xref: /linux/fs/f2fs/data.c (revision 2b64b2ed277ff23e785fbdb65098ee7e1252d64f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/data.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/mpage.h>
12 #include <linux/writeback.h>
13 #include <linux/backing-dev.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/prefetch.h>
18 #include <linux/uio.h>
19 #include <linux/cleancache.h>
20 #include <linux/sched/signal.h>
21 
22 #include "f2fs.h"
23 #include "node.h"
24 #include "segment.h"
25 #include "trace.h"
26 #include <trace/events/f2fs.h>
27 
28 #define NUM_PREALLOC_POST_READ_CTXS	128
29 
30 static struct kmem_cache *bio_post_read_ctx_cache;
31 static mempool_t *bio_post_read_ctx_pool;
32 
33 static bool __is_cp_guaranteed(struct page *page)
34 {
35 	struct address_space *mapping = page->mapping;
36 	struct inode *inode;
37 	struct f2fs_sb_info *sbi;
38 
39 	if (!mapping)
40 		return false;
41 
42 	inode = mapping->host;
43 	sbi = F2FS_I_SB(inode);
44 
45 	if (inode->i_ino == F2FS_META_INO(sbi) ||
46 			inode->i_ino ==  F2FS_NODE_INO(sbi) ||
47 			S_ISDIR(inode->i_mode) ||
48 			(S_ISREG(inode->i_mode) &&
49 			(f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) ||
50 			is_cold_data(page))
51 		return true;
52 	return false;
53 }
54 
55 static enum count_type __read_io_type(struct page *page)
56 {
57 	struct address_space *mapping = page->mapping;
58 
59 	if (mapping) {
60 		struct inode *inode = mapping->host;
61 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
62 
63 		if (inode->i_ino == F2FS_META_INO(sbi))
64 			return F2FS_RD_META;
65 
66 		if (inode->i_ino == F2FS_NODE_INO(sbi))
67 			return F2FS_RD_NODE;
68 	}
69 	return F2FS_RD_DATA;
70 }
71 
72 /* postprocessing steps for read bios */
73 enum bio_post_read_step {
74 	STEP_INITIAL = 0,
75 	STEP_DECRYPT,
76 };
77 
78 struct bio_post_read_ctx {
79 	struct bio *bio;
80 	struct work_struct work;
81 	unsigned int cur_step;
82 	unsigned int enabled_steps;
83 };
84 
85 static void __read_end_io(struct bio *bio)
86 {
87 	struct page *page;
88 	struct bio_vec *bv;
89 	int i;
90 	struct bvec_iter_all iter_all;
91 
92 	bio_for_each_segment_all(bv, bio, i, iter_all) {
93 		page = bv->bv_page;
94 
95 		/* PG_error was set if any post_read step failed */
96 		if (bio->bi_status || PageError(page)) {
97 			ClearPageUptodate(page);
98 			/* will re-read again later */
99 			ClearPageError(page);
100 		} else {
101 			SetPageUptodate(page);
102 		}
103 		dec_page_count(F2FS_P_SB(page), __read_io_type(page));
104 		unlock_page(page);
105 	}
106 	if (bio->bi_private)
107 		mempool_free(bio->bi_private, bio_post_read_ctx_pool);
108 	bio_put(bio);
109 }
110 
111 static void bio_post_read_processing(struct bio_post_read_ctx *ctx);
112 
113 static void decrypt_work(struct work_struct *work)
114 {
115 	struct bio_post_read_ctx *ctx =
116 		container_of(work, struct bio_post_read_ctx, work);
117 
118 	fscrypt_decrypt_bio(ctx->bio);
119 
120 	bio_post_read_processing(ctx);
121 }
122 
123 static void bio_post_read_processing(struct bio_post_read_ctx *ctx)
124 {
125 	switch (++ctx->cur_step) {
126 	case STEP_DECRYPT:
127 		if (ctx->enabled_steps & (1 << STEP_DECRYPT)) {
128 			INIT_WORK(&ctx->work, decrypt_work);
129 			fscrypt_enqueue_decrypt_work(&ctx->work);
130 			return;
131 		}
132 		ctx->cur_step++;
133 		/* fall-through */
134 	default:
135 		__read_end_io(ctx->bio);
136 	}
137 }
138 
139 static bool f2fs_bio_post_read_required(struct bio *bio)
140 {
141 	return bio->bi_private && !bio->bi_status;
142 }
143 
144 static void f2fs_read_end_io(struct bio *bio)
145 {
146 	if (time_to_inject(F2FS_P_SB(bio_first_page_all(bio)),
147 						FAULT_READ_IO)) {
148 		f2fs_show_injection_info(FAULT_READ_IO);
149 		bio->bi_status = BLK_STS_IOERR;
150 	}
151 
152 	if (f2fs_bio_post_read_required(bio)) {
153 		struct bio_post_read_ctx *ctx = bio->bi_private;
154 
155 		ctx->cur_step = STEP_INITIAL;
156 		bio_post_read_processing(ctx);
157 		return;
158 	}
159 
160 	__read_end_io(bio);
161 }
162 
163 static void f2fs_write_end_io(struct bio *bio)
164 {
165 	struct f2fs_sb_info *sbi = bio->bi_private;
166 	struct bio_vec *bvec;
167 	int i;
168 	struct bvec_iter_all iter_all;
169 
170 	if (time_to_inject(sbi, FAULT_WRITE_IO)) {
171 		f2fs_show_injection_info(FAULT_WRITE_IO);
172 		bio->bi_status = BLK_STS_IOERR;
173 	}
174 
175 	bio_for_each_segment_all(bvec, bio, i, iter_all) {
176 		struct page *page = bvec->bv_page;
177 		enum count_type type = WB_DATA_TYPE(page);
178 
179 		if (IS_DUMMY_WRITTEN_PAGE(page)) {
180 			set_page_private(page, (unsigned long)NULL);
181 			ClearPagePrivate(page);
182 			unlock_page(page);
183 			mempool_free(page, sbi->write_io_dummy);
184 
185 			if (unlikely(bio->bi_status))
186 				f2fs_stop_checkpoint(sbi, true);
187 			continue;
188 		}
189 
190 		fscrypt_pullback_bio_page(&page, true);
191 
192 		if (unlikely(bio->bi_status)) {
193 			mapping_set_error(page->mapping, -EIO);
194 			if (type == F2FS_WB_CP_DATA)
195 				f2fs_stop_checkpoint(sbi, true);
196 		}
197 
198 		f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
199 					page->index != nid_of_node(page));
200 
201 		dec_page_count(sbi, type);
202 		if (f2fs_in_warm_node_list(sbi, page))
203 			f2fs_del_fsync_node_entry(sbi, page);
204 		clear_cold_data(page);
205 		end_page_writeback(page);
206 	}
207 	if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
208 				wq_has_sleeper(&sbi->cp_wait))
209 		wake_up(&sbi->cp_wait);
210 
211 	bio_put(bio);
212 }
213 
214 /*
215  * Return true, if pre_bio's bdev is same as its target device.
216  */
217 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
218 				block_t blk_addr, struct bio *bio)
219 {
220 	struct block_device *bdev = sbi->sb->s_bdev;
221 	int i;
222 
223 	for (i = 0; i < sbi->s_ndevs; i++) {
224 		if (FDEV(i).start_blk <= blk_addr &&
225 					FDEV(i).end_blk >= blk_addr) {
226 			blk_addr -= FDEV(i).start_blk;
227 			bdev = FDEV(i).bdev;
228 			break;
229 		}
230 	}
231 	if (bio) {
232 		bio_set_dev(bio, bdev);
233 		bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
234 	}
235 	return bdev;
236 }
237 
238 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
239 {
240 	int i;
241 
242 	for (i = 0; i < sbi->s_ndevs; i++)
243 		if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
244 			return i;
245 	return 0;
246 }
247 
248 static bool __same_bdev(struct f2fs_sb_info *sbi,
249 				block_t blk_addr, struct bio *bio)
250 {
251 	struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL);
252 	return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno;
253 }
254 
255 /*
256  * Low-level block read/write IO operations.
257  */
258 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
259 				struct writeback_control *wbc,
260 				int npages, bool is_read,
261 				enum page_type type, enum temp_type temp)
262 {
263 	struct bio *bio;
264 
265 	bio = f2fs_bio_alloc(sbi, npages, true);
266 
267 	f2fs_target_device(sbi, blk_addr, bio);
268 	if (is_read) {
269 		bio->bi_end_io = f2fs_read_end_io;
270 		bio->bi_private = NULL;
271 	} else {
272 		bio->bi_end_io = f2fs_write_end_io;
273 		bio->bi_private = sbi;
274 		bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, type, temp);
275 	}
276 	if (wbc)
277 		wbc_init_bio(wbc, bio);
278 
279 	return bio;
280 }
281 
282 static inline void __submit_bio(struct f2fs_sb_info *sbi,
283 				struct bio *bio, enum page_type type)
284 {
285 	if (!is_read_io(bio_op(bio))) {
286 		unsigned int start;
287 
288 		if (type != DATA && type != NODE)
289 			goto submit_io;
290 
291 		if (test_opt(sbi, LFS) && current->plug)
292 			blk_finish_plug(current->plug);
293 
294 		start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
295 		start %= F2FS_IO_SIZE(sbi);
296 
297 		if (start == 0)
298 			goto submit_io;
299 
300 		/* fill dummy pages */
301 		for (; start < F2FS_IO_SIZE(sbi); start++) {
302 			struct page *page =
303 				mempool_alloc(sbi->write_io_dummy,
304 					      GFP_NOIO | __GFP_NOFAIL);
305 			f2fs_bug_on(sbi, !page);
306 
307 			zero_user_segment(page, 0, PAGE_SIZE);
308 			SetPagePrivate(page);
309 			set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE);
310 			lock_page(page);
311 			if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
312 				f2fs_bug_on(sbi, 1);
313 		}
314 		/*
315 		 * In the NODE case, we lose next block address chain. So, we
316 		 * need to do checkpoint in f2fs_sync_file.
317 		 */
318 		if (type == NODE)
319 			set_sbi_flag(sbi, SBI_NEED_CP);
320 	}
321 submit_io:
322 	if (is_read_io(bio_op(bio)))
323 		trace_f2fs_submit_read_bio(sbi->sb, type, bio);
324 	else
325 		trace_f2fs_submit_write_bio(sbi->sb, type, bio);
326 	submit_bio(bio);
327 }
328 
329 static void __submit_merged_bio(struct f2fs_bio_info *io)
330 {
331 	struct f2fs_io_info *fio = &io->fio;
332 
333 	if (!io->bio)
334 		return;
335 
336 	bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
337 
338 	if (is_read_io(fio->op))
339 		trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
340 	else
341 		trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
342 
343 	__submit_bio(io->sbi, io->bio, fio->type);
344 	io->bio = NULL;
345 }
346 
347 static bool __has_merged_page(struct f2fs_bio_info *io, struct inode *inode,
348 						struct page *page, nid_t ino)
349 {
350 	struct bio_vec *bvec;
351 	struct page *target;
352 	int i;
353 	struct bvec_iter_all iter_all;
354 
355 	if (!io->bio)
356 		return false;
357 
358 	if (!inode && !page && !ino)
359 		return true;
360 
361 	bio_for_each_segment_all(bvec, io->bio, i, iter_all) {
362 
363 		if (bvec->bv_page->mapping)
364 			target = bvec->bv_page;
365 		else
366 			target = fscrypt_control_page(bvec->bv_page);
367 
368 		if (inode && inode == target->mapping->host)
369 			return true;
370 		if (page && page == target)
371 			return true;
372 		if (ino && ino == ino_of_node(target))
373 			return true;
374 	}
375 
376 	return false;
377 }
378 
379 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
380 				enum page_type type, enum temp_type temp)
381 {
382 	enum page_type btype = PAGE_TYPE_OF_BIO(type);
383 	struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
384 
385 	down_write(&io->io_rwsem);
386 
387 	/* change META to META_FLUSH in the checkpoint procedure */
388 	if (type >= META_FLUSH) {
389 		io->fio.type = META_FLUSH;
390 		io->fio.op = REQ_OP_WRITE;
391 		io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
392 		if (!test_opt(sbi, NOBARRIER))
393 			io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
394 	}
395 	__submit_merged_bio(io);
396 	up_write(&io->io_rwsem);
397 }
398 
399 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
400 				struct inode *inode, struct page *page,
401 				nid_t ino, enum page_type type, bool force)
402 {
403 	enum temp_type temp;
404 	bool ret = true;
405 
406 	for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
407 		if (!force)	{
408 			enum page_type btype = PAGE_TYPE_OF_BIO(type);
409 			struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
410 
411 			down_read(&io->io_rwsem);
412 			ret = __has_merged_page(io, inode, page, ino);
413 			up_read(&io->io_rwsem);
414 		}
415 		if (ret)
416 			__f2fs_submit_merged_write(sbi, type, temp);
417 
418 		/* TODO: use HOT temp only for meta pages now. */
419 		if (type >= META)
420 			break;
421 	}
422 }
423 
424 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
425 {
426 	__submit_merged_write_cond(sbi, NULL, 0, 0, type, true);
427 }
428 
429 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
430 				struct inode *inode, struct page *page,
431 				nid_t ino, enum page_type type)
432 {
433 	__submit_merged_write_cond(sbi, inode, page, ino, type, false);
434 }
435 
436 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
437 {
438 	f2fs_submit_merged_write(sbi, DATA);
439 	f2fs_submit_merged_write(sbi, NODE);
440 	f2fs_submit_merged_write(sbi, META);
441 }
442 
443 /*
444  * Fill the locked page with data located in the block address.
