xref: /linux/fs/f2fs/data.c (revision 2cfe9bbec56ea579135cdd92409fff371841904f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/data.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/sched/mm.h>
12 #include <linux/mpage.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/blk-crypto.h>
18 #include <linux/swap.h>
19 #include <linux/prefetch.h>
20 #include <linux/uio.h>
21 #include <linux/sched/signal.h>
22 #include <linux/fiemap.h>
23 #include <linux/iomap.h>
24 
25 #include "f2fs.h"
26 #include "node.h"
27 #include "segment.h"
28 #include "iostat.h"
29 #include <trace/events/f2fs.h>
30 
31 #define NUM_PREALLOC_POST_READ_CTXS	128
32 
33 static struct kmem_cache *bio_post_read_ctx_cache;
34 static struct kmem_cache *bio_entry_slab;
35 static mempool_t *bio_post_read_ctx_pool;
36 static struct bio_set f2fs_bioset;
37 
38 #define	F2FS_BIO_POOL_SIZE	NR_CURSEG_TYPE
39 
40 int __init f2fs_init_bioset(void)
41 {
42 	if (bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
43 					0, BIOSET_NEED_BVECS))
44 		return -ENOMEM;
45 	return 0;
46 }
47 
48 void f2fs_destroy_bioset(void)
49 {
50 	bioset_exit(&f2fs_bioset);
51 }
52 
53 static bool __is_cp_guaranteed(struct page *page)
54 {
55 	struct address_space *mapping = page->mapping;
56 	struct inode *inode;
57 	struct f2fs_sb_info *sbi;
58 
59 	if (!mapping)
60 		return false;
61 
62 	inode = mapping->host;
63 	sbi = F2FS_I_SB(inode);
64 
65 	if (inode->i_ino == F2FS_META_INO(sbi) ||
66 			inode->i_ino == F2FS_NODE_INO(sbi) ||
67 			S_ISDIR(inode->i_mode))
68 		return true;
69 
70 	if (f2fs_is_compressed_page(page))
71 		return false;
72 	if ((S_ISREG(inode->i_mode) && IS_NOQUOTA(inode)) ||
73 			page_private_gcing(page))
74 		return true;
75 	return false;
76 }
77 
78 static enum count_type __read_io_type(struct page *page)
79 {
80 	struct address_space *mapping = page_file_mapping(page);
81 
82 	if (mapping) {
83 		struct inode *inode = mapping->host;
84 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
85 
86 		if (inode->i_ino == F2FS_META_INO(sbi))
87 			return F2FS_RD_META;
88 
89 		if (inode->i_ino == F2FS_NODE_INO(sbi))
90 			return F2FS_RD_NODE;
91 	}
92 	return F2FS_RD_DATA;
93 }
94 
95 /* postprocessing steps for read bios */
96 enum bio_post_read_step {
97 #ifdef CONFIG_FS_ENCRYPTION
98 	STEP_DECRYPT	= 1 << 0,
99 #else
100 	STEP_DECRYPT	= 0,	/* compile out the decryption-related code */
101 #endif
102 #ifdef CONFIG_F2FS_FS_COMPRESSION
103 	STEP_DECOMPRESS	= 1 << 1,
104 #else
105 	STEP_DECOMPRESS	= 0,	/* compile out the decompression-related code */
106 #endif
107 #ifdef CONFIG_FS_VERITY
108 	STEP_VERITY	= 1 << 2,
109 #else
110 	STEP_VERITY	= 0,	/* compile out the verity-related code */
111 #endif
112 };
113 
114 struct bio_post_read_ctx {
115 	struct bio *bio;
116 	struct f2fs_sb_info *sbi;
117 	struct work_struct work;
118 	unsigned int enabled_steps;
119 	block_t fs_blkaddr;
120 };
121 
122 static void f2fs_finish_read_bio(struct bio *bio)
123 {
124 	struct bio_vec *bv;
125 	struct bvec_iter_all iter_all;
126 
127 	/*
128 	 * Update and unlock the bio's pagecache pages, and put the
129 	 * decompression context for any compressed pages.
130 	 */
131 	bio_for_each_segment_all(bv, bio, iter_all) {
132 		struct page *page = bv->bv_page;
133 
134 		if (f2fs_is_compressed_page(page)) {
135 			if (bio->bi_status)
136 				f2fs_end_read_compressed_page(page, true, 0);
137 			f2fs_put_page_dic(page);
138 			continue;
139 		}
140 
141 		/* PG_error was set if decryption or verity failed. */
142 		if (bio->bi_status || PageError(page)) {
143 			ClearPageUptodate(page);
144 			/* will re-read again later */
145 			ClearPageError(page);
146 		} else {
147 			SetPageUptodate(page);
148 		}
149 		dec_page_count(F2FS_P_SB(page), __read_io_type(page));
150 		unlock_page(page);
151 	}
152 
153 	if (bio->bi_private)
154 		mempool_free(bio->bi_private, bio_post_read_ctx_pool);
155 	bio_put(bio);
156 }
157 
158 static void f2fs_verify_bio(struct work_struct *work)
159 {
160 	struct bio_post_read_ctx *ctx =
161 		container_of(work, struct bio_post_read_ctx, work);
162 	struct bio *bio = ctx->bio;
163 	bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
164 
165 	/*
166 	 * fsverity_verify_bio() may call readahead() again, and while verity
167 	 * will be disabled for this, decryption and/or decompression may still
168 	 * be needed, resulting in another bio_post_read_ctx being allocated.
169 	 * So to prevent deadlocks we need to release the current ctx to the
170 	 * mempool first.  This assumes that verity is the last post-read step.
171 	 */
172 	mempool_free(ctx, bio_post_read_ctx_pool);
173 	bio->bi_private = NULL;
174 
175 	/*
176 	 * Verify the bio's pages with fs-verity.  Exclude compressed pages,
177 	 * as those were handled separately by f2fs_end_read_compressed_page().
178 	 */
179 	if (may_have_compressed_pages) {
180 		struct bio_vec *bv;
181 		struct bvec_iter_all iter_all;
182 
183 		bio_for_each_segment_all(bv, bio, iter_all) {
184 			struct page *page = bv->bv_page;
185 
186 			if (!f2fs_is_compressed_page(page) &&
187 			    !PageError(page) && !fsverity_verify_page(page))
188 				SetPageError(page);
189 		}
190 	} else {
191 		fsverity_verify_bio(bio);
192 	}
193 
194 	f2fs_finish_read_bio(bio);
195 }
196 
197 /*
198  * If the bio's data needs to be verified with fs-verity, then enqueue the
199  * verity work for the bio.  Otherwise finish the bio now.
200  *
201  * Note that to avoid deadlocks, the verity work can't be done on the
202  * decryption/decompression workqueue.  This is because verifying the data pages
203  * can involve reading verity metadata pages from the file, and these verity
204  * metadata pages may be encrypted and/or compressed.
205  */
206 static void f2fs_verify_and_finish_bio(struct bio *bio)
207 {
208 	struct bio_post_read_ctx *ctx = bio->bi_private;
209 
210 	if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
211 		INIT_WORK(&ctx->work, f2fs_verify_bio);
212 		fsverity_enqueue_verify_work(&ctx->work);
213 	} else {
214 		f2fs_finish_read_bio(bio);
215 	}
216 }
217 
218 /*
219  * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
220  * remaining page was read by @ctx->bio.
221  *
222  * Note that a bio may span clusters (even a mix of compressed and uncompressed
223  * clusters) or be for just part of a cluster.  STEP_DECOMPRESS just indicates
224  * that the bio includes at least one compressed page.  The actual decompression
225  * is done on a per-cluster basis, not a per-bio basis.
226  */
227 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx)
228 {
229 	struct bio_vec *bv;
230 	struct bvec_iter_all iter_all;
231 	bool all_compressed = true;
232 	block_t blkaddr = ctx->fs_blkaddr;
233 
234 	bio_for_each_segment_all(bv, ctx->bio, iter_all) {
235 		struct page *page = bv->bv_page;
236 
237 		/* PG_error was set if decryption failed. */
238 		if (f2fs_is_compressed_page(page))
239 			f2fs_end_read_compressed_page(page, PageError(page),
240 						blkaddr);
241 		else
242 			all_compressed = false;
243 
244 		blkaddr++;
245 	}
246 
247 	/*
248 	 * Optimization: if all the bio's pages are compressed, then scheduling
249 	 * the per-bio verity work is unnecessary, as verity will be fully
250 	 * handled at the compression cluster level.
251 	 */
252 	if (all_compressed)
253 		ctx->enabled_steps &= ~STEP_VERITY;
254 }
255 
256 static void f2fs_post_read_work(struct work_struct *work)
257 {
258 	struct bio_post_read_ctx *ctx =
259 		container_of(work, struct bio_post_read_ctx, work);
260 
261 	if (ctx->enabled_steps & STEP_DECRYPT)
262 		fscrypt_decrypt_bio(ctx->bio);
263 
264 	if (ctx->enabled_steps & STEP_DECOMPRESS)
265 		f2fs_handle_step_decompress(ctx);
266 
267 	f2fs_verify_and_finish_bio(ctx->bio);
268 }
269 
270 static void f2fs_read_end_io(struct bio *bio)
271 {
272 	struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
273 	struct bio_post_read_ctx *ctx;
274 
275 	iostat_update_and_unbind_ctx(bio, 0);
276 	ctx = bio->bi_private;
277 
278 	if (time_to_inject(sbi, FAULT_READ_IO)) {
279 		f2fs_show_injection_info(sbi, FAULT_READ_IO);
280 		bio->bi_status = BLK_STS_IOERR;
281 	}
282 
283 	if (bio->bi_status) {
284 		f2fs_finish_read_bio(bio);
285 		return;
286 	}
287 
288 	if (ctx && (ctx->enabled_steps & (STEP_DECRYPT | STEP_DECOMPRESS))) {
289 		INIT_WORK(&ctx->work, f2fs_post_read_work);
290 		queue_work(ctx->sbi->post_read_wq, &ctx->work);
291 	} else {
292 		f2fs_verify_and_finish_bio(bio);
293 	}
294 }
295 
296 static void f2fs_write_end_io(struct bio *bio)
297 {
298 	struct f2fs_sb_info *sbi;
299 	struct bio_vec *bvec;
300 	struct bvec_iter_all iter_all;
301 
302 	iostat_update_and_unbind_ctx(bio, 1);
303 	sbi = bio->bi_private;
304 
305 	if (time_to_inject(sbi, FAULT_WRITE_IO)) {
306 		f2fs_show_injection_info(sbi, FAULT_WRITE_IO);
307 		bio->bi_status = BLK_STS_IOERR;
308 	}
309 
310 	bio_for_each_segment_all(bvec, bio, iter_all) {
311 		struct page *page = bvec->bv_page;
312 		enum count_type type = WB_DATA_TYPE(page);
313 
314 		if (page_private_dummy(page)) {
315 			clear_page_private_dummy(page);
316 			unlock_page(page);
317 			mempool_free(page, sbi->write_io_dummy);
318 
319 			if (unlikely(bio->bi_status))
320 				f2fs_stop_checkpoint(sbi, true);
321 			continue;
322 		}
323 
324 		fscrypt_finalize_bounce_page(&page);
325 
326 #ifdef CONFIG_F2FS_FS_COMPRESSION
327 		if (f2fs_is_compressed_page(page)) {
328 			f2fs_compress_write_end_io(bio, page);
329 			continue;
330 		}
331 #endif
332 
333 		if (unlikely(bio->bi_status)) {
334 			mapping_set_error(page->mapping, -EIO);
335 			if (type == F2FS_WB_CP_DATA)
336 				f2fs_stop_checkpoint(sbi, true);
337 		}
338 
339 		f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
340 					page->index != nid_of_node(page));
341 
342 		dec_page_count(sbi, type);
343 		if (f2fs_in_warm_node_list(sbi, page))
344 			f2fs_del_fsync_node_entry(sbi, page);
345 		clear_page_private_gcing(page);
346 		end_page_writeback(page);
347 	}
348 	if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
349 				wq_has_sleeper(&sbi->cp_wait))
350 		wake_up(&sbi->cp_wait);
351 
352 	bio_put(bio);
353 }
354 
355 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
356 		block_t blk_addr, sector_t *sector)
357 {
358 	struct block_device *bdev = sbi->sb->s_bdev;
359 	int i;
360 
361 	if (f2fs_is_multi_device(sbi)) {
362 		for (i = 0; i < sbi->s_ndevs; i++) {
363 			if (FDEV(i).start_blk <= blk_addr &&
364 			    FDEV(i).end_blk >= blk_addr) {
365 				blk_addr -= FDEV(i).start_blk;
366 				bdev = FDEV(i).bdev;
367 				break;
368 			}
369 		}
370 	}
371 
372 	if (sector)
373 		*sector = SECTOR_FROM_BLOCK(blk_addr);
374 	return bdev;
375 }
376 
377 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
378 {
379 	int i;
380 
381 	if (!f2fs_is_multi_device(sbi))
382 		return 0;
383 
384 	for (i = 0; i < sbi->s_ndevs; i++)
385 		if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
386 			return i;
387 	return 0;
388 }
389 
390 static blk_opf_t f2fs_io_flags(struct f2fs_io_info *fio)
391 {
392 	unsigned int temp_mask = (1 << NR_TEMP_TYPE) - 1;
393 	unsigned int fua_flag, meta_flag, io_flag;
394 	blk_opf_t op_flags = 0;
395 
396 	if (fio->op != REQ_OP_WRITE)
397 		return 0;
398 	if (fio->type == DATA)
399 		io_flag = fio->sbi->data_io_flag;
400 	else if (fio->type == NODE)
401 		io_flag = fio->sbi->node_io_flag;
402 	else
403 		return 0;
404 
405 	fua_flag = io_flag & temp_mask;
406 	meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
407 
408 	/*
409 	 * data/node io flag bits per temp:
410 	 *      REQ_META     |      REQ_FUA      |
411 	 *    5 |    4 |   3 |    2 |    1 |   0 |
412 	 * Cold | Warm | Hot | Cold | Warm | Hot |
413 	 */
414 	if ((1 << fio->temp) & meta_flag)
415 		op_flags |= REQ_META;
416 	if ((1 << fio->temp) & fua_flag)
417 		op_flags |= REQ_FUA;
418 	return op_flags;
419 }
420 
421 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
422 {
423 	struct f2fs_sb_info *sbi = fio->sbi;
424 	struct block_device *bdev;
425 	sector_t sector;
426 	struct bio *bio;
427 
428 	bdev = f2fs_target_device(sbi, fio->new_blkaddr, &sector);
429 	bio = bio_alloc_bioset(bdev, npages,
430 				fio->op | fio->op_flags | f2fs_io_flags(fio),
431 				GFP_NOIO, &f2fs_bioset);
432 	bio->bi_iter.bi_sector = sector;
433 	if (is_read_io(fio->op)) {
434 		bio->bi_end_io = f2fs_read_end_io;
435 		bio->bi_private = NULL;
436 	} else {
437 		bio->bi_end_io = f2fs_write_end_io;
438 		bio->bi_private = sbi;
439 	}
440 	iostat_alloc_and_bind_ctx(sbi, bio, NULL);
441 
442 	if (fio->io_wbc)
443 		wbc_init_bio(fio->io_wbc, bio);
444 
445 	return bio;
446 }
447 
448 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
449 				  pgoff_t first_idx,
450 				  const struct f2fs_io_info *fio,
451 				  gfp_t gfp_mask)
452 {
453 	/*
454 	 * The f2fs garbage collector sets ->encrypted_page when it wants to
455 	 * read/write raw data without encryption.
456 	 */
457 	if (!fio || !fio->encrypted_page)
458 		fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
459 }
460 
461 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
462 				     pgoff_t next_idx,
463 				     const struct f2fs_io_info *fio)
464 {
465 	/*
466 	 * The f2fs garbage collector sets ->encrypted_page when it wants to
467 	 * read/write raw data without encryption.
468 	 */
469 	if (fio && fio->encrypted_page)
470 		return !bio_has_crypt_ctx(bio);
471 
472 	return fscrypt_mergeable_bio(bio, inode, next_idx);
473 }
474 
475 static inline void __submit_bio(struct f2fs_sb_info *sbi,
476 				struct bio *bio, enum page_type type)
477 {
478 	if (!is_read_io(bio_op(bio))) {
479 		unsigned int start;
480 
481 		if (type != DATA && type != NODE)
482 			goto submit_io;
483 
484 		if (f2fs_lfs_mode(sbi) && current->plug)
485 			blk_finish_plug(current->plug);
486 
487 		if (!F2FS_IO_ALIGNED(sbi))
488 			goto submit_io;
489 
490 		start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
491 		start %= F2FS_IO_SIZE(sbi);
492 
493 		if (start == 0)
494 			goto submit_io;
495 
496 		/* fill dummy pages */
497 		for (; start < F2FS_IO_SIZE(sbi); start++) {
498 			struct page *page =
499 				mempool_alloc(sbi->write_io_dummy,
500 					      GFP_NOIO | __GFP_NOFAIL);
501 			f2fs_bug_on(sbi, !page);
502 
503 			lock_page(page);
504 
505 			zero_user_segment(page, 0, PAGE_SIZE);
506 			set_page_private_dummy(page);
507 
508 			if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
509 				f2fs_bug_on(sbi, 1);
510 		}
511 		/*
512 		 * In the NODE case, we lose next block address chain. So, we
513 		 * need to do checkpoint in f2fs_sync_file.
