1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/data.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/buffer_head.h> 11 #include <linux/sched/mm.h> 12 #include <linux/mpage.h> 13 #include <linux/writeback.h> 14 #include <linux/pagevec.h> 15 #include <linux/blkdev.h> 16 #include <linux/bio.h> 17 #include <linux/blk-crypto.h> 18 #include <linux/swap.h> 19 #include <linux/prefetch.h> 20 #include <linux/uio.h> 21 #include <linux/sched/signal.h> 22 #include <linux/fiemap.h> 23 #include <linux/iomap.h> 24 25 #include "f2fs.h" 26 #include "node.h" 27 #include "segment.h" 28 #include "iostat.h" 29 #include <trace/events/f2fs.h> 30 31 #define NUM_PREALLOC_POST_READ_CTXS 128 32 33 static struct kmem_cache *bio_post_read_ctx_cache; 34 static struct kmem_cache *bio_entry_slab; 35 static mempool_t *bio_post_read_ctx_pool; 36 static struct bio_set f2fs_bioset; 37 38 #define F2FS_BIO_POOL_SIZE NR_CURSEG_TYPE 39 40 int __init f2fs_init_bioset(void) 41 { 42 if (bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE, 43 0, BIOSET_NEED_BVECS)) 44 return -ENOMEM; 45 return 0; 46 } 47 48 void f2fs_destroy_bioset(void) 49 { 50 bioset_exit(&f2fs_bioset); 51 } 52 53 static bool __is_cp_guaranteed(struct page *page) 54 { 55 struct address_space *mapping = page->mapping; 56 struct inode *inode; 57 struct f2fs_sb_info *sbi; 58 59 if (!mapping) 60 return false; 61 62 inode = mapping->host; 63 sbi = F2FS_I_SB(inode); 64 65 if (inode->i_ino == F2FS_META_INO(sbi) || 66 inode->i_ino == F2FS_NODE_INO(sbi) || 67 S_ISDIR(inode->i_mode)) 68 return true; 69 70 if (f2fs_is_compressed_page(page)) 71 return false; 72 if ((S_ISREG(inode->i_mode) && 73 (f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) || 74 page_private_gcing(page)) 75 return true; 76 return false; 77 } 78 79 static enum count_type __read_io_type(struct page *page) 80 { 81 struct address_space *mapping = page_file_mapping(page); 82 83 if (mapping) { 84 struct inode *inode = mapping->host; 85 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 86 87 if (inode->i_ino == F2FS_META_INO(sbi)) 88 return F2FS_RD_META; 89 90 if (inode->i_ino == F2FS_NODE_INO(sbi)) 91 return F2FS_RD_NODE; 92 } 93 return F2FS_RD_DATA; 94 } 95 96 /* postprocessing steps for read bios */ 97 enum bio_post_read_step { 98 #ifdef CONFIG_FS_ENCRYPTION 99 STEP_DECRYPT = 1 << 0, 100 #else 101 STEP_DECRYPT = 0, /* compile out the decryption-related code */ 102 #endif 103 #ifdef CONFIG_F2FS_FS_COMPRESSION 104 STEP_DECOMPRESS = 1 << 1, 105 #else 106 STEP_DECOMPRESS = 0, /* compile out the decompression-related code */ 107 #endif 108 #ifdef CONFIG_FS_VERITY 109 STEP_VERITY = 1 << 2, 110 #else 111 STEP_VERITY = 0, /* compile out the verity-related code */ 112 #endif 113 }; 114 115 struct bio_post_read_ctx { 116 struct bio *bio; 117 struct f2fs_sb_info *sbi; 118 struct work_struct work; 119 unsigned int enabled_steps; 120 block_t fs_blkaddr; 121 }; 122 123 static void f2fs_finish_read_bio(struct bio *bio) 124 { 125 struct bio_vec *bv; 126 struct bvec_iter_all iter_all; 127 128 /* 129 * Update and unlock the bio's pagecache pages, and put the 130 * decompression context for any compressed pages. 131 */ 132 bio_for_each_segment_all(bv, bio, iter_all) { 133 struct page *page = bv->bv_page; 134 135 if (f2fs_is_compressed_page(page)) { 136 if (bio->bi_status) 137 f2fs_end_read_compressed_page(page, true, 0); 138 f2fs_put_page_dic(page); 139 continue; 140 } 141 142 /* PG_error was set if decryption or verity failed. */ 143 if (bio->bi_status || PageError(page)) { 144 ClearPageUptodate(page); 145 /* will re-read again later */ 146 ClearPageError(page); 147 } else { 148 SetPageUptodate(page); 149 } 150 dec_page_count(F2FS_P_SB(page), __read_io_type(page)); 151 unlock_page(page); 152 } 153 154 if (bio->bi_private) 155 mempool_free(bio->bi_private, bio_post_read_ctx_pool); 156 bio_put(bio); 157 } 158 159 static void f2fs_verify_bio(struct work_struct *work) 160 { 161 struct bio_post_read_ctx *ctx = 162 container_of(work, struct bio_post_read_ctx, work); 163 struct bio *bio = ctx->bio; 164 bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS); 165 166 /* 167 * fsverity_verify_bio() may call readahead() again, and while verity 168 * will be disabled for this, decryption and/or decompression may still 169 * be needed, resulting in another bio_post_read_ctx being allocated. 170 * So to prevent deadlocks we need to release the current ctx to the 171 * mempool first. This assumes that verity is the last post-read step. 172 */ 173 mempool_free(ctx, bio_post_read_ctx_pool); 174 bio->bi_private = NULL; 175 176 /* 177 * Verify the bio's pages with fs-verity. Exclude compressed pages, 178 * as those were handled separately by f2fs_end_read_compressed_page(). 179 */ 180 if (may_have_compressed_pages) { 181 struct bio_vec *bv; 182 struct bvec_iter_all iter_all; 183 184 bio_for_each_segment_all(bv, bio, iter_all) { 185 struct page *page = bv->bv_page; 186 187 if (!f2fs_is_compressed_page(page) && 188 !PageError(page) && !fsverity_verify_page(page)) 189 SetPageError(page); 190 } 191 } else { 192 fsverity_verify_bio(bio); 193 } 194 195 f2fs_finish_read_bio(bio); 196 } 197 198 /* 199 * If the bio's data needs to be verified with fs-verity, then enqueue the 200 * verity work for the bio. Otherwise finish the bio now. 201 * 202 * Note that to avoid deadlocks, the verity work can't be done on the 203 * decryption/decompression workqueue. This is because verifying the data pages 204 * can involve reading verity metadata pages from the file, and these verity 205 * metadata pages may be encrypted and/or compressed. 206 */ 207 static void f2fs_verify_and_finish_bio(struct bio *bio) 208 { 209 struct bio_post_read_ctx *ctx = bio->bi_private; 210 211 if (ctx && (ctx->enabled_steps & STEP_VERITY)) { 212 INIT_WORK(&ctx->work, f2fs_verify_bio); 213 fsverity_enqueue_verify_work(&ctx->work); 214 } else { 215 f2fs_finish_read_bio(bio); 216 } 217 } 218 219 /* 220 * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last 221 * remaining page was read by @ctx->bio. 222 * 223 * Note that a bio may span clusters (even a mix of compressed and uncompressed 224 * clusters) or be for just part of a cluster. STEP_DECOMPRESS just indicates 225 * that the bio includes at least one compressed page. The actual decompression 226 * is done on a per-cluster basis, not a per-bio basis. 227 */ 228 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx) 229 { 230 struct bio_vec *bv; 231 struct bvec_iter_all iter_all; 232 bool all_compressed = true; 233 block_t blkaddr = ctx->fs_blkaddr; 234 235 bio_for_each_segment_all(bv, ctx->bio, iter_all) { 236 struct page *page = bv->bv_page; 237 238 /* PG_error was set if decryption failed. */ 239 if (f2fs_is_compressed_page(page)) 240 f2fs_end_read_compressed_page(page, PageError(page), 241 blkaddr); 242 else 243 all_compressed = false; 244 245 blkaddr++; 246 } 247 248 /* 249 * Optimization: if all the bio's pages are compressed, then scheduling 250 * the per-bio verity work is unnecessary, as verity will be fully 251 * handled at the compression cluster level. 252 */ 253 if (all_compressed) 254 ctx->enabled_steps &= ~STEP_VERITY; 255 } 256 257 static void f2fs_post_read_work(struct work_struct *work) 258 { 259 struct bio_post_read_ctx *ctx = 260 container_of(work, struct bio_post_read_ctx, work); 261 262 if (ctx->enabled_steps & STEP_DECRYPT) 263 fscrypt_decrypt_bio(ctx->bio); 264 265 if (ctx->enabled_steps & STEP_DECOMPRESS) 266 f2fs_handle_step_decompress(ctx); 267 268 f2fs_verify_and_finish_bio(ctx->bio); 269 } 270 271 static void f2fs_read_end_io(struct bio *bio) 272 { 273 struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio)); 274 struct bio_post_read_ctx *ctx; 275 276 iostat_update_and_unbind_ctx(bio, 0); 277 ctx = bio->bi_private; 278 279 if (time_to_inject(sbi, FAULT_READ_IO)) { 280 f2fs_show_injection_info(sbi, FAULT_READ_IO); 281 bio->bi_status = BLK_STS_IOERR; 282 } 283 284 if (bio->bi_status) { 285 f2fs_finish_read_bio(bio); 286 return; 287 } 288 289 if (ctx && (ctx->enabled_steps & (STEP_DECRYPT | STEP_DECOMPRESS))) { 290 INIT_WORK(&ctx->work, f2fs_post_read_work); 291 queue_work(ctx->sbi->post_read_wq, &ctx->work); 292 } else { 293 f2fs_verify_and_finish_bio(bio); 294 } 295 } 296 297 static void f2fs_write_end_io(struct bio *bio) 298 { 299 struct f2fs_sb_info *sbi; 300 struct bio_vec *bvec; 301 struct bvec_iter_all iter_all; 302 303 iostat_update_and_unbind_ctx(bio, 1); 304 sbi = bio->bi_private; 305 306 if (time_to_inject(sbi, FAULT_WRITE_IO)) { 307 f2fs_show_injection_info(sbi, FAULT_WRITE_IO); 308 bio->bi_status = BLK_STS_IOERR; 309 } 310 311 bio_for_each_segment_all(bvec, bio, iter_all) { 312 struct page *page = bvec->bv_page; 313 enum count_type type = WB_DATA_TYPE(page); 314 315 if (page_private_dummy(page)) { 316 clear_page_private_dummy(page); 317 unlock_page(page); 318 mempool_free(page, sbi->write_io_dummy); 319 320 if (unlikely(bio->bi_status)) 321 f2fs_stop_checkpoint(sbi, true); 322 continue; 323 } 324 325 fscrypt_finalize_bounce_page(&page); 326 327 #ifdef CONFIG_F2FS_FS_COMPRESSION 328 if (f2fs_is_compressed_page(page)) { 329 f2fs_compress_write_end_io(bio, page); 330 continue; 331 } 332 #endif 333 334 if (unlikely(bio->bi_status)) { 335 mapping_set_error(page->mapping, -EIO); 336 if (type == F2FS_WB_CP_DATA) 337 f2fs_stop_checkpoint(sbi, true); 338 } 339 340 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) && 341 page->index != nid_of_node(page)); 342 343 dec_page_count(sbi, type); 344 if (f2fs_in_warm_node_list(sbi, page)) 345 f2fs_del_fsync_node_entry(sbi, page); 346 clear_page_private_gcing(page); 347 end_page_writeback(page); 348 } 349 if (!get_pages(sbi, F2FS_WB_CP_DATA) && 350 wq_has_sleeper(&sbi->cp_wait)) 351 wake_up(&sbi->cp_wait); 352 353 bio_put(bio); 354 } 355 356 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 357 block_t blk_addr, sector_t *sector) 358 { 359 struct block_device *bdev = sbi->sb->s_bdev; 360 int i; 361 362 if (f2fs_is_multi_device(sbi)) { 363 for (i = 0; i < sbi->s_ndevs; i++) { 364 if (FDEV(i).start_blk <= blk_addr && 365 FDEV(i).end_blk >= blk_addr) { 366 blk_addr -= FDEV(i).start_blk; 367 bdev = FDEV(i).bdev; 368 break; 369 } 370 } 371 } 372 373 if (sector) 374 *sector = SECTOR_FROM_BLOCK(blk_addr); 375 return bdev; 376 } 377 378 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr) 379 { 380 int i; 381 382 if (!f2fs_is_multi_device(sbi)) 383 return 0; 384 385 for (i = 0; i < sbi->s_ndevs; i++) 386 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr) 387 return i; 388 return 0; 389 } 390 391 static void __attach_io_flag(struct f2fs_io_info *fio, unsigned int io_flag) 392 { 393 unsigned int temp_mask = (1 << NR_TEMP_TYPE) - 1; 394 unsigned int fua_flag = io_flag & temp_mask; 395 unsigned int meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask; 396 397 /* 398 * data/node io flag bits per temp: 399 * REQ_META | REQ_FUA | 400 * 5 | 4 | 3 | 2 | 1 | 0 | 401 * Cold | Warm | Hot | Cold | Warm | Hot | 402 */ 403 if ((1 << fio->temp) & meta_flag) 404 fio->op_flags |= REQ_META; 405 if ((1 << fio->temp) & fua_flag) 406 fio->op_flags |= REQ_FUA; 407 } 408 409 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages) 410 { 411 struct f2fs_sb_info *sbi = fio->sbi; 412 struct block_device *bdev; 413 sector_t sector; 414 struct bio *bio; 415 416 if (fio->type == DATA) 417 __attach_io_flag(fio, sbi->data_io_flag); 418 else if (fio->type == NODE) 419 __attach_io_flag(fio, sbi->node_io_flag); 420 421 bdev = f2fs_target_device(sbi, fio->new_blkaddr, §or); 422 bio = bio_alloc_bioset(bdev, npages, fio->op | fio->op_flags, GFP_NOIO, 423 &f2fs_bioset); 424 bio->bi_iter.bi_sector = sector; 425 if (is_read_io(fio->op)) { 426 bio->bi_end_io = f2fs_read_end_io; 427 bio->bi_private = NULL; 428 } else { 429 bio->bi_end_io = f2fs_write_end_io; 430 bio->bi_private = sbi; 431 } 432 iostat_alloc_and_bind_ctx(sbi, bio, NULL); 433 434 if (fio->io_wbc) 435 wbc_init_bio(fio->io_wbc, bio); 436 437 return bio; 438 } 439 440 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode, 441 pgoff_t first_idx, 442 const struct f2fs_io_info *fio, 443 gfp_t gfp_mask) 444 { 445 /* 446 * The f2fs garbage collector sets ->encrypted_page when it wants to 447 * read/write raw data without encryption. 448 */ 449 if (!fio || !fio->encrypted_page) 450 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask); 451 } 452 453 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode, 454 pgoff_t next_idx, 455 const struct f2fs_io_info *fio) 456 { 457 /* 458 * The f2fs garbage collector sets ->encrypted_page when it wants to 459 * read/write raw data without encryption. 