1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/data.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/sched/mm.h> 11 #include <linux/mpage.h> 12 #include <linux/writeback.h> 13 #include <linux/pagevec.h> 14 #include <linux/blkdev.h> 15 #include <linux/bio.h> 16 #include <linux/blk-crypto.h> 17 #include <linux/swap.h> 18 #include <linux/prefetch.h> 19 #include <linux/uio.h> 20 #include <linux/sched/signal.h> 21 #include <linux/fiemap.h> 22 #include <linux/iomap.h> 23 24 #include "f2fs.h" 25 #include "node.h" 26 #include "segment.h" 27 #include "iostat.h" 28 #include <trace/events/f2fs.h> 29 30 #define NUM_PREALLOC_POST_READ_CTXS 128 31 32 static struct kmem_cache *bio_post_read_ctx_cache; 33 static struct kmem_cache *bio_entry_slab; 34 static mempool_t *bio_post_read_ctx_pool; 35 static struct bio_set f2fs_bioset; 36 37 #define F2FS_BIO_POOL_SIZE NR_CURSEG_TYPE 38 39 int __init f2fs_init_bioset(void) 40 { 41 return bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE, 42 0, BIOSET_NEED_BVECS); 43 } 44 45 void f2fs_destroy_bioset(void) 46 { 47 bioset_exit(&f2fs_bioset); 48 } 49 50 bool f2fs_is_cp_guaranteed(struct page *page) 51 { 52 struct address_space *mapping = page_folio(page)->mapping; 53 struct inode *inode; 54 struct f2fs_sb_info *sbi; 55 56 if (fscrypt_is_bounce_page(page)) 57 return page_private_gcing(fscrypt_pagecache_page(page)); 58 59 inode = mapping->host; 60 sbi = F2FS_I_SB(inode); 61 62 if (inode->i_ino == F2FS_META_INO(sbi) || 63 inode->i_ino == F2FS_NODE_INO(sbi) || 64 S_ISDIR(inode->i_mode)) 65 return true; 66 67 if ((S_ISREG(inode->i_mode) && IS_NOQUOTA(inode)) || 68 page_private_gcing(page)) 69 return true; 70 return false; 71 } 72 73 static enum count_type __read_io_type(struct folio *folio) 74 { 75 struct address_space *mapping = folio->mapping; 76 77 if (mapping) { 78 struct inode *inode = mapping->host; 79 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 80 81 if (inode->i_ino == F2FS_META_INO(sbi)) 82 return F2FS_RD_META; 83 84 if (inode->i_ino == F2FS_NODE_INO(sbi)) 85 return F2FS_RD_NODE; 86 } 87 return F2FS_RD_DATA; 88 } 89 90 /* postprocessing steps for read bios */ 91 enum bio_post_read_step { 92 #ifdef CONFIG_FS_ENCRYPTION 93 STEP_DECRYPT = BIT(0), 94 #else 95 STEP_DECRYPT = 0, /* compile out the decryption-related code */ 96 #endif 97 #ifdef CONFIG_F2FS_FS_COMPRESSION 98 STEP_DECOMPRESS = BIT(1), 99 #else 100 STEP_DECOMPRESS = 0, /* compile out the decompression-related code */ 101 #endif 102 #ifdef CONFIG_FS_VERITY 103 STEP_VERITY = BIT(2), 104 #else 105 STEP_VERITY = 0, /* compile out the verity-related code */ 106 #endif 107 }; 108 109 struct bio_post_read_ctx { 110 struct bio *bio; 111 struct f2fs_sb_info *sbi; 112 struct work_struct work; 113 unsigned int enabled_steps; 114 /* 115 * decompression_attempted keeps track of whether 116 * f2fs_end_read_compressed_page() has been called on the pages in the 117 * bio that belong to a compressed cluster yet. 118 */ 119 bool decompression_attempted; 120 block_t fs_blkaddr; 121 }; 122 123 /* 124 * Update and unlock a bio's pages, and free the bio. 125 * 126 * This marks pages up-to-date only if there was no error in the bio (I/O error, 127 * decryption error, or verity error), as indicated by bio->bi_status. 128 * 129 * "Compressed pages" (pagecache pages backed by a compressed cluster on-disk) 130 * aren't marked up-to-date here, as decompression is done on a per-compression- 131 * cluster basis rather than a per-bio basis. Instead, we only must do two 132 * things for each compressed page here: call f2fs_end_read_compressed_page() 133 * with failed=true if an error occurred before it would have normally gotten 134 * called (i.e., I/O error or decryption error, but *not* verity error), and 135 * release the bio's reference to the decompress_io_ctx of the page's cluster. 136 */ 137 static void f2fs_finish_read_bio(struct bio *bio, bool in_task) 138 { 139 struct folio_iter fi; 140 struct bio_post_read_ctx *ctx = bio->bi_private; 141 142 bio_for_each_folio_all(fi, bio) { 143 struct folio *folio = fi.folio; 144 145 if (f2fs_is_compressed_page(&folio->page)) { 146 if (ctx && !ctx->decompression_attempted) 147 f2fs_end_read_compressed_page(&folio->page, true, 0, 148 in_task); 149 f2fs_put_folio_dic(folio, in_task); 150 continue; 151 } 152 153 dec_page_count(F2FS_F_SB(folio), __read_io_type(folio)); 154 folio_end_read(folio, bio->bi_status == BLK_STS_OK); 155 } 156 157 if (ctx) 158 mempool_free(ctx, bio_post_read_ctx_pool); 159 bio_put(bio); 160 } 161 162 static void f2fs_verify_bio(struct work_struct *work) 163 { 164 struct bio_post_read_ctx *ctx = 165 container_of(work, struct bio_post_read_ctx, work); 166 struct bio *bio = ctx->bio; 167 bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS); 168 169 /* 170 * fsverity_verify_bio() may call readahead() again, and while verity 171 * will be disabled for this, decryption and/or decompression may still 172 * be needed, resulting in another bio_post_read_ctx being allocated. 173 * So to prevent deadlocks we need to release the current ctx to the 174 * mempool first. This assumes that verity is the last post-read step. 175 */ 176 mempool_free(ctx, bio_post_read_ctx_pool); 177 bio->bi_private = NULL; 178 179 /* 180 * Verify the bio's pages with fs-verity. Exclude compressed pages, 181 * as those were handled separately by f2fs_end_read_compressed_page(). 182 */ 183 if (may_have_compressed_pages) { 184 struct bio_vec *bv; 185 struct bvec_iter_all iter_all; 186 187 bio_for_each_segment_all(bv, bio, iter_all) { 188 struct page *page = bv->bv_page; 189 190 if (!f2fs_is_compressed_page(page) && 191 !fsverity_verify_page(page)) { 192 bio->bi_status = BLK_STS_IOERR; 193 break; 194 } 195 } 196 } else { 197 fsverity_verify_bio(bio); 198 } 199 200 f2fs_finish_read_bio(bio, true); 201 } 202 203 /* 204 * If the bio's data needs to be verified with fs-verity, then enqueue the 205 * verity work for the bio. Otherwise finish the bio now. 206 * 207 * Note that to avoid deadlocks, the verity work can't be done on the 208 * decryption/decompression workqueue. This is because verifying the data pages 209 * can involve reading verity metadata pages from the file, and these verity 210 * metadata pages may be encrypted and/or compressed. 211 */ 212 static void f2fs_verify_and_finish_bio(struct bio *bio, bool in_task) 213 { 214 struct bio_post_read_ctx *ctx = bio->bi_private; 215 216 if (ctx && (ctx->enabled_steps & STEP_VERITY)) { 217 INIT_WORK(&ctx->work, f2fs_verify_bio); 218 fsverity_enqueue_verify_work(&ctx->work); 219 } else { 220 f2fs_finish_read_bio(bio, in_task); 221 } 222 } 223 224 /* 225 * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last 226 * remaining page was read by @ctx->bio. 227 * 228 * Note that a bio may span clusters (even a mix of compressed and uncompressed 229 * clusters) or be for just part of a cluster. STEP_DECOMPRESS just indicates 230 * that the bio includes at least one compressed page. The actual decompression 231 * is done on a per-cluster basis, not a per-bio basis. 232 */ 233 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx, 234 bool in_task) 235 { 236 struct bio_vec *bv; 237 struct bvec_iter_all iter_all; 238 bool all_compressed = true; 239 block_t blkaddr = ctx->fs_blkaddr; 240 241 bio_for_each_segment_all(bv, ctx->bio, iter_all) { 242 struct page *page = bv->bv_page; 243 244 if (f2fs_is_compressed_page(page)) 245 f2fs_end_read_compressed_page(page, false, blkaddr, 246 in_task); 247 else 248 all_compressed = false; 249 250 blkaddr++; 251 } 252 253 ctx->decompression_attempted = true; 254 255 /* 256 * Optimization: if all the bio's pages are compressed, then scheduling 257 * the per-bio verity work is unnecessary, as verity will be fully 258 * handled at the compression cluster level. 259 */ 260 if (all_compressed) 261 ctx->enabled_steps &= ~STEP_VERITY; 262 } 263 264 static void f2fs_post_read_work(struct work_struct *work) 265 { 266 struct bio_post_read_ctx *ctx = 267 container_of(work, struct bio_post_read_ctx, work); 268 struct bio *bio = ctx->bio; 269 270 if ((ctx->enabled_steps & STEP_DECRYPT) && !fscrypt_decrypt_bio(bio)) { 271 f2fs_finish_read_bio(bio, true); 272 return; 273 } 274 275 if (ctx->enabled_steps & STEP_DECOMPRESS) 276 f2fs_handle_step_decompress(ctx, true); 277 278 f2fs_verify_and_finish_bio(bio, true); 279 } 280 281 static void f2fs_read_end_io(struct bio *bio) 282 { 283 struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio)); 284 struct bio_post_read_ctx *ctx; 285 bool intask = in_task(); 286 287 iostat_update_and_unbind_ctx(bio); 288 ctx = bio->bi_private; 289 290 if (time_to_inject(sbi, FAULT_READ_IO)) 291 bio->bi_status = BLK_STS_IOERR; 292 293 if (bio->bi_status != BLK_STS_OK) { 294 f2fs_finish_read_bio(bio, intask); 295 return; 296 } 297 298 if (ctx) { 299 unsigned int enabled_steps = ctx->enabled_steps & 300 (STEP_DECRYPT | STEP_DECOMPRESS); 301 302 /* 303 * If we have only decompression step between decompression and 304 * decrypt, we don't need post processing for this. 305 */ 306 if (enabled_steps == STEP_DECOMPRESS && 307 !f2fs_low_mem_mode(sbi)) { 308 f2fs_handle_step_decompress(ctx, intask); 309 } else if (enabled_steps) { 310 INIT_WORK(&ctx->work, f2fs_post_read_work); 311 queue_work(ctx->sbi->post_read_wq, &ctx->work); 312 return; 313 } 314 } 315 316 f2fs_verify_and_finish_bio(bio, intask); 317 } 318 319 static void f2fs_write_end_io(struct bio *bio) 320 { 321 struct f2fs_sb_info *sbi; 322 struct folio_iter fi; 323 324 iostat_update_and_unbind_ctx(bio); 325 sbi = bio->bi_private; 326 327 if (time_to_inject(sbi, FAULT_WRITE_IO)) 328 bio->bi_status = BLK_STS_IOERR; 329 330 bio_for_each_folio_all(fi, bio) { 331 struct folio *folio = fi.folio; 332 enum count_type type; 333 334 if (fscrypt_is_bounce_folio(folio)) { 335 struct folio *io_folio = folio; 336 337 folio = fscrypt_pagecache_folio(io_folio); 338 fscrypt_free_bounce_page(&io_folio->page); 339 } 340 341 #ifdef CONFIG_F2FS_FS_COMPRESSION 342 if (f2fs_is_compressed_page(&folio->page)) { 343 f2fs_compress_write_end_io(bio, &folio->page); 344 continue; 345 } 346 #endif 347 348 type = WB_DATA_TYPE(&folio->page, false); 349 350 if (unlikely(bio->bi_status != BLK_STS_OK)) { 351 mapping_set_error(folio->mapping, -EIO); 352 if (type == F2FS_WB_CP_DATA) 353 f2fs_stop_checkpoint(sbi, true, 354 STOP_CP_REASON_WRITE_FAIL); 355 } 356 357 f2fs_bug_on(sbi, is_node_folio(folio) && 358 folio->index != nid_of_node(&folio->page)); 359 360 dec_page_count(sbi, type); 361 if (f2fs_in_warm_node_list(sbi, folio)) 362 f2fs_del_fsync_node_entry(sbi, folio); 363 clear_page_private_gcing(&folio->page); 364 folio_end_writeback(folio); 365 } 366 if (!get_pages(sbi, F2FS_WB_CP_DATA) && 367 wq_has_sleeper(&sbi->cp_wait)) 368 wake_up(&sbi->cp_wait); 369 370 bio_put(bio); 371 } 372 373 #ifdef CONFIG_BLK_DEV_ZONED 374 static void f2fs_zone_write_end_io(struct bio *bio) 375 { 376 struct f2fs_bio_info *io = (struct f2fs_bio_info *)bio->bi_private; 377 378 bio->bi_private = io->bi_private; 379 complete(&io->zone_wait); 380 f2fs_write_end_io(bio); 381 } 382 #endif 383 384 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 385 block_t blk_addr, sector_t *sector) 386 { 387 struct block_device *bdev = sbi->sb->s_bdev; 388 int i; 389 390 if (f2fs_is_multi_device(sbi)) { 391 for (i = 0; i < sbi->s_ndevs; i++) { 392 if (FDEV(i).start_blk <= blk_addr && 393 FDEV(i).end_blk >= blk_addr) { 394 blk_addr -= FDEV(i).start_blk; 395 bdev = FDEV(i).bdev; 396 break; 397 } 398 } 399 } 400 401 if (sector) 402 *sector = SECTOR_FROM_BLOCK(blk_addr); 403 return bdev; 404 } 405 406 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr) 407 { 408 int i; 409 410 if (!f2fs_is_multi_device(sbi)) 411 return 0; 412 413 for (i = 0; i < sbi->s_ndevs; i++) 414 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr) 415 return i; 416 return 0; 417 } 418 419 static blk_opf_t f2fs_io_flags(struct f2fs_io_info *fio) 420 { 421 unsigned int temp_mask = GENMASK(NR_TEMP_TYPE - 1, 0); 422 struct folio *fio_folio = page_folio(fio->page); 423 unsigned int fua_flag, meta_flag, io_flag; 424 blk_opf_t op_flags = 0; 425 426 if (fio->op != REQ_OP_WRITE) 427 return 0; 428 if (fio->type == DATA) 429 io_flag = fio->sbi->data_io_flag; 430 else if (fio->type == NODE) 431 io_flag = fio->sbi->node_io_flag; 432 else 433 return 0; 434 435 fua_flag = io_flag & temp_mask; 436 meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask; 437 438 /* 439 * data/node io flag bits per temp: 440 * REQ_META | REQ_FUA | 441 * 5 | 4 | 3 | 2 | 1 | 0 | 442 * Cold | Warm | Hot | Cold | Warm | Hot | 443 */ 444 if (BIT(fio->temp) & meta_flag) 445 op_flags |= REQ_META; 446 if (BIT(fio->temp) & fua_flag) 447 op_flags |= REQ_FUA; 448 449 if (fio->type == DATA && 450 F2FS_I(fio_folio->mapping->host)->ioprio_hint == F2FS_IOPRIO_WRITE) 451 op_flags |= REQ_PRIO; 452 453 return op_flags; 454 } 455 456 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages) 457 { 458 struct f2fs_sb_info *sbi = fio->sbi; 459 struct block_device *bdev; 460 sector_t sector; 461 struct bio *bio; 462 463 bdev = f2fs_target_device(sbi, fio->new_blkaddr, §or); 464 bio = bio_alloc_bioset(bdev, npages, 465 fio->op | fio->op_flags | f2fs_io_flags(fio), 466 GFP_NOIO, &f2fs_bioset); 467 bio->bi_iter.bi_sector = sector; 468 if (is_read_io(fio->op)) { 469 bio->bi_end_io = f2fs_read_end_io; 470 bio->bi_private = NULL; 471 } else { 472 bio->bi_end_io = f2fs_write_end_io; 473 bio->bi_private = sbi; 474 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, 475 fio->type, fio->temp); 476 } 477 iostat_alloc_and_bind_ctx(sbi, bio, NULL); 478 479 if (fio->io_wbc) 480 wbc_init_bio(fio->io_wbc, bio); 481 482 return bio; 483 } 484 485 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode, 486 pgoff_t first_idx, 487 const struct f2fs_io_info *fio, 488 gfp_t gfp_mask) 489 { 490 /* 491 * The f2fs garbage collector sets ->encrypted_page when it wants to 492 * read/write raw data without encryption. 493 */ 494 if (!fio || !fio->encrypted_page) 495 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask); 496 } 497 498 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode, 499 pgoff_t next_idx, 500 const struct f2fs_io_info *fio) 501 { 502 /* 503 * The f2fs garbage collector sets ->encrypted_page when it wants to 504 * read/write raw data without encryption. 