514 		 */
515 		if (type == NODE)
516 			set_sbi_flag(sbi, SBI_NEED_CP);
517 	}
518 submit_io:
519 	if (is_read_io(bio_op(bio)))
520 		trace_f2fs_submit_read_bio(sbi->sb, type, bio);
521 	else
522 		trace_f2fs_submit_write_bio(sbi->sb, type, bio);
523 
524 	iostat_update_submit_ctx(bio, type);
525 	submit_bio(bio);
526 }
527 
528 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
529 				struct bio *bio, enum page_type type)
530 {
531 	__submit_bio(sbi, bio, type);
532 }
533 
534 static void __submit_merged_bio(struct f2fs_bio_info *io)
535 {
536 	struct f2fs_io_info *fio = &io->fio;
537 
538 	if (!io->bio)
539 		return;
540 
541 	if (is_read_io(fio->op))
542 		trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
543 	else
544 		trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
545 
546 	__submit_bio(io->sbi, io->bio, fio->type);
547 	io->bio = NULL;
548 }
549 
550 static bool __has_merged_page(struct bio *bio, struct inode *inode,
551 						struct page *page, nid_t ino)
552 {
553 	struct bio_vec *bvec;
554 	struct bvec_iter_all iter_all;
555 
556 	if (!bio)
557 		return false;
558 
559 	if (!inode && !page && !ino)
560 		return true;
561 
562 	bio_for_each_segment_all(bvec, bio, iter_all) {
563 		struct page *target = bvec->bv_page;
564 
565 		if (fscrypt_is_bounce_page(target)) {
566 			target = fscrypt_pagecache_page(target);
567 			if (IS_ERR(target))
568 				continue;
569 		}
570 		if (f2fs_is_compressed_page(target)) {
571 			target = f2fs_compress_control_page(target);
572 			if (IS_ERR(target))
573 				continue;
574 		}
575 
576 		if (inode && inode == target->mapping->host)
577 			return true;
578 		if (page && page == target)
579 			return true;
580 		if (ino && ino == ino_of_node(target))
581 			return true;
582 	}
583 
584 	return false;
585 }
586 
587 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi)
588 {
589 	int i;
590 
591 	for (i = 0; i < NR_PAGE_TYPE; i++) {
592 		int n = (i == META) ? 1 : NR_TEMP_TYPE;
593 		int j;
594 
595 		sbi->write_io[i] = f2fs_kmalloc(sbi,
596 				array_size(n, sizeof(struct f2fs_bio_info)),
597 				GFP_KERNEL);
598 		if (!sbi->write_io[i])
599 			return -ENOMEM;
600 
601 		for (j = HOT; j < n; j++) {
602 			init_f2fs_rwsem(&sbi->write_io[i][j].io_rwsem);
603 			sbi->write_io[i][j].sbi = sbi;
604 			sbi->write_io[i][j].bio = NULL;
605 			spin_lock_init(&sbi->write_io[i][j].io_lock);
606 			INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
607 			INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list);
608 			init_f2fs_rwsem(&sbi->write_io[i][j].bio_list_lock);
609 		}
610 	}
611 
612 	return 0;
613 }
614 
615 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
616 				enum page_type type, enum temp_type temp)
617 {
618 	enum page_type btype = PAGE_TYPE_OF_BIO(type);
619 	struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
620 
621 	f2fs_down_write(&io->io_rwsem);
622 
623 	/* change META to META_FLUSH in the checkpoint procedure */
624 	if (type >= META_FLUSH) {
625 		io->fio.type = META_FLUSH;
626 		io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC;
627 		if (!test_opt(sbi, NOBARRIER))
628 			io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA;
629 	}
630 	__submit_merged_bio(io);
631 	f2fs_up_write(&io->io_rwsem);
632 }
633 
634 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
635 				struct inode *inode, struct page *page,
636 				nid_t ino, enum page_type type, bool force)
637 {
638 	enum temp_type temp;
639 	bool ret = true;
640 
641 	for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
642 		if (!force)	{
643 			enum page_type btype = PAGE_TYPE_OF_BIO(type);
644 			struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
645 
646 			f2fs_down_read(&io->io_rwsem);
647 			ret = __has_merged_page(io->bio, inode, page, ino);
648 			f2fs_up_read(&io->io_rwsem);
649 		}
650 		if (ret)
651 			__f2fs_submit_merged_write(sbi, type, temp);
652 
653 		/* TODO: use HOT temp only for meta pages now. */
654 		if (type >= META)
655 			break;
656 	}
657 }
658 
659 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
660 {
661 	__submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
662 }
663 
664 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
665 				struct inode *inode, struct page *page,
666 				nid_t ino, enum page_type type)
667 {
668 	__submit_merged_write_cond(sbi, inode, page, ino, type, false);
669 }
670 
671 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
672 {
673 	f2fs_submit_merged_write(sbi, DATA);
674 	f2fs_submit_merged_write(sbi, NODE);
675 	f2fs_submit_merged_write(sbi, META);
676 }
677 
678 /*
679  * Fill the locked page with data located in the block address.
680  * A caller needs to unlock the page on failure.
681  */
682 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
683 {
684 	struct bio *bio;
685 	struct page *page = fio->encrypted_page ?
686 			fio->encrypted_page : fio->page;
687 
688 	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
689 			fio->is_por ? META_POR : (__is_meta_io(fio) ?
690 			META_GENERIC : DATA_GENERIC_ENHANCE)))
691 		return -EFSCORRUPTED;
692 
693 	trace_f2fs_submit_page_bio(page, fio);
694 
695 	/* Allocate a new bio */
696 	bio = __bio_alloc(fio, 1);
697 
698 	f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
699 			       fio->page->index, fio, GFP_NOIO);
700 
701 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
702 		bio_put(bio);
703 		return -EFAULT;
704 	}
705 
706 	if (fio->io_wbc && !is_read_io(fio->op))
707 		wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
708 
709 	inc_page_count(fio->sbi, is_read_io(fio->op) ?
710 			__read_io_type(page): WB_DATA_TYPE(fio->page));
711 
712 	__submit_bio(fio->sbi, bio, fio->type);
713 	return 0;
714 }
715 
716 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
717 				block_t last_blkaddr, block_t cur_blkaddr)
718 {
719 	if (unlikely(sbi->max_io_bytes &&
720 			bio->bi_iter.bi_size >= sbi->max_io_bytes))
721 		return false;
722 	if (last_blkaddr + 1 != cur_blkaddr)
723 		return false;
724 	return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL);
725 }
726 
727 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
728 						struct f2fs_io_info *fio)
729 {
730 	if (io->fio.op != fio->op)
731 		return false;
732 	return io->fio.op_flags == fio->op_flags;
733 }
734 
735 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
736 					struct f2fs_bio_info *io,
737 					struct f2fs_io_info *fio,
738 					block_t last_blkaddr,
739 					block_t cur_blkaddr)
740 {
741 	if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
742 		unsigned int filled_blocks =
743 				F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
744 		unsigned int io_size = F2FS_IO_SIZE(sbi);
745 		unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
746 
747 		/* IOs in bio is aligned and left space of vectors is not enough */
748 		if (!(filled_blocks % io_size) && left_vecs < io_size)
749 			return false;
750 	}
751 	if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
752 		return false;
753 	return io_type_is_mergeable(io, fio);
754 }
755 
756 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
757 				struct page *page, enum temp_type temp)
758 {
759 	struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
760 	struct bio_entry *be;
761 
762 	be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL);
763 	be->bio = bio;
764 	bio_get(bio);
765 
766 	if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
767 		f2fs_bug_on(sbi, 1);
768 
769 	f2fs_down_write(&io->bio_list_lock);
770 	list_add_tail(&be->list, &io->bio_list);
771 	f2fs_up_write(&io->bio_list_lock);
772 }
773 
774 static void del_bio_entry(struct bio_entry *be)
775 {
776 	list_del(&be->list);
777 	kmem_cache_free(bio_entry_slab, be);
778 }
779 
780 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
781 							struct page *page)
782 {
783 	struct f2fs_sb_info *sbi = fio->sbi;
784 	enum temp_type temp;
785 	bool found = false;
786 	int ret = -EAGAIN;
787 
788 	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
789 		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
790 		struct list_head *head = &io->bio_list;
791 		struct bio_entry *be;
792 
793 		f2fs_down_write(&io->bio_list_lock);
794 		list_for_each_entry(be, head, list) {
795 			if (be->bio != *bio)
796 				continue;
797 
798 			found = true;
799 
800 			f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
801 							    *fio->last_block,
802 							    fio->new_blkaddr));
803 			if (f2fs_crypt_mergeable_bio(*bio,
804 					fio->page->mapping->host,
805 					fio->page->index, fio) &&
806 			    bio_add_page(*bio, page, PAGE_SIZE, 0) ==
807 					PAGE_SIZE) {
808 				ret = 0;
809 				break;
810 			}
811 
812 			/* page can't be merged into bio; submit the bio */
813 			del_bio_entry(be);
814 			__submit_bio(sbi, *bio, DATA);
815 			break;
816 		}
817 		f2fs_up_write(&io->bio_list_lock);
818 	}
819 
820 	if (ret) {
821 		bio_put(*bio);
822 		*bio = NULL;
823 	}
824 
825 	return ret;
826 }
827 
828 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
829 					struct bio **bio, struct page *page)
830 {
831 	enum temp_type temp;
832 	bool found = false;
833 	struct bio *target = bio ? *bio : NULL;
834 
835 	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
836 		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
837 		struct list_head *head = &io->bio_list;
838 		struct bio_entry *be;
839 
840 		if (list_empty(head))
841 			continue;
842 
843 		f2fs_down_read(&io->bio_list_lock);
844 		list_for_each_entry(be, head, list) {
845 			if (target)
846 				found = (target == be->bio);
847 			else
848 				found = __has_merged_page(be->bio, NULL,
849 								page, 0);
850 			if (found)
851 				break;
852 		}
853 		f2fs_up_read(&io->bio_list_lock);
854 
855 		if (!found)
856 			continue;
857 
858 		found = false;
859 
860 		f2fs_down_write(&io->bio_list_lock);
861 		list_for_each_entry(be, head, list) {
862 			if (target)
863 				found = (target == be->bio);
864 			else
865 				found = __has_merged_page(be->bio, NULL,
866 								page, 0);
867 			if (found) {
868 				target = be->bio;
869 				del_bio_entry(be);
870 				break;
871 			}
872 		}
873 		f2fs_up_write(&io->bio_list_lock);
874 	}
875 
876 	if (found)
877 		__submit_bio(sbi, target, DATA);
878 	if (bio && *bio) {
879 		bio_put(*bio);
880 		*bio = NULL;
881 	}
882 }
883 
884 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
885 {
886 	struct bio *bio = *fio->bio;
887 	struct page *page = fio->encrypted_page ?
888 			fio->encrypted_page : fio->page;
889 
890 	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
891 			__is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
892 		return -EFSCORRUPTED;
893 
894 	trace_f2fs_submit_page_bio(page, fio);
895 
896 	if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
897 						fio->new_blkaddr))
898 		f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
899 alloc_new:
900 	if (!bio) {
901 		bio = __bio_alloc(fio, BIO_MAX_VECS);
902 		f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
903 				       fio->page->index, fio, GFP_NOIO);
904 
905 		add_bio_entry(fio->sbi, bio, page, fio->temp);
906 	} else {
907 		if (add_ipu_page(fio, &bio, page))
908 			goto alloc_new;
909 	}
910 
911 	if (fio->io_wbc)
912 		wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
913 
914 	inc_page_count(fio->sbi, WB_DATA_TYPE(page));
915 
916 	*fio->last_block = fio->new_blkaddr;
917 	*fio->bio = bio;
918 
919 	return 0;
920 }
921 
922 void f2fs_submit_page_write(struct f2fs_io_info *fio)
923 {
924 	struct f2fs_sb_info *sbi = fio->sbi;
925 	enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
926 	struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
927 	struct page *bio_page;
928 
929 	f2fs_bug_on(sbi, is_read_io(fio->op));
930 
931 	f2fs_down_write(&io->io_rwsem);
932 next:
933 	if (fio->in_list) {
934 		spin_lock(&io->io_lock);
935 		if (list_empty(&io->io_list)) {
936 			spin_unlock(&io->io_lock);
937 			goto out;
938 		}
939 		fio = list_first_entry(&io->io_list,
940 						struct f2fs_io_info, list);
941 		list_del(&fio->list);
942 		spin_unlock(&io->io_lock);
943 	}
944 
945 	verify_fio_blkaddr(fio);
946 
947 	if (fio->encrypted_page)
948 		bio_page = fio->encrypted_page;
949 	else if (fio->compressed_page)
950 		bio_page = fio->compressed_page;
951 	else
952 		bio_page = fio->page;
953 
954 	/* set submitted = true as a return value */
955 	fio->submitted = true;
956 
957 	inc_page_count(sbi, WB_DATA_TYPE(bio_page));
958 
959 	if (io->bio &&
960 	    (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
961 			      fio->new_blkaddr) ||
962 	     !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
963 				       bio_page->index, fio)))
964 		__submit_merged_bio(io);
965 alloc_new:
966 	if (io->bio == NULL) {
967 		if (F2FS_IO_ALIGNED(sbi) &&
968 				(fio->type == DATA || fio->type == NODE) &&
969 				fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
970 			dec_page_count(sbi, WB_DATA_TYPE(bio_page));
971 			fio->retry = true;
972 			goto skip;
973 		}
974 		io->bio = __bio_alloc(fio, BIO_MAX_VECS);
975 		f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
976 				       bio_page->index, fio, GFP_NOIO);
977 		io->fio = *fio;
978 	}
979 
980 	if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
981 		__submit_merged_bio(io);
982 		goto alloc_new;
983 	}
984 
985 	if (fio->io_wbc)
986 		wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE);
987 
988 	io->last_block_in_bio = fio->new_blkaddr;
989 
990 	trace_f2fs_submit_page_write(fio->page, fio);
991 skip:
992 	if (fio->in_list)
993 		goto next;
994 out:
995 	if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
996 				!f2fs_is_checkpoint_ready(sbi))
997 		__submit_merged_bio(io);
998 	f2fs_up_write(&io->io_rwsem);
999 }
1000 
1001 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
1002 				      unsigned nr_pages, blk_opf_t op_flag,
1003 				      pgoff_t first_idx, bool for_write)
1004 {
1005 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1006 	struct bio *bio;
1007 	struct bio_post_read_ctx *ctx = NULL;
1008 	unsigned int post_read_steps = 0;
1009 	sector_t sector;
1010 	struct block_device *bdev = f2fs_target_device(sbi, blkaddr, &sector);
1011 
1012 	bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages),
1013 			       REQ_OP_READ | op_flag,
1014 			       for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset);
1015 	if (!bio)
1016 		return ERR_PTR(-ENOMEM);
1017 	bio->bi_iter.bi_sector = sector;
1018 	f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
1019 	bio->bi_end_io = f2fs_read_end_io;
1020 
1021 	if (fscrypt_inode_uses_fs_layer_crypto(inode))
1022 		post_read_steps |= STEP_DECRYPT;
1023 
1024 	if (f2fs_need_verity(inode, first_idx))
1025 		post_read_steps |= STEP_VERITY;
1026 
1027 	/*
1028 	 * STEP_DECOMPRESS is handled specially, since a compressed file might
1029 	 * contain both compressed and uncompressed clusters.  We'll allocate a
1030 	 * bio_post_read_ctx if the file is compressed, but the caller is
1031 	 * responsible for enabling STEP_DECOMPRESS if it's actually needed.
