1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/data.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/buffer_head.h> 11 #include <linux/sched/mm.h> 12 #include <linux/mpage.h> 13 #include <linux/writeback.h> 14 #include <linux/pagevec.h> 15 #include <linux/blkdev.h> 16 #include <linux/bio.h> 17 #include <linux/blk-crypto.h> 18 #include <linux/swap.h> 19 #include <linux/prefetch.h> 20 #include <linux/uio.h> 21 #include <linux/sched/signal.h> 22 #include <linux/fiemap.h> 23 #include <linux/iomap.h> 24 25 #include "f2fs.h" 26 #include "node.h" 27 #include "segment.h" 28 #include "iostat.h" 29 #include <trace/events/f2fs.h> 30 31 #define NUM_PREALLOC_POST_READ_CTXS 128 32 33 static struct kmem_cache *bio_post_read_ctx_cache; 34 static struct kmem_cache *bio_entry_slab; 35 static mempool_t *bio_post_read_ctx_pool; 36 static struct bio_set f2fs_bioset; 37 38 #define F2FS_BIO_POOL_SIZE NR_CURSEG_TYPE 39 40 int __init f2fs_init_bioset(void) 41 { 42 return bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE, 43 0, BIOSET_NEED_BVECS); 44 } 45 46 void f2fs_destroy_bioset(void) 47 { 48 bioset_exit(&f2fs_bioset); 49 } 50 51 bool f2fs_is_cp_guaranteed(struct page *page) 52 { 53 struct address_space *mapping = page->mapping; 54 struct inode *inode; 55 struct f2fs_sb_info *sbi; 56 57 if (!mapping) 58 return false; 59 60 inode = mapping->host; 61 sbi = F2FS_I_SB(inode); 62 63 if (inode->i_ino == F2FS_META_INO(sbi) || 64 inode->i_ino == F2FS_NODE_INO(sbi) || 65 S_ISDIR(inode->i_mode)) 66 return true; 67 68 if ((S_ISREG(inode->i_mode) && IS_NOQUOTA(inode)) || 69 page_private_gcing(page)) 70 return true; 71 return false; 72 } 73 74 static enum count_type __read_io_type(struct page *page) 75 { 76 struct address_space *mapping = page_file_mapping(page); 77 78 if (mapping) { 79 struct inode *inode = mapping->host; 80 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 81 82 if (inode->i_ino == F2FS_META_INO(sbi)) 83 return F2FS_RD_META; 84 85 if (inode->i_ino == F2FS_NODE_INO(sbi)) 86 return F2FS_RD_NODE; 87 } 88 return F2FS_RD_DATA; 89 } 90 91 /* postprocessing steps for read bios */ 92 enum bio_post_read_step { 93 #ifdef CONFIG_FS_ENCRYPTION 94 STEP_DECRYPT = BIT(0), 95 #else 96 STEP_DECRYPT = 0, /* compile out the decryption-related code */ 97 #endif 98 #ifdef CONFIG_F2FS_FS_COMPRESSION 99 STEP_DECOMPRESS = BIT(1), 100 #else 101 STEP_DECOMPRESS = 0, /* compile out the decompression-related code */ 102 #endif 103 #ifdef CONFIG_FS_VERITY 104 STEP_VERITY = BIT(2), 105 #else 106 STEP_VERITY = 0, /* compile out the verity-related code */ 107 #endif 108 }; 109 110 struct bio_post_read_ctx { 111 struct bio *bio; 112 struct f2fs_sb_info *sbi; 113 struct work_struct work; 114 unsigned int enabled_steps; 115 /* 116 * decompression_attempted keeps track of whether 117 * f2fs_end_read_compressed_page() has been called on the pages in the 118 * bio that belong to a compressed cluster yet. 119 */ 120 bool decompression_attempted; 121 block_t fs_blkaddr; 122 }; 123 124 /* 125 * Update and unlock a bio's pages, and free the bio. 126 * 127 * This marks pages up-to-date only if there was no error in the bio (I/O error, 128 * decryption error, or verity error), as indicated by bio->bi_status. 129 * 130 * "Compressed pages" (pagecache pages backed by a compressed cluster on-disk) 131 * aren't marked up-to-date here, as decompression is done on a per-compression- 132 * cluster basis rather than a per-bio basis. Instead, we only must do two 133 * things for each compressed page here: call f2fs_end_read_compressed_page() 134 * with failed=true if an error occurred before it would have normally gotten 135 * called (i.e., I/O error or decryption error, but *not* verity error), and 136 * release the bio's reference to the decompress_io_ctx of the page's cluster. 137 */ 138 static void f2fs_finish_read_bio(struct bio *bio, bool in_task) 139 { 140 struct bio_vec *bv; 141 struct bvec_iter_all iter_all; 142 struct bio_post_read_ctx *ctx = bio->bi_private; 143 144 bio_for_each_segment_all(bv, bio, iter_all) { 145 struct page *page = bv->bv_page; 146 147 if (f2fs_is_compressed_page(page)) { 148 if (ctx && !ctx->decompression_attempted) 149 f2fs_end_read_compressed_page(page, true, 0, 150 in_task); 151 f2fs_put_page_dic(page, in_task); 152 continue; 153 } 154 155 if (bio->bi_status) 156 ClearPageUptodate(page); 157 else 158 SetPageUptodate(page); 159 dec_page_count(F2FS_P_SB(page), __read_io_type(page)); 160 unlock_page(page); 161 } 162 163 if (ctx) 164 mempool_free(ctx, bio_post_read_ctx_pool); 165 bio_put(bio); 166 } 167 168 static void f2fs_verify_bio(struct work_struct *work) 169 { 170 struct bio_post_read_ctx *ctx = 171 container_of(work, struct bio_post_read_ctx, work); 172 struct bio *bio = ctx->bio; 173 bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS); 174 175 /* 176 * fsverity_verify_bio() may call readahead() again, and while verity 177 * will be disabled for this, decryption and/or decompression may still 178 * be needed, resulting in another bio_post_read_ctx being allocated. 179 * So to prevent deadlocks we need to release the current ctx to the 180 * mempool first. This assumes that verity is the last post-read step. 181 */ 182 mempool_free(ctx, bio_post_read_ctx_pool); 183 bio->bi_private = NULL; 184 185 /* 186 * Verify the bio's pages with fs-verity. Exclude compressed pages, 187 * as those were handled separately by f2fs_end_read_compressed_page(). 188 */ 189 if (may_have_compressed_pages) { 190 struct bio_vec *bv; 191 struct bvec_iter_all iter_all; 192 193 bio_for_each_segment_all(bv, bio, iter_all) { 194 struct page *page = bv->bv_page; 195 196 if (!f2fs_is_compressed_page(page) && 197 !fsverity_verify_page(page)) { 198 bio->bi_status = BLK_STS_IOERR; 199 break; 200 } 201 } 202 } else { 203 fsverity_verify_bio(bio); 204 } 205 206 f2fs_finish_read_bio(bio, true); 207 } 208 209 /* 210 * If the bio's data needs to be verified with fs-verity, then enqueue the 211 * verity work for the bio. Otherwise finish the bio now. 212 * 213 * Note that to avoid deadlocks, the verity work can't be done on the 214 * decryption/decompression workqueue. This is because verifying the data pages 215 * can involve reading verity metadata pages from the file, and these verity 216 * metadata pages may be encrypted and/or compressed. 217 */ 218 static void f2fs_verify_and_finish_bio(struct bio *bio, bool in_task) 219 { 220 struct bio_post_read_ctx *ctx = bio->bi_private; 221 222 if (ctx && (ctx->enabled_steps & STEP_VERITY)) { 223 INIT_WORK(&ctx->work, f2fs_verify_bio); 224 fsverity_enqueue_verify_work(&ctx->work); 225 } else { 226 f2fs_finish_read_bio(bio, in_task); 227 } 228 } 229 230 /* 231 * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last 232 * remaining page was read by @ctx->bio. 233 * 234 * Note that a bio may span clusters (even a mix of compressed and uncompressed 235 * clusters) or be for just part of a cluster. STEP_DECOMPRESS just indicates 236 * that the bio includes at least one compressed page. The actual decompression 237 * is done on a per-cluster basis, not a per-bio basis. 238 */ 239 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx, 240 bool in_task) 241 { 242 struct bio_vec *bv; 243 struct bvec_iter_all iter_all; 244 bool all_compressed = true; 245 block_t blkaddr = ctx->fs_blkaddr; 246 247 bio_for_each_segment_all(bv, ctx->bio, iter_all) { 248 struct page *page = bv->bv_page; 249 250 if (f2fs_is_compressed_page(page)) 251 f2fs_end_read_compressed_page(page, false, blkaddr, 252 in_task); 253 else 254 all_compressed = false; 255 256 blkaddr++; 257 } 258 259 ctx->decompression_attempted = true; 260 261 /* 262 * Optimization: if all the bio's pages are compressed, then scheduling 263 * the per-bio verity work is unnecessary, as verity will be fully 264 * handled at the compression cluster level. 265 */ 266 if (all_compressed) 267 ctx->enabled_steps &= ~STEP_VERITY; 268 } 269 270 static void f2fs_post_read_work(struct work_struct *work) 271 { 272 struct bio_post_read_ctx *ctx = 273 container_of(work, struct bio_post_read_ctx, work); 274 struct bio *bio = ctx->bio; 275 276 if ((ctx->enabled_steps & STEP_DECRYPT) && !fscrypt_decrypt_bio(bio)) { 277 f2fs_finish_read_bio(bio, true); 278 return; 279 } 280 281 if (ctx->enabled_steps & STEP_DECOMPRESS) 282 f2fs_handle_step_decompress(ctx, true); 283 284 f2fs_verify_and_finish_bio(bio, true); 285 } 286 287 static void f2fs_read_end_io(struct bio *bio) 288 { 289 struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio)); 290 struct bio_post_read_ctx *ctx; 291 bool intask = in_task(); 292 293 iostat_update_and_unbind_ctx(bio); 294 ctx = bio->bi_private; 295 296 if (time_to_inject(sbi, FAULT_READ_IO)) 297 bio->bi_status = BLK_STS_IOERR; 298 299 if (bio->bi_status) { 300 f2fs_finish_read_bio(bio, intask); 301 return; 302 } 303 304 if (ctx) { 305 unsigned int enabled_steps = ctx->enabled_steps & 306 (STEP_DECRYPT | STEP_DECOMPRESS); 307 308 /* 309 * If we have only decompression step between decompression and 310 * decrypt, we don't need post processing for this. 311 */ 312 if (enabled_steps == STEP_DECOMPRESS && 313 !f2fs_low_mem_mode(sbi)) { 314 f2fs_handle_step_decompress(ctx, intask); 315 } else if (enabled_steps) { 316 INIT_WORK(&ctx->work, f2fs_post_read_work); 317 queue_work(ctx->sbi->post_read_wq, &ctx->work); 318 return; 319 } 320 } 321 322 f2fs_verify_and_finish_bio(bio, intask); 323 } 324 325 static void f2fs_write_end_io(struct bio *bio) 326 { 327 struct f2fs_sb_info *sbi; 328 struct bio_vec *bvec; 329 struct bvec_iter_all iter_all; 330 331 iostat_update_and_unbind_ctx(bio); 332 sbi = bio->bi_private; 333 334 if (time_to_inject(sbi, FAULT_WRITE_IO)) 335 bio->bi_status = BLK_STS_IOERR; 336 337 bio_for_each_segment_all(bvec, bio, iter_all) { 338 struct page *page = bvec->bv_page; 339 enum count_type type = WB_DATA_TYPE(page, false); 340 341 fscrypt_finalize_bounce_page(&page); 342 343 #ifdef CONFIG_F2FS_FS_COMPRESSION 344 if (f2fs_is_compressed_page(page)) { 345 f2fs_compress_write_end_io(bio, page); 346 continue; 347 } 348 #endif 349 350 if (unlikely(bio->bi_status)) { 351 mapping_set_error(page->mapping, -EIO); 352 if (type == F2FS_WB_CP_DATA) 353 f2fs_stop_checkpoint(sbi, true, 354 STOP_CP_REASON_WRITE_FAIL); 355 } 356 357 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) && 358 page->index != nid_of_node(page)); 359 360 dec_page_count(sbi, type); 361 if (f2fs_in_warm_node_list(sbi, page)) 362 f2fs_del_fsync_node_entry(sbi, page); 363 clear_page_private_gcing(page); 364 end_page_writeback(page); 365 } 366 if (!get_pages(sbi, F2FS_WB_CP_DATA) && 367 wq_has_sleeper(&sbi->cp_wait)) 368 wake_up(&sbi->cp_wait); 369 370 bio_put(bio); 371 } 372 373 #ifdef CONFIG_BLK_DEV_ZONED 374 static void f2fs_zone_write_end_io(struct bio *bio) 375 { 376 struct f2fs_bio_info *io = (struct f2fs_bio_info *)bio->bi_private; 377 378 bio->bi_private = io->bi_private; 379 complete(&io->zone_wait); 380 f2fs_write_end_io(bio); 381 } 382 #endif 383 384 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 385 block_t blk_addr, sector_t *sector) 386 { 387 struct block_device *bdev = sbi->sb->s_bdev; 388 int i; 389 390 if (f2fs_is_multi_device(sbi)) { 391 for (i = 0; i < sbi->s_ndevs; i++) { 392 if (FDEV(i).start_blk <= blk_addr && 393 FDEV(i).end_blk >= blk_addr) { 394 blk_addr -= FDEV(i).start_blk; 395 bdev = FDEV(i).bdev; 396 break; 397 } 398 } 399 } 400 401 if (sector) 402 *sector = SECTOR_FROM_BLOCK(blk_addr); 403 return bdev; 404 } 405 406 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr) 407 { 408 int i; 409 410 if (!f2fs_is_multi_device(sbi)) 411 return 0; 412 413 for (i = 0; i < sbi->s_ndevs; i++) 414 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr) 415 return i; 416 return 0; 417 } 418 419 static blk_opf_t f2fs_io_flags(struct f2fs_io_info *fio) 420 { 421 unsigned int temp_mask = GENMASK(NR_TEMP_TYPE - 1, 0); 422 unsigned int fua_flag, meta_flag, io_flag; 423 blk_opf_t op_flags = 0; 424 425 if (fio->op != REQ_OP_WRITE) 426 return 0; 427 if (fio->type == DATA) 428 io_flag = fio->sbi->data_io_flag; 429 else if (fio->type == NODE) 430 io_flag = fio->sbi->node_io_flag; 431 else 432 return 0; 433 434 fua_flag = io_flag & temp_mask; 435 meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask; 436 437 /* 438 * data/node io flag bits per temp: 439 * REQ_META | REQ_FUA | 440 * 5 | 4 | 3 | 2 | 1 | 0 | 441 * Cold | Warm | Hot | Cold | Warm | Hot | 442 */ 443 if (BIT(fio->temp) & meta_flag) 444 op_flags |= REQ_META; 445 if (BIT(fio->temp) & fua_flag) 446 op_flags |= REQ_FUA; 447 return op_flags; 448 } 449 450 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages) 451 { 452 struct f2fs_sb_info *sbi = fio->sbi; 453 struct block_device *bdev; 454 sector_t sector; 455 struct bio *bio; 456 457 bdev = f2fs_target_device(sbi, fio->new_blkaddr, §or); 458 bio = bio_alloc_bioset(bdev, npages, 459 fio->op | fio->op_flags | f2fs_io_flags(fio), 460 GFP_NOIO, &f2fs_bioset); 461 bio->bi_iter.bi_sector = sector; 462 if (is_read_io(fio->op)) { 463 bio->bi_end_io = f2fs_read_end_io; 464 bio->bi_private = NULL; 465 } else { 466 bio->bi_end_io = f2fs_write_end_io; 467 bio->bi_private = sbi; 468 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, 469 fio->type, fio->temp); 470 } 471 iostat_alloc_and_bind_ctx(sbi, bio, NULL); 472 473 if (fio->io_wbc) 474 wbc_init_bio(fio->io_wbc, bio); 475 476 return bio; 477 } 478 479 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode, 480 pgoff_t first_idx, 481 const struct f2fs_io_info *fio, 482 gfp_t gfp_mask) 483 { 484 /* 485 * The f2fs garbage collector sets ->encrypted_page when it wants to 486 * read/write raw data without encryption. 487 */ 488 if (!fio || !fio->encrypted_page) 489 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask); 490 } 491 492 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode, 493 pgoff_t next_idx, 494 const struct f2fs_io_info *fio) 495 { 496 /* 497 * The f2fs garbage collector sets ->encrypted_page when it wants to 498 * read/write raw data without encryption. 