1164 } 1165 } 1166 1167 f2fs_put_dnode(&dn); 1168 1169 if (create) { 1170 __do_map_lock(sbi, flag, false); 1171 f2fs_balance_fs(sbi, dn.node_changed); 1172 } 1173 goto next_dnode; 1174 1175 sync_out: 1176 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1177 if (map->m_flags & F2FS_MAP_MAPPED) { 1178 unsigned int ofs = start_pgofs - map->m_lblk; 1179 1180 f2fs_update_extent_cache_range(&dn, 1181 start_pgofs, map->m_pblk + ofs, 1182 map->m_len - ofs); 1183 } 1184 if (map->m_next_extent) 1185 *map->m_next_extent = pgofs + 1; 1186 } 1187 f2fs_put_dnode(&dn); 1188 unlock_out: 1189 if (create) { 1190 __do_map_lock(sbi, flag, false); 1191 f2fs_balance_fs(sbi, dn.node_changed); 1192 } 1193 out: 1194 trace_f2fs_map_blocks(inode, map, err); 1195 return err; 1196 } 1197 1198 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len) 1199 { 1200 struct f2fs_map_blocks map; 1201 block_t last_lblk; 1202 int err; 1203 1204 if (pos + len > i_size_read(inode)) 1205 return false; 1206 1207 map.m_lblk = F2FS_BYTES_TO_BLK(pos); 1208 map.m_next_pgofs = NULL; 1209 map.m_next_extent = NULL; 1210 map.m_seg_type = NO_CHECK_TYPE; 1211 last_lblk = F2FS_BLK_ALIGN(pos + len); 1212 1213 while (map.m_lblk < last_lblk) { 1214 map.m_len = last_lblk - map.m_lblk; 1215 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT); 1216 if (err || map.m_len == 0) 1217 return false; 1218 map.m_lblk += map.m_len; 1219 } 1220 return true; 1221 } 1222 1223 static int __get_data_block(struct inode *inode, sector_t iblock, 1224 struct buffer_head *bh, int create, int flag, 1225 pgoff_t *next_pgofs, int seg_type) 1226 { 1227 struct f2fs_map_blocks map; 1228 int err; 1229 1230 map.m_lblk = iblock; 1231 map.m_len = bh->b_size >> inode->i_blkbits; 1232 map.m_next_pgofs = next_pgofs; 1233 map.m_next_extent = NULL; 1234 map.m_seg_type = seg_type; 1235 1236 err = f2fs_map_blocks(inode, &map, create, flag); 1237 if (!err) { 1238 map_bh(bh, inode->i_sb, map.m_pblk); 1239 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags; 1240 bh->b_size = (u64)map.m_len << inode->i_blkbits; 1241 } 1242 return err; 1243 } 1244 1245 static int get_data_block(struct inode *inode, sector_t iblock, 1246 struct buffer_head *bh_result, int create, int flag, 1247 pgoff_t *next_pgofs) 1248 { 1249 return __get_data_block(inode, iblock, bh_result, create, 1250 flag, next_pgofs, 1251 NO_CHECK_TYPE); 1252 } 1253 1254 static int get_data_block_dio(struct inode *inode, sector_t iblock, 1255 struct buffer_head *bh_result, int create) 1256 { 1257 return __get_data_block(inode, iblock, bh_result, create, 1258 F2FS_GET_BLOCK_DEFAULT, NULL, 1259 f2fs_rw_hint_to_seg_type( 1260 inode->i_write_hint)); 1261 } 1262 1263 static int get_data_block_bmap(struct inode *inode, sector_t iblock, 1264 struct buffer_head *bh_result, int create) 1265 { 1266 /* Block number less than F2FS MAX BLOCKS */ 1267 if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks)) 1268 return -EFBIG; 1269 1270 return __get_data_block(inode, iblock, bh_result, create, 1271 F2FS_GET_BLOCK_BMAP, NULL, 1272 NO_CHECK_TYPE); 1273 } 1274 1275 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset) 1276 { 1277 return (offset >> inode->i_blkbits); 1278 } 1279 1280 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk) 1281 { 1282 return (blk << inode->i_blkbits); 1283 } 1284 1285 static int f2fs_xattr_fiemap(struct inode *inode, 1286 struct fiemap_extent_info *fieinfo) 1287 { 1288 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1289 struct page *page; 1290 struct node_info ni; 1291 __u64 phys = 0, len; 1292 __u32 flags; 1293 nid_t xnid = F2FS_I(inode)->i_xattr_nid; 1294 int err = 0; 1295 1296 if (f2fs_has_inline_xattr(inode)) { 1297 int offset; 1298 1299 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), 1300 inode->i_ino, false); 1301 if (!page) 1302 return -ENOMEM; 1303 1304 err = f2fs_get_node_info(sbi, inode->i_ino, &ni); 1305 if (err) { 1306 f2fs_put_page(page, 1); 1307 return err; 1308 } 1309 1310 phys = (__u64)blk_to_logical(inode, ni.blk_addr); 1311 offset = offsetof(struct f2fs_inode, i_addr) + 1312 sizeof(__le32) * (DEF_ADDRS_PER_INODE - 1313 get_inline_xattr_addrs(inode)); 1314 1315 phys += offset; 1316 len = inline_xattr_size(inode); 1317 1318 f2fs_put_page(page, 1); 1319 1320 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED; 1321 1322 if (!xnid) 1323 flags |= FIEMAP_EXTENT_LAST; 1324 1325 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1326 if (err || err == 1) 1327 return err; 1328 } 1329 1330 if (xnid) { 1331 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false); 1332 if (!page) 1333 return -ENOMEM; 1334 1335 err = f2fs_get_node_info(sbi, xnid, &ni); 1336 if (err) { 1337 f2fs_put_page(page, 1); 1338 return err; 1339 } 1340 1341 phys = (__u64)blk_to_logical(inode, ni.blk_addr); 1342 len = inode->i_sb->s_blocksize; 1343 1344 f2fs_put_page(page, 1); 1345 1346 flags = FIEMAP_EXTENT_LAST; 1347 } 1348 1349 if (phys) 1350 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1351 1352 return (err < 0 ? err : 0); 1353 } 1354 1355 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 1356 u64 start, u64 len) 1357 { 1358 struct buffer_head map_bh; 1359 sector_t start_blk, last_blk; 1360 pgoff_t next_pgofs; 1361 u64 logical = 0, phys = 0, size = 0; 1362 u32 flags = 0; 1363 int ret = 0; 1364 1365 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) { 1366 ret = f2fs_precache_extents(inode); 1367 if (ret) 1368 return ret; 1369 } 1370 1371 ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC | FIEMAP_FLAG_XATTR); 1372 if (ret) 1373 return ret; 1374 1375 inode_lock(inode); 1376 1377 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 1378 ret = f2fs_xattr_fiemap(inode, fieinfo); 1379 goto out; 1380 } 1381 1382 if (f2fs_has_inline_data(inode)) { 1383 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len); 1384 if (ret != -EAGAIN) 1385 goto out; 1386 } 1387 1388 if (logical_to_blk(inode, len) == 0) 1389 len = blk_to_logical(inode, 1); 1390 1391 start_blk = logical_to_blk(inode, start); 1392 last_blk = logical_to_blk(inode, start + len - 1); 1393 1394 next: 1395 memset(&map_bh, 0, sizeof(struct buffer_head)); 1396 map_bh.b_size = len; 1397 1398 ret = get_data_block(inode, start_blk, &map_bh, 0, 1399 F2FS_GET_BLOCK_FIEMAP, &next_pgofs); 1400 if (ret) 1401 goto out; 1402 1403 /* HOLE */ 1404 if (!buffer_mapped(&map_bh)) { 1405 start_blk = next_pgofs; 1406 1407 if (blk_to_logical(inode, start_blk) < blk_to_logical(inode, 1408 F2FS_I_SB(inode)->max_file_blocks)) 1409 goto prep_next; 1410 1411 flags |= FIEMAP_EXTENT_LAST; 1412 } 1413 1414 if (size) { 1415 if (f2fs_encrypted_inode(inode)) 1416 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED; 1417 1418 ret = fiemap_fill_next_extent(fieinfo, logical, 1419 phys, size, flags); 1420 } 1421 1422 if (start_blk > last_blk || ret) 1423 goto out; 1424 1425 logical = blk_to_logical(inode, start_blk); 1426 phys = blk_to_logical(inode, map_bh.b_blocknr); 1427 size = map_bh.b_size; 1428 flags = 0; 1429 if (buffer_unwritten(&map_bh)) 1430 flags = FIEMAP_EXTENT_UNWRITTEN; 1431 1432 start_blk += logical_to_blk(inode, size); 1433 1434 prep_next: 1435 cond_resched(); 1436 if (fatal_signal_pending(current)) 1437 ret = -EINTR; 1438 else 1439 goto next; 1440 out: 1441 if (ret == 1) 1442 ret = 0; 1443 1444 inode_unlock(inode); 1445 return ret; 1446 } 1447 1448 /* 1449 * This function was originally taken from fs/mpage.c, and customized for f2fs. 1450 * Major change was from block_size == page_size in f2fs by default. 1451 * 1452 * Note that the aops->readpages() function is ONLY used for read-ahead. If 1453 * this function ever deviates from doing just read-ahead, it should either 1454 * use ->readpage() or do the necessary surgery to decouple ->readpages() 1455 * from read-ahead. 1456 */ 1457 static int f2fs_mpage_readpages(struct address_space *mapping, 1458 struct list_head *pages, struct page *page, 1459 unsigned nr_pages, bool is_readahead) 1460 { 1461 struct bio *bio = NULL; 1462 sector_t last_block_in_bio = 0; 1463 struct inode *inode = mapping->host; 1464 const unsigned blkbits = inode->i_blkbits; 1465 const unsigned blocksize = 1 << blkbits; 1466 sector_t block_in_file; 1467 sector_t last_block; 1468 sector_t last_block_in_file; 1469 sector_t block_nr; 1470 struct f2fs_map_blocks map; 1471 1472 map.m_pblk = 0; 1473 map.m_lblk = 0; 1474 map.m_len = 0; 1475 map.m_flags = 0; 1476 map.m_next_pgofs = NULL; 1477 map.m_next_extent = NULL; 1478 map.m_seg_type = NO_CHECK_TYPE; 1479 1480 for (; nr_pages; nr_pages--) { 1481 if (pages) { 1482 page = list_last_entry(pages, struct page, lru); 1483 1484 prefetchw(&page->flags); 1485 list_del(&page->lru); 1486 if (add_to_page_cache_lru(page, mapping, 1487 page->index, 1488 readahead_gfp_mask(mapping))) 1489 goto next_page; 1490 } 1491 1492 block_in_file = (sector_t)page->index; 1493 last_block = block_in_file + nr_pages; 1494 last_block_in_file = (i_size_read(inode) + blocksize - 1) >> 1495 blkbits; 1496 if (last_block > last_block_in_file) 1497 last_block = last_block_in_file; 1498 1499 /* 1500 * Map blocks using the previous result first. 1501 */ 1502 if ((map.m_flags & F2FS_MAP_MAPPED) && 1503 block_in_file > map.m_lblk && 1504 block_in_file < (map.m_lblk + map.m_len)) 1505 goto got_it; 1506 1507 /* 1508 * Then do more f2fs_map_blocks() calls until we are 1509 * done with this page. 1510 */ 1511 map.m_flags = 0; 1512 1513 if (block_in_file < last_block) { 1514 map.m_lblk = block_in_file; 1515 map.m_len = last_block - block_in_file; 1516 1517 if (f2fs_map_blocks(inode, &map, 0, 1518 F2FS_GET_BLOCK_DEFAULT)) 1519 goto set_error_page; 1520 } 1521 got_it: 1522 if ((map.m_flags & F2FS_MAP_MAPPED)) { 1523 block_nr = map.m_pblk + block_in_file - map.m_lblk; 1524 SetPageMappedToDisk(page); 1525 1526 if (!PageUptodate(page) && !cleancache_get_page(page)) { 1527 SetPageUptodate(page); 1528 goto confused; 1529 } 1530 1531 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr, 1532 DATA_GENERIC)) 1533 goto set_error_page; 1534 } else { 1535 zero_user_segment(page, 0, PAGE_SIZE); 1536 if (!PageUptodate(page)) 1537 SetPageUptodate(page); 1538 unlock_page(page); 1539 goto next_page; 1540 } 1541 1542 /* 1543 * This page will go to BIO. Do we need to send this 1544 * BIO off first? 1545 */ 1546 if (bio && (last_block_in_bio != block_nr - 1 || 1547 !