445  * A caller needs to unlock the page on failure.
446  */
447 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
448 {
449 	struct bio *bio;
450 	struct page *page = fio->encrypted_page ?
451 			fio->encrypted_page : fio->page;
452 
453 	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
454 			__is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
455 		return -EFAULT;
456 
457 	trace_f2fs_submit_page_bio(page, fio);
458 	f2fs_trace_ios(fio, 0);
459 
460 	/* Allocate a new bio */
461 	bio = __bio_alloc(fio->sbi, fio->new_blkaddr, fio->io_wbc,
462 				1, is_read_io(fio->op), fio->type, fio->temp);
463 
464 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
465 		bio_put(bio);
466 		return -EFAULT;
467 	}
468 
469 	if (fio->io_wbc && !is_read_io(fio->op))
470 		wbc_account_io(fio->io_wbc, page, PAGE_SIZE);
471 
472 	bio_set_op_attrs(bio, fio->op, fio->op_flags);
473 
474 	inc_page_count(fio->sbi, is_read_io(fio->op) ?
475 			__read_io_type(page): WB_DATA_TYPE(fio->page));
476 
477 	__submit_bio(fio->sbi, bio, fio->type);
478 	return 0;
479 }
480 
481 void f2fs_submit_page_write(struct f2fs_io_info *fio)
482 {
483 	struct f2fs_sb_info *sbi = fio->sbi;
484 	enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
485 	struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
486 	struct page *bio_page;
487 
488 	f2fs_bug_on(sbi, is_read_io(fio->op));
489 
490 	down_write(&io->io_rwsem);
491 next:
492 	if (fio->in_list) {
493 		spin_lock(&io->io_lock);
494 		if (list_empty(&io->io_list)) {
495 			spin_unlock(&io->io_lock);
496 			goto out;
497 		}
498 		fio = list_first_entry(&io->io_list,
499 						struct f2fs_io_info, list);
500 		list_del(&fio->list);
501 		spin_unlock(&io->io_lock);
502 	}
503 
504 	if (__is_valid_data_blkaddr(fio->old_blkaddr))
505 		verify_block_addr(fio, fio->old_blkaddr);
506 	verify_block_addr(fio, fio->new_blkaddr);
507 
508 	bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
509 
510 	/* set submitted = true as a return value */
511 	fio->submitted = true;
512 
513 	inc_page_count(sbi, WB_DATA_TYPE(bio_page));
514 
515 	if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 ||
516 	    (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags) ||
517 			!__same_bdev(sbi, fio->new_blkaddr, io->bio)))
518 		__submit_merged_bio(io);
519 alloc_new:
520 	if (io->bio == NULL) {
521 		if ((fio->type == DATA || fio->type == NODE) &&
522 				fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
523 			dec_page_count(sbi, WB_DATA_TYPE(bio_page));
524 			fio->retry = true;
525 			goto skip;
526 		}
527 		io->bio = __bio_alloc(sbi, fio->new_blkaddr, fio->io_wbc,
528 						BIO_MAX_PAGES, false,
529 						fio->type, fio->temp);
530 		io->fio = *fio;
531 	}
532 
533 	if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
534 		__submit_merged_bio(io);
535 		goto alloc_new;
536 	}
537 
538 	if (fio->io_wbc)
539 		wbc_account_io(fio->io_wbc, bio_page, PAGE_SIZE);
540 
541 	io->last_block_in_bio = fio->new_blkaddr;
542 	f2fs_trace_ios(fio, 0);
543 
544 	trace_f2fs_submit_page_write(fio->page, fio);
545 skip:
546 	if (fio->in_list)
547 		goto next;
548 out:
549 	if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
550 				f2fs_is_checkpoint_ready(sbi))
551 		__submit_merged_bio(io);
552 	up_write(&io->io_rwsem);
553 }
554 
555 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
556 					unsigned nr_pages, unsigned op_flag)
557 {
558 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
559 	struct bio *bio;
560 	struct bio_post_read_ctx *ctx;
561 	unsigned int post_read_steps = 0;
562 
563 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC))
564 		return ERR_PTR(-EFAULT);
565 
566 	bio = f2fs_bio_alloc(sbi, min_t(int, nr_pages, BIO_MAX_PAGES), false);
567 	if (!bio)
568 		return ERR_PTR(-ENOMEM);
569 	f2fs_target_device(sbi, blkaddr, bio);
570 	bio->bi_end_io = f2fs_read_end_io;
571 	bio_set_op_attrs(bio, REQ_OP_READ, op_flag);
572 
573 	if (f2fs_encrypted_file(inode))
574 		post_read_steps |= 1 << STEP_DECRYPT;
575 	if (post_read_steps) {
576 		ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
577 		if (!ctx) {
578 			bio_put(bio);
579 			return ERR_PTR(-ENOMEM);
580 		}
581 		ctx->bio = bio;
582 		ctx->enabled_steps = post_read_steps;
583 		bio->bi_private = ctx;
584 	}
585 
586 	return bio;
587 }
588 
589 /* This can handle encryption stuffs */
590 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
591 							block_t blkaddr)
592 {
593 	struct bio *bio = f2fs_grab_read_bio(inode, blkaddr, 1, 0);
594 
595 	if (IS_ERR(bio))
596 		return PTR_ERR(bio);
597 
598 	/* wait for GCed page writeback via META_MAPPING */
599 	f2fs_wait_on_block_writeback(inode, blkaddr);
600 
601 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
602 		bio_put(bio);
603 		return -EFAULT;
604 	}
605 	ClearPageError(page);
606 	inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
607 	__submit_bio(F2FS_I_SB(inode), bio, DATA);
608 	return 0;
609 }
610 
611 static void __set_data_blkaddr(struct dnode_of_data *dn)
612 {
613 	struct f2fs_node *rn = F2FS_NODE(dn->node_page);
614 	__le32 *addr_array;
615 	int base = 0;
616 
617 	if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
618 		base = get_extra_isize(dn->inode);
619 
620 	/* Get physical address of data block */
621 	addr_array = blkaddr_in_node(rn);
622 	addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
623 }
624 
625 /*
626  * Lock ordering for the change of data block address:
627  * ->data_page
628  *  ->node_page
629  *    update block addresses in the node page
630  */
631 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
632 {
633 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
634 	__set_data_blkaddr(dn);
635 	if (set_page_dirty(dn->node_page))
636 		dn->node_changed = true;
637 }
638 
639 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
640 {
641 	dn->data_blkaddr = blkaddr;
642 	f2fs_set_data_blkaddr(dn);
643 	f2fs_update_extent_cache(dn);
644 }
645 
646 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
647 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
648 {
649 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
650 	int err;
651 
652 	if (!count)
653 		return 0;
654 
655 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
656 		return -EPERM;
657 	if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
658 		return err;
659 
660 	trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
661 						dn->ofs_in_node, count);
662 
663 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
664 
665 	for (; count > 0; dn->ofs_in_node++) {
666 		block_t blkaddr = datablock_addr(dn->inode,
667 					dn->node_page, dn->ofs_in_node);
668 		if (blkaddr == NULL_ADDR) {
669 			dn->data_blkaddr = NEW_ADDR;
670 			__set_data_blkaddr(dn);
671 			count--;
672 		}
673 	}
674 
675 	if (set_page_dirty(dn->node_page))
676 		dn->node_changed = true;
677 	return 0;
678 }
679 
680 /* Should keep dn->ofs_in_node unchanged */
681 int f2fs_reserve_new_block(struct dnode_of_data *dn)
682 {
683 	unsigned int ofs_in_node = dn->ofs_in_node;
684 	int ret;
685 
686 	ret = f2fs_reserve_new_blocks(dn, 1);
687 	dn->ofs_in_node = ofs_in_node;
688 	return ret;
689 }
690 
691 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
692 {
693 	bool need_put = dn->inode_page ? false : true;
694 	int err;
695 
696 	err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
697 	if (err)
698 		return err;
699 
700 	if (dn->data_blkaddr == NULL_ADDR)
701 		err = f2fs_reserve_new_block(dn);
702 	if (err || need_put)
703 		f2fs_put_dnode(dn);
704 	return err;
705 }
706 
707 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
708 {
709 	struct extent_info ei  = {0,0,0};
710 	struct inode *inode = dn->inode;
711 
712 	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
713 		dn->data_blkaddr = ei.blk + index - ei.fofs;
714 		return 0;
715 	}
716 
717 	return f2fs_reserve_block(dn, index);
718 }
719 
720 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
721 						int op_flags, bool for_write)
722 {
723 	struct address_space *mapping = inode->i_mapping;
724 	struct dnode_of_data dn;
725 	struct page *page;
726 	struct extent_info ei = {0,0,0};
727 	int err;
728 
729 	page = f2fs_grab_cache_page(mapping, index, for_write);
730 	if (!page)
731 		return ERR_PTR(-ENOMEM);
732 
733 	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
734 		dn.data_blkaddr = ei.blk + index - ei.fofs;
735 		goto got_it;
736 	}
737 
738 	set_new_dnode(&dn, inode, NULL, NULL, 0);
739 	err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
740 	if (err)
741 		goto put_err;
742 	f2fs_put_dnode(&dn);
743 
744 	if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
745 		err = -ENOENT;
746 		goto put_err;
747 	}
748 got_it:
749 	if (PageUptodate(page)) {
750 		unlock_page(page);
751 		return page;
752 	}
753 
754 	/*
755 	 * A new dentry page is allocated but not able to be written, since its
756 	 * new inode page couldn't be allocated due to -ENOSPC.
757 	 * In such the case, its blkaddr can be remained as NEW_ADDR.
758 	 * see, f2fs_add_link -> f2fs_get_new_data_page ->
759 	 * f2fs_init_inode_metadata.
760 	 */
761 	if (dn.data_blkaddr == NEW_ADDR) {
762 		zero_user_segment(page, 0, PAGE_SIZE);
763 		if (!PageUptodate(page))
764 			SetPageUptodate(page);
765 		unlock_page(page);
766 		return page;
767 	}
768 
769 	err = f2fs_submit_page_read(inode, page, dn.data_blkaddr);
770 	if (err)
771 		goto put_err;
772 	return page;
773 
774 put_err:
775 	f2fs_put_page(page, 1);
776 	return ERR_PTR(err);
777 }
778 
779 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
780 {
781 	struct address_space *mapping = inode->i_mapping;
782 	struct page *page;
783 
784 	page = find_get_page(mapping, index);
785 	if (page && PageUptodate(page))
786 		return page;
787 	f2fs_put_page(page, 0);
788 
789 	page = f2fs_get_read_data_page(inode, index, 0, false);
790 	if (IS_ERR(page))
791 		return page;
792 
793 	if (PageUptodate(page))
794 		return page;
795 
796 	wait_on_page_locked(page);
797 	if (unlikely(!PageUptodate(page))) {
798 		f2fs_put_page(page, 0);
799 		return ERR_PTR(-EIO);
800 	}
801 	return page;
802 }
803 
804 /*
805  * If it tries to access a hole, return an error.