1032 	 */
1033 
1034 	if (post_read_steps || f2fs_compressed_file(inode)) {
1035 		/* Due to the mempool, this never fails. */
1036 		ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1037 		ctx->bio = bio;
1038 		ctx->sbi = sbi;
1039 		ctx->enabled_steps = post_read_steps;
1040 		ctx->fs_blkaddr = blkaddr;
1041 		bio->bi_private = ctx;
1042 	}
1043 	iostat_alloc_and_bind_ctx(sbi, bio, ctx);
1044 
1045 	return bio;
1046 }
1047 
1048 /* This can handle encryption stuffs */
1049 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1050 				 block_t blkaddr, blk_opf_t op_flags,
1051 				 bool for_write)
1052 {
1053 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1054 	struct bio *bio;
1055 
1056 	bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1057 					page->index, for_write);
1058 	if (IS_ERR(bio))
1059 		return PTR_ERR(bio);
1060 
1061 	/* wait for GCed page writeback via META_MAPPING */
1062 	f2fs_wait_on_block_writeback(inode, blkaddr);
1063 
1064 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1065 		bio_put(bio);
1066 		return -EFAULT;
1067 	}
1068 	ClearPageError(page);
1069 	inc_page_count(sbi, F2FS_RD_DATA);
1070 	f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
1071 	__submit_bio(sbi, bio, DATA);
1072 	return 0;
1073 }
1074 
1075 static void __set_data_blkaddr(struct dnode_of_data *dn)
1076 {
1077 	struct f2fs_node *rn = F2FS_NODE(dn->node_page);
1078 	__le32 *addr_array;
1079 	int base = 0;
1080 
1081 	if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
1082 		base = get_extra_isize(dn->inode);
1083 
1084 	/* Get physical address of data block */
1085 	addr_array = blkaddr_in_node(rn);
1086 	addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1087 }
1088 
1089 /*
1090  * Lock ordering for the change of data block address:
1091  * ->data_page
1092  *  ->node_page
1093  *    update block addresses in the node page
1094  */
1095 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
1096 {
1097 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1098 	__set_data_blkaddr(dn);
1099 	if (set_page_dirty(dn->node_page))
1100 		dn->node_changed = true;
1101 }
1102 
1103 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1104 {
1105 	dn->data_blkaddr = blkaddr;
1106 	f2fs_set_data_blkaddr(dn);
1107 	f2fs_update_extent_cache(dn);
1108 }
1109 
1110 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
1111 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1112 {
1113 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1114 	int err;
1115 
1116 	if (!count)
1117 		return 0;
1118 
1119 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1120 		return -EPERM;
1121 	if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1122 		return err;
1123 
1124 	trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1125 						dn->ofs_in_node, count);
1126 
1127 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1128 
1129 	for (; count > 0; dn->ofs_in_node++) {
1130 		block_t blkaddr = f2fs_data_blkaddr(dn);
1131 
1132 		if (blkaddr == NULL_ADDR) {
1133 			dn->data_blkaddr = NEW_ADDR;
1134 			__set_data_blkaddr(dn);
1135 			count--;
1136 		}
1137 	}
1138 
1139 	if (set_page_dirty(dn->node_page))
1140 		dn->node_changed = true;
1141 	return 0;
1142 }
1143 
1144 /* Should keep dn->ofs_in_node unchanged */
1145 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1146 {
1147 	unsigned int ofs_in_node = dn->ofs_in_node;
1148 	int ret;
1149 
1150 	ret = f2fs_reserve_new_blocks(dn, 1);
1151 	dn->ofs_in_node = ofs_in_node;
1152 	return ret;
1153 }
1154 
1155 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1156 {
1157 	bool need_put = dn->inode_page ? false : true;
1158 	int err;
1159 
1160 	err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1161 	if (err)
1162 		return err;
1163 
1164 	if (dn->data_blkaddr == NULL_ADDR)
1165 		err = f2fs_reserve_new_block(dn);
1166 	if (err || need_put)
1167 		f2fs_put_dnode(dn);
1168 	return err;
1169 }
1170 
1171 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
1172 {
1173 	struct extent_info ei = {0, };
1174 	struct inode *inode = dn->inode;
1175 
1176 	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1177 		dn->data_blkaddr = ei.blk + index - ei.fofs;
1178 		return 0;
1179 	}
1180 
1181 	return f2fs_reserve_block(dn, index);
1182 }
1183 
1184 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1185 				     blk_opf_t op_flags, bool for_write)
1186 {
1187 	struct address_space *mapping = inode->i_mapping;
1188 	struct dnode_of_data dn;
1189 	struct page *page;
1190 	struct extent_info ei = {0, };
1191 	int err;
1192 
1193 	page = f2fs_grab_cache_page(mapping, index, for_write);
1194 	if (!page)
1195 		return ERR_PTR(-ENOMEM);
1196 
1197 	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1198 		dn.data_blkaddr = ei.blk + index - ei.fofs;
1199 		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1200 						DATA_GENERIC_ENHANCE_READ)) {
1201 			err = -EFSCORRUPTED;
1202 			goto put_err;
1203 		}
1204 		goto got_it;
1205 	}
1206 
1207 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1208 	err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1209 	if (err)
1210 		goto put_err;
1211 	f2fs_put_dnode(&dn);
1212 
1213 	if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1214 		err = -ENOENT;
1215 		goto put_err;
1216 	}
1217 	if (dn.data_blkaddr != NEW_ADDR &&
1218 			!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1219 						dn.data_blkaddr,
1220 						DATA_GENERIC_ENHANCE)) {
1221 		err = -EFSCORRUPTED;
1222 		goto put_err;
1223 	}
1224 got_it:
1225 	if (PageUptodate(page)) {
1226 		unlock_page(page);
1227 		return page;
1228 	}
1229 
1230 	/*
1231 	 * A new dentry page is allocated but not able to be written, since its
1232 	 * new inode page couldn't be allocated due to -ENOSPC.
1233 	 * In such the case, its blkaddr can be remained as NEW_ADDR.
1234 	 * see, f2fs_add_link -> f2fs_get_new_data_page ->
1235 	 * f2fs_init_inode_metadata.
1236 	 */
1237 	if (dn.data_blkaddr == NEW_ADDR) {
1238 		zero_user_segment(page, 0, PAGE_SIZE);
1239 		if (!PageUptodate(page))
1240 			SetPageUptodate(page);
1241 		unlock_page(page);
1242 		return page;
1243 	}
1244 
1245 	err = f2fs_submit_page_read(inode, page, dn.data_blkaddr,
1246 						op_flags, for_write);
1247 	if (err)
1248 		goto put_err;
1249 	return page;
1250 
1251 put_err:
1252 	f2fs_put_page(page, 1);
1253 	return ERR_PTR(err);
1254 }
1255 
1256 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
1257 {
1258 	struct address_space *mapping = inode->i_mapping;
1259 	struct page *page;
1260 
1261 	page = find_get_page(mapping, index);
1262 	if (page && PageUptodate(page))
1263 		return page;
1264 	f2fs_put_page(page, 0);
1265 
1266 	page = f2fs_get_read_data_page(inode, index, 0, false);
1267 	if (IS_ERR(page))
1268 		return page;
1269 
1270 	if (PageUptodate(page))
1271 		return page;
1272 
1273 	wait_on_page_locked(page);
1274 	if (unlikely(!PageUptodate(page))) {
1275 		f2fs_put_page(page, 0);
1276 		return ERR_PTR(-EIO);
1277 	}
1278 	return page;
1279 }
1280 
1281 /*
1282  * If it tries to access a hole, return an error.
1283  * Because, the callers, functions in dir.c and GC, should be able to know
1284  * whether this page exists or not.
1285  */
1286 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1287 							bool for_write)
1288 {
1289 	struct address_space *mapping = inode->i_mapping;
1290 	struct page *page;
1291 repeat:
1292 	page = f2fs_get_read_data_page(inode, index, 0, for_write);
1293 	if (IS_ERR(page))
1294 		return page;
1295 
1296 	/* wait for read completion */
1297 	lock_page(page);
1298 	if (unlikely(page->mapping != mapping)) {
1299 		f2fs_put_page(page, 1);
1300 		goto repeat;
1301 	}
1302 	if (unlikely(!PageUptodate(page))) {
1303 		f2fs_put_page(page, 1);
1304 		return ERR_PTR(-EIO);
1305 	}
1306 	return page;
1307 }
1308 
1309 /*
1310  * Caller ensures that this data page is never allocated.
1311  * A new zero-filled data page is allocated in the page cache.
1312  *
1313  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1314  * f2fs_unlock_op().
1315  * Note that, ipage is set only by make_empty_dir, and if any error occur,
1316  * ipage should be released by this function.
1317  */
1318 struct page *f2fs_get_new_data_page(struct inode *inode,
1319 		struct page *ipage, pgoff_t index, bool new_i_size)
1320 {
1321 	struct address_space *mapping = inode->i_mapping;
1322 	struct page *page;
1323 	struct dnode_of_data dn;
1324 	int err;
1325 
1326 	page = f2fs_grab_cache_page(mapping, index, true);
1327 	if (!page) {
1328 		/*
1329 		 * before exiting, we should make sure ipage will be released
1330 		 * if any error occur.
1331 		 */
1332 		f2fs_put_page(ipage, 1);
1333 		return ERR_PTR(-ENOMEM);
1334 	}
1335 
1336 	set_new_dnode(&dn, inode, ipage, NULL, 0);
1337 	err = f2fs_reserve_block(&dn, index);
1338 	if (err) {
1339 		f2fs_put_page(page, 1);
1340 		return ERR_PTR(err);
1341 	}
1342 	if (!ipage)
1343 		f2fs_put_dnode(&dn);
1344 
1345 	if (PageUptodate(page))
1346 		goto got_it;
1347 
1348 	if (dn.data_blkaddr == NEW_ADDR) {
1349 		zero_user_segment(page, 0, PAGE_SIZE);
1350 		if (!PageUptodate(page))
1351 			SetPageUptodate(page);
1352 	} else {
1353 		f2fs_put_page(page, 1);
1354 
1355 		/* if ipage exists, blkaddr should be NEW_ADDR */
1356 		f2fs_bug_on(F2FS_I_SB(inode), ipage);
1357 		page = f2fs_get_lock_data_page(inode, index, true);
1358 		if (IS_ERR(page))
1359 			return page;
1360 	}
1361 got_it:
1362 	if (new_i_size && i_size_read(inode) <
1363 				((loff_t)(index + 1) << PAGE_SHIFT))
1364 		f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1365 	return page;
1366 }
1367 
1368 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1369 {
1370 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1371 	struct f2fs_summary sum;
1372 	struct node_info ni;
1373 	block_t old_blkaddr;
1374 	blkcnt_t count = 1;
1375 	int err;
1376 
1377 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1378 		return -EPERM;
1379 
1380 	err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
1381 	if (err)
1382 		return err;
1383 
1384 	dn->data_blkaddr = f2fs_data_blkaddr(dn);
1385 	if (dn->data_blkaddr != NULL_ADDR)
1386 		goto alloc;
1387 
1388 	if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1389 		return err;
1390 
1391 alloc:
1392 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1393 	old_blkaddr = dn->data_blkaddr;
1394 	f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1395 				&sum, seg_type, NULL);
1396 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
1397 		invalidate_mapping_pages(META_MAPPING(sbi),
1398 					old_blkaddr, old_blkaddr);
1399 		f2fs_invalidate_compress_page(sbi, old_blkaddr);
1400 	}
1401 	f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1402 	return 0;
1403 }
1404 
1405 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
1406 {
1407 	if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1408 		if (lock)
1409 			f2fs_down_read(&sbi->node_change);
1410 		else
1411 			f2fs_up_read(&sbi->node_change);
1412 	} else {
1413 		if (lock)
1414 			f2fs_lock_op(sbi);
1415 		else
1416 			f2fs_unlock_op(sbi);
1417 	}
1418 }
1419 
1420 /*
1421  * f2fs_map_blocks() tries to find or build mapping relationship which
1422  * maps continuous logical blocks to physical blocks, and return such
1423  * info via f2fs_map_blocks structure.
1424  */
1425 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1426 						int create, int flag)
1427 {
1428 	unsigned int maxblocks = map->m_len;
1429 	struct dnode_of_data dn;
1430 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1431 	int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1432 	pgoff_t pgofs, end_offset, end;
1433 	int err = 0, ofs = 1;
1434 	unsigned int ofs_in_node, last_ofs_in_node;
1435 	blkcnt_t prealloc;
1436 	struct extent_info ei = {0, };
1437 	block_t blkaddr;
1438 	unsigned int start_pgofs;
1439 	int bidx = 0;
1440 
1441 	if (!maxblocks)
1442 		return 0;
1443 
1444 	map->m_bdev = inode->i_sb->s_bdev;
1445 	map->m_multidev_dio =
1446 		f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag);
1447 
1448 	map->m_len = 0;
1449 	map->m_flags = 0;
1450 
1451 	/* it only supports block size == page size */
1452 	pgofs =	(pgoff_t)map->m_lblk;
1453 	end = pgofs + maxblocks;
1454 
1455 	if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1456 		if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1457 							map->m_may_create)
1458 			goto next_dnode;
1459 
1460 		map->m_pblk = ei.blk + pgofs - ei.fofs;
1461 		map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1462 		map->m_flags = F2FS_MAP_MAPPED;
1463 		if (map->m_next_extent)
1464 			*map->m_next_extent = pgofs + map->m_len;
1465 
1466 		/* for hardware encryption, but to avoid potential issue in future */
1467 		if (flag == F2FS_GET_BLOCK_DIO)
1468 			f2fs_wait_on_block_writeback_range(inode,
1469 						map->m_pblk, map->m_len);
1470 
1471 		if (map->m_multidev_dio) {
1472 			block_t blk_addr = map->m_pblk;
1473 
1474 			bidx = f2fs_target_device_index(sbi, map->m_pblk);
1475 
1476 			map->m_bdev = FDEV(bidx).bdev;
1477 			map->m_pblk -= FDEV(bidx).start_blk;
1478 			map->m_len = min(map->m_len,
1479 				FDEV(bidx).end_blk + 1 - map->m_pblk);
1480 
1481 			if (map->m_may_create)
1482 				f2fs_update_device_state(sbi, inode->i_ino,
1483 							blk_addr, map->m_len);
1484 		}
1485 		goto out;
1486 	}
1487 
1488 next_dnode:
1489 	if (map->m_may_create)
1490 		f2fs_do_map_lock(sbi, flag, true);
1491 
1492 	/* When reading holes, we need its node page */
1493 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1494 	err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1495 	if (err) {
1496 		if (flag == F2FS_GET_BLOCK_BMAP)
1497 			map->m_pblk = 0;
1498 
1499 		if (err == -ENOENT) {
1500 			/*
1501 			 * There is one exceptional case that read_node_page()
1502 			 * may return -ENOENT due to filesystem has been
1503 			 * shutdown or cp_error, so force to convert error
1504 			 * number to EIO for such case.