__same_bdev(F2FS_I_SB(inode), block_nr, bio))) { 1548 submit_and_realloc: 1549 __submit_bio(F2FS_I_SB(inode), bio, DATA); 1550 bio = NULL; 1551 } 1552 if (bio == NULL) { 1553 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages, 1554 is_readahead ? REQ_RAHEAD : 0); 1555 if (IS_ERR(bio)) { 1556 bio = NULL; 1557 goto set_error_page; 1558 } 1559 } 1560 1561 if (bio_add_page(bio, page, blocksize, 0) < blocksize) 1562 goto submit_and_realloc; 1563 1564 last_block_in_bio = block_nr; 1565 goto next_page; 1566 set_error_page: 1567 SetPageError(page); 1568 zero_user_segment(page, 0, PAGE_SIZE); 1569 unlock_page(page); 1570 goto next_page; 1571 confused: 1572 if (bio) { 1573 __submit_bio(F2FS_I_SB(inode), bio, DATA); 1574 bio = NULL; 1575 } 1576 unlock_page(page); 1577 next_page: 1578 if (pages) 1579 put_page(page); 1580 } 1581 BUG_ON(pages && !list_empty(pages)); 1582 if (bio) 1583 __submit_bio(F2FS_I_SB(inode), bio, DATA); 1584 return 0; 1585 } 1586 1587 static int f2fs_read_data_page(struct file *file, struct page *page) 1588 { 1589 struct inode *inode = page->mapping->host; 1590 int ret = -EAGAIN; 1591 1592 trace_f2fs_readpage(page, DATA); 1593 1594 /* If the file has inline data, try to read it directly */ 1595 if (f2fs_has_inline_data(inode)) 1596 ret = f2fs_read_inline_data(inode, page); 1597 if (ret == -EAGAIN) 1598 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1, false); 1599 return ret; 1600 } 1601 1602 static int f2fs_read_data_pages(struct file *file, 1603 struct address_space *mapping, 1604 struct list_head *pages, unsigned nr_pages) 1605 { 1606 struct inode *inode = mapping->host; 1607 struct page *page = list_last_entry(pages, struct page, lru); 1608 1609 trace_f2fs_readpages(inode, page, nr_pages); 1610 1611 /* If the file has inline data, skip readpages */ 1612 if (f2fs_has_inline_data(inode)) 1613 return 0; 1614 1615 return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages, true); 1616 } 1617 1618 static int encrypt_one_page(struct f2fs_io_info *fio) 1619 { 1620 struct inode *inode = fio->page->mapping->host; 1621 struct page *mpage; 1622 gfp_t gfp_flags = GFP_NOFS; 1623 1624 if (!f2fs_encrypted_file(inode)) 1625 return 0; 1626 1627 /* wait for GCed page writeback via META_MAPPING */ 1628 f2fs_wait_on_block_writeback(fio->sbi, fio->old_blkaddr); 1629 1630 retry_encrypt: 1631 fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page, 1632 PAGE_SIZE, 0, fio->page->index, gfp_flags); 1633 if (IS_ERR(fio->encrypted_page)) { 1634 /* flush pending IOs and wait for a while in the ENOMEM case */ 1635 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) { 1636 f2fs_flush_merged_writes(fio->sbi); 1637 congestion_wait(BLK_RW_ASYNC, HZ/50); 1638 gfp_flags |= __GFP_NOFAIL; 1639 goto retry_encrypt; 1640 } 1641 return PTR_ERR(fio->encrypted_page); 1642 } 1643 1644 mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr); 1645 if (mpage) { 1646 if (PageUptodate(mpage)) 1647 memcpy(page_address(mpage), 1648 page_address(fio->encrypted_page), PAGE_SIZE); 1649 f2fs_put_page(mpage, 1); 1650 } 1651 return 0; 1652 } 1653 1654 static inline bool check_inplace_update_policy(struct inode *inode, 1655 struct f2fs_io_info *fio) 1656 { 1657 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1658 unsigned int policy = SM_I(sbi)->ipu_policy; 1659 1660 if (policy & (0x1 << F2FS_IPU_FORCE)) 1661 return true; 1662 if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi)) 1663 return true; 1664 if (policy & (0x1 << F2FS_IPU_UTIL) && 1665 utilization(sbi) > SM_I(sbi)->min_ipu_util) 1666 return true; 1667 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) && 1668 utilization(sbi) > SM_I(sbi)->min_ipu_util) 1669 return true; 1670 1671 /* 1672 * IPU for rewrite async pages 1673 */ 1674 if (policy & (0x1 << F2FS_IPU_ASYNC) && 1675 fio && fio->op == REQ_OP_WRITE && 1676 !(fio->op_flags & REQ_SYNC) && 1677 !f2fs_encrypted_inode(inode)) 1678 return true; 1679 1680 /* this is only set during fdatasync */ 1681 if (policy & (0x1 << F2FS_IPU_FSYNC) && 1682 is_inode_flag_set(inode, FI_NEED_IPU)) 1683 return true; 1684 1685 return false; 1686 } 1687 1688 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio) 1689 { 1690 if (f2fs_is_pinned_file(inode)) 1691 return true; 1692 1693 /* if this is cold file, we should overwrite to avoid fragmentation */ 1694 if (file_is_cold(inode)) 1695 return true; 1696 1697 return check_inplace_update_policy(inode, fio); 1698 } 1699 1700 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio) 1701 { 1702 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1703 1704 if (test_opt(sbi, LFS)) 1705 return true; 1706 if (S_ISDIR(inode->i_mode)) 1707 return true; 1708 if (f2fs_is_atomic_file(inode)) 1709 return true; 1710 if (fio) { 1711 if (is_cold_data(fio->page)) 1712 return true; 1713 if (IS_ATOMIC_WRITTEN_PAGE(fio->page)) 1714 return true; 1715 } 1716 return false; 1717 } 1718 1719 static inline bool need_inplace_update(struct f2fs_io_info *fio) 1720 { 1721 struct inode *inode = fio->page->mapping->host; 1722 1723 if (f2fs_should_update_outplace(inode, fio)) 1724 return false; 1725 1726 return f2fs_should_update_inplace(inode, fio); 1727 } 1728 1729 int f2fs_do_write_data_page(struct f2fs_io_info *fio) 1730 { 1731 struct page *page = fio->page; 1732 struct inode *inode = page->mapping->host; 1733 struct dnode_of_data dn; 1734 struct extent_info ei = {0,0,0}; 1735 struct node_info ni; 1736 bool ipu_force = false; 1737 int err = 0; 1738 1739 set_new_dnode(&dn, inode, NULL, NULL, 0); 1740 if (need_inplace_update(fio) && 1741 f2fs_lookup_extent_cache(inode, page->index, &ei)) { 1742 fio->old_blkaddr = ei.blk + page->index - ei.fofs; 1743 1744 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 1745 DATA_GENERIC)) 1746 return -EFAULT; 1747 1748 ipu_force = true; 1749 fio->need_lock = LOCK_DONE; 1750 goto got_it; 1751 } 1752 1753 /* Deadlock due to between page->lock and f2fs_lock_op */ 1754 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi)) 1755 return -EAGAIN; 1756 1757 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE); 1758 if (err) 1759 goto out; 