806  * Because, the callers, functions in dir.c and GC, should be able to know
807  * whether this page exists or not.
808  */
809 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
810 							bool for_write)
811 {
812 	struct address_space *mapping = inode->i_mapping;
813 	struct page *page;
814 repeat:
815 	page = f2fs_get_read_data_page(inode, index, 0, for_write);
816 	if (IS_ERR(page))
817 		return page;
818 
819 	/* wait for read completion */
820 	lock_page(page);
821 	if (unlikely(page->mapping != mapping)) {
822 		f2fs_put_page(page, 1);
823 		goto repeat;
824 	}
825 	if (unlikely(!PageUptodate(page))) {
826 		f2fs_put_page(page, 1);
827 		return ERR_PTR(-EIO);
828 	}
829 	return page;
830 }
831 
832 /*
833  * Caller ensures that this data page is never allocated.
834  * A new zero-filled data page is allocated in the page cache.
835  *
836  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
837  * f2fs_unlock_op().
838  * Note that, ipage is set only by make_empty_dir, and if any error occur,
839  * ipage should be released by this function.
840  */
841 struct page *f2fs_get_new_data_page(struct inode *inode,
842 		struct page *ipage, pgoff_t index, bool new_i_size)
843 {
844 	struct address_space *mapping = inode->i_mapping;
845 	struct page *page;
846 	struct dnode_of_data dn;
847 	int err;
848 
849 	page = f2fs_grab_cache_page(mapping, index, true);
850 	if (!page) {
851 		/*
852 		 * before exiting, we should make sure ipage will be released
853 		 * if any error occur.
854 		 */
855 		f2fs_put_page(ipage, 1);
856 		return ERR_PTR(-ENOMEM);
857 	}
858 
859 	set_new_dnode(&dn, inode, ipage, NULL, 0);
860 	err = f2fs_reserve_block(&dn, index);
861 	if (err) {
862 		f2fs_put_page(page, 1);
863 		return ERR_PTR(err);
864 	}
865 	if (!ipage)
866 		f2fs_put_dnode(&dn);
867 
868 	if (PageUptodate(page))
869 		goto got_it;
870 
871 	if (dn.data_blkaddr == NEW_ADDR) {
872 		zero_user_segment(page, 0, PAGE_SIZE);
873 		if (!PageUptodate(page))
874 			SetPageUptodate(page);
875 	} else {
876 		f2fs_put_page(page, 1);
877 
878 		/* if ipage exists, blkaddr should be NEW_ADDR */
879 		f2fs_bug_on(F2FS_I_SB(inode), ipage);
880 		page = f2fs_get_lock_data_page(inode, index, true);
881 		if (IS_ERR(page))
882 			return page;
883 	}
884 got_it:
885 	if (new_i_size && i_size_read(inode) <
886 				((loff_t)(index + 1) << PAGE_SHIFT))
887 		f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
888 	return page;
889 }
890 
891 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
892 {
893 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
894 	struct f2fs_summary sum;
895 	struct node_info ni;
896 	block_t old_blkaddr;
897 	blkcnt_t count = 1;
898 	int err;
899 
900 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
901 		return -EPERM;
902 
903 	err = f2fs_get_node_info(sbi, dn->nid, &ni);
904 	if (err)
905 		return err;
906 
907 	dn->data_blkaddr = datablock_addr(dn->inode,
908 				dn->node_page, dn->ofs_in_node);
909 	if (dn->data_blkaddr != NULL_ADDR)
910 		goto alloc;
911 
912 	if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
913 		return err;
914 
915 alloc:
916 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
917 	old_blkaddr = dn->data_blkaddr;
918 	f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
919 					&sum, seg_type, NULL, false);
920 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
921 		invalidate_mapping_pages(META_MAPPING(sbi),
922 					old_blkaddr, old_blkaddr);
923 	f2fs_set_data_blkaddr(dn);
924 
925 	/*
926 	 * i_size will be updated by direct_IO. Otherwise, we'll get stale
927 	 * data from unwritten block via dio_read.
928 	 */
929 	return 0;
930 }
931 
932 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
933 {
934 	struct inode *inode = file_inode(iocb->ki_filp);
935 	struct f2fs_map_blocks map;
936 	int flag;
937 	int err = 0;
938 	bool direct_io = iocb->ki_flags & IOCB_DIRECT;
939 
940 	/* convert inline data for Direct I/O*/
941 	if (direct_io) {
942 		err = f2fs_convert_inline_inode(inode);
943 		if (err)
944 			return err;
945 	}
946 
947 	if (direct_io && allow_outplace_dio(inode, iocb, from))
948 		return 0;
949 
950 	if (is_inode_flag_set(inode, FI_NO_PREALLOC))
951 		return 0;
952 
953 	map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
954 	map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
955 	if (map.m_len > map.m_lblk)
956 		map.m_len -= map.m_lblk;
957 	else
958 		map.m_len = 0;
959 
960 	map.m_next_pgofs = NULL;
961 	map.m_next_extent = NULL;
962 	map.m_seg_type = NO_CHECK_TYPE;
963 	map.m_may_create = true;
964 
965 	if (direct_io) {
966 		map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint);
967 		flag = f2fs_force_buffered_io(inode, iocb, from) ?
968 					F2FS_GET_BLOCK_PRE_AIO :
969 					F2FS_GET_BLOCK_PRE_DIO;
970 		goto map_blocks;
971 	}
972 	if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
973 		err = f2fs_convert_inline_inode(inode);
974 		if (err)
975 			return err;
976 	}
977 	if (f2fs_has_inline_data(inode))
978 		return err;
979 
980 	flag = F2FS_GET_BLOCK_PRE_AIO;
981 
982 map_blocks:
983 	err = f2fs_map_blocks(inode, &map, 1, flag);
984 	if (map.m_len > 0 && err == -ENOSPC) {
985 		if (!direct_io)
986 			set_inode_flag(inode, FI_NO_PREALLOC);
987 		err = 0;
988 	}
989 	return err;
990 }
991 
992 void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
993 {
994 	if (flag == F2FS_GET_BLOCK_PRE_AIO) {
995 		if (lock)
996 			down_read(&sbi->node_change);
997 		else
998 			up_read(&sbi->node_change);
999 	} else {
1000 		if (lock)
1001 			f2fs_lock_op(sbi);
1002 		else
1003 			f2fs_unlock_op(sbi);
1004 	}
1005 }
1006 
1007 /*
1008  * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
1009  * f2fs_map_blocks structure.
1010  * If original data blocks are allocated, then give them to blockdev.
1011  * Otherwise,
1012  *     a. preallocate requested block addresses
1013  *     b. do not use extent cache for better performance
1014  *     c. give the block addresses to blockdev
1015  */
1016 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1017 						int create, int flag)
1018 {
1019 	unsigned int maxblocks = map->m_len;
1020 	struct dnode_of_data dn;
1021 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1022 	int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1023 	pgoff_t pgofs, end_offset, end;
1024 	int err = 0, ofs = 1;
1025 	unsigned int ofs_in_node, last_ofs_in_node;
1026 	blkcnt_t prealloc;
1027 	struct extent_info ei = {0,0,0};
1028 	block_t blkaddr;
1029 	unsigned int start_pgofs;
1030 
1031 	if (!maxblocks)
1032 		return 0;
1033 
1034 	map->m_len = 0;
1035 	map->m_flags = 0;
1036 
1037 	/* it only supports block size == page size */
1038 	pgofs =	(pgoff_t)map->m_lblk;
1039 	end = pgofs + maxblocks;
1040 
1041 	if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1042 		if (test_opt(sbi, LFS) && flag == F2FS_GET_BLOCK_DIO &&
1043 							map->m_may_create)
1044 			goto next_dnode;
1045 
1046 		map->m_pblk = ei.blk + pgofs - ei.fofs;
1047 		map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1048 		map->m_flags = F2FS_MAP_MAPPED;
1049 		if (map->m_next_extent)
1050 			*map->m_next_extent = pgofs + map->m_len;
1051 
1052 		/* for hardware encryption, but to avoid potential issue in future */
1053 		if (flag == F2FS_GET_BLOCK_DIO)
1054 			f2fs_wait_on_block_writeback_range(inode,
1055 						map->m_pblk, map->m_len);
1056 		goto out;
1057 	}
1058 
1059 next_dnode:
1060 	if (map->m_may_create)
1061 		__do_map_lock(sbi, flag, true);
1062 
1063 	/* When reading holes, we need its node page */
1064 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1065 	err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1066 	if (err) {
1067 		if (flag == F2FS_GET_BLOCK_BMAP)
1068 			map->m_pblk = 0;
1069 		if (err == -ENOENT) {
1070 			err = 0;
1071 			if (map->m_next_pgofs)
1072 				*map->m_next_pgofs =
1073 					f2fs_get_next_page_offset(&dn, pgofs);
1074 			if (map->m_next_extent)
1075 				*map->m_next_extent =
1076 					f2fs_get_next_page_offset(&dn, pgofs);
1077 		}
1078 		goto unlock_out;
1079 	}
1080 
1081 	start_pgofs = pgofs;
1082 	prealloc = 0;
1083 	last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1084 	end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1085 
1086 next_block:
1087 	blkaddr = datablock_addr(dn.inode, dn.node_page, dn.ofs_in_node);
1088 
1089 	if (__is_valid_data_blkaddr(blkaddr) &&
1090 		!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
1091 		err = -EFAULT;
1092 		goto sync_out;
1093 	}
1094 
1095 	if (is_valid_data_blkaddr(sbi, blkaddr)) {
1096 		/* use out-place-update for driect IO under LFS mode */
1097 		if (test_opt(sbi, LFS) && flag == F2FS_GET_BLOCK_DIO &&
1098 							map->m_may_create) {
1099 			err = __allocate_data_block(&dn, map->m_seg_type);
1100 			if (!err) {
1101 				blkaddr = dn.data_blkaddr;
1102 				set_inode_flag(inode, FI_APPEND_WRITE);
1103 			}
1104 		}
1105 	} else {
1106 		if (create) {
1107 			if (unlikely(f2fs_cp_error(sbi))) {
1108 				err = -EIO;
1109 				goto sync_out;
1110 			}
1111 			if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1112 				if (blkaddr == NULL_ADDR) {
1113 					prealloc++;
1114 					last_ofs_in_node = dn.ofs_in_node;
1115 				}
1116 			} else {
1117 				WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1118 					flag != F2FS_GET_BLOCK_DIO);
1119 				err = __allocate_data_block(&dn,
1120 							map->m_seg_type);
1121 				if (!err)
1122 					set_inode_flag(inode, FI_APPEND_WRITE);
1123 			}
1124 			if (err)
1125 				goto sync_out;
1126 			map->m_flags |= F2FS_MAP_NEW;
1127 			blkaddr = dn.data_blkaddr;
1128 		} else {
1129 			if (flag == F2FS_GET_BLOCK_BMAP) {
1130 				map->m_pblk = 0;
1131 				goto sync_out;
1132 			}
1133 			if (flag == F2FS_GET_BLOCK_PRECACHE)
1134 				goto sync_out;
1135 			if (flag == F2FS_GET_BLOCK_FIEMAP &&
1136 						blkaddr == NULL_ADDR) {
1137 				if (map->m_next_pgofs)
1138 					*map->m_next_pgofs = pgofs + 1;
1139 				goto sync_out;
1140 			}
1141 			if (flag != F2FS_GET_BLOCK_FIEMAP) {
1142 				/* for defragment case */
1143 				if (map->m_next_pgofs)
1144 					*map->m_next_pgofs = pgofs + 1;
1145 				goto sync_out;
1146 			}
1147 		}
1148 	}
1149 
1150 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1151 		goto skip;
1152 
1153 	if (map->m_len == 0) {
1154 		/* preallocated unwritten block should be mapped for fiemap. */