1505 			 */
1506 			if (map->m_may_create &&
1507 				(is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1508 				f2fs_cp_error(sbi))) {
1509 				err = -EIO;
1510 				goto unlock_out;
1511 			}
1512 
1513 			err = 0;
1514 			if (map->m_next_pgofs)
1515 				*map->m_next_pgofs =
1516 					f2fs_get_next_page_offset(&dn, pgofs);
1517 			if (map->m_next_extent)
1518 				*map->m_next_extent =
1519 					f2fs_get_next_page_offset(&dn, pgofs);
1520 		}
1521 		goto unlock_out;
1522 	}
1523 
1524 	start_pgofs = pgofs;
1525 	prealloc = 0;
1526 	last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1527 	end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1528 
1529 next_block:
1530 	blkaddr = f2fs_data_blkaddr(&dn);
1531 
1532 	if (__is_valid_data_blkaddr(blkaddr) &&
1533 		!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1534 		err = -EFSCORRUPTED;
1535 		goto sync_out;
1536 	}
1537 
1538 	if (__is_valid_data_blkaddr(blkaddr)) {
1539 		/* use out-place-update for driect IO under LFS mode */
1540 		if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1541 							map->m_may_create) {
1542 			err = __allocate_data_block(&dn, map->m_seg_type);
1543 			if (err)
1544 				goto sync_out;
1545 			blkaddr = dn.data_blkaddr;
1546 			set_inode_flag(inode, FI_APPEND_WRITE);
1547 		}
1548 	} else {
1549 		if (create) {
1550 			if (unlikely(f2fs_cp_error(sbi))) {
1551 				err = -EIO;
1552 				goto sync_out;
1553 			}
1554 			if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1555 				if (blkaddr == NULL_ADDR) {
1556 					prealloc++;
1557 					last_ofs_in_node = dn.ofs_in_node;
1558 				}
1559 			} else {
1560 				WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1561 					flag != F2FS_GET_BLOCK_DIO);
1562 				err = __allocate_data_block(&dn,
1563 							map->m_seg_type);
1564 				if (!err) {
1565 					if (flag == F2FS_GET_BLOCK_PRE_DIO)
1566 						file_need_truncate(inode);
1567 					set_inode_flag(inode, FI_APPEND_WRITE);
1568 				}
1569 			}
1570 			if (err)
1571 				goto sync_out;
1572 			map->m_flags |= F2FS_MAP_NEW;
1573 			blkaddr = dn.data_blkaddr;
1574 		} else {
1575 			if (f2fs_compressed_file(inode) &&
1576 					f2fs_sanity_check_cluster(&dn) &&
1577 					(flag != F2FS_GET_BLOCK_FIEMAP ||
1578 					IS_ENABLED(CONFIG_F2FS_CHECK_FS))) {
1579 				err = -EFSCORRUPTED;
1580 				goto sync_out;
1581 			}
1582 			if (flag == F2FS_GET_BLOCK_BMAP) {
1583 				map->m_pblk = 0;
1584 				goto sync_out;
1585 			}
1586 			if (flag == F2FS_GET_BLOCK_PRECACHE)
1587 				goto sync_out;
1588 			if (flag == F2FS_GET_BLOCK_FIEMAP &&
1589 						blkaddr == NULL_ADDR) {
1590 				if (map->m_next_pgofs)
1591 					*map->m_next_pgofs = pgofs + 1;
1592 				goto sync_out;
1593 			}
1594 			if (flag != F2FS_GET_BLOCK_FIEMAP) {
1595 				/* for defragment case */
1596 				if (map->m_next_pgofs)
1597 					*map->m_next_pgofs = pgofs + 1;
1598 				goto sync_out;
1599 			}
1600 		}
1601 	}
1602 
1603 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1604 		goto skip;
1605 
1606 	if (map->m_multidev_dio)
1607 		bidx = f2fs_target_device_index(sbi, blkaddr);
1608 
1609 	if (map->m_len == 0) {
1610 		/* preallocated unwritten block should be mapped for fiemap. */
1611 		if (blkaddr == NEW_ADDR)
1612 			map->m_flags |= F2FS_MAP_UNWRITTEN;
1613 		map->m_flags |= F2FS_MAP_MAPPED;
1614 
1615 		map->m_pblk = blkaddr;
1616 		map->m_len = 1;
1617 
1618 		if (map->m_multidev_dio)
1619 			map->m_bdev = FDEV(bidx).bdev;
1620 	} else if ((map->m_pblk != NEW_ADDR &&
1621 			blkaddr == (map->m_pblk + ofs)) ||
1622 			(map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1623 			flag == F2FS_GET_BLOCK_PRE_DIO) {
1624 		if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev)
1625 			goto sync_out;
1626 		ofs++;
1627 		map->m_len++;
1628 	} else {
1629 		goto sync_out;
1630 	}
1631 
1632 skip:
1633 	dn.ofs_in_node++;
1634 	pgofs++;
1635 
1636 	/* preallocate blocks in batch for one dnode page */
1637 	if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1638 			(pgofs == end || dn.ofs_in_node == end_offset)) {
1639 
1640 		dn.ofs_in_node = ofs_in_node;
1641 		err = f2fs_reserve_new_blocks(&dn, prealloc);
1642 		if (err)
1643 			goto sync_out;
1644 
1645 		map->m_len += dn.ofs_in_node - ofs_in_node;
1646 		if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1647 			err = -ENOSPC;
1648 			goto sync_out;
1649 		}
1650 		dn.ofs_in_node = end_offset;
1651 	}
1652 
1653 	if (pgofs >= end)
1654 		goto sync_out;
1655 	else if (dn.ofs_in_node < end_offset)
1656 		goto next_block;
1657 
1658 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1659 		if (map->m_flags & F2FS_MAP_MAPPED) {
1660 			unsigned int ofs = start_pgofs - map->m_lblk;
1661 
1662 			f2fs_update_extent_cache_range(&dn,
1663 				start_pgofs, map->m_pblk + ofs,
1664 				map->m_len - ofs);
1665 		}
1666 	}
1667 
1668 	f2fs_put_dnode(&dn);
1669 
1670 	if (map->m_may_create) {
1671 		f2fs_do_map_lock(sbi, flag, false);
1672 		f2fs_balance_fs(sbi, dn.node_changed);
1673 	}
1674 	goto next_dnode;
1675 
1676 sync_out:
1677 
1678 	if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) {
1679 		/*
1680 		 * for hardware encryption, but to avoid potential issue
1681 		 * in future
1682 		 */
1683 		f2fs_wait_on_block_writeback_range(inode,
1684 						map->m_pblk, map->m_len);
1685 		invalidate_mapping_pages(META_MAPPING(sbi),
1686 						map->m_pblk, map->m_pblk);
1687 
1688 		if (map->m_multidev_dio) {
1689 			block_t blk_addr = map->m_pblk;
1690 
1691 			bidx = f2fs_target_device_index(sbi, map->m_pblk);
1692 
1693 			map->m_bdev = FDEV(bidx).bdev;
1694 			map->m_pblk -= FDEV(bidx).start_blk;
1695 
1696 			if (map->m_may_create)
1697 				f2fs_update_device_state(sbi, inode->i_ino,
1698 							blk_addr, map->m_len);
1699 
1700 			f2fs_bug_on(sbi, blk_addr + map->m_len >
1701 						FDEV(bidx).end_blk + 1);
1702 		}
1703 	}
1704 
1705 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1706 		if (map->m_flags & F2FS_MAP_MAPPED) {
1707 			unsigned int ofs = start_pgofs - map->m_lblk;
1708 
1709 			f2fs_update_extent_cache_range(&dn,
1710 				start_pgofs, map->m_pblk + ofs,
1711 				map->m_len - ofs);
1712 		}
1713 		if (map->m_next_extent)
1714 			*map->m_next_extent = pgofs + 1;
1715 	}
1716 	f2fs_put_dnode(&dn);
1717 unlock_out:
1718 	if (map->m_may_create) {
1719 		f2fs_do_map_lock(sbi, flag, false);
1720 		f2fs_balance_fs(sbi, dn.node_changed);
1721 	}
1722 out:
1723 	trace_f2fs_map_blocks(inode, map, create, flag, err);
1724 	return err;
1725 }
1726 
1727 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1728 {
1729 	struct f2fs_map_blocks map;
1730 	block_t last_lblk;
1731 	int err;
1732 
1733 	if (pos + len > i_size_read(inode))
1734 		return false;
1735 
1736 	map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1737 	map.m_next_pgofs = NULL;
1738 	map.m_next_extent = NULL;
1739 	map.m_seg_type = NO_CHECK_TYPE;
1740 	map.m_may_create = false;
1741 	last_lblk = F2FS_BLK_ALIGN(pos + len);
1742 
1743 	while (map.m_lblk < last_lblk) {
1744 		map.m_len = last_lblk - map.m_lblk;
1745 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1746 		if (err || map.m_len == 0)
1747 			return false;
1748 		map.m_lblk += map.m_len;
1749 	}
1750 	return true;
1751 }
1752 
1753 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes)
1754 {
1755 	return (bytes >> inode->i_blkbits);
1756 }
1757 
1758 static inline u64 blks_to_bytes(struct inode *inode, u64 blks)
1759 {
1760 	return (blks << inode->i_blkbits);
1761 }
1762 
1763 static int f2fs_xattr_fiemap(struct inode *inode,
1764 				struct fiemap_extent_info *fieinfo)
1765 {
1766 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1767 	struct page *page;
1768 	struct node_info ni;
1769 	__u64 phys = 0, len;
1770 	__u32 flags;
1771 	nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1772 	int err = 0;
1773 
1774 	if (f2fs_has_inline_xattr(inode)) {
1775 		int offset;
1776 
1777 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1778 						inode->i_ino, false);
1779 		if (!page)
1780 			return -ENOMEM;
1781 
1782 		err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false);
1783 		if (err) {
1784 			f2fs_put_page(page, 1);
1785 			return err;
1786 		}
1787 
1788 		phys = blks_to_bytes(inode, ni.blk_addr);
1789 		offset = offsetof(struct f2fs_inode, i_addr) +
1790 					sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1791 					get_inline_xattr_addrs(inode));
1792 
1793 		phys += offset;
1794 		len = inline_xattr_size(inode);
1795 
1796 		f2fs_put_page(page, 1);
1797 
1798 		flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1799 
1800 		if (!xnid)
1801 			flags |= FIEMAP_EXTENT_LAST;
1802 
1803 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1804 		trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1805 		if (err || err == 1)
1806 			return err;
1807 	}
1808 
1809 	if (xnid) {
1810 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1811 		if (!page)
1812 			return -ENOMEM;
1813 
1814 		err = f2fs_get_node_info(sbi, xnid, &ni, false);
1815 		if (err) {
1816 			f2fs_put_page(page, 1);
1817 			return err;
1818 		}
1819 
1820 		phys = blks_to_bytes(inode, ni.blk_addr);
1821 		len = inode->i_sb->s_blocksize;
1822 
1823 		f2fs_put_page(page, 1);
1824 
1825 		flags = FIEMAP_EXTENT_LAST;
1826 	}
1827 
1828 	if (phys) {
1829 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1830 		trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1831 	}
1832 
1833 	return (err < 0 ? err : 0);
1834 }
1835 
1836 static loff_t max_inode_blocks(struct inode *inode)
1837 {
1838 	loff_t result = ADDRS_PER_INODE(inode);
1839 	loff_t leaf_count = ADDRS_PER_BLOCK(inode);
1840 
1841 	/* two direct node blocks */
1842 	result += (leaf_count * 2);
1843 
1844 	/* two indirect node blocks */
1845 	leaf_count *= NIDS_PER_BLOCK;
1846 	result += (leaf_count * 2);
1847 
1848 	/* one double indirect node block */
1849 	leaf_count *= NIDS_PER_BLOCK;
1850 	result += leaf_count;
1851 
1852 	return result;
1853 }
1854 
1855 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1856 		u64 start, u64 len)
1857 {
1858 	struct f2fs_map_blocks map;
1859 	sector_t start_blk, last_blk;
1860 	pgoff_t next_pgofs;
1861 	u64 logical = 0, phys = 0, size = 0;
1862 	u32 flags = 0;
1863 	int ret = 0;
1864 	bool compr_cluster = false, compr_appended;
1865 	unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1866 	unsigned int count_in_cluster = 0;
1867 	loff_t maxbytes;
1868 
1869 	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1870 		ret = f2fs_precache_extents(inode);
1871 		if (ret)
1872 			return ret;
1873 	}
1874 
1875 	ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1876 	if (ret)
1877 		return ret;
1878 
1879 	inode_lock(inode);
1880 
1881 	maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
1882 	if (start > maxbytes) {
1883 		ret = -EFBIG;
1884 		goto out;
1885 	}
1886 
1887 	if (len > maxbytes || (maxbytes - len) < start)
1888 		len = maxbytes - start;
1889 
1890 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1891 		ret = f2fs_xattr_fiemap(inode, fieinfo);
1892 		goto out;
1893 	}
1894 
1895 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1896 		ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1897 		if (ret != -EAGAIN)
1898 			goto out;
1899 	}
1900 
1901 	if (bytes_to_blks(inode, len) == 0)
1902 		len = blks_to_bytes(inode, 1);
1903 
1904 	start_blk = bytes_to_blks(inode, start);
1905 	last_blk = bytes_to_blks(inode, start + len - 1);
1906 
1907 next:
1908 	memset(&map, 0, sizeof(map));
1909 	map.m_lblk = start_blk;
1910 	map.m_len = bytes_to_blks(inode, len);
1911 	map.m_next_pgofs = &next_pgofs;
1912 	map.m_seg_type = NO_CHECK_TYPE;
1913 
1914 	if (compr_cluster) {
1915 		map.m_lblk += 1;
1916 		map.m_len = cluster_size - count_in_cluster;
1917 	}
1918 
1919 	ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
1920 	if (ret)
1921 		goto out;
1922 
1923 	/* HOLE */
1924 	if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) {
1925 		start_blk = next_pgofs;
1926 
1927 		if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode,
1928 						max_inode_blocks(inode)))
1929 			goto prep_next;
1930 
1931 		flags |= FIEMAP_EXTENT_LAST;
1932 	}
1933 
1934 	compr_appended = false;
1935 	/* In a case of compressed cluster, append this to the last extent */
1936 	if (compr_cluster && ((map.m_flags & F2FS_MAP_UNWRITTEN) ||
1937 			!(map.m_flags & F2FS_MAP_FLAGS))) {
1938 		compr_appended = true;
1939 		goto skip_fill;
1940 	}
1941 
1942 	if (size) {
1943 		flags |= FIEMAP_EXTENT_MERGED;
1944 		if (IS_ENCRYPTED(inode))
1945 			flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1946 
1947 		ret = fiemap_fill_next_extent(fieinfo, logical,
1948 				phys, size, flags);
1949 		trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
1950 		if (ret)
1951 			goto out;
1952 		size = 0;
1953 	}
1954 
1955 	if (start_blk > last_blk)
1956 		goto out;
1957 
1958 skip_fill:
1959 	if (map.m_pblk == COMPRESS_ADDR) {
1960 		compr_cluster = true;
1961 		count_in_cluster = 1;
1962 	} else if (compr_appended) {
1963 		unsigned int appended_blks = cluster_size -
1964 						count_in_cluster + 1;
1965 		size += blks_to_bytes(inode, appended_blks);
1966 		start_blk += appended_blks;
1967 		compr_cluster = false;
1968 	} else {
1969 		logical = blks_to_bytes(inode, start_blk);
1970 		phys = __is_valid_data_blkaddr(map.m_pblk) ?
1971 			blks_to_bytes(inode, map.m_pblk) : 0;
1972 		size = blks_to_bytes(inode, map.m_len);
1973 		flags = 0;
1974 
1975 		if (compr_cluster) {
1976 			flags = FIEMAP_EXTENT_ENCODED;
1977 			count_in_cluster += map.m_len;
1978 			if (count_in_cluster == cluster_size) {
1979 				compr_cluster = false;
1980 				size += blks_to_bytes(inode, 1);
1981 			}
1982 		} else if (map.m_flags & F2FS_MAP_UNWRITTEN) {
1983 			flags = FIEMAP_EXTENT_UNWRITTEN;
1984 		}
1985 
1986 		start_blk += bytes_to_blks(inode, size);
1987 	}
1988 
1989 prep_next:
1990 	cond_resched();
1991 	if (fatal_signal_pending(current))
1992 		ret = -EINTR;
1993 	else
1994 		goto next;
1995 out:
1996 	if (ret == 1)
1997 		ret = 0;
1998 
1999 	inode_unlock(inode);
2000 	return ret;
2001 }
2002 
2003 static inline loff_t f2fs_readpage_limit(struct inode *inode)
2004 {
2005 	if (IS_ENABLED(CONFIG_FS_VERITY) &&
2006 	    (IS_VERITY(inode) || f2fs_verity_in_progress(inode)))
2007 		return inode->i_sb->s_maxbytes;
2008 
2009 	return i_size_read(inode);
2010 }
2011 
2012 static int f2fs_read_single_page(struct inode *inode, struct page *page,
2013 					unsigned nr_pages,
2014 					struct f2fs_map_blocks *map,
2015 					struct bio **bio_ret,
2016 					sector_t *last_block_in_bio,
2017 					bool is_readahead)
2018 {
2019 	struct bio *bio = *bio_ret;
2020 	const unsigned blocksize = blks_to_bytes(inode, 1);
2021 	sector_t block_in_file;
2022 	sector_t last_block;
2023 	sector_t last_block_in_file;
2024 	sector_t block_nr;
2025 	int ret = 0;
2026 
2027 	block_in_file = (sector_t)page_index(page);
2028 	last_block = block_in_file + nr_pages;
2029 	last_block_in_file = bytes_to_blks(inode,
2030 			f2fs_readpage_limit(inode) + blocksize - 1);
2031 	if (last_block > last_block_in_file)
2032 		last_block = last_block_in_file;
2033 
2034 	/* just zeroing out page which is beyond EOF */
2035 	if (block_in_file >= last_block)
2036 		goto zero_out;
2037 	/*
2038 	 * Map blocks using the previous result first.
2039 	 */
2040 	if ((map->m_flags & F2FS_MAP_MAPPED) &&
2041 			block_in_file > map->m_lblk &&
2042 			block_in_file < (map->m_lblk + map->m_len))
2043 		goto got_it;
2044 
2045 	/*
2046 	 * Then do more f2fs_map_blocks() calls until we are
2047 	 * done with this page.
2048 	 */
2049 	map->m_lblk = block_in_file;
2050 	map->m_len = last_block - block_in_file;
2051 
2052 	ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT);
2053 	if (ret)
2054 		goto out;
2055 got_it:
2056 	if ((map->m_flags & F2FS_MAP_MAPPED)) {
2057 		block_nr = map->m_pblk + block_in_file - map->m_lblk;
2058 		SetPageMappedToDisk(page);
2059 
2060 		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2061 						DATA_GENERIC_ENHANCE_READ)) {
2062 			ret = -EFSCORRUPTED;
2063 			goto out;
2064 		}
2065 	} else {
2066 zero_out:
2067 		zero_user_segment(page, 0, PAGE_SIZE);
2068 		if (f2fs_need_verity(inode, page->index) &&
2069 		    !fsverity_verify_page(page)) {
2070 			ret = -EIO;
2071 			goto out;
2072 		}
2073 		if (!PageUptodate(page))
2074 			SetPageUptodate(page);
2075 		unlock_page(page);
2076 		goto out;
2077 	}
2078 
2079 	/*
2080 	 * This page will go to BIO.  Do we need to send this
2081 	 * BIO off first?
2082 	 */
2083 	if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2084 				       *last_block_in_bio, block_nr) ||
2085 		    !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2086 submit_and_realloc:
2087 		__submit_bio(F2FS_I_SB(inode), bio, DATA);
2088 		bio = NULL;
2089 	}
2090 	if (bio == NULL) {
2091 		bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2092 				is_readahead ? REQ_RAHEAD : 0, page->index,
2093 				false);
2094 		if (IS_ERR(bio)) {
2095 			ret = PTR_ERR(bio);
2096 			bio = NULL;
2097 			goto out;
2098 		}
2099 	}
2100 
2101 	/*
2102 	 * If the page is under writeback, we need to wait for
2103 	 * its completion to see the correct decrypted data.