499 */ 500 if (fio && fio->encrypted_page) 501 return !bio_has_crypt_ctx(bio); 502 503 return fscrypt_mergeable_bio(bio, inode, next_idx); 504 } 505 506 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio, 507 enum page_type type) 508 { 509 WARN_ON_ONCE(!is_read_io(bio_op(bio))); 510 trace_f2fs_submit_read_bio(sbi->sb, type, bio); 511 512 iostat_update_submit_ctx(bio, type); 513 submit_bio(bio); 514 } 515 516 static void f2fs_submit_write_bio(struct f2fs_sb_info *sbi, struct bio *bio, 517 enum page_type type) 518 { 519 WARN_ON_ONCE(is_read_io(bio_op(bio))); 520 521 if (f2fs_lfs_mode(sbi) && current->plug && PAGE_TYPE_ON_MAIN(type)) 522 blk_finish_plug(current->plug); 523 524 trace_f2fs_submit_write_bio(sbi->sb, type, bio); 525 iostat_update_submit_ctx(bio, type); 526 submit_bio(bio); 527 } 528 529 static void __submit_merged_bio(struct f2fs_bio_info *io) 530 { 531 struct f2fs_io_info *fio = &io->fio; 532 533 if (!io->bio) 534 return; 535 536 if (is_read_io(fio->op)) { 537 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio); 538 f2fs_submit_read_bio(io->sbi, io->bio, fio->type); 539 } else { 540 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio); 541 f2fs_submit_write_bio(io->sbi, io->bio, fio->type); 542 } 543 io->bio = NULL; 544 } 545 546 static bool __has_merged_page(struct bio *bio, struct inode *inode, 547 struct page *page, nid_t ino) 548 { 549 struct bio_vec *bvec; 550 struct bvec_iter_all iter_all; 551 552 if (!bio) 553 return false; 554 555 if (!inode && !page && !ino) 556 return true; 557 558 bio_for_each_segment_all(bvec, bio, iter_all) { 559 struct page *target = bvec->bv_page; 560 561 if (fscrypt_is_bounce_page(target)) { 562 target = fscrypt_pagecache_page(target); 563 if (IS_ERR(target)) 564 continue; 565 } 566 if (f2fs_is_compressed_page(target)) { 567 target = f2fs_compress_control_page(target); 568 if (IS_ERR(target)) 569 continue; 570 } 571 572 if (inode && inode == target->mapping->host) 573 return true; 574 if (page && page == target) 575 return true; 576 if (ino && ino == ino_of_node(target)) 577 return true; 578 } 579 580 return false; 581 } 582 583 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi) 584 { 585 int i; 586 587 for (i = 0; i < NR_PAGE_TYPE; i++) { 588 int n = (i == META) ? 1 : NR_TEMP_TYPE; 589 int j; 590 591 sbi->write_io[i] = f2fs_kmalloc(sbi, 592 array_size(n, sizeof(struct f2fs_bio_info)), 593 GFP_KERNEL); 594 if (!sbi->write_io[i]) 595 return -ENOMEM; 596 597 for (j = HOT; j < n; j++) { 598 struct f2fs_bio_info *io = &sbi->write_io[i][j]; 599 600 init_f2fs_rwsem(&io->io_rwsem); 601 io->sbi = sbi; 602 io->bio = NULL; 603 io->last_block_in_bio = 0; 604 spin_lock_init(&io->io_lock); 605 INIT_LIST_HEAD(&io->io_list); 606 INIT_LIST_HEAD(&io->bio_list); 607 init_f2fs_rwsem(&io->bio_list_lock); 608 #ifdef CONFIG_BLK_DEV_ZONED 609 init_completion(&io->zone_wait); 610 io->zone_pending_bio = NULL; 611 io->bi_private = NULL; 612 #endif 613 } 614 } 615 616 return 0; 617 } 618 619 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi, 620 enum page_type type, enum temp_type temp) 621 { 622 enum page_type btype = PAGE_TYPE_OF_BIO(type); 623 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 624 625 f2fs_down_write(&io->io_rwsem); 626 627 if (!io->bio) 628 goto unlock_out; 629 630 /* change META to META_FLUSH in the checkpoint procedure */ 631 if (type >= META_FLUSH) { 632 io->fio.type = META_FLUSH; 633 io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC; 634 if (!test_opt(sbi, NOBARRIER)) 635 io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA; 636 } 637 __submit_merged_bio(io); 638 unlock_out: 639 f2fs_up_write(&io->io_rwsem); 640 } 641 642 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi, 643 struct inode *inode, struct page *page, 644 nid_t ino, enum page_type type, bool force) 645 { 646 enum temp_type temp; 647 bool ret = true; 648 649 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) { 650 if (!force) { 651 enum page_type btype = PAGE_TYPE_OF_BIO(type); 652 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 653 654 f2fs_down_read(&io->io_rwsem); 655 ret = __has_merged_page(io->bio, inode, page, ino); 656 f2fs_up_read(&io->io_rwsem); 657 } 658 if (ret) 659 __f2fs_submit_merged_write(sbi, type, temp); 660 661 /* TODO: use HOT temp only for meta pages now. */ 662 if (type >= META) 663 break; 664 } 665 } 666 667 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type) 668 { 669 __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true); 670 } 671 672 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 673 struct inode *inode, struct page *page, 674 nid_t ino, enum page_type type) 675 { 676 __submit_merged_write_cond(sbi, inode, page, ino, type, false); 677 } 678 679 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi) 680 { 681 f2fs_submit_merged_write(sbi, DATA); 682 f2fs_submit_merged_write(sbi, NODE); 683 f2fs_submit_merged_write(sbi, META); 684 } 685 686 /* 687 * Fill the locked page with data located in the block address. 688 * A caller needs to unlock the page on failure. 689 */ 690 int f2fs_submit_page_bio(struct f2fs_io_info *fio) 691 { 692 struct bio *bio; 693 struct page *page = fio->encrypted_page ? 694 fio->encrypted_page : fio->page; 695 696 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, 697 fio->is_por ? META_POR : (__is_meta_io(fio) ? 698 META_GENERIC : DATA_GENERIC_ENHANCE))) 699 return -EFSCORRUPTED; 700 701 trace_f2fs_submit_page_bio(page, fio); 702 703 /* Allocate a new bio */ 704 bio = __bio_alloc(fio, 1); 705 706 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host, 707 fio->page->index, fio, GFP_NOIO); 708 709 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 710 bio_put(bio); 711 return -EFAULT; 712 } 713 714 if (fio->io_wbc && !is_read_io(fio->op)) 715 wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE); 716 717 inc_page_count(fio->sbi, is_read_io(fio->op) ? 718 __read_io_type(page) : WB_DATA_TYPE(fio->page, false)); 719 720 if (is_read_io(bio_op(bio))) 721 f2fs_submit_read_bio(fio->sbi, bio, fio->type); 722 else 723 f2fs_submit_write_bio(fio->sbi, bio, fio->type); 724 return 0; 725 } 726 727 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio, 728 block_t last_blkaddr, block_t cur_blkaddr) 729 { 730 if (unlikely(sbi->max_io_bytes && 731 bio->bi_iter.bi_size >= sbi->max_io_bytes)) 732 return false; 733 if (last_blkaddr + 1 != cur_blkaddr) 734 return false; 735 return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL); 736 } 737 738 static bool io_type_is_mergeable(struct f2fs_bio_info *io, 739 struct f2fs_io_info *fio) 740 { 741 if (io->fio.op != fio->op) 742 return false; 743 return io->fio.op_flags == fio->op_flags; 744 } 745 746 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio, 747 struct f2fs_bio_info *io, 748 struct f2fs_io_info *fio, 749 block_t last_blkaddr, 750 block_t cur_blkaddr) 751 { 752 if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr)) 753 return false; 754 return io_type_is_mergeable(io, fio); 755 } 756 757 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio, 758 struct page *page, enum temp_type temp) 759 { 760 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 761 struct bio_entry *be; 762 763 be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL); 764 be->bio = bio; 765 bio_get(bio); 766 767 if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE) 768 f2fs_bug_on(sbi, 1); 769 770 f2fs_down_write(&io->bio_list_lock); 771 list_add_tail(&be->list, &io->bio_list); 772 f2fs_up_write(&io->bio_list_lock); 773 } 774 775 static void del_bio_entry(struct bio_entry *be) 776 { 777 list_del(&be->list); 778 kmem_cache_free(bio_entry_slab, be); 779 } 780 781 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio, 782 struct page *page) 783 { 784 struct f2fs_sb_info *sbi = fio->sbi; 785 enum temp_type temp; 786 bool found = false; 787 int ret = -EAGAIN; 788 789 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) { 790 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 791 struct list_head *head = &io->bio_list; 792 struct bio_entry *be; 793 794 f2fs_down_write(&io->bio_list_lock); 795 list_for_each_entry(be, head, list) { 796 if (be->bio != *bio) 797 continue; 798 799 found = true; 800 801 f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio, 802 *fio->last_block, 803 fio->new_blkaddr)); 804 if (f2fs_crypt_mergeable_bio(*bio, 805 fio->page->mapping->host, 806 fio->page->index, fio) && 807 bio_add_page(*bio, page, PAGE_SIZE, 0) == 808 PAGE_SIZE) { 809 ret = 0; 810 break; 811 } 812 813 /* page can't be merged into bio; submit the bio */ 814 del_bio_entry(be); 815 f2fs_submit_write_bio(sbi, *bio, DATA); 816 break; 817 } 818 f2fs_up_write(&io->bio_list_lock); 819 } 820 821 if (ret) { 822 bio_put(*bio); 823 *bio = NULL; 824 } 825 826 return ret; 827 } 828 829 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi, 830 struct bio **bio, struct page *page) 831 { 832 enum temp_type temp; 833 bool found = false; 834 struct bio *target = bio ? *bio : NULL; 835 836 f2fs_bug_on(sbi, !target && !page); 837 838 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) { 839 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 840 struct list_head *head = &io->bio_list; 841 struct bio_entry *be; 842 843 if (list_empty(head)) 844 continue; 845 846 f2fs_down_read(&io->bio_list_lock); 847 list_for_each_entry(be, head, list) { 848 if (target) 849 found = (target == be->bio); 850 else 851 found = __has_merged_page(be->bio, NULL, 852 page, 0); 853 if (found) 854 break; 855 } 856 f2fs_up_read(&io->bio_list_lock); 857 858 if (!found) 859 continue; 860 861 found = false; 862 863 f2fs_down_write(&io->bio_list_lock); 864 list_for_each_entry(be, head, list) { 865 if (target) 866 found = (target == be->bio); 867 else 868 found = __has_merged_page(be->bio, NULL, 869 page, 0); 870 if (found) { 871 target = be->bio; 872 del_bio_entry(be); 873 break; 874 } 875 } 876 f2fs_up_write(&io->bio_list_lock); 877 } 878 879 if (found) 880 f2fs_submit_write_bio(sbi, target, DATA); 881 if (bio && *bio) { 882 bio_put(*bio); 883 *bio = NULL; 884 } 885 } 886 887 int f2fs_merge_page_bio(struct f2fs_io_info *fio) 888 { 889 struct bio *bio = *fio->bio; 890 struct page *page = fio->encrypted_page ? 891 fio->encrypted_page : fio->page; 892 893 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, 894 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC)) 895 return -EFSCORRUPTED; 896 897 trace_f2fs_submit_page_bio(page, fio); 898 899 if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block, 900 fio->new_blkaddr)) 901 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL); 902 alloc_new: 903 if (!bio) { 904 bio = __bio_alloc(fio, BIO_MAX_VECS); 905 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host, 906 fio->page->index, fio, GFP_NOIO); 907 908 add_bio_entry(fio->sbi, bio, page, fio->temp); 909 } else { 910 if (add_ipu_page(fio, &bio, page)) 911 goto alloc_new; 912 } 913 914 if (fio->io_wbc) 915 wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE); 916 917 inc_page_count(fio->sbi, WB_DATA_TYPE(page, false)); 918 919 *fio->last_block = fio->new_blkaddr; 920 *fio->bio = bio; 921 922 return 0; 923 } 924 925 #ifdef CONFIG_BLK_DEV_ZONED 926 static bool is_end_zone_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr) 927 { 928 int devi = 0; 929 930 if (f2fs_is_multi_device(sbi)) { 931 devi = f2fs_target_device_index(sbi, blkaddr); 932 if (blkaddr < FDEV(devi).start_blk || 933 blkaddr > FDEV(devi).end_blk) { 934 f2fs_err(sbi, "Invalid block %x", blkaddr); 935 return false; 936 } 937 blkaddr -= FDEV(devi).start_blk; 938 } 939 return bdev_is_zoned(FDEV(devi).bdev) && 940 f2fs_blkz_is_seq(sbi, devi, blkaddr) && 941 (blkaddr % sbi->blocks_per_blkz == sbi->blocks_per_blkz - 1); 942 } 943 #endif 944 945 void f2fs_submit_page_write(struct f2fs_io_info *fio) 946 { 947 struct f2fs_sb_info *sbi = fio->sbi; 948 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type); 949 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp; 950 struct page *bio_page; 951 enum count_type type; 952 953 f2fs_bug_on(sbi, is_read_io(fio->op)); 954 955 f2fs_down_write(&io->io_rwsem); 956 next: 957 #ifdef CONFIG_BLK_DEV_ZONED 958 if (f2fs_sb_has_blkzoned(sbi) && btype < META && io->zone_pending_bio) { 959 wait_for_completion_io(&io->zone_wait); 960 bio_put(io->zone_pending_bio); 961 io->zone_pending_bio = NULL; 962 io->bi_private = NULL; 963 } 964 #endif 965 966 if (fio->in_list) { 967 spin_lock(&io->io_lock); 968 if (list_empty(&io->io_list)) { 969 spin_unlock(&io->io_lock); 970 goto out; 971 } 972 fio = list_first_entry(&io->io_list, 973 struct f2fs_io_info, list); 974 list_del(&fio->list); 975 spin_unlock(&io->io_lock); 976 } 977 978 verify_fio_blkaddr(fio); 979 980 if (fio->encrypted_page) 981 bio_page = fio->encrypted_page; 982 else if (fio->compressed_page) 983 bio_page = fio->compressed_page; 984 else 985 bio_page = fio->page; 986 987 /* set submitted = true as a return value */ 988 fio->submitted = 1; 989 990 type = WB_DATA_TYPE(bio_page, fio->compressed_page); 991 inc_page_count(sbi, type); 992 993 if (io->bio && 994 (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio, 995 fio->new_blkaddr) || 996 !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host, 997 bio_page->index, fio))) 998 __submit_merged_bio(io); 999 alloc_new: 1000 if (io->bio == NULL) { 1001 io->bio = __bio_alloc(fio, BIO_MAX_VECS); 1002 f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host, 1003 bio_page->index, fio, GFP_NOIO); 1004 io->fio = *fio; 1005 } 1006 1007 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) { 1008 __submit_merged_bio(io); 1009 goto alloc_new; 1010 } 1011 1012 if (fio->io_wbc) 1013 wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE); 1014 1015 io->last_block_in_bio = fio->new_blkaddr; 1016 1017 trace_f2fs_submit_page_write(fio->page, fio); 1018 #ifdef CONFIG_BLK_DEV_ZONED 1019 if (f2fs_sb_has_blkzoned(sbi) && btype < META && 1020 is_end_zone_blkaddr(sbi, fio->new_blkaddr)) { 1021 bio_get(io->bio); 1022 reinit_completion(&io->zone_wait); 1023 io->bi_private = io->bio->bi_private; 1024 io->bio->bi_private = io; 1025 io->bio->bi_end_io = f2fs_zone_write_end_io; 1026 io->zone_pending_bio = io->bio; 1027 __submit_merged_bio(io); 1028 } 1029 #endif 1030 if (fio->in_list) 1031 goto next; 1032 out: 1033 if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || 1034 !f2fs_is_checkpoint_ready(sbi)) 1035 __submit_merged_bio(io); 1036 f2fs_up_write(&io->io_rwsem); 1037 } 1038 1039 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr, 1040 unsigned nr_pages, blk_opf_t op_flag, 1041 pgoff_t first_idx, bool for_write) 1042 { 1043 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1044 struct bio *bio; 1045 struct bio_post_read_ctx *ctx = NULL; 1046 unsigned int post_read_steps = 0; 1047 sector_t sector; 1048 struct block_device *bdev = f2fs_target_device(sbi, blkaddr, §or); 1049 1050 bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages), 1051 REQ_OP_READ | op_flag, 1052 for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset); 1053 if (!bio) 1054 return ERR_PTR(-ENOMEM); 1055 bio->bi_iter.bi_sector = sector; 1056 f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS); 1057 bio->bi_end_io = f2fs_read_end_io; 1058 1059 if (fscrypt_inode_uses_fs_layer_crypto(inode)) 1060 post_read_steps |= STEP_DECRYPT; 1061 1062 if (f2fs_need_verity(inode, first_idx)) 1063 post_read_steps |= STEP_VERITY; 1064 1065 /* 1066 * STEP_DECOMPRESS is handled specially, since a compressed file might 1067 * contain both compressed and uncompressed clusters. We'll allocate a 1068 * bio_post_read_ctx if the file is compressed, but the caller is 1069 * responsible for enabling STEP_DECOMPRESS if it's actually needed. 