1155 		if (blkaddr == NEW_ADDR)
1156 			map->m_flags |= F2FS_MAP_UNWRITTEN;
1157 		map->m_flags |= F2FS_MAP_MAPPED;
1158 
1159 		map->m_pblk = blkaddr;
1160 		map->m_len = 1;
1161 	} else if ((map->m_pblk != NEW_ADDR &&
1162 			blkaddr == (map->m_pblk + ofs)) ||
1163 			(map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1164 			flag == F2FS_GET_BLOCK_PRE_DIO) {
1165 		ofs++;
1166 		map->m_len++;
1167 	} else {
1168 		goto sync_out;
1169 	}
1170 
1171 skip:
1172 	dn.ofs_in_node++;
1173 	pgofs++;
1174 
1175 	/* preallocate blocks in batch for one dnode page */
1176 	if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1177 			(pgofs == end || dn.ofs_in_node == end_offset)) {
1178 
1179 		dn.ofs_in_node = ofs_in_node;
1180 		err = f2fs_reserve_new_blocks(&dn, prealloc);
1181 		if (err)
1182 			goto sync_out;
1183 
1184 		map->m_len += dn.ofs_in_node - ofs_in_node;
1185 		if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1186 			err = -ENOSPC;
1187 			goto sync_out;
1188 		}
1189 		dn.ofs_in_node = end_offset;
1190 	}
1191 
1192 	if (pgofs >= end)
1193 		goto sync_out;
1194 	else if (dn.ofs_in_node < end_offset)
1195 		goto next_block;
1196 
1197 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1198 		if (map->m_flags & F2FS_MAP_MAPPED) {
1199 			unsigned int ofs = start_pgofs - map->m_lblk;
1200 
1201 			f2fs_update_extent_cache_range(&dn,
1202 				start_pgofs, map->m_pblk + ofs,
1203 				map->m_len - ofs);
1204 		}
1205 	}
1206 
1207 	f2fs_put_dnode(&dn);
1208 
1209 	if (map->m_may_create) {
1210 		__do_map_lock(sbi, flag, false);
1211 		f2fs_balance_fs(sbi, dn.node_changed);
1212 	}
1213 	goto next_dnode;
1214 
1215 sync_out:
1216 
1217 	/* for hardware encryption, but to avoid potential issue in future */
1218 	if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED)
1219 		f2fs_wait_on_block_writeback_range(inode,
1220 						map->m_pblk, map->m_len);
1221 
1222 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1223 		if (map->m_flags & F2FS_MAP_MAPPED) {
1224 			unsigned int ofs = start_pgofs - map->m_lblk;
1225 
1226 			f2fs_update_extent_cache_range(&dn,
1227 				start_pgofs, map->m_pblk + ofs,
1228 				map->m_len - ofs);
1229 		}
1230 		if (map->m_next_extent)
1231 			*map->m_next_extent = pgofs + 1;
1232 	}
1233 	f2fs_put_dnode(&dn);
1234 unlock_out:
1235 	if (map->m_may_create) {
1236 		__do_map_lock(sbi, flag, false);
1237 		f2fs_balance_fs(sbi, dn.node_changed);
1238 	}
1239 out:
1240 	trace_f2fs_map_blocks(inode, map, err);
1241 	return err;
1242 }
1243 
1244 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1245 {
1246 	struct f2fs_map_blocks map;
1247 	block_t last_lblk;
1248 	int err;
1249 
1250 	if (pos + len > i_size_read(inode))
1251 		return false;
1252 
1253 	map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1254 	map.m_next_pgofs = NULL;
1255 	map.m_next_extent = NULL;
1256 	map.m_seg_type = NO_CHECK_TYPE;
1257 	map.m_may_create = false;
1258 	last_lblk = F2FS_BLK_ALIGN(pos + len);
1259 
1260 	while (map.m_lblk < last_lblk) {
1261 		map.m_len = last_lblk - map.m_lblk;
1262 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1263 		if (err || map.m_len == 0)
1264 			return false;
1265 		map.m_lblk += map.m_len;
1266 	}
1267 	return true;
1268 }
1269 
1270 static int __get_data_block(struct inode *inode, sector_t iblock,
1271 			struct buffer_head *bh, int create, int flag,
1272 			pgoff_t *next_pgofs, int seg_type, bool may_write)
1273 {
1274 	struct f2fs_map_blocks map;
1275 	int err;
1276 
1277 	map.m_lblk = iblock;
1278 	map.m_len = bh->b_size >> inode->i_blkbits;
1279 	map.m_next_pgofs = next_pgofs;
1280 	map.m_next_extent = NULL;
1281 	map.m_seg_type = seg_type;
1282 	map.m_may_create = may_write;
1283 
1284 	err = f2fs_map_blocks(inode, &map, create, flag);
1285 	if (!err) {
1286 		map_bh(bh, inode->i_sb, map.m_pblk);
1287 		bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1288 		bh->b_size = (u64)map.m_len << inode->i_blkbits;
1289 	}
1290 	return err;
1291 }
1292 
1293 static int get_data_block(struct inode *inode, sector_t iblock,
1294 			struct buffer_head *bh_result, int create, int flag,
1295 			pgoff_t *next_pgofs)
1296 {
1297 	return __get_data_block(inode, iblock, bh_result, create,
1298 							flag, next_pgofs,
1299 							NO_CHECK_TYPE, create);
1300 }
1301 
1302 static int get_data_block_dio_write(struct inode *inode, sector_t iblock,
1303 			struct buffer_head *bh_result, int create)
1304 {
1305 	return __get_data_block(inode, iblock, bh_result, create,
1306 				F2FS_GET_BLOCK_DIO, NULL,
1307 				f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1308 				true);
1309 }
1310 
1311 static int get_data_block_dio(struct inode *inode, sector_t iblock,
1312 			struct buffer_head *bh_result, int create)
1313 {
1314 	return __get_data_block(inode, iblock, bh_result, create,
1315 				F2FS_GET_BLOCK_DIO, NULL,
1316 				f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1317 				false);
1318 }
1319 
1320 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
1321 			struct buffer_head *bh_result, int create)
1322 {
1323 	/* Block number less than F2FS MAX BLOCKS */
1324 	if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
1325 		return -EFBIG;
1326 
1327 	return __get_data_block(inode, iblock, bh_result, create,
1328 						F2FS_GET_BLOCK_BMAP, NULL,
1329 						NO_CHECK_TYPE, create);
1330 }
1331 
1332 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
1333 {
1334 	return (offset >> inode->i_blkbits);
1335 }
1336 
1337 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
1338 {
1339 	return (blk << inode->i_blkbits);
1340 }
1341 
1342 static int f2fs_xattr_fiemap(struct inode *inode,
1343 				struct fiemap_extent_info *fieinfo)
1344 {
1345 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1346 	struct page *page;
1347 	struct node_info ni;
1348 	__u64 phys = 0, len;
1349 	__u32 flags;
1350 	nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1351 	int err = 0;
1352 
1353 	if (f2fs_has_inline_xattr(inode)) {
1354 		int offset;
1355 
1356 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1357 						inode->i_ino, false);
1358 		if (!page)
1359 			return -ENOMEM;
1360 
1361 		err = f2fs_get_node_info(sbi, inode->i_ino, &ni);
1362 		if (err) {
1363 			f2fs_put_page(page, 1);
1364 			return err;
1365 		}
1366 
1367 		phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1368 		offset = offsetof(struct f2fs_inode, i_addr) +
1369 					sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1370 					get_inline_xattr_addrs(inode));
1371 
1372 		phys += offset;
1373 		len = inline_xattr_size(inode);
1374 
1375 		f2fs_put_page(page, 1);
1376 
1377 		flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1378 
1379 		if (!xnid)
1380 			flags |= FIEMAP_EXTENT_LAST;
1381 
1382 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1383 		if (err || err == 1)
1384 			return err;
1385 	}
1386 
1387 	if (xnid) {
1388 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1389 		if (!page)
1390 			return -ENOMEM;
1391 
1392 		err = f2fs_get_node_info(sbi, xnid, &ni);
1393 		if (err) {
1394 			f2fs_put_page(page, 1);
1395 			return err;
1396 		}
1397 
1398 		phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1399 		len = inode->i_sb->s_blocksize;
1400 
1401 		f2fs_put_page(page, 1);
1402 
1403 		flags = FIEMAP_EXTENT_LAST;
1404 	}
1405 
1406 	if (phys)
1407 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1408 
1409 	return (err < 0 ? err : 0);
1410 }
1411 
1412 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1413 		u64 start, u64 len)
1414 {
1415 	struct buffer_head map_bh;
1416 	sector_t start_blk, last_blk;
1417 	pgoff_t next_pgofs;
1418 	u64 logical = 0, phys = 0, size = 0;
1419 	u32 flags = 0;
1420 	int ret = 0;
1421 
1422 	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1423 		ret = f2fs_precache_extents(inode);
1424 		if (ret)
1425 			return ret;
1426 	}
1427 
1428 	ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC | FIEMAP_FLAG_XATTR);
1429 	if (ret)
1430 		return ret;
1431 
1432 	inode_lock(inode);
1433 
1434 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1435 		ret = f2fs_xattr_fiemap(inode, fieinfo);
1436 		goto out;
1437 	}
1438 
1439 	if (f2fs_has_inline_data(inode)) {
1440 		ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1441 		if (ret != -EAGAIN)
1442 			goto out;
1443 	}
1444 
1445 	if (logical_to_blk(inode, len) == 0)
1446 		len = blk_to_logical(inode, 1);
1447 
1448 	start_blk = logical_to_blk(inode, start);
1449 	last_blk = logical_to_blk(inode, start + len - 1);
1450 
1451 next:
1452 	memset(&map_bh, 0, sizeof(struct buffer_head));
1453 	map_bh.b_size = len;
1454 
1455 	ret = get_data_block(inode, start_blk, &map_bh, 0,
1456 					F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
1457 	if (ret)
1458 		goto out;
1459 
1460 	/* HOLE */
1461 	if (!buffer_mapped(&map_bh)) {
1462 		start_blk = next_pgofs;
1463 
1464 		if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
1465 					F2FS_I_SB(inode)->max_file_blocks))
1466 			goto prep_next;
1467 
1468 		flags |= FIEMAP_EXTENT_LAST;
1469 	}
1470 
1471 	if (size) {
1472 		if (IS_ENCRYPTED(inode))
1473 			flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1474 
1475 		ret = fiemap_fill_next_extent(fieinfo, logical,
1476 				phys, size, flags);
1477 	}
1478 
1479 	if (start_blk > last_blk || ret)
1480 		goto out;
1481 
1482 	logical = blk_to_logical(inode, start_blk);
1483 	phys = blk_to_logical(inode, map_bh.b_blocknr);
1484 	size = map_bh.b_size;
1485 	flags = 0;
1486 	if (buffer_unwritten(&map_bh))
1487 		flags = FIEMAP_EXTENT_UNWRITTEN;
1488 
1489 	start_blk += logical_to_blk(inode, size);
1490 
1491 prep_next:
1492 	cond_resched();
1493 	if (fatal_signal_pending(current))
1494 		ret = -EINTR;
1495 	else
1496 		goto next;
1497 out:
1498 	if (ret == 1)
1499 		ret = 0;
1500 
1501 	inode_unlock(inode);
1502 	return ret;
1503 }
1504 
1505 /*
1506  * This function was originally taken from fs/mpage.c, and customized for f2fs.
1507  * Major change was from block_size == page_size in f2fs by default.
1508  *
1509  * Note that the aops->readpages() function is ONLY used for read-ahead. If
1510  * this function ever deviates from doing just read-ahead, it should either
1511  * use ->readpage() or do the necessary surgery to decouple ->readpages()
1512  * from read-ahead.