460 */ 461 if (fio && fio->encrypted_page) 462 return !bio_has_crypt_ctx(bio); 463 464 return fscrypt_mergeable_bio(bio, inode, next_idx); 465 } 466 467 static inline void __submit_bio(struct f2fs_sb_info *sbi, 468 struct bio *bio, enum page_type type) 469 { 470 if (!is_read_io(bio_op(bio))) { 471 unsigned int start; 472 473 if (type != DATA && type != NODE) 474 goto submit_io; 475 476 if (f2fs_lfs_mode(sbi) && current->plug) 477 blk_finish_plug(current->plug); 478 479 if (!F2FS_IO_ALIGNED(sbi)) 480 goto submit_io; 481 482 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS; 483 start %= F2FS_IO_SIZE(sbi); 484 485 if (start == 0) 486 goto submit_io; 487 488 /* fill dummy pages */ 489 for (; start < F2FS_IO_SIZE(sbi); start++) { 490 struct page *page = 491 mempool_alloc(sbi->write_io_dummy, 492 GFP_NOIO | __GFP_NOFAIL); 493 f2fs_bug_on(sbi, !page); 494 495 lock_page(page); 496 497 zero_user_segment(page, 0, PAGE_SIZE); 498 set_page_private_dummy(page); 499 500 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) 501 f2fs_bug_on(sbi, 1); 502 } 503 /* 504 * In the NODE case, we lose next block address chain. So, we 505 * need to do checkpoint in f2fs_sync_file. 506 */ 507 if (type == NODE) 508 set_sbi_flag(sbi, SBI_NEED_CP); 509 } 510 submit_io: 511 if (is_read_io(bio_op(bio))) 512 trace_f2fs_submit_read_bio(sbi->sb, type, bio); 513 else 514 trace_f2fs_submit_write_bio(sbi->sb, type, bio); 515 516 iostat_update_submit_ctx(bio, type); 517 submit_bio(bio); 518 } 519 520 void f2fs_submit_bio(struct f2fs_sb_info *sbi, 521 struct bio *bio, enum page_type type) 522 { 523 __submit_bio(sbi, bio, type); 524 } 525 526 static void __submit_merged_bio(struct f2fs_bio_info *io) 527 { 528 struct f2fs_io_info *fio = &io->fio; 529 530 if (!io->bio) 531 return; 532 533 if (is_read_io(fio->op)) 534 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio); 535 else 536 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio); 537 538 __submit_bio(io->sbi, io->bio, fio->type); 539 io->bio = NULL; 540 } 541 542 static bool __has_merged_page(struct bio *bio, struct inode *inode, 543 struct page *page, nid_t ino) 544 { 545 struct bio_vec *bvec; 546 struct bvec_iter_all iter_all; 547 548 if (!bio) 549 return false; 550 551 if (!inode && !page && !ino) 552 return true; 553 554 bio_for_each_segment_all(bvec, bio, iter_all) { 555 struct page *target = bvec->bv_page; 556 557 if (fscrypt_is_bounce_page(target)) { 558 target = fscrypt_pagecache_page(target); 559 if (IS_ERR(target)) 560 continue; 561 } 562 if (f2fs_is_compressed_page(target)) { 563 target = f2fs_compress_control_page(target); 564 if (IS_ERR(target)) 565 continue; 566 } 567 568 if (inode && inode == target->mapping->host) 569 return true; 570 if (page && page == target) 571 return true; 572 if (ino && ino == ino_of_node(target)) 573 return true; 574 } 575 576 return false; 577 } 578 579 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi, 580 enum page_type type, enum temp_type temp) 581 { 582 enum page_type btype = PAGE_TYPE_OF_BIO(type); 583 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 584 585 f2fs_down_write(&io->io_rwsem); 586 587 /* change META to META_FLUSH in the checkpoint procedure */ 588 if (type >= META_FLUSH) { 589 io->fio.type = META_FLUSH; 590 io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC; 591 if (!test_opt(sbi, NOBARRIER)) 592 io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA; 593 } 594 __submit_merged_bio(io); 595 f2fs_up_write(&io->io_rwsem); 596 } 597 598 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi, 599 struct inode *inode, struct page *page, 600 nid_t ino, enum page_type type, bool force) 601 { 602 enum temp_type temp; 603 bool ret = true; 604 605 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) { 606 if (!force) { 607 enum page_type btype = PAGE_TYPE_OF_BIO(type); 608 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 609 610 f2fs_down_read(&io->io_rwsem); 611 ret = __has_merged_page(io->bio, inode, page, ino); 612 f2fs_up_read(&io->io_rwsem); 613 } 614 if (ret) 615 __f2fs_submit_merged_write(sbi, type, temp); 616 617 /* TODO: use HOT temp only for meta pages now. */ 618 if (type >= META) 619 break; 620 } 621 } 622 623 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type) 624 { 625 __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true); 626 } 627 628 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 629 struct inode *inode, struct page *page, 630 nid_t ino, enum page_type type) 631 { 632 __submit_merged_write_cond(sbi, inode, page, ino, type, false); 633 } 634 635 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi) 636 { 637 f2fs_submit_merged_write(sbi, DATA); 638 f2fs_submit_merged_write(sbi, NODE); 639 f2fs_submit_merged_write(sbi, META); 640 } 641 642 /* 643 * Fill the locked page with data located in the block address. 644 * A caller needs to unlock the page on failure. 645 */ 646 int f2fs_submit_page_bio(struct f2fs_io_info *fio) 647 { 648 struct bio *bio; 649 struct page *page = fio->encrypted_page ? 650 fio->encrypted_page : fio->page; 651 652 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, 653 fio->is_por ? META_POR : (__is_meta_io(fio) ? 654 META_GENERIC : DATA_GENERIC_ENHANCE))) 655 return -EFSCORRUPTED; 656 657 trace_f2fs_submit_page_bio(page, fio); 658 659 /* Allocate a new bio */ 660 bio = __bio_alloc(fio, 1); 661 662 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host, 663 fio->page->index, fio, GFP_NOIO); 664 665 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 666 bio_put(bio); 667 return -EFAULT; 668 } 669 670 if (fio->io_wbc && !is_read_io(fio->op)) 671 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE); 672 673 inc_page_count(fio->sbi, is_read_io(fio->op) ? 674 __read_io_type(page): WB_DATA_TYPE(fio->page)); 675 676 __submit_bio(fio->sbi, bio, fio->type); 677 return 0; 678 } 679 680 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio, 681 block_t last_blkaddr, block_t cur_blkaddr) 682 { 683 if (unlikely(sbi->max_io_bytes && 684 bio->bi_iter.bi_size >= sbi->max_io_bytes)) 685 return false; 686 if (last_blkaddr + 1 != cur_blkaddr) 687 return false; 688 return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL); 689 } 690 691 static bool io_type_is_mergeable(struct f2fs_bio_info *io, 692 struct f2fs_io_info *fio) 693 { 694 if (io->fio.op != fio->op) 695 return false; 696 return io->fio.op_flags == fio->op_flags; 697 } 698 699 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio, 700 struct f2fs_bio_info *io, 701 struct f2fs_io_info *fio, 702 block_t last_blkaddr, 703 block_t cur_blkaddr) 704 { 705 if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) { 706 unsigned int filled_blocks = 707 F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size); 708 unsigned int io_size = F2FS_IO_SIZE(sbi); 709 unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt; 710 711 /* IOs in bio is aligned and left space of vectors is not enough */ 712 if (!(filled_blocks % io_size) && left_vecs < io_size) 713 return false; 714 } 715 if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr)) 716 return false; 717 return io_type_is_mergeable(io, fio); 718 } 719 720 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio, 721 struct page *page, enum temp_type temp) 722 { 723 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 724 struct bio_entry *be; 725 726 be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL); 727 be->bio = bio; 728 bio_get(bio); 729 730 if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE) 731 f2fs_bug_on(sbi, 1); 732 733 f2fs_down_write(&io->bio_list_lock); 734 list_add_tail(&be->list, &io->bio_list); 735 f2fs_up_write(&io->bio_list_lock); 736 } 737 738 static void del_bio_entry(struct bio_entry *be) 739 { 740 list_del(&be->list); 741 kmem_cache_free(bio_entry_slab, be); 742 } 743 744 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio, 745 struct page *page) 746 { 747 struct f2fs_sb_info *sbi = fio->sbi; 748 enum temp_type temp; 749 bool found = false; 750 int ret = -EAGAIN; 751 752 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) { 753 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 754 struct list_head *head = &io->bio_list; 755 struct bio_entry *be; 756 757 f2fs_down_write(&io->bio_list_lock); 758 list_for_each_entry(be, head, list) { 759 if (be->bio != *bio) 760 continue; 761 762 found = true; 763 764 f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio, 765 *fio->last_block, 766 fio->new_blkaddr)); 767 if (f2fs_crypt_mergeable_bio(*bio, 768 fio->page->mapping->host, 769 fio->page->index, fio) && 770 bio_add_page(*bio, page, PAGE_SIZE, 0) == 771 PAGE_SIZE) { 772 ret = 0; 773 break; 774 } 775 776 /* page can't be merged into bio; submit the bio */ 777 del_bio_entry(be); 778 __submit_bio(sbi, *bio, DATA); 779 break; 780 } 781 f2fs_up_write(&io->bio_list_lock); 782 } 783 784 if (ret) { 785 bio_put(*bio); 786 *bio = NULL; 787 } 788 789 return ret; 790 } 791 792 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi, 793 struct bio **bio, struct page *page) 794 { 795 enum temp_type temp; 796 bool found = false; 797 struct bio *target = bio ? *bio : NULL; 798 799 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) { 800 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 801 struct list_head *head = &io->bio_list; 802 struct bio_entry *be; 803 804 if (list_empty(head)) 805 continue; 806 807 f2fs_down_read(&io->bio_list_lock); 808 list_for_each_entry(be, head, list) { 809 if (target) 810 found = (target == be->bio); 811 else 812 found = __has_merged_page(be->bio, NULL, 813 page, 0); 814 if (found) 815 break; 816 } 817 f2fs_up_read(&io->bio_list_lock); 818 819 if (!found) 820 continue; 821 822 found = false; 823 824 f2fs_down_write(&io->bio_list_lock); 825 list_for_each_entry(be, head, list) { 826 if (target) 827 found = (target == be->bio); 828 else 829 found = __has_merged_page(be->bio, NULL, 830 page, 0); 831 if (found) { 832 target = be->bio; 833 del_bio_entry(be); 834 break; 835 } 836 } 837 f2fs_up_write(&io->bio_list_lock); 838 } 839 840 if (found) 841 __submit_bio(sbi, target, DATA); 842 if (bio && *bio) { 843 bio_put(*bio); 844 *bio = NULL; 845 } 846 } 847 848 int f2fs_merge_page_bio(struct f2fs_io_info *fio) 849 { 850 struct bio *bio = *fio->bio; 851 struct page *page = fio->encrypted_page ? 852 fio->encrypted_page : fio->page; 853 854 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, 855 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC)) 856 return -EFSCORRUPTED; 857 858 trace_f2fs_submit_page_bio(page, fio); 859 860 if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block, 861 fio->new_blkaddr)) 862 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL); 863 alloc_new: 864 if (!bio) { 865 bio = __bio_alloc(fio, BIO_MAX_VECS); 866 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host, 867 fio->page->index, fio, GFP_NOIO); 868 869 add_bio_entry(fio->sbi, bio, page, fio->temp); 870 } else { 871 if (add_ipu_page(fio, &bio, page)) 872 goto alloc_new; 873 } 874 875 if (fio->io_wbc) 876 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE); 877 878 inc_page_count(fio->sbi, WB_DATA_TYPE(page)); 879 880 *fio->last_block = fio->new_blkaddr; 881 *fio->bio = bio; 882 883 return 0; 884 } 885 886 void f2fs_submit_page_write(struct f2fs_io_info *fio) 887 { 888 struct f2fs_sb_info *sbi = fio->sbi; 889 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type); 890 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp; 891 struct page *bio_page; 892 893 f2fs_bug_on(sbi, is_read_io(fio->op)); 894 895 f2fs_down_write(&io->io_rwsem); 896 next: 897 if (fio->in_list) { 898 spin_lock(&io->io_lock); 899 if (list_empty(&io->io_list)) { 900 spin_unlock(&io->io_lock); 901 goto out; 902 } 903 fio = list_first_entry(&io->io_list, 904 struct f2fs_io_info, list); 905 list_del(&fio->list); 906 spin_unlock(&io->io_lock); 907 } 908 909 verify_fio_blkaddr(fio); 910 911 if (fio->encrypted_page) 912 bio_page = fio->encrypted_page; 913 else if (fio->compressed_page) 914 bio_page = fio->compressed_page; 915 else 916 bio_page = fio->page; 917 918 /* set submitted = true as a return value */ 919 fio->submitted = true; 920 921 inc_page_count(sbi, WB_DATA_TYPE(bio_page)); 922 923 if (io->bio && 924 (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio, 925 fio->new_blkaddr) || 926 !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host, 927 bio_page->index, fio))) 928 __submit_merged_bio(io); 929 alloc_new: 930 if (io->bio == NULL) { 931 if (F2FS_IO_ALIGNED(sbi) && 932 (fio->type == DATA || fio->type == NODE) && 933 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) { 934 dec_page_count(sbi, WB_DATA_TYPE(bio_page)); 935 fio->retry = true; 936 goto skip; 937 } 938 io->bio = __bio_alloc(fio, BIO_MAX_VECS); 939 f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host, 940 bio_page->index, fio, GFP_NOIO); 941 io->fio = *fio; 942 } 943 944 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) { 945 __submit_merged_bio(io); 946 goto alloc_new; 947 } 948 949 if (fio->io_wbc) 950 wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE); 951 952 io->last_block_in_bio = fio->new_blkaddr; 953 954 trace_f2fs_submit_page_write(fio->page, fio); 955 skip: 956 if (fio->in_list) 957 goto next; 958 out: 959 if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || 960 !f2fs_is_checkpoint_ready(sbi)) 961 __submit_merged_bio(io); 962 f2fs_up_write(&io->io_rwsem); 963 } 964 965 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr, 966 unsigned nr_pages, unsigned op_flag, 967 pgoff_t first_idx, bool for_write) 968 { 969 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 970 struct bio *bio; 971 struct bio_post_read_ctx *ctx = NULL; 972 unsigned int post_read_steps = 0; 973 sector_t sector; 974 struct block_device *bdev = f2fs_target_device(sbi, blkaddr, §or); 975 976 bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages), 977 REQ_OP_READ | op_flag, 978 for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset); 979 if (!bio) 980 return ERR_PTR(-ENOMEM); 981 bio->bi_iter.bi_sector = sector; 982 f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS); 983 bio->bi_end_io = f2fs_read_end_io; 984 985 if (fscrypt_inode_uses_fs_layer_crypto(inode)) 986 post_read_steps |= STEP_DECRYPT; 987 988 if (f2fs_need_verity(inode, first_idx)) 989 post_read_steps |= STEP_VERITY; 990 991 /* 992 * STEP_DECOMPRESS is handled specially, since a compressed file might 993 * contain both compressed and uncompressed clusters. We'll allocate a 994 * bio_post_read_ctx if the file is compressed, but the caller is 995 * responsible for enabling STEP_DECOMPRESS if it's actually needed. 