1070 */ 1071 1072 if (post_read_steps || f2fs_compressed_file(inode)) { 1073 /* Due to the mempool, this never fails. */ 1074 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS); 1075 ctx->bio = bio; 1076 ctx->sbi = sbi; 1077 ctx->enabled_steps = post_read_steps; 1078 ctx->fs_blkaddr = blkaddr; 1079 ctx->decompression_attempted = false; 1080 bio->bi_private = ctx; 1081 } 1082 iostat_alloc_and_bind_ctx(sbi, bio, ctx); 1083 1084 return bio; 1085 } 1086 1087 /* This can handle encryption stuffs */ 1088 static int f2fs_submit_page_read(struct inode *inode, struct page *page, 1089 block_t blkaddr, blk_opf_t op_flags, 1090 bool for_write) 1091 { 1092 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1093 struct bio *bio; 1094 1095 bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags, 1096 page->index, for_write); 1097 if (IS_ERR(bio)) 1098 return PTR_ERR(bio); 1099 1100 /* wait for GCed page writeback via META_MAPPING */ 1101 f2fs_wait_on_block_writeback(inode, blkaddr); 1102 1103 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 1104 iostat_update_and_unbind_ctx(bio); 1105 if (bio->bi_private) 1106 mempool_free(bio->bi_private, bio_post_read_ctx_pool); 1107 bio_put(bio); 1108 return -EFAULT; 1109 } 1110 inc_page_count(sbi, F2FS_RD_DATA); 1111 f2fs_update_iostat(sbi, NULL, FS_DATA_READ_IO, F2FS_BLKSIZE); 1112 f2fs_submit_read_bio(sbi, bio, DATA); 1113 return 0; 1114 } 1115 1116 static void __set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) 1117 { 1118 __le32 *addr = get_dnode_addr(dn->inode, dn->node_page); 1119 1120 dn->data_blkaddr = blkaddr; 1121 addr[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr); 1122 } 1123 1124 /* 1125 * Lock ordering for the change of data block address: 1126 * ->data_page 1127 * ->node_page 1128 * update block addresses in the node page 1129 */ 1130 void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) 1131 { 1132 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true); 1133 __set_data_blkaddr(dn, blkaddr); 1134 if (set_page_dirty(dn->node_page)) 1135 dn->node_changed = true; 1136 } 1137 1138 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) 1139 { 1140 f2fs_set_data_blkaddr(dn, blkaddr); 1141 f2fs_update_read_extent_cache(dn); 1142 } 1143 1144 /* dn->ofs_in_node will be returned with up-to-date last block pointer */ 1145 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count) 1146 { 1147 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1148 int err; 1149 1150 if (!count) 1151 return 0; 1152 1153 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1154 return -EPERM; 1155 err = inc_valid_block_count(sbi, dn->inode, &count, true); 1156 if (unlikely(err)) 1157 return err; 1158 1159 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid, 1160 dn->ofs_in_node, count); 1161 1162 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true); 1163 1164 for (; count > 0; dn->ofs_in_node++) { 1165 block_t blkaddr = f2fs_data_blkaddr(dn); 1166 1167 if (blkaddr == NULL_ADDR) { 1168 __set_data_blkaddr(dn, NEW_ADDR); 1169 count--; 1170 } 1171 } 1172 1173 if (set_page_dirty(dn->node_page)) 1174 dn->node_changed = true; 1175 return 0; 1176 } 1177 1178 /* Should keep dn->ofs_in_node unchanged */ 1179 int f2fs_reserve_new_block(struct dnode_of_data *dn) 1180 { 1181 unsigned int ofs_in_node = dn->ofs_in_node; 1182 int ret; 1183 1184 ret = f2fs_reserve_new_blocks(dn, 1); 1185 dn->ofs_in_node = ofs_in_node; 1186 return ret; 1187 } 1188 1189 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index) 1190 { 1191 bool need_put = dn->inode_page ? false : true; 1192 int err; 1193 1194 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE); 1195 if (err) 1196 return err; 1197 1198 if (dn->data_blkaddr == NULL_ADDR) 1199 err = f2fs_reserve_new_block(dn); 1200 if (err || need_put) 1201 f2fs_put_dnode(dn); 1202 return err; 1203 } 1204 1205 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index, 1206 blk_opf_t op_flags, bool for_write, 1207 pgoff_t *next_pgofs) 1208 { 1209 struct address_space *mapping = inode->i_mapping; 1210 struct dnode_of_data dn; 1211 struct page *page; 1212 int err; 1213 1214 page = f2fs_grab_cache_page(mapping, index, for_write); 1215 if (!page) 1216 return ERR_PTR(-ENOMEM); 1217 1218 if (f2fs_lookup_read_extent_cache_block(inode, index, 1219 &dn.data_blkaddr)) { 1220 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr, 1221 DATA_GENERIC_ENHANCE_READ)) { 1222 err = -EFSCORRUPTED; 1223 goto put_err; 1224 } 1225 goto got_it; 1226 } 1227 1228 set_new_dnode(&dn, inode, NULL, NULL, 0); 1229 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 1230 if (err) { 1231 if (err == -ENOENT && next_pgofs) 1232 *next_pgofs = f2fs_get_next_page_offset(&dn, index); 1233 goto put_err; 1234 } 1235 f2fs_put_dnode(&dn); 1236 1237 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { 1238 err = -ENOENT; 1239 if (next_pgofs) 1240 *next_pgofs = index + 1; 1241 goto put_err; 1242 } 1243 if (dn.data_blkaddr != NEW_ADDR && 1244 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode), 1245 dn.data_blkaddr, 1246 DATA_GENERIC_ENHANCE)) { 1247 err = -EFSCORRUPTED; 1248 goto put_err; 1249 } 1250 got_it: 1251 if (PageUptodate(page)) { 1252 unlock_page(page); 1253 return page; 1254 } 1255 1256 /* 1257 * A new dentry page is allocated but not able to be written, since its 1258 * new inode page couldn't be allocated due to -ENOSPC. 1259 * In such the case, its blkaddr can be remained as NEW_ADDR. 1260 * see, f2fs_add_link -> f2fs_get_new_data_page -> 1261 * f2fs_init_inode_metadata. 1262 */ 1263 if (dn.data_blkaddr == NEW_ADDR) { 1264 zero_user_segment(page, 0, PAGE_SIZE); 1265 if (!PageUptodate(page)) 1266 SetPageUptodate(page); 1267 unlock_page(page); 1268 return page; 1269 } 1270 1271 err = f2fs_submit_page_read(inode, page, dn.data_blkaddr, 1272 op_flags, for_write); 1273 if (err) 1274 goto put_err; 1275 return page; 1276 1277 put_err: 1278 f2fs_put_page(page, 1); 1279 return ERR_PTR(err); 1280 } 1281 1282 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index, 1283 pgoff_t *next_pgofs) 1284 { 1285 struct address_space *mapping = inode->i_mapping; 1286 struct page *page; 1287 1288 page = find_get_page(mapping, index); 1289 if (page && PageUptodate(page)) 1290 return page; 1291 f2fs_put_page(page, 0); 1292 1293 page = f2fs_get_read_data_page(inode, index, 0, false, next_pgofs); 1294 if (IS_ERR(page)) 1295 return page; 1296 1297 if (PageUptodate(page)) 1298 return page; 1299 1300 wait_on_page_locked(page); 1301 if (unlikely(!PageUptodate(page))) { 1302 f2fs_put_page(page, 0); 1303 return ERR_PTR(-EIO); 1304 } 1305 return page; 1306 } 1307 1308 /* 1309 * If it tries to access a hole, return an error. 1310 * Because, the callers, functions in dir.c and GC, should be able to know 1311 * whether this page exists or not. 1312 */ 1313 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index, 1314 bool for_write) 1315 { 1316 struct address_space *mapping = inode->i_mapping; 1317 struct page *page; 1318 1319 page = f2fs_get_read_data_page(inode, index, 0, for_write, NULL); 1320 if (IS_ERR(page)) 1321 return page; 1322 1323 /* wait for read completion */ 1324 lock_page(page); 1325 if (unlikely(page->mapping != mapping || !PageUptodate(page))) { 1326 f2fs_put_page(page, 1); 1327 return ERR_PTR(-EIO); 1328 } 1329 return page; 1330 } 1331 1332 /* 1333 * Caller ensures that this data page is never allocated. 1334 * A new zero-filled data page is allocated in the page cache. 1335 * 1336 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and 1337 * f2fs_unlock_op(). 1338 * Note that, ipage is set only by make_empty_dir, and if any error occur, 1339 * ipage should be released by this function. 1340 */ 1341 struct page *f2fs_get_new_data_page(struct inode *inode, 1342 struct page *ipage, pgoff_t index, bool new_i_size) 1343 { 1344 struct address_space *mapping = inode->i_mapping; 1345 struct page *page; 1346 struct dnode_of_data dn; 1347 int err; 1348 1349 page = f2fs_grab_cache_page(mapping, index, true); 1350 if (!page) { 1351 /* 1352 * before exiting, we should make sure ipage will be released 1353 * if any error occur. 1354 */ 1355 f2fs_put_page(ipage, 1); 1356 return ERR_PTR(-ENOMEM); 1357 } 1358 1359 set_new_dnode(&dn, inode, ipage, NULL, 0); 1360 err = f2fs_reserve_block(&dn, index); 1361 if (err) { 1362 f2fs_put_page(page, 1); 1363 return ERR_PTR(err); 1364 } 1365 if (!ipage) 1366 f2fs_put_dnode(&dn); 1367 1368 if (PageUptodate(page)) 1369 goto got_it; 1370 1371 if (dn.data_blkaddr == NEW_ADDR) { 1372 zero_user_segment(page, 0, PAGE_SIZE); 1373 if (!PageUptodate(page)) 1374 SetPageUptodate(page); 1375 } else { 1376 f2fs_put_page(page, 1); 1377 1378 /* if ipage exists, blkaddr should be NEW_ADDR */ 1379 f2fs_bug_on(F2FS_I_SB(inode), ipage); 1380 page = f2fs_get_lock_data_page(inode, index, true); 1381 if (IS_ERR(page)) 1382 return page; 1383 } 1384 got_it: 1385 if (new_i_size && i_size_read(inode) < 1386 ((loff_t)(index + 1) << PAGE_SHIFT)) 1387 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT)); 1388 return page; 1389 } 1390 1391 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type) 1392 { 1393 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1394 struct f2fs_summary sum; 1395 struct node_info ni; 1396 block_t old_blkaddr; 1397 blkcnt_t count = 1; 1398 int err; 1399 1400 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1401 return -EPERM; 1402 1403 err = f2fs_get_node_info(sbi, dn->nid, &ni, false); 1404 if (err) 1405 return err; 1406 1407 dn->data_blkaddr = f2fs_data_blkaddr(dn); 1408 if (dn->data_blkaddr == NULL_ADDR) { 1409 err = inc_valid_block_count(sbi, dn->inode, &count, true); 1410 if (unlikely(err)) 1411 return err; 1412 } 1413 1414 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 1415 old_blkaddr = dn->data_blkaddr; 1416 err = f2fs_allocate_data_block(sbi, NULL, old_blkaddr, 1417 &dn->data_blkaddr, &sum, seg_type, NULL); 1418 if (err) 1419 return err; 1420 1421 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 1422 f2fs_invalidate_internal_cache(sbi, old_blkaddr); 1423 1424 f2fs_update_data_blkaddr(dn, dn->data_blkaddr); 1425 return 0; 1426 } 1427 1428 static void f2fs_map_lock(struct f2fs_sb_info *sbi, int flag) 1429 { 1430 if (flag == F2FS_GET_BLOCK_PRE_AIO) 1431 f2fs_down_read(&sbi->node_change); 1432 else 1433 f2fs_lock_op(sbi); 1434 } 1435 1436 static void f2fs_map_unlock(struct f2fs_sb_info *sbi, int flag) 1437 { 1438 if (flag == F2FS_GET_BLOCK_PRE_AIO) 1439 f2fs_up_read(&sbi->node_change); 1440 else 1441 f2fs_unlock_op(sbi); 1442 } 1443 1444 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index) 1445 { 1446 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1447 int err = 0; 1448 1449 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO); 1450 if (!f2fs_lookup_read_extent_cache_block(dn->inode, index, 1451 &dn->data_blkaddr)) 1452 err = f2fs_reserve_block(dn, index); 1453 f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO); 1454 1455 return err; 1456 } 1457 1458 static int f2fs_map_no_dnode(struct inode *inode, 1459 struct f2fs_map_blocks *map, struct dnode_of_data *dn, 1460 pgoff_t pgoff) 1461 { 1462 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1463 1464 /* 1465 * There is one exceptional case that read_node_page() may return 1466 * -ENOENT due to filesystem has been shutdown or cp_error, return 1467 * -EIO in that case. 1468 */ 1469 if (map->m_may_create && 1470 (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || f2fs_cp_error(sbi))) 1471 return -EIO; 1472 1473 if (map->m_next_pgofs) 1474 *map->m_next_pgofs = f2fs_get_next_page_offset(dn, pgoff); 1475 if (map->m_next_extent) 1476 *map->m_next_extent = f2fs_get_next_page_offset(dn, pgoff); 1477 return 0; 1478 } 1479 1480 static bool f2fs_map_blocks_cached(struct inode *inode, 1481 struct f2fs_map_blocks *map, int flag) 1482 { 1483 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1484 unsigned int maxblocks = map->m_len; 1485 pgoff_t pgoff = (pgoff_t)map->m_lblk; 1486 struct extent_info ei = {}; 1487 1488 if (!f2fs_lookup_read_extent_cache(inode, pgoff, &ei)) 1489 return false; 1490 1491 map->m_pblk = ei.blk + pgoff - ei.fofs; 1492 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgoff); 1493 map->m_flags = F2FS_MAP_MAPPED; 1494 if (map->m_next_extent) 1495 *map->m_next_extent = pgoff + map->m_len; 1496 1497 /* for hardware encryption, but to avoid potential issue in future */ 1498 if (flag == F2FS_GET_BLOCK_DIO) 1499 f2fs_wait_on_block_writeback_range(inode, 1500 map->m_pblk, map->m_len); 1501 1502 if (f2fs_allow_multi_device_dio(sbi, flag)) { 1503 int bidx = f2fs_target_device_index(sbi, map->m_pblk); 1504 struct f2fs_dev_info *dev = &sbi->devs[bidx]; 1505 1506 map->m_bdev = dev->bdev; 1507 map->m_pblk -= dev->start_blk; 1508 map->m_len = min(map->m_len, dev->end_blk + 1 - map->m_pblk); 1509 } else { 1510 map->m_bdev = inode->i_sb->s_bdev; 1511 } 1512 return true; 1513 } 1514 1515 static bool map_is_mergeable(struct f2fs_sb_info *sbi, 1516 struct f2fs_map_blocks *map, 1517 block_t blkaddr, int flag, int bidx, 1518 int ofs) 1519 { 1520 if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev) 1521 return false; 1522 if (map->m_pblk != NEW_ADDR && blkaddr == (map->m_pblk + ofs)) 1523 return true; 1524 if (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) 1525 return true; 1526 if (flag == F2FS_GET_BLOCK_PRE_DIO) 1527 return true; 1528 if (flag == F2FS_GET_BLOCK_DIO && 1529 map->m_pblk == NULL_ADDR && blkaddr == NULL_ADDR) 1530 return true; 1531 return false; 1532 } 1533 1534 /* 1535 * f2fs_map_blocks() tries to find or build mapping relationship which 1536 * maps continuous logical blocks to physical blocks, and return such 1537 * info via f2fs_map_blocks structure. 1538 */ 1539 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag) 1540 { 1541 unsigned int maxblocks = map->m_len; 1542 struct dnode_of_data dn; 1543 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1544 int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE; 1545 pgoff_t pgofs, end_offset, end; 1546 int err = 0, ofs = 1; 1547 unsigned int ofs_in_node, last_ofs_in_node; 1548 blkcnt_t prealloc; 1549 block_t blkaddr; 1550 unsigned int start_pgofs; 1551 int bidx = 0; 1552 bool is_hole; 1553 1554 if (!maxblocks) 1555 return 0; 1556 1557 if (!map->m_may_create && f2fs_map_blocks_cached(inode, map, flag)) 1558 goto out; 1559 1560 map->m_bdev = inode->i_sb->s_bdev; 1561 map->m_multidev_dio = 1562 f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag); 1563 1564 map->m_len = 0; 1565 map->m_flags = 0; 1566 1567 /* it only supports block size == page size */ 1568 pgofs = (pgoff_t)map->m_lblk; 1569 end = pgofs + maxblocks; 1570 1571 next_dnode: 1572 if (map->m_may_create) 1573 f2fs_map_lock(sbi, flag); 1574 1575 /* When reading holes, we need its node page */ 1576 set_new_dnode(&dn, inode, NULL, NULL, 0); 1577 err = f2fs_get_dnode_of_data(&dn, pgofs, mode); 1578 if (err) { 1579 if (flag == F2FS_GET_BLOCK_BMAP) 1580 map->m_pblk = 0; 1581 if (err == -ENOENT) 1582 err = f2fs_map_no_dnode(inode, map, &dn, pgofs); 1583 goto unlock_out; 1584 } 1585 1586 start_pgofs = pgofs; 1587 prealloc = 0; 1588 last_ofs_in_node = ofs_in_node = dn.ofs_in_node; 1589 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1590 1591 next_block: 1592 blkaddr = f2fs_data_blkaddr(&dn); 1593 is_hole = !