505 */ 506 if (fio && fio->encrypted_page) 507 return !bio_has_crypt_ctx(bio); 508 509 return fscrypt_mergeable_bio(bio, inode, next_idx); 510 } 511 512 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio, 513 enum page_type type) 514 { 515 WARN_ON_ONCE(!is_read_io(bio_op(bio))); 516 trace_f2fs_submit_read_bio(sbi->sb, type, bio); 517 518 iostat_update_submit_ctx(bio, type); 519 submit_bio(bio); 520 } 521 522 static void f2fs_submit_write_bio(struct f2fs_sb_info *sbi, struct bio *bio, 523 enum page_type type) 524 { 525 WARN_ON_ONCE(is_read_io(bio_op(bio))); 526 trace_f2fs_submit_write_bio(sbi->sb, type, bio); 527 iostat_update_submit_ctx(bio, type); 528 submit_bio(bio); 529 } 530 531 static void __submit_merged_bio(struct f2fs_bio_info *io) 532 { 533 struct f2fs_io_info *fio = &io->fio; 534 535 if (!io->bio) 536 return; 537 538 if (is_read_io(fio->op)) { 539 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio); 540 f2fs_submit_read_bio(io->sbi, io->bio, fio->type); 541 } else { 542 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio); 543 f2fs_submit_write_bio(io->sbi, io->bio, fio->type); 544 } 545 io->bio = NULL; 546 } 547 548 static bool __has_merged_page(struct bio *bio, struct inode *inode, 549 struct page *page, nid_t ino) 550 { 551 struct folio_iter fi; 552 553 if (!bio) 554 return false; 555 556 if (!inode && !page && !ino) 557 return true; 558 559 bio_for_each_folio_all(fi, bio) { 560 struct folio *target = fi.folio; 561 562 if (fscrypt_is_bounce_folio(target)) { 563 target = fscrypt_pagecache_folio(target); 564 if (IS_ERR(target)) 565 continue; 566 } 567 if (f2fs_is_compressed_page(&target->page)) { 568 target = f2fs_compress_control_folio(target); 569 if (IS_ERR(target)) 570 continue; 571 } 572 573 if (inode && inode == target->mapping->host) 574 return true; 575 if (page && page == &target->page) 576 return true; 577 if (ino && ino == ino_of_node(&target->page)) 578 return true; 579 } 580 581 return false; 582 } 583 584 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi) 585 { 586 int i; 587 588 for (i = 0; i < NR_PAGE_TYPE; i++) { 589 int n = (i == META) ? 1 : NR_TEMP_TYPE; 590 int j; 591 592 sbi->write_io[i] = f2fs_kmalloc(sbi, 593 array_size(n, sizeof(struct f2fs_bio_info)), 594 GFP_KERNEL); 595 if (!sbi->write_io[i]) 596 return -ENOMEM; 597 598 for (j = HOT; j < n; j++) { 599 struct f2fs_bio_info *io = &sbi->write_io[i][j]; 600 601 init_f2fs_rwsem(&io->io_rwsem); 602 io->sbi = sbi; 603 io->bio = NULL; 604 io->last_block_in_bio = 0; 605 spin_lock_init(&io->io_lock); 606 INIT_LIST_HEAD(&io->io_list); 607 INIT_LIST_HEAD(&io->bio_list); 608 init_f2fs_rwsem(&io->bio_list_lock); 609 #ifdef CONFIG_BLK_DEV_ZONED 610 init_completion(&io->zone_wait); 611 io->zone_pending_bio = NULL; 612 io->bi_private = NULL; 613 #endif 614 } 615 } 616 617 return 0; 618 } 619 620 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi, 621 enum page_type type, enum temp_type temp) 622 { 623 enum page_type btype = PAGE_TYPE_OF_BIO(type); 624 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 625 626 f2fs_down_write(&io->io_rwsem); 627 628 if (!io->bio) 629 goto unlock_out; 630 631 /* change META to META_FLUSH in the checkpoint procedure */ 632 if (type >= META_FLUSH) { 633 io->fio.type = META_FLUSH; 634 io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC; 635 if (!test_opt(sbi, NOBARRIER)) 636 io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA; 637 } 638 __submit_merged_bio(io); 639 unlock_out: 640 f2fs_up_write(&io->io_rwsem); 641 } 642 643 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi, 644 struct inode *inode, struct page *page, 645 nid_t ino, enum page_type type, bool force) 646 { 647 enum temp_type temp; 648 bool ret = true; 649 650 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) { 651 if (!force) { 652 enum page_type btype = PAGE_TYPE_OF_BIO(type); 653 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 654 655 f2fs_down_read(&io->io_rwsem); 656 ret = __has_merged_page(io->bio, inode, page, ino); 657 f2fs_up_read(&io->io_rwsem); 658 } 659 if (ret) 660 __f2fs_submit_merged_write(sbi, type, temp); 661 662 /* TODO: use HOT temp only for meta pages now. */ 663 if (type >= META) 664 break; 665 } 666 } 667 668 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type) 669 { 670 __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true); 671 } 672 673 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 674 struct inode *inode, struct page *page, 675 nid_t ino, enum page_type type) 676 { 677 __submit_merged_write_cond(sbi, inode, page, ino, type, false); 678 } 679 680 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi) 681 { 682 f2fs_submit_merged_write(sbi, DATA); 683 f2fs_submit_merged_write(sbi, NODE); 684 f2fs_submit_merged_write(sbi, META); 685 } 686 687 /* 688 * Fill the locked page with data located in the block address. 689 * A caller needs to unlock the page on failure. 690 */ 691 int f2fs_submit_page_bio(struct f2fs_io_info *fio) 692 { 693 struct bio *bio; 694 struct folio *fio_folio = page_folio(fio->page); 695 struct folio *data_folio = fio->encrypted_page ? 696 page_folio(fio->encrypted_page) : fio_folio; 697 698 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, 699 fio->is_por ? META_POR : (__is_meta_io(fio) ? 700 META_GENERIC : DATA_GENERIC_ENHANCE))) 701 return -EFSCORRUPTED; 702 703 trace_f2fs_submit_folio_bio(data_folio, fio); 704 705 /* Allocate a new bio */ 706 bio = __bio_alloc(fio, 1); 707 708 f2fs_set_bio_crypt_ctx(bio, fio_folio->mapping->host, 709 fio_folio->index, fio, GFP_NOIO); 710 bio_add_folio_nofail(bio, data_folio, folio_size(data_folio), 0); 711 712 if (fio->io_wbc && !is_read_io(fio->op)) 713 wbc_account_cgroup_owner(fio->io_wbc, fio_folio, PAGE_SIZE); 714 715 inc_page_count(fio->sbi, is_read_io(fio->op) ? 716 __read_io_type(data_folio) : WB_DATA_TYPE(fio->page, false)); 717 718 if (is_read_io(bio_op(bio))) 719 f2fs_submit_read_bio(fio->sbi, bio, fio->type); 720 else 721 f2fs_submit_write_bio(fio->sbi, bio, fio->type); 722 return 0; 723 } 724 725 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio, 726 block_t last_blkaddr, block_t cur_blkaddr) 727 { 728 if (unlikely(sbi->max_io_bytes && 729 bio->bi_iter.bi_size >= sbi->max_io_bytes)) 730 return false; 731 if (last_blkaddr + 1 != cur_blkaddr) 732 return false; 733 return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL); 734 } 735 736 static bool io_type_is_mergeable(struct f2fs_bio_info *io, 737 struct f2fs_io_info *fio) 738 { 739 if (io->fio.op != fio->op) 740 return false; 741 return io->fio.op_flags == fio->op_flags; 742 } 743 744 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio, 745 struct f2fs_bio_info *io, 746 struct f2fs_io_info *fio, 747 block_t last_blkaddr, 748 block_t cur_blkaddr) 749 { 750 if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr)) 751 return false; 752 return io_type_is_mergeable(io, fio); 753 } 754 755 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio, 756 struct page *page, enum temp_type temp) 757 { 758 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 759 struct bio_entry *be; 760 761 be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL); 762 be->bio = bio; 763 bio_get(bio); 764 765 if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE) 766 f2fs_bug_on(sbi, 1); 767 768 f2fs_down_write(&io->bio_list_lock); 769 list_add_tail(&be->list, &io->bio_list); 770 f2fs_up_write(&io->bio_list_lock); 771 } 772 773 static void del_bio_entry(struct bio_entry *be) 774 { 775 list_del(&be->list); 776 kmem_cache_free(bio_entry_slab, be); 777 } 778 779 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio, 780 struct page *page) 781 { 782 struct folio *fio_folio = page_folio(fio->page); 783 struct f2fs_sb_info *sbi = fio->sbi; 784 enum temp_type temp; 785 bool found = false; 786 int ret = -EAGAIN; 787 788 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) { 789 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 790 struct list_head *head = &io->bio_list; 791 struct bio_entry *be; 792 793 f2fs_down_write(&io->bio_list_lock); 794 list_for_each_entry(be, head, list) { 795 if (be->bio != *bio) 796 continue; 797 798 found = true; 799 800 f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio, 801 *fio->last_block, 802 fio->new_blkaddr)); 803 if (f2fs_crypt_mergeable_bio(*bio, 804 fio_folio->mapping->host, 805 fio_folio->index, fio) && 806 bio_add_page(*bio, page, PAGE_SIZE, 0) == 807 PAGE_SIZE) { 808 ret = 0; 809 break; 810 } 811 812 /* page can't be merged into bio; submit the bio */ 813 del_bio_entry(be); 814 f2fs_submit_write_bio(sbi, *bio, DATA); 815 break; 816 } 817 f2fs_up_write(&io->bio_list_lock); 818 } 819 820 if (ret) { 821 bio_put(*bio); 822 *bio = NULL; 823 } 824 825 return ret; 826 } 827 828 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi, 829 struct bio **bio, struct folio *folio) 830 { 831 enum temp_type temp; 832 bool found = false; 833 struct bio *target = bio ? *bio : NULL; 834 835 f2fs_bug_on(sbi, !target && !folio); 836 837 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) { 838 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 839 struct list_head *head = &io->bio_list; 840 struct bio_entry *be; 841 842 if (list_empty(head)) 843 continue; 844 845 f2fs_down_read(&io->bio_list_lock); 846 list_for_each_entry(be, head, list) { 847 if (target) 848 found = (target == be->bio); 849 else 850 found = __has_merged_page(be->bio, NULL, 851 &folio->page, 0); 852 if (found) 853 break; 854 } 855 f2fs_up_read(&io->bio_list_lock); 856 857 if (!found) 858 continue; 859 860 found = false; 861 862 f2fs_down_write(&io->bio_list_lock); 863 list_for_each_entry(be, head, list) { 864 if (target) 865 found = (target == be->bio); 866 else 867 found = __has_merged_page(be->bio, NULL, 868 &folio->page, 0); 869 if (found) { 870 target = be->bio; 871 del_bio_entry(be); 872 break; 873 } 874 } 875 f2fs_up_write(&io->bio_list_lock); 876 } 877 878 if (found) 879 f2fs_submit_write_bio(sbi, target, DATA); 880 if (bio && *bio) { 881 bio_put(*bio); 882 *bio = NULL; 883 } 884 } 885 886 int f2fs_merge_page_bio(struct f2fs_io_info *fio) 887 { 888 struct bio *bio = *fio->bio; 889 struct page *page = fio->encrypted_page ? 890 fio->encrypted_page : fio->page; 891 struct folio *folio = page_folio(fio->page); 892 893 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, 894 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC)) 895 return -EFSCORRUPTED; 896 897 trace_f2fs_submit_folio_bio(page_folio(page), fio); 898 899 if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block, 900 fio->new_blkaddr)) 901 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL); 902 alloc_new: 903 if (!bio) { 904 bio = __bio_alloc(fio, BIO_MAX_VECS); 905 f2fs_set_bio_crypt_ctx(bio, folio->mapping->host, 906 folio->index, fio, GFP_NOIO); 907 908 add_bio_entry(fio->sbi, bio, page, fio->temp); 909 } else { 910 if (add_ipu_page(fio, &bio, page)) 911 goto alloc_new; 912 } 913 914 if (fio->io_wbc) 915 wbc_account_cgroup_owner(fio->io_wbc, folio, folio_size(folio)); 916 917 inc_page_count(fio->sbi, WB_DATA_TYPE(page, false)); 918 919 *fio->last_block = fio->new_blkaddr; 920 *fio->bio = bio; 921 922 return 0; 923 } 924 925 #ifdef CONFIG_BLK_DEV_ZONED 926 static bool is_end_zone_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr) 927 { 928 struct block_device *bdev = sbi->sb->s_bdev; 929 int devi = 0; 930 931 if (f2fs_is_multi_device(sbi)) { 932 devi = f2fs_target_device_index(sbi, blkaddr); 933 if (blkaddr < FDEV(devi).start_blk || 934 blkaddr > FDEV(devi).end_blk) { 935 f2fs_err(sbi, "Invalid block %x", blkaddr); 936 return false; 937 } 938 blkaddr -= FDEV(devi).start_blk; 939 bdev = FDEV(devi).bdev; 940 } 941 return bdev_is_zoned(bdev) && 942 f2fs_blkz_is_seq(sbi, devi, blkaddr) && 943 (blkaddr % sbi->blocks_per_blkz == sbi->blocks_per_blkz - 1); 944 } 945 #endif 946 947 void f2fs_submit_page_write(struct f2fs_io_info *fio) 948 { 949 struct f2fs_sb_info *sbi = fio->sbi; 950 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type); 951 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp; 952 struct page *bio_page; 953 enum count_type type; 954 955 f2fs_bug_on(sbi, is_read_io(fio->op)); 956 957 f2fs_down_write(&io->io_rwsem); 958 next: 959 #ifdef CONFIG_BLK_DEV_ZONED 960 if (f2fs_sb_has_blkzoned(sbi) && btype < META && io->zone_pending_bio) { 961 wait_for_completion_io(&io->zone_wait); 962 bio_put(io->zone_pending_bio); 963 io->zone_pending_bio = NULL; 964 io->bi_private = NULL; 965 } 966 #endif 967 968 if (fio->in_list) { 969 spin_lock(&io->io_lock); 970 if (list_empty(&io->io_list)) { 971 spin_unlock(&io->io_lock); 972 goto out; 973 } 974 fio = list_first_entry(&io->io_list, 975 struct f2fs_io_info, list); 976 list_del(&fio->list); 977 spin_unlock(&io->io_lock); 978 } 979 980 verify_fio_blkaddr(fio); 981 982 if (fio->encrypted_page) 983 bio_page = fio->encrypted_page; 984 else if (fio->compressed_page) 985 bio_page = fio->compressed_page; 986 else 987 bio_page = fio->page; 988 989 /* set submitted = true as a return value */ 990 fio->submitted = 1; 991 992 type = WB_DATA_TYPE(bio_page, fio->compressed_page); 993 inc_page_count(sbi, type); 994 995 if (io->bio && 996 (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio, 997 fio->new_blkaddr) || 998 !f2fs_crypt_mergeable_bio(io->bio, fio_inode(fio), 999 page_folio(bio_page)->index, fio))) 1000 __submit_merged_bio(io); 1001 alloc_new: 1002 if (io->bio == NULL) { 1003 io->bio = __bio_alloc(fio, BIO_MAX_VECS); 1004 f2fs_set_bio_crypt_ctx(io->bio, fio_inode(fio), 1005 page_folio(bio_page)->index, fio, GFP_NOIO); 1006 io->fio = *fio; 1007 } 1008 1009 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) { 1010 __submit_merged_bio(io); 1011 goto alloc_new; 1012 } 1013 1014 if (fio->io_wbc) 1015 wbc_account_cgroup_owner(fio->io_wbc, page_folio(fio->page), 1016 PAGE_SIZE); 1017 1018 io->last_block_in_bio = fio->new_blkaddr; 1019 1020 trace_f2fs_submit_folio_write(page_folio(fio->page), fio); 1021 #ifdef CONFIG_BLK_DEV_ZONED 1022 if (f2fs_sb_has_blkzoned(sbi) && btype < META && 1023 is_end_zone_blkaddr(sbi, fio->new_blkaddr)) { 1024 bio_get(io->bio); 1025 reinit_completion(&io->zone_wait); 1026 io->bi_private = io->bio->bi_private; 1027 io->bio->bi_private = io; 1028 io->bio->bi_end_io = f2fs_zone_write_end_io; 1029 io->zone_pending_bio = io->bio; 1030 __submit_merged_bio(io); 1031 } 1032 #endif 1033 if (fio->in_list) 1034 goto next; 1035 out: 1036 if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || 1037 !f2fs_is_checkpoint_ready(sbi)) 1038 __submit_merged_bio(io); 1039 f2fs_up_write(&io->io_rwsem); 1040 } 1041 1042 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr, 1043 unsigned nr_pages, blk_opf_t op_flag, 1044 pgoff_t first_idx, bool for_write) 1045 { 1046 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1047 struct bio *bio; 1048 struct bio_post_read_ctx *ctx = NULL; 1049 unsigned int post_read_steps = 0; 1050 sector_t sector; 1051 struct block_device *bdev = f2fs_target_device(sbi, blkaddr, §or); 1052 1053 bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages), 1054 REQ_OP_READ | op_flag, 1055 for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset); 1056 bio->bi_iter.bi_sector = sector; 1057 f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS); 1058 bio->bi_end_io = f2fs_read_end_io; 1059 1060 if (fscrypt_inode_uses_fs_layer_crypto(inode)) 1061 post_read_steps |= STEP_DECRYPT; 1062 1063 if (f2fs_need_verity(inode, first_idx)) 1064 post_read_steps |= STEP_VERITY; 1065 1066 /* 1067 * STEP_DECOMPRESS is handled specially, since a compressed file might 1068 * contain both compressed and uncompressed clusters. We'll allocate a 1069 * bio_post_read_ctx if the file is compressed, but the caller is 1070 * responsible for enabling STEP_DECOMPRESS if it's actually needed. 