1513  */
1514 static int f2fs_mpage_readpages(struct address_space *mapping,
1515 			struct list_head *pages, struct page *page,
1516 			unsigned nr_pages, bool is_readahead)
1517 {
1518 	struct bio *bio = NULL;
1519 	sector_t last_block_in_bio = 0;
1520 	struct inode *inode = mapping->host;
1521 	const unsigned blkbits = inode->i_blkbits;
1522 	const unsigned blocksize = 1 << blkbits;
1523 	sector_t block_in_file;
1524 	sector_t last_block;
1525 	sector_t last_block_in_file;
1526 	sector_t block_nr;
1527 	struct f2fs_map_blocks map;
1528 
1529 	map.m_pblk = 0;
1530 	map.m_lblk = 0;
1531 	map.m_len = 0;
1532 	map.m_flags = 0;
1533 	map.m_next_pgofs = NULL;
1534 	map.m_next_extent = NULL;
1535 	map.m_seg_type = NO_CHECK_TYPE;
1536 	map.m_may_create = false;
1537 
1538 	for (; nr_pages; nr_pages--) {
1539 		if (pages) {
1540 			page = list_last_entry(pages, struct page, lru);
1541 
1542 			prefetchw(&page->flags);
1543 			list_del(&page->lru);
1544 			if (add_to_page_cache_lru(page, mapping,
1545 						  page->index,
1546 						  readahead_gfp_mask(mapping)))
1547 				goto next_page;
1548 		}
1549 
1550 		block_in_file = (sector_t)page->index;
1551 		last_block = block_in_file + nr_pages;
1552 		last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
1553 								blkbits;
1554 		if (last_block > last_block_in_file)
1555 			last_block = last_block_in_file;
1556 
1557 		/* just zeroing out page which is beyond EOF */
1558 		if (block_in_file >= last_block)
1559 			goto zero_out;
1560 		/*
1561 		 * Map blocks using the previous result first.
1562 		 */
1563 		if ((map.m_flags & F2FS_MAP_MAPPED) &&
1564 				block_in_file > map.m_lblk &&
1565 				block_in_file < (map.m_lblk + map.m_len))
1566 			goto got_it;
1567 
1568 		/*
1569 		 * Then do more f2fs_map_blocks() calls until we are
1570 		 * done with this page.
1571 		 */
1572 		map.m_lblk = block_in_file;
1573 		map.m_len = last_block - block_in_file;
1574 
1575 		if (f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT))
1576 			goto set_error_page;
1577 got_it:
1578 		if ((map.m_flags & F2FS_MAP_MAPPED)) {
1579 			block_nr = map.m_pblk + block_in_file - map.m_lblk;
1580 			SetPageMappedToDisk(page);
1581 
1582 			if (!PageUptodate(page) && !cleancache_get_page(page)) {
1583 				SetPageUptodate(page);
1584 				goto confused;
1585 			}
1586 
1587 			if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
1588 								DATA_GENERIC))
1589 				goto set_error_page;
1590 		} else {
1591 zero_out:
1592 			zero_user_segment(page, 0, PAGE_SIZE);
1593 			if (!PageUptodate(page))
1594 				SetPageUptodate(page);
1595 			unlock_page(page);
1596 			goto next_page;
1597 		}
1598 
1599 		/*
1600 		 * This page will go to BIO.  Do we need to send this
1601 		 * BIO off first?
1602 		 */
1603 		if (bio && (last_block_in_bio != block_nr - 1 ||
1604 			!__same_bdev(F2FS_I_SB(inode), block_nr, bio))) {
1605 submit_and_realloc:
1606 			__submit_bio(F2FS_I_SB(inode), bio, DATA);
1607 			bio = NULL;
1608 		}
1609 		if (bio == NULL) {
1610 			bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
1611 					is_readahead ? REQ_RAHEAD : 0);
1612 			if (IS_ERR(bio)) {
1613 				bio = NULL;
1614 				goto set_error_page;
1615 			}
1616 		}
1617 
1618 		/*
1619 		 * If the page is under writeback, we need to wait for
1620 		 * its completion to see the correct decrypted data.
1621 		 */
1622 		f2fs_wait_on_block_writeback(inode, block_nr);
1623 
1624 		if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1625 			goto submit_and_realloc;
1626 
1627 		inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
1628 		ClearPageError(page);
1629 		last_block_in_bio = block_nr;
1630 		goto next_page;
1631 set_error_page:
1632 		SetPageError(page);
1633 		zero_user_segment(page, 0, PAGE_SIZE);
1634 		unlock_page(page);
1635 		goto next_page;
1636 confused:
1637 		if (bio) {
1638 			__submit_bio(F2FS_I_SB(inode), bio, DATA);
1639 			bio = NULL;
1640 		}
1641 		unlock_page(page);
1642 next_page:
1643 		if (pages)
1644 			put_page(page);
1645 	}
1646 	BUG_ON(pages && !list_empty(pages));
1647 	if (bio)
1648 		__submit_bio(F2FS_I_SB(inode), bio, DATA);
1649 	return 0;
1650 }
1651 
1652 static int f2fs_read_data_page(struct file *file, struct page *page)
1653 {
1654 	struct inode *inode = page->mapping->host;
1655 	int ret = -EAGAIN;
1656 
1657 	trace_f2fs_readpage(page, DATA);
1658 
1659 	/* If the file has inline data, try to read it directly */
1660 	if (f2fs_has_inline_data(inode))
1661 		ret = f2fs_read_inline_data(inode, page);
1662 	if (ret == -EAGAIN)
1663 		ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1, false);
1664 	return ret;
1665 }
1666 
1667 static int f2fs_read_data_pages(struct file *file,
1668 			struct address_space *mapping,
1669 			struct list_head *pages, unsigned nr_pages)
1670 {
1671 	struct inode *inode = mapping->host;
1672 	struct page *page = list_last_entry(pages, struct page, lru);
1673 
1674 	trace_f2fs_readpages(inode, page, nr_pages);
1675 
1676 	/* If the file has inline data, skip readpages */
1677 	if (f2fs_has_inline_data(inode))
1678 		return 0;
1679 
1680 	return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages, true);
1681 }
1682 
1683 static int encrypt_one_page(struct f2fs_io_info *fio)
1684 {
1685 	struct inode *inode = fio->page->mapping->host;
1686 	struct page *mpage;
1687 	gfp_t gfp_flags = GFP_NOFS;
1688 
1689 	if (!f2fs_encrypted_file(inode))
1690 		return 0;
1691 
1692 	/* wait for GCed page writeback via META_MAPPING */
1693 	f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
1694 
1695 retry_encrypt:
1696 	fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page,
1697 			PAGE_SIZE, 0, fio->page->index, gfp_flags);
1698 	if (IS_ERR(fio->encrypted_page)) {
1699 		/* flush pending IOs and wait for a while in the ENOMEM case */
1700 		if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
1701 			f2fs_flush_merged_writes(fio->sbi);
1702 			congestion_wait(BLK_RW_ASYNC, HZ/50);
1703 			gfp_flags |= __GFP_NOFAIL;
1704 			goto retry_encrypt;
1705 		}
1706 		return PTR_ERR(fio->encrypted_page);
1707 	}
1708 
1709 	mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
1710 	if (mpage) {
1711 		if (PageUptodate(mpage))
1712 			memcpy(page_address(mpage),
1713 				page_address(fio->encrypted_page), PAGE_SIZE);
1714 		f2fs_put_page(mpage, 1);
1715 	}
1716 	return 0;
1717 }
1718 
1719 static inline bool check_inplace_update_policy(struct inode *inode,
1720 				struct f2fs_io_info *fio)
1721 {
1722 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1723 	unsigned int policy = SM_I(sbi)->ipu_policy;
1724 
1725 	if (policy & (0x1 << F2FS_IPU_FORCE))
1726 		return true;
1727 	if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
1728 		return true;
1729 	if (policy & (0x1 << F2FS_IPU_UTIL) &&
1730 			utilization(sbi) > SM_I(sbi)->min_ipu_util)
1731 		return true;
1732 	if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
1733 			utilization(sbi) > SM_I(sbi)->min_ipu_util)
1734 		return true;
1735 
1736 	/*
1737 	 * IPU for rewrite async pages
1738 	 */
1739 	if (policy & (0x1 << F2FS_IPU_ASYNC) &&
1740 			fio && fio->op == REQ_OP_WRITE &&
1741 			!(fio->op_flags & REQ_SYNC) &&
1742 			!IS_ENCRYPTED(inode))
1743 		return true;
1744 
1745 	/* this is only set during fdatasync */
1746 	if (policy & (0x1 << F2FS_IPU_FSYNC) &&
1747 			is_inode_flag_set(inode, FI_NEED_IPU))
1748 		return true;
1749 
1750 	if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1751 			!f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
1752 		return true;
1753 
1754 	return false;
1755 }
1756 
1757 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
1758 {
1759 	if (f2fs_is_pinned_file(inode))
1760 		return true;
1761 
1762 	/* if this is cold file, we should overwrite to avoid fragmentation */
1763 	if (file_is_cold(inode))
1764 		return true;
1765 
1766 	return check_inplace_update_policy(inode, fio);
1767 }
1768 
1769 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
1770 {
1771 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1772 
1773 	if (test_opt(sbi, LFS))
1774 		return true;
1775 	if (S_ISDIR(inode->i_mode))
1776 		return true;
1777 	if (IS_NOQUOTA(inode))
1778 		return true;
1779 	if (f2fs_is_atomic_file(inode))
1780 		return true;
1781 	if (fio) {
1782 		if (is_cold_data(fio->page))
1783 			return true;
1784 		if (IS_ATOMIC_WRITTEN_PAGE(fio->page))
1785 			return true;
1786 		if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1787 			f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
1788 			return true;
1789 	}
1790 	return false;
1791 }
1792 
1793 static inline bool need_inplace_update(struct f2fs_io_info *fio)
1794 {
1795 	struct inode *inode = fio->page->mapping->host;
1796 
1797 	if (f2fs_should_update_outplace(inode, fio))
1798 		return false;
1799 
1800 	return f2fs_should_update_inplace(inode, fio);
1801 }
1802 
1803 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
1804 {
1805 	struct page *page = fio->page;
1806 	struct inode *inode = page->mapping->host;
1807 	struct dnode_of_data dn;
1808 	struct extent_info ei = {0,0,0};
1809 	struct node_info ni;
1810 	bool ipu_force = false;
1811 	int err = 0;
1812 
1813 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1814 	if (need_inplace_update(fio) &&
1815 			f2fs_lookup_extent_cache(inode, page->index, &ei)) {
1816 		fio->old_blkaddr = ei.blk + page->index - ei.fofs;
1817 
1818 		if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
1819 							DATA_GENERIC))
1820 			return -EFAULT;
1821 
1822 		ipu_force = true;
1823 		fio->need_lock = LOCK_DONE;
1824 		goto got_it;
1825 	}
1826 
1827 	/* Deadlock due to between page->lock and f2fs_lock_op */
1828 	if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
1829 		return -EAGAIN;
1830 
1831 	err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1832 	if (err)
1833 		goto out;
1834 
1835 	fio->old_blkaddr = dn.data_blkaddr;
1836 
1837 	/* This page is already truncated */
1838 	if (fio->old_blkaddr == NULL_ADDR) {
1839 		ClearPageUptodate(page);
1840 		clear_cold_data(page);
1841 		goto out_writepage;
1842 	}
1843 got_it:
1844 	if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
1845 		!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
1846 							DATA_GENERIC)) {
1847 		err = -EFAULT;
1848 		goto out_writepage;
1849 	}
1850 	/*
1851 	 * If current allocation needs SSR,
1852 	 * it had better in-place writes for updated data.