996 */ 997 998 if (post_read_steps || f2fs_compressed_file(inode)) { 999 /* Due to the mempool, this never fails. */ 1000 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS); 1001 ctx->bio = bio; 1002 ctx->sbi = sbi; 1003 ctx->enabled_steps = post_read_steps; 1004 ctx->fs_blkaddr = blkaddr; 1005 bio->bi_private = ctx; 1006 } 1007 iostat_alloc_and_bind_ctx(sbi, bio, ctx); 1008 1009 return bio; 1010 } 1011 1012 /* This can handle encryption stuffs */ 1013 static int f2fs_submit_page_read(struct inode *inode, struct page *page, 1014 block_t blkaddr, int op_flags, bool for_write) 1015 { 1016 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1017 struct bio *bio; 1018 1019 bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags, 1020 page->index, for_write); 1021 if (IS_ERR(bio)) 1022 return PTR_ERR(bio); 1023 1024 /* wait for GCed page writeback via META_MAPPING */ 1025 f2fs_wait_on_block_writeback(inode, blkaddr); 1026 1027 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 1028 bio_put(bio); 1029 return -EFAULT; 1030 } 1031 ClearPageError(page); 1032 inc_page_count(sbi, F2FS_RD_DATA); 1033 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE); 1034 __submit_bio(sbi, bio, DATA); 1035 return 0; 1036 } 1037 1038 static void __set_data_blkaddr(struct dnode_of_data *dn) 1039 { 1040 struct f2fs_node *rn = F2FS_NODE(dn->node_page); 1041 __le32 *addr_array; 1042 int base = 0; 1043 1044 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode)) 1045 base = get_extra_isize(dn->inode); 1046 1047 /* Get physical address of data block */ 1048 addr_array = blkaddr_in_node(rn); 1049 addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr); 1050 } 1051 1052 /* 1053 * Lock ordering for the change of data block address: 1054 * ->data_page 1055 * ->node_page 1056 * update block addresses in the node page 1057 */ 1058 void f2fs_set_data_blkaddr(struct dnode_of_data *dn) 1059 { 1060 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true); 1061 __set_data_blkaddr(dn); 1062 if (set_page_dirty(dn->node_page)) 1063 dn->node_changed = true; 1064 } 1065 1066 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) 1067 { 1068 dn->data_blkaddr = blkaddr; 1069 f2fs_set_data_blkaddr(dn); 1070 f2fs_update_extent_cache(dn); 1071 } 1072 1073 /* dn->ofs_in_node will be returned with up-to-date last block pointer */ 1074 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count) 1075 { 1076 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1077 int err; 1078 1079 if (!count) 1080 return 0; 1081 1082 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1083 return -EPERM; 1084 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count)))) 1085 return err; 1086 1087 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid, 1088 dn->ofs_in_node, count); 1089 1090 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true); 1091 1092 for (; count > 0; dn->ofs_in_node++) { 1093 block_t blkaddr = f2fs_data_blkaddr(dn); 1094 1095 if (blkaddr == NULL_ADDR) { 1096 dn->data_blkaddr = NEW_ADDR; 1097 __set_data_blkaddr(dn); 1098 count--; 1099 } 1100 } 1101 1102 if (set_page_dirty(dn->node_page)) 1103 dn->node_changed = true; 1104 return 0; 1105 } 1106 1107 /* Should keep dn->ofs_in_node unchanged */ 1108 int f2fs_reserve_new_block(struct dnode_of_data *dn) 1109 { 1110 unsigned int ofs_in_node = dn->ofs_in_node; 1111 int ret; 1112 1113 ret = f2fs_reserve_new_blocks(dn, 1); 1114 dn->ofs_in_node = ofs_in_node; 1115 return ret; 1116 } 1117 1118 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index) 1119 { 1120 bool need_put = dn->inode_page ? false : true; 1121 int err; 1122 1123 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE); 1124 if (err) 1125 return err; 1126 1127 if (dn->data_blkaddr == NULL_ADDR) 1128 err = f2fs_reserve_new_block(dn); 1129 if (err || need_put) 1130 f2fs_put_dnode(dn); 1131 return err; 1132 } 1133 1134 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index) 1135 { 1136 struct extent_info ei = {0, }; 1137 struct inode *inode = dn->inode; 1138 1139 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 1140 dn->data_blkaddr = ei.blk + index - ei.fofs; 1141 return 0; 1142 } 1143 1144 return f2fs_reserve_block(dn, index); 1145 } 1146 1147 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index, 1148 int op_flags, bool for_write) 1149 { 1150 struct address_space *mapping = inode->i_mapping; 1151 struct dnode_of_data dn; 1152 struct page *page; 1153 struct extent_info ei = {0, }; 1154 int err; 1155 1156 page = f2fs_grab_cache_page(mapping, index, for_write); 1157 if (!page) 1158 return ERR_PTR(-ENOMEM); 1159 1160 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 1161 dn.data_blkaddr = ei.blk + index - ei.fofs; 1162 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr, 1163 DATA_GENERIC_ENHANCE_READ)) { 1164 err = -EFSCORRUPTED; 1165 goto put_err; 1166 } 1167 goto got_it; 1168 } 1169 1170 set_new_dnode(&dn, inode, NULL, NULL, 0); 1171 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 1172 if (err) 1173 goto put_err; 1174 f2fs_put_dnode(&dn); 1175 1176 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { 1177 err = -ENOENT; 1178 goto put_err; 1179 } 1180 if (dn.data_blkaddr != NEW_ADDR && 1181 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode), 1182 dn.data_blkaddr, 1183 DATA_GENERIC_ENHANCE)) { 1184 err = -EFSCORRUPTED; 1185 goto put_err; 1186 } 1187 got_it: 1188 if (PageUptodate(page)) { 1189 unlock_page(page); 1190 return page; 1191 } 1192 1193 /* 1194 * A new dentry page is allocated but not able to be written, since its 1195 * new inode page couldn't be allocated due to -ENOSPC. 1196 * In such the case, its blkaddr can be remained as NEW_ADDR. 1197 * see, f2fs_add_link -> f2fs_get_new_data_page -> 1198 * f2fs_init_inode_metadata. 1199 */ 1200 if (dn.data_blkaddr == NEW_ADDR) { 1201 zero_user_segment(page, 0, PAGE_SIZE); 1202 if (!PageUptodate(page)) 1203 SetPageUptodate(page); 1204 unlock_page(page); 1205 return page; 1206 } 1207 1208 err = f2fs_submit_page_read(inode, page, dn.data_blkaddr, 1209 op_flags, for_write); 1210 if (err) 1211 goto put_err; 1212 return page; 1213 1214 put_err: 1215 f2fs_put_page(page, 1); 1216 return ERR_PTR(err); 1217 } 1218 1219 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index) 1220 { 1221 struct address_space *mapping = inode->i_mapping; 1222 struct page *page; 1223 1224 page = find_get_page(mapping, index); 1225 if (page && PageUptodate(page)) 1226 return page; 1227 f2fs_put_page(page, 0); 1228 1229 page = f2fs_get_read_data_page(inode, index, 0, false); 1230 if (IS_ERR(page)) 1231 return page; 1232 1233 if (PageUptodate(page)) 1234 return page; 1235 1236 wait_on_page_locked(page); 1237 if (unlikely(!PageUptodate(page))) { 1238 f2fs_put_page(page, 0); 1239 return ERR_PTR(-EIO); 1240 } 1241 return page; 1242 } 1243 1244 /* 1245 * If it tries to access a hole, return an error. 1246 * Because, the callers, functions in dir.c and GC, should be able to know 1247 * whether this page exists or not. 1248 */ 1249 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index, 1250 bool for_write) 1251 { 1252 struct address_space *mapping = inode->i_mapping; 1253 struct page *page; 1254 repeat: 1255 page = f2fs_get_read_data_page(inode, index, 0, for_write); 1256 if (IS_ERR(page)) 1257 return page; 1258 1259 /* wait for read completion */ 1260 lock_page(page); 1261 if (unlikely(page->mapping != mapping)) { 1262 f2fs_put_page(page, 1); 1263 goto repeat; 1264 } 1265 if (unlikely(!PageUptodate(page))) { 1266 f2fs_put_page(page, 1); 1267 return ERR_PTR(-EIO); 1268 } 1269 return page; 1270 } 1271 1272 /* 1273 * Caller ensures that this data page is never allocated. 1274 * A new zero-filled data page is allocated in the page cache. 1275 * 1276 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and 1277 * f2fs_unlock_op(). 1278 * Note that, ipage is set only by make_empty_dir, and if any error occur, 1279 * ipage should be released by this function. 1280 */ 1281 struct page *f2fs_get_new_data_page(struct inode *inode, 1282 struct page *ipage, pgoff_t index, bool new_i_size) 1283 { 1284 struct address_space *mapping = inode->i_mapping; 1285 struct page *page; 1286 struct dnode_of_data dn; 1287 int err; 1288 1289 page = f2fs_grab_cache_page(mapping, index, true); 1290 if (!page) { 1291 /* 1292 * before exiting, we should make sure ipage will be released 1293 * if any error occur. 1294 */ 1295 f2fs_put_page(ipage, 1); 1296 return ERR_PTR(-ENOMEM); 1297 } 1298 1299 set_new_dnode(&dn, inode, ipage, NULL, 0); 1300 err = f2fs_reserve_block(&dn, index); 1301 if (err) { 1302 f2fs_put_page(page, 1); 1303 return ERR_PTR(err); 1304 } 1305 if (!ipage) 1306 f2fs_put_dnode(&dn); 1307 1308 if (PageUptodate(page)) 1309 goto got_it; 1310 1311 if (dn.data_blkaddr == NEW_ADDR) { 1312 zero_user_segment(page, 0, PAGE_SIZE); 1313 if (!PageUptodate(page)) 1314 SetPageUptodate(page); 1315 } else { 1316 f2fs_put_page(page, 1); 1317 1318 /* if ipage exists, blkaddr should be NEW_ADDR */ 1319 f2fs_bug_on(F2FS_I_SB(inode), ipage); 1320 page = f2fs_get_lock_data_page(inode, index, true); 1321 if (IS_ERR(page)) 1322 return page; 1323 } 1324 got_it: 1325 if (new_i_size && i_size_read(inode) < 1326 ((loff_t)(index + 1) << PAGE_SHIFT)) 1327 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT)); 1328 return page; 1329 } 1330 1331 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type) 1332 { 1333 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1334 struct f2fs_summary sum; 1335 struct node_info ni; 1336 block_t old_blkaddr; 1337 blkcnt_t count = 1; 1338 int err; 1339 1340 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1341 return -EPERM; 1342 1343 err = f2fs_get_node_info(sbi, dn->nid, &ni, false); 1344 if (err) 1345 return err; 1346 1347 dn->data_blkaddr = f2fs_data_blkaddr(dn); 1348 if (dn->data_blkaddr != NULL_ADDR) 1349 goto alloc; 1350 1351 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count)))) 1352 return err; 1353 1354 alloc: 1355 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 1356 old_blkaddr = dn->data_blkaddr; 1357 f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr, 1358 &sum, seg_type, NULL); 1359 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) { 1360 invalidate_mapping_pages(META_MAPPING(sbi), 1361 old_blkaddr, old_blkaddr); 1362 f2fs_invalidate_compress_page(sbi, old_blkaddr); 1363 } 1364 f2fs_update_data_blkaddr(dn, dn->data_blkaddr); 1365 return 0; 1366 } 1367 1368 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock) 1369 { 1370 if (flag == F2FS_GET_BLOCK_PRE_AIO) { 1371 if (lock) 1372 f2fs_down_read(&sbi->node_change); 1373 else 1374 f2fs_up_read(&sbi->node_change); 1375 } else { 1376 if (lock) 1377 f2fs_lock_op(sbi); 1378 else 1379 f2fs_unlock_op(sbi); 1380 } 1381 } 1382 1383 /* 1384 * f2fs_map_blocks() tries to find or build mapping relationship which 1385 * maps continuous logical blocks to physical blocks, and return such 1386 * info via f2fs_map_blocks structure. 1387 */ 1388 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 1389 int create, int flag) 1390 { 1391 unsigned int maxblocks = map->m_len; 1392 struct dnode_of_data dn; 1393 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1394 int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE; 1395 pgoff_t pgofs, end_offset, end; 1396 int err = 0, ofs = 1; 1397 unsigned int ofs_in_node, last_ofs_in_node; 1398 blkcnt_t prealloc; 1399 struct extent_info ei = {0, }; 1400 block_t blkaddr; 1401 unsigned int start_pgofs; 1402 int bidx = 0; 1403 1404 if (!maxblocks) 1405 return 0; 1406 1407 map->m_bdev = inode->i_sb->s_bdev; 1408 map->m_multidev_dio = 1409 f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag); 1410 1411 map->m_len = 0; 1412 map->m_flags = 0; 1413 1414 /* it only supports block size == page size */ 1415 pgofs = (pgoff_t)map->m_lblk; 1416 end = pgofs + maxblocks; 1417 1418 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) { 1419 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO && 1420 map->m_may_create) 1421 goto next_dnode; 1422 1423 map->m_pblk = ei.blk + pgofs - ei.fofs; 1424 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs); 1425 map->m_flags = F2FS_MAP_MAPPED; 1426 if (map->m_next_extent) 1427 *map->m_next_extent = pgofs + map->m_len; 1428 1429 /* for hardware encryption, but to avoid potential issue in future */ 1430 if (flag == F2FS_GET_BLOCK_DIO) 1431 f2fs_wait_on_block_writeback_range(inode, 1432 map->m_pblk, map->m_len); 1433 1434 if (map->m_multidev_dio) { 1435 block_t blk_addr = map->m_pblk; 1436 1437 bidx = f2fs_target_device_index(sbi, map->m_pblk); 1438 1439 map->m_bdev = FDEV(bidx).bdev; 1440 map->m_pblk -= FDEV(bidx).start_blk; 1441 map->m_len = min(map->m_len, 1442 FDEV(bidx).end_blk + 1 - map->m_pblk); 1443 1444 if (map->m_may_create) 1445 f2fs_update_device_state(sbi, inode->i_ino, 1446 blk_addr, map->m_len); 1447 } 1448 goto out; 1449 } 1450 1451 next_dnode: 1452 if (map->m_may_create) 1453 f2fs_do_map_lock(sbi, flag, true); 1454 1455 /* When reading holes, we need its node page */ 1456 set_new_dnode(&dn, inode, NULL, NULL, 0); 1457 err = f2fs_get_dnode_of_data(&dn, pgofs, mode); 1458 if (err) { 1459 if (flag == F2FS_GET_BLOCK_BMAP) 1460 map->m_pblk = 0; 1461 1462 if (err == -ENOENT) { 1463 /* 1464 * There is one exceptional case that read_node_page() 1465 * may return -ENOENT due to filesystem has been 1466 * shutdown or cp_error, so force to convert error 1467 * number to EIO for such case. 1468 */ 1469 if (map->m_may_create && 1470 (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || 1471 f2fs_cp_error(sbi))) { 1472 err = -EIO; 1473 goto unlock_out; 1474 } 1475 1476 err = 0; 1477 if (map->m_next_pgofs) 1478 *map->m_next_pgofs = 1479 f2fs_get_next_page_offset(&dn, pgofs); 1480 if (map->m_next_extent) 1481 *map->m_next_extent = 1482 f2fs_get_next_page_offset(&dn, pgofs); 1483 } 1484 goto unlock_out; 1485 } 1486 1487 start_pgofs = pgofs; 1488 prealloc = 0; 1489 last_ofs_in_node = ofs_in_node = dn.ofs_in_node; 1490 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1491 1492 next_block: 1493 blkaddr = f2fs_data_blkaddr(&dn); 1494 1495 if (__is_valid_data_blkaddr(blkaddr) && 1496 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) { 1497 err = -EFSCORRUPTED; 1498 goto sync_out; 1499 } 1500 1501 if (__is_valid_data_blkaddr(blkaddr)) { 1502 /* use out-place-update for driect IO under LFS mode */ 1503 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO && 1504 map->m_may_create) { 1505 err = __allocate_data_block(&dn, map->m_seg_type); 1506 if (err) 1507 goto sync_out; 1508 blkaddr = dn.data_blkaddr; 1509 set_inode_flag(inode, FI_APPEND_WRITE); 1510 } 1511 } else { 1512 if (create) { 1513 if (unlikely(f2fs_cp_error(sbi))) { 1514 err = -EIO; 1515 goto sync_out; 1516 } 1517 if (flag == F2FS_GET_BLOCK_PRE_AIO) { 1518 if (blkaddr == NULL_ADDR) { 1519 prealloc++; 1520 last_ofs_in_node = dn.ofs_in_node; 1521 } 1522 } else { 1523 WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO && 1524 flag != F2FS_GET_BLOCK_DIO); 1525 err = __allocate_data_block(&dn, 1526 map->m_seg_type); 1527 if (!err) { 1528 if (flag == F2FS_GET_BLOCK_PRE_DIO) 1529 file_need_truncate(inode); 1530 set_inode_flag(inode, FI_APPEND_WRITE); 1531 } 1532 } 1533 if (err) 1534 goto sync_out; 1535 map->m_flags |= F2FS_MAP_NEW; 1536 blkaddr = dn.data_blkaddr; 1537 } else { 1538 if (f2fs_compressed_file(inode) && 1539 f2fs_sanity_check_cluster(&dn) && 1540 (flag != F2FS_GET_BLOCK_FIEMAP || 1541 IS_ENABLED(CONFIG_F2FS_CHECK_FS))) { 1542 err = -EFSCORRUPTED; 1543 goto sync_out; 1544 } 1545 if (flag == F2FS_GET_BLOCK_BMAP) { 1546 map->m_pblk = 0; 1547 goto sync_out; 1548 } 1549 if (flag == F2FS_GET_BLOCK_PRECACHE) 1550 goto sync_out; 1551 if (flag == F2FS_GET_BLOCK_FIEMAP && 1552 blkaddr == NULL_ADDR) { 1553 if (map->m_next_pgofs) 1554 *map->m_next_pgofs = pgofs + 1; 1555 goto sync_out; 1556 } 1557 if (flag != F2FS_GET_BLOCK_FIEMAP) { 1558 /* for defragment case */ 1559 if (map->m_next_pgofs) 1560 *map->m_next_pgofs = pgofs + 1; 1561 goto sync_out; 1562 } 1563 } 1564 } 1565 1566 if (flag == F2FS_GET_BLOCK_PRE_AIO) 1567 goto skip; 1568 1569 if (map->m_multidev_dio) 1570 bidx = f2fs_target_device_index(sbi, blkaddr); 1571 1572 if (map->m_len == 0) { 1573 /* preallocated unwritten block should be mapped for fiemap. */ 1574 if (blkaddr == NEW_ADDR) 1575 map->m_flags |= F2FS_MAP_UNWRITTEN; 1576 map->m_flags |= F2FS_MAP_MAPPED; 1577 1578 map->m_pblk = blkaddr; 1579 map->m_len = 1; 1580 1581 if (map->m_multidev_dio) 1582 map->m_bdev = FDEV(bidx).bdev; 1583 } else if ((map->m_pblk != NEW_ADDR && 1584 blkaddr == (map->m_pblk + ofs)) || 1585 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) || 1586 flag == F2FS_GET_BLOCK_PRE_DIO) { 1587 if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev) 1588 goto sync_out; 1589 ofs++; 1590 map->m_len++; 1591 } else { 1592 goto sync_out; 1593 } 1594 1595 skip: 1596 dn.ofs_in_node++; 1597 pgofs++; 1598 1599 /* preallocate blocks in batch for one dnode page */ 1600 if (flag == F2FS_GET_BLOCK_PRE_AIO && 1601 (pgofs == end || dn.ofs_in_node == end_offset)) { 1602 1603 dn.ofs_in_node = ofs_in_node; 1604 err = f2fs_reserve_new_blocks(&dn, prealloc); 1605 if (err) 1606 goto sync_out; 1607 1608 map->m_len += dn.ofs_in_node - ofs_in_node; 1609 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) { 1610 err = -ENOSPC; 1611 goto sync_out; 1612 } 1613 dn.ofs_in_node = end_offset; 1614 } 1615 1616 if (pgofs >= end) 1617 goto sync_out; 1618 else if (dn.ofs_in_node < end_offset) 1619 goto next_block; 1620 1621 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1622 if (map->m_flags & F2FS_MAP_MAPPED) { 1623 unsigned int ofs = start_pgofs - map->m_lblk; 1624 1625 f2fs_update_extent_cache_range(&dn, 1626 start_pgofs, map->m_pblk + ofs, 1627 map->m_len - ofs); 1628 } 1629 } 1630 1631 f2fs_put_dnode(&dn); 1632 1633 if (map->m_may_create) { 1634 f2fs_do_map_lock(sbi, flag, false); 1635 f2fs_balance_fs(sbi, dn.node_changed); 1636 } 1637 goto next_dnode; 1638 1639 sync_out: 1640 1641 if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) { 1642 /* 1643 * for hardware encryption, but to avoid potential issue 1644 * in future 1645 */ 1646 f2fs_wait_on_block_writeback_range(inode, 1647 map->m_pblk, map->m_len); 1648 invalidate_mapping_pages(META_MAPPING(sbi), 1649 map->m_pblk, map->m_pblk); 1650 1651 if (map->m_multidev_dio) { 1652 block_t blk_addr = map->m_pblk; 1653 1654 bidx = f2fs_target_device_index(sbi, map->m_pblk); 1655 1656 map->m_bdev = FDEV(bidx).bdev; 1657 map->m_pblk -= FDEV(bidx).start_blk; 1658 1659 if (map->m_may_create) 1660 f2fs_update_device_state(sbi, inode->i_ino, 1661 blk_addr, map->m_len); 1662 1663 f2fs_bug_on(sbi, blk_addr + map->m_len > 1664 FDEV(bidx).end_blk + 1); 1665 } 1666 } 1667 1668 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1669 if (map->m_flags & F2FS_MAP_MAPPED) { 1670 unsigned int ofs = start_pgofs - map->m_lblk; 1671 1672 f2fs_update_extent_cache_range(&dn, 1673 start_pgofs, map->m_pblk + ofs, 1674 map->m_len - ofs); 1675 } 1676 if (map->m_next_extent) 1677 *map->m_next_extent = pgofs + 1; 1678 } 1679 f2fs_put_dnode(&dn); 1680 unlock_out: 1681 if (map->m_may_create) { 1682 f2fs_do_map_lock(sbi, flag, false); 1683 f2fs_balance_fs(sbi, dn.node_changed); 1684 } 1685 out: 1686 trace_f2fs_map_blocks(inode, map, create, flag, err); 1687 return err; 1688 } 1689 1690 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len) 1691 { 1692 struct f2fs_map_blocks map; 1693 block_t last_lblk; 1694 int err; 1695 1696 if (pos + len > i_size_read(inode)) 1697 return false; 1698 1699 map.m_lblk = F2FS_BYTES_TO_BLK(pos); 1700 map.m_next_pgofs = NULL; 1701 map.m_next_extent = NULL; 1702 map.m_seg_type = NO_CHECK_TYPE; 1703 map.m_may_create = false; 1704 last_lblk = F2FS_BLK_ALIGN(pos + len); 1705 1706 while (map.m_lblk < last_lblk) { 1707 map.m_len = last_lblk - map.m_lblk; 1708 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT); 1709 if (err || map.m_len == 0) 1710 return false; 1711 map.m_lblk += map.m_len; 1712 } 1713 return true; 1714 } 1715 1716 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes) 1717 { 1718 return (bytes >> inode->i_blkbits); 1719 } 1720 1721 static inline u64 blks_to_bytes(struct inode *inode, u64 blks) 1722 { 1723 return (blks << inode->i_blkbits); 1724 } 1725 1726 static int f2fs_xattr_fiemap(struct inode *inode, 1727 struct fiemap_extent_info *fieinfo) 1728 { 1729 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1730 struct page *page; 1731 struct node_info ni; 1732 __u64 phys = 0, len; 1733 __u32 flags; 1734 nid_t xnid = F2FS_I(inode)->i_xattr_nid; 1735 int err = 0; 1736 1737 if (f2fs_has_inline_xattr(inode)) { 1738 int offset; 1739 1740 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), 1741 inode->i_ino, false); 1742 if (!page) 1743 return -ENOMEM; 1744 1745 err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false); 1746 if (err) { 1747 f2fs_put_page(page, 1); 1748 return err; 1749 } 1750 1751 phys = blks_to_bytes(inode, ni.blk_addr); 1752 offset = offsetof(struct f2fs_inode, i_addr) + 1753 sizeof(__le32) * (DEF_ADDRS_PER_INODE - 1754 get_inline_xattr_addrs(inode)); 1755 1756 phys += offset; 1757 len = inline_xattr_size(inode); 1758 1759 f2fs_put_page(page, 1); 1760 1761 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED; 1762 1763 if (!xnid) 1764 flags |= FIEMAP_EXTENT_LAST; 1765 1766 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1767 trace_f2fs_fiemap(inode, 0, phys, len, flags, err); 1768 if (err || err == 1) 1769 return err; 1770 } 1771 1772 if (xnid) { 1773 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false); 1774 if (!page) 1775 return -ENOMEM; 1776 1777 err = f2fs_get_node_info(sbi, xnid, &ni, false); 1778 if (err) { 1779 f2fs_put_page(page, 1); 1780 return err; 1781 } 1782 1783 phys = blks_to_bytes(inode, ni.blk_addr); 1784 len = inode->i_sb->s_blocksize; 1785 1786 f2fs_put_page(page, 1); 1787 1788 flags = FIEMAP_EXTENT_LAST; 1789 } 1790 1791 if (phys) { 1792 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1793 trace_f2fs_fiemap(inode, 0, phys, len, flags, err); 1794 } 1795 1796 return (err < 0 ? err : 0); 1797 } 1798 1799 static loff_t max_inode_blocks(struct inode *inode) 1800 { 1801 loff_t result = ADDRS_PER_INODE(inode); 1802 loff_t leaf_count = ADDRS_PER_BLOCK(inode); 1803 1804 /* two direct node blocks */ 1805 result += (leaf_count * 2); 1806 1807 /* two indirect node blocks */ 1808 leaf_count *= NIDS_PER_BLOCK; 1809 result += (leaf_count * 2); 1810 1811 /* one double indirect node block */ 1812 leaf_count *= NIDS_PER_BLOCK; 1813 result += leaf_count; 1814 1815 return result; 1816 } 1817 1818 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 1819 u64 start, u64 len) 1820 { 1821 struct f2fs_map_blocks map; 1822 sector_t start_blk, last_blk; 1823 pgoff_t next_pgofs; 1824 u64 logical = 0, phys = 0, size = 0; 1825 u32 flags = 0; 1826 int ret = 0; 1827 bool compr_cluster = false, compr_appended; 1828 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size; 1829 unsigned int count_in_cluster = 0; 1830 loff_t maxbytes; 1831 1832 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) { 1833 ret = f2fs_precache_extents(inode); 1834 if (ret) 1835 return ret; 1836 } 1837 1838 ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR); 1839 if (ret) 1840 return ret; 1841 1842 inode_lock(inode); 1843 1844 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS; 1845 if (start > maxbytes) { 1846 ret = -EFBIG; 1847 goto out; 1848 } 1849 1850 if (len > maxbytes || (maxbytes - len) < start) 1851 len = maxbytes - start; 1852 1853 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 1854 ret = f2fs_xattr_fiemap(inode, fieinfo); 1855 goto out; 1856 } 1857 1858 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) { 1859 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len); 1860 if (ret != -EAGAIN) 1861 goto out; 1862 } 1863 1864 if (bytes_to_blks(inode, len) == 0) 1865 len = blks_to_bytes(inode, 1); 1866 1867 start_blk = bytes_to_blks(inode, start); 1868 last_blk = bytes_to_blks(inode, start + len - 1); 1869 1870 next: 1871 memset(&map, 0, sizeof(map)); 1872 map.m_lblk = start_blk; 1873 map.m_len = bytes_to_blks(inode, len); 1874 map.m_next_pgofs = &next_pgofs; 1875 map.m_seg_type = NO_CHECK_TYPE; 1876 1877 if (compr_cluster) { 1878 map.m_lblk += 1; 1879 map.m_len = cluster_size - count_in_cluster; 1880 } 1881 1882 ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP); 1883 if (ret) 1884 goto out; 1885 1886 /* HOLE */ 1887 if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) { 1888 start_blk = next_pgofs; 1889 1890 if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode, 1891 max_inode_blocks(inode))) 1892 goto prep_next; 1893 1894 flags |= FIEMAP_EXTENT_LAST; 1895 } 1896 1897 compr_appended = false; 1898 /* In a case of compressed cluster, append this to the last extent */ 1899 if (compr_cluster && ((map.m_flags & F2FS_MAP_UNWRITTEN) || 1900 !(map.m_flags & F2FS_MAP_FLAGS))) { 1901 compr_appended = true; 1902 goto skip_fill; 1903 } 1904 1905 if (size) { 1906 flags |= FIEMAP_EXTENT_MERGED; 1907 if (IS_ENCRYPTED(inode)) 1908 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED; 1909 1910 ret = fiemap_fill_next_extent(fieinfo, logical, 1911 phys, size, flags); 1912 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret); 1913 if (ret) 1914 goto out; 1915 size = 0; 1916 } 1917 1918 if (start_blk > last_blk) 1919 goto out; 1920 1921 skip_fill: 1922 if (map.m_pblk == COMPRESS_ADDR) { 1923 compr_cluster = true; 1924 count_in_cluster = 1; 1925 } else if (compr_appended) { 1926 unsigned int appended_blks = cluster_size - 1927 count_in_cluster + 1; 1928 size += blks_to_bytes(inode, appended_blks); 1929 start_blk += appended_blks; 1930 compr_cluster = false; 1931 } else { 1932 logical = blks_to_bytes(inode, start_blk); 1933 phys = __is_valid_data_blkaddr(map.m_pblk) ? 1934 blks_to_bytes(inode, map.m_pblk) : 0; 1935 size = blks_to_bytes(inode, map.m_len); 1936 flags = 0; 1937 1938 if (compr_cluster) { 1939 flags = FIEMAP_EXTENT_ENCODED; 1940 count_in_cluster += map.m_len; 1941 if (count_in_cluster == cluster_size) { 1942 compr_cluster = false; 1943 size += blks_to_bytes(inode, 1); 1944 } 1945 } else if (map.m_flags & F2FS_MAP_UNWRITTEN) { 1946 flags = FIEMAP_EXTENT_UNWRITTEN; 1947 } 1948 1949 start_blk += bytes_to_blks(inode, size); 1950 } 1951 1952 prep_next: 1953 cond_resched(); 1954 if (fatal_signal_pending(current)) 1955 ret = -EINTR; 1956 else 1957 goto next; 1958 out: 1959 if (ret == 1) 1960 ret = 0; 1961 1962 inode_unlock(inode); 1963 return ret; 1964 } 1965 1966 static inline loff_t f2fs_readpage_limit(struct inode *inode) 1967 { 1968 if (IS_ENABLED(CONFIG_FS_VERITY) && 1969 (IS_VERITY(inode) || f2fs_verity_in_progress(inode))) 1970 return inode->i_sb->s_maxbytes; 1971 1972 return i_size_read(inode); 1973 } 1974 1975 static int f2fs_read_single_page(struct inode *inode, struct page *page, 1976 unsigned nr_pages, 1977 struct f2fs_map_blocks *map, 1978 struct bio **bio_ret, 1979 sector_t *last_block_in_bio, 1980 bool is_readahead) 1981 { 1982 struct bio *bio = *bio_ret; 1983 const unsigned blocksize = blks_to_bytes(inode, 1); 1984 sector_t block_in_file; 1985 sector_t last_block; 1986 sector_t last_block_in_file; 1987 sector_t block_nr; 1988 int ret = 0; 1989 1990 block_in_file = (sector_t)page_index(page); 1991 last_block = block_in_file + nr_pages; 1992 last_block_in_file = bytes_to_blks(inode, 1993 f2fs_readpage_limit(inode) + blocksize - 1); 1994 if (last_block > last_block_in_file) 1995 last_block = last_block_in_file; 1996 1997 /* just zeroing out page which is beyond EOF */ 1998 if (block_in_file >= last_block) 1999 goto zero_out; 2000 /* 2001 * Map blocks using the previous result first. 2002 */ 2003 if ((map->m_flags & F2FS_MAP_MAPPED) && 2004 block_in_file > map->m_lblk && 2005 block_in_file < (map->m_lblk + map->m_len)) 2006 goto got_it; 2007 2008 /* 2009 * Then do more f2fs_map_blocks() calls until we are 2010 * done with this page. 2011 */ 2012 map->m_lblk = block_in_file; 2013 map->m_len = last_block - block_in_file; 2014 2015 ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT); 2016 if (ret) 2017 goto out; 2018 got_it: 2019 if ((map->m_flags & F2FS_MAP_MAPPED)) { 2020 block_nr = map->m_pblk + block_in_file - map->m_lblk; 2021 SetPageMappedToDisk(page); 2022 2023 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr, 2024 DATA_GENERIC_ENHANCE_READ)) { 2025 ret = -EFSCORRUPTED; 2026 goto out; 2027 } 2028 } else { 2029 zero_out: 2030 zero_user_segment(page, 0, PAGE_SIZE); 2031 if (f2fs_need_verity(inode, page->index) && 2032 !fsverity_verify_page(page)) { 2033 ret = -EIO; 2034 goto out; 2035 } 2036 if (!PageUptodate(page)) 2037 SetPageUptodate(page); 2038 unlock_page(page); 2039 goto out; 2040 } 2041 2042 /* 2043 * This page will go to BIO. Do we need to send this 2044 * BIO off first? 