1071 */ 1072 1073 if (post_read_steps || f2fs_compressed_file(inode)) { 1074 /* Due to the mempool, this never fails. */ 1075 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS); 1076 ctx->bio = bio; 1077 ctx->sbi = sbi; 1078 ctx->enabled_steps = post_read_steps; 1079 ctx->fs_blkaddr = blkaddr; 1080 ctx->decompression_attempted = false; 1081 bio->bi_private = ctx; 1082 } 1083 iostat_alloc_and_bind_ctx(sbi, bio, ctx); 1084 1085 return bio; 1086 } 1087 1088 /* This can handle encryption stuffs */ 1089 static int f2fs_submit_page_read(struct inode *inode, struct folio *folio, 1090 block_t blkaddr, blk_opf_t op_flags, 1091 bool for_write) 1092 { 1093 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1094 struct bio *bio; 1095 1096 bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags, 1097 folio->index, for_write); 1098 if (IS_ERR(bio)) 1099 return PTR_ERR(bio); 1100 1101 /* wait for GCed page writeback via META_MAPPING */ 1102 f2fs_wait_on_block_writeback(inode, blkaddr); 1103 1104 if (!bio_add_folio(bio, folio, PAGE_SIZE, 0)) { 1105 iostat_update_and_unbind_ctx(bio); 1106 if (bio->bi_private) 1107 mempool_free(bio->bi_private, bio_post_read_ctx_pool); 1108 bio_put(bio); 1109 return -EFAULT; 1110 } 1111 inc_page_count(sbi, F2FS_RD_DATA); 1112 f2fs_update_iostat(sbi, NULL, FS_DATA_READ_IO, F2FS_BLKSIZE); 1113 f2fs_submit_read_bio(sbi, bio, DATA); 1114 return 0; 1115 } 1116 1117 static void __set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) 1118 { 1119 __le32 *addr = get_dnode_addr(dn->inode, dn->node_folio); 1120 1121 dn->data_blkaddr = blkaddr; 1122 addr[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr); 1123 } 1124 1125 /* 1126 * Lock ordering for the change of data block address: 1127 * ->data_page 1128 * ->node_folio 1129 * update block addresses in the node page 1130 */ 1131 void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) 1132 { 1133 f2fs_folio_wait_writeback(dn->node_folio, NODE, true, true); 1134 __set_data_blkaddr(dn, blkaddr); 1135 if (folio_mark_dirty(dn->node_folio)) 1136 dn->node_changed = true; 1137 } 1138 1139 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) 1140 { 1141 f2fs_set_data_blkaddr(dn, blkaddr); 1142 f2fs_update_read_extent_cache(dn); 1143 } 1144 1145 /* dn->ofs_in_node will be returned with up-to-date last block pointer */ 1146 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count) 1147 { 1148 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1149 int err; 1150 1151 if (!count) 1152 return 0; 1153 1154 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1155 return -EPERM; 1156 err = inc_valid_block_count(sbi, dn->inode, &count, true); 1157 if (unlikely(err)) 1158 return err; 1159 1160 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid, 1161 dn->ofs_in_node, count); 1162 1163 f2fs_folio_wait_writeback(dn->node_folio, NODE, true, true); 1164 1165 for (; count > 0; dn->ofs_in_node++) { 1166 block_t blkaddr = f2fs_data_blkaddr(dn); 1167 1168 if (blkaddr == NULL_ADDR) { 1169 __set_data_blkaddr(dn, NEW_ADDR); 1170 count--; 1171 } 1172 } 1173 1174 if (folio_mark_dirty(dn->node_folio)) 1175 dn->node_changed = true; 1176 return 0; 1177 } 1178 1179 /* Should keep dn->ofs_in_node unchanged */ 1180 int f2fs_reserve_new_block(struct dnode_of_data *dn) 1181 { 1182 unsigned int ofs_in_node = dn->ofs_in_node; 1183 int ret; 1184 1185 ret = f2fs_reserve_new_blocks(dn, 1); 1186 dn->ofs_in_node = ofs_in_node; 1187 return ret; 1188 } 1189 1190 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index) 1191 { 1192 bool need_put = dn->inode_folio ? false : true; 1193 int err; 1194 1195 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE); 1196 if (err) 1197 return err; 1198 1199 if (dn->data_blkaddr == NULL_ADDR) 1200 err = f2fs_reserve_new_block(dn); 1201 if (err || need_put) 1202 f2fs_put_dnode(dn); 1203 return err; 1204 } 1205 1206 struct folio *f2fs_get_read_data_folio(struct inode *inode, pgoff_t index, 1207 blk_opf_t op_flags, bool for_write, pgoff_t *next_pgofs) 1208 { 1209 struct address_space *mapping = inode->i_mapping; 1210 struct dnode_of_data dn; 1211 struct folio *folio; 1212 int err; 1213 1214 folio = f2fs_grab_cache_folio(mapping, index, for_write); 1215 if (IS_ERR(folio)) 1216 return folio; 1217 1218 if (f2fs_lookup_read_extent_cache_block(inode, index, 1219 &dn.data_blkaddr)) { 1220 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr, 1221 DATA_GENERIC_ENHANCE_READ)) { 1222 err = -EFSCORRUPTED; 1223 goto put_err; 1224 } 1225 goto got_it; 1226 } 1227 1228 set_new_dnode(&dn, inode, NULL, NULL, 0); 1229 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 1230 if (err) { 1231 if (err == -ENOENT && next_pgofs) 1232 *next_pgofs = f2fs_get_next_page_offset(&dn, index); 1233 goto put_err; 1234 } 1235 f2fs_put_dnode(&dn); 1236 1237 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { 1238 err = -ENOENT; 1239 if (next_pgofs) 1240 *next_pgofs = index + 1; 1241 goto put_err; 1242 } 1243 if (dn.data_blkaddr != NEW_ADDR && 1244 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode), 1245 dn.data_blkaddr, 1246 DATA_GENERIC_ENHANCE)) { 1247 err = -EFSCORRUPTED; 1248 goto put_err; 1249 } 1250 got_it: 1251 if (folio_test_uptodate(folio)) { 1252 folio_unlock(folio); 1253 return folio; 1254 } 1255 1256 /* 1257 * A new dentry page is allocated but not able to be written, since its 1258 * new inode page couldn't be allocated due to -ENOSPC. 1259 * In such the case, its blkaddr can be remained as NEW_ADDR. 1260 * see, f2fs_add_link -> f2fs_get_new_data_folio -> 1261 * f2fs_init_inode_metadata. 1262 */ 1263 if (dn.data_blkaddr == NEW_ADDR) { 1264 folio_zero_segment(folio, 0, folio_size(folio)); 1265 if (!folio_test_uptodate(folio)) 1266 folio_mark_uptodate(folio); 1267 folio_unlock(folio); 1268 return folio; 1269 } 1270 1271 err = f2fs_submit_page_read(inode, folio, dn.data_blkaddr, 1272 op_flags, for_write); 1273 if (err) 1274 goto put_err; 1275 return folio; 1276 1277 put_err: 1278 f2fs_folio_put(folio, true); 1279 return ERR_PTR(err); 1280 } 1281 1282 struct folio *f2fs_find_data_folio(struct inode *inode, pgoff_t index, 1283 pgoff_t *next_pgofs) 1284 { 1285 struct address_space *mapping = inode->i_mapping; 1286 struct folio *folio; 1287 1288 folio = __filemap_get_folio(mapping, index, FGP_ACCESSED, 0); 1289 if (IS_ERR(folio)) 1290 goto read; 1291 if (folio_test_uptodate(folio)) 1292 return folio; 1293 f2fs_folio_put(folio, false); 1294 1295 read: 1296 folio = f2fs_get_read_data_folio(inode, index, 0, false, next_pgofs); 1297 if (IS_ERR(folio)) 1298 return folio; 1299 1300 if (folio_test_uptodate(folio)) 1301 return folio; 1302 1303 folio_wait_locked(folio); 1304 if (unlikely(!folio_test_uptodate(folio))) { 1305 f2fs_folio_put(folio, false); 1306 return ERR_PTR(-EIO); 1307 } 1308 return folio; 1309 } 1310 1311 /* 1312 * If it tries to access a hole, return an error. 1313 * Because, the callers, functions in dir.c and GC, should be able to know 1314 * whether this page exists or not. 1315 */ 1316 struct folio *f2fs_get_lock_data_folio(struct inode *inode, pgoff_t index, 1317 bool for_write) 1318 { 1319 struct address_space *mapping = inode->i_mapping; 1320 struct folio *folio; 1321 1322 folio = f2fs_get_read_data_folio(inode, index, 0, for_write, NULL); 1323 if (IS_ERR(folio)) 1324 return folio; 1325 1326 /* wait for read completion */ 1327 folio_lock(folio); 1328 if (unlikely(folio->mapping != mapping || !folio_test_uptodate(folio))) { 1329 f2fs_folio_put(folio, true); 1330 return ERR_PTR(-EIO); 1331 } 1332 return folio; 1333 } 1334 1335 /* 1336 * Caller ensures that this data page is never allocated. 1337 * A new zero-filled data page is allocated in the page cache. 1338 * 1339 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and 1340 * f2fs_unlock_op(). 1341 * Note that, ifolio is set only by make_empty_dir, and if any error occur, 1342 * ifolio should be released by this function. 1343 */ 1344 struct folio *f2fs_get_new_data_folio(struct inode *inode, 1345 struct folio *ifolio, pgoff_t index, bool new_i_size) 1346 { 1347 struct address_space *mapping = inode->i_mapping; 1348 struct folio *folio; 1349 struct dnode_of_data dn; 1350 int err; 1351 1352 folio = f2fs_grab_cache_folio(mapping, index, true); 1353 if (IS_ERR(folio)) { 1354 /* 1355 * before exiting, we should make sure ifolio will be released 1356 * if any error occur. 1357 */ 1358 f2fs_folio_put(ifolio, true); 1359 return ERR_PTR(-ENOMEM); 1360 } 1361 1362 set_new_dnode(&dn, inode, ifolio, NULL, 0); 1363 err = f2fs_reserve_block(&dn, index); 1364 if (err) { 1365 f2fs_folio_put(folio, true); 1366 return ERR_PTR(err); 1367 } 1368 if (!ifolio) 1369 f2fs_put_dnode(&dn); 1370 1371 if (folio_test_uptodate(folio)) 1372 goto got_it; 1373 1374 if (dn.data_blkaddr == NEW_ADDR) { 1375 folio_zero_segment(folio, 0, folio_size(folio)); 1376 if (!folio_test_uptodate(folio)) 1377 folio_mark_uptodate(folio); 1378 } else { 1379 f2fs_folio_put(folio, true); 1380 1381 /* if ifolio exists, blkaddr should be NEW_ADDR */ 1382 f2fs_bug_on(F2FS_I_SB(inode), ifolio); 1383 folio = f2fs_get_lock_data_folio(inode, index, true); 1384 if (IS_ERR(folio)) 1385 return folio; 1386 } 1387 got_it: 1388 if (new_i_size && i_size_read(inode) < 1389 ((loff_t)(index + 1) << PAGE_SHIFT)) 1390 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT)); 1391 return folio; 1392 } 1393 1394 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type) 1395 { 1396 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1397 struct f2fs_summary sum; 1398 struct node_info ni; 1399 block_t old_blkaddr; 1400 blkcnt_t count = 1; 1401 int err; 1402 1403 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1404 return -EPERM; 1405 1406 err = f2fs_get_node_info(sbi, dn->nid, &ni, false); 1407 if (err) 1408 return err; 1409 1410 dn->data_blkaddr = f2fs_data_blkaddr(dn); 1411 if (dn->data_blkaddr == NULL_ADDR) { 1412 err = inc_valid_block_count(sbi, dn->inode, &count, true); 1413 if (unlikely(err)) 1414 return err; 1415 } 1416 1417 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 1418 old_blkaddr = dn->data_blkaddr; 1419 err = f2fs_allocate_data_block(sbi, NULL, old_blkaddr, 1420 &dn->data_blkaddr, &sum, seg_type, NULL); 1421 if (err) 1422 return err; 1423 1424 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 1425 f2fs_invalidate_internal_cache(sbi, old_blkaddr, 1); 1426 1427 f2fs_update_data_blkaddr(dn, dn->data_blkaddr); 1428 return 0; 1429 } 1430 1431 static void f2fs_map_lock(struct f2fs_sb_info *sbi, int flag) 1432 { 1433 if (flag == F2FS_GET_BLOCK_PRE_AIO) 1434 f2fs_down_read(&sbi->node_change); 1435 else 1436 f2fs_lock_op(sbi); 1437 } 1438 1439 static void f2fs_map_unlock(struct f2fs_sb_info *sbi, int flag) 1440 { 1441 if (flag == F2FS_GET_BLOCK_PRE_AIO) 1442 f2fs_up_read(&sbi->node_change); 1443 else 1444 f2fs_unlock_op(sbi); 1445 } 1446 1447 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index) 1448 { 1449 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1450 int err = 0; 1451 1452 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO); 1453 if (!f2fs_lookup_read_extent_cache_block(dn->inode, index, 1454 &dn->data_blkaddr)) 1455 err = f2fs_reserve_block(dn, index); 1456 f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO); 1457 1458 return err; 1459 } 1460 1461 static int f2fs_map_no_dnode(struct inode *inode, 1462 struct f2fs_map_blocks *map, struct dnode_of_data *dn, 1463 pgoff_t pgoff) 1464 { 1465 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1466 1467 /* 1468 * There is one exceptional case that read_node_page() may return 1469 * -ENOENT due to filesystem has been shutdown or cp_error, return 1470 * -EIO in that case. 1471 */ 1472 if (map->m_may_create && 1473 (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || f2fs_cp_error(sbi))) 1474 return -EIO; 1475 1476 if (map->m_next_pgofs) 1477 *map->m_next_pgofs = f2fs_get_next_page_offset(dn, pgoff); 1478 if (map->m_next_extent) 1479 *map->m_next_extent = f2fs_get_next_page_offset(dn, pgoff); 1480 return 0; 1481 } 1482 1483 static bool f2fs_map_blocks_cached(struct inode *inode, 1484 struct f2fs_map_blocks *map, int flag) 1485 { 1486 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1487 unsigned int maxblocks = map->m_len; 1488 pgoff_t pgoff = (pgoff_t)map->m_lblk; 1489 struct extent_info ei = {}; 1490 1491 if (!f2fs_lookup_read_extent_cache(inode, pgoff, &ei)) 1492 return false; 1493 1494 map->m_pblk = ei.blk + pgoff - ei.fofs; 1495 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgoff); 1496 map->m_flags = F2FS_MAP_MAPPED; 1497 if (map->m_next_extent) 1498 *map->m_next_extent = pgoff + map->m_len; 1499 1500 /* for hardware encryption, but to avoid potential issue in future */ 1501 if (flag == F2FS_GET_BLOCK_DIO) 1502 f2fs_wait_on_block_writeback_range(inode, 1503 map->m_pblk, map->m_len); 1504 1505 if (f2fs_allow_multi_device_dio(sbi, flag)) { 1506 int bidx = f2fs_target_device_index(sbi, map->m_pblk); 1507 struct f2fs_dev_info *dev = &sbi->devs[bidx]; 1508 1509 map->m_bdev = dev->bdev; 1510 map->m_pblk -= dev->start_blk; 1511 map->m_len = min(map->m_len, dev->end_blk + 1 - map->m_pblk); 1512 } else { 1513 map->m_bdev = inode->i_sb->s_bdev; 1514 } 1515 return true; 1516 } 1517 1518 static bool map_is_mergeable(struct f2fs_sb_info *sbi, 1519 struct f2fs_map_blocks *map, 1520 block_t blkaddr, int flag, int bidx, 1521 int ofs) 1522 { 1523 if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev) 1524 return false; 1525 if (map->m_pblk != NEW_ADDR && blkaddr == (map->m_pblk + ofs)) 1526 return true; 1527 if (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) 1528 return true; 1529 if (flag == F2FS_GET_BLOCK_PRE_DIO) 1530 return true; 1531 if (flag == F2FS_GET_BLOCK_DIO && 1532 map->m_pblk == NULL_ADDR && blkaddr == NULL_ADDR) 1533 return true; 1534 return false; 1535 } 1536 1537 /* 1538 * f2fs_map_blocks() tries to find or build mapping relationship which 1539 * maps continuous logical blocks to physical blocks, and return such 1540 * info via f2fs_map_blocks structure. 