1760 1761 fio->old_blkaddr = dn.data_blkaddr; 1762 1763 /* This page is already truncated */ 1764 if (fio->old_blkaddr == NULL_ADDR) { 1765 ClearPageUptodate(page); 1766 goto out_writepage; 1767 } 1768 got_it: 1769 if (__is_valid_data_blkaddr(fio->old_blkaddr) && 1770 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 1771 DATA_GENERIC)) { 1772 err = -EFAULT; 1773 goto out_writepage; 1774 } 1775 /* 1776 * If current allocation needs SSR, 1777 * it had better in-place writes for updated data. 1778 */ 1779 if (ipu_force || (is_valid_data_blkaddr(fio->sbi, fio->old_blkaddr) && 1780 need_inplace_update(fio))) { 1781 err = encrypt_one_page(fio); 1782 if (err) 1783 goto out_writepage; 1784 1785 set_page_writeback(page); 1786 ClearPageError(page); 1787 f2fs_put_dnode(&dn); 1788 if (fio->need_lock == LOCK_REQ) 1789 f2fs_unlock_op(fio->sbi); 1790 err = f2fs_inplace_write_data(fio); 1791 trace_f2fs_do_write_data_page(fio->page, IPU); 1792 set_inode_flag(inode, FI_UPDATE_WRITE); 1793 return err; 1794 } 1795 1796 if (fio->need_lock == LOCK_RETRY) { 1797 if (!f2fs_trylock_op(fio->sbi)) { 1798 err = -EAGAIN; 1799 goto out_writepage; 1800 } 1801 fio->need_lock = LOCK_REQ; 1802 } 1803 1804 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni); 1805 if (err) 1806 goto out_writepage; 1807 1808 fio->version = ni.version; 1809 1810 err = encrypt_one_page(fio); 1811 if (err) 1812 goto out_writepage; 1813 1814 set_page_writeback(page); 1815 ClearPageError(page); 1816 1817 /* LFS mode write path */ 1818 f2fs_outplace_write_data(&dn, fio); 1819 trace_f2fs_do_write_data_page(page, OPU); 1820 set_inode_flag(inode, FI_APPEND_WRITE); 1821 if (page->index == 0) 1822 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); 1823 out_writepage: 1824 f2fs_put_dnode(&dn); 1825 out: 1826 if (fio->need_lock == LOCK_REQ) 1827 f2fs_unlock_op(fio->sbi); 1828 return err; 1829 } 1830 1831 static int __write_data_page(struct page *page, bool *submitted, 1832 struct writeback_control *wbc, 1833 enum iostat_type io_type) 1834 { 1835 struct inode *inode = page->mapping->host; 1836 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1837 loff_t i_size = i_size_read(inode); 1838 const pgoff_t end_index = ((unsigned long long) i_size) 1839 >> PAGE_SHIFT; 1840 loff_t psize = (page->index + 1) << PAGE_SHIFT; 1841 unsigned offset = 0; 1842 bool need_balance_fs = false; 1843 int err = 0; 1844 struct f2fs_io_info fio = { 1845 .sbi = sbi, 1846 .ino = inode->i_ino, 1847 .type = DATA, 1848 .op = REQ_OP_WRITE, 1849 .op_flags = wbc_to_write_flags(wbc), 1850 .old_blkaddr = NULL_ADDR, 1851 .page = page, 1852 .encrypted_page = NULL, 1853 .submitted = false, 1854 .need_lock = LOCK_RETRY, 1855 .io_type = io_type, 1856 .io_wbc = wbc, 1857 }; 1858 1859 trace_f2fs_writepage(page, DATA); 1860 1861 /* we should bypass data pages to proceed the kworkder jobs */ 1862 if (unlikely(f2fs_cp_error(sbi))) { 1863 mapping_set_error(page->mapping, -EIO); 1864 /* 1865 * don't drop any dirty dentry pages for keeping lastest 1866 * directory structure. 1867 */ 1868 if (S_ISDIR(inode->i_mode)) 1869 goto redirty_out; 1870 goto out; 1871 } 1872 1873 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1874 goto redirty_out; 1875 1876 if (page->index < end_index) 1877 goto write; 1878 1879 /* 1880 * If the offset is out-of-range of file size, 1881 * this page does not have to be written to disk. 1882 */ 1883 offset = i_size & (PAGE_SIZE - 1); 1884 if ((page->index >= end_index + 1) || !offset) 1885 goto out; 1886 1887 zero_user_segment(page, offset, PAGE_SIZE); 1888 write: 1889 if (f2fs_is_drop_cache(inode)) 1890 goto out; 1891 /* we should not write 0'th page having journal header */ 1892 if (f2fs_is_volatile_file(inode) && (!page->index || 1893 (!wbc->for_reclaim && 1894 f2fs_available_free_memory(sbi, BASE_CHECK)))) 1895 goto redirty_out; 1896 1897 /* Dentry blocks are controlled by checkpoint */ 1898 if (S_ISDIR(inode->i_mode)) { 1899 fio.need_lock = LOCK_DONE; 1900 err = f2fs_do_write_data_page(&fio); 1901 goto done; 1902 } 1903 1904 if (!wbc->for_reclaim) 1905 need_balance_fs = true; 1906 else if (has_not_enough_free_secs(sbi, 0, 0)) 1907 goto redirty_out; 1908 else 1909 set_inode_flag(inode, FI_HOT_DATA); 1910 1911 err = -EAGAIN; 1912 if (f2fs_has_inline_data(inode)) { 1913 err = f2fs_write_inline_data(inode, page); 1914 if (!err) 1915 goto out; 1916 } 1917 1918 if (err == -EAGAIN) { 1919 err = f2fs_do_write_data_page(&fio); 1920 if (err == -EAGAIN) { 1921 fio.need_lock = LOCK_REQ; 1922 err = f2fs_do_write_data_page(&fio); 1923 } 1924 } 1925 1926 if (err) { 1927 file_set_keep_isize(inode); 1928 } else { 1929 down_write(&F2FS_I(inode)->i_sem); 1930 if (F2FS_I(inode)->last_disk_size < psize) 1931 F2FS_I(inode)->last_disk_size = psize; 1932 up_write(&F2FS_I(inode)->i_sem); 1933 } 1934 1935 done: 1936 if (err && err != -ENOENT) 1937 goto redirty_out; 1938 1939 out: 1940 inode_dec_dirty_pages(inode); 1941 if (err) 1942 ClearPageUptodate(page); 1943 1944 if (wbc->for_reclaim) { 1945 f2fs_submit_merged_write_cond(sbi, inode, 0, page->index, DATA); 1946 clear_inode_flag(inode, FI_HOT_DATA); 1947 f2fs_remove_dirty_inode(inode); 1948 submitted = NULL; 1949 } 1950 1951 unlock_page(page); 1952 if (!S_ISDIR(inode->i_mode)) 1953 f2fs_balance_fs(sbi, need_balance_fs); 1954 1955 if (unlikely(f2fs_cp_error(sbi))) { 1956 f2fs_submit_merged_write(sbi, DATA); 1957 submitted = NULL; 1958 } 1959 1960 if (submitted) 1961 *submitted = fio.submitted; 1962 1963 return 0; 1964 1965 redirty_out: 1966 redirty_page_for_writepage(wbc, page); 1967 /* 1968 * pageout() in MM traslates EAGAIN, so calls handle_write_error() 1969 * -> mapping_set_error() -> set_bit(AS_EIO, ...). 