1853 	 */
1854 	if (ipu_force || (is_valid_data_blkaddr(fio->sbi, fio->old_blkaddr) &&
1855 					need_inplace_update(fio))) {
1856 		err = encrypt_one_page(fio);
1857 		if (err)
1858 			goto out_writepage;
1859 
1860 		set_page_writeback(page);
1861 		ClearPageError(page);
1862 		f2fs_put_dnode(&dn);
1863 		if (fio->need_lock == LOCK_REQ)
1864 			f2fs_unlock_op(fio->sbi);
1865 		err = f2fs_inplace_write_data(fio);
1866 		if (err) {
1867 			if (f2fs_encrypted_file(inode))
1868 				fscrypt_pullback_bio_page(&fio->encrypted_page,
1869 									true);
1870 			if (PageWriteback(page))
1871 				end_page_writeback(page);
1872 		}
1873 		trace_f2fs_do_write_data_page(fio->page, IPU);
1874 		set_inode_flag(inode, FI_UPDATE_WRITE);
1875 		return err;
1876 	}
1877 
1878 	if (fio->need_lock == LOCK_RETRY) {
1879 		if (!f2fs_trylock_op(fio->sbi)) {
1880 			err = -EAGAIN;
1881 			goto out_writepage;
1882 		}
1883 		fio->need_lock = LOCK_REQ;
1884 	}
1885 
1886 	err = f2fs_get_node_info(fio->sbi, dn.nid, &ni);
1887 	if (err)
1888 		goto out_writepage;
1889 
1890 	fio->version = ni.version;
1891 
1892 	err = encrypt_one_page(fio);
1893 	if (err)
1894 		goto out_writepage;
1895 
1896 	set_page_writeback(page);
1897 	ClearPageError(page);
1898 
1899 	/* LFS mode write path */
1900 	f2fs_outplace_write_data(&dn, fio);
1901 	trace_f2fs_do_write_data_page(page, OPU);
1902 	set_inode_flag(inode, FI_APPEND_WRITE);
1903 	if (page->index == 0)
1904 		set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1905 out_writepage:
1906 	f2fs_put_dnode(&dn);
1907 out:
1908 	if (fio->need_lock == LOCK_REQ)
1909 		f2fs_unlock_op(fio->sbi);
1910 	return err;
1911 }
1912 
1913 static int __write_data_page(struct page *page, bool *submitted,
1914 				struct writeback_control *wbc,
1915 				enum iostat_type io_type)
1916 {
1917 	struct inode *inode = page->mapping->host;
1918 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1919 	loff_t i_size = i_size_read(inode);
1920 	const pgoff_t end_index = ((unsigned long long) i_size)
1921 							>> PAGE_SHIFT;
1922 	loff_t psize = (page->index + 1) << PAGE_SHIFT;
1923 	unsigned offset = 0;
1924 	bool need_balance_fs = false;
1925 	int err = 0;
1926 	struct f2fs_io_info fio = {
1927 		.sbi = sbi,
1928 		.ino = inode->i_ino,
1929 		.type = DATA,
1930 		.op = REQ_OP_WRITE,
1931 		.op_flags = wbc_to_write_flags(wbc),
1932 		.old_blkaddr = NULL_ADDR,
1933 		.page = page,
1934 		.encrypted_page = NULL,
1935 		.submitted = false,
1936 		.need_lock = LOCK_RETRY,
1937 		.io_type = io_type,
1938 		.io_wbc = wbc,
1939 	};
1940 
1941 	trace_f2fs_writepage(page, DATA);
1942 
1943 	/* we should bypass data pages to proceed the kworkder jobs */
1944 	if (unlikely(f2fs_cp_error(sbi))) {
1945 		mapping_set_error(page->mapping, -EIO);
1946 		/*
1947 		 * don't drop any dirty dentry pages for keeping lastest
1948 		 * directory structure.
1949 		 */
1950 		if (S_ISDIR(inode->i_mode))
1951 			goto redirty_out;
1952 		goto out;
1953 	}
1954 
1955 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1956 		goto redirty_out;
1957 
1958 	if (page->index < end_index)
1959 		goto write;
1960 
1961 	/*
1962 	 * If the offset is out-of-range of file size,
1963 	 * this page does not have to be written to disk.
1964 	 */
1965 	offset = i_size & (PAGE_SIZE - 1);
1966 	if ((page->index >= end_index + 1) || !offset)
1967 		goto out;
1968 
1969 	zero_user_segment(page, offset, PAGE_SIZE);
1970 write:
1971 	if (f2fs_is_drop_cache(inode))
1972 		goto out;
1973 	/* we should not write 0'th page having journal header */
1974 	if (f2fs_is_volatile_file(inode) && (!page->index ||
1975 			(!wbc->for_reclaim &&
1976 			f2fs_available_free_memory(sbi, BASE_CHECK))))
1977 		goto redirty_out;
1978 
1979 	/* Dentry blocks are controlled by checkpoint */
1980 	if (S_ISDIR(inode->i_mode)) {
1981 		fio.need_lock = LOCK_DONE;
1982 		err = f2fs_do_write_data_page(&fio);
1983 		goto done;
1984 	}
1985 
1986 	if (!wbc->for_reclaim)
1987 		need_balance_fs = true;
1988 	else if (has_not_enough_free_secs(sbi, 0, 0))
1989 		goto redirty_out;
1990 	else
1991 		set_inode_flag(inode, FI_HOT_DATA);
1992 
1993 	err = -EAGAIN;
1994 	if (f2fs_has_inline_data(inode)) {
1995 		err = f2fs_write_inline_data(inode, page);
1996 		if (!err)
1997 			goto out;
1998 	}
1999 
2000 	if (err == -EAGAIN) {
2001 		err = f2fs_do_write_data_page(&fio);
2002 		if (err == -EAGAIN) {
2003 			fio.need_lock = LOCK_REQ;
2004 			err = f2fs_do_write_data_page(&fio);
2005 		}
2006 	}
2007 
2008 	if (err) {
2009 		file_set_keep_isize(inode);
2010 	} else {
2011 		down_write(&F2FS_I(inode)->i_sem);
2012 		if (F2FS_I(inode)->last_disk_size < psize)
2013 			F2FS_I(inode)->last_disk_size = psize;
2014 		up_write(&F2FS_I(inode)->i_sem);
2015 	}
2016 
2017 done:
2018 	if (err && err != -ENOENT)
2019 		goto redirty_out;
2020 
2021 out:
2022 	inode_dec_dirty_pages(inode);
2023 	if (err) {
2024 		ClearPageUptodate(page);
2025 		clear_cold_data(page);
2026 	}
2027 
2028 	if (wbc->for_reclaim) {
2029 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2030 		clear_inode_flag(inode, FI_HOT_DATA);
2031 		f2fs_remove_dirty_inode(inode);
2032 		submitted = NULL;
2033 	}
2034 
2035 	unlock_page(page);
2036 	if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode))
2037 		f2fs_balance_fs(sbi, need_balance_fs);
2038 
2039 	if (unlikely(f2fs_cp_error(sbi))) {
2040 		f2fs_submit_merged_write(sbi, DATA);
2041 		submitted = NULL;
2042 	}
2043 
2044 	if (submitted)
2045 		*submitted = fio.submitted;
2046 
2047 	return 0;
2048 
2049 redirty_out:
2050 	redirty_page_for_writepage(wbc, page);
2051 	/*
2052 	 * pageout() in MM traslates EAGAIN, so calls handle_write_error()
2053 	 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2054 	 * file_write_and_wait_range() will see EIO error, which is critical
2055 	 * to return value of fsync() followed by atomic_write failure to user.
2056 	 */
2057 	if (!err || wbc->for_reclaim)
2058 		return AOP_WRITEPAGE_ACTIVATE;
2059 	unlock_page(page);
2060 	return err;
2061 }
2062 
2063 static int f2fs_write_data_page(struct page *page,
2064 					struct writeback_control *wbc)
2065 {
2066 	return __write_data_page(page, NULL, wbc, FS_DATA_IO);
2067 }
2068 
2069 /*
2070  * This function was copied from write_cche_pages from mm/page-writeback.c.
2071  * The major change is making write step of cold data page separately from
2072  * warm/hot data page.
2073  */
2074 static int f2fs_write_cache_pages(struct address_space *mapping,
2075 					struct writeback_control *wbc,
2076 					enum iostat_type io_type)
2077 {
2078 	int ret = 0;
2079 	int done = 0;
2080 	struct pagevec pvec;
2081 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2082 	int nr_pages;
2083 	pgoff_t uninitialized_var(writeback_index);
2084 	pgoff_t index;
2085 	pgoff_t end;		/* Inclusive */
2086 	pgoff_t done_index;
2087 	int cycled;
2088 	int range_whole = 0;
2089 	xa_mark_t tag;
2090 	int nwritten = 0;
2091 
2092 	pagevec_init(&pvec);
2093 
2094 	if (get_dirty_pages(mapping->host) <=
2095 				SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2096 		set_inode_flag(mapping->host, FI_HOT_DATA);
2097 	else
2098 		clear_inode_flag(mapping->host, FI_HOT_DATA);
2099 
2100 	if (wbc->range_cyclic) {
2101 		writeback_index = mapping->writeback_index; /* prev offset */
2102 		index = writeback_index;
2103 		if (index == 0)
2104 			cycled = 1;
2105 		else
2106 			cycled = 0;
2107 		end = -1;
2108 	} else {
2109 		index = wbc->range_start >> PAGE_SHIFT;
2110 		end = wbc->range_end >> PAGE_SHIFT;
2111 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2112 			range_whole = 1;
2113 		cycled = 1; /* ignore range_cyclic tests */
2114 	}
2115 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2116 		tag = PAGECACHE_TAG_TOWRITE;
2117 	else
2118 		tag = PAGECACHE_TAG_DIRTY;
2119 retry:
2120 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2121 		tag_pages_for_writeback(mapping, index, end);
2122 	done_index = index;
2123 	while (!done && (index <= end)) {
2124 		int i;
2125 
2126 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2127 				tag);
2128 		if (nr_pages == 0)
2129 			break;
2130 
2131 		for (i = 0; i < nr_pages; i++) {
2132 			struct page *page = pvec.pages[i];
2133 			bool submitted = false;
2134 
2135 			/* give a priority to WB_SYNC threads */
2136 			if (atomic_read(&sbi->wb_sync_req[DATA]) &&
2137 					wbc->sync_mode == WB_SYNC_NONE) {
2138 				done = 1;
2139 				break;
2140 			}
2141 
2142 			done_index = page->index;
2143 retry_write:
2144 			lock_page(page);
2145 
2146 			if (unlikely(page->mapping != mapping)) {
2147 continue_unlock:
2148 				unlock_page(page);
2149 				continue;
2150 			}
2151 
2152 			if (!PageDirty(page)) {
2153 				/* someone wrote it for us */
2154 				goto continue_unlock;
2155 			}
2156 
2157 			if (PageWriteback(page)) {
2158 				if (wbc->sync_mode != WB_SYNC_NONE)
2159 					f2fs_wait_on_page_writeback(page,
2160 							DATA, true, true);
2161 				else
2162 					goto continue_unlock;
2163 			}
2164 
2165 			if (!clear_page_dirty_for_io(page))
2166 				goto continue_unlock;
2167 
2168 			ret = __write_data_page(page, &submitted, wbc, io_type);
2169 			if (unlikely(ret)) {
2170 				/*
2171 				 * keep nr_to_write, since vfs uses this to
2172 				 * get # of written pages.