1541 */ 1542 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag) 1543 { 1544 unsigned int maxblocks = map->m_len; 1545 struct dnode_of_data dn; 1546 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1547 int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE; 1548 pgoff_t pgofs, end_offset, end; 1549 int err = 0, ofs = 1; 1550 unsigned int ofs_in_node, last_ofs_in_node; 1551 blkcnt_t prealloc; 1552 block_t blkaddr; 1553 unsigned int start_pgofs; 1554 int bidx = 0; 1555 bool is_hole; 1556 1557 if (!maxblocks) 1558 return 0; 1559 1560 if (!map->m_may_create && f2fs_map_blocks_cached(inode, map, flag)) 1561 goto out; 1562 1563 map->m_bdev = inode->i_sb->s_bdev; 1564 map->m_multidev_dio = 1565 f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag); 1566 1567 map->m_len = 0; 1568 map->m_flags = 0; 1569 1570 /* it only supports block size == page size */ 1571 pgofs = (pgoff_t)map->m_lblk; 1572 end = pgofs + maxblocks; 1573 1574 next_dnode: 1575 if (map->m_may_create) 1576 f2fs_map_lock(sbi, flag); 1577 1578 /* When reading holes, we need its node page */ 1579 set_new_dnode(&dn, inode, NULL, NULL, 0); 1580 err = f2fs_get_dnode_of_data(&dn, pgofs, mode); 1581 if (err) { 1582 if (flag == F2FS_GET_BLOCK_BMAP) 1583 map->m_pblk = 0; 1584 if (err == -ENOENT) 1585 err = f2fs_map_no_dnode(inode, map, &dn, pgofs); 1586 goto unlock_out; 1587 } 1588 1589 start_pgofs = pgofs; 1590 prealloc = 0; 1591 last_ofs_in_node = ofs_in_node = dn.ofs_in_node; 1592 end_offset = ADDRS_PER_PAGE(&dn.node_folio->page, inode); 1593 1594 next_block: 1595 blkaddr = f2fs_data_blkaddr(&dn); 1596 is_hole = !__is_valid_data_blkaddr(blkaddr); 1597 if (!is_hole && 1598 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) { 1599 err = -EFSCORRUPTED; 1600 goto sync_out; 1601 } 1602 1603 /* use out-place-update for direct IO under LFS mode */ 1604 if (map->m_may_create && (is_hole || 1605 (flag == F2FS_GET_BLOCK_DIO && f2fs_lfs_mode(sbi) && 1606 !f2fs_is_pinned_file(inode)))) { 1607 if (unlikely(f2fs_cp_error(sbi))) { 1608 err = -EIO; 1609 goto sync_out; 1610 } 1611 1612 switch (flag) { 1613 case F2FS_GET_BLOCK_PRE_AIO: 1614 if (blkaddr == NULL_ADDR) { 1615 prealloc++; 1616 last_ofs_in_node = dn.ofs_in_node; 1617 } 1618 break; 1619 case F2FS_GET_BLOCK_PRE_DIO: 1620 case F2FS_GET_BLOCK_DIO: 1621 err = __allocate_data_block(&dn, map->m_seg_type); 1622 if (err) 1623 goto sync_out; 1624 if (flag == F2FS_GET_BLOCK_PRE_DIO) 1625 file_need_truncate(inode); 1626 set_inode_flag(inode, FI_APPEND_WRITE); 1627 break; 1628 default: 1629 WARN_ON_ONCE(1); 1630 err = -EIO; 1631 goto sync_out; 1632 } 1633 1634 blkaddr = dn.data_blkaddr; 1635 if (is_hole) 1636 map->m_flags |= F2FS_MAP_NEW; 1637 } else if (is_hole) { 1638 if (f2fs_compressed_file(inode) && 1639 f2fs_sanity_check_cluster(&dn)) { 1640 err = -EFSCORRUPTED; 1641 f2fs_handle_error(sbi, 1642 ERROR_CORRUPTED_CLUSTER); 1643 goto sync_out; 1644 } 1645 1646 switch (flag) { 1647 case F2FS_GET_BLOCK_PRECACHE: 1648 goto sync_out; 1649 case F2FS_GET_BLOCK_BMAP: 1650 map->m_pblk = 0; 1651 goto sync_out; 1652 case F2FS_GET_BLOCK_FIEMAP: 1653 if (blkaddr == NULL_ADDR) { 1654 if (map->m_next_pgofs) 1655 *map->m_next_pgofs = pgofs + 1; 1656 goto sync_out; 1657 } 1658 break; 1659 case F2FS_GET_BLOCK_DIO: 1660 if (map->m_next_pgofs) 1661 *map->m_next_pgofs = pgofs + 1; 1662 break; 1663 default: 1664 /* for defragment case */ 1665 if (map->m_next_pgofs) 1666 *map->m_next_pgofs = pgofs + 1; 1667 goto sync_out; 1668 } 1669 } 1670 1671 if (flag == F2FS_GET_BLOCK_PRE_AIO) 1672 goto skip; 1673 1674 if (map->m_multidev_dio) 1675 bidx = f2fs_target_device_index(sbi, blkaddr); 1676 1677 if (map->m_len == 0) { 1678 /* reserved delalloc block should be mapped for fiemap. */ 1679 if (blkaddr == NEW_ADDR) 1680 map->m_flags |= F2FS_MAP_DELALLOC; 1681 /* DIO READ and hole case, should not map the blocks. */ 1682 if (!(flag == F2FS_GET_BLOCK_DIO && is_hole && !map->m_may_create)) 1683 map->m_flags |= F2FS_MAP_MAPPED; 1684 1685 map->m_pblk = blkaddr; 1686 map->m_len = 1; 1687 1688 if (map->m_multidev_dio) 1689 map->m_bdev = FDEV(bidx).bdev; 1690 } else if (map_is_mergeable(sbi, map, blkaddr, flag, bidx, ofs)) { 1691 ofs++; 1692 map->m_len++; 1693 } else { 1694 goto sync_out; 1695 } 1696 1697 skip: 1698 dn.ofs_in_node++; 1699 pgofs++; 1700 1701 /* preallocate blocks in batch for one dnode page */ 1702 if (flag == F2FS_GET_BLOCK_PRE_AIO && 1703 (pgofs == end || dn.ofs_in_node == end_offset)) { 1704 1705 dn.ofs_in_node = ofs_in_node; 1706 err = f2fs_reserve_new_blocks(&dn, prealloc); 1707 if (err) 1708 goto sync_out; 1709 1710 map->m_len += dn.ofs_in_node - ofs_in_node; 1711 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) { 1712 err = -ENOSPC; 1713 goto sync_out; 1714 } 1715 dn.ofs_in_node = end_offset; 1716 } 1717 1718 if (flag == F2FS_GET_BLOCK_DIO && f2fs_lfs_mode(sbi) && 1719 map->m_may_create) { 1720 /* the next block to be allocated may not be contiguous. */ 1721 if (GET_SEGOFF_FROM_SEG0(sbi, blkaddr) % BLKS_PER_SEC(sbi) == 1722 CAP_BLKS_PER_SEC(sbi) - 1) 1723 goto sync_out; 1724 } 1725 1726 if (pgofs >= end) 1727 goto sync_out; 1728 else if (dn.ofs_in_node < end_offset) 1729 goto next_block; 1730 1731 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1732 if (map->m_flags & F2FS_MAP_MAPPED) { 1733 unsigned int ofs = start_pgofs - map->m_lblk; 1734 1735 f2fs_update_read_extent_cache_range(&dn, 1736 start_pgofs, map->m_pblk + ofs, 1737 map->m_len - ofs); 1738 } 1739 } 1740 1741 f2fs_put_dnode(&dn); 1742 1743 if (map->m_may_create) { 1744 f2fs_map_unlock(sbi, flag); 1745 f2fs_balance_fs(sbi, dn.node_changed); 1746 } 1747 goto next_dnode; 1748 1749 sync_out: 1750 1751 if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) { 1752 /* 1753 * for hardware encryption, but to avoid potential issue 1754 * in future 1755 */ 1756 f2fs_wait_on_block_writeback_range(inode, 1757 map->m_pblk, map->m_len); 1758 1759 if (map->m_multidev_dio) { 1760 block_t blk_addr = map->m_pblk; 1761 1762 bidx = f2fs_target_device_index(sbi, map->m_pblk); 1763 1764 map->m_bdev = FDEV(bidx).bdev; 1765 map->m_pblk -= FDEV(bidx).start_blk; 1766 1767 if (map->m_may_create) 1768 f2fs_update_device_state(sbi, inode->i_ino, 1769 blk_addr, map->m_len); 1770 1771 f2fs_bug_on(sbi, blk_addr + map->m_len > 1772 FDEV(bidx).end_blk + 1); 1773 } 1774 } 1775 1776 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1777 if (map->m_flags & F2FS_MAP_MAPPED) { 1778 unsigned int ofs = start_pgofs - map->m_lblk; 1779 1780 f2fs_update_read_extent_cache_range(&dn, 1781 start_pgofs, map->m_pblk + ofs, 1782 map->m_len - ofs); 1783 } 1784 if (map->m_next_extent) 1785 *map->m_next_extent = pgofs + 1; 1786 } 1787 f2fs_put_dnode(&dn); 1788 unlock_out: 1789 if (map->m_may_create) { 1790 f2fs_map_unlock(sbi, flag); 1791 f2fs_balance_fs(sbi, dn.node_changed); 1792 } 1793 out: 1794 trace_f2fs_map_blocks(inode, map, flag, err); 1795 return err; 1796 } 1797 1798 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len) 1799 { 1800 struct f2fs_map_blocks map; 1801 block_t last_lblk; 1802 int err; 1803 1804 if (pos + len > i_size_read(inode)) 1805 return false; 1806 1807 map.m_lblk = F2FS_BYTES_TO_BLK(pos); 1808 map.m_next_pgofs = NULL; 1809 map.m_next_extent = NULL; 1810 map.m_seg_type = NO_CHECK_TYPE; 1811 map.m_may_create = false; 1812 last_lblk = F2FS_BLK_ALIGN(pos + len); 1813 1814 while (map.m_lblk < last_lblk) { 1815 map.m_len = last_lblk - map.m_lblk; 1816 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT); 1817 if (err || map.m_len == 0) 1818 return false; 1819 map.m_lblk += map.m_len; 1820 } 1821 return true; 1822 } 1823 1824 static int f2fs_xattr_fiemap(struct inode *inode, 1825 struct fiemap_extent_info *fieinfo) 1826 { 1827 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1828 struct node_info ni; 1829 __u64 phys = 0, len; 1830 __u32 flags; 1831 nid_t xnid = F2FS_I(inode)->i_xattr_nid; 1832 int err = 0; 1833 1834 if (f2fs_has_inline_xattr(inode)) { 1835 int offset; 1836 struct folio *folio = f2fs_grab_cache_folio(NODE_MAPPING(sbi), 1837 inode->i_ino, false); 1838 1839 if (IS_ERR(folio)) 1840 return PTR_ERR(folio); 1841 1842 err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false); 1843 if (err) { 1844 f2fs_folio_put(folio, true); 1845 return err; 1846 } 1847 1848 phys = F2FS_BLK_TO_BYTES(ni.blk_addr); 1849 offset = offsetof(struct f2fs_inode, i_addr) + 1850 sizeof(__le32) * (DEF_ADDRS_PER_INODE - 1851 get_inline_xattr_addrs(inode)); 1852 1853 phys += offset; 1854 len = inline_xattr_size(inode); 1855 1856 f2fs_folio_put(folio, true); 1857 1858 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED; 1859 1860 if (!xnid) 1861 flags |= FIEMAP_EXTENT_LAST; 1862 1863 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1864 trace_f2fs_fiemap(inode, 0, phys, len, flags, err); 1865 if (err) 1866 return err; 1867 } 1868 1869 if (xnid) { 1870 struct folio *folio = f2fs_grab_cache_folio(NODE_MAPPING(sbi), 1871 xnid, false); 1872 1873 if (IS_ERR(folio)) 1874 return PTR_ERR(folio); 1875 1876 err = f2fs_get_node_info(sbi, xnid, &ni, false); 1877 if (err) { 1878 f2fs_folio_put(folio, true); 1879 return err; 1880 } 1881 1882 phys = F2FS_BLK_TO_BYTES(ni.blk_addr); 1883 len = inode->i_sb->s_blocksize; 1884 1885 f2fs_folio_put(folio, true); 1886 1887 flags = FIEMAP_EXTENT_LAST; 1888 } 1889 1890 if (phys) { 1891 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1892 trace_f2fs_fiemap(inode, 0, phys, len, flags, err); 1893 } 1894 1895 return (err < 0 ? err : 0); 1896 } 1897 1898 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 1899 u64 start, u64 len) 1900 { 1901 struct f2fs_map_blocks map; 1902 sector_t start_blk, last_blk, blk_len, max_len; 1903 pgoff_t next_pgofs; 1904 u64 logical = 0, phys = 0, size = 0; 1905 u32 flags = 0; 1906 int ret = 0; 1907 bool compr_cluster = false, compr_appended; 1908 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size; 1909 unsigned int count_in_cluster = 0; 1910 loff_t maxbytes; 1911 1912 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) { 1913 ret = f2fs_precache_extents(inode); 1914 if (ret) 1915 return ret; 1916 } 1917 1918 ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR); 1919 if (ret) 1920 return ret; 1921 1922 inode_lock_shared(inode); 1923 1924 maxbytes = F2FS_BLK_TO_BYTES(max_file_blocks(inode)); 1925 if (start > maxbytes) { 1926 ret = -EFBIG; 1927 goto out; 1928 } 1929 1930 if (len > maxbytes || (maxbytes - len) < start) 1931 len = maxbytes - start; 1932 1933 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 1934 ret = f2fs_xattr_fiemap(inode, fieinfo); 1935 goto out; 1936 } 1937 1938 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) { 1939 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len); 1940 if (ret != -EAGAIN) 1941 goto out; 1942 } 1943 1944 start_blk = F2FS_BYTES_TO_BLK(start); 1945 last_blk = F2FS_BYTES_TO_BLK(start + len - 1); 1946 blk_len = last_blk - start_blk + 1; 1947 max_len = F2FS_BYTES_TO_BLK(maxbytes) - start_blk; 1948 1949 next: 1950 memset(&map, 0, sizeof(map)); 1951 map.m_lblk = start_blk; 1952 map.m_len = blk_len; 1953 map.m_next_pgofs = &next_pgofs; 1954 map.m_seg_type = NO_CHECK_TYPE; 1955 1956 if (compr_cluster) { 1957 map.m_lblk += 1; 1958 map.m_len = cluster_size - count_in_cluster; 1959 } 1960 1961 ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP); 1962 if (ret) 1963 goto out; 1964 1965 /* HOLE */ 1966 if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) { 1967 start_blk = next_pgofs; 1968 1969 if (F2FS_BLK_TO_BYTES(start_blk) < maxbytes) 1970 goto prep_next; 1971 1972 flags |= FIEMAP_EXTENT_LAST; 1973 } 1974 1975 /* 1976 * current extent may cross boundary of inquiry, increase len to 1977 * requery. 1978 */ 1979 if (!compr_cluster && (map.m_flags & F2FS_MAP_MAPPED) && 1980 map.m_lblk + map.m_len - 1 == last_blk && 1981 blk_len != max_len) { 1982 blk_len = max_len; 1983 goto next; 1984 } 1985 1986 compr_appended = false; 1987 /* In a case of compressed cluster, append this to the last extent */ 1988 if (compr_cluster && ((map.m_flags & F2FS_MAP_DELALLOC) || 1989 !(map.m_flags & F2FS_MAP_FLAGS))) { 1990 compr_appended = true; 1991 goto skip_fill; 1992 } 1993 1994 if (size) { 1995 flags |= FIEMAP_EXTENT_MERGED; 1996 if (IS_ENCRYPTED(inode)) 1997 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED; 1998 1999 ret = fiemap_fill_next_extent(fieinfo, logical, 2000 phys, size, flags); 2001 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret); 2002 if (ret) 2003 goto out; 2004 size = 0; 2005 } 2006 2007 if (start_blk > last_blk) 2008 goto out; 2009 2010 skip_fill: 2011 if (map.m_pblk == COMPRESS_ADDR) { 2012 compr_cluster = true; 2013 count_in_cluster = 1; 2014 } else if (compr_appended) { 2015 unsigned int appended_blks = cluster_size - 2016 count_in_cluster + 1; 2017 size += F2FS_BLK_TO_BYTES(appended_blks); 2018 start_blk += appended_blks; 2019 compr_cluster = false; 2020 } else { 2021 logical = F2FS_BLK_TO_BYTES(start_blk); 2022 phys = __is_valid_data_blkaddr(map.m_pblk) ? 2023 F2FS_BLK_TO_BYTES(map.m_pblk) : 0; 2024 size = F2FS_BLK_TO_BYTES(map.m_len); 2025 flags = 0; 2026 2027 if (compr_cluster) { 2028 flags = FIEMAP_EXTENT_ENCODED; 2029 count_in_cluster += map.m_len; 2030 if (count_in_cluster == cluster_size) { 2031 compr_cluster = false; 2032 size += F2FS_BLKSIZE; 2033 } 2034 } else if (map.m_flags & F2FS_MAP_DELALLOC) { 2035 flags = FIEMAP_EXTENT_UNWRITTEN; 2036 } 2037 2038 start_blk += F2FS_BYTES_TO_BLK(size); 2039 } 2040 2041 prep_next: 2042 cond_resched(); 2043 if (fatal_signal_pending(current)) 2044 ret = -EINTR; 2045 else 2046 goto next; 2047 out: 2048 if (ret == 1) 2049 ret = 0; 2050 2051 inode_unlock_shared(inode); 2052 return ret; 2053 } 2054 2055 static inline loff_t f2fs_readpage_limit(struct inode *inode) 2056 { 2057 if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode)) 2058 return F2FS_BLK_TO_BYTES(max_file_blocks(inode)); 2059 2060 return i_size_read(inode); 2061 } 2062 2063 static inline blk_opf_t f2fs_ra_op_flags(struct readahead_control *rac) 2064 { 2065 return rac ? REQ_RAHEAD : 0; 2066 } 2067 2068 static int f2fs_read_single_page(struct inode *inode, struct folio *folio, 2069 unsigned nr_pages, 2070 struct f2fs_map_blocks *map, 2071 struct bio **bio_ret, 2072 sector_t *last_block_in_bio, 2073 struct readahead_control *rac) 2074 { 2075 struct bio *bio = *bio_ret; 2076 const unsigned int blocksize = F2FS_BLKSIZE; 2077 sector_t block_in_file; 2078 sector_t last_block; 2079 sector_t last_block_in_file; 2080 sector_t block_nr; 2081 pgoff_t index = folio->index; 2082 int ret = 0; 2083 2084 block_in_file = (sector_t)index; 2085 last_block = block_in_file + nr_pages; 2086 last_block_in_file = F2FS_BYTES_TO_BLK(f2fs_readpage_limit(inode) + 2087 blocksize - 1); 2088 if (last_block > last_block_in_file) 2089 last_block = last_block_in_file; 2090 2091 /* just zeroing out page which is beyond EOF */ 2092 if (block_in_file >= last_block) 2093 goto zero_out; 2094 /* 2095 * Map blocks using the previous result first. 