__is_valid_data_blkaddr(blkaddr); 1594 if (!is_hole && 1595 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) { 1596 err = -EFSCORRUPTED; 1597 goto sync_out; 1598 } 1599 1600 /* use out-place-update for direct IO under LFS mode */ 1601 if (map->m_may_create && (is_hole || 1602 (flag == F2FS_GET_BLOCK_DIO && f2fs_lfs_mode(sbi) && 1603 !f2fs_is_pinned_file(inode)))) { 1604 if (unlikely(f2fs_cp_error(sbi))) { 1605 err = -EIO; 1606 goto sync_out; 1607 } 1608 1609 switch (flag) { 1610 case F2FS_GET_BLOCK_PRE_AIO: 1611 if (blkaddr == NULL_ADDR) { 1612 prealloc++; 1613 last_ofs_in_node = dn.ofs_in_node; 1614 } 1615 break; 1616 case F2FS_GET_BLOCK_PRE_DIO: 1617 case F2FS_GET_BLOCK_DIO: 1618 err = __allocate_data_block(&dn, map->m_seg_type); 1619 if (err) 1620 goto sync_out; 1621 if (flag == F2FS_GET_BLOCK_PRE_DIO) 1622 file_need_truncate(inode); 1623 set_inode_flag(inode, FI_APPEND_WRITE); 1624 break; 1625 default: 1626 WARN_ON_ONCE(1); 1627 err = -EIO; 1628 goto sync_out; 1629 } 1630 1631 blkaddr = dn.data_blkaddr; 1632 if (is_hole) 1633 map->m_flags |= F2FS_MAP_NEW; 1634 } else if (is_hole) { 1635 if (f2fs_compressed_file(inode) && 1636 f2fs_sanity_check_cluster(&dn)) { 1637 err = -EFSCORRUPTED; 1638 f2fs_handle_error(sbi, 1639 ERROR_CORRUPTED_CLUSTER); 1640 goto sync_out; 1641 } 1642 1643 switch (flag) { 1644 case F2FS_GET_BLOCK_PRECACHE: 1645 goto sync_out; 1646 case F2FS_GET_BLOCK_BMAP: 1647 map->m_pblk = 0; 1648 goto sync_out; 1649 case F2FS_GET_BLOCK_FIEMAP: 1650 if (blkaddr == NULL_ADDR) { 1651 if (map->m_next_pgofs) 1652 *map->m_next_pgofs = pgofs + 1; 1653 goto sync_out; 1654 } 1655 break; 1656 case F2FS_GET_BLOCK_DIO: 1657 if (map->m_next_pgofs) 1658 *map->m_next_pgofs = pgofs + 1; 1659 break; 1660 default: 1661 /* for defragment case */ 1662 if (map->m_next_pgofs) 1663 *map->m_next_pgofs = pgofs + 1; 1664 goto sync_out; 1665 } 1666 } 1667 1668 if (flag == F2FS_GET_BLOCK_PRE_AIO) 1669 goto skip; 1670 1671 if (map->m_multidev_dio) 1672 bidx = f2fs_target_device_index(sbi, blkaddr); 1673 1674 if (map->m_len == 0) { 1675 /* reserved delalloc block should be mapped for fiemap. */ 1676 if (blkaddr == NEW_ADDR) 1677 map->m_flags |= F2FS_MAP_DELALLOC; 1678 if (flag != F2FS_GET_BLOCK_DIO || !is_hole) 1679 map->m_flags |= F2FS_MAP_MAPPED; 1680 1681 map->m_pblk = blkaddr; 1682 map->m_len = 1; 1683 1684 if (map->m_multidev_dio) 1685 map->m_bdev = FDEV(bidx).bdev; 1686 } else if (map_is_mergeable(sbi, map, blkaddr, flag, bidx, ofs)) { 1687 ofs++; 1688 map->m_len++; 1689 } else { 1690 goto sync_out; 1691 } 1692 1693 skip: 1694 dn.ofs_in_node++; 1695 pgofs++; 1696 1697 /* preallocate blocks in batch for one dnode page */ 1698 if (flag == F2FS_GET_BLOCK_PRE_AIO && 1699 (pgofs == end || dn.ofs_in_node == end_offset)) { 1700 1701 dn.ofs_in_node = ofs_in_node; 1702 err = f2fs_reserve_new_blocks(&dn, prealloc); 1703 if (err) 1704 goto sync_out; 1705 1706 map->m_len += dn.ofs_in_node - ofs_in_node; 1707 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) { 1708 err = -ENOSPC; 1709 goto sync_out; 1710 } 1711 dn.ofs_in_node = end_offset; 1712 } 1713 1714 if (pgofs >= end) 1715 goto sync_out; 1716 else if (dn.ofs_in_node < end_offset) 1717 goto next_block; 1718 1719 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1720 if (map->m_flags & F2FS_MAP_MAPPED) { 1721 unsigned int ofs = start_pgofs - map->m_lblk; 1722 1723 f2fs_update_read_extent_cache_range(&dn, 1724 start_pgofs, map->m_pblk + ofs, 1725 map->m_len - ofs); 1726 } 1727 } 1728 1729 f2fs_put_dnode(&dn); 1730 1731 if (map->m_may_create) { 1732 f2fs_map_unlock(sbi, flag); 1733 f2fs_balance_fs(sbi, dn.node_changed); 1734 } 1735 goto next_dnode; 1736 1737 sync_out: 1738 1739 if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) { 1740 /* 1741 * for hardware encryption, but to avoid potential issue 1742 * in future 1743 */ 1744 f2fs_wait_on_block_writeback_range(inode, 1745 map->m_pblk, map->m_len); 1746 1747 if (map->m_multidev_dio) { 1748 block_t blk_addr = map->m_pblk; 1749 1750 bidx = f2fs_target_device_index(sbi, map->m_pblk); 1751 1752 map->m_bdev = FDEV(bidx).bdev; 1753 map->m_pblk -= FDEV(bidx).start_blk; 1754 1755 if (map->m_may_create) 1756 f2fs_update_device_state(sbi, inode->i_ino, 1757 blk_addr, map->m_len); 1758 1759 f2fs_bug_on(sbi, blk_addr + map->m_len > 1760 FDEV(bidx).end_blk + 1); 1761 } 1762 } 1763 1764 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1765 if (map->m_flags & F2FS_MAP_MAPPED) { 1766 unsigned int ofs = start_pgofs - map->m_lblk; 1767 1768 f2fs_update_read_extent_cache_range(&dn, 1769 start_pgofs, map->m_pblk + ofs, 1770 map->m_len - ofs); 1771 } 1772 if (map->m_next_extent) 1773 *map->m_next_extent = pgofs + 1; 1774 } 1775 f2fs_put_dnode(&dn); 1776 unlock_out: 1777 if (map->m_may_create) { 1778 f2fs_map_unlock(sbi, flag); 1779 f2fs_balance_fs(sbi, dn.node_changed); 1780 } 1781 out: 1782 trace_f2fs_map_blocks(inode, map, flag, err); 1783 return err; 1784 } 1785 1786 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len) 1787 { 1788 struct f2fs_map_blocks map; 1789 block_t last_lblk; 1790 int err; 1791 1792 if (pos + len > i_size_read(inode)) 1793 return false; 1794 1795 map.m_lblk = F2FS_BYTES_TO_BLK(pos); 1796 map.m_next_pgofs = NULL; 1797 map.m_next_extent = NULL; 1798 map.m_seg_type = NO_CHECK_TYPE; 1799 map.m_may_create = false; 1800 last_lblk = F2FS_BLK_ALIGN(pos + len); 1801 1802 while (map.m_lblk < last_lblk) { 1803 map.m_len = last_lblk - map.m_lblk; 1804 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT); 1805 if (err || map.m_len == 0) 1806 return false; 1807 map.m_lblk += map.m_len; 1808 } 1809 return true; 1810 } 1811 1812 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes) 1813 { 1814 return (bytes >> inode->i_blkbits); 1815 } 1816 1817 static inline u64 blks_to_bytes(struct inode *inode, u64 blks) 1818 { 1819 return (blks << inode->i_blkbits); 1820 } 1821 1822 static int f2fs_xattr_fiemap(struct inode *inode, 1823 struct fiemap_extent_info *fieinfo) 1824 { 1825 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1826 struct page *page; 1827 struct node_info ni; 1828 __u64 phys = 0, len; 1829 __u32 flags; 1830 nid_t xnid = F2FS_I(inode)->i_xattr_nid; 1831 int err = 0; 1832 1833 if (f2fs_has_inline_xattr(inode)) { 1834 int offset; 1835 1836 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), 1837 inode->i_ino, false); 1838 if (!page) 1839 return -ENOMEM; 1840 1841 err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false); 1842 if (err) { 1843 f2fs_put_page(page, 1); 1844 return err; 1845 } 1846 1847 phys = blks_to_bytes(inode, ni.blk_addr); 1848 offset = offsetof(struct f2fs_inode, i_addr) + 1849 sizeof(__le32) * (DEF_ADDRS_PER_INODE - 1850 get_inline_xattr_addrs(inode)); 1851 1852 phys += offset; 1853 len = inline_xattr_size(inode); 1854 1855 f2fs_put_page(page, 1); 1856 1857 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED; 1858 1859 if (!xnid) 1860 flags |= FIEMAP_EXTENT_LAST; 1861 1862 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1863 trace_f2fs_fiemap(inode, 0, phys, len, flags, err); 1864 if (err) 1865 return err; 1866 } 1867 1868 if (xnid) { 1869 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false); 1870 if (!page) 1871 return -ENOMEM; 1872 1873 err = f2fs_get_node_info(sbi, xnid, &ni, false); 1874 if (err) { 1875 f2fs_put_page(page, 1); 1876 return err; 1877 } 1878 1879 phys = blks_to_bytes(inode, ni.blk_addr); 1880 len = inode->i_sb->s_blocksize; 1881 1882 f2fs_put_page(page, 1); 1883 1884 flags = FIEMAP_EXTENT_LAST; 1885 } 1886 1887 if (phys) { 1888 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1889 trace_f2fs_fiemap(inode, 0, phys, len, flags, err); 1890 } 1891 1892 return (err < 0 ? err : 0); 1893 } 1894 1895 static loff_t max_inode_blocks(struct inode *inode) 1896 { 1897 loff_t result = ADDRS_PER_INODE(inode); 1898 loff_t leaf_count = ADDRS_PER_BLOCK(inode); 1899 1900 /* two direct node blocks */ 1901 result += (leaf_count * 2); 1902 1903 /* two indirect node blocks */ 1904 leaf_count *= NIDS_PER_BLOCK; 1905 result += (leaf_count * 2); 1906 1907 /* one double indirect node block */ 1908 leaf_count *= NIDS_PER_BLOCK; 1909 result += leaf_count; 1910 1911 return result; 1912 } 1913 1914 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 1915 u64 start, u64 len) 1916 { 1917 struct f2fs_map_blocks map; 1918 sector_t start_blk, last_blk; 1919 pgoff_t next_pgofs; 1920 u64 logical = 0, phys = 0, size = 0; 1921 u32 flags = 0; 1922 int ret = 0; 1923 bool compr_cluster = false, compr_appended; 1924 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size; 1925 unsigned int count_in_cluster = 0; 1926 loff_t maxbytes; 1927 1928 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) { 1929 ret = f2fs_precache_extents(inode); 1930 if (ret) 1931 return ret; 1932 } 1933 1934 ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR); 1935 if (ret) 1936 return ret; 1937 1938 inode_lock_shared(inode); 1939 1940 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS; 1941 if (start > maxbytes) { 1942 ret = -EFBIG; 1943 goto out; 1944 } 1945 1946 if (len > maxbytes || (maxbytes - len) < start) 1947 len = maxbytes - start; 1948 1949 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 1950 ret = f2fs_xattr_fiemap(inode, fieinfo); 1951 goto out; 1952 } 1953 1954 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) { 1955 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len); 1956 if (ret != -EAGAIN) 1957 goto out; 1958 } 1959 1960 if (bytes_to_blks(inode, len) == 0) 1961 len = blks_to_bytes(inode, 1); 1962 1963 start_blk = bytes_to_blks(inode, start); 1964 last_blk = bytes_to_blks(inode, start + len - 1); 1965 1966 next: 1967 memset(&map, 0, sizeof(map)); 1968 map.m_lblk = start_blk; 1969 map.m_len = bytes_to_blks(inode, len); 1970 map.m_next_pgofs = &next_pgofs; 1971 map.m_seg_type = NO_CHECK_TYPE; 1972 1973 if (compr_cluster) { 1974 map.m_lblk += 1; 1975 map.m_len = cluster_size - count_in_cluster; 1976 } 1977 1978 ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP); 1979 if (ret) 1980 goto out; 1981 1982 /* HOLE */ 1983 if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) { 1984 start_blk = next_pgofs; 1985 1986 if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode, 1987 max_inode_blocks(inode))) 1988 goto prep_next; 1989 1990 flags |= FIEMAP_EXTENT_LAST; 1991 } 1992 1993 compr_appended = false; 1994 /* In a case of compressed cluster, append this to the last extent */ 1995 if (compr_cluster && ((map.m_flags & F2FS_MAP_DELALLOC) || 1996 !(map.m_flags & F2FS_MAP_FLAGS))) { 1997 compr_appended = true; 1998 goto skip_fill; 1999 } 2000 2001 if (size) { 2002 flags |= FIEMAP_EXTENT_MERGED; 2003 if (IS_ENCRYPTED(inode)) 2004 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED; 2005 2006 ret = fiemap_fill_next_extent(fieinfo, logical, 2007 phys, size, flags); 2008 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret); 2009 if (ret) 2010 goto out; 2011 size = 0; 2012 } 2013 2014 if (start_blk > last_blk) 2015 goto out; 2016 2017 skip_fill: 2018 if (map.m_pblk == COMPRESS_ADDR) { 2019 compr_cluster = true; 2020 count_in_cluster = 1; 2021 } else if (compr_appended) { 2022 unsigned int appended_blks = cluster_size - 2023 count_in_cluster + 1; 2024 size += blks_to_bytes(inode, appended_blks); 2025 start_blk += appended_blks; 2026 compr_cluster = false; 2027 } else { 2028 logical = blks_to_bytes(inode, start_blk); 2029 phys = __is_valid_data_blkaddr(map.m_pblk) ? 2030 blks_to_bytes(inode, map.m_pblk) : 0; 2031 size = blks_to_bytes(inode, map.m_len); 2032 flags = 0; 2033 2034 if (compr_cluster) { 2035 flags = FIEMAP_EXTENT_ENCODED; 2036 count_in_cluster += map.m_len; 2037 if (count_in_cluster == cluster_size) { 2038 compr_cluster = false; 2039 size += blks_to_bytes(inode, 1); 2040 } 2041 } else if (map.m_flags & F2FS_MAP_DELALLOC) { 2042 flags = FIEMAP_EXTENT_UNWRITTEN; 2043 } 2044 2045 start_blk += bytes_to_blks(inode, size); 2046 } 2047 2048 prep_next: 2049 cond_resched(); 2050 if (fatal_signal_pending(current)) 2051 ret = -EINTR; 2052 else 2053 goto next; 2054 out: 2055 if (ret == 1) 2056 ret = 0; 2057 2058 inode_unlock_shared(inode); 2059 return ret; 2060 } 2061 2062 static inline loff_t f2fs_readpage_limit(struct inode *inode) 2063 { 2064 if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode)) 2065 return inode->i_sb->s_maxbytes; 2066 2067 return i_size_read(inode); 2068 } 2069 2070 static int f2fs_read_single_page(struct inode *inode, struct folio *folio, 2071 unsigned nr_pages, 2072 struct f2fs_map_blocks *map, 2073 struct bio **bio_ret, 2074 sector_t *last_block_in_bio, 2075 bool is_readahead) 2076 { 2077 struct bio *bio = *bio_ret; 2078 const unsigned blocksize = blks_to_bytes(inode, 1); 2079 sector_t block_in_file; 2080 sector_t last_block; 2081 sector_t last_block_in_file; 2082 sector_t block_nr; 2083 pgoff_t index = folio_index(folio); 2084 int ret = 0; 2085 2086 block_in_file = (sector_t)index; 2087 last_block = block_in_file + nr_pages; 2088 last_block_in_file = bytes_to_blks(inode, 2089 f2fs_readpage_limit(inode) + blocksize - 1); 2090 if (last_block > last_block_in_file) 2091 last_block = last_block_in_file; 2092 2093 /* just zeroing out page which is beyond EOF */ 2094 if (block_in_file >= last_block) 2095 goto zero_out; 2096 /* 2097 * Map blocks using the previous result first. 2098 */ 2099 if ((map->m_flags & F2FS_MAP_MAPPED) && 2100 block_in_file > map->m_lblk && 2101 block_in_file < (map->m_lblk + map->m_len)) 2102 goto got_it; 2103 2104 /* 2105 * Then do more f2fs_map_blocks() calls until we are 2106 * done with this page. 2107 */ 2108 map->m_lblk = block_in_file; 2109 map->m_len = last_block - block_in_file; 2110 2111 ret = f2fs_map_blocks(inode, map, F2FS_GET_BLOCK_DEFAULT); 2112 if (ret) 2113 goto out; 2114 got_it: 2115 if ((map->m_flags & F2FS_MAP_MAPPED)) { 2116 block_nr = map->m_pblk + block_in_file - map->m_lblk; 2117 folio_set_mappedtodisk(folio); 2118 2119 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr, 2120 DATA_GENERIC_ENHANCE_READ)) { 2121 ret = -EFSCORRUPTED; 2122 goto out; 2123 } 2124 } else { 2125 zero_out: 2126 folio_zero_segment(folio, 0, folio_size(folio)); 2127 if (f2fs_need_verity(inode, index) && 2128 !fsverity_verify_folio(folio)) { 2129 ret = -EIO; 2130 goto out; 2131 } 2132 if (!folio_test_uptodate(folio)) 2133 folio_mark_uptodate(folio); 2134 folio_unlock(folio); 2135 goto out; 2136 } 2137 2138 /* 2139 * This page will go to BIO. Do we need to send this 2140 * BIO off first? 