1970 * file_write_and_wait_range() will see EIO error, which is critical 1971 * to return value of fsync() followed by atomic_write failure to user. 1972 */ 1973 if (!err || wbc->for_reclaim) 1974 return AOP_WRITEPAGE_ACTIVATE; 1975 unlock_page(page); 1976 return err; 1977 } 1978 1979 static int f2fs_write_data_page(struct page *page, 1980 struct writeback_control *wbc) 1981 { 1982 return __write_data_page(page, NULL, wbc, FS_DATA_IO); 1983 } 1984 1985 /* 1986 * This function was copied from write_cche_pages from mm/page-writeback.c. 1987 * The major change is making write step of cold data page separately from 1988 * warm/hot data page. 1989 */ 1990 static int f2fs_write_cache_pages(struct address_space *mapping, 1991 struct writeback_control *wbc, 1992 enum iostat_type io_type) 1993 { 1994 int ret = 0; 1995 int done = 0; 1996 struct pagevec pvec; 1997 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 1998 int nr_pages; 1999 pgoff_t uninitialized_var(writeback_index); 2000 pgoff_t index; 2001 pgoff_t end; /* Inclusive */ 2002 pgoff_t done_index; 2003 pgoff_t last_idx = ULONG_MAX; 2004 int cycled; 2005 int range_whole = 0; 2006 int tag; 2007 2008 pagevec_init(&pvec); 2009 2010 if (get_dirty_pages(mapping->host) <= 2011 SM_I(F2FS_M_SB(mapping))->min_hot_blocks) 2012 set_inode_flag(mapping->host, FI_HOT_DATA); 2013 else 2014 clear_inode_flag(mapping->host, FI_HOT_DATA); 2015 2016 if (wbc->range_cyclic) { 2017 writeback_index = mapping->writeback_index; /* prev offset */ 2018 index = writeback_index; 2019 if (index == 0) 2020 cycled = 1; 2021 else 2022 cycled = 0; 2023 end = -1; 2024 } else { 2025 index = wbc->range_start >> PAGE_SHIFT; 2026 end = wbc->range_end >> PAGE_SHIFT; 2027 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2028 range_whole = 1; 2029 cycled = 1; /* ignore range_cyclic tests */ 2030 } 2031 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2032 tag = PAGECACHE_TAG_TOWRITE; 2033 else 2034 tag = PAGECACHE_TAG_DIRTY; 2035 retry: 2036 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2037 tag_pages_for_writeback(mapping, index, end); 2038 done_index = index; 2039 while (!done && (index <= end)) { 2040 int i; 2041 2042 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 2043 tag); 2044 if (nr_pages == 0) 2045 break; 2046 2047 for (i = 0; i < nr_pages; i++) { 2048 struct page *page = pvec.pages[i]; 2049 bool submitted = false; 2050 2051 /* give a priority to WB_SYNC threads */ 2052 if (atomic_read(&sbi->wb_sync_req[DATA]) && 2053 wbc->sync_mode == WB_SYNC_NONE) { 2054 done = 1; 2055 break; 2056 } 2057 2058 done_index = page->index; 2059 retry_write: 2060 lock_page(page); 2061 2062 if (unlikely(page->mapping != mapping)) { 2063 continue_unlock: 2064 unlock_page(page); 2065 continue; 2066 } 2067 2068 if (!PageDirty(page)) { 2069 /* someone wrote it for us */ 2070 goto continue_unlock; 2071 } 2072 2073 if (PageWriteback(page)) { 2074 if (wbc->sync_mode != WB_SYNC_NONE) 2075 f2fs_wait_on_page_writeback(page, 2076 DATA, true); 2077 else 2078 goto continue_unlock; 2079 } 2080 2081 BUG_ON(PageWriteback(page)); 2082 if (!clear_page_dirty_for_io(page)) 2083 goto continue_unlock; 2084 2085 ret = __write_data_page(page, &submitted, wbc, io_type); 2086 if (unlikely(ret)) { 2087 /* 2088 * keep nr_to_write, since vfs uses this to 2089 * get # of written pages. 2090 */ 2091 if (ret == AOP_WRITEPAGE_ACTIVATE) { 2092 unlock_page(page); 2093 ret = 0; 2094 continue; 2095 } else if (ret == -EAGAIN) { 2096 ret = 0; 2097 if (wbc->sync_mode == WB_SYNC_ALL) { 2098 cond_resched(); 2099 congestion_wait(BLK_RW_ASYNC, 2100 HZ/50); 2101 goto retry_write; 2102 } 2103 continue; 2104 } 2105 done_index = page->index + 1; 2106 done = 1; 2107 break; 2108 } else if (submitted) { 2109 last_idx = page->index; 2110 } 2111 2112 if (--wbc->nr_to_write <= 0 && 2113 wbc->sync_mode == WB_SYNC_NONE) { 2114 done = 1; 2115 break; 2116 } 2117 } 2118 pagevec_release(&pvec); 2119 cond_resched(); 2120 } 2121 2122 if (!cycled && !done) { 2123 cycled = 1; 2124 index = 0; 2125 end = writeback_index - 1; 2126 goto retry; 2127 } 2128 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2129 mapping->writeback_index = done_index; 2130 2131 if (last_idx != ULONG_MAX) 2132 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host, 2133 0, last_idx, DATA); 2134 2135 return ret; 2136 } 2137 2138 static inline bool __should_serialize_io(struct inode *inode, 2139 struct writeback_control *wbc) 2140 { 2141 if (!S_ISREG(inode->i_mode)) 2142 return false; 2143 if (wbc->sync_mode != WB_SYNC_ALL) 2144 return true; 2145 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks) 2146 return true; 2147 return false; 2148 } 2149 2150 static int __f2fs_write_data_pages(struct address_space *mapping, 2151 struct writeback_control *wbc, 2152 enum iostat_type io_type) 2153 { 2154 struct inode *inode = mapping->host; 2155 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2156 struct blk_plug plug; 2157 int ret; 2158 bool locked = false; 2159 2160 /* deal with chardevs and other special file */ 2161 if (!mapping->a_ops->writepage) 2162 return 0; 2163 2164 /* skip writing if there is no dirty page in this inode */ 2165 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE) 2166 return 0; 2167 2168 /* during POR, we