2096 */ 2097 if ((map->m_flags & F2FS_MAP_MAPPED) && 2098 block_in_file > map->m_lblk && 2099 block_in_file < (map->m_lblk + map->m_len)) 2100 goto got_it; 2101 2102 /* 2103 * Then do more f2fs_map_blocks() calls until we are 2104 * done with this page. 2105 */ 2106 map->m_lblk = block_in_file; 2107 map->m_len = last_block - block_in_file; 2108 2109 ret = f2fs_map_blocks(inode, map, F2FS_GET_BLOCK_DEFAULT); 2110 if (ret) 2111 goto out; 2112 got_it: 2113 if ((map->m_flags & F2FS_MAP_MAPPED)) { 2114 block_nr = map->m_pblk + block_in_file - map->m_lblk; 2115 folio_set_mappedtodisk(folio); 2116 2117 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr, 2118 DATA_GENERIC_ENHANCE_READ)) { 2119 ret = -EFSCORRUPTED; 2120 goto out; 2121 } 2122 } else { 2123 zero_out: 2124 folio_zero_segment(folio, 0, folio_size(folio)); 2125 if (f2fs_need_verity(inode, index) && 2126 !fsverity_verify_folio(folio)) { 2127 ret = -EIO; 2128 goto out; 2129 } 2130 if (!folio_test_uptodate(folio)) 2131 folio_mark_uptodate(folio); 2132 folio_unlock(folio); 2133 goto out; 2134 } 2135 2136 /* 2137 * This page will go to BIO. Do we need to send this 2138 * BIO off first? 2139 */ 2140 if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio, 2141 *last_block_in_bio, block_nr) || 2142 !f2fs_crypt_mergeable_bio(bio, inode, index, NULL))) { 2143 submit_and_realloc: 2144 f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA); 2145 bio = NULL; 2146 } 2147 if (bio == NULL) { 2148 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages, 2149 f2fs_ra_op_flags(rac), index, 2150 false); 2151 if (IS_ERR(bio)) { 2152 ret = PTR_ERR(bio); 2153 bio = NULL; 2154 goto out; 2155 } 2156 } 2157 2158 /* 2159 * If the page is under writeback, we need to wait for 2160 * its completion to see the correct decrypted data. 2161 */ 2162 f2fs_wait_on_block_writeback(inode, block_nr); 2163 2164 if (!bio_add_folio(bio, folio, blocksize, 0)) 2165 goto submit_and_realloc; 2166 2167 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA); 2168 f2fs_update_iostat(F2FS_I_SB(inode), NULL, FS_DATA_READ_IO, 2169 F2FS_BLKSIZE); 2170 *last_block_in_bio = block_nr; 2171 out: 2172 *bio_ret = bio; 2173 return ret; 2174 } 2175 2176 #ifdef CONFIG_F2FS_FS_COMPRESSION 2177 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret, 2178 unsigned nr_pages, sector_t *last_block_in_bio, 2179 struct readahead_control *rac, bool for_write) 2180 { 2181 struct dnode_of_data dn; 2182 struct inode *inode = cc->inode; 2183 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2184 struct bio *bio = *bio_ret; 2185 unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size; 2186 sector_t last_block_in_file; 2187 const unsigned int blocksize = F2FS_BLKSIZE; 2188 struct decompress_io_ctx *dic = NULL; 2189 struct extent_info ei = {}; 2190 bool from_dnode = true; 2191 int i; 2192 int ret = 0; 2193 2194 if (unlikely(f2fs_cp_error(sbi))) { 2195 ret = -EIO; 2196 from_dnode = false; 2197 goto out_put_dnode; 2198 } 2199 2200 f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc)); 2201 2202 last_block_in_file = F2FS_BYTES_TO_BLK(f2fs_readpage_limit(inode) + 2203 blocksize - 1); 2204 2205 /* get rid of pages beyond EOF */ 2206 for (i = 0; i < cc->cluster_size; i++) { 2207 struct page *page = cc->rpages[i]; 2208 struct folio *folio; 2209 2210 if (!page) 2211 continue; 2212 2213 folio = page_folio(page); 2214 if ((sector_t)folio->index >= last_block_in_file) { 2215 folio_zero_segment(folio, 0, folio_size(folio)); 2216 if (!folio_test_uptodate(folio)) 2217 folio_mark_uptodate(folio); 2218 } else if (!folio_test_uptodate(folio)) { 2219 continue; 2220 } 2221 folio_unlock(folio); 2222 if (for_write) 2223 folio_put(folio); 2224 cc->rpages[i] = NULL; 2225 cc->nr_rpages--; 2226 } 2227 2228 /* we are done since all pages are beyond EOF */ 2229 if (f2fs_cluster_is_empty(cc)) 2230 goto out; 2231 2232 if (f2fs_lookup_read_extent_cache(inode, start_idx, &ei)) 2233 from_dnode = false; 2234 2235 if (!from_dnode) 2236 goto skip_reading_dnode; 2237 2238 set_new_dnode(&dn, inode, NULL, NULL, 0); 2239 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 2240 if (ret) 2241 goto out; 2242 2243 f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR); 2244 2245 skip_reading_dnode: 2246 for (i = 1; i < cc->cluster_size; i++) { 2247 block_t blkaddr; 2248 2249 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_folio, 2250 dn.ofs_in_node + i) : 2251 ei.blk + i - 1; 2252 2253 if (!__is_valid_data_blkaddr(blkaddr)) 2254 break; 2255 2256 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) { 2257 ret = -EFAULT; 2258 goto out_put_dnode; 2259 } 2260 cc->nr_cpages++; 2261 2262 if (!from_dnode && i >= ei.c_len) 2263 break; 2264 } 2265 2266 /* nothing to decompress */ 2267 if (cc->nr_cpages == 0) { 2268 ret = 0; 2269 goto out_put_dnode; 2270 } 2271 2272 dic = f2fs_alloc_dic(cc); 2273 if (IS_ERR(dic)) { 2274 ret = PTR_ERR(dic); 2275 goto out_put_dnode; 2276 } 2277 2278 for (i = 0; i < cc->nr_cpages; i++) { 2279 struct folio *folio = page_folio(dic->cpages[i]); 2280 block_t blkaddr; 2281 struct bio_post_read_ctx *ctx; 2282 2283 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_folio, 2284 dn.ofs_in_node + i + 1) : 2285 ei.blk + i; 2286 2287 f2fs_wait_on_block_writeback(inode, blkaddr); 2288 2289 if (f2fs_load_compressed_folio(sbi, folio, blkaddr)) { 2290 if (atomic_dec_and_test(&dic->remaining_pages)) { 2291 f2fs_decompress_cluster(dic, true); 2292 break; 2293 } 2294 continue; 2295 } 2296 2297 if (bio && (!page_is_mergeable(sbi, bio, 2298 *last_block_in_bio, blkaddr) || 2299 !f2fs_crypt_mergeable_bio(bio, inode, folio->index, NULL))) { 2300 submit_and_realloc: 2301 f2fs_submit_read_bio(sbi, bio, DATA); 2302 bio = NULL; 2303 } 2304 2305 if (!bio) { 2306 bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages, 2307 f2fs_ra_op_flags(rac), 2308 folio->index, for_write); 2309 if (IS_ERR(bio)) { 2310 ret = PTR_ERR(bio); 2311 f2fs_decompress_end_io(dic, ret, true); 2312 f2fs_put_dnode(&dn); 2313 *bio_ret = NULL; 2314 return ret; 2315 } 2316 } 2317 2318 if (!bio_add_folio(bio, folio, blocksize, 0)) 2319 goto submit_and_realloc; 2320 2321 ctx = get_post_read_ctx(bio); 2322 ctx->enabled_steps |= STEP_DECOMPRESS; 2323 refcount_inc(&dic->refcnt); 2324 2325 inc_page_count(sbi, F2FS_RD_DATA); 2326 f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE); 2327 *last_block_in_bio = blkaddr; 2328 } 2329 2330 if (from_dnode) 2331 f2fs_put_dnode(&dn); 2332 2333 *bio_ret = bio; 2334 return 0; 2335 2336 out_put_dnode: 2337 if (from_dnode) 2338 f2fs_put_dnode(&dn); 2339 out: 2340 for (i = 0; i < cc->cluster_size; i++) { 2341 if (cc->rpages[i]) { 2342 ClearPageUptodate(cc->rpages[i]); 2343 unlock_page(cc->rpages[i]); 2344 } 2345 } 2346 *bio_ret = bio; 2347 return ret; 2348 } 2349 #endif 2350 2351 /* 2352 * This function was originally taken from fs/mpage.c, and customized for f2fs. 2353 * Major change was from block_size == page_size in f2fs by default. 2354 */ 2355 static int f2fs_mpage_readpages(struct inode *inode, 2356 struct readahead_control *rac, struct folio *folio) 2357 { 2358 struct bio *bio = NULL; 2359 sector_t last_block_in_bio = 0; 2360 struct f2fs_map_blocks map; 2361 #ifdef CONFIG_F2FS_FS_COMPRESSION 2362 struct compress_ctx cc = { 2363 .inode = inode, 2364 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 2365 .cluster_size = F2FS_I(inode)->i_cluster_size, 2366 .cluster_idx = NULL_CLUSTER, 2367 .rpages = NULL, 2368 .cpages = NULL, 2369 .nr_rpages = 0, 2370 .nr_cpages = 0, 2371 }; 2372 pgoff_t nc_cluster_idx = NULL_CLUSTER; 2373 pgoff_t index; 2374 #endif 2375 unsigned nr_pages = rac ? readahead_count(rac) : 1; 2376 unsigned max_nr_pages = nr_pages; 2377 int ret = 0; 2378 2379 map.m_pblk = 0; 2380 map.m_lblk = 0; 2381 map.m_len = 0; 2382 map.m_flags = 0; 2383 map.m_next_pgofs = NULL; 2384 map.m_next_extent = NULL; 2385 map.m_seg_type = NO_CHECK_TYPE; 2386 map.m_may_create = false; 2387 2388 for (; nr_pages; nr_pages--) { 2389 if (rac) { 2390 folio = readahead_folio(rac); 2391 prefetchw(&folio->flags); 2392 } 2393 2394 #ifdef CONFIG_F2FS_FS_COMPRESSION 2395 index = folio->index; 2396 2397 if (!f2fs_compressed_file(inode)) 2398 goto read_single_page; 2399 2400 /* there are remained compressed pages, submit them */ 2401 if (!f2fs_cluster_can_merge_page(&cc, index)) { 2402 ret = f2fs_read_multi_pages(&cc, &bio, 2403 max_nr_pages, 2404 &last_block_in_bio, 2405 rac, false); 2406 f2fs_destroy_compress_ctx(&cc, false); 2407 if (ret) 2408 goto set_error_page; 2409 } 2410 if (cc.cluster_idx == NULL_CLUSTER) { 2411 if (nc_cluster_idx == index >> cc.log_cluster_size) 2412 goto read_single_page; 2413 2414 ret = f2fs_is_compressed_cluster(inode, index); 2415 if (ret < 0) 2416 goto set_error_page; 2417 else if (!ret) { 2418 nc_cluster_idx = 2419 index >> cc.log_cluster_size; 2420 goto read_single_page; 2421 } 2422 2423 nc_cluster_idx = NULL_CLUSTER; 2424 } 2425 ret = f2fs_init_compress_ctx(&cc); 2426 if (ret) 2427 goto set_error_page; 2428 2429 f2fs_compress_ctx_add_page(&cc, folio); 2430 2431 goto next_page; 2432 read_single_page: 2433 #endif 2434 2435 ret = f2fs_read_single_page(inode, folio, max_nr_pages, &map, 2436 &bio, &last_block_in_bio, rac); 2437 if (ret) { 2438 #ifdef CONFIG_F2FS_FS_COMPRESSION 2439 set_error_page: 2440 #endif 2441 folio_zero_segment(folio, 0, folio_size(folio)); 2442 folio_unlock(folio); 2443 } 2444 #ifdef CONFIG_F2FS_FS_COMPRESSION 2445 next_page: 2446 #endif 2447 2448 #ifdef CONFIG_F2FS_FS_COMPRESSION 2449 if (f2fs_compressed_file(inode)) { 2450 /* last page */ 2451 if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) { 2452 ret = f2fs_read_multi_pages(&cc, &bio, 2453 max_nr_pages, 2454 &last_block_in_bio, 2455 rac, false); 2456 f2fs_destroy_compress_ctx(&cc, false); 2457 } 2458 } 2459 #endif 2460 } 2461 if (bio) 2462 f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA); 2463 return ret; 2464 } 2465 2466 static int f2fs_read_data_folio(struct file *file, struct folio *folio) 2467 { 2468 struct inode *inode = folio->mapping->host; 2469 int ret = -EAGAIN; 2470 2471 trace_f2fs_readpage(folio, DATA); 2472 2473 if (!f2fs_is_compress_backend_ready(inode)) { 2474 folio_unlock(folio); 2475 return -EOPNOTSUPP; 2476 } 2477 2478 /* If the file has inline data, try to read it directly */ 2479 if (f2fs_has_inline_data(inode)) 2480 ret = f2fs_read_inline_data(inode, folio); 2481 if (ret == -EAGAIN) 2482 ret = f2fs_mpage_readpages(inode, NULL, folio); 2483 return ret; 2484 } 2485 2486 static void f2fs_readahead(struct readahead_control *rac) 2487 { 2488 struct inode *inode = rac->mapping->host; 2489 2490 trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac)); 2491 2492 if (!f2fs_is_compress_backend_ready(inode)) 2493 return; 2494 2495 /* If the file has inline data, skip readahead */ 2496 if (f2fs_has_inline_data(inode)) 2497 return; 2498 2499 f2fs_mpage_readpages(inode, rac, NULL); 2500 } 2501 2502 int f2fs_encrypt_one_page(struct f2fs_io_info *fio) 2503 { 2504 struct inode *inode = fio_inode(fio); 2505 struct folio *mfolio; 2506 struct page *page; 2507 gfp_t gfp_flags = GFP_NOFS; 2508 2509 if (!f2fs_encrypted_file(inode)) 2510 return 0; 2511 2512 page = fio->compressed_page ? fio->compressed_page : fio->page; 2513 2514 if (fscrypt_inode_uses_inline_crypto(inode)) 2515 return 0; 2516 2517 retry_encrypt: 2518 fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page_folio(page), 2519 PAGE_SIZE, 0, gfp_flags); 2520 if (IS_ERR(fio->encrypted_page)) { 2521 /* flush pending IOs and wait for a while in the ENOMEM case */ 2522 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) { 2523 f2fs_flush_merged_writes(fio->sbi); 2524 memalloc_retry_wait(GFP_NOFS); 2525 gfp_flags |= __GFP_NOFAIL; 2526 goto retry_encrypt; 2527 } 2528 return PTR_ERR(fio->encrypted_page); 2529 } 2530 2531 mfolio = filemap_lock_folio(META_MAPPING(fio->sbi), fio->old_blkaddr); 2532 if (!IS_ERR(mfolio)) { 2533 if (folio_test_uptodate(mfolio)) 2534 memcpy(folio_address(mfolio), 2535 page_address(fio->encrypted_page), PAGE_SIZE); 2536 f2fs_folio_put(mfolio, true); 2537 } 2538 return 0; 2539 } 2540 2541 static inline bool check_inplace_update_policy(struct inode *inode, 2542 struct f2fs_io_info *fio) 2543 { 2544 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2545 2546 if (IS_F2FS_IPU_HONOR_OPU_WRITE(sbi) && 2547 is_inode_flag_set(inode, FI_OPU_WRITE)) 2548 return false; 2549 if (IS_F2FS_IPU_FORCE(sbi)) 2550 return true; 2551 if (IS_F2FS_IPU_SSR(sbi) && f2fs_need_SSR(sbi)) 2552 return true; 2553 if (IS_F2FS_IPU_UTIL(sbi) && utilization(sbi) > SM_I(sbi)->min_ipu_util) 2554 return true; 2555 if (IS_F2FS_IPU_SSR_UTIL(sbi) && f2fs_need_SSR(sbi) && 2556 utilization(sbi) > SM_I(sbi)->min_ipu_util) 2557 return true; 2558 2559 /* 2560 * IPU for rewrite async pages 2561 */ 2562 if (IS_F2FS_IPU_ASYNC(sbi) && fio && fio->op == REQ_OP_WRITE && 2563 !(fio->op_flags & REQ_SYNC) && !IS_ENCRYPTED(inode)) 2564 return true; 2565 2566 /* this is only set during fdatasync */ 2567 if (IS_F2FS_IPU_FSYNC(sbi) && is_inode_flag_set(inode, FI_NEED_IPU)) 2568 return true; 2569 2570 if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 2571 !