2141 */ 2142 if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio, 2143 *last_block_in_bio, block_nr) || 2144 !f2fs_crypt_mergeable_bio(bio, inode, index, NULL))) { 2145 submit_and_realloc: 2146 f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA); 2147 bio = NULL; 2148 } 2149 if (bio == NULL) { 2150 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages, 2151 is_readahead ? REQ_RAHEAD : 0, index, 2152 false); 2153 if (IS_ERR(bio)) { 2154 ret = PTR_ERR(bio); 2155 bio = NULL; 2156 goto out; 2157 } 2158 } 2159 2160 /* 2161 * If the page is under writeback, we need to wait for 2162 * its completion to see the correct decrypted data. 2163 */ 2164 f2fs_wait_on_block_writeback(inode, block_nr); 2165 2166 if (!bio_add_folio(bio, folio, blocksize, 0)) 2167 goto submit_and_realloc; 2168 2169 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA); 2170 f2fs_update_iostat(F2FS_I_SB(inode), NULL, FS_DATA_READ_IO, 2171 F2FS_BLKSIZE); 2172 *last_block_in_bio = block_nr; 2173 out: 2174 *bio_ret = bio; 2175 return ret; 2176 } 2177 2178 #ifdef CONFIG_F2FS_FS_COMPRESSION 2179 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret, 2180 unsigned nr_pages, sector_t *last_block_in_bio, 2181 bool is_readahead, bool for_write) 2182 { 2183 struct dnode_of_data dn; 2184 struct inode *inode = cc->inode; 2185 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2186 struct bio *bio = *bio_ret; 2187 unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size; 2188 sector_t last_block_in_file; 2189 const unsigned blocksize = blks_to_bytes(inode, 1); 2190 struct decompress_io_ctx *dic = NULL; 2191 struct extent_info ei = {}; 2192 bool from_dnode = true; 2193 int i; 2194 int ret = 0; 2195 2196 f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc)); 2197 2198 last_block_in_file = bytes_to_blks(inode, 2199 f2fs_readpage_limit(inode) + blocksize - 1); 2200 2201 /* get rid of pages beyond EOF */ 2202 for (i = 0; i < cc->cluster_size; i++) { 2203 struct page *page = cc->rpages[i]; 2204 2205 if (!page) 2206 continue; 2207 if ((sector_t)page->index >= last_block_in_file) { 2208 zero_user_segment(page, 0, PAGE_SIZE); 2209 if (!PageUptodate(page)) 2210 SetPageUptodate(page); 2211 } else if (!PageUptodate(page)) { 2212 continue; 2213 } 2214 unlock_page(page); 2215 if (for_write) 2216 put_page(page); 2217 cc->rpages[i] = NULL; 2218 cc->nr_rpages--; 2219 } 2220 2221 /* we are done since all pages are beyond EOF */ 2222 if (f2fs_cluster_is_empty(cc)) 2223 goto out; 2224 2225 if (f2fs_lookup_read_extent_cache(inode, start_idx, &ei)) 2226 from_dnode = false; 2227 2228 if (!from_dnode) 2229 goto skip_reading_dnode; 2230 2231 set_new_dnode(&dn, inode, NULL, NULL, 0); 2232 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 2233 if (ret) 2234 goto out; 2235 2236 if (unlikely(f2fs_cp_error(sbi))) { 2237 ret = -EIO; 2238 goto out_put_dnode; 2239 } 2240 f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR); 2241 2242 skip_reading_dnode: 2243 for (i = 1; i < cc->cluster_size; i++) { 2244 block_t blkaddr; 2245 2246 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page, 2247 dn.ofs_in_node + i) : 2248 ei.blk + i - 1; 2249 2250 if (!__is_valid_data_blkaddr(blkaddr)) 2251 break; 2252 2253 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) { 2254 ret = -EFAULT; 2255 goto out_put_dnode; 2256 } 2257 cc->nr_cpages++; 2258 2259 if (!from_dnode && i >= ei.c_len) 2260 break; 2261 } 2262 2263 /* nothing to decompress */ 2264 if (cc->nr_cpages == 0) { 2265 ret = 0; 2266 goto out_put_dnode; 2267 } 2268 2269 dic = f2fs_alloc_dic(cc); 2270 if (IS_ERR(dic)) { 2271 ret = PTR_ERR(dic); 2272 goto out_put_dnode; 2273 } 2274 2275 for (i = 0; i < cc->nr_cpages; i++) { 2276 struct page *page = dic->cpages[i]; 2277 block_t blkaddr; 2278 struct bio_post_read_ctx *ctx; 2279 2280 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page, 2281 dn.ofs_in_node + i + 1) : 2282 ei.blk + i; 2283 2284 f2fs_wait_on_block_writeback(inode, blkaddr); 2285 2286 if (f2fs_load_compressed_page(sbi, page, blkaddr)) { 2287 if (atomic_dec_and_test(&dic->remaining_pages)) { 2288 f2fs_decompress_cluster(dic, true); 2289 break; 2290 } 2291 continue; 2292 } 2293 2294 if (bio && (!page_is_mergeable(sbi, bio, 2295 *last_block_in_bio, blkaddr) || 2296 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) { 2297 submit_and_realloc: 2298 f2fs_submit_read_bio(sbi, bio, DATA); 2299 bio = NULL; 2300 } 2301 2302 if (!bio) { 2303 bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages, 2304 is_readahead ? REQ_RAHEAD : 0, 2305 page->index, for_write); 2306 if (IS_ERR(bio)) { 2307 ret = PTR_ERR(bio); 2308 f2fs_decompress_end_io(dic, ret, true); 2309 f2fs_put_dnode(&dn); 2310 *bio_ret = NULL; 2311 return ret; 2312 } 2313 } 2314 2315 if (bio_add_page(bio, page, blocksize, 0) < blocksize) 2316 goto submit_and_realloc; 2317 2318 ctx = get_post_read_ctx(bio); 2319 ctx->enabled_steps |= STEP_DECOMPRESS; 2320 refcount_inc(&dic->refcnt); 2321 2322 inc_page_count(sbi, F2FS_RD_DATA); 2323 f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE); 2324 *last_block_in_bio = blkaddr; 2325 } 2326 2327 if (from_dnode) 2328 f2fs_put_dnode(&dn); 2329 2330 *bio_ret = bio; 2331 return 0; 2332 2333 out_put_dnode: 2334 if (from_dnode) 2335 f2fs_put_dnode(&dn); 2336 out: 2337 for (i = 0; i < cc->cluster_size; i++) { 2338 if (cc->rpages[i]) { 2339 ClearPageUptodate(cc->rpages[i]); 2340 unlock_page(cc->rpages[i]); 2341 } 2342 } 2343 *bio_ret = bio; 2344 return ret; 2345 } 2346 #endif 2347 2348 /* 2349 * This function was originally taken from fs/mpage.c, and customized for f2fs. 2350 * Major change was from block_size == page_size in f2fs by default. 2351 */ 2352 static int f2fs_mpage_readpages(struct inode *inode, 2353 struct readahead_control *rac, struct folio *folio) 2354 { 2355 struct bio *bio = NULL; 2356 sector_t last_block_in_bio = 0; 2357 struct f2fs_map_blocks map; 2358 #ifdef CONFIG_F2FS_FS_COMPRESSION 2359 struct compress_ctx cc = { 2360 .inode = inode, 2361 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 2362 .cluster_size = F2FS_I(inode)->i_cluster_size, 2363 .cluster_idx = NULL_CLUSTER, 2364 .rpages = NULL, 2365 .cpages = NULL, 2366 .nr_rpages = 0, 2367 .nr_cpages = 0, 2368 }; 2369 pgoff_t nc_cluster_idx = NULL_CLUSTER; 2370 #endif 2371 unsigned nr_pages = rac ? readahead_count(rac) : 1; 2372 unsigned max_nr_pages = nr_pages; 2373 pgoff_t index; 2374 int ret = 0; 2375 2376 map.m_pblk = 0; 2377 map.m_lblk = 0; 2378 map.m_len = 0; 2379 map.m_flags = 0; 2380 map.m_next_pgofs = NULL; 2381 map.m_next_extent = NULL; 2382 map.m_seg_type = NO_CHECK_TYPE; 2383 map.m_may_create = false; 2384 2385 for (; nr_pages; nr_pages--) { 2386 if (rac) { 2387 folio = readahead_folio(rac); 2388 prefetchw(&folio->flags); 2389 } 2390 2391 index = folio_index(folio); 2392 2393 #ifdef CONFIG_F2FS_FS_COMPRESSION 2394 if (!f2fs_compressed_file(inode)) 2395 goto read_single_page; 2396 2397 /* there are remained compressed pages, submit them */ 2398 if (!f2fs_cluster_can_merge_page(&cc, index)) { 2399 ret = f2fs_read_multi_pages(&cc, &bio, 2400 max_nr_pages, 2401 &last_block_in_bio, 2402 rac != NULL, false); 2403 f2fs_destroy_compress_ctx(&cc, false); 2404 if (ret) 2405 goto set_error_page; 2406 } 2407 if (cc.cluster_idx == NULL_CLUSTER) { 2408 if (nc_cluster_idx == index >> cc.log_cluster_size) 2409 goto read_single_page; 2410 2411 ret = f2fs_is_compressed_cluster(inode, index); 2412 if (ret < 0) 2413 goto set_error_page; 2414 else if (!ret) { 2415 nc_cluster_idx = 2416 index >> cc.log_cluster_size; 2417 goto read_single_page; 2418 } 2419 2420 nc_cluster_idx = NULL_CLUSTER; 2421 } 2422 ret = f2fs_init_compress_ctx(&cc); 2423 if (ret) 2424 goto set_error_page; 2425 2426 f2fs_compress_ctx_add_page(&cc, &folio->page); 2427 2428 goto next_page; 2429 read_single_page: 2430 #endif 2431 2432 ret = f2fs_read_single_page(inode, folio, max_nr_pages, &map, 2433 &bio, &last_block_in_bio, rac); 2434 if (ret) { 2435 #ifdef CONFIG_F2FS_FS_COMPRESSION 2436 set_error_page: 2437 #endif 2438 folio_zero_segment(folio, 0, folio_size(folio)); 2439 folio_unlock(folio); 2440 } 2441 #ifdef CONFIG_F2FS_FS_COMPRESSION 2442 next_page: 2443 #endif 2444 2445 #ifdef CONFIG_F2FS_FS_COMPRESSION 2446 if (f2fs_compressed_file(inode)) { 2447 /* last page */ 2448 if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) { 2449 ret = f2fs_read_multi_pages(&cc, &bio, 2450 max_nr_pages, 2451 &last_block_in_bio, 2452 rac != NULL, false); 2453 f2fs_destroy_compress_ctx(&cc, false); 2454 } 2455 } 2456 #endif 2457 } 2458 if (bio) 2459 f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA); 2460 return ret; 2461 } 2462 2463 static int f2fs_read_data_folio(struct file *file, struct folio *folio) 2464 { 2465 struct inode *inode = folio_file_mapping(folio)->host; 2466 int ret = -EAGAIN; 2467 2468 trace_f2fs_readpage(folio, DATA); 2469 2470 if (!f2fs_is_compress_backend_ready(inode)) { 2471 folio_unlock(folio); 2472 return -EOPNOTSUPP; 2473 } 2474 2475 /* If the file has inline data, try to read it directly */ 2476 if (f2fs_has_inline_data(inode)) 2477 ret = f2fs_read_inline_data(inode, folio); 2478 if (ret == -EAGAIN) 2479 ret = f2fs_mpage_readpages(inode, NULL, folio); 2480 return ret; 2481 } 2482 2483 static void f2fs_readahead(struct readahead_control *rac) 2484 { 2485 struct inode *inode = rac->mapping->host; 2486 2487 trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac)); 2488 2489 if (!f2fs_is_compress_backend_ready(inode)) 2490 return; 2491 2492 /* If the file has inline data, skip readahead */ 2493 if (f2fs_has_inline_data(inode)) 2494 return; 2495 2496 f2fs_mpage_readpages(inode, rac, NULL); 2497 } 2498 2499 int f2fs_encrypt_one_page(struct f2fs_io_info *fio) 2500 { 2501 struct inode *inode = fio->page->mapping->host; 2502 struct page *mpage, *page; 2503 gfp_t gfp_flags = GFP_NOFS; 2504 2505 if (!f2fs_encrypted_file(inode)) 2506 return 0; 2507 2508 page = fio->compressed_page ? fio->compressed_page : fio->page; 2509 2510 if (fscrypt_inode_uses_inline_crypto(inode)) 2511 return 0; 2512 2513 retry_encrypt: 2514 fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page, 2515 PAGE_SIZE, 0, gfp_flags); 2516 if (IS_ERR(fio->encrypted_page)) { 2517 /* flush pending IOs and wait for a while in the ENOMEM case */ 2518 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) { 2519 f2fs_flush_merged_writes(fio->sbi); 2520 memalloc_retry_wait(GFP_NOFS); 2521 gfp_flags |= __GFP_NOFAIL; 2522 goto retry_encrypt; 2523 } 2524 return PTR_ERR(fio->encrypted_page); 2525 } 2526 2527 mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr); 2528 if (mpage) { 2529 if (PageUptodate(mpage)) 2530 memcpy(page_address(mpage), 2531 page_address(fio->encrypted_page), PAGE_SIZE); 2532 f2fs_put_page(mpage, 1); 2533 } 2534 return 0; 2535 } 2536 2537 static inline bool check_inplace_update_policy(struct inode *inode, 2538 struct f2fs_io_info *fio) 2539 { 2540 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2541 2542 if (IS_F2FS_IPU_HONOR_OPU_WRITE(sbi) && 2543 is_inode_flag_set(inode, FI_OPU_WRITE)) 2544 return false; 2545 if (IS_F2FS_IPU_FORCE(sbi)) 2546 return true; 2547 if (IS_F2FS_IPU_SSR(sbi) && f2fs_need_SSR(sbi)) 2548 return true; 2549 if (IS_F2FS_IPU_UTIL(sbi) && utilization(sbi) > SM_I(sbi)->min_ipu_util) 2550 return true; 2551 if (IS_F2FS_IPU_SSR_UTIL(sbi) && f2fs_need_SSR(sbi) && 2552 utilization(sbi) > SM_I(sbi)->min_ipu_util) 2553 return true; 2554 2555 /* 2556 * IPU for rewrite async pages 2557 */ 2558 if (IS_F2FS_IPU_ASYNC(sbi) && fio && fio->op == REQ_OP_WRITE && 2559 !(fio->op_flags & REQ_SYNC) && !IS_ENCRYPTED(inode)) 2560 return true; 2561 2562 /* this is only set during fdatasync */ 2563 if (IS_F2FS_IPU_FSYNC(sbi) && is_inode_flag_set(inode, FI_NEED_IPU)) 2564 return true; 2565 2566 if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 2567 !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) 2568 return true; 2569 2570 return false; 2571 } 2572 2573 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio) 2574 { 2575 /* swap file is migrating in aligned write mode */ 2576 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE)) 2577 return false; 2578 2579 if (f2fs_is_pinned_file(inode)) 2580 return true; 2581 2582 /* if this is cold file, we should overwrite to avoid fragmentation */ 2583 if (file_is_cold(inode) && !is_inode_flag_set(inode, FI_OPU_WRITE)) 2584 return true; 2585 2586 return check_inplace_update_policy(inode, fio); 2587 } 2588 2589 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio) 2590 { 2591 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2592 2593 /* The below cases were checked when setting it. */ 2594 if (f2fs_is_pinned_file(inode)) 2595 return false; 2596 if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 2597 return true; 2598 if (f2fs_lfs_mode(sbi)) 2599 return true; 2600 if (S_ISDIR(inode->i_mode)) 2601 return true; 2602 if (IS_NOQUOTA(inode)) 2603 return true; 2604 if (f2fs_is_atomic_file(inode)) 2605 return true; 2606 /* rewrite low ratio compress data w/ OPU mode to avoid fragmentation */ 2607 if (f2fs_compressed_file(inode) && 2608 F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER && 2609 is_inode_flag_set(inode, FI_ENABLE_COMPRESS)) 2610 return true; 2611 2612 /* swap file is migrating in aligned write mode */ 2613 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE)) 2614 return true; 2615 2616 if (is_inode_flag_set(inode, FI_OPU_WRITE)) 2617 return true; 2618 2619 if (fio) { 2620 if (page_private_gcing(fio->page)) 2621 return true; 2622 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 2623 f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) 2624 return true; 2625 } 2626 return false; 2627 } 2628 2629 static inline bool need_inplace_update(struct f2fs_io_info *fio) 2630 { 2631 struct inode *inode = fio->page->mapping->host; 2632 2633 if (f2fs_should_update_outplace(inode, fio)) 2634 return false; 2635 2636 return f2fs_should_update_inplace(inode, fio); 2637 } 2638 2639 int f2fs_do_write_data_page(struct f2fs_io_info *fio) 2640 { 2641 struct page *page = fio->page; 2642 struct inode *inode = page->mapping->host; 2643 struct dnode_of_data dn; 2644 struct node_info ni; 2645 bool ipu_force = false; 2646 int err = 0; 2647 2648 /* Use COW inode to make dnode_of_data for atomic write */ 2649 if (f2fs_is_atomic_file(inode)) 2650 set_new_dnode(&dn, F2FS_I(inode)->cow_inode, NULL, NULL, 0); 2651 else 2652 set_new_dnode(&dn, inode, NULL, NULL, 