2045 */ 2046 if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio, 2047 *last_block_in_bio, block_nr) || 2048 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) { 2049 submit_and_realloc: 2050 __submit_bio(F2FS_I_SB(inode), bio, DATA); 2051 bio = NULL; 2052 } 2053 if (bio == NULL) { 2054 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages, 2055 is_readahead ? REQ_RAHEAD : 0, page->index, 2056 false); 2057 if (IS_ERR(bio)) { 2058 ret = PTR_ERR(bio); 2059 bio = NULL; 2060 goto out; 2061 } 2062 } 2063 2064 /* 2065 * If the page is under writeback, we need to wait for 2066 * its completion to see the correct decrypted data. 2067 */ 2068 f2fs_wait_on_block_writeback(inode, block_nr); 2069 2070 if (bio_add_page(bio, page, blocksize, 0) < blocksize) 2071 goto submit_and_realloc; 2072 2073 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA); 2074 f2fs_update_iostat(F2FS_I_SB(inode), FS_DATA_READ_IO, F2FS_BLKSIZE); 2075 ClearPageError(page); 2076 *last_block_in_bio = block_nr; 2077 goto out; 2078 out: 2079 *bio_ret = bio; 2080 return ret; 2081 } 2082 2083 #ifdef CONFIG_F2FS_FS_COMPRESSION 2084 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret, 2085 unsigned nr_pages, sector_t *last_block_in_bio, 2086 bool is_readahead, bool for_write) 2087 { 2088 struct dnode_of_data dn; 2089 struct inode *inode = cc->inode; 2090 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2091 struct bio *bio = *bio_ret; 2092 unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size; 2093 sector_t last_block_in_file; 2094 const unsigned blocksize = blks_to_bytes(inode, 1); 2095 struct decompress_io_ctx *dic = NULL; 2096 struct extent_info ei = {0, }; 2097 bool from_dnode = true; 2098 int i; 2099 int ret = 0; 2100 2101 f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc)); 2102 2103 last_block_in_file = bytes_to_blks(inode, 2104 f2fs_readpage_limit(inode) + blocksize - 1); 2105 2106 /* get rid of pages beyond EOF */ 2107 for (i = 0; i < cc->cluster_size; i++) { 2108 struct page *page = cc->rpages[i]; 2109 2110 if (!page) 2111 continue; 2112 if ((sector_t)page->index >= last_block_in_file) { 2113 zero_user_segment(page, 0, PAGE_SIZE); 2114 if (!PageUptodate(page)) 2115 SetPageUptodate(page); 2116 } else if (!PageUptodate(page)) { 2117 continue; 2118 } 2119 unlock_page(page); 2120 if (for_write) 2121 put_page(page); 2122 cc->rpages[i] = NULL; 2123 cc->nr_rpages--; 2124 } 2125 2126 /* we are done since all pages are beyond EOF */ 2127 if (f2fs_cluster_is_empty(cc)) 2128 goto out; 2129 2130 if (f2fs_lookup_extent_cache(inode, start_idx, &ei)) 2131 from_dnode = false; 2132 2133 if (!from_dnode) 2134 goto skip_reading_dnode; 2135 2136 set_new_dnode(&dn, inode, NULL, NULL, 0); 2137 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 2138 if (ret) 2139 goto out; 2140 2141 f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR); 2142 2143 skip_reading_dnode: 2144 for (i = 1; i < cc->cluster_size; i++) { 2145 block_t blkaddr; 2146 2147 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page, 2148 dn.ofs_in_node + i) : 2149 ei.blk + i - 1; 2150 2151 if (!__is_valid_data_blkaddr(blkaddr)) 2152 break; 2153 2154 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) { 2155 ret = -EFAULT; 2156 goto out_put_dnode; 2157 } 2158 cc->nr_cpages++; 2159 2160 if (!from_dnode && i >= ei.c_len) 2161 break; 2162 } 2163 2164 /* nothing to decompress */ 2165 if (cc->nr_cpages == 0) { 2166 ret = 0; 2167 goto out_put_dnode; 2168 } 2169 2170 dic = f2fs_alloc_dic(cc); 2171 if (IS_ERR(dic)) { 2172 ret = PTR_ERR(dic); 2173 goto out_put_dnode; 2174 } 2175 2176 for (i = 0; i < cc->nr_cpages; i++) { 2177 struct page *page = dic->cpages[i]; 2178 block_t blkaddr; 2179 struct bio_post_read_ctx *ctx; 2180 2181 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page, 2182 dn.ofs_in_node + i + 1) : 2183 ei.blk + i; 2184 2185 f2fs_wait_on_block_writeback(inode, blkaddr); 2186 2187 if (f2fs_load_compressed_page(sbi, page, blkaddr)) { 2188 if (atomic_dec_and_test(&dic->remaining_pages)) 2189 f2fs_decompress_cluster(dic); 2190 continue; 2191 } 2192 2193 if (bio && (!page_is_mergeable(sbi, bio, 2194 *last_block_in_bio, blkaddr) || 2195 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) { 2196 submit_and_realloc: 2197 __submit_bio(sbi, bio, DATA); 2198 bio = NULL; 2199 } 2200 2201 if (!bio) { 2202 bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages, 2203 is_readahead ? REQ_RAHEAD : 0, 2204 page->index, for_write); 2205 if (IS_ERR(bio)) { 2206 ret = PTR_ERR(bio); 2207 f2fs_decompress_end_io(dic, ret); 2208 f2fs_put_dnode(&dn); 2209 *bio_ret = NULL; 2210 return ret; 2211 } 2212 } 2213 2214 if (bio_add_page(bio, page, blocksize, 0) < blocksize) 2215 goto submit_and_realloc; 2216 2217 ctx = get_post_read_ctx(bio); 2218 ctx->enabled_steps |= STEP_DECOMPRESS; 2219 refcount_inc(&dic->refcnt); 2220 2221 inc_page_count(sbi, F2FS_RD_DATA); 2222 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE); 2223 f2fs_update_iostat(sbi, FS_CDATA_READ_IO, F2FS_BLKSIZE); 2224 ClearPageError(page); 2225 *last_block_in_bio = blkaddr; 2226 } 2227 2228 if (from_dnode) 2229 f2fs_put_dnode(&dn); 2230 2231 *bio_ret = bio; 2232 return 0; 2233 2234 out_put_dnode: 2235 if (from_dnode) 2236 f2fs_put_dnode(&dn); 2237 out: 2238 for (i = 0; i < cc->cluster_size; i++) { 2239 if (cc->rpages[i]) { 2240 ClearPageUptodate(cc->rpages[i]); 2241 ClearPageError(cc->rpages[i]); 2242 unlock_page(cc->rpages[i]); 2243 } 2244 } 2245 *bio_ret = bio; 2246 return ret; 2247 } 2248 #endif 2249 2250 /* 2251 * This function was originally taken from fs/mpage.c, and customized for f2fs. 2252 * Major change was from block_size == page_size in f2fs by default. 2253 */ 2254 static int f2fs_mpage_readpages(struct inode *inode, 2255 struct readahead_control *rac, struct page *page) 2256 { 2257 struct bio *bio = NULL; 2258 sector_t last_block_in_bio = 0; 2259 struct f2fs_map_blocks map; 2260 #ifdef CONFIG_F2FS_FS_COMPRESSION 2261 struct compress_ctx cc = { 2262 .inode = inode, 2263 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 2264 .cluster_size = F2FS_I(inode)->i_cluster_size, 2265 .cluster_idx = NULL_CLUSTER, 2266 .rpages = NULL, 2267 .cpages = NULL, 2268 .nr_rpages = 0, 2269 .nr_cpages = 0, 2270 }; 2271 pgoff_t nc_cluster_idx = NULL_CLUSTER; 2272 #endif 2273 unsigned nr_pages = rac ? readahead_count(rac) : 1; 2274 unsigned max_nr_pages = nr_pages; 2275 int ret = 0; 2276 2277 map.m_pblk = 0; 2278 map.m_lblk = 0; 2279 map.m_len = 0; 2280 map.m_flags = 0; 2281 map.m_next_pgofs = NULL; 2282 map.m_next_extent = NULL; 2283 map.m_seg_type = NO_CHECK_TYPE; 2284 map.m_may_create = false; 2285 2286 for (; nr_pages; nr_pages--) { 2287 if (rac) { 2288 page = readahead_page(rac); 2289 prefetchw(&page->flags); 2290 } 2291 2292 #ifdef CONFIG_F2FS_FS_COMPRESSION 2293 if (f2fs_compressed_file(inode)) { 2294 /* there are remained comressed pages, submit them */ 2295 if (!f2fs_cluster_can_merge_page(&cc, page->index)) { 2296 ret = f2fs_read_multi_pages(&cc, &bio, 2297 max_nr_pages, 2298 &last_block_in_bio, 2299 rac != NULL, false); 2300 f2fs_destroy_compress_ctx(&cc, false); 2301 if (ret) 2302 goto set_error_page; 2303 } 2304 if (cc.cluster_idx == NULL_CLUSTER) { 2305 if (nc_cluster_idx == 2306 page->index >> cc.log_cluster_size) { 2307 goto read_single_page; 2308 } 2309 2310 ret = f2fs_is_compressed_cluster(inode, page->index); 2311 if (ret < 0) 2312 goto set_error_page; 2313 else if (!ret) { 2314 nc_cluster_idx = 2315 page->index >> cc.log_cluster_size; 2316 goto read_single_page; 2317 } 2318 2319 nc_cluster_idx = NULL_CLUSTER; 2320 } 2321 ret = f2fs_init_compress_ctx(&cc); 2322 if (ret) 2323 goto set_error_page; 2324 2325 f2fs_compress_ctx_add_page(&cc, page); 2326 2327 goto next_page; 2328 } 2329 read_single_page: 2330 #endif 2331 2332 ret = f2fs_read_single_page(inode, page, max_nr_pages, &map, 2333 &bio, &last_block_in_bio, rac); 2334 if (ret) { 2335 #ifdef CONFIG_F2FS_FS_COMPRESSION 2336 set_error_page: 2337 #endif 2338 SetPageError(page); 2339 zero_user_segment(page, 0, PAGE_SIZE); 2340 unlock_page(page); 2341 } 2342 #ifdef CONFIG_F2FS_FS_COMPRESSION 2343 next_page: 2344 #endif 2345 if (rac) 2346 put_page(page); 2347 2348 #ifdef CONFIG_F2FS_FS_COMPRESSION 2349 if (f2fs_compressed_file(inode)) { 2350 /* last page */ 2351 if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) { 2352 ret = f2fs_read_multi_pages(&cc, &bio, 2353 max_nr_pages, 2354 &last_block_in_bio, 2355 rac != NULL, false); 2356 f2fs_destroy_compress_ctx(&cc, false); 2357 } 2358 } 2359 #endif 2360 } 2361 if (bio) 2362 __submit_bio(F2FS_I_SB(inode), bio, DATA); 2363 return ret; 2364 } 2365 2366 static int f2fs_read_data_page(struct file *file, struct page *page) 2367 { 2368 struct inode *inode = page_file_mapping(page)->host; 2369 int ret = -EAGAIN; 2370 2371 trace_f2fs_readpage(page, DATA); 2372 2373 if (!f2fs_is_compress_backend_ready(inode)) { 2374 unlock_page(page); 2375 return -EOPNOTSUPP; 2376 } 2377 2378 /* If the file has inline data, try to read it directly */ 2379 if (f2fs_has_inline_data(inode)) 2380 ret = f2fs_read_inline_data(inode, page); 2381 if (ret == -EAGAIN) 2382 ret = f2fs_mpage_readpages(inode, NULL, page); 2383 return ret; 2384 } 2385 2386 static void f2fs_readahead(struct readahead_control *rac) 2387 { 2388 struct inode *inode = rac->mapping->host; 2389 2390 trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac)); 2391 2392 if (!f2fs_is_compress_backend_ready(inode)) 2393 return; 2394 2395 /* If the file has inline data, skip readahead */ 2396 if (f2fs_has_inline_data(inode)) 2397 return; 2398 2399 f2fs_mpage_readpages(inode, rac, NULL); 2400 } 2401 2402 int f2fs_encrypt_one_page(struct f2fs_io_info *fio) 2403 { 2404 struct inode *inode = fio->page->mapping->host; 2405 struct page *mpage, *page; 2406 gfp_t gfp_flags = GFP_NOFS; 2407 2408 if (!f2fs_encrypted_file(inode)) 2409 return 0; 2410 2411 page = fio->compressed_page ? fio->compressed_page : fio->page; 2412 2413 /* wait for GCed page writeback via META_MAPPING */ 2414 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr); 2415 2416 if (fscrypt_inode_uses_inline_crypto(inode)) 2417 return 0; 2418 2419 retry_encrypt: 2420 fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page, 2421 PAGE_SIZE, 0, gfp_flags); 2422 if (IS_ERR(fio->encrypted_page)) { 2423 /* flush pending IOs and wait for a while in the ENOMEM case */ 2424 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) { 2425 f2fs_flush_merged_writes(fio->sbi); 2426 memalloc_retry_wait(GFP_NOFS); 2427 gfp_flags |= __GFP_NOFAIL; 2428 goto retry_encrypt; 2429 } 2430 return PTR_ERR(fio->encrypted_page); 2431 } 2432 2433 mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr); 2434 if (mpage) { 2435 if (PageUptodate(mpage)) 2436 memcpy(page_address(mpage), 2437 page_address(fio->encrypted_page), PAGE_SIZE); 2438 f2fs_put_page(mpage, 1); 2439 } 2440 return 0; 2441 } 2442 2443 static inline bool check_inplace_update_policy(struct inode *inode, 2444 struct f2fs_io_info *fio) 2445 { 2446 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2447 unsigned int policy = SM_I(sbi)->ipu_policy; 2448 2449 if (policy & (0x1 << F2FS_IPU_HONOR_OPU_WRITE) && 2450 is_inode_flag_set(inode, FI_OPU_WRITE)) 2451 return false; 2452 if (policy & (0x1 << F2FS_IPU_FORCE)) 2453 return true; 2454 if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi)) 2455 return true; 2456 if (policy & (0x1 << F2FS_IPU_UTIL) && 2457 utilization(sbi) > SM_I(sbi)->min_ipu_util) 2458 return true; 2459 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) && 2460 utilization(sbi) > SM_I(sbi)->min_ipu_util) 2461 return true; 2462 2463 /* 2464 * IPU for rewrite async pages 2465 */ 2466 if (policy & (0x1 << F2FS_IPU_ASYNC) && 2467 fio && fio->op == REQ_OP_WRITE && 2468 !(fio->op_flags & REQ_SYNC) && 2469 !IS_ENCRYPTED(inode)) 2470 return true; 2471 2472 /* this is only set during fdatasync */ 2473 if (policy & (0x1 << F2FS_IPU_FSYNC) && 2474 is_inode_flag_set(inode, FI_NEED_IPU)) 2475 return true; 2476 2477 if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 2478 !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) 2479 return true; 2480 2481 return false; 2482 } 2483 2484 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio) 2485 { 2486 /* swap file is migrating in aligned write mode */ 2487 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE)) 2488 return false; 2489 2490 if (f2fs_is_pinned_file(inode)) 2491 return true; 2492 2493 /* if this is cold file, we should overwrite to avoid fragmentation */ 2494 if (file_is_cold(inode)) 2495 return true; 2496 2497 return check_inplace_update_policy(inode, fio); 2498 } 2499 2500 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio) 2501 { 2502 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2503 2504 /* The below cases were checked when setting it. */ 2505 if (f2fs_is_pinned_file(inode)) 2506 return false; 2507 if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 2508 return true; 2509 if (f2fs_lfs_mode(sbi)) 2510 return true; 2511 if (S_ISDIR(inode->i_mode)) 2512 return true; 2513 if (IS_NOQUOTA(inode)) 2514 return true; 2515 if (f2fs_is_atomic_file(inode)) 2516 return true; 2517 2518 /* swap file is migrating in aligned write mode */ 2519 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE)) 2520 return true; 2521 2522 if (is_inode_flag_set(inode, FI_OPU_WRITE)) 2523 return true; 2524 2525 if (fio) { 2526 if (page_private_gcing(fio->page)) 2527 return true; 2528 if (page_private_dummy(fio->page)) 2529 return true; 2530 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 2531 f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) 2532 return true; 2533 } 2534 return false; 2535 } 2536 2537 static inline bool need_inplace_update(struct f2fs_io_info *fio) 2538 { 2539 struct inode *inode = fio->page->mapping->host; 2540 2541 if (f2fs_should_update_outplace(inode, fio)) 2542 return false; 2543 2544 return f2fs_should_update_inplace(inode, fio); 2545 } 2546 2547 int f2fs_do_write_data_page(struct f2fs_io_info *fio) 2548 { 2549 struct page *page = fio->page; 2550 struct inode *inode = page->mapping->host; 2551 struct dnode_of_data dn; 2552 struct extent_info ei = {0, }; 2553 struct node_info ni; 2554 bool ipu_force = false; 