don't need to trigger writepage at all. */ 2169 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 2170 goto skip_write; 2171 2172 if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE && 2173 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) && 2174 f2fs_available_free_memory(sbi, DIRTY_DENTS)) 2175 goto skip_write; 2176 2177 /* skip writing during file defragment */ 2178 if (is_inode_flag_set(inode, FI_DO_DEFRAG)) 2179 goto skip_write; 2180 2181 trace_f2fs_writepages(mapping->host, wbc, DATA); 2182 2183 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */ 2184 if (wbc->sync_mode == WB_SYNC_ALL) 2185 atomic_inc(&sbi->wb_sync_req[DATA]); 2186 else if (atomic_read(&sbi->wb_sync_req[DATA])) 2187 goto skip_write; 2188 2189 if (__should_serialize_io(inode, wbc)) { 2190 mutex_lock(&sbi->writepages); 2191 locked = true; 2192 } 2193 2194 blk_start_plug(&plug); 2195 ret = f2fs_write_cache_pages(mapping, wbc, io_type); 2196 blk_finish_plug(&plug); 2197 2198 if (locked) 2199 mutex_unlock(&sbi->writepages); 2200 2201 if (wbc->sync_mode == WB_SYNC_ALL) 2202 atomic_dec(&sbi->wb_sync_req[DATA]); 2203 /* 2204 * if some pages were truncated, we cannot guarantee its mapping->host 2205 * to detect pending bios. 2206 */ 2207 2208 f2fs_remove_dirty_inode(inode); 2209 return ret; 2210 2211 skip_write: 2212 wbc->pages_skipped += get_dirty_pages(inode); 2213 trace_f2fs_writepages(mapping->host, wbc, DATA); 2214 return 0; 2215 } 2216 2217 static int f2fs_write_data_pages(struct address_space *mapping, 2218 struct writeback_control *wbc) 2219 { 2220 struct inode *inode = mapping->host; 2221 2222 return __f2fs_write_data_pages(mapping, wbc, 2223 F2FS_I(inode)->cp_task == current ? 2224 FS_CP_DATA_IO : FS_DATA_IO); 2225 } 2226 2227 static void f2fs_write_failed(struct address_space *mapping, loff_t to) 2228 { 2229 struct inode *inode = mapping->host; 2230 loff_t i_size = i_size_read(inode); 2231 2232 if (to > i_size) { 2233 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 2234 down_write(&F2FS_I(inode)->i_mmap_sem); 2235 2236 truncate_pagecache(inode, i_size); 2237 f2fs_truncate_blocks(inode, i_size, true); 2238 2239 up_write(&F2FS_I(inode)->i_mmap_sem); 2240 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 2241 } 2242 } 2243 2244 static int prepare_write_begin(struct f2fs_sb_info *sbi, 2245 struct page *page, loff_t pos, unsigned len, 2246 block_t *blk_addr, bool *node_changed) 2247 { 2248 struct inode *inode = page->mapping->host; 2249 pgoff_t index = page->index; 2250 struct dnode_of_data dn; 2251 struct page *ipage; 2252 bool locked = false; 2253 struct extent_info ei = {0,0,0}; 2254 int err = 0; 2255 2256 /* 2257 * we already allocated all the blocks, so we don't need to get 2258 * the block addresses when there is no need to fill the page. 2259 */ 2260 if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE && 2261 !is_inode_flag_set(inode, FI_NO_PREALLOC)) 2262 return 0; 2263 2264 if (f2fs_has_inline_data(inode) || 2265 (pos & PAGE_MASK) >= i_size_read(inode)) { 2266 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true); 2267 locked = true; 2268 } 2269 restart: 2270 /* check inline_data */ 2271 ipage = f2fs_get_node_page(sbi, inode->i_ino); 2272 if (IS_ERR(ipage)) { 2273 err = PTR_ERR(ipage); 2274 goto unlock_out; 2275 } 2276 2277 set_new_dnode(&dn, inode, ipage, ipage, 0); 2278 2279 if (f2fs_has_inline_data(inode)) { 2280 if (pos + len <= MAX_INLINE_DATA(inode)) { 2281 f2fs_do_read_inline_data(page, ipage); 2282 set_inode_flag(inode, FI_DATA_EXIST); 2283 if (inode->i_nlink) 2284 set_inline_node(ipage); 2285 } else { 2286 err = f2fs_convert_inline_page(&dn, page); 2287 if (err) 2288 goto out; 2289 if (dn.data_blkaddr == NULL_ADDR) 2290 err = f2fs_get_block(&dn, index); 2291 } 2292 } else if (locked) { 2293 err = f2fs_get_block(&dn, index); 2294 } else { 2295 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 2296 dn.data_blkaddr = ei.blk + index - ei.fofs; 2297 } else { 2298 /* hole case */ 2299 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 2300 if (err || dn.data_blkaddr == NULL_ADDR) { 2301 f2fs_put_dnode(&dn); 2302 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, 2303 true); 2304 locked = true; 2305 goto restart; 2306 } 2307 } 2308 } 2309 2310 /* convert_inline_page can make node_changed */ 2311 *blk_addr = dn.data_blkaddr; 2312 *node_changed = dn.node_changed; 2313 out: 2314 f2fs_put_dnode(&dn); 2315 unlock_out: 2316 if (locked) 2317 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false); 2318 return err; 2319 } 2320 2321 static int f2fs_write_begin(struct file *file, struct address_space *mapping, 2322 loff_t pos, unsigned len, unsigned flags, 2323 struct page **pagep, void **fsdata) 2324 { 2325 struct inode *inode = mapping->host; 2326 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2327 struct page *page = NULL; 2328 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT; 2329 bool need_balance = false, drop_atomic = false; 2330 block_t blkaddr = NULL_ADDR; 2331 int err = 0; 2332 2333 trace_f2fs_write_begin(inode, pos, len, flags); 2334 2335 if ((f2fs_is_atomic_file(inode) && 2336 !f2fs_available_free_memory(sbi, INMEM_PAGES)) || 2337 is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) { 2338 err = -ENOMEM; 2339 drop_atomic = true; 2340 goto fail; 2341 } 2342 2343 /* 2344 * We should check this at this moment to avoid deadlock on inode page 2345 * and #0 page. The locking rule for inline_data conversion should be: 2346 * lock_page(page #0) -> lock_page(inode_page) 2347 */ 2348 if (index != 0) { 2349 err = f2fs_convert_inline_inode(inode); 2350 if (err) 2351 goto fail; 2352 } 2353 repeat: 2354 /* 2355 * Do not use grab_cache_page_write_begin() to avoid deadlock due to 2356 * wait_for_stable_page. Will wait that below with our IO control. 