0); 2653 2654 if (need_inplace_update(fio) && 2655 f2fs_lookup_read_extent_cache_block(inode, page->index, 2656 &fio->old_blkaddr)) { 2657 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 2658 DATA_GENERIC_ENHANCE)) 2659 return -EFSCORRUPTED; 2660 2661 ipu_force = true; 2662 fio->need_lock = LOCK_DONE; 2663 goto got_it; 2664 } 2665 2666 /* Deadlock due to between page->lock and f2fs_lock_op */ 2667 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi)) 2668 return -EAGAIN; 2669 2670 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE); 2671 if (err) 2672 goto out; 2673 2674 fio->old_blkaddr = dn.data_blkaddr; 2675 2676 /* This page is already truncated */ 2677 if (fio->old_blkaddr == NULL_ADDR) { 2678 ClearPageUptodate(page); 2679 clear_page_private_gcing(page); 2680 goto out_writepage; 2681 } 2682 got_it: 2683 if (__is_valid_data_blkaddr(fio->old_blkaddr) && 2684 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 2685 DATA_GENERIC_ENHANCE)) { 2686 err = -EFSCORRUPTED; 2687 goto out_writepage; 2688 } 2689 2690 /* wait for GCed page writeback via META_MAPPING */ 2691 if (fio->post_read) 2692 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr); 2693 2694 /* 2695 * If current allocation needs SSR, 2696 * it had better in-place writes for updated data. 2697 */ 2698 if (ipu_force || 2699 (__is_valid_data_blkaddr(fio->old_blkaddr) && 2700 need_inplace_update(fio))) { 2701 err = f2fs_encrypt_one_page(fio); 2702 if (err) 2703 goto out_writepage; 2704 2705 set_page_writeback(page); 2706 f2fs_put_dnode(&dn); 2707 if (fio->need_lock == LOCK_REQ) 2708 f2fs_unlock_op(fio->sbi); 2709 err = f2fs_inplace_write_data(fio); 2710 if (err) { 2711 if (fscrypt_inode_uses_fs_layer_crypto(inode)) 2712 fscrypt_finalize_bounce_page(&fio->encrypted_page); 2713 end_page_writeback(page); 2714 } else { 2715 set_inode_flag(inode, FI_UPDATE_WRITE); 2716 } 2717 trace_f2fs_do_write_data_page(page_folio(page), IPU); 2718 return err; 2719 } 2720 2721 if (fio->need_lock == LOCK_RETRY) { 2722 if (!f2fs_trylock_op(fio->sbi)) { 2723 err = -EAGAIN; 2724 goto out_writepage; 2725 } 2726 fio->need_lock = LOCK_REQ; 2727 } 2728 2729 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false); 2730 if (err) 2731 goto out_writepage; 2732 2733 fio->version = ni.version; 2734 2735 err = f2fs_encrypt_one_page(fio); 2736 if (err) 2737 goto out_writepage; 2738 2739 set_page_writeback(page); 2740 2741 if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR) 2742 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false); 2743 2744 /* LFS mode write path */ 2745 f2fs_outplace_write_data(&dn, fio); 2746 trace_f2fs_do_write_data_page(page_folio(page), OPU); 2747 set_inode_flag(inode, FI_APPEND_WRITE); 2748 out_writepage: 2749 f2fs_put_dnode(&dn); 2750 out: 2751 if (fio->need_lock == LOCK_REQ) 2752 f2fs_unlock_op(fio->sbi); 2753 return err; 2754 } 2755 2756 int f2fs_write_single_data_page(struct page *page, int *submitted, 2757 struct bio **bio, 2758 sector_t *last_block, 2759 struct writeback_control *wbc, 2760 enum iostat_type io_type, 2761 int compr_blocks, 2762 bool allow_balance) 2763 { 2764 struct inode *inode = page->mapping->host; 2765 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2766 loff_t i_size = i_size_read(inode); 2767 const pgoff_t end_index = ((unsigned long long)i_size) 2768 >> PAGE_SHIFT; 2769 loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT; 2770 unsigned offset = 0; 2771 bool need_balance_fs = false; 2772 bool quota_inode = IS_NOQUOTA(inode); 2773 int err = 0; 2774 struct f2fs_io_info fio = { 2775 .sbi = sbi, 2776 .ino = inode->i_ino, 2777 .type = DATA, 2778 .op = REQ_OP_WRITE, 2779 .op_flags = wbc_to_write_flags(wbc), 2780 .old_blkaddr = NULL_ADDR, 2781 .page = page, 2782 .encrypted_page = NULL, 2783 .submitted = 0, 2784 .compr_blocks = compr_blocks, 2785 .need_lock = compr_blocks ? LOCK_DONE : LOCK_RETRY, 2786 .post_read = f2fs_post_read_required(inode) ? 1 : 0, 2787 .io_type = io_type, 2788 .io_wbc = wbc, 2789 .bio = bio, 2790 .last_block = last_block, 2791 }; 2792 2793 trace_f2fs_writepage(page_folio(page), DATA); 2794 2795 /* we should bypass data pages to proceed the kworker jobs */ 2796 if (unlikely(f2fs_cp_error(sbi))) { 2797 mapping_set_error(page->mapping, -EIO); 2798 /* 2799 * don't drop any dirty dentry pages for keeping lastest 2800 * directory structure. 2801 */ 2802 if (S_ISDIR(inode->i_mode) && 2803 !is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 2804 goto redirty_out; 2805 2806 /* keep data pages in remount-ro mode */ 2807 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY) 2808 goto redirty_out; 2809 goto out; 2810 } 2811 2812 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 2813 goto redirty_out; 2814 2815 if (page->index < end_index || 2816 f2fs_verity_in_progress(inode) || 2817 compr_blocks) 2818 goto write; 2819 2820 /* 2821 * If the offset is out-of-range of file size, 2822 * this page does not have to be written to disk. 2823 */ 2824 offset = i_size & (PAGE_SIZE - 1); 2825 if ((page->index >= end_index + 1) || !offset) 2826 goto out; 2827 2828 zero_user_segment(page, offset, PAGE_SIZE); 2829 write: 2830 /* Dentry/quota blocks are controlled by checkpoint */ 2831 if (S_ISDIR(inode->i_mode) || quota_inode) { 2832 /* 2833 * We need to wait for node_write to avoid block allocation during 2834 * checkpoint. This can only happen to quota writes which can cause 2835 * the below discard race condition. 2836 */ 2837 if (quota_inode) 2838 f2fs_down_read(&sbi->node_write); 2839 2840 fio.need_lock = LOCK_DONE; 2841 err = f2fs_do_write_data_page(&fio); 2842 2843 if (quota_inode) 2844 f2fs_up_read(&sbi->node_write); 2845 2846 goto done; 2847 } 2848 2849 if (!wbc->for_reclaim) 2850 need_balance_fs = true; 2851 else if (has_not_enough_free_secs(sbi, 0, 0)) 2852 goto redirty_out; 2853 else 2854 set_inode_flag(inode, FI_HOT_DATA); 2855 2856 err = -EAGAIN; 2857 if (f2fs_has_inline_data(inode)) { 2858 err = f2fs_write_inline_data(inode, page); 2859 if (!err) 2860 goto out; 2861 } 2862 2863 if (err == -EAGAIN) { 2864 err = f2fs_do_write_data_page(&fio); 2865 if (err == -EAGAIN) { 2866 f2fs_bug_on(sbi, compr_blocks); 2867 fio.need_lock = LOCK_REQ; 2868 err = f2fs_do_write_data_page(&fio); 2869 } 2870 } 2871 2872 if (err) { 2873 file_set_keep_isize(inode); 2874 } else { 2875 spin_lock(&F2FS_I(inode)->i_size_lock); 2876 if (F2FS_I(inode)->last_disk_size < psize) 2877 F2FS_I(inode)->last_disk_size = psize; 2878 spin_unlock(&F2FS_I(inode)->i_size_lock); 2879 } 2880 2881 done: 2882 if (err && err != -ENOENT) 2883 goto redirty_out; 2884 2885 out: 2886 inode_dec_dirty_pages(inode); 2887 if (err) { 2888 ClearPageUptodate(page); 2889 clear_page_private_gcing(page); 2890 } 2891 2892 if (wbc->for_reclaim) { 2893 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA); 2894 clear_inode_flag(inode, FI_HOT_DATA); 2895 f2fs_remove_dirty_inode(inode); 2896 submitted = NULL; 2897 } 2898 unlock_page(page); 2899 if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) && 2900 !F2FS_I(inode)->wb_task && allow_balance) 2901 f2fs_balance_fs(sbi, need_balance_fs); 2902 2903 if (unlikely(f2fs_cp_error(sbi))) { 2904 f2fs_submit_merged_write(sbi, DATA); 2905 if (bio && *bio) 2906 f2fs_submit_merged_ipu_write(sbi, bio, NULL); 2907 submitted = NULL; 2908 } 2909 2910 if (submitted) 2911 *submitted = fio.submitted; 2912 2913 return 0; 2914 2915 redirty_out: 2916 redirty_page_for_writepage(wbc, page); 2917 /* 2918 * pageout() in MM translates EAGAIN, so calls handle_write_error() 2919 * -> mapping_set_error() -> set_bit(AS_EIO, ...). 2920 * file_write_and_wait_range() will see EIO error, which is critical 2921 * to return value of fsync() followed by atomic_write failure to user. 2922 */ 2923 if (!err || wbc->for_reclaim) 2924 return AOP_WRITEPAGE_ACTIVATE; 2925 unlock_page(page); 2926 return err; 2927 } 2928 2929 static int f2fs_write_data_page(struct page *page, 2930 struct writeback_control *wbc) 2931 { 2932 #ifdef CONFIG_F2FS_FS_COMPRESSION 2933 struct inode *inode = page->mapping->host; 2934 2935 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 2936 goto out; 2937 2938 if (f2fs_compressed_file(inode)) { 2939 if (f2fs_is_compressed_cluster(inode, page->index)) { 2940 redirty_page_for_writepage(wbc, page); 2941 return AOP_WRITEPAGE_ACTIVATE; 2942 } 2943 } 2944 out: 2945 #endif 2946 2947 return f2fs_write_single_data_page(page, NULL, NULL, NULL, 2948 wbc, FS_DATA_IO, 0, true); 2949 } 2950 2951 /* 2952 * This function was copied from write_cache_pages from mm/page-writeback.c. 2953 * The major change is making write step of cold data page separately from 2954 * warm/hot data page. 2955 */ 2956 static int f2fs_write_cache_pages(struct address_space *mapping, 2957 struct writeback_control *wbc, 2958 enum iostat_type io_type) 2959 { 2960 int ret = 0; 2961 int done = 0, retry = 0; 2962 struct page *pages_local[F2FS_ONSTACK_PAGES]; 2963 struct page **pages = pages_local; 2964 struct folio_batch fbatch; 2965 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 2966 struct bio *bio = NULL; 2967 sector_t last_block; 2968 #ifdef CONFIG_F2FS_FS_COMPRESSION 2969 struct inode *inode = mapping->host; 2970 struct compress_ctx cc = { 2971 .inode = inode, 2972 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 2973 .cluster_size = F2FS_I(inode)->i_cluster_size, 2974 .cluster_idx = NULL_CLUSTER, 2975 .rpages = NULL, 2976 .nr_rpages = 0, 2977 .cpages = NULL, 2978 .valid_nr_cpages = 0, 2979 .rbuf = NULL, 2980 .cbuf = NULL, 2981 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size, 2982 .private = NULL, 2983 }; 2984 #endif 2985 int nr_folios, p, idx; 2986 int nr_pages; 2987 unsigned int max_pages = F2FS_ONSTACK_PAGES; 2988 pgoff_t index; 2989 pgoff_t end; /* Inclusive */ 2990 pgoff_t done_index; 2991 int range_whole = 0; 2992 xa_mark_t tag; 2993 int nwritten = 0; 2994 int submitted = 0; 2995 int i; 2996 2997 #ifdef CONFIG_F2FS_FS_COMPRESSION 2998 if (f2fs_compressed_file(inode) && 2999 1 << cc.log_cluster_size > F2FS_ONSTACK_PAGES) { 3000 pages = f2fs_kzalloc(sbi, sizeof(struct page *) << 3001 cc.log_cluster_size, GFP_NOFS | __GFP_NOFAIL); 3002 max_pages = 1 << cc.log_cluster_size; 3003 } 3004 #endif 3005 3006 folio_batch_init(&fbatch); 3007 3008 if (get_dirty_pages(mapping->host) <= 3009 SM_I(F2FS_M_SB(mapping))->min_hot_blocks) 3010 set_inode_flag(mapping->host, FI_HOT_DATA); 3011 else 3012 clear_inode_flag(mapping->host, FI_HOT_DATA); 3013 3014 if (wbc->range_cyclic) { 3015 index = mapping->writeback_index; /* prev offset */ 3016 end = -1; 3017 } else { 3018 index = wbc->range_start >> PAGE_SHIFT; 3019 end = wbc->range_end >> PAGE_SHIFT; 3020 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 3021 range_whole = 1; 3022 } 3023 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 3024 tag = PAGECACHE_TAG_TOWRITE; 3025 else 3026 tag = PAGECACHE_TAG_DIRTY; 3027 retry: 3028 retry = 0; 3029 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 3030 tag_pages_for_writeback(mapping, index, end); 3031 done_index = index; 3032 while (!done && !retry && (index <= end)) { 3033 nr_pages = 0; 3034 again: 3035 nr_folios = filemap_get_folios_tag(mapping, &index, end, 3036 tag, &fbatch); 3037 if (nr_folios == 0) { 3038 if (nr_pages) 3039 goto write; 3040 break; 3041 } 3042 3043 for (i = 0; i < nr_folios; i++) { 3044 struct folio *folio = fbatch.folios[i]; 3045 3046 idx = 0; 3047 p = folio_nr_pages(folio); 3048 add_more: 3049 pages[nr_pages] = folio_page(folio, idx); 3050 folio_get(folio); 3051 if (++nr_pages == max_pages) { 3052 index = folio->index + idx + 1; 3053 folio_batch_release(&fbatch); 3054 goto write; 3055 } 3056 if (++idx < p) 3057 goto add_more; 3058 } 3059 folio_batch_release(&fbatch); 3060 goto again; 3061 write: 3062 for (i = 0; i < nr_pages; i++) { 3063 struct page *page = pages[i]; 3064 struct folio *folio = page_folio(page); 3065 bool need_readd; 3066 readd: 3067 need_readd = false; 3068 #ifdef CONFIG_F2FS_FS_COMPRESSION 3069 if (f2fs_compressed_file(inode)) { 3070 void *fsdata = NULL; 3071 struct page *pagep; 3072 int ret2; 3073 3074 ret = f2fs_init_compress_ctx(&cc); 3075 if (ret) { 3076 done = 1; 3077 break; 3078 } 3079 3080 if (!f2fs_cluster_can_merge_page(&cc, 3081 folio->index)) { 3082 ret = f2fs_write_multi_pages(&cc, 3083 &submitted, wbc, io_type); 3084 if (!ret) 3085 need_readd = true; 3086 goto result; 3087 } 3088 3089 if (unlikely(f2fs_cp_error(sbi))) 3090 goto lock_folio; 3091 3092 if (!f2fs_cluster_is_empty(&cc)) 3093 goto lock_folio; 3094 3095 if (f2fs_all_cluster_page_ready(&cc, 3096 pages, i, nr_pages, true)) 3097 goto lock_folio; 3098 3099 ret2 = f2fs_prepare_compress_overwrite( 3100 inode, &pagep, 3101 folio->index, &fsdata); 3102 if (ret2 < 0) { 3103 ret = ret2; 3104 done = 1; 3105 break; 3106 } else if (ret2 && 3107 (!f2fs_compress_write_end(inode, 3108 fsdata, folio->index, 1) || 3109 !f2fs_all_cluster_page_ready(&cc, 3110 pages, i, nr_pages, 3111 false))) { 3112 retry = 1; 3113 break; 3114 } 3115 } 3116 #endif 3117 /* give a priority to WB_SYNC threads */ 3118 if (atomic_read(&sbi->wb_sync_req[DATA]) && 3119 wbc->sync_mode == WB_SYNC_NONE) { 3120 done = 1; 3121 break; 3122 } 3123 #ifdef CONFIG_F2FS_FS_COMPRESSION 3124 lock_folio: 3125 #endif 3126 done_index = folio->index; 3127 retry_write: 3128 folio_lock(folio); 3129 3130 if (unlikely(folio->mapping != mapping)) { 3131 continue_unlock: 3132 folio_unlock(folio); 3133 continue; 3134 } 3135 3136 if (!folio_test_dirty(folio)) { 3137 /* someone wrote it for us */ 3138 goto continue_unlock; 3139 } 3140 3141 if (folio_test_writeback(folio)) { 3142 if (wbc->sync_mode == WB_SYNC_NONE) 3143 goto continue_unlock; 3144 f2fs_wait_on_page_writeback(&folio->page, DATA, true, true); 3145 } 3146 3147 if (!folio_clear_dirty_for_io(folio)) 3148 goto continue_unlock; 3149 3150 #ifdef CONFIG_F2FS_FS_COMPRESSION 3151 if (f2fs_compressed_file(inode)) { 3152 folio_get(folio); 3153 f2fs_compress_ctx_add_page(&cc, &folio->page); 3154 continue; 3155 } 3156 #endif 3157 ret = f2fs_write_single_data_page(&folio->page, 3158 &submitted, &bio, &last_block, 3159 wbc, io_type, 0, true); 3160 if (ret == AOP_WRITEPAGE_ACTIVATE) 3161 folio_unlock(folio); 3162 #ifdef CONFIG_F2FS_FS_COMPRESSION 3163 result: 3164 #endif 3165 nwritten += submitted; 3166 wbc->nr_to_write -= submitted; 3167 3168 if (unlikely(ret)) { 3169 /* 3170 * keep nr_to_write, since vfs uses this to 3171 * get # of written pages. 