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) 2572 return true; 2573 2574 return false; 2575 } 2576 2577 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio) 2578 { 2579 /* swap file is migrating in aligned write mode */ 2580 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE)) 2581 return false; 2582 2583 if (f2fs_is_pinned_file(inode)) 2584 return true; 2585 2586 /* if this is cold file, we should overwrite to avoid fragmentation */ 2587 if (file_is_cold(inode) && !is_inode_flag_set(inode, FI_OPU_WRITE)) 2588 return true; 2589 2590 return check_inplace_update_policy(inode, fio); 2591 } 2592 2593 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio) 2594 { 2595 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2596 2597 /* The below cases were checked when setting it. */ 2598 if (f2fs_is_pinned_file(inode)) 2599 return false; 2600 if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 2601 return true; 2602 if (f2fs_lfs_mode(sbi)) 2603 return true; 2604 if (S_ISDIR(inode->i_mode)) 2605 return true; 2606 if (IS_NOQUOTA(inode)) 2607 return true; 2608 if (f2fs_used_in_atomic_write(inode)) 2609 return true; 2610 /* rewrite low ratio compress data w/ OPU mode to avoid fragmentation */ 2611 if (f2fs_compressed_file(inode) && 2612 F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER && 2613 is_inode_flag_set(inode, FI_ENABLE_COMPRESS)) 2614 return true; 2615 2616 /* swap file is migrating in aligned write mode */ 2617 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE)) 2618 return true; 2619 2620 if (is_inode_flag_set(inode, FI_OPU_WRITE)) 2621 return true; 2622 2623 if (fio) { 2624 if (page_private_gcing(fio->page)) 2625 return true; 2626 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 2627 f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) 2628 return true; 2629 } 2630 return false; 2631 } 2632 2633 static inline bool need_inplace_update(struct f2fs_io_info *fio) 2634 { 2635 struct inode *inode = fio_inode(fio); 2636 2637 if (f2fs_should_update_outplace(inode, fio)) 2638 return false; 2639 2640 return f2fs_should_update_inplace(inode, fio); 2641 } 2642 2643 int f2fs_do_write_data_page(struct f2fs_io_info *fio) 2644 { 2645 struct folio *folio = page_folio(fio->page); 2646 struct inode *inode = folio->mapping->host; 2647 struct dnode_of_data dn; 2648 struct node_info ni; 2649 bool ipu_force = false; 2650 bool atomic_commit; 2651 int err = 0; 2652 2653 /* Use COW inode to make dnode_of_data for atomic write */ 2654 atomic_commit = f2fs_is_atomic_file(inode) && 2655 page_private_atomic(folio_page(folio, 0)); 2656 if (atomic_commit) 2657 set_new_dnode(&dn, F2FS_I(inode)->cow_inode, NULL, NULL, 0); 2658 else 2659 set_new_dnode(&dn, inode, NULL, NULL, 0); 2660 2661 if (need_inplace_update(fio) && 2662 f2fs_lookup_read_extent_cache_block(inode, folio->index, 2663 &fio->old_blkaddr)) { 2664 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 2665 DATA_GENERIC_ENHANCE)) 2666 return -EFSCORRUPTED; 2667 2668 ipu_force = true; 2669 fio->need_lock = LOCK_DONE; 2670 goto got_it; 2671 } 2672 2673 /* Deadlock due to between page->lock and f2fs_lock_op */ 2674 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi)) 2675 return -EAGAIN; 2676 2677 err = f2fs_get_dnode_of_data(&dn, folio->index, LOOKUP_NODE); 2678 if (err) 2679 goto out; 2680 2681 fio->old_blkaddr = dn.data_blkaddr; 2682 2683 /* This page is already truncated */ 2684 if (fio->old_blkaddr == NULL_ADDR) { 2685 folio_clear_uptodate(folio); 2686 clear_page_private_gcing(folio_page(folio, 0)); 2687 goto out_writepage; 2688 } 2689 got_it: 2690 if (__is_valid_data_blkaddr(fio->old_blkaddr) && 2691 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 2692 DATA_GENERIC_ENHANCE)) { 2693 err = -EFSCORRUPTED; 2694 goto out_writepage; 2695 } 2696 2697 /* wait for GCed page writeback via META_MAPPING */ 2698 if (fio->meta_gc) 2699 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr); 2700 2701 /* 2702 * If current allocation needs SSR, 2703 * it had better in-place writes for updated data. 2704 */ 2705 if (ipu_force || 2706 (__is_valid_data_blkaddr(fio->old_blkaddr) && 2707 need_inplace_update(fio))) { 2708 err = f2fs_encrypt_one_page(fio); 2709 if (err) 2710 goto out_writepage; 2711 2712 folio_start_writeback(folio); 2713 f2fs_put_dnode(&dn); 2714 if (fio->need_lock == LOCK_REQ) 2715 f2fs_unlock_op(fio->sbi); 2716 err = f2fs_inplace_write_data(fio); 2717 if (err) { 2718 if (fscrypt_inode_uses_fs_layer_crypto(inode)) 2719 fscrypt_finalize_bounce_page(&fio->encrypted_page); 2720 folio_end_writeback(folio); 2721 } else { 2722 set_inode_flag(inode, FI_UPDATE_WRITE); 2723 } 2724 trace_f2fs_do_write_data_page(folio, IPU); 2725 return err; 2726 } 2727 2728 if (fio->need_lock == LOCK_RETRY) { 2729 if (!f2fs_trylock_op(fio->sbi)) { 2730 err = -EAGAIN; 2731 goto out_writepage; 2732 } 2733 fio->need_lock = LOCK_REQ; 2734 } 2735 2736 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false); 2737 if (err) 2738 goto out_writepage; 2739 2740 fio->version = ni.version; 2741 2742 err = f2fs_encrypt_one_page(fio); 2743 if (err) 2744 goto out_writepage; 2745 2746 folio_start_writeback(folio); 2747 2748 if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR) 2749 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false); 2750 2751 /* LFS mode write path */ 2752 f2fs_outplace_write_data(&dn, fio); 2753 trace_f2fs_do_write_data_page(folio, OPU); 2754 set_inode_flag(inode, FI_APPEND_WRITE); 2755 if (atomic_commit) 2756 clear_page_private_atomic(folio_page(folio, 0)); 2757 out_writepage: 2758 f2fs_put_dnode(&dn); 2759 out: 2760 if (fio->need_lock == LOCK_REQ) 2761 f2fs_unlock_op(fio->sbi); 2762 return err; 2763 } 2764 2765 int f2fs_write_single_data_page(struct folio *folio, int *submitted, 2766 struct bio **bio, 2767 sector_t *last_block, 2768 struct writeback_control *wbc, 2769 enum iostat_type io_type, 2770 int compr_blocks, 2771 bool allow_balance) 2772 { 2773 struct inode *inode = folio->mapping->host; 2774 struct page *page = folio_page(folio, 0); 2775 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2776 loff_t i_size = i_size_read(inode); 2777 const pgoff_t end_index = ((unsigned long long)i_size) 2778 >> PAGE_SHIFT; 2779 loff_t psize = (loff_t)(folio->index + 1) << PAGE_SHIFT; 2780 unsigned offset = 0; 2781 bool need_balance_fs = false; 2782 bool quota_inode = IS_NOQUOTA(inode); 2783 int err = 0; 2784 struct f2fs_io_info fio = { 2785 .sbi = sbi, 2786 .ino = inode->i_ino, 2787 .type = DATA, 2788 .op = REQ_OP_WRITE, 2789 .op_flags = wbc_to_write_flags(wbc), 2790 .old_blkaddr = NULL_ADDR, 2791 .page = page, 2792 .encrypted_page = NULL, 2793 .submitted = 0, 2794 .compr_blocks = compr_blocks, 2795 .need_lock = compr_blocks ? LOCK_DONE : LOCK_RETRY, 2796 .meta_gc = f2fs_meta_inode_gc_required(inode) ? 1 : 0, 2797 .io_type = io_type, 2798 .io_wbc = wbc, 2799 .bio = bio, 2800 .last_block = last_block, 2801 }; 2802 2803 trace_f2fs_writepage(folio, DATA); 2804 2805 /* we should bypass data pages to proceed the kworker jobs */ 2806 if (unlikely(f2fs_cp_error(sbi))) { 2807 mapping_set_error(folio->mapping, -EIO); 2808 /* 2809 * don't drop any dirty dentry pages for keeping lastest 2810 * directory structure. 2811 */ 2812 if (S_ISDIR(inode->i_mode) && 2813 !is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 2814 goto redirty_out; 2815 2816 /* keep data pages in remount-ro mode */ 2817 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY) 2818 goto redirty_out; 2819 goto out; 2820 } 2821 2822 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 2823 goto redirty_out; 2824 2825 if (folio->index < end_index || 2826 f2fs_verity_in_progress(inode) || 2827 compr_blocks) 2828 goto write; 2829 2830 /* 2831 * If the offset is out-of-range of file size, 2832 * this page does not have to be written to disk. 2833 */ 2834 offset = i_size & (PAGE_SIZE - 1); 2835 if ((folio->index >= end_index + 1) || !offset) 2836 goto out; 2837 2838 folio_zero_segment(folio, offset, folio_size(folio)); 2839 write: 2840 /* Dentry/quota blocks are controlled by checkpoint */ 2841 if (S_ISDIR(inode->i_mode) || quota_inode) { 2842 /* 2843 * We need to wait for node_write to avoid block allocation during 2844 * checkpoint. This can only happen to quota writes which can cause 2845 * the below discard race condition. 2846 */ 2847 if (quota_inode) 2848 f2fs_down_read(&sbi->node_write); 2849 2850 fio.need_lock = LOCK_DONE; 2851 err = f2fs_do_write_data_page(&fio); 2852 2853 if (quota_inode) 2854 f2fs_up_read(&sbi->node_write); 2855 2856 goto done; 2857 } 2858 2859 need_balance_fs = true; 2860 err = -EAGAIN; 2861 if (f2fs_has_inline_data(inode)) { 2862 err = f2fs_write_inline_data(inode, folio); 2863 if (!err) 2864 goto out; 2865 } 2866 2867 if (err == -EAGAIN) { 2868 err = f2fs_do_write_data_page(&fio); 2869 if (err == -EAGAIN) { 2870 f2fs_bug_on(sbi, compr_blocks); 2871 fio.need_lock = LOCK_REQ; 2872 err = f2fs_do_write_data_page(&fio); 2873 } 2874 } 2875 2876 if (err) { 2877 file_set_keep_isize(inode); 2878 } else { 2879 spin_lock(&F2FS_I(inode)->i_size_lock); 2880 if (F2FS_I(inode)->last_disk_size < psize) 2881 F2FS_I(inode)->last_disk_size = psize; 2882 spin_unlock(&F2FS_I(inode)->i_size_lock); 2883 } 2884 2885 done: 2886 if (err && err != -ENOENT) 2887 goto redirty_out; 2888 2889 out: 2890 inode_dec_dirty_pages(inode); 2891 if (err) { 2892 folio_clear_uptodate(folio); 2893 clear_page_private_gcing(page); 2894 } 2895 folio_unlock(folio); 2896 if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) && 2897 !F2FS_I(inode)->wb_task && allow_balance) 2898 f2fs_balance_fs(sbi, need_balance_fs); 2899 2900 if (unlikely(f2fs_cp_error(sbi))) { 2901 f2fs_submit_merged_write(sbi, DATA); 2902 if (bio && *bio) 2903 f2fs_submit_merged_ipu_write(sbi, bio, NULL); 2904 submitted = NULL; 2905 } 2906 2907 if (submitted) 2908 *submitted = fio.submitted; 2909 2910 return 0; 2911 2912 redirty_out: 2913 folio_redirty_for_writepage(wbc, folio); 2914 /* 2915 * pageout() in MM translates EAGAIN, so calls handle_write_error() 2916 * -> mapping_set_error() -> set_bit(AS_EIO, ...). 2917 * file_write_and_wait_range() will see EIO error, which is critical 2918 * to return value of fsync() followed by atomic_write failure to user. 2919 */ 2920 folio_unlock(folio); 2921 if (!err) 2922 return 1; 2923 return err; 2924 } 2925 2926 /* 2927 * This function was copied from write_cache_pages from mm/page-writeback.c. 2928 * The major change is making write step of cold data page separately from 2929 * warm/hot data page. 2930 */ 2931 static int f2fs_write_cache_pages(struct address_space *mapping, 2932 struct writeback_control *wbc, 2933 enum iostat_type io_type) 2934 { 2935 int ret = 0; 2936 int done = 0, retry = 0; 2937 struct page *pages_local[F2FS_ONSTACK_PAGES]; 2938 struct page **pages = pages_local; 2939 struct folio_batch fbatch; 2940 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 2941 struct bio *bio = NULL; 2942 sector_t last_block; 2943 #ifdef CONFIG_F2FS_FS_COMPRESSION 2944 struct inode *inode = mapping->host; 2945 struct compress_ctx cc = { 2946 .inode = inode, 2947 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 2948 .cluster_size = F2FS_I(inode)->i_cluster_size, 2949 .cluster_idx = NULL_CLUSTER, 2950 .rpages = NULL, 2951 .nr_rpages = 0, 2952 .cpages = NULL, 2953 .valid_nr_cpages = 0, 2954 .rbuf = NULL, 2955 .cbuf = NULL, 2956 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size, 2957 .private = NULL, 2958 }; 2959 #endif 2960 int nr_folios, p, idx; 2961 int nr_pages; 2962 unsigned int max_pages = F2FS_ONSTACK_PAGES; 2963 pgoff_t index; 2964 pgoff_t end; /* Inclusive */ 2965 pgoff_t done_index; 2966 int range_whole = 0; 2967 xa_mark_t tag; 2968 int nwritten = 0; 2969 int submitted = 0; 2970 int i; 2971 2972 #ifdef CONFIG_F2FS_FS_COMPRESSION 2973 if (f2fs_compressed_file(inode) && 2974 1 << cc.log_cluster_size > F2FS_ONSTACK_PAGES) { 2975 pages = f2fs_kzalloc(sbi, sizeof(struct page *) << 2976 cc.log_cluster_size, GFP_NOFS | __GFP_NOFAIL); 2977 max_pages = 1 << cc.log_cluster_size; 2978 } 2979 #endif 2980 2981 folio_batch_init(&fbatch); 2982 2983 if (get_dirty_pages(mapping->host) <= 2984 SM_I(F2FS_M_SB(mapping))->min_hot_blocks) 2985 set_inode_flag(mapping->host, FI_HOT_DATA); 2986 else 2987 clear_inode_flag(mapping->host, FI_HOT_DATA); 2988 2989 if (wbc->range_cyclic) { 2990 index = mapping->writeback_index; /* prev offset */ 2991 end = -1; 2992 } else { 2993 index = wbc->range_start >> PAGE_SHIFT; 2994 end = wbc->range_end >> PAGE_SHIFT; 2995 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2996 range_whole = 1; 2997 } 2998 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2999 tag = PAGECACHE_TAG_TOWRITE; 3000 else 3001 tag = PAGECACHE_TAG_DIRTY; 3002 retry: 3003 retry = 0; 3004 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 3005 tag_pages_for_writeback(mapping, index, end); 3006 done_index = index; 3007 while (!done && !retry && (index <= end)) { 3008 nr_pages = 0; 3009 again: 3010 nr_folios = filemap_get_folios_tag(mapping, &index, end, 3011 tag, &fbatch); 3012 if (nr_folios == 0) { 3013 if (nr_pages) 3014 goto write; 3015 break; 3016 } 3017 3018 for (i = 0; i < nr_folios; i++) { 3019 struct folio *folio = fbatch.folios[i]; 3020 3021 idx = 0; 3022 p = folio_nr_pages(folio); 3023 add_more: 3024 pages[nr_pages] = folio_page(folio, idx); 3025 folio_get(folio); 3026 if (++nr_pages == max_pages) { 3027 index = folio->index + idx + 1; 3028 folio_batch_release(&fbatch); 3029 goto write; 3030 } 3031 if (++idx < p) 3032 goto add_more; 3033 } 3034 folio_batch_release(&fbatch); 3035 goto again; 3036 write: 3037 for (i = 0; i < nr_pages; i++) { 3038 struct page *page = pages[i]; 3039 struct folio *folio = page_folio(page); 3040 bool need_readd; 3041 readd: 3042 need_readd = false; 3043 #ifdef CONFIG_F2FS_FS_COMPRESSION 3044 if (f2fs_compressed_file(inode)) { 3045 void *fsdata = NULL; 3046 struct page *pagep; 3047 int ret2; 3048 3049 ret = f2fs_init_compress_ctx(&cc); 3050 if (ret) { 3051 done = 1; 3052 break; 3053 } 3054 3055 if (!f2fs_cluster_can_merge_page(&cc, 3056 folio->index)) { 3057 ret = f2fs_write_multi_pages(&cc, 3058 &submitted, wbc, io_type); 3059 if (!ret) 3060 need_readd = true; 3061 goto result; 3062 } 3063 3064 if (unlikely(f2fs_cp_error(sbi))) 3065 goto lock_folio; 3066 3067 if (!f2fs_cluster_is_empty(&cc)) 3068 goto lock_folio; 3069 3070 if (f2fs_all_cluster_page_ready(&cc, 3071 pages, i, nr_pages, true)) 3072 goto lock_folio; 3073 3074 ret2 = f2fs_prepare_compress_overwrite( 3075 inode, &pagep, 3076 folio->index, &fsdata); 3077 if (ret2 < 0) { 3078 ret = ret2; 3079 done = 1; 3080 break; 3081 } else if (ret2 && 3082 (!f2fs_compress_write_end(inode, 3083 fsdata, folio->index, 1) || 3084 !f2fs_all_cluster_page_ready(&cc, 3085 pages, i, nr_pages, 3086 false))) { 3087 retry = 1; 3088 break; 3089 } 3090 } 3091 #endif 3092 /* give a priority to WB_SYNC threads */ 3093 if (atomic_read(&sbi->wb_sync_req[DATA]) && 3094 wbc->sync_mode == WB_SYNC_NONE) { 3095 done = 1; 3096 break; 3097 } 3098 #ifdef CONFIG_F2FS_FS_COMPRESSION 3099 lock_folio: 3100 #endif 3101 done_index = folio->index; 3102 retry_write: 3103 folio_lock(folio); 3104 3105 if (unlikely(folio->mapping != mapping)) { 3106 continue_unlock: 3107 folio_unlock(folio); 3108 continue; 3109 } 3110 3111 if (!folio_test_dirty(folio)) { 3112 /* someone wrote it for us */ 3113 goto continue_unlock; 3114 } 3115 3116 if (folio_test_writeback(folio)) { 3117 if (wbc->sync_mode == WB_SYNC_NONE) 3118 goto continue_unlock; 3119 f2fs_folio_wait_writeback(folio, DATA, true, true); 3120 } 3121 3122 if (!folio_clear_dirty_for_io(folio)) 3123 goto continue_unlock; 3124 3125 #ifdef CONFIG_F2FS_FS_COMPRESSION 3126 if (f2fs_compressed_file(inode)) { 3127 folio_get(folio); 3128 f2fs_compress_ctx_add_page(&cc, folio); 3129 continue; 3130 } 3131 #endif 3132 submitted = 0; 3133 ret = f2fs_write_single_data_page(folio, 3134 &submitted, &bio, &last_block, 3135 wbc, io_type, 0, true); 3136 #ifdef CONFIG_F2FS_FS_COMPRESSION 3137 result: 3138 #endif 3139 nwritten += submitted; 3140 wbc->nr_to_write -= submitted; 3141 3142 if (unlikely(ret)) { 3143 /* 3144 * keep nr_to_write, since vfs uses this to 3145 * get # of written pages. 