2173 				 */
2174 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
2175 					unlock_page(page);
2176 					ret = 0;
2177 					continue;
2178 				} else if (ret == -EAGAIN) {
2179 					ret = 0;
2180 					if (wbc->sync_mode == WB_SYNC_ALL) {
2181 						cond_resched();
2182 						congestion_wait(BLK_RW_ASYNC,
2183 									HZ/50);
2184 						goto retry_write;
2185 					}
2186 					continue;
2187 				}
2188 				done_index = page->index + 1;
2189 				done = 1;
2190 				break;
2191 			} else if (submitted) {
2192 				nwritten++;
2193 			}
2194 
2195 			if (--wbc->nr_to_write <= 0 &&
2196 					wbc->sync_mode == WB_SYNC_NONE) {
2197 				done = 1;
2198 				break;
2199 			}
2200 		}
2201 		pagevec_release(&pvec);
2202 		cond_resched();
2203 	}
2204 
2205 	if (!cycled && !done) {
2206 		cycled = 1;
2207 		index = 0;
2208 		end = writeback_index - 1;
2209 		goto retry;
2210 	}
2211 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2212 		mapping->writeback_index = done_index;
2213 
2214 	if (nwritten)
2215 		f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
2216 								NULL, 0, DATA);
2217 
2218 	return ret;
2219 }
2220 
2221 static inline bool __should_serialize_io(struct inode *inode,
2222 					struct writeback_control *wbc)
2223 {
2224 	if (!S_ISREG(inode->i_mode))
2225 		return false;
2226 	if (IS_NOQUOTA(inode))
2227 		return false;
2228 	if (wbc->sync_mode != WB_SYNC_ALL)
2229 		return true;
2230 	if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
2231 		return true;
2232 	return false;
2233 }
2234 
2235 static int __f2fs_write_data_pages(struct address_space *mapping,
2236 						struct writeback_control *wbc,
2237 						enum iostat_type io_type)
2238 {
2239 	struct inode *inode = mapping->host;
2240 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2241 	struct blk_plug plug;
2242 	int ret;
2243 	bool locked = false;
2244 
2245 	/* deal with chardevs and other special file */
2246 	if (!mapping->a_ops->writepage)
2247 		return 0;
2248 
2249 	/* skip writing if there is no dirty page in this inode */
2250 	if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
2251 		return 0;
2252 
2253 	/* during POR, we don't need to trigger writepage at all. */
2254 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2255 		goto skip_write;
2256 
2257 	if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
2258 			wbc->sync_mode == WB_SYNC_NONE &&
2259 			get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
2260 			f2fs_available_free_memory(sbi, DIRTY_DENTS))
2261 		goto skip_write;
2262 
2263 	/* skip writing during file defragment */
2264 	if (is_inode_flag_set(inode, FI_DO_DEFRAG))
2265 		goto skip_write;
2266 
2267 	trace_f2fs_writepages(mapping->host, wbc, DATA);
2268 
2269 	/* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
2270 	if (wbc->sync_mode == WB_SYNC_ALL)
2271 		atomic_inc(&sbi->wb_sync_req[DATA]);
2272 	else if (atomic_read(&sbi->wb_sync_req[DATA]))
2273 		goto skip_write;
2274 
2275 	if (__should_serialize_io(inode, wbc)) {
2276 		mutex_lock(&sbi->writepages);
2277 		locked = true;
2278 	}
2279 
2280 	blk_start_plug(&plug);
2281 	ret = f2fs_write_cache_pages(mapping, wbc, io_type);
2282 	blk_finish_plug(&plug);
2283 
2284 	if (locked)
2285 		mutex_unlock(&sbi->writepages);
2286 
2287 	if (wbc->sync_mode == WB_SYNC_ALL)
2288 		atomic_dec(&sbi->wb_sync_req[DATA]);
2289 	/*
2290 	 * if some pages were truncated, we cannot guarantee its mapping->host
2291 	 * to detect pending bios.
2292 	 */
2293 
2294 	f2fs_remove_dirty_inode(inode);
2295 	return ret;
2296 
2297 skip_write:
2298 	wbc->pages_skipped += get_dirty_pages(inode);
2299 	trace_f2fs_writepages(mapping->host, wbc, DATA);
2300 	return 0;
2301 }
2302 
2303 static int f2fs_write_data_pages(struct address_space *mapping,
2304 			    struct writeback_control *wbc)
2305 {
2306 	struct inode *inode = mapping->host;
2307 
2308 	return __f2fs_write_data_pages(mapping, wbc,
2309 			F2FS_I(inode)->cp_task == current ?
2310 			FS_CP_DATA_IO : FS_DATA_IO);
2311 }
2312 
2313 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
2314 {
2315 	struct inode *inode = mapping->host;
2316 	loff_t i_size = i_size_read(inode);
2317 
2318 	if (to > i_size) {
2319 		down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2320 		down_write(&F2FS_I(inode)->i_mmap_sem);
2321 
2322 		truncate_pagecache(inode, i_size);
2323 		if (!IS_NOQUOTA(inode))
2324 			f2fs_truncate_blocks(inode, i_size, true);
2325 
2326 		up_write(&F2FS_I(inode)->i_mmap_sem);
2327 		up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2328 	}
2329 }
2330 
2331 static int prepare_write_begin(struct f2fs_sb_info *sbi,
2332 			struct page *page, loff_t pos, unsigned len,
2333 			block_t *blk_addr, bool *node_changed)
2334 {
2335 	struct inode *inode = page->mapping->host;
2336 	pgoff_t index = page->index;
2337 	struct dnode_of_data dn;
2338 	struct page *ipage;
2339 	bool locked = false;
2340 	struct extent_info ei = {0,0,0};
2341 	int err = 0;
2342 	int flag;
2343 
2344 	/*
2345 	 * we already allocated all the blocks, so we don't need to get
2346 	 * the block addresses when there is no need to fill the page.
2347 	 */
2348 	if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
2349 			!is_inode_flag_set(inode, FI_NO_PREALLOC))
2350 		return 0;
2351 
2352 	/* f2fs_lock_op avoids race between write CP and convert_inline_page */
2353 	if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
2354 		flag = F2FS_GET_BLOCK_DEFAULT;
2355 	else
2356 		flag = F2FS_GET_BLOCK_PRE_AIO;
2357 
2358 	if (f2fs_has_inline_data(inode) ||
2359 			(pos & PAGE_MASK) >= i_size_read(inode)) {
2360 		__do_map_lock(sbi, flag, true);
2361 		locked = true;
2362 	}
2363 restart:
2364 	/* check inline_data */
2365 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
2366 	if (IS_ERR(ipage)) {
2367 		err = PTR_ERR(ipage);
2368 		goto unlock_out;
2369 	}
2370 
2371 	set_new_dnode(&dn, inode, ipage, ipage, 0);
2372 
2373 	if (f2fs_has_inline_data(inode)) {
2374 		if (pos + len <= MAX_INLINE_DATA(inode)) {
2375 			f2fs_do_read_inline_data(page, ipage);
2376 			set_inode_flag(inode, FI_DATA_EXIST);
2377 			if (inode->i_nlink)
2378 				set_inline_node(ipage);
2379 		} else {
2380 			err = f2fs_convert_inline_page(&dn, page);
2381 			if (err)
2382 				goto out;
2383 			if (dn.data_blkaddr == NULL_ADDR)
2384 				err = f2fs_get_block(&dn, index);
2385 		}
2386 	} else if (locked) {
2387 		err = f2fs_get_block(&dn, index);
2388 	} else {
2389 		if (f2fs_lookup_extent_cache(inode, index, &ei)) {
2390 			dn.data_blkaddr = ei.blk + index - ei.fofs;
2391 		} else {
2392 			/* hole case */
2393 			err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
2394 			if (err || dn.data_blkaddr == NULL_ADDR) {
2395 				f2fs_put_dnode(&dn);
2396 				__do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
2397 								true);
2398 				WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
2399 				locked = true;
2400 				goto restart;
2401 			}
2402 		}
2403 	}
2404 
2405 	/* convert_inline_page can make node_changed */
2406 	*blk_addr = dn.data_blkaddr;
2407 	*node_changed = dn.node_changed;
2408 out:
2409 	f2fs_put_dnode(&dn);
2410 unlock_out:
2411 	if (locked)
2412 		__do_map_lock(sbi, flag, false);
2413 	return err;
2414 }
2415 
2416 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
2417 		loff_t pos, unsigned len, unsigned flags,
2418 		struct page **pagep, void **fsdata)
2419 {
2420 	struct inode *inode = mapping->host;
2421 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2422 	struct page *page = NULL;
2423 	pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
2424 	bool need_balance = false, drop_atomic = false;
2425 	block_t blkaddr = NULL_ADDR;
2426 	int err = 0;
2427 
2428 	trace_f2fs_write_begin(inode, pos, len, flags);
2429 
2430 	err = f2fs_is_checkpoint_ready(sbi);
2431 	if (err)
2432 		goto fail;
2433 
2434 	if ((f2fs_is_atomic_file(inode) &&
2435 			!f2fs_available_free_memory(sbi, INMEM_PAGES)) ||
2436 			is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
2437 		err = -ENOMEM;
2438 		drop_atomic = true;
2439 		goto fail;
2440 	}
2441 
2442 	/*
2443 	 * We should check this at this moment to avoid deadlock on inode page
2444 	 * and #0 page. The locking rule for inline_data conversion should be:
2445 	 * lock_page(page #0) -> lock_page(inode_page)
2446 	 */
2447 	if (index != 0) {
2448 		err = f2fs_convert_inline_inode(inode);
2449 		if (err)
2450 			goto fail;
2451 	}
2452 repeat:
2453 	/*
2454 	 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
2455 	 * wait_for_stable_page. Will wait that below with our IO control.
2456 	 */
2457 	page = f2fs_pagecache_get_page(mapping, index,
2458 				FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
2459 	if (!page) {
2460 		err = -ENOMEM;
2461 		goto fail;
2462 	}
2463 
2464 	*pagep = page;
2465 
2466 	err = prepare_write_begin(sbi, page, pos, len,
2467 					&blkaddr, &need_balance);
2468 	if (err)
2469 		goto fail;
2470 
2471 	if (need_balance && !IS_NOQUOTA(inode) &&
2472 			has_not_enough_free_secs(sbi, 0, 0)) {
2473 		unlock_page(page);
2474 		f2fs_balance_fs(sbi, true);
2475 		lock_page(page);
2476 		if (page->mapping != mapping) {
2477 			/* The page got truncated from under us */
2478 			f2fs_put_page(page, 1);
2479 			goto repeat;
2480 		}
2481 	}
2482 
2483 	f2fs_wait_on_page_writeback(page, DATA, false, true);
2484 
2485 	if (len == PAGE_SIZE || PageUptodate(page))
2486 		return 0;
2487 
2488 	if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode)) {
2489 		zero_user_segment(page, len, PAGE_SIZE);
2490 		return 0;
2491 	}
2492 
2493 	if (blkaddr == NEW_ADDR) {
2494 		zero_user_segment(page, 0, PAGE_SIZE);
2495 		SetPageUptodate(page);
2496 	} else {
2497 		err = f2fs_submit_page_read(inode, page, blkaddr);
2498 		if (err)
2499 			goto fail;
2500 
2501 		lock_page(page);
2502 		if (unlikely(page->mapping != mapping)) {
2503 			f2fs_put_page(page, 1);
2504 			goto repeat;
2505 		}
2506 		if (unlikely(!PageUptodate(page))) {
2507 			err = -EIO;
2508 			goto fail;
2509 		}
2510 	}
2511 	return 0;
2512 
2513 fail:
2514 	f2fs_put_page(page, 1);
2515 	f2fs_write_failed(mapping, pos + len);
2516 	if (drop_atomic)
2517 		f2fs_drop_inmem_pages_all(sbi, false);
2518 	return err;
2519 }
2520 
2521 static int f2fs_write_end(struct file *file,
2522 			struct address_space *mapping,
2523 			loff_t pos, unsigned len, unsigned copied,
2524 			struct page *page, void *fsdata)
2525 {
2526 	struct inode *inode = page->mapping->host;
2527 
2528 	trace_f2fs_write_end(inode, pos, len, copied);
2529 
2530 	/*
2531 	 * This should be come from len == PAGE_SIZE, and we expect copied
2532 	 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
2533 	 * let generic_perform_write() try to copy data again through copied=0.