3172 */ 3173 if (ret == AOP_WRITEPAGE_ACTIVATE) { 3174 ret = 0; 3175 goto next; 3176 } else if (ret == -EAGAIN) { 3177 ret = 0; 3178 if (wbc->sync_mode == WB_SYNC_ALL) { 3179 f2fs_io_schedule_timeout( 3180 DEFAULT_IO_TIMEOUT); 3181 goto retry_write; 3182 } 3183 goto next; 3184 } 3185 done_index = folio_next_index(folio); 3186 done = 1; 3187 break; 3188 } 3189 3190 if (wbc->nr_to_write <= 0 && 3191 wbc->sync_mode == WB_SYNC_NONE) { 3192 done = 1; 3193 break; 3194 } 3195 next: 3196 if (need_readd) 3197 goto readd; 3198 } 3199 release_pages(pages, nr_pages); 3200 cond_resched(); 3201 } 3202 #ifdef CONFIG_F2FS_FS_COMPRESSION 3203 /* flush remained pages in compress cluster */ 3204 if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) { 3205 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type); 3206 nwritten += submitted; 3207 wbc->nr_to_write -= submitted; 3208 if (ret) { 3209 done = 1; 3210 retry = 0; 3211 } 3212 } 3213 if (f2fs_compressed_file(inode)) 3214 f2fs_destroy_compress_ctx(&cc, false); 3215 #endif 3216 if (retry) { 3217 index = 0; 3218 end = -1; 3219 goto retry; 3220 } 3221 if (wbc->range_cyclic && !done) 3222 done_index = 0; 3223 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 3224 mapping->writeback_index = done_index; 3225 3226 if (nwritten) 3227 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host, 3228 NULL, 0, DATA); 3229 /* submit cached bio of IPU write */ 3230 if (bio) 3231 f2fs_submit_merged_ipu_write(sbi, &bio, NULL); 3232 3233 #ifdef CONFIG_F2FS_FS_COMPRESSION 3234 if (pages != pages_local) 3235 kfree(pages); 3236 #endif 3237 3238 return ret; 3239 } 3240 3241 static inline bool __should_serialize_io(struct inode *inode, 3242 struct writeback_control *wbc) 3243 { 3244 /* to avoid deadlock in path of data flush */ 3245 if (F2FS_I(inode)->wb_task) 3246 return false; 3247 3248 if (!S_ISREG(inode->i_mode)) 3249 return false; 3250 if (IS_NOQUOTA(inode)) 3251 return false; 3252 3253 if (f2fs_need_compress_data(inode)) 3254 return true; 3255 if (wbc->sync_mode != WB_SYNC_ALL) 3256 return true; 3257 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks) 3258 return true; 3259 return false; 3260 } 3261 3262 static int __f2fs_write_data_pages(struct address_space *mapping, 3263 struct writeback_control *wbc, 3264 enum iostat_type io_type) 3265 { 3266 struct inode *inode = mapping->host; 3267 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3268 struct blk_plug plug; 3269 int ret; 3270 bool locked = false; 3271 3272 /* deal with chardevs and other special file */ 3273 if (!mapping->a_ops->writepage) 3274 return 0; 3275 3276 /* skip writing if there is no dirty page in this inode */ 3277 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE) 3278 return 0; 3279 3280 /* during POR, we don't need to trigger writepage at all. */ 3281 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 3282 goto skip_write; 3283 3284 if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) && 3285 wbc->sync_mode == WB_SYNC_NONE && 3286 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) && 3287 f2fs_available_free_memory(sbi, DIRTY_DENTS)) 3288 goto skip_write; 3289 3290 /* skip writing in file defragment preparing stage */ 3291 if (is_inode_flag_set(inode, FI_SKIP_WRITES)) 3292 goto skip_write; 3293 3294 trace_f2fs_writepages(mapping->host, wbc, DATA); 3295 3296 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */ 3297 if (wbc->sync_mode == WB_SYNC_ALL) 3298 atomic_inc(&sbi->wb_sync_req[DATA]); 3299 else if (atomic_read(&sbi->wb_sync_req[DATA])) { 3300 /* to avoid potential deadlock */ 3301 if (current->plug) 3302 blk_finish_plug(current->plug); 3303 goto skip_write; 3304 } 3305 3306 if (__should_serialize_io(inode, wbc)) { 3307 mutex_lock(&sbi->writepages); 3308 locked = true; 3309 } 3310 3311 blk_start_plug(&plug); 3312 ret = f2fs_write_cache_pages(mapping, wbc, io_type); 3313 blk_finish_plug(&plug); 3314 3315 if (locked) 3316 mutex_unlock(&sbi->writepages); 3317 3318 if (wbc->sync_mode == WB_SYNC_ALL) 3319 atomic_dec(&sbi->wb_sync_req[DATA]); 3320 /* 3321 * if some pages were truncated, we cannot guarantee its mapping->host 3322 * to detect pending bios. 3323 */ 3324 3325 f2fs_remove_dirty_inode(inode); 3326 return ret; 3327 3328 skip_write: 3329 wbc->pages_skipped += get_dirty_pages(inode); 3330 trace_f2fs_writepages(mapping->host, wbc, DATA); 3331 return 0; 3332 } 3333 3334 static int f2fs_write_data_pages(struct address_space *mapping, 3335 struct writeback_control *wbc) 3336 { 3337 struct inode *inode = mapping->host; 3338 3339 return __f2fs_write_data_pages(mapping, wbc, 3340 F2FS_I(inode)->cp_task == current ? 3341 FS_CP_DATA_IO : FS_DATA_IO); 3342 } 3343 3344 void f2fs_write_failed(struct inode *inode, loff_t to) 3345 { 3346 loff_t i_size = i_size_read(inode); 3347 3348 if (IS_NOQUOTA(inode)) 3349 return; 3350 3351 /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */ 3352 if (to > i_size && !f2fs_verity_in_progress(inode)) { 3353 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3354 filemap_invalidate_lock(inode->i_mapping); 3355 3356 truncate_pagecache(inode, i_size); 3357 f2fs_truncate_blocks(inode, i_size, true); 3358 3359 filemap_invalidate_unlock(inode->i_mapping); 3360 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3361 } 3362 } 3363 3364 static int prepare_write_begin(struct f2fs_sb_info *sbi, 3365 struct page *page, loff_t pos, unsigned len, 3366 block_t *blk_addr, bool *node_changed) 3367 { 3368 struct inode *inode = page->mapping->host; 3369 pgoff_t index = page->index; 3370 struct dnode_of_data dn; 3371 struct page *ipage; 3372 bool locked = false; 3373 int flag = F2FS_GET_BLOCK_PRE_AIO; 3374 int err = 0; 3375 3376 /* 3377 * If a whole page is being written and we already preallocated all the 3378 * blocks, then there is no need to get a block address now. 3379 */ 3380 if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL)) 3381 return 0; 3382 3383 /* f2fs_lock_op avoids race between write CP and convert_inline_page */ 3384 if (f2fs_has_inline_data(inode)) { 3385 if (pos + len > MAX_INLINE_DATA(inode)) 3386 flag = F2FS_GET_BLOCK_DEFAULT; 3387 f2fs_map_lock(sbi, flag); 3388 locked = true; 3389 } else if ((pos & PAGE_MASK) >= i_size_read(inode)) { 3390 f2fs_map_lock(sbi, flag); 3391 locked = true; 3392 } 3393 3394 restart: 3395 /* check inline_data */ 3396 ipage = f2fs_get_node_page(sbi, inode->i_ino); 3397 if (IS_ERR(ipage)) { 3398 err = PTR_ERR(ipage); 3399 goto unlock_out; 3400 } 3401 3402 set_new_dnode(&dn, inode, ipage, ipage, 0); 3403 3404 if (f2fs_has_inline_data(inode)) { 3405 if (pos + len <= MAX_INLINE_DATA(inode)) { 3406 f2fs_do_read_inline_data(page_folio(page), ipage); 3407 set_inode_flag(inode, FI_DATA_EXIST); 3408 if (inode->i_nlink) 3409 set_page_private_inline(ipage); 3410 goto out; 3411 } 3412 err = f2fs_convert_inline_page(&dn, page); 3413 if (err || dn.data_blkaddr != NULL_ADDR) 3414 goto out; 3415 } 3416 3417 if (!f2fs_lookup_read_extent_cache_block(inode, index, 3418 &dn.data_blkaddr)) { 3419 if (locked) { 3420 err = f2fs_reserve_block(&dn, index); 3421 goto out; 3422 } 3423 3424 /* hole case */ 3425 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 3426 if (!err && dn.data_blkaddr != NULL_ADDR) 3427 goto out; 3428 f2fs_put_dnode(&dn); 3429 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO); 3430 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO); 3431 locked = true; 3432 goto restart; 3433 } 3434 out: 3435 if (!err) { 3436 /* convert_inline_page can make node_changed */ 3437 *blk_addr = dn.data_blkaddr; 3438 *node_changed = dn.node_changed; 3439 } 3440 f2fs_put_dnode(&dn); 3441 unlock_out: 3442 if (locked) 3443 f2fs_map_unlock(sbi, flag); 3444 return err; 3445 } 3446 3447 static int __find_data_block(struct inode *inode, pgoff_t index, 3448 block_t *blk_addr) 3449 { 3450 struct dnode_of_data dn; 3451 struct page *ipage; 3452 int err = 0; 3453 3454 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino); 3455 if (IS_ERR(ipage)) 3456 return PTR_ERR(ipage); 3457 3458 set_new_dnode(&dn, inode, ipage, ipage, 0); 3459 3460 if (!f2fs_lookup_read_extent_cache_block(inode, index, 3461 &dn.data_blkaddr)) { 3462 /* hole case */ 3463 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 3464 if (err) { 3465 dn.data_blkaddr = NULL_ADDR; 3466 err = 0; 3467 } 3468 } 3469 *blk_addr = dn.data_blkaddr; 3470 f2fs_put_dnode(&dn); 3471 return err; 3472 } 3473 3474 static int __reserve_data_block(struct inode *inode, pgoff_t index, 3475 block_t *blk_addr, bool *node_changed) 3476 { 3477 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3478 struct dnode_of_data dn; 3479 struct page *ipage; 3480 int err = 0; 3481 3482 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO); 3483 3484 ipage = f2fs_get_node_page(sbi, inode->i_ino); 3485 if (IS_ERR(ipage)) { 3486 err = PTR_ERR(ipage); 3487 goto unlock_out; 3488 } 3489 set_new_dnode(&dn, inode, ipage, ipage, 0); 3490 3491 if (!f2fs_lookup_read_extent_cache_block(dn.inode, index, 3492 &dn.data_blkaddr)) 3493 err = f2fs_reserve_block(&dn, index); 3494 3495 *blk_addr = dn.data_blkaddr; 3496 *node_changed = dn.node_changed; 3497 f2fs_put_dnode(&dn); 3498 3499 unlock_out: 3500 f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO); 3501 return err; 3502 } 3503 3504 static int prepare_atomic_write_begin(struct f2fs_sb_info *sbi, 3505 struct page *page, loff_t pos, unsigned int len, 3506 block_t *blk_addr, bool *node_changed, bool *use_cow) 3507 { 3508 struct inode *inode = page->mapping->host; 3509 struct inode *cow_inode = F2FS_I(inode)->cow_inode; 3510 pgoff_t index = page->index; 3511 int err = 0; 3512 block_t ori_blk_addr = NULL_ADDR; 3513 3514 /* If pos is beyond the end of file, reserve a new block in COW inode */ 3515 if ((pos & PAGE_MASK) >= i_size_read(inode)) 3516 goto reserve_block; 3517 3518 /* Look for the block in COW inode first */ 3519 err = __find_data_block(cow_inode, index, blk_addr); 3520 if (err) { 3521 return err; 3522 } else if (*blk_addr != NULL_ADDR) { 3523 *use_cow = true; 3524 return 0; 3525 } 3526 3527 if (is_inode_flag_set(inode, FI_ATOMIC_REPLACE)) 3528 goto reserve_block; 3529 3530 /* Look for the block in the original inode */ 3531 err = __find_data_block(inode, index, &ori_blk_addr); 3532 if (err) 3533 return err; 3534 3535 reserve_block: 3536 /* Finally, we should reserve a new block in COW inode for the update */ 3537 err = __reserve_data_block(cow_inode, index, blk_addr, node_changed); 3538 if (err) 3539 return err; 3540 inc_atomic_write_cnt(inode); 3541 3542 if (ori_blk_addr != NULL_ADDR) 3543 *blk_addr = ori_blk_addr; 3544 return 0; 3545 } 3546 3547 static int f2fs_write_begin(struct file *file, struct address_space *mapping, 3548 loff_t pos, unsigned len, struct page **pagep, void **fsdata) 3549 { 3550 struct inode *inode = mapping->host; 3551 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3552 struct page *page = NULL; 3553 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT; 3554 bool need_balance = false; 3555 bool use_cow = false; 3556 block_t blkaddr = NULL_ADDR; 3557 int err = 0; 3558 3559 trace_f2fs_write_begin(inode, pos, len); 3560 3561 if (!f2fs_is_checkpoint_ready(sbi)) { 3562 err = -ENOSPC; 3563 goto fail; 3564 } 3565 3566 /* 3567 * We should check this at this moment to avoid deadlock on inode page 3568 * and #0 page. The locking rule for inline_data conversion should be: 3569 * lock_page(page #0) -> lock_page(inode_page) 3570 */ 3571 if (index != 0) { 3572 err = f2fs_convert_inline_inode(inode); 3573 if (err) 3574 goto fail; 3575 } 3576 3577 #ifdef CONFIG_F2FS_FS_COMPRESSION 3578 if (f2fs_compressed_file(inode)) { 3579 int ret; 3580 3581 *fsdata = NULL; 3582 3583 if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode))) 3584 goto repeat; 3585 3586 ret = f2fs_prepare_compress_overwrite(inode, pagep, 3587 index, fsdata); 3588 if (ret < 0) { 3589 err = ret; 3590 goto fail; 3591 } else if (ret) { 3592 return 0; 3593 } 3594 } 3595 #endif 3596 3597 repeat: 3598 /* 3599 * Do not use grab_cache_page_write_begin() to avoid deadlock due to 3600 * wait_for_stable_page. Will wait that below with our IO control. 3601 */ 3602 page = f2fs_pagecache_get_page(mapping, index, 3603 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS); 3604 if (!page) { 3605 err = -ENOMEM; 3606 goto fail; 3607 } 3608 3609 /* TODO: cluster can be compressed due to race with .writepage */ 3610 3611 *pagep = page; 3612 3613 if (f2fs_is_atomic_file(inode)) 3614 err = prepare_atomic_write_begin(sbi, page, pos, len, 3615 &blkaddr, &need_balance, &use_cow); 3616 else 3617 err = prepare_write_begin(sbi, page, pos, len, 3618 &blkaddr, &need_balance); 3619 if (err) 3620 goto fail; 3621 3622 if (need_balance && !IS_NOQUOTA(inode) && 3623 has_not_enough_free_secs(sbi, 0, 0)) { 3624 unlock_page(page); 3625 f2fs_balance_fs(sbi, true); 3626 lock_page(page); 3627 if (page->mapping != mapping) { 3628 /* The page got truncated from under us */ 3629 f2fs_put_page(page, 1); 3630 goto repeat; 3631 } 3632 } 3633 3634 f2fs_wait_on_page_writeback(page, DATA, false, true); 3635 3636 if (len == PAGE_SIZE || PageUptodate(page)) 3637 return 0; 3638 3639 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) && 3640 !f2fs_verity_in_progress(inode)) { 3641 zero_user_segment(page, len, PAGE_SIZE); 3642 return 0; 3643 } 3644 3645 if (blkaddr == NEW_ADDR) { 3646 zero_user_segment(page, 0, PAGE_SIZE); 3647 SetPageUptodate(page); 3648 } else { 3649 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 3650 DATA_GENERIC_ENHANCE_READ)) { 3651 err = -EFSCORRUPTED; 3652 goto fail; 3653 } 3654 err = f2fs_submit_page_read(use_cow ? 3655 F2FS_I(inode)->cow_inode : inode, page, 3656 blkaddr, 0, true); 3657 if (err) 3658 goto fail; 3659 3660 lock_page(page); 3661 if (unlikely(page->mapping != mapping)) { 3662 f2fs_put_page(page, 1); 3663 goto repeat; 3664 } 3665 if (unlikely(!PageUptodate(page))) { 3666 err = -EIO; 3667 goto fail; 3668 } 3669 } 3670 return 0; 3671 3672 fail: 3673 f2fs_put_page(page, 1); 3674 f2fs_write_failed(inode, pos + len); 3675 return err; 3676 } 3677 3678 static int f2fs_write_end(struct file *file, 3679 struct address_space *mapping, 3680 loff_t pos, unsigned len, unsigned copied, 3681 struct page *page, void *fsdata) 3682 { 3683 struct inode *inode = page->mapping->host; 3684 3685 trace_f2fs_write_end(inode, pos, len, copied); 3686 3687 /* 3688 * This should be come from len == PAGE_SIZE, and we expect copied 3689 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and 3690 * let generic_perform_write() try to copy data again through copied=0. 