2104 	 */
2105 	f2fs_wait_on_block_writeback(inode, block_nr);
2106 
2107 	if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2108 		goto submit_and_realloc;
2109 
2110 	inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2111 	f2fs_update_iostat(F2FS_I_SB(inode), FS_DATA_READ_IO, F2FS_BLKSIZE);
2112 	ClearPageError(page);
2113 	*last_block_in_bio = block_nr;
2114 	goto out;
2115 out:
2116 	*bio_ret = bio;
2117 	return ret;
2118 }
2119 
2120 #ifdef CONFIG_F2FS_FS_COMPRESSION
2121 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2122 				unsigned nr_pages, sector_t *last_block_in_bio,
2123 				bool is_readahead, bool for_write)
2124 {
2125 	struct dnode_of_data dn;
2126 	struct inode *inode = cc->inode;
2127 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2128 	struct bio *bio = *bio_ret;
2129 	unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2130 	sector_t last_block_in_file;
2131 	const unsigned blocksize = blks_to_bytes(inode, 1);
2132 	struct decompress_io_ctx *dic = NULL;
2133 	struct extent_info ei = {0, };
2134 	bool from_dnode = true;
2135 	int i;
2136 	int ret = 0;
2137 
2138 	f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2139 
2140 	last_block_in_file = bytes_to_blks(inode,
2141 			f2fs_readpage_limit(inode) + blocksize - 1);
2142 
2143 	/* get rid of pages beyond EOF */
2144 	for (i = 0; i < cc->cluster_size; i++) {
2145 		struct page *page = cc->rpages[i];
2146 
2147 		if (!page)
2148 			continue;
2149 		if ((sector_t)page->index >= last_block_in_file) {
2150 			zero_user_segment(page, 0, PAGE_SIZE);
2151 			if (!PageUptodate(page))
2152 				SetPageUptodate(page);
2153 		} else if (!PageUptodate(page)) {
2154 			continue;
2155 		}
2156 		unlock_page(page);
2157 		if (for_write)
2158 			put_page(page);
2159 		cc->rpages[i] = NULL;
2160 		cc->nr_rpages--;
2161 	}
2162 
2163 	/* we are done since all pages are beyond EOF */
2164 	if (f2fs_cluster_is_empty(cc))
2165 		goto out;
2166 
2167 	if (f2fs_lookup_extent_cache(inode, start_idx, &ei))
2168 		from_dnode = false;
2169 
2170 	if (!from_dnode)
2171 		goto skip_reading_dnode;
2172 
2173 	set_new_dnode(&dn, inode, NULL, NULL, 0);
2174 	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2175 	if (ret)
2176 		goto out;
2177 
2178 	f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2179 
2180 skip_reading_dnode:
2181 	for (i = 1; i < cc->cluster_size; i++) {
2182 		block_t blkaddr;
2183 
2184 		blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2185 					dn.ofs_in_node + i) :
2186 					ei.blk + i - 1;
2187 
2188 		if (!__is_valid_data_blkaddr(blkaddr))
2189 			break;
2190 
2191 		if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2192 			ret = -EFAULT;
2193 			goto out_put_dnode;
2194 		}
2195 		cc->nr_cpages++;
2196 
2197 		if (!from_dnode && i >= ei.c_len)
2198 			break;
2199 	}
2200 
2201 	/* nothing to decompress */
2202 	if (cc->nr_cpages == 0) {
2203 		ret = 0;
2204 		goto out_put_dnode;
2205 	}
2206 
2207 	dic = f2fs_alloc_dic(cc);
2208 	if (IS_ERR(dic)) {
2209 		ret = PTR_ERR(dic);
2210 		goto out_put_dnode;
2211 	}
2212 
2213 	for (i = 0; i < cc->nr_cpages; i++) {
2214 		struct page *page = dic->cpages[i];
2215 		block_t blkaddr;
2216 		struct bio_post_read_ctx *ctx;
2217 
2218 		blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2219 					dn.ofs_in_node + i + 1) :
2220 					ei.blk + i;
2221 
2222 		f2fs_wait_on_block_writeback(inode, blkaddr);
2223 
2224 		if (f2fs_load_compressed_page(sbi, page, blkaddr)) {
2225 			if (atomic_dec_and_test(&dic->remaining_pages))
2226 				f2fs_decompress_cluster(dic);
2227 			continue;
2228 		}
2229 
2230 		if (bio && (!page_is_mergeable(sbi, bio,
2231 					*last_block_in_bio, blkaddr) ||
2232 		    !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2233 submit_and_realloc:
2234 			__submit_bio(sbi, bio, DATA);
2235 			bio = NULL;
2236 		}
2237 
2238 		if (!bio) {
2239 			bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2240 					is_readahead ? REQ_RAHEAD : 0,
2241 					page->index, for_write);
2242 			if (IS_ERR(bio)) {
2243 				ret = PTR_ERR(bio);
2244 				f2fs_decompress_end_io(dic, ret);
2245 				f2fs_put_dnode(&dn);
2246 				*bio_ret = NULL;
2247 				return ret;
2248 			}
2249 		}
2250 
2251 		if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2252 			goto submit_and_realloc;
2253 
2254 		ctx = get_post_read_ctx(bio);
2255 		ctx->enabled_steps |= STEP_DECOMPRESS;
2256 		refcount_inc(&dic->refcnt);
2257 
2258 		inc_page_count(sbi, F2FS_RD_DATA);
2259 		f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
2260 		f2fs_update_iostat(sbi, FS_CDATA_READ_IO, F2FS_BLKSIZE);
2261 		ClearPageError(page);
2262 		*last_block_in_bio = blkaddr;
2263 	}
2264 
2265 	if (from_dnode)
2266 		f2fs_put_dnode(&dn);
2267 
2268 	*bio_ret = bio;
2269 	return 0;
2270 
2271 out_put_dnode:
2272 	if (from_dnode)
2273 		f2fs_put_dnode(&dn);
2274 out:
2275 	for (i = 0; i < cc->cluster_size; i++) {
2276 		if (cc->rpages[i]) {
2277 			ClearPageUptodate(cc->rpages[i]);
2278 			ClearPageError(cc->rpages[i]);
2279 			unlock_page(cc->rpages[i]);
2280 		}
2281 	}
2282 	*bio_ret = bio;
2283 	return ret;
2284 }
2285 #endif
2286 
2287 /*
2288  * This function was originally taken from fs/mpage.c, and customized for f2fs.
2289  * Major change was from block_size == page_size in f2fs by default.
2290  */
2291 static int f2fs_mpage_readpages(struct inode *inode,
2292 		struct readahead_control *rac, struct page *page)
2293 {
2294 	struct bio *bio = NULL;
2295 	sector_t last_block_in_bio = 0;
2296 	struct f2fs_map_blocks map;
2297 #ifdef CONFIG_F2FS_FS_COMPRESSION
2298 	struct compress_ctx cc = {
2299 		.inode = inode,
2300 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2301 		.cluster_size = F2FS_I(inode)->i_cluster_size,
2302 		.cluster_idx = NULL_CLUSTER,
2303 		.rpages = NULL,
2304 		.cpages = NULL,
2305 		.nr_rpages = 0,
2306 		.nr_cpages = 0,
2307 	};
2308 	pgoff_t nc_cluster_idx = NULL_CLUSTER;
2309 #endif
2310 	unsigned nr_pages = rac ? readahead_count(rac) : 1;
2311 	unsigned max_nr_pages = nr_pages;
2312 	int ret = 0;
2313 
2314 	map.m_pblk = 0;
2315 	map.m_lblk = 0;
2316 	map.m_len = 0;
2317 	map.m_flags = 0;
2318 	map.m_next_pgofs = NULL;
2319 	map.m_next_extent = NULL;
2320 	map.m_seg_type = NO_CHECK_TYPE;
2321 	map.m_may_create = false;
2322 
2323 	for (; nr_pages; nr_pages--) {
2324 		if (rac) {
2325 			page = readahead_page(rac);
2326 			prefetchw(&page->flags);
2327 		}
2328 
2329 #ifdef CONFIG_F2FS_FS_COMPRESSION
2330 		if (f2fs_compressed_file(inode)) {
2331 			/* there are remained comressed pages, submit them */
2332 			if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2333 				ret = f2fs_read_multi_pages(&cc, &bio,
2334 							max_nr_pages,
2335 							&last_block_in_bio,
2336 							rac != NULL, false);
2337 				f2fs_destroy_compress_ctx(&cc, false);
2338 				if (ret)
2339 					goto set_error_page;
2340 			}
2341 			if (cc.cluster_idx == NULL_CLUSTER) {
2342 				if (nc_cluster_idx ==
2343 					page->index >> cc.log_cluster_size) {
2344 					goto read_single_page;
2345 				}
2346 
2347 				ret = f2fs_is_compressed_cluster(inode, page->index);
2348 				if (ret < 0)
2349 					goto set_error_page;
2350 				else if (!ret) {
2351 					nc_cluster_idx =
2352 						page->index >> cc.log_cluster_size;
2353 					goto read_single_page;
2354 				}
2355 
2356 				nc_cluster_idx = NULL_CLUSTER;
2357 			}
2358 			ret = f2fs_init_compress_ctx(&cc);
2359 			if (ret)
2360 				goto set_error_page;
2361 
2362 			f2fs_compress_ctx_add_page(&cc, page);
2363 
2364 			goto next_page;
2365 		}
2366 read_single_page:
2367 #endif
2368 
2369 		ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2370 					&bio, &last_block_in_bio, rac);
2371 		if (ret) {
2372 #ifdef CONFIG_F2FS_FS_COMPRESSION
2373 set_error_page:
2374 #endif
2375 			SetPageError(page);
2376 			zero_user_segment(page, 0, PAGE_SIZE);
2377 			unlock_page(page);
2378 		}
2379 #ifdef CONFIG_F2FS_FS_COMPRESSION
2380 next_page:
2381 #endif
2382 		if (rac)
2383 			put_page(page);
2384 
2385 #ifdef CONFIG_F2FS_FS_COMPRESSION
2386 		if (f2fs_compressed_file(inode)) {
2387 			/* last page */
2388 			if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2389 				ret = f2fs_read_multi_pages(&cc, &bio,
2390 							max_nr_pages,
2391 							&last_block_in_bio,
2392 							rac != NULL, false);
2393 				f2fs_destroy_compress_ctx(&cc, false);
2394 			}
2395 		}
2396 #endif
2397 	}
2398 	if (bio)
2399 		__submit_bio(F2FS_I_SB(inode), bio, DATA);
2400 	return ret;
2401 }
2402 
2403 static int f2fs_read_data_folio(struct file *file, struct folio *folio)
2404 {
2405 	struct page *page = &folio->page;
2406 	struct inode *inode = page_file_mapping(page)->host;
2407 	int ret = -EAGAIN;
2408 
2409 	trace_f2fs_readpage(page, DATA);
2410 
2411 	if (!f2fs_is_compress_backend_ready(inode)) {
2412 		unlock_page(page);
2413 		return -EOPNOTSUPP;
2414 	}
2415 
2416 	/* If the file has inline data, try to read it directly */
2417 	if (f2fs_has_inline_data(inode))
2418 		ret = f2fs_read_inline_data(inode, page);
2419 	if (ret == -EAGAIN)
2420 		ret = f2fs_mpage_readpages(inode, NULL, page);
2421 	return ret;
2422 }
2423 
2424 static void f2fs_readahead(struct readahead_control *rac)
2425 {
2426 	struct inode *inode = rac->mapping->host;
2427 
2428 	trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2429 
2430 	if (!f2fs_is_compress_backend_ready(inode))
2431 		return;
2432 
2433 	/* If the file has inline data, skip readahead */
2434 	if (f2fs_has_inline_data(inode))
2435 		return;
2436 
2437 	f2fs_mpage_readpages(inode, rac, NULL);
2438 }
2439 
2440 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2441 {
2442 	struct inode *inode = fio->page->mapping->host;
2443 	struct page *mpage, *page;
2444 	gfp_t gfp_flags = GFP_NOFS;
2445 
2446 	if (!f2fs_encrypted_file(inode))
2447 		return 0;
2448 
2449 	page = fio->compressed_page ? fio->compressed_page : fio->page;
2450 
2451 	/* wait for GCed page writeback via META_MAPPING */
2452 	f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2453 
2454 	if (fscrypt_inode_uses_inline_crypto(inode))
2455 		return 0;
2456 
2457 retry_encrypt:
2458 	fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2459 					PAGE_SIZE, 0, gfp_flags);
2460 	if (IS_ERR(fio->encrypted_page)) {
2461 		/* flush pending IOs and wait for a while in the ENOMEM case */
2462 		if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2463 			f2fs_flush_merged_writes(fio->sbi);
2464 			memalloc_retry_wait(GFP_NOFS);
2465 			gfp_flags |= __GFP_NOFAIL;
2466 			goto retry_encrypt;
2467 		}
2468 		return PTR_ERR(fio->encrypted_page);
2469 	}
2470 
2471 	mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2472 	if (mpage) {
2473 		if (PageUptodate(mpage))
2474 			memcpy(page_address(mpage),
2475 				page_address(fio->encrypted_page), PAGE_SIZE);
2476 		f2fs_put_page(mpage, 1);
2477 	}
2478 	return 0;
2479 }
2480 
2481 static inline bool check_inplace_update_policy(struct inode *inode,
2482 				struct f2fs_io_info *fio)
2483 {
2484 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2485 	unsigned int policy = SM_I(sbi)->ipu_policy;
2486 
2487 	if (policy & (0x1 << F2FS_IPU_HONOR_OPU_WRITE) &&
2488 			is_inode_flag_set(inode, FI_OPU_WRITE))
2489 		return false;
2490 	if (policy & (0x1 << F2FS_IPU_FORCE))
2491 		return true;
2492 	if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
2493 		return true;
2494 	if (policy & (0x1 << F2FS_IPU_UTIL) &&
2495 			utilization(sbi) > SM_I(sbi)->min_ipu_util)
2496 		return true;
2497 	if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
2498 			utilization(sbi) > SM_I(sbi)->min_ipu_util)
2499 		return true;
2500 
2501 	/*
2502 	 * IPU for rewrite async pages
2503 	 */
2504 	if (policy & (0x1 << F2FS_IPU_ASYNC) &&
2505 			fio && fio->op == REQ_OP_WRITE &&
2506 			!(fio->op_flags & REQ_SYNC) &&
2507 			!IS_ENCRYPTED(inode))
2508 		return true;
2509 
2510 	/* this is only set during fdatasync */
2511 	if (policy & (0x1 << F2FS_IPU_FSYNC) &&
2512 			is_inode_flag_set(inode, FI_NEED_IPU))
2513 		return true;
2514 
2515 	if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2516 			!f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2517 		return true;
2518 
2519 	return false;
2520 }
2521 
2522 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2523 {
2524 	/* swap file is migrating in aligned write mode */
2525 	if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2526 		return false;
2527 
2528 	if (f2fs_is_pinned_file(inode))
2529 		return true;
2530 
2531 	/* if this is cold file, we should overwrite to avoid fragmentation */
2532 	if (file_is_cold(inode))
2533 		return true;
2534 
2535 	return check_inplace_update_policy(inode, fio);
2536 }
2537 
2538 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2539 {
2540 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2541 
2542 	/* The below cases were checked when setting it. */
2543 	if (f2fs_is_pinned_file(inode))
2544 		return false;
2545 	if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK))
2546 		return true;
2547 	if (f2fs_lfs_mode(sbi))
2548 		return true;
2549 	if (S_ISDIR(inode->i_mode))
2550 		return true;
2551 	if (IS_NOQUOTA(inode))
2552 		return true;
2553 	if (f2fs_is_atomic_file(inode))
2554 		return true;
2555 
2556 	/* swap file is migrating in aligned write mode */
2557 	if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2558 		return true;
2559 
2560 	if (is_inode_flag_set(inode, FI_OPU_WRITE))
2561 		return true;
2562 
2563 	if (fio) {
2564 		if (page_private_gcing(fio->page))
2565 			return true;
2566 		if (page_private_dummy(fio->page))
2567 			return true;
2568 		if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2569 			f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2570 			return true;
2571 	}
2572 	return false;
2573 }
2574 
2575 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2576 {
2577 	struct inode *inode = fio->page->mapping->host;
2578 
2579 	if (f2fs_should_update_outplace(inode, fio))
2580 		return false;
2581 
2582 	return f2fs_should_update_inplace(inode, fio);
2583 }
2584 
2585 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2586 {
2587 	struct page *page = fio->page;
2588 	struct inode *inode = page->mapping->host;
2589 	struct dnode_of_data dn;
2590 	struct extent_info ei = {0, };
2591 	struct node_info ni;
2592 	bool ipu_force = false;
2593 	int err = 0;
2594 
2595 	/* Use COW inode to make dnode_of_data for atomic write */
2596 	if (f2fs_is_atomic_file(inode))
2597 		set_new_dnode(&dn, F2FS_I(inode)->cow_inode, NULL, NULL, 0);
2598 	else
2599 		set_new_dnode(&dn, inode, NULL, NULL, 0);
2600 
2601 	if (need_inplace_update(fio) &&
2602 			f2fs_lookup_extent_cache(inode, page->index, &ei)) {
2603 		fio->old_blkaddr = ei.blk + page->index - ei.fofs;
2604 
2605 		if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2606 						DATA_GENERIC_ENHANCE))
2607 			return -EFSCORRUPTED;
2608 
2609 		ipu_force = true;
2610 		fio->need_lock = LOCK_DONE;
2611 		goto got_it;
2612 	}
2613 
2614 	/* Deadlock due to between page->lock and f2fs_lock_op */
2615 	if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2616 		return -EAGAIN;
2617 
2618 	err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2619 	if (err)
2620 		goto out;
2621 
2622 	fio->old_blkaddr = dn.data_blkaddr;
2623 
2624 	/* This page is already truncated */
2625 	if (fio->old_blkaddr == NULL_ADDR) {
2626 		ClearPageUptodate(page);
2627 		clear_page_private_gcing(page);
2628 		goto out_writepage;
2629 	}
2630 got_it:
2631 	if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2632 		!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2633 						DATA_GENERIC_ENHANCE)) {
2634 		err = -EFSCORRUPTED;
2635 		goto out_writepage;
2636 	}
2637 
2638 	/*
2639 	 * If current allocation needs SSR,
2640 	 * it had better in-place writes for updated data.