3146 */ 3147 if (ret == 1) { 3148 ret = 0; 3149 goto next; 3150 } else if (ret == -EAGAIN) { 3151 ret = 0; 3152 if (wbc->sync_mode == WB_SYNC_ALL) { 3153 f2fs_io_schedule_timeout( 3154 DEFAULT_IO_TIMEOUT); 3155 goto retry_write; 3156 } 3157 goto next; 3158 } 3159 done_index = folio_next_index(folio); 3160 done = 1; 3161 break; 3162 } 3163 3164 if (wbc->nr_to_write <= 0 && 3165 wbc->sync_mode == WB_SYNC_NONE) { 3166 done = 1; 3167 break; 3168 } 3169 next: 3170 if (need_readd) 3171 goto readd; 3172 } 3173 release_pages(pages, nr_pages); 3174 cond_resched(); 3175 } 3176 #ifdef CONFIG_F2FS_FS_COMPRESSION 3177 /* flush remained pages in compress cluster */ 3178 if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) { 3179 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type); 3180 nwritten += submitted; 3181 wbc->nr_to_write -= submitted; 3182 if (ret) { 3183 done = 1; 3184 retry = 0; 3185 } 3186 } 3187 if (f2fs_compressed_file(inode)) 3188 f2fs_destroy_compress_ctx(&cc, false); 3189 #endif 3190 if (retry) { 3191 index = 0; 3192 end = -1; 3193 goto retry; 3194 } 3195 if (wbc->range_cyclic && !done) 3196 done_index = 0; 3197 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 3198 mapping->writeback_index = done_index; 3199 3200 if (nwritten) 3201 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host, 3202 NULL, 0, DATA); 3203 /* submit cached bio of IPU write */ 3204 if (bio) 3205 f2fs_submit_merged_ipu_write(sbi, &bio, NULL); 3206 3207 #ifdef CONFIG_F2FS_FS_COMPRESSION 3208 if (pages != pages_local) 3209 kfree(pages); 3210 #endif 3211 3212 return ret; 3213 } 3214 3215 static inline bool __should_serialize_io(struct inode *inode, 3216 struct writeback_control *wbc) 3217 { 3218 /* to avoid deadlock in path of data flush */ 3219 if (F2FS_I(inode)->wb_task) 3220 return false; 3221 3222 if (!S_ISREG(inode->i_mode)) 3223 return false; 3224 if (IS_NOQUOTA(inode)) 3225 return false; 3226 3227 if (f2fs_need_compress_data(inode)) 3228 return true; 3229 if (wbc->sync_mode != WB_SYNC_ALL) 3230 return true; 3231 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks) 3232 return true; 3233 return false; 3234 } 3235 3236 static int __f2fs_write_data_pages(struct address_space *mapping, 3237 struct writeback_control *wbc, 3238 enum iostat_type io_type) 3239 { 3240 struct inode *inode = mapping->host; 3241 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3242 struct blk_plug plug; 3243 int ret; 3244 bool locked = false; 3245 3246 /* skip writing if there is no dirty page in this inode */ 3247 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE) 3248 return 0; 3249 3250 /* during POR, we don't need to trigger writepage at all. */ 3251 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 3252 goto skip_write; 3253 3254 if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) && 3255 wbc->sync_mode == WB_SYNC_NONE && 3256 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) && 3257 f2fs_available_free_memory(sbi, DIRTY_DENTS)) 3258 goto skip_write; 3259 3260 /* skip writing in file defragment preparing stage */ 3261 if (is_inode_flag_set(inode, FI_SKIP_WRITES)) 3262 goto skip_write; 3263 3264 trace_f2fs_writepages(mapping->host, wbc, DATA); 3265 3266 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */ 3267 if (wbc->sync_mode == WB_SYNC_ALL) 3268 atomic_inc(&sbi->wb_sync_req[DATA]); 3269 else if (atomic_read(&sbi->wb_sync_req[DATA])) { 3270 /* to avoid potential deadlock */ 3271 if (current->plug) 3272 blk_finish_plug(current->plug); 3273 goto skip_write; 3274 } 3275 3276 if (__should_serialize_io(inode, wbc)) { 3277 mutex_lock(&sbi->writepages); 3278 locked = true; 3279 } 3280 3281 blk_start_plug(&plug); 3282 ret = f2fs_write_cache_pages(mapping, wbc, io_type); 3283 blk_finish_plug(&plug); 3284 3285 if (locked) 3286 mutex_unlock(&sbi->writepages); 3287 3288 if (wbc->sync_mode == WB_SYNC_ALL) 3289 atomic_dec(&sbi->wb_sync_req[DATA]); 3290 /* 3291 * if some pages were truncated, we cannot guarantee its mapping->host 3292 * to detect pending bios. 3293 */ 3294 3295 f2fs_remove_dirty_inode(inode); 3296 return ret; 3297 3298 skip_write: 3299 wbc->pages_skipped += get_dirty_pages(inode); 3300 trace_f2fs_writepages(mapping->host, wbc, DATA); 3301 return 0; 3302 } 3303 3304 static int f2fs_write_data_pages(struct address_space *mapping, 3305 struct writeback_control *wbc) 3306 { 3307 struct inode *inode = mapping->host; 3308 3309 return __f2fs_write_data_pages(mapping, wbc, 3310 F2FS_I(inode)->cp_task == current ? 3311 FS_CP_DATA_IO : FS_DATA_IO); 3312 } 3313 3314 void f2fs_write_failed(struct inode *inode, loff_t to) 3315 { 3316 loff_t i_size = i_size_read(inode); 3317 3318 if (IS_NOQUOTA(inode)) 3319 return; 3320 3321 /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */ 3322 if (to > i_size && !f2fs_verity_in_progress(inode)) { 3323 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3324 filemap_invalidate_lock(inode->i_mapping); 3325 3326 truncate_pagecache(inode, i_size); 3327 f2fs_truncate_blocks(inode, i_size, true); 3328 3329 filemap_invalidate_unlock(inode->i_mapping); 3330 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3331 } 3332 } 3333 3334 static int prepare_write_begin(struct f2fs_sb_info *sbi, 3335 struct folio *folio, loff_t pos, unsigned int len, 3336 block_t *blk_addr, bool *node_changed) 3337 { 3338 struct inode *inode = folio->mapping->host; 3339 pgoff_t index = folio->index; 3340 struct dnode_of_data dn; 3341 struct folio *ifolio; 3342 bool locked = false; 3343 int flag = F2FS_GET_BLOCK_PRE_AIO; 3344 int err = 0; 3345 3346 /* 3347 * If a whole page is being written and we already preallocated all the 3348 * blocks, then there is no need to get a block address now. 3349 */ 3350 if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL)) 3351 return 0; 3352 3353 /* f2fs_lock_op avoids race between write CP and convert_inline_page */ 3354 if (f2fs_has_inline_data(inode)) { 3355 if (pos + len > MAX_INLINE_DATA(inode)) 3356 flag = F2FS_GET_BLOCK_DEFAULT; 3357 f2fs_map_lock(sbi, flag); 3358 locked = true; 3359 } else if ((pos & PAGE_MASK) >= i_size_read(inode)) { 3360 f2fs_map_lock(sbi, flag); 3361 locked = true; 3362 } 3363 3364 restart: 3365 /* check inline_data */ 3366 ifolio = f2fs_get_inode_folio(sbi, inode->i_ino); 3367 if (IS_ERR(ifolio)) { 3368 err = PTR_ERR(ifolio); 3369 goto unlock_out; 3370 } 3371 3372 set_new_dnode(&dn, inode, ifolio, ifolio, 0); 3373 3374 if (f2fs_has_inline_data(inode)) { 3375 if (pos + len <= MAX_INLINE_DATA(inode)) { 3376 f2fs_do_read_inline_data(folio, ifolio); 3377 set_inode_flag(inode, FI_DATA_EXIST); 3378 if (inode->i_nlink) 3379 set_page_private_inline(&ifolio->page); 3380 goto out; 3381 } 3382 err = f2fs_convert_inline_folio(&dn, folio); 3383 if (err || dn.data_blkaddr != NULL_ADDR) 3384 goto out; 3385 } 3386 3387 if (!f2fs_lookup_read_extent_cache_block(inode, index, 3388 &dn.data_blkaddr)) { 3389 if (IS_DEVICE_ALIASING(inode)) { 3390 err = -ENODATA; 3391 goto out; 3392 } 3393 3394 if (locked) { 3395 err = f2fs_reserve_block(&dn, index); 3396 goto out; 3397 } 3398 3399 /* hole case */ 3400 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 3401 if (!err && dn.data_blkaddr != NULL_ADDR) 3402 goto out; 3403 f2fs_put_dnode(&dn); 3404 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO); 3405 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO); 3406 locked = true; 3407 goto restart; 3408 } 3409 out: 3410 if (!err) { 3411 /* convert_inline_page can make node_changed */ 3412 *blk_addr = dn.data_blkaddr; 3413 *node_changed = dn.node_changed; 3414 } 3415 f2fs_put_dnode(&dn); 3416 unlock_out: 3417 if (locked) 3418 f2fs_map_unlock(sbi, flag); 3419 return err; 3420 } 3421 3422 static int __find_data_block(struct inode *inode, pgoff_t index, 3423 block_t *blk_addr) 3424 { 3425 struct dnode_of_data dn; 3426 struct folio *ifolio; 3427 int err = 0; 3428 3429 ifolio = f2fs_get_inode_folio(F2FS_I_SB(inode), inode->i_ino); 3430 if (IS_ERR(ifolio)) 3431 return PTR_ERR(ifolio); 3432 3433 set_new_dnode(&dn, inode, ifolio, ifolio, 0); 3434 3435 if (!f2fs_lookup_read_extent_cache_block(inode, index, 3436 &dn.data_blkaddr)) { 3437 /* hole case */ 3438 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 3439 if (err) { 3440 dn.data_blkaddr = NULL_ADDR; 3441 err = 0; 3442 } 3443 } 3444 *blk_addr = dn.data_blkaddr; 3445 f2fs_put_dnode(&dn); 3446 return err; 3447 } 3448 3449 static int __reserve_data_block(struct inode *inode, pgoff_t index, 3450 block_t *blk_addr, bool *node_changed) 3451 { 3452 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3453 struct dnode_of_data dn; 3454 struct folio *ifolio; 3455 int err = 0; 3456 3457 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO); 3458 3459 ifolio = f2fs_get_inode_folio(sbi, inode->i_ino); 3460 if (IS_ERR(ifolio)) { 3461 err = PTR_ERR(ifolio); 3462 goto unlock_out; 3463 } 3464 set_new_dnode(&dn, inode, ifolio, ifolio, 0); 3465 3466 if (!f2fs_lookup_read_extent_cache_block(dn.inode, index, 3467 &dn.data_blkaddr)) 3468 err = f2fs_reserve_block(&dn, index); 3469 3470 *blk_addr = dn.data_blkaddr; 3471 *node_changed = dn.node_changed; 3472 f2fs_put_dnode(&dn); 3473 3474 unlock_out: 3475 f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO); 3476 return err; 3477 } 3478 3479 static int prepare_atomic_write_begin(struct f2fs_sb_info *sbi, 3480 struct folio *folio, loff_t pos, unsigned int len, 3481 block_t *blk_addr, bool *node_changed, bool *use_cow) 3482 { 3483 struct inode *inode = folio->mapping->host; 3484 struct inode *cow_inode = F2FS_I(inode)->cow_inode; 3485 pgoff_t index = folio->index; 3486 int err = 0; 3487 block_t ori_blk_addr = NULL_ADDR; 3488 3489 /* If pos is beyond the end of file, reserve a new block in COW inode */ 3490 if ((pos & PAGE_MASK) >= i_size_read(inode)) 3491 goto reserve_block; 3492 3493 /* Look for the block in COW inode first */ 3494 err = __find_data_block(cow_inode, index, blk_addr); 3495 if (err) { 3496 return err; 3497 } else if (*blk_addr != NULL_ADDR) { 3498 *use_cow = true; 3499 return 0; 3500 } 3501 3502 if (is_inode_flag_set(inode, FI_ATOMIC_REPLACE)) 3503 goto reserve_block; 3504 3505 /* Look for the block in the original inode */ 3506 err = __find_data_block(inode, index, &ori_blk_addr); 3507 if (err) 3508 return err; 3509 3510 reserve_block: 3511 /* Finally, we should reserve a new block in COW inode for the update */ 3512 err = __reserve_data_block(cow_inode, index, blk_addr, node_changed); 3513 if (err) 3514 return err; 3515 inc_atomic_write_cnt(inode); 3516 3517 if (ori_blk_addr != NULL_ADDR) 3518 *blk_addr = ori_blk_addr; 3519 return 0; 3520 } 3521 3522 static int f2fs_write_begin(struct file *file, struct address_space *mapping, 3523 loff_t pos, unsigned len, struct folio **foliop, void **fsdata) 3524 { 3525 struct inode *inode = mapping->host; 3526 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3527 struct folio *folio; 3528 pgoff_t index = pos >> PAGE_SHIFT; 3529 bool need_balance = false; 3530 bool use_cow = false; 3531 block_t blkaddr = NULL_ADDR; 3532 int err = 0; 3533 3534 trace_f2fs_write_begin(inode, pos, len); 3535 3536 if (!f2fs_is_checkpoint_ready(sbi)) { 3537 err = -ENOSPC; 3538 goto fail; 3539 } 3540 3541 /* 3542 * We should check this at this moment to avoid deadlock on inode page 3543 * and #0 page. The locking rule for inline_data conversion should be: 3544 * folio_lock(folio #0) -> folio_lock(inode_page) 3545 */ 3546 if (index != 0) { 3547 err = f2fs_convert_inline_inode(inode); 3548 if (err) 3549 goto fail; 3550 } 3551 3552 #ifdef CONFIG_F2FS_FS_COMPRESSION 3553 if (f2fs_compressed_file(inode)) { 3554 int ret; 3555 struct page *page; 3556 3557 *fsdata = NULL; 3558 3559 if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode))) 3560 goto repeat; 3561 3562 ret = f2fs_prepare_compress_overwrite(inode, &page, 3563 index, fsdata); 3564 if (ret < 0) { 3565 err = ret; 3566 goto fail; 3567 } else if (ret) { 3568 *foliop = page_folio(page); 3569 return 0; 3570 } 3571 } 3572 #endif 3573 3574 repeat: 3575 /* 3576 * Do not use FGP_STABLE to avoid deadlock. 3577 * Will wait that below with our IO control. 3578 */ 3579 folio = __filemap_get_folio(mapping, index, 3580 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS); 3581 if (IS_ERR(folio)) { 3582 err = PTR_ERR(folio); 3583 goto fail; 3584 } 3585 3586 /* TODO: cluster can be compressed due to race with .writepage */ 3587 3588 *foliop = folio; 3589 3590 if (f2fs_is_atomic_file(inode)) 3591 err = prepare_atomic_write_begin(sbi, folio, pos, len, 3592 &blkaddr, &need_balance, &use_cow); 3593 else 3594 err = prepare_write_begin(sbi, folio, pos, len, 3595 &blkaddr, &need_balance); 3596 if (err) 3597 goto put_folio; 3598 3599 if (need_balance && !IS_NOQUOTA(inode) && 3600 has_not_enough_free_secs(sbi, 0, 0)) { 3601 folio_unlock(folio); 3602 f2fs_balance_fs(sbi, true); 3603 folio_lock(folio); 3604 if (folio->mapping != mapping) { 3605 /* The folio got truncated from under us */ 3606 folio_unlock(folio); 3607 folio_put(folio); 3608 goto repeat; 3609 } 3610 } 3611 3612 f2fs_folio_wait_writeback(folio, DATA, false, true); 3613 3614 if (len == folio_size(folio) || folio_test_uptodate(folio)) 3615 return 0; 3616 3617 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) && 3618 !f2fs_verity_in_progress(inode)) { 3619 folio_zero_segment(folio, len, folio_size(folio)); 3620 return 0; 3621 } 3622 3623 if (blkaddr == NEW_ADDR) { 3624 folio_zero_segment(folio, 0, folio_size(folio)); 3625 folio_mark_uptodate(folio); 3626 } else { 3627 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 3628 DATA_GENERIC_ENHANCE_READ)) { 3629 err = -EFSCORRUPTED; 3630 goto put_folio; 3631 } 3632 err = f2fs_submit_page_read(use_cow ? 3633 F2FS_I(inode)->cow_inode : inode, 3634 folio, blkaddr, 0, true); 3635 if (err) 3636 goto put_folio; 3637 3638 folio_lock(folio); 3639 if (unlikely(folio->mapping != mapping)) { 3640 folio_unlock(folio); 3641 folio_put(folio); 3642 goto repeat; 3643 } 3644 if (unlikely(!folio_test_uptodate(folio))) { 3645 err = -EIO; 3646 goto put_folio; 3647 } 3648 } 3649 return 0; 3650 3651 put_folio: 3652 folio_unlock(folio); 3653 folio_put(folio); 3654 fail: 3655 f2fs_write_failed(inode, pos + len); 3656 return err; 3657 } 3658 3659 static int f2fs_write_end(struct file *file, 3660 struct address_space *mapping, 3661 loff_t pos, unsigned len, unsigned copied, 3662 struct folio *folio, void *fsdata) 3663 { 3664 struct inode *inode = folio->mapping->host; 3665 3666 trace_f2fs_write_end(inode, pos, len, copied); 3667 3668 /* 3669 * This should be come from len == PAGE_SIZE, and we expect copied 3670 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and 3671 * let generic_perform_write() try to copy data again through copied=0. 