3691 */ 3692 if (!PageUptodate(page)) { 3693 if (unlikely(copied != len)) 3694 copied = 0; 3695 else 3696 SetPageUptodate(page); 3697 } 3698 3699 #ifdef CONFIG_F2FS_FS_COMPRESSION 3700 /* overwrite compressed file */ 3701 if (f2fs_compressed_file(inode) && fsdata) { 3702 f2fs_compress_write_end(inode, fsdata, page->index, copied); 3703 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3704 3705 if (pos + copied > i_size_read(inode) && 3706 !f2fs_verity_in_progress(inode)) 3707 f2fs_i_size_write(inode, pos + copied); 3708 return copied; 3709 } 3710 #endif 3711 3712 if (!copied) 3713 goto unlock_out; 3714 3715 set_page_dirty(page); 3716 3717 if (pos + copied > i_size_read(inode) && 3718 !f2fs_verity_in_progress(inode)) { 3719 f2fs_i_size_write(inode, pos + copied); 3720 if (f2fs_is_atomic_file(inode)) 3721 f2fs_i_size_write(F2FS_I(inode)->cow_inode, 3722 pos + copied); 3723 } 3724 unlock_out: 3725 f2fs_put_page(page, 1); 3726 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3727 return copied; 3728 } 3729 3730 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length) 3731 { 3732 struct inode *inode = folio->mapping->host; 3733 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3734 3735 if (inode->i_ino >= F2FS_ROOT_INO(sbi) && 3736 (offset || length != folio_size(folio))) 3737 return; 3738 3739 if (folio_test_dirty(folio)) { 3740 if (inode->i_ino == F2FS_META_INO(sbi)) { 3741 dec_page_count(sbi, F2FS_DIRTY_META); 3742 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) { 3743 dec_page_count(sbi, F2FS_DIRTY_NODES); 3744 } else { 3745 inode_dec_dirty_pages(inode); 3746 f2fs_remove_dirty_inode(inode); 3747 } 3748 } 3749 clear_page_private_all(&folio->page); 3750 } 3751 3752 bool f2fs_release_folio(struct folio *folio, gfp_t wait) 3753 { 3754 /* If this is dirty folio, keep private data */ 3755 if (folio_test_dirty(folio)) 3756 return false; 3757 3758 clear_page_private_all(&folio->page); 3759 return true; 3760 } 3761 3762 static bool f2fs_dirty_data_folio(struct address_space *mapping, 3763 struct folio *folio) 3764 { 3765 struct inode *inode = mapping->host; 3766 3767 trace_f2fs_set_page_dirty(folio, DATA); 3768 3769 if (!folio_test_uptodate(folio)) 3770 folio_mark_uptodate(folio); 3771 BUG_ON(folio_test_swapcache(folio)); 3772 3773 if (filemap_dirty_folio(mapping, folio)) { 3774 f2fs_update_dirty_folio(inode, folio); 3775 return true; 3776 } 3777 return false; 3778 } 3779 3780 3781 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block) 3782 { 3783 #ifdef CONFIG_F2FS_FS_COMPRESSION 3784 struct dnode_of_data dn; 3785 sector_t start_idx, blknr = 0; 3786 int ret; 3787 3788 start_idx = round_down(block, F2FS_I(inode)->i_cluster_size); 3789 3790 set_new_dnode(&dn, inode, NULL, NULL, 0); 3791 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 3792 if (ret) 3793 return 0; 3794 3795 if (dn.data_blkaddr != COMPRESS_ADDR) { 3796 dn.ofs_in_node += block - start_idx; 3797 blknr = f2fs_data_blkaddr(&dn); 3798 if (!__is_valid_data_blkaddr(blknr)) 3799 blknr = 0; 3800 } 3801 3802 f2fs_put_dnode(&dn); 3803 return blknr; 3804 #else 3805 return 0; 3806 #endif 3807 } 3808 3809 3810 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block) 3811 { 3812 struct inode *inode = mapping->host; 3813 sector_t blknr = 0; 3814 3815 if (f2fs_has_inline_data(inode)) 3816 goto out; 3817 3818 /* make sure allocating whole blocks */ 3819 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 3820 filemap_write_and_wait(mapping); 3821 3822 /* Block number less than F2FS MAX BLOCKS */ 3823 if (unlikely(block >= max_file_blocks(inode))) 3824 goto out; 3825 3826 if (f2fs_compressed_file(inode)) { 3827 blknr = f2fs_bmap_compress(inode, block); 3828 } else { 3829 struct f2fs_map_blocks map; 3830 3831 memset(&map, 0, sizeof(map)); 3832 map.m_lblk = block; 3833 map.m_len = 1; 3834 map.m_next_pgofs = NULL; 3835 map.m_seg_type = NO_CHECK_TYPE; 3836 3837 if (!f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_BMAP)) 3838 blknr = map.m_pblk; 3839 } 3840 out: 3841 trace_f2fs_bmap(inode, block, blknr); 3842 return blknr; 3843 } 3844 3845 #ifdef CONFIG_SWAP 3846 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk, 3847 unsigned int blkcnt) 3848 { 3849 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3850 unsigned int blkofs; 3851 unsigned int blk_per_sec = BLKS_PER_SEC(sbi); 3852 unsigned int end_blk = start_blk + blkcnt - 1; 3853 unsigned int secidx = start_blk / blk_per_sec; 3854 unsigned int end_sec; 3855 int ret = 0; 3856 3857 if (!blkcnt) 3858 return 0; 3859 end_sec = end_blk / blk_per_sec; 3860 3861 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3862 filemap_invalidate_lock(inode->i_mapping); 3863 3864 set_inode_flag(inode, FI_ALIGNED_WRITE); 3865 set_inode_flag(inode, FI_OPU_WRITE); 3866 3867 for (; secidx <= end_sec; secidx++) { 3868 unsigned int blkofs_end = secidx == end_sec ? 3869 end_blk % blk_per_sec : blk_per_sec - 1; 3870 3871 f2fs_down_write(&sbi->pin_sem); 3872 3873 ret = f2fs_allocate_pinning_section(sbi); 3874 if (ret) { 3875 f2fs_up_write(&sbi->pin_sem); 3876 break; 3877 } 3878 3879 set_inode_flag(inode, FI_SKIP_WRITES); 3880 3881 for (blkofs = 0; blkofs <= blkofs_end; blkofs++) { 3882 struct page *page; 3883 unsigned int blkidx = secidx * blk_per_sec + blkofs; 3884 3885 page = f2fs_get_lock_data_page(inode, blkidx, true); 3886 if (IS_ERR(page)) { 3887 f2fs_up_write(&sbi->pin_sem); 3888 ret = PTR_ERR(page); 3889 goto done; 3890 } 3891 3892 set_page_dirty(page); 3893 f2fs_put_page(page, 1); 3894 } 3895 3896 clear_inode_flag(inode, FI_SKIP_WRITES); 3897 3898 ret = filemap_fdatawrite(inode->i_mapping); 3899 3900 f2fs_up_write(&sbi->pin_sem); 3901 3902 if (ret) 3903 break; 3904 } 3905 3906 done: 3907 clear_inode_flag(inode, FI_SKIP_WRITES); 3908 clear_inode_flag(inode, FI_OPU_WRITE); 3909 clear_inode_flag(inode, FI_ALIGNED_WRITE); 3910 3911 filemap_invalidate_unlock(inode->i_mapping); 3912 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3913 3914 return ret; 3915 } 3916 3917 static int check_swap_activate(struct swap_info_struct *sis, 3918 struct file *swap_file, sector_t *span) 3919 { 3920 struct address_space *mapping = swap_file->f_mapping; 3921 struct inode *inode = mapping->host; 3922 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3923 block_t cur_lblock; 3924 block_t last_lblock; 3925 block_t pblock; 3926 block_t lowest_pblock = -1; 3927 block_t highest_pblock = 0; 3928 int nr_extents = 0; 3929 unsigned int nr_pblocks; 3930 unsigned int blks_per_sec = BLKS_PER_SEC(sbi); 3931 unsigned int not_aligned = 0; 3932 int ret = 0; 3933 3934 /* 3935 * Map all the blocks into the extent list. This code doesn't try 3936 * to be very smart. 3937 */ 3938 cur_lblock = 0; 3939 last_lblock = bytes_to_blks(inode, i_size_read(inode)); 3940 3941 while (cur_lblock < last_lblock && cur_lblock < sis->max) { 3942 struct f2fs_map_blocks map; 3943 retry: 3944 cond_resched(); 3945 3946 memset(&map, 0, sizeof(map)); 3947 map.m_lblk = cur_lblock; 3948 map.m_len = last_lblock - cur_lblock; 3949 map.m_next_pgofs = NULL; 3950 map.m_next_extent = NULL; 3951 map.m_seg_type = NO_CHECK_TYPE; 3952 map.m_may_create = false; 3953 3954 ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP); 3955 if (ret) 3956 goto out; 3957 3958 /* hole */ 3959 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 3960 f2fs_err(sbi, "Swapfile has holes"); 3961 ret = -EINVAL; 3962 goto out; 3963 } 3964 3965 pblock = map.m_pblk; 3966 nr_pblocks = map.m_len; 3967 3968 if ((pblock - SM_I(sbi)->main_blkaddr) % blks_per_sec || 3969 nr_pblocks % blks_per_sec || 3970 !f2fs_valid_pinned_area(sbi, pblock)) { 3971 bool last_extent = false; 3972 3973 not_aligned++; 3974 3975 nr_pblocks = roundup(nr_pblocks, blks_per_sec); 3976 if (cur_lblock + nr_pblocks > sis->max) 3977 nr_pblocks -= blks_per_sec; 3978 3979 /* this extent is last one */ 3980 if (!nr_pblocks) { 3981 nr_pblocks = last_lblock - cur_lblock; 3982 last_extent = true; 3983 } 3984 3985 ret = f2fs_migrate_blocks(inode, cur_lblock, 3986 nr_pblocks); 3987 if (ret) { 3988 if (ret == -ENOENT) 3989 ret = -EINVAL; 3990 goto out; 3991 } 3992 3993 if (!last_extent) 3994 goto retry; 3995 } 3996 3997 if (cur_lblock + nr_pblocks >= sis->max) 3998 nr_pblocks = sis->max - cur_lblock; 3999 4000 if (cur_lblock) { /* exclude the header page */ 4001 if (pblock < lowest_pblock) 4002 lowest_pblock = pblock; 4003 if (pblock + nr_pblocks - 1 > highest_pblock) 4004 highest_pblock = pblock + nr_pblocks - 1; 4005 } 4006 4007 /* 4008 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks 4009 */ 4010 ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock); 4011 if (ret < 0) 4012 goto out; 4013 nr_extents += ret; 4014 cur_lblock += nr_pblocks; 4015 } 4016 ret = nr_extents; 4017 *span = 1 + highest_pblock - lowest_pblock; 4018 if (cur_lblock == 0) 4019 cur_lblock = 1; /* force Empty message */ 4020 sis->max = cur_lblock; 4021 sis->pages = cur_lblock - 1; 4022 sis->highest_bit = cur_lblock - 1; 4023 out: 4024 if (not_aligned) 4025 f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%lu * N)", 4026 not_aligned, blks_per_sec * F2FS_BLKSIZE); 4027 return ret; 4028 } 4029 4030 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, 4031 sector_t *span) 4032 { 4033 struct inode *inode = file_inode(file); 4034 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4035 int ret; 4036 4037 if (!S_ISREG(inode->i_mode)) 4038 return -EINVAL; 4039 4040 if (f2fs_readonly(sbi->sb)) 4041 return -EROFS; 4042 4043 if (f2fs_lfs_mode(sbi) && !f2fs_sb_has_blkzoned(sbi)) { 4044 f2fs_err(sbi, "Swapfile not supported in LFS mode"); 4045 return -EINVAL; 4046 } 4047 4048 ret = f2fs_convert_inline_inode(inode); 4049 if (ret) 4050 return ret; 4051 4052 if (!f2fs_disable_compressed_file(inode)) 4053 return -EINVAL; 4054 4055 ret = filemap_fdatawrite(inode->i_mapping); 4056 if (ret < 0) 4057 return ret; 4058 4059 f2fs_precache_extents(inode); 4060 4061 ret = check_swap_activate(sis, file, span); 4062 if (ret < 0) 4063 return ret; 4064 4065 stat_inc_swapfile_inode(inode); 4066 set_inode_flag(inode, FI_PIN_FILE); 4067 f2fs_update_time(sbi, REQ_TIME); 4068 return ret; 4069 } 4070 4071 static void f2fs_swap_deactivate(struct file *file) 4072 { 4073 struct inode *inode = file_inode(file); 4074 4075 stat_dec_swapfile_inode(inode); 4076 clear_inode_flag(inode, FI_PIN_FILE); 4077 } 4078 #else 4079 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, 4080 sector_t *span) 4081 { 4082 return -EOPNOTSUPP; 4083 } 4084 4085 static void f2fs_swap_deactivate(struct file *file) 4086 { 4087 } 4088 #endif 4089 4090 const struct address_space_operations f2fs_dblock_aops = { 4091 .read_folio = f2fs_read_data_folio, 4092 .readahead = f2fs_readahead, 4093 .writepage = f2fs_write_data_page, 4094 .writepages = f2fs_write_data_pages, 4095 .write_begin = f2fs_write_begin, 4096 .write_end = f2fs_write_end, 4097 .dirty_folio = f2fs_dirty_data_folio, 4098 .migrate_folio = filemap_migrate_folio, 4099 .invalidate_folio = f2fs_invalidate_folio, 4100 .release_folio = f2fs_release_folio, 4101 .bmap = f2fs_bmap, 4102 .swap_activate = f2fs_swap_activate, 4103 .swap_deactivate = f2fs_swap_deactivate, 4104 }; 4105 4106 void f2fs_clear_page_cache_dirty_tag(struct page *page) 4107 { 4108 struct folio *folio = page_folio(page); 4109 struct address_space *mapping = folio->mapping; 4110 unsigned long flags; 4111 4112 xa_lock_irqsave(&mapping->i_pages, flags); 4113 __xa_clear_mark(&mapping->i_pages, folio->index, 4114 PAGECACHE_TAG_DIRTY); 4115 xa_unlock_irqrestore(&mapping->i_pages, flags); 4116 } 4117 4118 int __init f2fs_init_post_read_processing(void) 4119 { 4120 bio_post_read_ctx_cache = 4121 kmem_cache_create("f2fs_bio_post_read_ctx", 4122 sizeof(struct bio_post_read_ctx), 0, 0, NULL); 4123 if (!bio_post_read_ctx_cache) 4124 goto fail; 4125 bio_post_read_ctx_pool = 4126 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS, 4127 bio_post_read_ctx_cache); 4128 if (!bio_post_read_ctx_pool) 4129 goto fail_free_cache; 4130 return 0; 4131 4132 fail_free_cache: 4133 kmem_cache_destroy(bio_post_read_ctx_cache); 4134 fail: 4135 return -ENOMEM; 4136 } 4137 4138 void f2fs_destroy_post_read_processing(void) 4139 { 4140 mempool_destroy(bio_post_read_ctx_pool); 4141 kmem_cache_destroy(bio_post_read_ctx_cache); 4142 } 4143 4144 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi) 4145 { 4146 if (!f2fs_sb_has_encrypt(sbi) && 4147 !f2fs_sb_has_verity(sbi) && 4148 !f2fs_sb_has_compression(sbi)) 4149 return 0; 4150 4151 sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq", 4152 WQ_UNBOUND | WQ_HIGHPRI, 4153 num_online_cpus()); 4154 return sbi->post_read_wq ? 0 : -ENOMEM; 4155 } 4156 4157 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi) 4158 { 4159 if (sbi->post_read_wq) 4160 destroy_workqueue(sbi->post_read_wq); 4161 } 4162 4163 int __init f2fs_init_bio_entry_cache(void) 4164 { 4165 bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab", 4166 sizeof(struct bio_entry)); 4167 return bio_entry_slab ? 0 : -ENOMEM; 4168 } 4169 4170 void f2fs_destroy_bio_entry_cache(void) 4171 { 4172 kmem_cache_destroy(bio_entry_slab); 4173 } 4174 4175 static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 4176 unsigned int flags, struct iomap *iomap, 4177 struct iomap *srcmap) 4178 { 4179 struct f2fs_map_blocks map = {}; 4180 pgoff_t next_pgofs = 0; 4181 int err; 4182 4183 map.m_lblk = bytes_to_blks(inode, offset); 4184 map.m_len = bytes_to_blks(inode, offset + length - 1) - map.m_lblk + 1; 4185 map.m_next_pgofs = &next_pgofs; 4186 map.m_seg_type = f2fs_rw_hint_to_seg_type(F2FS_I_SB(inode), 4187 inode->i_write_hint); 4188 if (flags & IOMAP_WRITE) 4189 map.m_may_create = true; 4190 4191 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DIO); 4192 if (err) 4193 return err; 4194 4195 iomap->offset = blks_to_bytes(inode, map.m_lblk); 4196 4197 /* 4198 * When inline encryption is enabled, sometimes I/O to an encrypted file 4199 * has to be broken up to guarantee DUN contiguity. Handle this by 4200 * limiting the length of the mapping returned. 4201 */ 4202 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len); 4203 4204 /* 4205 * We should never see delalloc or compressed extents here based on 4206 * prior flushing and checks. 4207 */ 4208 if (WARN_ON_ONCE(map.m_pblk == COMPRESS_ADDR)) 4209 return -EINVAL; 4210 4211 if (map.m_flags & F2FS_MAP_MAPPED) { 4212 if (WARN_ON_ONCE(map.m_pblk == NEW_ADDR)) 4213 return -EINVAL; 4214 4215 iomap->length = blks_to_bytes(inode, map.m_len); 4216 iomap->type = IOMAP_MAPPED; 4217 iomap->flags |= IOMAP_F_MERGED; 4218 iomap->bdev = map.m_bdev; 4219 iomap->addr = blks_to_bytes(inode, map.m_pblk); 4220 } else { 4221 if (flags & IOMAP_WRITE) 4222 return -ENOTBLK; 4223 4224 if (map.m_pblk == NULL_ADDR) { 4225 iomap->length = blks_to_bytes(inode, next_pgofs) - 4226 iomap->offset; 4227 iomap->type = IOMAP_HOLE; 4228 } else if (map.m_pblk == NEW_ADDR) { 4229 iomap->length = blks_to_bytes(inode, map.m_len); 4230 iomap->type = IOMAP_UNWRITTEN; 4231 } else { 4232 f2fs_bug_on(F2FS_I_SB(inode), 1); 4233 } 4234 iomap->addr = IOMAP_NULL_ADDR; 4235 } 4236 4237 if (map.m_flags & F2FS_MAP_NEW) 4238 iomap->flags |= IOMAP_F_NEW; 4239 if ((inode->i_state & I_DIRTY_DATASYNC) || 4240 offset + length > i_size_read(inode)) 4241 iomap->flags |= IOMAP_F_DIRTY; 4242 4243 return 0; 4244 } 4245 4246 const struct iomap_ops f2fs_iomap_ops = { 4247 .iomap_begin = f2fs_iomap_begin, 4248 }; 4249