2357 */ 2358 page = f2fs_pagecache_get_page(mapping, index, 2359 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS); 2360 if (!page) { 2361 err = -ENOMEM; 2362 goto fail; 2363 } 2364 2365 *pagep = page; 2366 2367 err = prepare_write_begin(sbi, page, pos, len, 2368 &blkaddr, &need_balance); 2369 if (err) 2370 goto fail; 2371 2372 if (need_balance && has_not_enough_free_secs(sbi, 0, 0)) { 2373 unlock_page(page); 2374 f2fs_balance_fs(sbi, true); 2375 lock_page(page); 2376 if (page->mapping != mapping) { 2377 /* The page got truncated from under us */ 2378 f2fs_put_page(page, 1); 2379 goto repeat; 2380 } 2381 } 2382 2383 f2fs_wait_on_page_writeback(page, DATA, false); 2384 2385 /* wait for GCed page writeback via META_MAPPING */ 2386 if (f2fs_post_read_required(inode)) 2387 f2fs_wait_on_block_writeback(sbi, blkaddr); 2388 2389 if (len == PAGE_SIZE || PageUptodate(page)) 2390 return 0; 2391 2392 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode)) { 2393 zero_user_segment(page, len, PAGE_SIZE); 2394 return 0; 2395 } 2396 2397 if (blkaddr == NEW_ADDR) { 2398 zero_user_segment(page, 0, PAGE_SIZE); 2399 SetPageUptodate(page); 2400 } else { 2401 err = f2fs_submit_page_read(inode, page, blkaddr); 2402 if (err) 2403 goto fail; 2404 2405 lock_page(page); 2406 if (unlikely(page->mapping != mapping)) { 2407 f2fs_put_page(page, 1); 2408 goto repeat; 2409 } 2410 if (unlikely(!PageUptodate(page))) { 2411 err = -EIO; 2412 goto fail; 2413 } 2414 } 2415 return 0; 2416 2417 fail: 2418 f2fs_put_page(page, 1); 2419 f2fs_write_failed(mapping, pos + len); 2420 if (drop_atomic) 2421 f2fs_drop_inmem_pages_all(sbi, false); 2422 return err; 2423 } 2424 2425 static int f2fs_write_end(struct file *file, 2426 struct address_space *mapping, 2427 loff_t pos, unsigned len, unsigned copied, 2428 struct page *page, void *fsdata) 2429 { 2430 struct inode *inode = page->mapping->host; 2431 2432 trace_f2fs_write_end(inode, pos, len, copied); 2433 2434 /* 2435 * This should be come from len == PAGE_SIZE, and we expect copied 2436 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and 2437 * let generic_perform_write() try to copy data again through copied=0. 2438 */ 2439 if (!PageUptodate(page)) { 2440 if (unlikely(copied != len)) 2441 copied = 0; 2442 else 2443 SetPageUptodate(page); 2444 } 2445 if (!copied) 2446 goto unlock_out; 2447 2448 set_page_dirty(page); 2449 2450 if (pos + copied > i_size_read(inode)) 2451 f2fs_i_size_write(inode, pos + copied); 2452 unlock_out: 2453 f2fs_put_page(page, 1); 2454 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2455 return copied; 2456 } 2457 2458 static int check_direct_IO(struct inode *inode, struct iov_iter *iter, 2459 loff_t offset) 2460 { 2461 unsigned i_blkbits = READ_ONCE(inode->i_blkbits); 2462 unsigned blkbits = i_blkbits; 2463 unsigned blocksize_mask = (1 << blkbits) - 1; 2464 unsigned long align = offset | iov_iter_alignment(iter); 2465 struct block_device *bdev = inode->i_sb->s_bdev; 2466 2467 if (align & blocksize_mask) { 2468 if (bdev) 2469 blkbits = blksize_bits(bdev_logical_block_size(bdev)); 2470 blocksize_mask = (1 << blkbits) - 1; 2471 if (align & blocksize_mask) 2472 return -EINVAL; 2473 return 1; 2474 } 2475 return 0; 2476 } 2477 2478 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 2479 { 2480 struct address_space *mapping = iocb->ki_filp->f_mapping; 2481 struct inode *inode = mapping->host; 2482 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2483 size_t count = iov_iter_count(iter); 2484 loff_t offset = iocb->ki_pos; 2485 int rw = iov_iter_rw(iter); 2486 int err; 2487 enum rw_hint hint = iocb->ki_hint; 2488 int whint_mode = F2FS_OPTION(sbi).whint_mode; 2489 2490 err = check_direct_IO(inode, iter, offset); 2491 if (err) 2492 return err < 0 ? err : 0; 2493 2494 if (f2fs_force_buffered_io(inode, rw)) 2495 return 0; 2496 2497 trace_f2fs_direct_IO_enter(inode, offset, count, rw); 2498 2499 if (rw == WRITE && whint_mode == WHINT_MODE_OFF) 2500 iocb->ki_hint = WRITE_LIFE_NOT_SET; 2501 2502 if (!down_read_trylock(&F2FS_I(inode)->i_gc_rwsem[rw])) { 2503 if (iocb->ki_flags & IOCB_NOWAIT) { 2504 iocb->ki_hint = hint; 2505 err = -EAGAIN; 2506 goto out; 2507 } 2508 down_read(&F2FS_I(inode)->i_gc_rwsem[rw]); 2509 } 2510 2511 err = blockdev_direct_IO(iocb, inode, iter, get_data_block_dio); 2512 up_read(&F2FS_I(inode)->i_gc_rwsem[rw]); 2513 2514 if (rw == WRITE) { 2515 if (whint_mode == WHINT_MODE_OFF) 2516 iocb->ki_hint = hint; 2517 if (err > 0) { 2518 f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO, 2519 err); 2520 set_inode_flag(inode, FI_UPDATE_WRITE); 2521 } else if (err < 0) { 2522 f2fs_write_failed(mapping, offset + count); 2523 } 2524 } 2525 2526 out: 2527 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err); 2528 2529 return err; 2530 } 2531 2532 void f2fs_invalidate_page(struct page *page, unsigned int offset, 2533 unsigned int length) 2534 { 2535 struct inode *inode = page->mapping->host; 2536 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2537 2538 if (inode->i_ino >= F2FS_ROOT_INO(sbi) && 2539 (offset % PAGE_SIZE || length != PAGE_SIZE)) 2540 return; 2541 2542 if (PageDirty(page)) { 