3672 */ 3673 if (!folio_test_uptodate(folio)) { 3674 if (unlikely(copied != len)) 3675 copied = 0; 3676 else 3677 folio_mark_uptodate(folio); 3678 } 3679 3680 #ifdef CONFIG_F2FS_FS_COMPRESSION 3681 /* overwrite compressed file */ 3682 if (f2fs_compressed_file(inode) && fsdata) { 3683 f2fs_compress_write_end(inode, fsdata, folio->index, copied); 3684 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3685 3686 if (pos + copied > i_size_read(inode) && 3687 !f2fs_verity_in_progress(inode)) 3688 f2fs_i_size_write(inode, pos + copied); 3689 return copied; 3690 } 3691 #endif 3692 3693 if (!copied) 3694 goto unlock_out; 3695 3696 folio_mark_dirty(folio); 3697 3698 if (f2fs_is_atomic_file(inode)) 3699 set_page_private_atomic(folio_page(folio, 0)); 3700 3701 if (pos + copied > i_size_read(inode) && 3702 !f2fs_verity_in_progress(inode)) { 3703 f2fs_i_size_write(inode, pos + copied); 3704 if (f2fs_is_atomic_file(inode)) 3705 f2fs_i_size_write(F2FS_I(inode)->cow_inode, 3706 pos + copied); 3707 } 3708 unlock_out: 3709 folio_unlock(folio); 3710 folio_put(folio); 3711 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3712 return copied; 3713 } 3714 3715 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length) 3716 { 3717 struct inode *inode = folio->mapping->host; 3718 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3719 3720 if (inode->i_ino >= F2FS_ROOT_INO(sbi) && 3721 (offset || length != folio_size(folio))) 3722 return; 3723 3724 if (folio_test_dirty(folio)) { 3725 if (inode->i_ino == F2FS_META_INO(sbi)) { 3726 dec_page_count(sbi, F2FS_DIRTY_META); 3727 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) { 3728 dec_page_count(sbi, F2FS_DIRTY_NODES); 3729 } else { 3730 inode_dec_dirty_pages(inode); 3731 f2fs_remove_dirty_inode(inode); 3732 } 3733 } 3734 clear_page_private_all(&folio->page); 3735 } 3736 3737 bool f2fs_release_folio(struct folio *folio, gfp_t wait) 3738 { 3739 /* If this is dirty folio, keep private data */ 3740 if (folio_test_dirty(folio)) 3741 return false; 3742 3743 clear_page_private_all(&folio->page); 3744 return true; 3745 } 3746 3747 static bool f2fs_dirty_data_folio(struct address_space *mapping, 3748 struct folio *folio) 3749 { 3750 struct inode *inode = mapping->host; 3751 3752 trace_f2fs_set_page_dirty(folio, DATA); 3753 3754 if (!folio_test_uptodate(folio)) 3755 folio_mark_uptodate(folio); 3756 BUG_ON(folio_test_swapcache(folio)); 3757 3758 if (filemap_dirty_folio(mapping, folio)) { 3759 f2fs_update_dirty_folio(inode, folio); 3760 return true; 3761 } 3762 return false; 3763 } 3764 3765 3766 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block) 3767 { 3768 #ifdef CONFIG_F2FS_FS_COMPRESSION 3769 struct dnode_of_data dn; 3770 sector_t start_idx, blknr = 0; 3771 int ret; 3772 3773 start_idx = round_down(block, F2FS_I(inode)->i_cluster_size); 3774 3775 set_new_dnode(&dn, inode, NULL, NULL, 0); 3776 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 3777 if (ret) 3778 return 0; 3779 3780 if (dn.data_blkaddr != COMPRESS_ADDR) { 3781 dn.ofs_in_node += block - start_idx; 3782 blknr = f2fs_data_blkaddr(&dn); 3783 if (!__is_valid_data_blkaddr(blknr)) 3784 blknr = 0; 3785 } 3786 3787 f2fs_put_dnode(&dn); 3788 return blknr; 3789 #else 3790 return 0; 3791 #endif 3792 } 3793 3794 3795 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block) 3796 { 3797 struct inode *inode = mapping->host; 3798 sector_t blknr = 0; 3799 3800 if (f2fs_has_inline_data(inode)) 3801 goto out; 3802 3803 /* make sure allocating whole blocks */ 3804 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 3805 filemap_write_and_wait(mapping); 3806 3807 /* Block number less than F2FS MAX BLOCKS */ 3808 if (unlikely(block >= max_file_blocks(inode))) 3809 goto out; 3810 3811 if (f2fs_compressed_file(inode)) { 3812 blknr = f2fs_bmap_compress(inode, block); 3813 } else { 3814 struct f2fs_map_blocks map; 3815 3816 memset(&map, 0, sizeof(map)); 3817 map.m_lblk = block; 3818 map.m_len = 1; 3819 map.m_next_pgofs = NULL; 3820 map.m_seg_type = NO_CHECK_TYPE; 3821 3822 if (!f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_BMAP)) 3823 blknr = map.m_pblk; 3824 } 3825 out: 3826 trace_f2fs_bmap(inode, block, blknr); 3827 return blknr; 3828 } 3829 3830 #ifdef CONFIG_SWAP 3831 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk, 3832 unsigned int blkcnt) 3833 { 3834 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3835 unsigned int blkofs; 3836 unsigned int blk_per_sec = BLKS_PER_SEC(sbi); 3837 unsigned int end_blk = start_blk + blkcnt - 1; 3838 unsigned int secidx = start_blk / blk_per_sec; 3839 unsigned int end_sec; 3840 int ret = 0; 3841 3842 if (!blkcnt) 3843 return 0; 3844 end_sec = end_blk / blk_per_sec; 3845 3846 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3847 filemap_invalidate_lock(inode->i_mapping); 3848 3849 set_inode_flag(inode, FI_ALIGNED_WRITE); 3850 set_inode_flag(inode, FI_OPU_WRITE); 3851 3852 for (; secidx <= end_sec; secidx++) { 3853 unsigned int blkofs_end = secidx == end_sec ? 3854 end_blk % blk_per_sec : blk_per_sec - 1; 3855 3856 f2fs_down_write(&sbi->pin_sem); 3857 3858 ret = f2fs_allocate_pinning_section(sbi); 3859 if (ret) { 3860 f2fs_up_write(&sbi->pin_sem); 3861 break; 3862 } 3863 3864 set_inode_flag(inode, FI_SKIP_WRITES); 3865 3866 for (blkofs = 0; blkofs <= blkofs_end; blkofs++) { 3867 struct folio *folio; 3868 unsigned int blkidx = secidx * blk_per_sec + blkofs; 3869 3870 folio = f2fs_get_lock_data_folio(inode, blkidx, true); 3871 if (IS_ERR(folio)) { 3872 f2fs_up_write(&sbi->pin_sem); 3873 ret = PTR_ERR(folio); 3874 goto done; 3875 } 3876 3877 folio_mark_dirty(folio); 3878 f2fs_folio_put(folio, true); 3879 } 3880 3881 clear_inode_flag(inode, FI_SKIP_WRITES); 3882 3883 ret = filemap_fdatawrite(inode->i_mapping); 3884 3885 f2fs_up_write(&sbi->pin_sem); 3886 3887 if (ret) 3888 break; 3889 } 3890 3891 done: 3892 clear_inode_flag(inode, FI_SKIP_WRITES); 3893 clear_inode_flag(inode, FI_OPU_WRITE); 3894 clear_inode_flag(inode, FI_ALIGNED_WRITE); 3895 3896 filemap_invalidate_unlock(inode->i_mapping); 3897 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3898 3899 return ret; 3900 } 3901 3902 static int check_swap_activate(struct swap_info_struct *sis, 3903 struct file *swap_file, sector_t *span) 3904 { 3905 struct address_space *mapping = swap_file->f_mapping; 3906 struct inode *inode = mapping->host; 3907 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3908 block_t cur_lblock; 3909 block_t last_lblock; 3910 block_t pblock; 3911 block_t lowest_pblock = -1; 3912 block_t highest_pblock = 0; 3913 int nr_extents = 0; 3914 unsigned int nr_pblocks; 3915 unsigned int blks_per_sec = BLKS_PER_SEC(sbi); 3916 unsigned int not_aligned = 0; 3917 int ret = 0; 3918 3919 /* 3920 * Map all the blocks into the extent list. This code doesn't try 3921 * to be very smart. 3922 */ 3923 cur_lblock = 0; 3924 last_lblock = F2FS_BYTES_TO_BLK(i_size_read(inode)); 3925 3926 while (cur_lblock < last_lblock && cur_lblock < sis->max) { 3927 struct f2fs_map_blocks map; 3928 retry: 3929 cond_resched(); 3930 3931 memset(&map, 0, sizeof(map)); 3932 map.m_lblk = cur_lblock; 3933 map.m_len = last_lblock - cur_lblock; 3934 map.m_next_pgofs = NULL; 3935 map.m_next_extent = NULL; 3936 map.m_seg_type = NO_CHECK_TYPE; 3937 map.m_may_create = false; 3938 3939 ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP); 3940 if (ret) 3941 goto out; 3942 3943 /* hole */ 3944 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 3945 f2fs_err(sbi, "Swapfile has holes"); 3946 ret = -EINVAL; 3947 goto out; 3948 } 3949 3950 pblock = map.m_pblk; 3951 nr_pblocks = map.m_len; 3952 3953 if ((pblock - SM_I(sbi)->main_blkaddr) % blks_per_sec || 3954 nr_pblocks % blks_per_sec || 3955 f2fs_is_sequential_zone_area(sbi, pblock)) { 3956 bool last_extent = false; 3957 3958 not_aligned++; 3959 3960 nr_pblocks = roundup(nr_pblocks, blks_per_sec); 3961 if (cur_lblock + nr_pblocks > sis->max) 3962 nr_pblocks -= blks_per_sec; 3963 3964 /* this extent is last one */ 3965 if (!nr_pblocks) { 3966 nr_pblocks = last_lblock - cur_lblock; 3967 last_extent = true; 3968 } 3969 3970 ret = f2fs_migrate_blocks(inode, cur_lblock, 3971 nr_pblocks); 3972 if (ret) { 3973 if (ret == -ENOENT) 3974 ret = -EINVAL; 3975 goto out; 3976 } 3977 3978 if (!last_extent) 3979 goto retry; 3980 } 3981 3982 if (cur_lblock + nr_pblocks >= sis->max) 3983 nr_pblocks = sis->max - cur_lblock; 3984 3985 if (cur_lblock) { /* exclude the header page */ 3986 if (pblock < lowest_pblock) 3987 lowest_pblock = pblock; 3988 if (pblock + nr_pblocks - 1 > highest_pblock) 3989 highest_pblock = pblock + nr_pblocks - 1; 3990 } 3991 3992 /* 3993 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks 3994 */ 3995 ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock); 3996 if (ret < 0) 3997 goto out; 3998 nr_extents += ret; 3999 cur_lblock += nr_pblocks; 4000 } 4001 ret = nr_extents; 4002 *span = 1 + highest_pblock - lowest_pblock; 4003 if (cur_lblock == 0) 4004 cur_lblock = 1; /* force Empty message */ 4005 sis->max = cur_lblock; 4006 sis->pages = cur_lblock - 1; 4007 out: 4008 if (not_aligned) 4009 f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%lu * N)", 4010 not_aligned, blks_per_sec * F2FS_BLKSIZE); 4011 return ret; 4012 } 4013 4014 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, 4015 sector_t *span) 4016 { 4017 struct inode *inode = file_inode(file); 4018 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4019 int ret; 4020 4021 if (!S_ISREG(inode->i_mode)) 4022 return -EINVAL; 4023 4024 if (f2fs_readonly(sbi->sb)) 4025 return -EROFS; 4026 4027 if (f2fs_lfs_mode(sbi) && !f2fs_sb_has_blkzoned(sbi)) { 4028 f2fs_err(sbi, "Swapfile not supported in LFS mode"); 4029 return -EINVAL; 4030 } 4031 4032 ret = f2fs_convert_inline_inode(inode); 4033 if (ret) 4034 return ret; 4035 4036 if (!f2fs_disable_compressed_file(inode)) 4037 return -EINVAL; 4038 4039 ret = filemap_fdatawrite(inode->i_mapping); 4040 if (ret < 0) 4041 return ret; 4042 4043 f2fs_precache_extents(inode); 4044 4045 ret = check_swap_activate(sis, file, span); 4046 if (ret < 0) 4047 return ret; 4048 4049 stat_inc_swapfile_inode(inode); 4050 set_inode_flag(inode, FI_PIN_FILE); 4051 f2fs_update_time(sbi, REQ_TIME); 4052 return ret; 4053 } 4054 4055 static void f2fs_swap_deactivate(struct file *file) 4056 { 4057 struct inode *inode = file_inode(file); 4058 4059 stat_dec_swapfile_inode(inode); 4060 clear_inode_flag(inode, FI_PIN_FILE); 4061 } 4062 #else 4063 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, 4064 sector_t *span) 4065 { 4066 return -EOPNOTSUPP; 4067 } 4068 4069 static void f2fs_swap_deactivate(struct file *file) 4070 { 4071 } 4072 #endif 4073 4074 const struct address_space_operations f2fs_dblock_aops = { 4075 .read_folio = f2fs_read_data_folio, 4076 .readahead = f2fs_readahead, 4077 .writepages = f2fs_write_data_pages, 4078 .write_begin = f2fs_write_begin, 4079 .write_end = f2fs_write_end, 4080 .dirty_folio = f2fs_dirty_data_folio, 4081 .migrate_folio = filemap_migrate_folio, 4082 .invalidate_folio = f2fs_invalidate_folio, 4083 .release_folio = f2fs_release_folio, 4084 .bmap = f2fs_bmap, 4085 .swap_activate = f2fs_swap_activate, 4086 .swap_deactivate = f2fs_swap_deactivate, 4087 }; 4088 4089 void f2fs_clear_page_cache_dirty_tag(struct folio *folio) 4090 { 4091 struct address_space *mapping = folio->mapping; 4092 unsigned long flags; 4093 4094 xa_lock_irqsave(&mapping->i_pages, flags); 4095 __xa_clear_mark(&mapping->i_pages, folio->index, 4096 PAGECACHE_TAG_DIRTY); 4097 xa_unlock_irqrestore(&mapping->i_pages, flags); 4098 } 4099 4100 int __init f2fs_init_post_read_processing(void) 4101 { 4102 bio_post_read_ctx_cache = 4103 kmem_cache_create("f2fs_bio_post_read_ctx", 4104 sizeof(struct bio_post_read_ctx), 0, 0, NULL); 4105 if (!bio_post_read_ctx_cache) 4106 goto fail; 4107 bio_post_read_ctx_pool = 4108 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS, 4109 bio_post_read_ctx_cache); 4110 if (!bio_post_read_ctx_pool) 4111 goto fail_free_cache; 4112 return 0; 4113 4114 fail_free_cache: 4115 kmem_cache_destroy(bio_post_read_ctx_cache); 4116 fail: 4117 return -ENOMEM; 4118 } 4119 4120 void f2fs_destroy_post_read_processing(void) 4121 { 4122 mempool_destroy(bio_post_read_ctx_pool); 4123 kmem_cache_destroy(bio_post_read_ctx_cache); 4124 } 4125 4126 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi) 4127 { 4128 if (!f2fs_sb_has_encrypt(sbi) && 4129 !f2fs_sb_has_verity(sbi) && 4130 !f2fs_sb_has_compression(sbi)) 4131 return 0; 4132 4133 sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq", 4134 WQ_UNBOUND | WQ_HIGHPRI, 4135 num_online_cpus()); 4136 return sbi->post_read_wq ? 0 : -ENOMEM; 4137 } 4138 4139 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi) 4140 { 4141 if (sbi->post_read_wq) 4142 destroy_workqueue(sbi->post_read_wq); 4143 } 4144 4145 int __init f2fs_init_bio_entry_cache(void) 4146 { 4147 bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab", 4148 sizeof(struct bio_entry)); 4149 return bio_entry_slab ? 0 : -ENOMEM; 4150 } 4151 4152 void f2fs_destroy_bio_entry_cache(void) 4153 { 4154 kmem_cache_destroy(bio_entry_slab); 4155 } 4156 4157 static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 4158 unsigned int flags, struct iomap *iomap, 4159 struct iomap *srcmap) 4160 { 4161 struct f2fs_map_blocks map = {}; 4162 pgoff_t next_pgofs = 0; 4163 int err; 4164 4165 map.m_lblk = F2FS_BYTES_TO_BLK(offset); 4166 map.m_len = F2FS_BYTES_TO_BLK(offset + length - 1) - map.m_lblk + 1; 4167 map.m_next_pgofs = &next_pgofs; 4168 map.m_seg_type = f2fs_rw_hint_to_seg_type(F2FS_I_SB(inode), 4169 inode->i_write_hint); 4170 4171 /* 4172 * If the blocks being overwritten are already allocated, 4173 * f2fs_map_lock and f2fs_balance_fs are not necessary. 4174 */ 4175 if ((flags & IOMAP_WRITE) && 4176 !f2fs_overwrite_io(inode, offset, length)) 4177 map.m_may_create = true; 4178 4179 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DIO); 4180 if (err) 4181 return err; 4182 4183 iomap->offset = F2FS_BLK_TO_BYTES(map.m_lblk); 4184 4185 /* 4186 * When inline encryption is enabled, sometimes I/O to an encrypted file 4187 * has to be broken up to guarantee DUN contiguity. Handle this by 4188 * limiting the length of the mapping returned. 4189 */ 4190 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len); 4191 4192 /* 4193 * We should never see delalloc or compressed extents here based on 4194 * prior flushing and checks. 4195 */ 4196 if (WARN_ON_ONCE(map.m_pblk == COMPRESS_ADDR)) 4197 return -EINVAL; 4198 4199 if (map.m_flags & F2FS_MAP_MAPPED) { 4200 if (WARN_ON_ONCE(map.m_pblk == NEW_ADDR)) 4201 return -EINVAL; 4202 4203 iomap->length = F2FS_BLK_TO_BYTES(map.m_len); 4204 iomap->type = IOMAP_MAPPED; 4205 iomap->flags |= IOMAP_F_MERGED; 4206 iomap->bdev = map.m_bdev; 4207 iomap->addr = F2FS_BLK_TO_BYTES(map.m_pblk); 4208 } else { 4209 if (flags & IOMAP_WRITE) 4210 return -ENOTBLK; 4211 4212 if (map.m_pblk == NULL_ADDR) { 4213 iomap->length = F2FS_BLK_TO_BYTES(next_pgofs) - 4214 iomap->offset; 4215 iomap->type = IOMAP_HOLE; 4216 } else if (map.m_pblk == NEW_ADDR) { 4217 iomap->length = F2FS_BLK_TO_BYTES(map.m_len); 4218 iomap->type = IOMAP_UNWRITTEN; 4219 } else { 4220 f2fs_bug_on(F2FS_I_SB(inode), 1); 4221 } 4222 iomap->addr = IOMAP_NULL_ADDR; 4223 } 4224 4225 if (map.m_flags & F2FS_MAP_NEW) 4226 iomap->flags |= IOMAP_F_NEW; 4227 if ((inode->i_state & I_DIRTY_DATASYNC) || 4228 offset + length > i_size_read(inode)) 4229 iomap->flags |= IOMAP_F_DIRTY; 4230 4231 return 0; 4232 } 4233 4234 const struct iomap_ops f2fs_iomap_ops = { 4235 .iomap_begin = f2fs_iomap_begin, 4236 }; 4237