2555 int err = 0; 2556 2557 set_new_dnode(&dn, inode, NULL, NULL, 0); 2558 if (need_inplace_update(fio) && 2559 f2fs_lookup_extent_cache(inode, page->index, &ei)) { 2560 fio->old_blkaddr = ei.blk + page->index - ei.fofs; 2561 2562 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 2563 DATA_GENERIC_ENHANCE)) 2564 return -EFSCORRUPTED; 2565 2566 ipu_force = true; 2567 fio->need_lock = LOCK_DONE; 2568 goto got_it; 2569 } 2570 2571 /* Deadlock due to between page->lock and f2fs_lock_op */ 2572 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi)) 2573 return -EAGAIN; 2574 2575 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE); 2576 if (err) 2577 goto out; 2578 2579 fio->old_blkaddr = dn.data_blkaddr; 2580 2581 /* This page is already truncated */ 2582 if (fio->old_blkaddr == NULL_ADDR) { 2583 ClearPageUptodate(page); 2584 clear_page_private_gcing(page); 2585 goto out_writepage; 2586 } 2587 got_it: 2588 if (__is_valid_data_blkaddr(fio->old_blkaddr) && 2589 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 2590 DATA_GENERIC_ENHANCE)) { 2591 err = -EFSCORRUPTED; 2592 goto out_writepage; 2593 } 2594 /* 2595 * If current allocation needs SSR, 2596 * it had better in-place writes for updated data. 2597 */ 2598 if (ipu_force || 2599 (__is_valid_data_blkaddr(fio->old_blkaddr) && 2600 need_inplace_update(fio))) { 2601 err = f2fs_encrypt_one_page(fio); 2602 if (err) 2603 goto out_writepage; 2604 2605 set_page_writeback(page); 2606 ClearPageError(page); 2607 f2fs_put_dnode(&dn); 2608 if (fio->need_lock == LOCK_REQ) 2609 f2fs_unlock_op(fio->sbi); 2610 err = f2fs_inplace_write_data(fio); 2611 if (err) { 2612 if (fscrypt_inode_uses_fs_layer_crypto(inode)) 2613 fscrypt_finalize_bounce_page(&fio->encrypted_page); 2614 if (PageWriteback(page)) 2615 end_page_writeback(page); 2616 } else { 2617 set_inode_flag(inode, FI_UPDATE_WRITE); 2618 } 2619 trace_f2fs_do_write_data_page(fio->page, IPU); 2620 return err; 2621 } 2622 2623 if (fio->need_lock == LOCK_RETRY) { 2624 if (!f2fs_trylock_op(fio->sbi)) { 2625 err = -EAGAIN; 2626 goto out_writepage; 2627 } 2628 fio->need_lock = LOCK_REQ; 2629 } 2630 2631 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false); 2632 if (err) 2633 goto out_writepage; 2634 2635 fio->version = ni.version; 2636 2637 err = f2fs_encrypt_one_page(fio); 2638 if (err) 2639 goto out_writepage; 2640 2641 set_page_writeback(page); 2642 ClearPageError(page); 2643 2644 if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR) 2645 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false); 2646 2647 /* LFS mode write path */ 2648 f2fs_outplace_write_data(&dn, fio); 2649 trace_f2fs_do_write_data_page(page, OPU); 2650 set_inode_flag(inode, FI_APPEND_WRITE); 2651 if (page->index == 0) 2652 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); 2653 out_writepage: 2654 f2fs_put_dnode(&dn); 2655 out: 2656 if (fio->need_lock == LOCK_REQ) 2657 f2fs_unlock_op(fio->sbi); 2658 return err; 2659 } 2660 2661 int f2fs_write_single_data_page(struct page *page, int *submitted, 2662 struct bio **bio, 2663 sector_t *last_block, 2664 struct writeback_control *wbc, 2665 enum iostat_type io_type, 2666 int compr_blocks, 2667 bool allow_balance) 2668 { 2669 struct inode *inode = page->mapping->host; 2670 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2671 loff_t i_size = i_size_read(inode); 2672 const pgoff_t end_index = ((unsigned long long)i_size) 2673 >> PAGE_SHIFT; 2674 loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT; 2675 unsigned offset = 0; 2676 bool need_balance_fs = false; 2677 int err = 0; 2678 struct f2fs_io_info fio = { 2679 .sbi = sbi, 2680 .ino = inode->i_ino, 2681 .type = DATA, 2682 .op = REQ_OP_WRITE, 2683 .op_flags = wbc_to_write_flags(wbc), 2684 .old_blkaddr = NULL_ADDR, 2685 .page = page, 2686 .encrypted_page = NULL, 2687 .submitted = false, 2688 .compr_blocks = compr_blocks, 2689 .need_lock = LOCK_RETRY, 2690 .io_type = io_type, 2691 .io_wbc = wbc, 2692 .bio = bio, 2693 .last_block = last_block, 2694 }; 2695 2696 trace_f2fs_writepage(page, DATA); 2697 2698 /* we should bypass data pages to proceed the kworkder jobs */ 2699 if (unlikely(f2fs_cp_error(sbi))) { 2700 mapping_set_error(page->mapping, -EIO); 2701 /* 2702 * don't drop any dirty dentry pages for keeping lastest 2703 * directory structure. 2704 */ 2705 if (S_ISDIR(inode->i_mode)) 2706 goto redirty_out; 2707 goto out; 2708 } 2709 2710 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 2711 goto redirty_out; 2712 2713 if (page->index < end_index || 2714 f2fs_verity_in_progress(inode) || 2715 compr_blocks) 2716 goto write; 2717 2718 /* 2719 * If the offset is out-of-range of file size, 2720 * this page does not have to be written to disk. 2721 */ 2722 offset = i_size & (PAGE_SIZE - 1); 2723 if ((page->index >= end_index + 1) || !offset) 2724 goto out; 2725 2726 zero_user_segment(page, offset, PAGE_SIZE); 2727 write: 2728 if (f2fs_is_drop_cache(inode)) 2729 goto out; 2730 /* we should not write 0'th page having journal header */ 2731 if (f2fs_is_volatile_file(inode) && (!page->index || 2732 (!wbc->for_reclaim && 2733 f2fs_available_free_memory(sbi, BASE_CHECK)))) 2734 goto redirty_out; 2735 2736 /* Dentry/quota blocks are controlled by checkpoint */ 2737 if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) { 2738 /* 2739 * We need to wait for node_write to avoid block allocation during 2740 * checkpoint. This can only happen to quota writes which can cause 2741 * the below discard race condition. 2742 */ 2743 if (IS_NOQUOTA(inode)) 2744 f2fs_down_read(&sbi->node_write); 2745 2746 fio.need_lock = LOCK_DONE; 2747 err = f2fs_do_write_data_page(&fio); 2748 2749 if (IS_NOQUOTA(inode)) 2750 f2fs_up_read(&sbi->node_write); 2751 2752 goto done; 2753 } 2754 2755 if (!wbc->for_reclaim) 2756 need_balance_fs = true; 2757 else if (has_not_enough_free_secs(sbi, 0, 0)) 2758 goto redirty_out; 2759 else 2760 set_inode_flag(inode, FI_HOT_DATA); 2761 2762 err = -EAGAIN; 2763 if (f2fs_has_inline_data(inode)) { 2764 err = f2fs_write_inline_data(inode, page); 2765 if (!err) 2766 goto out; 2767 } 2768 2769 if (err == -EAGAIN) { 2770 err = f2fs_do_write_data_page(&fio); 2771 if (err == -EAGAIN) { 2772 fio.need_lock = LOCK_REQ; 2773 err = f2fs_do_write_data_page(&fio); 2774 } 2775 } 2776 2777 if (err) { 2778 file_set_keep_isize(inode); 2779 } else { 2780 spin_lock(&F2FS_I(inode)->i_size_lock); 2781 if (F2FS_I(inode)->last_disk_size < psize) 2782 F2FS_I(inode)->last_disk_size = psize; 2783 spin_unlock(&F2FS_I(inode)->i_size_lock); 2784 } 2785 2786 done: 2787 if (err && err != -ENOENT) 2788 goto redirty_out; 2789 2790 out: 2791 inode_dec_dirty_pages(inode); 2792 if (err) { 2793 ClearPageUptodate(page); 2794 clear_page_private_gcing(page); 2795 } 2796 2797 if (wbc->for_reclaim) { 2798 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA); 2799 clear_inode_flag(inode, FI_HOT_DATA); 2800 f2fs_remove_dirty_inode(inode); 2801 submitted = NULL; 2802 } 2803 unlock_page(page); 2804 if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) && 2805 !F2FS_I(inode)->cp_task && allow_balance) 2806 f2fs_balance_fs(sbi, need_balance_fs); 2807 2808 if (unlikely(f2fs_cp_error(sbi))) { 2809 f2fs_submit_merged_write(sbi, DATA); 2810 f2fs_submit_merged_ipu_write(sbi, bio, NULL); 2811 submitted = NULL; 2812 } 2813 2814 if (submitted) 2815 *submitted = fio.submitted ? 1 : 0; 2816 2817 return 0; 2818 2819 redirty_out: 2820 redirty_page_for_writepage(wbc, page); 2821 /* 2822 * pageout() in MM traslates EAGAIN, so calls handle_write_error() 2823 * -> mapping_set_error() -> set_bit(AS_EIO, ...). 2824 * file_write_and_wait_range() will see EIO error, which is critical 2825 * to return value of fsync() followed by atomic_write failure to user. 2826 */ 2827 if (!err || wbc->for_reclaim) 2828 return AOP_WRITEPAGE_ACTIVATE; 2829 unlock_page(page); 2830 return err; 2831 } 2832 2833 static int f2fs_write_data_page(struct page *page, 2834 struct writeback_control *wbc) 2835 { 2836 #ifdef CONFIG_F2FS_FS_COMPRESSION 2837 struct inode *inode = page->mapping->host; 2838 2839 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 2840 goto out; 2841 2842 if (f2fs_compressed_file(inode)) { 2843 if (f2fs_is_compressed_cluster(inode, page->index)) { 2844 redirty_page_for_writepage(wbc, page); 2845 return AOP_WRITEPAGE_ACTIVATE; 2846 } 2847 } 2848 out: 2849 #endif 2850 2851 return f2fs_write_single_data_page(page, NULL, NULL, NULL, 2852 wbc, FS_DATA_IO, 0, true); 2853 } 2854 2855 /* 2856 * This function was copied from write_cche_pages from mm/page-writeback.c. 2857 * The major change is making write step of cold data page separately from 2858 * warm/hot data page. 2859 */ 2860 static int f2fs_write_cache_pages(struct address_space *mapping, 2861 struct writeback_control *wbc, 2862 enum iostat_type io_type) 2863 { 2864 int ret = 0; 2865 int done = 0, retry = 0; 2866 struct pagevec pvec; 2867 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 2868 struct bio *bio = NULL; 2869 sector_t last_block; 2870 #ifdef CONFIG_F2FS_FS_COMPRESSION 2871 struct inode *inode = mapping->host; 2872 struct compress_ctx cc = { 2873 .inode = inode, 2874 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 2875 .cluster_size = F2FS_I(inode)->i_cluster_size, 2876 .cluster_idx = NULL_CLUSTER, 2877 .rpages = NULL, 2878 .nr_rpages = 0, 2879 .cpages = NULL, 2880 .valid_nr_cpages = 0, 2881 .rbuf = NULL, 2882 .cbuf = NULL, 2883 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size, 2884 .private = NULL, 2885 }; 2886 #endif 2887 int nr_pages; 2888 pgoff_t index; 2889 pgoff_t end; /* Inclusive */ 2890 pgoff_t done_index; 2891 int range_whole = 0; 2892 xa_mark_t tag; 2893 int nwritten = 0; 2894 int submitted = 0; 2895 int i; 2896 2897 pagevec_init(&pvec); 2898 2899 if (get_dirty_pages(mapping->host) <= 2900 SM_I(F2FS_M_SB(mapping))->min_hot_blocks) 2901 set_inode_flag(mapping->host, FI_HOT_DATA); 2902 else 2903 clear_inode_flag(mapping->host, FI_HOT_DATA); 2904 2905 if (wbc->range_cyclic) { 2906 index = mapping->writeback_index; /* prev offset */ 2907 end = -1; 2908 } else { 2909 index = wbc->range_start >> PAGE_SHIFT; 2910 end = wbc->range_end >> PAGE_SHIFT; 2911 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2912 range_whole = 1; 2913 } 2914 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2915 tag = PAGECACHE_TAG_TOWRITE; 2916 else 2917 tag = PAGECACHE_TAG_DIRTY; 2918 retry: 2919 retry = 0; 2920 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2921 tag_pages_for_writeback(mapping, index, end); 2922 done_index = index; 2923 while (!done && !retry && (index <= end)) { 2924 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 2925 tag); 2926 if (nr_pages == 0) 2927 break; 2928 2929 for (i = 0; i < nr_pages; i++) { 2930 struct page *page = pvec.pages[i]; 2931 bool need_readd; 2932 readd: 2933 need_readd = false; 2934 #ifdef CONFIG_F2FS_FS_COMPRESSION 2935 if (f2fs_compressed_file(inode)) { 2936 void *fsdata = NULL; 2937 struct page *pagep; 2938 int ret2; 2939 2940 ret = f2fs_init_compress_ctx(&cc); 2941 if (ret) { 2942 done = 1; 2943 break; 2944 } 2945 2946 if (!f2fs_cluster_can_merge_page(&cc, 2947 page->index)) { 2948 ret = f2fs_write_multi_pages(&cc, 2949 &submitted, wbc, io_type); 2950 if (!ret) 2951 need_readd = true; 2952 goto result; 2953 } 2954 2955 if (unlikely(f2fs_cp_error(sbi))) 2956 goto lock_page; 2957 2958 if (!f2fs_cluster_is_empty(&cc)) 2959 goto lock_page; 2960 2961 ret2 = f2fs_prepare_compress_overwrite( 2962 inode, &pagep, 2963 page->index, &fsdata); 2964 if (ret2 < 0) { 2965 ret = ret2; 2966 done = 1; 2967 break; 2968 } else if (ret2 && 2969 (!f2fs_compress_write_end(inode, 2970 fsdata, page->index, 1) || 2971 !f2fs_all_cluster_page_loaded(&cc, 2972 &pvec, i, nr_pages))) { 2973 retry = 1; 2974 break; 2975 } 2976 } 2977 #endif 2978 /* give a priority to WB_SYNC threads */ 2979 if (atomic_read(&sbi->wb_sync_req[DATA]) && 2980 wbc->sync_mode == WB_SYNC_NONE) { 2981 done = 1; 2982 break; 2983 } 2984 #ifdef CONFIG_F2FS_FS_COMPRESSION 2985 lock_page: 2986 #endif 2987 done_index = page->index; 2988 retry_write: 2989 lock_page(page); 2990 2991 if (unlikely(page->mapping != mapping)) { 2992 continue_unlock: 2993 unlock_page(page); 2994 continue; 2995 } 2996 2997 if (!PageDirty(page)) { 2998 /* someone wrote it for us */ 2999 goto continue_unlock; 3000 } 3001 3002 if (PageWriteback(page)) { 3003 if (wbc->sync_mode != WB_SYNC_NONE) 3004 f2fs_wait_on_page_writeback(page, 3005 DATA, true, true); 3006 else 3007 goto continue_unlock; 3008 } 3009 3010 if (!clear_page_dirty_for_io(page)) 3011 goto continue_unlock; 3012 3013 #ifdef CONFIG_F2FS_FS_COMPRESSION 3014 if (f2fs_compressed_file(inode)) { 3015 get_page(page); 3016 f2fs_compress_ctx_add_page(&cc, page); 3017 continue; 3018 } 3019 #endif 3020 ret = f2fs_write_single_data_page(page, &submitted, 3021 &bio, &last_block, wbc, io_type, 3022 0, true); 3023 if (ret == AOP_WRITEPAGE_ACTIVATE) 3024 unlock_page(page); 3025 #ifdef CONFIG_F2FS_FS_COMPRESSION 3026 result: 3027 #endif 3028 nwritten += submitted; 3029 wbc->nr_to_write -= submitted; 3030 3031 if (unlikely(ret)) { 3032 /* 3033 * keep nr_to_write, since vfs uses this to 3034 * get # of written pages. 