2543 if (inode->i_ino == F2FS_META_INO(sbi)) { 2544 dec_page_count(sbi, F2FS_DIRTY_META); 2545 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) { 2546 dec_page_count(sbi, F2FS_DIRTY_NODES); 2547 } else { 2548 inode_dec_dirty_pages(inode); 2549 f2fs_remove_dirty_inode(inode); 2550 } 2551 } 2552 2553 /* This is atomic written page, keep Private */ 2554 if (IS_ATOMIC_WRITTEN_PAGE(page)) 2555 return f2fs_drop_inmem_page(inode, page); 2556 2557 set_page_private(page, 0); 2558 ClearPagePrivate(page); 2559 } 2560 2561 int f2fs_release_page(struct page *page, gfp_t wait) 2562 { 2563 /* If this is dirty page, keep PagePrivate */ 2564 if (PageDirty(page)) 2565 return 0; 2566 2567 /* This is atomic written page, keep Private */ 2568 if (IS_ATOMIC_WRITTEN_PAGE(page)) 2569 return 0; 2570 2571 set_page_private(page, 0); 2572 ClearPagePrivate(page); 2573 return 1; 2574 } 2575 2576 static int f2fs_set_data_page_dirty(struct page *page) 2577 { 2578 struct address_space *mapping = page->mapping; 2579 struct inode *inode = mapping->host; 2580 2581 trace_f2fs_set_page_dirty(page, DATA); 2582 2583 if (!PageUptodate(page)) 2584 SetPageUptodate(page); 2585 2586 /* don't remain PG_checked flag which was set during GC */ 2587 if (is_cold_data(page)) 2588 clear_cold_data(page); 2589 2590 if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) { 2591 if (!IS_ATOMIC_WRITTEN_PAGE(page)) { 2592 f2fs_register_inmem_page(inode, page); 2593 return 1; 2594 } 2595 /* 2596 * Previously, this page has been registered, we just 2597 * return here. 2598 */ 2599 return 0; 2600 } 2601 2602 if (!PageDirty(page)) { 2603 __set_page_dirty_nobuffers(page); 2604 f2fs_update_dirty_page(inode, page); 2605 return 1; 2606 } 2607 return 0; 2608 } 2609 2610 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block) 2611 { 2612 struct inode *inode = mapping->host; 2613 2614 if (f2fs_has_inline_data(inode)) 2615 return 0; 2616 2617 /* make sure allocating whole blocks */ 2618 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2619 filemap_write_and_wait(mapping); 2620 2621 return generic_block_bmap(mapping, block, get_data_block_bmap); 2622 } 2623 2624 #ifdef CONFIG_MIGRATION 2625 #include <linux/migrate.h> 2626 2627 int f2fs_migrate_page(struct address_space *mapping, 2628 struct page *newpage, struct page *page, enum migrate_mode mode) 2629 { 2630 int rc, extra_count; 2631 struct f2fs_inode_info *fi = F2FS_I(mapping->host); 2632 bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page); 2633 2634 BUG_ON(PageWriteback(page)); 2635 2636 /* migrating an atomic written page is safe with the inmem_lock hold */ 2637 if (atomic_written) { 2638 if (mode != MIGRATE_SYNC) 2639 return -EBUSY; 2640 if (!mutex_trylock(&fi->inmem_lock)) 2641 return -EAGAIN; 2642 } 2643 2644 /* 2645 * A reference is expected if PagePrivate set when move mapping, 2646 * however F2FS breaks this for maintaining dirty page counts when 2647 * truncating pages. So here adjusting the 'extra_count' make it work. 2648 */ 2649 extra_count = (atomic_written ? 1 : 0) - page_has_private(page); 2650 rc = migrate_page_move_mapping(mapping, newpage, 2651 page, NULL, mode, extra_count); 2652 if (rc != MIGRATEPAGE_SUCCESS) { 2653 if (atomic_written) 2654 mutex_unlock(&fi->inmem_lock); 2655 return rc; 2656 } 2657 2658 if (atomic_written) { 2659 struct inmem_pages *cur; 2660 list_for_each_entry(cur, &fi->inmem_pages, list) 2661 if (cur->page == page) { 2662 cur->page = newpage; 2663 break; 2664 } 2665 mutex_unlock(&fi->inmem_lock); 2666 put_page(page); 2667 get_page(newpage); 2668 } 2669 2670 if (PagePrivate(page)) 2671 SetPagePrivate(newpage); 2672 set_page_private(newpage, page_private(page)); 2673 2674 if (mode != MIGRATE_SYNC_NO_COPY) 2675 migrate_page_copy(newpage, page); 2676 else 2677 migrate_page_states(newpage, page); 2678 2679 return MIGRATEPAGE_SUCCESS; 2680 } 2681 #endif 2682 2683 const struct address_space_operations f2fs_dblock_aops = { 2684 .readpage = f2fs_read_data_page, 2685 .readpages = f2fs_read_data_pages, 2686 .writepage = f2fs_write_data_page, 2687 .writepages = f2fs_write_data_pages, 2688 .write_begin = f2fs_write_begin, 2689 .write_end = f2fs_write_end, 2690 .set_page_dirty = f2fs_set_data_page_dirty, 2691 .invalidatepage = f2fs_invalidate_page, 2692 .releasepage = f2fs_release_page, 2693 .direct_IO = f2fs_direct_IO, 2694 .bmap = f2fs_bmap, 2695 #ifdef CONFIG_MIGRATION 2696 .migratepage = f2fs_migrate_page, 2697 #endif 2698 }; 2699 2700 void f2fs_clear_radix_tree_dirty_tag(struct page *page) 2701 { 2702 struct address_space *mapping = page_mapping(page); 2703 unsigned long flags; 2704 2705 xa_lock_irqsave(&mapping->i_pages, flags); 2706 radix_tree_tag_clear(&mapping->i_pages, page_index(page), 2707 PAGECACHE_TAG_DIRTY); 2708 xa_unlock_irqrestore(&mapping->i_pages, flags); 2709 } 2710 2711 int __init f2fs_init_post_read_processing(void) 2712 { 2713 bio_post_read_ctx_cache = KMEM_CACHE(bio_post_read_ctx, 0); 2714 if (!bio_post_read_ctx_cache) 2715 goto fail; 2716 bio_post_read_ctx_pool = 2717 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS, 2718 bio_post_read_ctx_cache); 2719 if (!bio_post_read_ctx_pool) 2720 goto fail_free_cache; 2721 return 0; 2722 2723 fail_free_cache: 2724 kmem_cache_destroy(bio_post_read_ctx_cache); 2725 fail: 2726 return -ENOMEM; 2727 } 2728 2729 void __exit f2fs_destroy_post_read_processing(void) 2730 { 2731 mempool_destroy(bio_post_read_ctx_pool); 2732 kmem_cache_destroy(bio_post_read_ctx_cache); 2733 } 2734