2641 	 */
2642 	if (ipu_force ||
2643 		(__is_valid_data_blkaddr(fio->old_blkaddr) &&
2644 					need_inplace_update(fio))) {
2645 		err = f2fs_encrypt_one_page(fio);
2646 		if (err)
2647 			goto out_writepage;
2648 
2649 		set_page_writeback(page);
2650 		ClearPageError(page);
2651 		f2fs_put_dnode(&dn);
2652 		if (fio->need_lock == LOCK_REQ)
2653 			f2fs_unlock_op(fio->sbi);
2654 		err = f2fs_inplace_write_data(fio);
2655 		if (err) {
2656 			if (fscrypt_inode_uses_fs_layer_crypto(inode))
2657 				fscrypt_finalize_bounce_page(&fio->encrypted_page);
2658 			if (PageWriteback(page))
2659 				end_page_writeback(page);
2660 		} else {
2661 			set_inode_flag(inode, FI_UPDATE_WRITE);
2662 		}
2663 		trace_f2fs_do_write_data_page(fio->page, IPU);
2664 		return err;
2665 	}
2666 
2667 	if (fio->need_lock == LOCK_RETRY) {
2668 		if (!f2fs_trylock_op(fio->sbi)) {
2669 			err = -EAGAIN;
2670 			goto out_writepage;
2671 		}
2672 		fio->need_lock = LOCK_REQ;
2673 	}
2674 
2675 	err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false);
2676 	if (err)
2677 		goto out_writepage;
2678 
2679 	fio->version = ni.version;
2680 
2681 	err = f2fs_encrypt_one_page(fio);
2682 	if (err)
2683 		goto out_writepage;
2684 
2685 	set_page_writeback(page);
2686 	ClearPageError(page);
2687 
2688 	if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2689 		f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2690 
2691 	/* LFS mode write path */
2692 	f2fs_outplace_write_data(&dn, fio);
2693 	trace_f2fs_do_write_data_page(page, OPU);
2694 	set_inode_flag(inode, FI_APPEND_WRITE);
2695 	if (page->index == 0)
2696 		set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
2697 out_writepage:
2698 	f2fs_put_dnode(&dn);
2699 out:
2700 	if (fio->need_lock == LOCK_REQ)
2701 		f2fs_unlock_op(fio->sbi);
2702 	return err;
2703 }
2704 
2705 int f2fs_write_single_data_page(struct page *page, int *submitted,
2706 				struct bio **bio,
2707 				sector_t *last_block,
2708 				struct writeback_control *wbc,
2709 				enum iostat_type io_type,
2710 				int compr_blocks,
2711 				bool allow_balance)
2712 {
2713 	struct inode *inode = page->mapping->host;
2714 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2715 	loff_t i_size = i_size_read(inode);
2716 	const pgoff_t end_index = ((unsigned long long)i_size)
2717 							>> PAGE_SHIFT;
2718 	loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2719 	unsigned offset = 0;
2720 	bool need_balance_fs = false;
2721 	int err = 0;
2722 	struct f2fs_io_info fio = {
2723 		.sbi = sbi,
2724 		.ino = inode->i_ino,
2725 		.type = DATA,
2726 		.op = REQ_OP_WRITE,
2727 		.op_flags = wbc_to_write_flags(wbc),
2728 		.old_blkaddr = NULL_ADDR,
2729 		.page = page,
2730 		.encrypted_page = NULL,
2731 		.submitted = false,
2732 		.compr_blocks = compr_blocks,
2733 		.need_lock = LOCK_RETRY,
2734 		.io_type = io_type,
2735 		.io_wbc = wbc,
2736 		.bio = bio,
2737 		.last_block = last_block,
2738 	};
2739 
2740 	trace_f2fs_writepage(page, DATA);
2741 
2742 	/* we should bypass data pages to proceed the kworkder jobs */
2743 	if (unlikely(f2fs_cp_error(sbi))) {
2744 		mapping_set_error(page->mapping, -EIO);
2745 		/*
2746 		 * don't drop any dirty dentry pages for keeping lastest
2747 		 * directory structure.
2748 		 */
2749 		if (S_ISDIR(inode->i_mode))
2750 			goto redirty_out;
2751 		goto out;
2752 	}
2753 
2754 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2755 		goto redirty_out;
2756 
2757 	if (page->index < end_index ||
2758 			f2fs_verity_in_progress(inode) ||
2759 			compr_blocks)
2760 		goto write;
2761 
2762 	/*
2763 	 * If the offset is out-of-range of file size,
2764 	 * this page does not have to be written to disk.
2765 	 */
2766 	offset = i_size & (PAGE_SIZE - 1);
2767 	if ((page->index >= end_index + 1) || !offset)
2768 		goto out;
2769 
2770 	zero_user_segment(page, offset, PAGE_SIZE);
2771 write:
2772 	if (f2fs_is_drop_cache(inode))
2773 		goto out;
2774 
2775 	/* Dentry/quota blocks are controlled by checkpoint */
2776 	if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) {
2777 		/*
2778 		 * We need to wait for node_write to avoid block allocation during
2779 		 * checkpoint. This can only happen to quota writes which can cause
2780 		 * the below discard race condition.
2781 		 */
2782 		if (IS_NOQUOTA(inode))
2783 			f2fs_down_read(&sbi->node_write);
2784 
2785 		fio.need_lock = LOCK_DONE;
2786 		err = f2fs_do_write_data_page(&fio);
2787 
2788 		if (IS_NOQUOTA(inode))
2789 			f2fs_up_read(&sbi->node_write);
2790 
2791 		goto done;
2792 	}
2793 
2794 	if (!wbc->for_reclaim)
2795 		need_balance_fs = true;
2796 	else if (has_not_enough_free_secs(sbi, 0, 0))
2797 		goto redirty_out;
2798 	else
2799 		set_inode_flag(inode, FI_HOT_DATA);
2800 
2801 	err = -EAGAIN;
2802 	if (f2fs_has_inline_data(inode)) {
2803 		err = f2fs_write_inline_data(inode, page);
2804 		if (!err)
2805 			goto out;
2806 	}
2807 
2808 	if (err == -EAGAIN) {
2809 		err = f2fs_do_write_data_page(&fio);
2810 		if (err == -EAGAIN) {
2811 			fio.need_lock = LOCK_REQ;
2812 			err = f2fs_do_write_data_page(&fio);
2813 		}
2814 	}
2815 
2816 	if (err) {
2817 		file_set_keep_isize(inode);
2818 	} else {
2819 		spin_lock(&F2FS_I(inode)->i_size_lock);
2820 		if (F2FS_I(inode)->last_disk_size < psize)
2821 			F2FS_I(inode)->last_disk_size = psize;
2822 		spin_unlock(&F2FS_I(inode)->i_size_lock);
2823 	}
2824 
2825 done:
2826 	if (err && err != -ENOENT)
2827 		goto redirty_out;
2828 
2829 out:
2830 	inode_dec_dirty_pages(inode);
2831 	if (err) {
2832 		ClearPageUptodate(page);
2833 		clear_page_private_gcing(page);
2834 	}
2835 
2836 	if (wbc->for_reclaim) {
2837 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2838 		clear_inode_flag(inode, FI_HOT_DATA);
2839 		f2fs_remove_dirty_inode(inode);
2840 		submitted = NULL;
2841 	}
2842 	unlock_page(page);
2843 	if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2844 			!F2FS_I(inode)->cp_task && allow_balance)
2845 		f2fs_balance_fs(sbi, need_balance_fs);
2846 
2847 	if (unlikely(f2fs_cp_error(sbi))) {
2848 		f2fs_submit_merged_write(sbi, DATA);
2849 		f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2850 		submitted = NULL;
2851 	}
2852 
2853 	if (submitted)
2854 		*submitted = fio.submitted ? 1 : 0;
2855 
2856 	return 0;
2857 
2858 redirty_out:
2859 	redirty_page_for_writepage(wbc, page);
2860 	/*
2861 	 * pageout() in MM traslates EAGAIN, so calls handle_write_error()
2862 	 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2863 	 * file_write_and_wait_range() will see EIO error, which is critical
2864 	 * to return value of fsync() followed by atomic_write failure to user.
2865 	 */
2866 	if (!err || wbc->for_reclaim)
2867 		return AOP_WRITEPAGE_ACTIVATE;
2868 	unlock_page(page);
2869 	return err;
2870 }
2871 
2872 static int f2fs_write_data_page(struct page *page,
2873 					struct writeback_control *wbc)
2874 {
2875 #ifdef CONFIG_F2FS_FS_COMPRESSION
2876 	struct inode *inode = page->mapping->host;
2877 
2878 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2879 		goto out;
2880 
2881 	if (f2fs_compressed_file(inode)) {
2882 		if (f2fs_is_compressed_cluster(inode, page->index)) {
2883 			redirty_page_for_writepage(wbc, page);
2884 			return AOP_WRITEPAGE_ACTIVATE;
2885 		}
2886 	}
2887 out:
2888 #endif
2889 
2890 	return f2fs_write_single_data_page(page, NULL, NULL, NULL,
2891 						wbc, FS_DATA_IO, 0, true);
2892 }
2893 
2894 /*
2895  * This function was copied from write_cche_pages from mm/page-writeback.c.
2896  * The major change is making write step of cold data page separately from
2897  * warm/hot data page.
2898  */
2899 static int f2fs_write_cache_pages(struct address_space *mapping,
2900 					struct writeback_control *wbc,
2901 					enum iostat_type io_type)
2902 {
2903 	int ret = 0;
2904 	int done = 0, retry = 0;
2905 	struct pagevec pvec;
2906 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2907 	struct bio *bio = NULL;
2908 	sector_t last_block;
2909 #ifdef CONFIG_F2FS_FS_COMPRESSION
2910 	struct inode *inode = mapping->host;
2911 	struct compress_ctx cc = {
2912 		.inode = inode,
2913 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2914 		.cluster_size = F2FS_I(inode)->i_cluster_size,
2915 		.cluster_idx = NULL_CLUSTER,
2916 		.rpages = NULL,
2917 		.nr_rpages = 0,
2918 		.cpages = NULL,
2919 		.valid_nr_cpages = 0,
2920 		.rbuf = NULL,
2921 		.cbuf = NULL,
2922 		.rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2923 		.private = NULL,
2924 	};
2925 #endif
2926 	int nr_pages;
2927 	pgoff_t index;
2928 	pgoff_t end;		/* Inclusive */
2929 	pgoff_t done_index;
2930 	int range_whole = 0;
2931 	xa_mark_t tag;
2932 	int nwritten = 0;
2933 	int submitted = 0;
2934 	int i;
2935 
2936 	pagevec_init(&pvec);
2937 
2938 	if (get_dirty_pages(mapping->host) <=
2939 				SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2940 		set_inode_flag(mapping->host, FI_HOT_DATA);
2941 	else
2942 		clear_inode_flag(mapping->host, FI_HOT_DATA);
2943 
2944 	if (wbc->range_cyclic) {
2945 		index = mapping->writeback_index; /* prev offset */
2946 		end = -1;
2947 	} else {
2948 		index = wbc->range_start >> PAGE_SHIFT;
2949 		end = wbc->range_end >> PAGE_SHIFT;
2950 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2951 			range_whole = 1;
2952 	}
2953 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2954 		tag = PAGECACHE_TAG_TOWRITE;
2955 	else
2956 		tag = PAGECACHE_TAG_DIRTY;
2957 retry:
2958 	retry = 0;
2959 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2960 		tag_pages_for_writeback(mapping, index, end);
2961 	done_index = index;
2962 	while (!done && !retry && (index <= end)) {
2963 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2964 				tag);
2965 		if (nr_pages == 0)
2966 			break;
2967 
2968 		for (i = 0; i < nr_pages; i++) {
2969 			struct page *page = pvec.pages[i];
2970 			bool need_readd;
2971 readd:
2972 			need_readd = false;
2973 #ifdef CONFIG_F2FS_FS_COMPRESSION
2974 			if (f2fs_compressed_file(inode)) {
2975 				void *fsdata = NULL;
2976 				struct page *pagep;
2977 				int ret2;
2978 
2979 				ret = f2fs_init_compress_ctx(&cc);
2980 				if (ret) {
2981 					done = 1;
2982 					break;
2983 				}
2984 
2985 				if (!f2fs_cluster_can_merge_page(&cc,
2986 								page->index)) {
2987 					ret = f2fs_write_multi_pages(&cc,
2988 						&submitted, wbc, io_type);
2989 					if (!ret)
2990 						need_readd = true;
2991 					goto result;
2992 				}
2993 
2994 				if (unlikely(f2fs_cp_error(sbi)))
2995 					goto lock_page;
2996 
2997 				if (!f2fs_cluster_is_empty(&cc))
2998 					goto lock_page;
2999 
3000 				ret2 = f2fs_prepare_compress_overwrite(
3001 							inode, &pagep,
3002 							page->index, &fsdata);
3003 				if (ret2 < 0) {
3004 					ret = ret2;
3005 					done = 1;
3006 					break;
3007 				} else if (ret2 &&
3008 					(!f2fs_compress_write_end(inode,
3009 						fsdata, page->index, 1) ||
3010 					 !f2fs_all_cluster_page_loaded(&cc,
3011 						&pvec, i, nr_pages))) {
3012 					retry = 1;
3013 					break;
3014 				}
3015 			}
3016 #endif
3017 			/* give a priority to WB_SYNC threads */
3018 			if (atomic_read(&sbi->wb_sync_req[DATA]) &&
3019 					wbc->sync_mode == WB_SYNC_NONE) {
3020 				done = 1;
3021 				break;
3022 			}
3023 #ifdef CONFIG_F2FS_FS_COMPRESSION
3024 lock_page:
3025 #endif
3026 			done_index = page->index;
3027 retry_write:
3028 			lock_page(page);
3029 
3030 			if (unlikely(page->mapping != mapping)) {
3031 continue_unlock:
3032 				unlock_page(page);
3033 				continue;
3034 			}
3035 
3036 			if (!PageDirty(page)) {
3037 				/* someone wrote it for us */
3038 				goto continue_unlock;
3039 			}
3040 
3041 			if (PageWriteback(page)) {
3042 				if (wbc->sync_mode != WB_SYNC_NONE)
3043 					f2fs_wait_on_page_writeback(page,
3044 							DATA, true, true);
3045 				else
3046 					goto continue_unlock;
3047 			}
3048 
3049 			if (!clear_page_dirty_for_io(page))
3050 				goto continue_unlock;
3051 
3052 #ifdef CONFIG_F2FS_FS_COMPRESSION
3053 			if (f2fs_compressed_file(inode)) {
3054 				get_page(page);
3055 				f2fs_compress_ctx_add_page(&cc, page);
3056 				continue;
3057 			}
3058 #endif
3059 			ret = f2fs_write_single_data_page(page, &submitted,
3060 					&bio, &last_block, wbc, io_type,
3061 					0, true);
3062 			if (ret == AOP_WRITEPAGE_ACTIVATE)
3063 				unlock_page(page);
3064 #ifdef CONFIG_F2FS_FS_COMPRESSION
3065 result:
3066 #endif
3067 			nwritten += submitted;
3068 			wbc->nr_to_write -= submitted;
3069 
3070 			if (unlikely(ret)) {
3071 				/*
3072 				 * keep nr_to_write, since vfs uses this to
3073 				 * get # of written pages.