3035 */ 3036 if (ret == AOP_WRITEPAGE_ACTIVATE) { 3037 ret = 0; 3038 goto next; 3039 } else if (ret == -EAGAIN) { 3040 ret = 0; 3041 if (wbc->sync_mode == WB_SYNC_ALL) { 3042 f2fs_io_schedule_timeout( 3043 DEFAULT_IO_TIMEOUT); 3044 goto retry_write; 3045 } 3046 goto next; 3047 } 3048 done_index = page->index + 1; 3049 done = 1; 3050 break; 3051 } 3052 3053 if (wbc->nr_to_write <= 0 && 3054 wbc->sync_mode == WB_SYNC_NONE) { 3055 done = 1; 3056 break; 3057 } 3058 next: 3059 if (need_readd) 3060 goto readd; 3061 } 3062 pagevec_release(&pvec); 3063 cond_resched(); 3064 } 3065 #ifdef CONFIG_F2FS_FS_COMPRESSION 3066 /* flush remained pages in compress cluster */ 3067 if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) { 3068 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type); 3069 nwritten += submitted; 3070 wbc->nr_to_write -= submitted; 3071 if (ret) { 3072 done = 1; 3073 retry = 0; 3074 } 3075 } 3076 if (f2fs_compressed_file(inode)) 3077 f2fs_destroy_compress_ctx(&cc, false); 3078 #endif 3079 if (retry) { 3080 index = 0; 3081 end = -1; 3082 goto retry; 3083 } 3084 if (wbc->range_cyclic && !done) 3085 done_index = 0; 3086 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 3087 mapping->writeback_index = done_index; 3088 3089 if (nwritten) 3090 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host, 3091 NULL, 0, DATA); 3092 /* submit cached bio of IPU write */ 3093 if (bio) 3094 f2fs_submit_merged_ipu_write(sbi, &bio, NULL); 3095 3096 return ret; 3097 } 3098 3099 static inline bool __should_serialize_io(struct inode *inode, 3100 struct writeback_control *wbc) 3101 { 3102 /* to avoid deadlock in path of data flush */ 3103 if (F2FS_I(inode)->cp_task) 3104 return false; 3105 3106 if (!S_ISREG(inode->i_mode)) 3107 return false; 3108 if (IS_NOQUOTA(inode)) 3109 return false; 3110 3111 if (f2fs_need_compress_data(inode)) 3112 return true; 3113 if (wbc->sync_mode != WB_SYNC_ALL) 3114 return true; 3115 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks) 3116 return true; 3117 return false; 3118 } 3119 3120 static int __f2fs_write_data_pages(struct address_space *mapping, 3121 struct writeback_control *wbc, 3122 enum iostat_type io_type) 3123 { 3124 struct inode *inode = mapping->host; 3125 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3126 struct blk_plug plug; 3127 int ret; 3128 bool locked = false; 3129 3130 /* deal with chardevs and other special file */ 3131 if (!mapping->a_ops->writepage) 3132 return 0; 3133 3134 /* skip writing if there is no dirty page in this inode */ 3135 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE) 3136 return 0; 3137 3138 /* during POR, we don't need to trigger writepage at all. */ 3139 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 3140 goto skip_write; 3141 3142 if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) && 3143 wbc->sync_mode == WB_SYNC_NONE && 3144 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) && 3145 f2fs_available_free_memory(sbi, DIRTY_DENTS)) 3146 goto skip_write; 3147 3148 /* skip writing in file defragment preparing stage */ 3149 if (is_inode_flag_set(inode, FI_SKIP_WRITES)) 3150 goto skip_write; 3151 3152 trace_f2fs_writepages(mapping->host, wbc, DATA); 3153 3154 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */ 3155 if (wbc->sync_mode == WB_SYNC_ALL) 3156 atomic_inc(&sbi->wb_sync_req[DATA]); 3157 else if (atomic_read(&sbi->wb_sync_req[DATA])) { 3158 /* to avoid potential deadlock */ 3159 if (current->plug) 3160 blk_finish_plug(current->plug); 3161 goto skip_write; 3162 } 3163 3164 if (__should_serialize_io(inode, wbc)) { 3165 mutex_lock(&sbi->writepages); 3166 locked = true; 3167 } 3168 3169 blk_start_plug(&plug); 3170 ret = f2fs_write_cache_pages(mapping, wbc, io_type); 3171 blk_finish_plug(&plug); 3172 3173 if (locked) 3174 mutex_unlock(&sbi->writepages); 3175 3176 if (wbc->sync_mode == WB_SYNC_ALL) 3177 atomic_dec(&sbi->wb_sync_req[DATA]); 3178 /* 3179 * if some pages were truncated, we cannot guarantee its mapping->host 3180 * to detect pending bios. 3181 */ 3182 3183 f2fs_remove_dirty_inode(inode); 3184 return ret; 3185 3186 skip_write: 3187 wbc->pages_skipped += get_dirty_pages(inode); 3188 trace_f2fs_writepages(mapping->host, wbc, DATA); 3189 return 0; 3190 } 3191 3192 static int f2fs_write_data_pages(struct address_space *mapping, 3193 struct writeback_control *wbc) 3194 { 3195 struct inode *inode = mapping->host; 3196 3197 return __f2fs_write_data_pages(mapping, wbc, 3198 F2FS_I(inode)->cp_task == current ? 3199 FS_CP_DATA_IO : FS_DATA_IO); 3200 } 3201 3202 void f2fs_write_failed(struct inode *inode, loff_t to) 3203 { 3204 loff_t i_size = i_size_read(inode); 3205 3206 if (IS_NOQUOTA(inode)) 3207 return; 3208 3209 /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */ 3210 if (to > i_size && !f2fs_verity_in_progress(inode)) { 3211 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3212 filemap_invalidate_lock(inode->i_mapping); 3213 3214 truncate_pagecache(inode, i_size); 3215 f2fs_truncate_blocks(inode, i_size, true); 3216 3217 filemap_invalidate_unlock(inode->i_mapping); 3218 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3219 } 3220 } 3221 3222 static int prepare_write_begin(struct f2fs_sb_info *sbi, 3223 struct page *page, loff_t pos, unsigned len, 3224 block_t *blk_addr, bool *node_changed) 3225 { 3226 struct inode *inode = page->mapping->host; 3227 pgoff_t index = page->index; 3228 struct dnode_of_data dn; 3229 struct page *ipage; 3230 bool locked = false; 3231 struct extent_info ei = {0, }; 3232 int err = 0; 3233 int flag; 3234 3235 /* 3236 * If a whole page is being written and we already preallocated all the 3237 * blocks, then there is no need to get a block address now. 3238 */ 3239 if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL)) 3240 return 0; 3241 3242 /* f2fs_lock_op avoids race between write CP and convert_inline_page */ 3243 if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode)) 3244 flag = F2FS_GET_BLOCK_DEFAULT; 3245 else 3246 flag = F2FS_GET_BLOCK_PRE_AIO; 3247 3248 if (f2fs_has_inline_data(inode) || 3249 (pos & PAGE_MASK) >= i_size_read(inode)) { 3250 f2fs_do_map_lock(sbi, flag, true); 3251 locked = true; 3252 } 3253 3254 restart: 3255 /* check inline_data */ 3256 ipage = f2fs_get_node_page(sbi, inode->i_ino); 3257 if (IS_ERR(ipage)) { 3258 err = PTR_ERR(ipage); 3259 goto unlock_out; 3260 } 3261 3262 set_new_dnode(&dn, inode, ipage, ipage, 0); 3263 3264 if (f2fs_has_inline_data(inode)) { 3265 if (pos + len <= MAX_INLINE_DATA(inode)) { 3266 f2fs_do_read_inline_data(page, ipage); 3267 set_inode_flag(inode, FI_DATA_EXIST); 3268 if (inode->i_nlink) 3269 set_page_private_inline(ipage); 3270 } else { 3271 err = f2fs_convert_inline_page(&dn, page); 3272 if (err) 3273 goto out; 3274 if (dn.data_blkaddr == NULL_ADDR) 3275 err = f2fs_get_block(&dn, index); 3276 } 3277 } else if (locked) { 3278 err = f2fs_get_block(&dn, index); 3279 } else { 3280 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 3281 dn.data_blkaddr = ei.blk + index - ei.fofs; 3282 } else { 3283 /* hole case */ 3284 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 3285 if (err || dn.data_blkaddr == NULL_ADDR) { 3286 f2fs_put_dnode(&dn); 3287 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, 3288 true); 3289 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO); 3290 locked = true; 3291 goto restart; 3292 } 3293 } 3294 } 3295 3296 /* convert_inline_page can make node_changed */ 3297 *blk_addr = dn.data_blkaddr; 3298 *node_changed = dn.node_changed; 3299 out: 3300 f2fs_put_dnode(&dn); 3301 unlock_out: 3302 if (locked) 3303 f2fs_do_map_lock(sbi, flag, false); 3304 return err; 3305 } 3306 3307 static int f2fs_write_begin(struct file *file, struct address_space *mapping, 3308 loff_t pos, unsigned len, unsigned flags, 3309 struct page **pagep, void **fsdata) 3310 { 3311 struct inode *inode = mapping->host; 3312 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3313 struct page *page = NULL; 3314 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT; 3315 bool need_balance = false, drop_atomic = false; 3316 block_t blkaddr = NULL_ADDR; 3317 int err = 0; 3318 3319 trace_f2fs_write_begin(inode, pos, len, flags); 3320 3321 if (!f2fs_is_checkpoint_ready(sbi)) { 3322 err = -ENOSPC; 3323 goto fail; 3324 } 3325 3326 if ((f2fs_is_atomic_file(inode) && 3327 !f2fs_available_free_memory(sbi, INMEM_PAGES)) || 3328 is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) { 3329 err = -ENOMEM; 3330 drop_atomic = true; 3331 goto fail; 3332 } 3333 3334 /* 3335 * We should check this at this moment to avoid deadlock on inode page 3336 * and #0 page. The locking rule for inline_data conversion should be: 3337 * lock_page(page #0) -> lock_page(inode_page) 3338 */ 3339 if (index != 0) { 3340 err = f2fs_convert_inline_inode(inode); 3341 if (err) 3342 goto fail; 3343 } 3344 3345 #ifdef CONFIG_F2FS_FS_COMPRESSION 3346 if (f2fs_compressed_file(inode)) { 3347 int ret; 3348 3349 *fsdata = NULL; 3350 3351 if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode))) 3352 goto repeat; 3353 3354 ret = f2fs_prepare_compress_overwrite(inode, pagep, 3355 index, fsdata); 3356 if (ret < 0) { 3357 err = ret; 3358 goto fail; 3359 } else if (ret) { 3360 return 0; 3361 } 3362 } 3363 #endif 3364 3365 repeat: 3366 /* 3367 * Do not use grab_cache_page_write_begin() to avoid deadlock due to 3368 * wait_for_stable_page. Will wait that below with our IO control. 3369 */ 3370 page = f2fs_pagecache_get_page(mapping, index, 3371 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS); 3372 if (!page) { 3373 err = -ENOMEM; 3374 goto fail; 3375 } 3376 3377 /* TODO: cluster can be compressed due to race with .writepage */ 3378 3379 *pagep = page; 3380 3381 err = prepare_write_begin(sbi, page, pos, len, 3382 &blkaddr, &need_balance); 3383 if (err) 3384 goto fail; 3385 3386 if (need_balance && !IS_NOQUOTA(inode) && 3387 has_not_enough_free_secs(sbi, 0, 0)) { 3388 unlock_page(page); 3389 f2fs_balance_fs(sbi, true); 3390 lock_page(page); 3391 if (page->mapping != mapping) { 3392 /* The page got truncated from under us */ 3393 f2fs_put_page(page, 1); 3394 goto repeat; 3395 } 3396 } 3397 3398 f2fs_wait_on_page_writeback(page, DATA, false, true); 3399 3400 if (len == PAGE_SIZE || PageUptodate(page)) 3401 return 0; 3402 3403 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) && 3404 !f2fs_verity_in_progress(inode)) { 3405 zero_user_segment(page, len, PAGE_SIZE); 3406 return 0; 3407 } 3408 3409 if (blkaddr == NEW_ADDR) { 3410 zero_user_segment(page, 0, PAGE_SIZE); 3411 SetPageUptodate(page); 3412 } else { 3413 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 3414 DATA_GENERIC_ENHANCE_READ)) { 3415 err = -EFSCORRUPTED; 3416 goto fail; 3417 } 3418 err = f2fs_submit_page_read(inode, page, blkaddr, 0, true); 3419 if (err) 3420 goto fail; 3421 3422 lock_page(page); 3423 if (unlikely(page->mapping != mapping)) { 3424 f2fs_put_page(page, 1); 3425 goto repeat; 3426 } 3427 if (unlikely(!PageUptodate(page))) { 3428 err = -EIO; 3429 goto fail; 3430 } 3431 } 3432 return 0; 3433 3434 fail: 3435 f2fs_put_page(page, 1); 3436 f2fs_write_failed(inode, pos + len); 3437 if (drop_atomic) 3438 f2fs_drop_inmem_pages_all(sbi, false); 3439 return err; 3440 } 3441 3442 static int f2fs_write_end(struct file *file, 3443 struct address_space *mapping, 3444 loff_t pos, unsigned len, unsigned copied, 3445 struct page *page, void *fsdata) 3446 { 3447 struct inode *inode = page->mapping->host; 3448 3449 trace_f2fs_write_end(inode, pos, len, copied); 3450 3451 /* 3452 * This should be come from len == PAGE_SIZE, and we expect copied 3453 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and 3454 * let generic_perform_write() try to copy data again through copied=0. 3455 */ 3456 if (!PageUptodate(page)) { 3457 if (unlikely(copied != len)) 3458 copied = 0; 3459 else 3460 SetPageUptodate(page); 3461 } 3462 3463 #ifdef CONFIG_F2FS_FS_COMPRESSION 3464 /* overwrite compressed file */ 3465 if (f2fs_compressed_file(inode) && fsdata) { 3466 f2fs_compress_write_end(inode, fsdata, page->index, copied); 3467 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3468 3469 if (pos + copied > i_size_read(inode) && 3470 !f2fs_verity_in_progress(inode)) 3471 f2fs_i_size_write(inode, pos + copied); 3472 return copied; 3473 } 3474 #endif 3475 3476 if (!copied) 3477 goto unlock_out; 3478 3479 set_page_dirty(page); 3480 3481 if (pos + copied > i_size_read(inode) && 3482 !f2fs_verity_in_progress(inode)) 3483 f2fs_i_size_write(inode, pos + copied); 3484 unlock_out: 3485 f2fs_put_page(page, 1); 3486 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3487 return copied; 3488 } 3489 3490 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length) 3491 { 3492 struct inode *inode = folio->mapping->host; 3493 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3494 3495 if (inode->i_ino >= F2FS_ROOT_INO(sbi) && 3496 (offset || length != folio_size(folio))) 3497 return; 3498 3499 if (folio_test_dirty(folio)) { 3500 if (inode->i_ino == F2FS_META_INO(sbi)) { 3501 dec_page_count(sbi, F2FS_DIRTY_META); 3502 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) { 3503 dec_page_count(sbi, F2FS_DIRTY_NODES); 3504 } else { 3505 inode_dec_dirty_pages(inode); 3506 f2fs_remove_dirty_inode(inode); 3507 } 3508 } 3509 3510 clear_page_private_gcing(&folio->page); 3511 3512 if (test_opt(sbi, COMPRESS_CACHE) && 3513 inode->i_ino == F2FS_COMPRESS_INO(sbi)) 3514 clear_page_private_data(&folio->page); 3515 3516 if (page_private_atomic(&folio->page)) 3517 return f2fs_drop_inmem_page(inode, &folio->page); 3518 3519 folio_detach_private(folio); 3520 } 3521 3522 int f2fs_release_page(struct page *page, gfp_t wait) 3523 { 3524 /* If this is dirty page, keep PagePrivate */ 3525 if (PageDirty(page)) 3526 return 0; 3527 3528 /* This is atomic written page, keep Private */ 3529 if (page_private_atomic(page)) 3530 return 0; 3531 3532 if (test_opt(F2FS_P_SB(page), COMPRESS_CACHE)) { 3533 struct inode *inode = page->mapping->host; 3534 3535 if (inode->i_ino == F2FS_COMPRESS_INO(F2FS_I_SB(inode))) 3536 clear_page_private_data(page); 3537 } 3538 3539 clear_page_private_gcing(page); 3540 3541 detach_page_private(page); 3542 set_page_private(page, 0); 3543 return 1; 3544 } 3545 3546 static bool f2fs_dirty_data_folio(struct address_space *mapping, 3547 struct folio *folio) 3548 { 3549 struct inode *inode = mapping->host; 3550 3551 trace_f2fs_set_page_dirty(&folio->page, DATA); 3552 3553 if (!folio_test_uptodate(folio)) 3554 folio_mark_uptodate(folio); 3555 BUG_ON(folio_test_swapcache(folio)); 3556 3557 if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) { 3558 if (!page_private_atomic(&folio->page)) { 3559 f2fs_register_inmem_page(inode, &folio->page); 3560 return true; 3561 } 3562 /* 3563 * Previously, this page has been registered, we just 3564 * return here. 3565 */ 3566 return false; 3567 } 3568 3569 if (!folio_test_dirty(folio)) { 3570 filemap_dirty_folio(mapping, folio); 3571 f2fs_update_dirty_folio(inode, folio); 3572 return true; 3573 } 3574 return false; 3575 } 3576 3577 3578 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block) 3579 { 3580 #ifdef CONFIG_F2FS_FS_COMPRESSION 3581 struct dnode_of_data dn; 3582 sector_t start_idx, blknr = 0; 3583 int ret; 3584 3585 start_idx = round_down(block, F2FS_I(inode)->i_cluster_size); 3586 3587 set_new_dnode(&dn, inode, NULL, NULL, 0); 3588 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 3589 if (ret) 3590 return 0; 3591 3592 if (dn.data_blkaddr != COMPRESS_ADDR) { 3593 dn.ofs_in_node += block - start_idx; 3594 blknr = f2fs_data_blkaddr(&dn); 3595 if (!