2534 	 */
2535 	if (!PageUptodate(page)) {
2536 		if (unlikely(copied != len))
2537 			copied = 0;
2538 		else
2539 			SetPageUptodate(page);
2540 	}
2541 	if (!copied)
2542 		goto unlock_out;
2543 
2544 	set_page_dirty(page);
2545 
2546 	if (pos + copied > i_size_read(inode))
2547 		f2fs_i_size_write(inode, pos + copied);
2548 unlock_out:
2549 	f2fs_put_page(page, 1);
2550 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2551 	return copied;
2552 }
2553 
2554 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
2555 			   loff_t offset)
2556 {
2557 	unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
2558 	unsigned blkbits = i_blkbits;
2559 	unsigned blocksize_mask = (1 << blkbits) - 1;
2560 	unsigned long align = offset | iov_iter_alignment(iter);
2561 	struct block_device *bdev = inode->i_sb->s_bdev;
2562 
2563 	if (align & blocksize_mask) {
2564 		if (bdev)
2565 			blkbits = blksize_bits(bdev_logical_block_size(bdev));
2566 		blocksize_mask = (1 << blkbits) - 1;
2567 		if (align & blocksize_mask)
2568 			return -EINVAL;
2569 		return 1;
2570 	}
2571 	return 0;
2572 }
2573 
2574 static void f2fs_dio_end_io(struct bio *bio)
2575 {
2576 	struct f2fs_private_dio *dio = bio->bi_private;
2577 
2578 	dec_page_count(F2FS_I_SB(dio->inode),
2579 			dio->write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
2580 
2581 	bio->bi_private = dio->orig_private;
2582 	bio->bi_end_io = dio->orig_end_io;
2583 
2584 	kvfree(dio);
2585 
2586 	bio_endio(bio);
2587 }
2588 
2589 static void f2fs_dio_submit_bio(struct bio *bio, struct inode *inode,
2590 							loff_t file_offset)
2591 {
2592 	struct f2fs_private_dio *dio;
2593 	bool write = (bio_op(bio) == REQ_OP_WRITE);
2594 
2595 	dio = f2fs_kzalloc(F2FS_I_SB(inode),
2596 			sizeof(struct f2fs_private_dio), GFP_NOFS);
2597 	if (!dio)
2598 		goto out;
2599 
2600 	dio->inode = inode;
2601 	dio->orig_end_io = bio->bi_end_io;
2602 	dio->orig_private = bio->bi_private;
2603 	dio->write = write;
2604 
2605 	bio->bi_end_io = f2fs_dio_end_io;
2606 	bio->bi_private = dio;
2607 
2608 	inc_page_count(F2FS_I_SB(inode),
2609 			write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
2610 
2611 	submit_bio(bio);
2612 	return;
2613 out:
2614 	bio->bi_status = BLK_STS_IOERR;
2615 	bio_endio(bio);
2616 }
2617 
2618 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2619 {
2620 	struct address_space *mapping = iocb->ki_filp->f_mapping;
2621 	struct inode *inode = mapping->host;
2622 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2623 	struct f2fs_inode_info *fi = F2FS_I(inode);
2624 	size_t count = iov_iter_count(iter);
2625 	loff_t offset = iocb->ki_pos;
2626 	int rw = iov_iter_rw(iter);
2627 	int err;
2628 	enum rw_hint hint = iocb->ki_hint;
2629 	int whint_mode = F2FS_OPTION(sbi).whint_mode;
2630 	bool do_opu;
2631 
2632 	err = check_direct_IO(inode, iter, offset);
2633 	if (err)
2634 		return err < 0 ? err : 0;
2635 
2636 	if (f2fs_force_buffered_io(inode, iocb, iter))
2637 		return 0;
2638 
2639 	do_opu = allow_outplace_dio(inode, iocb, iter);
2640 
2641 	trace_f2fs_direct_IO_enter(inode, offset, count, rw);
2642 
2643 	if (rw == WRITE && whint_mode == WHINT_MODE_OFF)
2644 		iocb->ki_hint = WRITE_LIFE_NOT_SET;
2645 
2646 	if (iocb->ki_flags & IOCB_NOWAIT) {
2647 		if (!down_read_trylock(&fi->i_gc_rwsem[rw])) {
2648 			iocb->ki_hint = hint;
2649 			err = -EAGAIN;
2650 			goto out;
2651 		}
2652 		if (do_opu && !down_read_trylock(&fi->i_gc_rwsem[READ])) {
2653 			up_read(&fi->i_gc_rwsem[rw]);
2654 			iocb->ki_hint = hint;
2655 			err = -EAGAIN;
2656 			goto out;
2657 		}
2658 	} else {
2659 		down_read(&fi->i_gc_rwsem[rw]);
2660 		if (do_opu)
2661 			down_read(&fi->i_gc_rwsem[READ]);
2662 	}
2663 
2664 	err = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
2665 			iter, rw == WRITE ? get_data_block_dio_write :
2666 			get_data_block_dio, NULL, f2fs_dio_submit_bio,
2667 			DIO_LOCKING | DIO_SKIP_HOLES);
2668 
2669 	if (do_opu)
2670 		up_read(&fi->i_gc_rwsem[READ]);
2671 
2672 	up_read(&fi->i_gc_rwsem[rw]);
2673 
2674 	if (rw == WRITE) {
2675 		if (whint_mode == WHINT_MODE_OFF)
2676 			iocb->ki_hint = hint;
2677 		if (err > 0) {
2678 			f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
2679 									err);
2680 			if (!do_opu)
2681 				set_inode_flag(inode, FI_UPDATE_WRITE);
2682 		} else if (err < 0) {
2683 			f2fs_write_failed(mapping, offset + count);
2684 		}
2685 	}
2686 
2687 out:
2688 	trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
2689 
2690 	return err;
2691 }
2692 
2693 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2694 							unsigned int length)
2695 {
2696 	struct inode *inode = page->mapping->host;
2697 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2698 
2699 	if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
2700 		(offset % PAGE_SIZE || length != PAGE_SIZE))
2701 		return;
2702 
2703 	if (PageDirty(page)) {
2704 		if (inode->i_ino == F2FS_META_INO(sbi)) {
2705 			dec_page_count(sbi, F2FS_DIRTY_META);
2706 		} else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
2707 			dec_page_count(sbi, F2FS_DIRTY_NODES);
2708 		} else {
2709 			inode_dec_dirty_pages(inode);
2710 			f2fs_remove_dirty_inode(inode);
2711 		}
2712 	}
2713 
2714 	clear_cold_data(page);
2715 
2716 	if (IS_ATOMIC_WRITTEN_PAGE(page))
2717 		return f2fs_drop_inmem_page(inode, page);
2718 
2719 	f2fs_clear_page_private(page);
2720 }
2721 
2722 int f2fs_release_page(struct page *page, gfp_t wait)
2723 {
2724 	/* If this is dirty page, keep PagePrivate */
2725 	if (PageDirty(page))
2726 		return 0;
2727 
2728 	/* This is atomic written page, keep Private */
2729 	if (IS_ATOMIC_WRITTEN_PAGE(page))
2730 		return 0;
2731 
2732 	clear_cold_data(page);
2733 	f2fs_clear_page_private(page);
2734 	return 1;
2735 }
2736 
2737 static int f2fs_set_data_page_dirty(struct page *page)
2738 {
2739 	struct address_space *mapping = page->mapping;
2740 	struct inode *inode = mapping->host;
2741 
2742 	trace_f2fs_set_page_dirty(page, DATA);
2743 
2744 	if (!PageUptodate(page))
2745 		SetPageUptodate(page);
2746 
2747 	if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
2748 		if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
2749 			f2fs_register_inmem_page(inode, page);
2750 			return 1;
2751 		}
2752 		/*
2753 		 * Previously, this page has been registered, we just
2754 		 * return here.
2755 		 */
2756 		return 0;
2757 	}
2758 
2759 	if (!PageDirty(page)) {
2760 		__set_page_dirty_nobuffers(page);
2761 		f2fs_update_dirty_page(inode, page);
2762 		return 1;
2763 	}
2764 	return 0;
2765 }
2766 
2767 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
2768 {
2769 	struct inode *inode = mapping->host;
2770 
2771 	if (f2fs_has_inline_data(inode))
2772 		return 0;
2773 
2774 	/* make sure allocating whole blocks */
2775 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2776 		filemap_write_and_wait(mapping);
2777 
2778 	return generic_block_bmap(mapping, block, get_data_block_bmap);
2779 }
2780 
2781 #ifdef CONFIG_MIGRATION
2782 #include <linux/migrate.h>
2783 
2784 int f2fs_migrate_page(struct address_space *mapping,
2785 		struct page *newpage, struct page *page, enum migrate_mode mode)
2786 {
2787 	int rc, extra_count;
2788 	struct f2fs_inode_info *fi = F2FS_I(mapping->host);
2789 	bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
2790 
2791 	BUG_ON(PageWriteback(page));
2792 
2793 	/* migrating an atomic written page is safe with the inmem_lock hold */
2794 	if (atomic_written) {
2795 		if (mode != MIGRATE_SYNC)
2796 			return -EBUSY;
2797 		if (!mutex_trylock(&fi->inmem_lock))
2798 			return -EAGAIN;
2799 	}
2800 
2801 	/* one extra reference was held for atomic_write page */
2802 	extra_count = atomic_written ? 1 : 0;
2803 	rc = migrate_page_move_mapping(mapping, newpage,
2804 				page, mode, extra_count);
2805 	if (rc != MIGRATEPAGE_SUCCESS) {
2806 		if (atomic_written)
2807 			mutex_unlock(&fi->inmem_lock);
2808 		return rc;
2809 	}
2810 
2811 	if (atomic_written) {
2812 		struct inmem_pages *cur;
2813 		list_for_each_entry(cur, &fi->inmem_pages, list)
2814 			if (cur->page == page) {
2815 				cur->page = newpage;
2816 				break;
2817 			}
2818 		mutex_unlock(&fi->inmem_lock);
2819 		put_page(page);
2820 		get_page(newpage);
2821 	}
2822 
2823 	if (PagePrivate(page)) {
2824 		f2fs_set_page_private(newpage, page_private(page));
2825 		f2fs_clear_page_private(page);
2826 	}
2827 
2828 	if (mode != MIGRATE_SYNC_NO_COPY)
2829 		migrate_page_copy(newpage, page);
2830 	else
2831 		migrate_page_states(newpage, page);
2832 
2833 	return MIGRATEPAGE_SUCCESS;
2834 }
2835 #endif
2836 
2837 const struct address_space_operations f2fs_dblock_aops = {
2838 	.readpage	= f2fs_read_data_page,
2839 	.readpages	= f2fs_read_data_pages,
2840 	.writepage	= f2fs_write_data_page,
2841 	.writepages	= f2fs_write_data_pages,
2842 	.write_begin	= f2fs_write_begin,
2843 	.write_end	= f2fs_write_end,
2844 	.set_page_dirty	= f2fs_set_data_page_dirty,
2845 	.invalidatepage	= f2fs_invalidate_page,
2846 	.releasepage	= f2fs_release_page,
2847 	.direct_IO	= f2fs_direct_IO,
2848 	.bmap		= f2fs_bmap,
2849 #ifdef CONFIG_MIGRATION
2850 	.migratepage    = f2fs_migrate_page,
2851 #endif
2852 };
2853 
2854 void f2fs_clear_page_cache_dirty_tag(struct page *page)
2855 {
2856 	struct address_space *mapping = page_mapping(page);
2857 	unsigned long flags;
2858 
2859 	xa_lock_irqsave(&mapping->i_pages, flags);
2860 	__xa_clear_mark(&mapping->i_pages, page_index(page),
2861 						PAGECACHE_TAG_DIRTY);
2862 	xa_unlock_irqrestore(&mapping->i_pages, flags);
2863 }
2864 
2865 int __init f2fs_init_post_read_processing(void)
2866 {
2867 	bio_post_read_ctx_cache = KMEM_CACHE(bio_post_read_ctx, 0);
2868 	if (!bio_post_read_ctx_cache)
2869 		goto fail;
2870 	bio_post_read_ctx_pool =
2871 		mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
2872 					 bio_post_read_ctx_cache);
2873 	if (!bio_post_read_ctx_pool)
2874 		goto fail_free_cache;
2875 	return 0;
2876 
2877 fail_free_cache:
2878 	kmem_cache_destroy(bio_post_read_ctx_cache);
2879 fail:
2880 	return -ENOMEM;
2881 }
2882 
2883 void __exit f2fs_destroy_post_read_processing(void)
2884 {
2885 	mempool_destroy(bio_post_read_ctx_pool);
2886 	kmem_cache_destroy(bio_post_read_ctx_cache);
2887 }
2888