3074 				 */
3075 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
3076 					ret = 0;
3077 					goto next;
3078 				} else if (ret == -EAGAIN) {
3079 					ret = 0;
3080 					if (wbc->sync_mode == WB_SYNC_ALL) {
3081 						f2fs_io_schedule_timeout(
3082 							DEFAULT_IO_TIMEOUT);
3083 						goto retry_write;
3084 					}
3085 					goto next;
3086 				}
3087 				done_index = page->index + 1;
3088 				done = 1;
3089 				break;
3090 			}
3091 
3092 			if (wbc->nr_to_write <= 0 &&
3093 					wbc->sync_mode == WB_SYNC_NONE) {
3094 				done = 1;
3095 				break;
3096 			}
3097 next:
3098 			if (need_readd)
3099 				goto readd;
3100 		}
3101 		pagevec_release(&pvec);
3102 		cond_resched();
3103 	}
3104 #ifdef CONFIG_F2FS_FS_COMPRESSION
3105 	/* flush remained pages in compress cluster */
3106 	if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3107 		ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3108 		nwritten += submitted;
3109 		wbc->nr_to_write -= submitted;
3110 		if (ret) {
3111 			done = 1;
3112 			retry = 0;
3113 		}
3114 	}
3115 	if (f2fs_compressed_file(inode))
3116 		f2fs_destroy_compress_ctx(&cc, false);
3117 #endif
3118 	if (retry) {
3119 		index = 0;
3120 		end = -1;
3121 		goto retry;
3122 	}
3123 	if (wbc->range_cyclic && !done)
3124 		done_index = 0;
3125 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3126 		mapping->writeback_index = done_index;
3127 
3128 	if (nwritten)
3129 		f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3130 								NULL, 0, DATA);
3131 	/* submit cached bio of IPU write */
3132 	if (bio)
3133 		f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3134 
3135 	return ret;
3136 }
3137 
3138 static inline bool __should_serialize_io(struct inode *inode,
3139 					struct writeback_control *wbc)
3140 {
3141 	/* to avoid deadlock in path of data flush */
3142 	if (F2FS_I(inode)->cp_task)
3143 		return false;
3144 
3145 	if (!S_ISREG(inode->i_mode))
3146 		return false;
3147 	if (IS_NOQUOTA(inode))
3148 		return false;
3149 
3150 	if (f2fs_need_compress_data(inode))
3151 		return true;
3152 	if (wbc->sync_mode != WB_SYNC_ALL)
3153 		return true;
3154 	if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3155 		return true;
3156 	return false;
3157 }
3158 
3159 static int __f2fs_write_data_pages(struct address_space *mapping,
3160 						struct writeback_control *wbc,
3161 						enum iostat_type io_type)
3162 {
3163 	struct inode *inode = mapping->host;
3164 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3165 	struct blk_plug plug;
3166 	int ret;
3167 	bool locked = false;
3168 
3169 	/* deal with chardevs and other special file */
3170 	if (!mapping->a_ops->writepage)
3171 		return 0;
3172 
3173 	/* skip writing if there is no dirty page in this inode */
3174 	if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3175 		return 0;
3176 
3177 	/* during POR, we don't need to trigger writepage at all. */
3178 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3179 		goto skip_write;
3180 
3181 	if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3182 			wbc->sync_mode == WB_SYNC_NONE &&
3183 			get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3184 			f2fs_available_free_memory(sbi, DIRTY_DENTS))
3185 		goto skip_write;
3186 
3187 	/* skip writing in file defragment preparing stage */
3188 	if (is_inode_flag_set(inode, FI_SKIP_WRITES))
3189 		goto skip_write;
3190 
3191 	trace_f2fs_writepages(mapping->host, wbc, DATA);
3192 
3193 	/* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3194 	if (wbc->sync_mode == WB_SYNC_ALL)
3195 		atomic_inc(&sbi->wb_sync_req[DATA]);
3196 	else if (atomic_read(&sbi->wb_sync_req[DATA])) {
3197 		/* to avoid potential deadlock */
3198 		if (current->plug)
3199 			blk_finish_plug(current->plug);
3200 		goto skip_write;
3201 	}
3202 
3203 	if (__should_serialize_io(inode, wbc)) {
3204 		mutex_lock(&sbi->writepages);
3205 		locked = true;
3206 	}
3207 
3208 	blk_start_plug(&plug);
3209 	ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3210 	blk_finish_plug(&plug);
3211 
3212 	if (locked)
3213 		mutex_unlock(&sbi->writepages);
3214 
3215 	if (wbc->sync_mode == WB_SYNC_ALL)
3216 		atomic_dec(&sbi->wb_sync_req[DATA]);
3217 	/*
3218 	 * if some pages were truncated, we cannot guarantee its mapping->host
3219 	 * to detect pending bios.
3220 	 */
3221 
3222 	f2fs_remove_dirty_inode(inode);
3223 	return ret;
3224 
3225 skip_write:
3226 	wbc->pages_skipped += get_dirty_pages(inode);
3227 	trace_f2fs_writepages(mapping->host, wbc, DATA);
3228 	return 0;
3229 }
3230 
3231 static int f2fs_write_data_pages(struct address_space *mapping,
3232 			    struct writeback_control *wbc)
3233 {
3234 	struct inode *inode = mapping->host;
3235 
3236 	return __f2fs_write_data_pages(mapping, wbc,
3237 			F2FS_I(inode)->cp_task == current ?
3238 			FS_CP_DATA_IO : FS_DATA_IO);
3239 }
3240 
3241 void f2fs_write_failed(struct inode *inode, loff_t to)
3242 {
3243 	loff_t i_size = i_size_read(inode);
3244 
3245 	if (IS_NOQUOTA(inode))
3246 		return;
3247 
3248 	/* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3249 	if (to > i_size && !f2fs_verity_in_progress(inode)) {
3250 		f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3251 		filemap_invalidate_lock(inode->i_mapping);
3252 
3253 		truncate_pagecache(inode, i_size);
3254 		f2fs_truncate_blocks(inode, i_size, true);
3255 
3256 		filemap_invalidate_unlock(inode->i_mapping);
3257 		f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3258 	}
3259 }
3260 
3261 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3262 			struct page *page, loff_t pos, unsigned len,
3263 			block_t *blk_addr, bool *node_changed)
3264 {
3265 	struct inode *inode = page->mapping->host;
3266 	pgoff_t index = page->index;
3267 	struct dnode_of_data dn;
3268 	struct page *ipage;
3269 	bool locked = false;
3270 	struct extent_info ei = {0, };
3271 	int err = 0;
3272 	int flag;
3273 
3274 	/*
3275 	 * If a whole page is being written and we already preallocated all the
3276 	 * blocks, then there is no need to get a block address now.
3277 	 */
3278 	if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL))
3279 		return 0;
3280 
3281 	/* f2fs_lock_op avoids race between write CP and convert_inline_page */
3282 	if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
3283 		flag = F2FS_GET_BLOCK_DEFAULT;
3284 	else
3285 		flag = F2FS_GET_BLOCK_PRE_AIO;
3286 
3287 	if (f2fs_has_inline_data(inode) ||
3288 			(pos & PAGE_MASK) >= i_size_read(inode)) {
3289 		f2fs_do_map_lock(sbi, flag, true);
3290 		locked = true;
3291 	}
3292 
3293 restart:
3294 	/* check inline_data */
3295 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
3296 	if (IS_ERR(ipage)) {
3297 		err = PTR_ERR(ipage);
3298 		goto unlock_out;
3299 	}
3300 
3301 	set_new_dnode(&dn, inode, ipage, ipage, 0);
3302 
3303 	if (f2fs_has_inline_data(inode)) {
3304 		if (pos + len <= MAX_INLINE_DATA(inode)) {
3305 			f2fs_do_read_inline_data(page, ipage);
3306 			set_inode_flag(inode, FI_DATA_EXIST);
3307 			if (inode->i_nlink)
3308 				set_page_private_inline(ipage);
3309 		} else {
3310 			err = f2fs_convert_inline_page(&dn, page);
3311 			if (err)
3312 				goto out;
3313 			if (dn.data_blkaddr == NULL_ADDR)
3314 				err = f2fs_get_block(&dn, index);
3315 		}
3316 	} else if (locked) {
3317 		err = f2fs_get_block(&dn, index);
3318 	} else {
3319 		if (f2fs_lookup_extent_cache(inode, index, &ei)) {
3320 			dn.data_blkaddr = ei.blk + index - ei.fofs;
3321 		} else {
3322 			/* hole case */
3323 			err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3324 			if (err || dn.data_blkaddr == NULL_ADDR) {
3325 				f2fs_put_dnode(&dn);
3326 				f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
3327 								true);
3328 				WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3329 				locked = true;
3330 				goto restart;
3331 			}
3332 		}
3333 	}
3334 
3335 	/* convert_inline_page can make node_changed */
3336 	*blk_addr = dn.data_blkaddr;
3337 	*node_changed = dn.node_changed;
3338 out:
3339 	f2fs_put_dnode(&dn);
3340 unlock_out:
3341 	if (locked)
3342 		f2fs_do_map_lock(sbi, flag, false);
3343 	return err;
3344 }
3345 
3346 static int __find_data_block(struct inode *inode, pgoff_t index,
3347 				block_t *blk_addr)
3348 {
3349 	struct dnode_of_data dn;
3350 	struct page *ipage;
3351 	struct extent_info ei = {0, };
3352 	int err = 0;
3353 
3354 	ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
3355 	if (IS_ERR(ipage))
3356 		return PTR_ERR(ipage);
3357 
3358 	set_new_dnode(&dn, inode, ipage, ipage, 0);
3359 
3360 	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
3361 		dn.data_blkaddr = ei.blk + index - ei.fofs;
3362 	} else {
3363 		/* hole case */
3364 		err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3365 		if (err) {
3366 			dn.data_blkaddr = NULL_ADDR;
3367 			err = 0;
3368 		}
3369 	}
3370 	*blk_addr = dn.data_blkaddr;
3371 	f2fs_put_dnode(&dn);
3372 	return err;
3373 }
3374 
3375 static int __reserve_data_block(struct inode *inode, pgoff_t index,
3376 				block_t *blk_addr, bool *node_changed)
3377 {
3378 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3379 	struct dnode_of_data dn;
3380 	struct page *ipage;
3381 	int err = 0;
3382 
3383 	f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true);
3384 
3385 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
3386 	if (IS_ERR(ipage)) {
3387 		err = PTR_ERR(ipage);
3388 		goto unlock_out;
3389 	}
3390 	set_new_dnode(&dn, inode, ipage, ipage, 0);
3391 
3392 	err = f2fs_get_block(&dn, index);
3393 
3394 	*blk_addr = dn.data_blkaddr;
3395 	*node_changed = dn.node_changed;
3396 	f2fs_put_dnode(&dn);
3397 
3398 unlock_out:
3399 	f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false);
3400 	return err;
3401 }
3402 
3403 static int prepare_atomic_write_begin(struct f2fs_sb_info *sbi,
3404 			struct page *page, loff_t pos, unsigned int len,
3405 			block_t *blk_addr, bool *node_changed)
3406 {
3407 	struct inode *inode = page->mapping->host;
3408 	struct inode *cow_inode = F2FS_I(inode)->cow_inode;
3409 	pgoff_t index = page->index;
3410 	int err = 0;
3411 	block_t ori_blk_addr;
3412 
3413 	/* If pos is beyond the end of file, reserve a new block in COW inode */
3414 	if ((pos & PAGE_MASK) >= i_size_read(inode))
3415 		return __reserve_data_block(cow_inode, index, blk_addr,
3416 					node_changed);
3417 
3418 	/* Look for the block in COW inode first */
3419 	err = __find_data_block(cow_inode, index, blk_addr);
3420 	if (err)
3421 		return err;
3422 	else if (*blk_addr != NULL_ADDR)
3423 		return 0;
3424 
3425 	/* Look for the block in the original inode */
3426 	err = __find_data_block(inode, index, &ori_blk_addr);
3427 	if (err)
3428 		return err;
3429 
3430 	/* Finally, we should reserve a new block in COW inode for the update */
3431 	err = __reserve_data_block(cow_inode, index, blk_addr, node_changed);
3432 	if (err)
3433 		return err;
3434 
3435 	if (ori_blk_addr != NULL_ADDR)
3436 		*blk_addr = ori_blk_addr;
3437 	return 0;
3438 }
3439 
3440 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3441 		loff_t pos, unsigned len, struct page **pagep, void **fsdata)
3442 {
3443 	struct inode *inode = mapping->host;
3444 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3445 	struct page *page = NULL;
3446 	pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3447 	bool need_balance = false;
3448 	block_t blkaddr = NULL_ADDR;
3449 	int err = 0;
3450 
3451 	trace_f2fs_write_begin(inode, pos, len);
3452 
3453 	if (!f2fs_is_checkpoint_ready(sbi)) {
3454 		err = -ENOSPC;
3455 		goto fail;
3456 	}
3457 
3458 	/*
3459 	 * We should check this at this moment to avoid deadlock on inode page
3460 	 * and #0 page. The locking rule for inline_data conversion should be:
3461 	 * lock_page(page #0) -> lock_page(inode_page)
3462 	 */
3463 	if (index != 0) {
3464 		err = f2fs_convert_inline_inode(inode);
3465 		if (err)
3466 			goto fail;
3467 	}
3468 
3469 #ifdef CONFIG_F2FS_FS_COMPRESSION
3470 	if (f2fs_compressed_file(inode)) {
3471 		int ret;
3472 
3473 		*fsdata = NULL;
3474 
3475 		if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode)))
3476 			goto repeat;
3477 
3478 		ret = f2fs_prepare_compress_overwrite(inode, pagep,
3479 							index, fsdata);
3480 		if (ret < 0) {
3481 			err = ret;
3482 			goto fail;
3483 		} else if (ret) {
3484 			return 0;
3485 		}
3486 	}
3487 #endif
3488 
3489 repeat:
3490 	/*
3491 	 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3492 	 * wait_for_stable_page. Will wait that below with our IO control.
3493 	 */
3494 	page = f2fs_pagecache_get_page(mapping, index,
3495 				FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3496 	if (!page) {
3497 		err = -ENOMEM;
3498 		goto fail;
3499 	}
3500 
3501 	/* TODO: cluster can be compressed due to race with .writepage */
3502 
3503 	*pagep = page;
3504 
3505 	if (f2fs_is_atomic_file(inode))
3506 		err = prepare_atomic_write_begin(sbi, page, pos, len,
3507 					&blkaddr, &need_balance);
3508 	else
3509 		err = prepare_write_begin(sbi, page, pos, len,
3510 					&blkaddr, &need_balance);
3511 	if (err)
3512 		goto fail;
3513 
3514 	if (need_balance && !IS_NOQUOTA(inode) &&
3515 			has_not_enough_free_secs(sbi, 0, 0)) {
3516 		unlock_page(page);
3517 		f2fs_balance_fs(sbi, true);
3518 		lock_page(page);
3519 		if (page->mapping != mapping) {
3520 			/* The page got truncated from under us */
3521 			f2fs_put_page(page, 1);
3522 			goto repeat;
3523 		}
3524 	}
3525 
3526 	f2fs_wait_on_page_writeback(page, DATA, false, true);
3527 
3528 	if (len == PAGE_SIZE || PageUptodate(page))
3529 		return 0;
3530 
3531 	if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3532 	    !f2fs_verity_in_progress(inode)) {
3533 		zero_user_segment(page, len, PAGE_SIZE);
3534 		return 0;
3535 	}
3536 
3537 	if (blkaddr == NEW_ADDR) {
3538 		zero_user_segment(page, 0, PAGE_SIZE);
3539 		SetPageUptodate(page);
3540 	} else {
3541 		if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3542 				DATA_GENERIC_ENHANCE_READ)) {
3543 			err = -EFSCORRUPTED;
3544 			goto fail;
3545 		}
3546 		err = f2fs_submit_page_read(inode, page, blkaddr, 0, true);
3547 		if (err)
3548 			goto fail;
3549 
3550 		lock_page(page);
3551 		if (unlikely(page->mapping != mapping)) {
3552 			f2fs_put_page(page, 1);
3553 			goto repeat;
3554 		}
3555 		if (unlikely(!PageUptodate(page))) {
3556 			err = -EIO;
3557 			goto fail;
3558 		}
3559 	}
3560 	return 0;
3561 
3562 fail:
3563 	f2fs_put_page(page, 1);
3564 	f2fs_write_failed(inode, pos + len);
3565 	return err;
3566 }
3567 
3568 static int f2fs_write_end(struct file *file,
3569 			struct address_space *mapping,
3570 			loff_t pos, unsigned len, unsigned copied,
3571 			struct page *page, void *fsdata)
3572 {
3573 	struct inode *inode = page->mapping->host;
3574 
3575 	trace_f2fs_write_end(inode, pos, len, copied);
3576 
3577 	/*
3578 	 * This should be come from len == PAGE_SIZE, and we expect copied
3579 	 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3580 	 * let generic_perform_write() try to copy data again through copied=0.