__is_valid_data_blkaddr(blknr)) 3596 blknr = 0; 3597 } 3598 3599 f2fs_put_dnode(&dn); 3600 return blknr; 3601 #else 3602 return 0; 3603 #endif 3604 } 3605 3606 3607 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block) 3608 { 3609 struct inode *inode = mapping->host; 3610 sector_t blknr = 0; 3611 3612 if (f2fs_has_inline_data(inode)) 3613 goto out; 3614 3615 /* make sure allocating whole blocks */ 3616 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 3617 filemap_write_and_wait(mapping); 3618 3619 /* Block number less than F2FS MAX BLOCKS */ 3620 if (unlikely(block >= max_file_blocks(inode))) 3621 goto out; 3622 3623 if (f2fs_compressed_file(inode)) { 3624 blknr = f2fs_bmap_compress(inode, block); 3625 } else { 3626 struct f2fs_map_blocks map; 3627 3628 memset(&map, 0, sizeof(map)); 3629 map.m_lblk = block; 3630 map.m_len = 1; 3631 map.m_next_pgofs = NULL; 3632 map.m_seg_type = NO_CHECK_TYPE; 3633 3634 if (!f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_BMAP)) 3635 blknr = map.m_pblk; 3636 } 3637 out: 3638 trace_f2fs_bmap(inode, block, blknr); 3639 return blknr; 3640 } 3641 3642 #ifdef CONFIG_MIGRATION 3643 #include <linux/migrate.h> 3644 3645 int f2fs_migrate_page(struct address_space *mapping, 3646 struct page *newpage, struct page *page, enum migrate_mode mode) 3647 { 3648 int rc, extra_count; 3649 struct f2fs_inode_info *fi = F2FS_I(mapping->host); 3650 bool atomic_written = page_private_atomic(page); 3651 3652 BUG_ON(PageWriteback(page)); 3653 3654 /* migrating an atomic written page is safe with the inmem_lock hold */ 3655 if (atomic_written) { 3656 if (mode != MIGRATE_SYNC) 3657 return -EBUSY; 3658 if (!mutex_trylock(&fi->inmem_lock)) 3659 return -EAGAIN; 3660 } 3661 3662 /* one extra reference was held for atomic_write page */ 3663 extra_count = atomic_written ? 1 : 0; 3664 rc = migrate_page_move_mapping(mapping, newpage, 3665 page, extra_count); 3666 if (rc != MIGRATEPAGE_SUCCESS) { 3667 if (atomic_written) 3668 mutex_unlock(&fi->inmem_lock); 3669 return rc; 3670 } 3671 3672 if (atomic_written) { 3673 struct inmem_pages *cur; 3674 3675 list_for_each_entry(cur, &fi->inmem_pages, list) 3676 if (cur->page == page) { 3677 cur->page = newpage; 3678 break; 3679 } 3680 mutex_unlock(&fi->inmem_lock); 3681 put_page(page); 3682 get_page(newpage); 3683 } 3684 3685 /* guarantee to start from no stale private field */ 3686 set_page_private(newpage, 0); 3687 if (PagePrivate(page)) { 3688 set_page_private(newpage, page_private(page)); 3689 SetPagePrivate(newpage); 3690 get_page(newpage); 3691 3692 set_page_private(page, 0); 3693 ClearPagePrivate(page); 3694 put_page(page); 3695 } 3696 3697 if (mode != MIGRATE_SYNC_NO_COPY) 3698 migrate_page_copy(newpage, page); 3699 else 3700 migrate_page_states(newpage, page); 3701 3702 return MIGRATEPAGE_SUCCESS; 3703 } 3704 #endif 3705 3706 #ifdef CONFIG_SWAP 3707 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk, 3708 unsigned int blkcnt) 3709 { 3710 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3711 unsigned int blkofs; 3712 unsigned int blk_per_sec = BLKS_PER_SEC(sbi); 3713 unsigned int secidx = start_blk / blk_per_sec; 3714 unsigned int end_sec = secidx + blkcnt / blk_per_sec; 3715 int ret = 0; 3716 3717 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3718 filemap_invalidate_lock(inode->i_mapping); 3719 3720 set_inode_flag(inode, FI_ALIGNED_WRITE); 3721 set_inode_flag(inode, FI_OPU_WRITE); 3722 3723 for (; secidx < end_sec; secidx++) { 3724 f2fs_down_write(&sbi->pin_sem); 3725 3726 f2fs_lock_op(sbi); 3727 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false); 3728 f2fs_unlock_op(sbi); 3729 3730 set_inode_flag(inode, FI_SKIP_WRITES); 3731 3732 for (blkofs = 0; blkofs < blk_per_sec; blkofs++) { 3733 struct page *page; 3734 unsigned int blkidx = secidx * blk_per_sec + blkofs; 3735 3736 page = f2fs_get_lock_data_page(inode, blkidx, true); 3737 if (IS_ERR(page)) { 3738 f2fs_up_write(&sbi->pin_sem); 3739 ret = PTR_ERR(page); 3740 goto done; 3741 } 3742 3743 set_page_dirty(page); 3744 f2fs_put_page(page, 1); 3745 } 3746 3747 clear_inode_flag(inode, FI_SKIP_WRITES); 3748 3749 ret = filemap_fdatawrite(inode->i_mapping); 3750 3751 f2fs_up_write(&sbi->pin_sem); 3752 3753 if (ret) 3754 break; 3755 } 3756 3757 done: 3758 clear_inode_flag(inode, FI_SKIP_WRITES); 3759 clear_inode_flag(inode, FI_OPU_WRITE); 3760 clear_inode_flag(inode, FI_ALIGNED_WRITE); 3761 3762 filemap_invalidate_unlock(inode->i_mapping); 3763 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3764 3765 return ret; 3766 } 3767 3768 static int check_swap_activate(struct swap_info_struct *sis, 3769 struct file *swap_file, sector_t *span) 3770 { 3771 struct address_space *mapping = swap_file->f_mapping; 3772 struct inode *inode = mapping->host; 3773 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3774 sector_t cur_lblock; 3775 sector_t last_lblock; 3776 sector_t pblock; 3777 sector_t lowest_pblock = -1; 3778 sector_t highest_pblock = 0; 3779 int nr_extents = 0; 3780 unsigned long nr_pblocks; 3781 unsigned int blks_per_sec = BLKS_PER_SEC(sbi); 3782 unsigned int sec_blks_mask = BLKS_PER_SEC(sbi) - 1; 3783 unsigned int not_aligned = 0; 3784 int ret = 0; 3785 3786 /* 3787 * Map all the blocks into the extent list. This code doesn't try 3788 * to be very smart. 3789 */ 3790 cur_lblock = 0; 3791 last_lblock = bytes_to_blks(inode, i_size_read(inode)); 3792 3793 while (cur_lblock < last_lblock && cur_lblock < sis->max) { 3794 struct f2fs_map_blocks map; 3795 retry: 3796 cond_resched(); 3797 3798 memset(&map, 0, sizeof(map)); 3799 map.m_lblk = cur_lblock; 3800 map.m_len = last_lblock - cur_lblock; 3801 map.m_next_pgofs = NULL; 3802 map.m_next_extent = NULL; 3803 map.m_seg_type = NO_CHECK_TYPE; 3804 map.m_may_create = false; 3805 3806 ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP); 3807 if (ret) 3808 goto out; 3809 3810 /* hole */ 3811 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 3812 f2fs_err(sbi, "Swapfile has holes"); 3813 ret = -EINVAL; 3814 goto out; 3815 } 3816 3817 pblock = map.m_pblk; 3818 nr_pblocks = map.m_len; 3819 3820 if ((pblock - SM_I(sbi)->main_blkaddr) & sec_blks_mask || 3821 nr_pblocks & sec_blks_mask) { 3822 not_aligned++; 3823 3824 nr_pblocks = roundup(nr_pblocks, blks_per_sec); 3825 if (cur_lblock + nr_pblocks > sis->max) 3826 nr_pblocks -= blks_per_sec; 3827 3828 if (!nr_pblocks) { 3829 /* this extent is last one */ 3830 nr_pblocks = map.m_len; 3831 f2fs_warn(sbi, "Swapfile: last extent is not aligned to section"); 3832 goto next; 3833 } 3834 3835 ret = f2fs_migrate_blocks(inode, cur_lblock, 3836 nr_pblocks); 3837 if (ret) 3838 goto out; 3839 goto retry; 3840 } 3841 next: 3842 if (cur_lblock + nr_pblocks >= sis->max) 3843 nr_pblocks = sis->max - cur_lblock; 3844 3845 if (cur_lblock) { /* exclude the header page */ 3846 if (pblock < lowest_pblock) 3847 lowest_pblock = pblock; 3848 if (pblock + nr_pblocks - 1 > highest_pblock) 3849 highest_pblock = pblock + nr_pblocks - 1; 3850 } 3851 3852 /* 3853 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks 3854 */ 3855 ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock); 3856 if (ret < 0) 3857 goto out; 3858 nr_extents += ret; 3859 cur_lblock += nr_pblocks; 3860 } 3861 ret = nr_extents; 3862 *span = 1 + highest_pblock - lowest_pblock; 3863 if (cur_lblock == 0) 3864 cur_lblock = 1; /* force Empty message */ 3865 sis->max = cur_lblock; 3866 sis->pages = cur_lblock - 1; 3867 sis->highest_bit = cur_lblock - 1; 3868 out: 3869 if (not_aligned) 3870 f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%u * N)", 3871 not_aligned, blks_per_sec * F2FS_BLKSIZE); 3872 return ret; 3873 } 3874 3875 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, 3876 sector_t *span) 3877 { 3878 struct inode *inode = file_inode(file); 3879 int ret; 3880 3881 if (!S_ISREG(inode->i_mode)) 3882 return -EINVAL; 3883 3884 if (f2fs_readonly(F2FS_I_SB(inode)->sb)) 3885 return -EROFS; 3886 3887 if (f2fs_lfs_mode(F2FS_I_SB(inode))) { 3888 f2fs_err(F2FS_I_SB(inode), 3889 "Swapfile not supported in LFS mode"); 3890 return -EINVAL; 3891 } 3892 3893 ret = f2fs_convert_inline_inode(inode); 3894 if (ret) 3895 return ret; 3896 3897 if (!f2fs_disable_compressed_file(inode)) 3898 return -EINVAL; 3899 3900 f2fs_precache_extents(inode); 3901 3902 ret = check_swap_activate(sis, file, span); 3903 if (ret < 0) 3904 return ret; 3905 3906 set_inode_flag(inode, FI_PIN_FILE); 3907 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3908 return ret; 3909 } 3910 3911 static void f2fs_swap_deactivate(struct file *file) 3912 { 3913 struct inode *inode = file_inode(file); 3914 3915 clear_inode_flag(inode, FI_PIN_FILE); 3916 } 3917 #else 3918 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, 3919 sector_t *span) 3920 { 3921 return -EOPNOTSUPP; 3922 } 3923 3924 static void f2fs_swap_deactivate(struct file *file) 3925 { 3926 } 3927 #endif 3928 3929 const struct address_space_operations f2fs_dblock_aops = { 3930 .readpage = f2fs_read_data_page, 3931 .readahead = f2fs_readahead, 3932 .writepage = f2fs_write_data_page, 3933 .writepages = f2fs_write_data_pages, 3934 .write_begin = f2fs_write_begin, 3935 .write_end = f2fs_write_end, 3936 .dirty_folio = f2fs_dirty_data_folio, 3937 .invalidate_folio = f2fs_invalidate_folio, 3938 .releasepage = f2fs_release_page, 3939 .direct_IO = noop_direct_IO, 3940 .bmap = f2fs_bmap, 3941 .swap_activate = f2fs_swap_activate, 3942 .swap_deactivate = f2fs_swap_deactivate, 3943 #ifdef CONFIG_MIGRATION 3944 .migratepage = f2fs_migrate_page, 3945 #endif 3946 }; 3947 3948 void f2fs_clear_page_cache_dirty_tag(struct page *page) 3949 { 3950 struct address_space *mapping = page_mapping(page); 3951 unsigned long flags; 3952 3953 xa_lock_irqsave(&mapping->i_pages, flags); 3954 __xa_clear_mark(&mapping->i_pages, page_index(page), 3955 PAGECACHE_TAG_DIRTY); 3956 xa_unlock_irqrestore(&mapping->i_pages, flags); 3957 } 3958 3959 int __init f2fs_init_post_read_processing(void) 3960 { 3961 bio_post_read_ctx_cache = 3962 kmem_cache_create("f2fs_bio_post_read_ctx", 3963 sizeof(struct bio_post_read_ctx), 0, 0, NULL); 3964 if (!bio_post_read_ctx_cache) 3965 goto fail; 3966 bio_post_read_ctx_pool = 3967 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS, 3968 bio_post_read_ctx_cache); 3969 if (!bio_post_read_ctx_pool) 3970 goto fail_free_cache; 3971 return 0; 3972 3973 fail_free_cache: 3974 kmem_cache_destroy(bio_post_read_ctx_cache); 3975 fail: 3976 return -ENOMEM; 3977 } 3978 3979 void f2fs_destroy_post_read_processing(void) 3980 { 3981 mempool_destroy(bio_post_read_ctx_pool); 3982 kmem_cache_destroy(bio_post_read_ctx_cache); 3983 } 3984 3985 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi) 3986 { 3987 if (!f2fs_sb_has_encrypt(sbi) && 3988 !f2fs_sb_has_verity(sbi) && 3989 !f2fs_sb_has_compression(sbi)) 3990 return 0; 3991 3992 sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq", 3993 WQ_UNBOUND | WQ_HIGHPRI, 3994 num_online_cpus()); 3995 if (!sbi->post_read_wq) 3996 return -ENOMEM; 3997 return 0; 3998 } 3999 4000 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi) 4001 { 4002 if (sbi->post_read_wq) 4003 destroy_workqueue(sbi->post_read_wq); 4004 } 4005 4006 int __init f2fs_init_bio_entry_cache(void) 4007 { 4008 bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab", 4009 sizeof(struct bio_entry)); 4010 if (!bio_entry_slab) 4011 return -ENOMEM; 4012 return 0; 4013 } 4014 4015 void f2fs_destroy_bio_entry_cache(void) 4016 { 4017 kmem_cache_destroy(bio_entry_slab); 4018 } 4019 4020 static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 4021 unsigned int flags, struct iomap *iomap, 4022 struct iomap *srcmap) 4023 { 4024 struct f2fs_map_blocks map = {}; 4025 pgoff_t next_pgofs = 0; 4026 int err; 4027 4028 map.m_lblk = bytes_to_blks(inode, offset); 4029 map.m_len = bytes_to_blks(inode, offset + length - 1) - map.m_lblk + 1; 4030 map.m_next_pgofs = &next_pgofs; 4031 map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint); 4032 if (flags & IOMAP_WRITE) 4033 map.m_may_create = true; 4034 4035 err = f2fs_map_blocks(inode, &map, flags & IOMAP_WRITE, 4036 F2FS_GET_BLOCK_DIO); 4037 if (err) 4038 return err; 4039 4040 iomap->offset = blks_to_bytes(inode, map.m_lblk); 4041 4042 /* 4043 * When inline encryption is enabled, sometimes I/O to an encrypted file 4044 * has to be broken up to guarantee DUN contiguity. Handle this by 4045 * limiting the length of the mapping returned. 4046 */ 4047 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len); 4048 4049 if (map.m_flags & (F2FS_MAP_MAPPED | F2FS_MAP_UNWRITTEN)) { 4050 iomap->length = blks_to_bytes(inode, map.m_len); 4051 if (map.m_flags & F2FS_MAP_MAPPED) { 4052 iomap->type = IOMAP_MAPPED; 4053 iomap->flags |= IOMAP_F_MERGED; 4054 } else { 4055 iomap->type = IOMAP_UNWRITTEN; 4056 } 4057 if (WARN_ON_ONCE(!__is_valid_data_blkaddr(map.m_pblk))) 4058 return -EINVAL; 4059 4060 iomap->bdev = map.m_bdev; 4061 iomap->addr = blks_to_bytes(inode, map.m_pblk); 4062 } else { 4063 iomap->length = blks_to_bytes(inode, next_pgofs) - 4064 iomap->offset; 4065 iomap->type = IOMAP_HOLE; 4066 iomap->addr = IOMAP_NULL_ADDR; 4067 } 4068 4069 if (map.m_flags & F2FS_MAP_NEW) 4070 iomap->flags |= IOMAP_F_NEW; 4071 if ((inode->i_state & I_DIRTY_DATASYNC) || 4072 offset + length > i_size_read(inode)) 4073 iomap->flags |= IOMAP_F_DIRTY; 4074 4075 return 0; 4076 } 4077 4078 const struct iomap_ops f2fs_iomap_ops = { 4079 .iomap_begin = f2fs_iomap_begin, 4080 }; 4081