3581 	 */
3582 	if (!PageUptodate(page)) {
3583 		if (unlikely(copied != len))
3584 			copied = 0;
3585 		else
3586 			SetPageUptodate(page);
3587 	}
3588 
3589 #ifdef CONFIG_F2FS_FS_COMPRESSION
3590 	/* overwrite compressed file */
3591 	if (f2fs_compressed_file(inode) && fsdata) {
3592 		f2fs_compress_write_end(inode, fsdata, page->index, copied);
3593 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3594 
3595 		if (pos + copied > i_size_read(inode) &&
3596 				!f2fs_verity_in_progress(inode))
3597 			f2fs_i_size_write(inode, pos + copied);
3598 		return copied;
3599 	}
3600 #endif
3601 
3602 	if (!copied)
3603 		goto unlock_out;
3604 
3605 	set_page_dirty(page);
3606 
3607 	if (pos + copied > i_size_read(inode) &&
3608 	    !f2fs_verity_in_progress(inode)) {
3609 		f2fs_i_size_write(inode, pos + copied);
3610 		if (f2fs_is_atomic_file(inode))
3611 			f2fs_i_size_write(F2FS_I(inode)->cow_inode,
3612 					pos + copied);
3613 	}
3614 unlock_out:
3615 	f2fs_put_page(page, 1);
3616 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3617 	return copied;
3618 }
3619 
3620 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length)
3621 {
3622 	struct inode *inode = folio->mapping->host;
3623 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3624 
3625 	if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3626 				(offset || length != folio_size(folio)))
3627 		return;
3628 
3629 	if (folio_test_dirty(folio)) {
3630 		if (inode->i_ino == F2FS_META_INO(sbi)) {
3631 			dec_page_count(sbi, F2FS_DIRTY_META);
3632 		} else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3633 			dec_page_count(sbi, F2FS_DIRTY_NODES);
3634 		} else {
3635 			inode_dec_dirty_pages(inode);
3636 			f2fs_remove_dirty_inode(inode);
3637 		}
3638 	}
3639 
3640 	clear_page_private_gcing(&folio->page);
3641 
3642 	if (test_opt(sbi, COMPRESS_CACHE) &&
3643 			inode->i_ino == F2FS_COMPRESS_INO(sbi))
3644 		clear_page_private_data(&folio->page);
3645 
3646 	folio_detach_private(folio);
3647 }
3648 
3649 bool f2fs_release_folio(struct folio *folio, gfp_t wait)
3650 {
3651 	struct f2fs_sb_info *sbi;
3652 
3653 	/* If this is dirty folio, keep private data */
3654 	if (folio_test_dirty(folio))
3655 		return false;
3656 
3657 	sbi = F2FS_M_SB(folio->mapping);
3658 	if (test_opt(sbi, COMPRESS_CACHE)) {
3659 		struct inode *inode = folio->mapping->host;
3660 
3661 		if (inode->i_ino == F2FS_COMPRESS_INO(sbi))
3662 			clear_page_private_data(&folio->page);
3663 	}
3664 
3665 	clear_page_private_gcing(&folio->page);
3666 
3667 	folio_detach_private(folio);
3668 	return true;
3669 }
3670 
3671 static bool f2fs_dirty_data_folio(struct address_space *mapping,
3672 		struct folio *folio)
3673 {
3674 	struct inode *inode = mapping->host;
3675 
3676 	trace_f2fs_set_page_dirty(&folio->page, DATA);
3677 
3678 	if (!folio_test_uptodate(folio))
3679 		folio_mark_uptodate(folio);
3680 	BUG_ON(folio_test_swapcache(folio));
3681 
3682 	if (!folio_test_dirty(folio)) {
3683 		filemap_dirty_folio(mapping, folio);
3684 		f2fs_update_dirty_folio(inode, folio);
3685 		return true;
3686 	}
3687 	return false;
3688 }
3689 
3690 
3691 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3692 {
3693 #ifdef CONFIG_F2FS_FS_COMPRESSION
3694 	struct dnode_of_data dn;
3695 	sector_t start_idx, blknr = 0;
3696 	int ret;
3697 
3698 	start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3699 
3700 	set_new_dnode(&dn, inode, NULL, NULL, 0);
3701 	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3702 	if (ret)
3703 		return 0;
3704 
3705 	if (dn.data_blkaddr != COMPRESS_ADDR) {
3706 		dn.ofs_in_node += block - start_idx;
3707 		blknr = f2fs_data_blkaddr(&dn);
3708 		if (!__is_valid_data_blkaddr(blknr))
3709 			blknr = 0;
3710 	}
3711 
3712 	f2fs_put_dnode(&dn);
3713 	return blknr;
3714 #else
3715 	return 0;
3716 #endif
3717 }
3718 
3719 
3720 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3721 {
3722 	struct inode *inode = mapping->host;
3723 	sector_t blknr = 0;
3724 
3725 	if (f2fs_has_inline_data(inode))
3726 		goto out;
3727 
3728 	/* make sure allocating whole blocks */
3729 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3730 		filemap_write_and_wait(mapping);
3731 
3732 	/* Block number less than F2FS MAX BLOCKS */
3733 	if (unlikely(block >= max_file_blocks(inode)))
3734 		goto out;
3735 
3736 	if (f2fs_compressed_file(inode)) {
3737 		blknr = f2fs_bmap_compress(inode, block);
3738 	} else {
3739 		struct f2fs_map_blocks map;
3740 
3741 		memset(&map, 0, sizeof(map));
3742 		map.m_lblk = block;
3743 		map.m_len = 1;
3744 		map.m_next_pgofs = NULL;
3745 		map.m_seg_type = NO_CHECK_TYPE;
3746 
3747 		if (!f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_BMAP))
3748 			blknr = map.m_pblk;
3749 	}
3750 out:
3751 	trace_f2fs_bmap(inode, block, blknr);
3752 	return blknr;
3753 }
3754 
3755 #ifdef CONFIG_SWAP
3756 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk,
3757 							unsigned int blkcnt)
3758 {
3759 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3760 	unsigned int blkofs;
3761 	unsigned int blk_per_sec = BLKS_PER_SEC(sbi);
3762 	unsigned int secidx = start_blk / blk_per_sec;
3763 	unsigned int end_sec = secidx + blkcnt / blk_per_sec;
3764 	int ret = 0;
3765 
3766 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3767 	filemap_invalidate_lock(inode->i_mapping);
3768 
3769 	set_inode_flag(inode, FI_ALIGNED_WRITE);
3770 	set_inode_flag(inode, FI_OPU_WRITE);
3771 
3772 	for (; secidx < end_sec; secidx++) {
3773 		f2fs_down_write(&sbi->pin_sem);
3774 
3775 		f2fs_lock_op(sbi);
3776 		f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
3777 		f2fs_unlock_op(sbi);
3778 
3779 		set_inode_flag(inode, FI_SKIP_WRITES);
3780 
3781 		for (blkofs = 0; blkofs < blk_per_sec; blkofs++) {
3782 			struct page *page;
3783 			unsigned int blkidx = secidx * blk_per_sec + blkofs;
3784 
3785 			page = f2fs_get_lock_data_page(inode, blkidx, true);
3786 			if (IS_ERR(page)) {
3787 				f2fs_up_write(&sbi->pin_sem);
3788 				ret = PTR_ERR(page);
3789 				goto done;
3790 			}
3791 
3792 			set_page_dirty(page);
3793 			f2fs_put_page(page, 1);
3794 		}
3795 
3796 		clear_inode_flag(inode, FI_SKIP_WRITES);
3797 
3798 		ret = filemap_fdatawrite(inode->i_mapping);
3799 
3800 		f2fs_up_write(&sbi->pin_sem);
3801 
3802 		if (ret)
3803 			break;
3804 	}
3805 
3806 done:
3807 	clear_inode_flag(inode, FI_SKIP_WRITES);
3808 	clear_inode_flag(inode, FI_OPU_WRITE);
3809 	clear_inode_flag(inode, FI_ALIGNED_WRITE);
3810 
3811 	filemap_invalidate_unlock(inode->i_mapping);
3812 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3813 
3814 	return ret;
3815 }
3816 
3817 static int check_swap_activate(struct swap_info_struct *sis,
3818 				struct file *swap_file, sector_t *span)
3819 {
3820 	struct address_space *mapping = swap_file->f_mapping;
3821 	struct inode *inode = mapping->host;
3822 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3823 	sector_t cur_lblock;
3824 	sector_t last_lblock;
3825 	sector_t pblock;
3826 	sector_t lowest_pblock = -1;
3827 	sector_t highest_pblock = 0;
3828 	int nr_extents = 0;
3829 	unsigned long nr_pblocks;
3830 	unsigned int blks_per_sec = BLKS_PER_SEC(sbi);
3831 	unsigned int sec_blks_mask = BLKS_PER_SEC(sbi) - 1;
3832 	unsigned int not_aligned = 0;
3833 	int ret = 0;
3834 
3835 	/*
3836 	 * Map all the blocks into the extent list.  This code doesn't try
3837 	 * to be very smart.
3838 	 */
3839 	cur_lblock = 0;
3840 	last_lblock = bytes_to_blks(inode, i_size_read(inode));
3841 
3842 	while (cur_lblock < last_lblock && cur_lblock < sis->max) {
3843 		struct f2fs_map_blocks map;
3844 retry:
3845 		cond_resched();
3846 
3847 		memset(&map, 0, sizeof(map));
3848 		map.m_lblk = cur_lblock;
3849 		map.m_len = last_lblock - cur_lblock;
3850 		map.m_next_pgofs = NULL;
3851 		map.m_next_extent = NULL;
3852 		map.m_seg_type = NO_CHECK_TYPE;
3853 		map.m_may_create = false;
3854 
3855 		ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
3856 		if (ret)
3857 			goto out;
3858 
3859 		/* hole */
3860 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
3861 			f2fs_err(sbi, "Swapfile has holes");
3862 			ret = -EINVAL;
3863 			goto out;
3864 		}
3865 
3866 		pblock = map.m_pblk;
3867 		nr_pblocks = map.m_len;
3868 
3869 		if ((pblock - SM_I(sbi)->main_blkaddr) & sec_blks_mask ||
3870 				nr_pblocks & sec_blks_mask) {
3871 			not_aligned++;
3872 
3873 			nr_pblocks = roundup(nr_pblocks, blks_per_sec);
3874 			if (cur_lblock + nr_pblocks > sis->max)
3875 				nr_pblocks -= blks_per_sec;
3876 
3877 			if (!nr_pblocks) {
3878 				/* this extent is last one */
3879 				nr_pblocks = map.m_len;
3880 				f2fs_warn(sbi, "Swapfile: last extent is not aligned to section");
3881 				goto next;
3882 			}
3883 
3884 			ret = f2fs_migrate_blocks(inode, cur_lblock,
3885 							nr_pblocks);
3886 			if (ret)
3887 				goto out;
3888 			goto retry;
3889 		}
3890 next:
3891 		if (cur_lblock + nr_pblocks >= sis->max)
3892 			nr_pblocks = sis->max - cur_lblock;
3893 
3894 		if (cur_lblock) {	/* exclude the header page */
3895 			if (pblock < lowest_pblock)
3896 				lowest_pblock = pblock;
3897 			if (pblock + nr_pblocks - 1 > highest_pblock)
3898 				highest_pblock = pblock + nr_pblocks - 1;
3899 		}
3900 
3901 		/*
3902 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
3903 		 */
3904 		ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
3905 		if (ret < 0)
3906 			goto out;
3907 		nr_extents += ret;
3908 		cur_lblock += nr_pblocks;
3909 	}
3910 	ret = nr_extents;
3911 	*span = 1 + highest_pblock - lowest_pblock;
3912 	if (cur_lblock == 0)
3913 		cur_lblock = 1;	/* force Empty message */
3914 	sis->max = cur_lblock;
3915 	sis->pages = cur_lblock - 1;
3916 	sis->highest_bit = cur_lblock - 1;
3917 out:
3918 	if (not_aligned)
3919 		f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%u * N)",
3920 			  not_aligned, blks_per_sec * F2FS_BLKSIZE);
3921 	return ret;
3922 }
3923 
3924 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
3925 				sector_t *span)
3926 {
3927 	struct inode *inode = file_inode(file);
3928 	int ret;
3929 
3930 	if (!S_ISREG(inode->i_mode))
3931 		return -EINVAL;
3932 
3933 	if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3934 		return -EROFS;
3935 
3936 	if (f2fs_lfs_mode(F2FS_I_SB(inode))) {
3937 		f2fs_err(F2FS_I_SB(inode),
3938 			"Swapfile not supported in LFS mode");
3939 		return -EINVAL;
3940 	}
3941 
3942 	ret = f2fs_convert_inline_inode(inode);
3943 	if (ret)
3944 		return ret;
3945 
3946 	if (!f2fs_disable_compressed_file(inode))
3947 		return -EINVAL;
3948 
3949 	f2fs_precache_extents(inode);
3950 
3951 	ret = check_swap_activate(sis, file, span);
3952 	if (ret < 0)
3953 		return ret;
3954 
3955 	set_inode_flag(inode, FI_PIN_FILE);
3956 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3957 	return ret;
3958 }
3959 
3960 static void f2fs_swap_deactivate(struct file *file)
3961 {
3962 	struct inode *inode = file_inode(file);
3963 
3964 	clear_inode_flag(inode, FI_PIN_FILE);
3965 }
3966 #else
3967 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
3968 				sector_t *span)
3969 {
3970 	return -EOPNOTSUPP;
3971 }
3972 
3973 static void f2fs_swap_deactivate(struct file *file)
3974 {
3975 }
3976 #endif
3977 
3978 const struct address_space_operations f2fs_dblock_aops = {
3979 	.read_folio	= f2fs_read_data_folio,
3980 	.readahead	= f2fs_readahead,
3981 	.writepage	= f2fs_write_data_page,
3982 	.writepages	= f2fs_write_data_pages,
3983 	.write_begin	= f2fs_write_begin,
3984 	.write_end	= f2fs_write_end,
3985 	.dirty_folio	= f2fs_dirty_data_folio,
3986 	.migrate_folio	= filemap_migrate_folio,
3987 	.invalidate_folio = f2fs_invalidate_folio,
3988 	.release_folio	= f2fs_release_folio,
3989 	.direct_IO	= noop_direct_IO,
3990 	.bmap		= f2fs_bmap,
3991 	.swap_activate  = f2fs_swap_activate,
3992 	.swap_deactivate = f2fs_swap_deactivate,
3993 };
3994 
3995 void f2fs_clear_page_cache_dirty_tag(struct page *page)
3996 {
3997 	struct address_space *mapping = page_mapping(page);
3998 	unsigned long flags;
3999 
4000 	xa_lock_irqsave(&mapping->i_pages, flags);
4001 	__xa_clear_mark(&mapping->i_pages, page_index(page),
4002 						PAGECACHE_TAG_DIRTY);
4003 	xa_unlock_irqrestore(&mapping->i_pages, flags);
4004 }
4005 
4006 int __init f2fs_init_post_read_processing(void)
4007 {
4008 	bio_post_read_ctx_cache =
4009 		kmem_cache_create("f2fs_bio_post_read_ctx",
4010 				  sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4011 	if (!bio_post_read_ctx_cache)
4012 		goto fail;
4013 	bio_post_read_ctx_pool =
4014 		mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4015 					 bio_post_read_ctx_cache);
4016 	if (!bio_post_read_ctx_pool)
4017 		goto fail_free_cache;
4018 	return 0;
4019 
4020 fail_free_cache:
4021 	kmem_cache_destroy(bio_post_read_ctx_cache);
4022 fail:
4023 	return -ENOMEM;
4024 }
4025 
4026 void f2fs_destroy_post_read_processing(void)
4027 {
4028 	mempool_destroy(bio_post_read_ctx_pool);
4029 	kmem_cache_destroy(bio_post_read_ctx_cache);
4030 }
4031 
4032 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4033 {
4034 	if (!f2fs_sb_has_encrypt(sbi) &&
4035 		!f2fs_sb_has_verity(sbi) &&
4036 		!f2fs_sb_has_compression(sbi))
4037 		return 0;
4038 
4039 	sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4040 						 WQ_UNBOUND | WQ_HIGHPRI,
4041 						 num_online_cpus());
4042 	if (!sbi->post_read_wq)
4043 		return -ENOMEM;
4044 	return 0;
4045 }
4046 
4047 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4048 {
4049 	if (sbi->post_read_wq)
4050 		destroy_workqueue(sbi->post_read_wq);
4051 }
4052 
4053 int __init f2fs_init_bio_entry_cache(void)
4054 {
4055 	bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4056 			sizeof(struct bio_entry));
4057 	if (!bio_entry_slab)
4058 		return -ENOMEM;
4059 	return 0;
4060 }
4061 
4062 void f2fs_destroy_bio_entry_cache(void)
4063 {
4064 	kmem_cache_destroy(bio_entry_slab);
4065 }
4066 
4067 static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
4068 			    unsigned int flags, struct iomap *iomap,
4069 			    struct iomap *srcmap)
4070 {
4071 	struct f2fs_map_blocks map = {};
4072 	pgoff_t next_pgofs = 0;
4073 	int err;
4074 
4075 	map.m_lblk = bytes_to_blks(inode, offset);
4076 	map.m_len = bytes_to_blks(inode, offset + length - 1) - map.m_lblk + 1;
4077 	map.m_next_pgofs = &next_pgofs;
4078 	map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint);
4079 	if (flags & IOMAP_WRITE)
4080 		map.m_may_create = true;
4081 
4082 	err = f2fs_map_blocks(inode, &map, flags & IOMAP_WRITE,
4083 			      F2FS_GET_BLOCK_DIO);
4084 	if (err)
4085 		return err;
4086 
4087 	iomap->offset = blks_to_bytes(inode, map.m_lblk);
4088 
4089 	/*
4090 	 * When inline encryption is enabled, sometimes I/O to an encrypted file
4091 	 * has to be broken up to guarantee DUN contiguity.  Handle this by
4092 	 * limiting the length of the mapping returned.
4093 	 */
4094 	map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
4095 
4096 	if (map.m_flags & (F2FS_MAP_MAPPED | F2FS_MAP_UNWRITTEN)) {
4097 		iomap->length = blks_to_bytes(inode, map.m_len);
4098 		if (map.m_flags & F2FS_MAP_MAPPED) {
4099 			iomap->type = IOMAP_MAPPED;
4100 			iomap->flags |= IOMAP_F_MERGED;
4101 		} else {
4102 			iomap->type = IOMAP_UNWRITTEN;
4103 		}
4104 		if (WARN_ON_ONCE(!__is_valid_data_blkaddr(map.m_pblk)))
4105 			return -EINVAL;
4106 
4107 		iomap->bdev = map.m_bdev;
4108 		iomap->addr = blks_to_bytes(inode, map.m_pblk);
4109 	} else {
4110 		iomap->length = blks_to_bytes(inode, next_pgofs) -
4111 				iomap->offset;
4112 		iomap->type = IOMAP_HOLE;
4113 		iomap->addr = IOMAP_NULL_ADDR;
4114 	}
4115 
4116 	if (map.m_flags & F2FS_MAP_NEW)
4117 		iomap->flags |= IOMAP_F_NEW;
4118 	if ((inode->i_state & I_DIRTY_DATASYNC) ||
4119 	    offset + length > i_size_read(inode))
4120 		iomap->flags |= IOMAP_F_DIRTY;
4121 
4122 	return 0;
4123 }
4124 
4125 const struct iomap_ops f2fs_iomap_ops = {
4126 	.iomap_begin	= f2fs_iomap_begin,
4127 };
4128