1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/data.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/buffer_head.h> 11 #include <linux/sched/mm.h> 12 #include <linux/mpage.h> 13 #include <linux/writeback.h> 14 #include <linux/pagevec.h> 15 #include <linux/blkdev.h> 16 #include <linux/bio.h> 17 #include <linux/blk-crypto.h> 18 #include <linux/swap.h> 19 #include <linux/prefetch.h> 20 #include <linux/uio.h> 21 #include <linux/sched/signal.h> 22 #include <linux/fiemap.h> 23 #include <linux/iomap.h> 24 25 #include "f2fs.h" 26 #include "node.h" 27 #include "segment.h" 28 #include "iostat.h" 29 #include <trace/events/f2fs.h> 30 31 #define NUM_PREALLOC_POST_READ_CTXS 128 32 33 static struct kmem_cache *bio_post_read_ctx_cache; 34 static struct kmem_cache *bio_entry_slab; 35 static mempool_t *bio_post_read_ctx_pool; 36 static struct bio_set f2fs_bioset; 37 38 #define F2FS_BIO_POOL_SIZE NR_CURSEG_TYPE 39 40 int __init f2fs_init_bioset(void) 41 { 42 return bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE, 43 0, BIOSET_NEED_BVECS); 44 } 45 46 void f2fs_destroy_bioset(void) 47 { 48 bioset_exit(&f2fs_bioset); 49 } 50 51 static bool __is_cp_guaranteed(struct page *page) 52 { 53 struct address_space *mapping = page->mapping; 54 struct inode *inode; 55 struct f2fs_sb_info *sbi; 56 57 if (!mapping) 58 return false; 59 60 inode = mapping->host; 61 sbi = F2FS_I_SB(inode); 62 63 if (inode->i_ino == F2FS_META_INO(sbi) || 64 inode->i_ino == F2FS_NODE_INO(sbi) || 65 S_ISDIR(inode->i_mode)) 66 return true; 67 68 if (f2fs_is_compressed_page(page)) 69 return false; 70 if ((S_ISREG(inode->i_mode) && IS_NOQUOTA(inode)) || 71 page_private_gcing(page)) 72 return true; 73 return false; 74 } 75 76 static enum count_type __read_io_type(struct page *page) 77 { 78 struct address_space *mapping = page_file_mapping(page); 79 80 if (mapping) { 81 struct inode *inode = mapping->host; 82 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 83 84 if (inode->i_ino == F2FS_META_INO(sbi)) 85 return F2FS_RD_META; 86 87 if (inode->i_ino == F2FS_NODE_INO(sbi)) 88 return F2FS_RD_NODE; 89 } 90 return F2FS_RD_DATA; 91 } 92 93 /* postprocessing steps for read bios */ 94 enum bio_post_read_step { 95 #ifdef CONFIG_FS_ENCRYPTION 96 STEP_DECRYPT = BIT(0), 97 #else 98 STEP_DECRYPT = 0, /* compile out the decryption-related code */ 99 #endif 100 #ifdef CONFIG_F2FS_FS_COMPRESSION 101 STEP_DECOMPRESS = BIT(1), 102 #else 103 STEP_DECOMPRESS = 0, /* compile out the decompression-related code */ 104 #endif 105 #ifdef CONFIG_FS_VERITY 106 STEP_VERITY = BIT(2), 107 #else 108 STEP_VERITY = 0, /* compile out the verity-related code */ 109 #endif 110 }; 111 112 struct bio_post_read_ctx { 113 struct bio *bio; 114 struct f2fs_sb_info *sbi; 115 struct work_struct work; 116 unsigned int enabled_steps; 117 /* 118 * decompression_attempted keeps track of whether 119 * f2fs_end_read_compressed_page() has been called on the pages in the 120 * bio that belong to a compressed cluster yet. 121 */ 122 bool decompression_attempted; 123 block_t fs_blkaddr; 124 }; 125 126 /* 127 * Update and unlock a bio's pages, and free the bio. 128 * 129 * This marks pages up-to-date only if there was no error in the bio (I/O error, 130 * decryption error, or verity error), as indicated by bio->bi_status. 131 * 132 * "Compressed pages" (pagecache pages backed by a compressed cluster on-disk) 133 * aren't marked up-to-date here, as decompression is done on a per-compression- 134 * cluster basis rather than a per-bio basis. Instead, we only must do two 135 * things for each compressed page here: call f2fs_end_read_compressed_page() 136 * with failed=true if an error occurred before it would have normally gotten 137 * called (i.e., I/O error or decryption error, but *not* verity error), and 138 * release the bio's reference to the decompress_io_ctx of the page's cluster. 139 */ 140 static void f2fs_finish_read_bio(struct bio *bio, bool in_task) 141 { 142 struct bio_vec *bv; 143 struct bvec_iter_all iter_all; 144 struct bio_post_read_ctx *ctx = bio->bi_private; 145 146 bio_for_each_segment_all(bv, bio, iter_all) { 147 struct page *page = bv->bv_page; 148 149 if (f2fs_is_compressed_page(page)) { 150 if (ctx && !ctx->decompression_attempted) 151 f2fs_end_read_compressed_page(page, true, 0, 152 in_task); 153 f2fs_put_page_dic(page, in_task); 154 continue; 155 } 156 157 if (bio->bi_status) 158 ClearPageUptodate(page); 159 else 160 SetPageUptodate(page); 161 dec_page_count(F2FS_P_SB(page), __read_io_type(page)); 162 unlock_page(page); 163 } 164 165 if (ctx) 166 mempool_free(ctx, bio_post_read_ctx_pool); 167 bio_put(bio); 168 } 169 170 static void f2fs_verify_bio(struct work_struct *work) 171 { 172 struct bio_post_read_ctx *ctx = 173 container_of(work, struct bio_post_read_ctx, work); 174 struct bio *bio = ctx->bio; 175 bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS); 176 177 /* 178 * fsverity_verify_bio() may call readahead() again, and while verity 179 * will be disabled for this, decryption and/or decompression may still 180 * be needed, resulting in another bio_post_read_ctx being allocated. 181 * So to prevent deadlocks we need to release the current ctx to the 182 * mempool first. This assumes that verity is the last post-read step. 183 */ 184 mempool_free(ctx, bio_post_read_ctx_pool); 185 bio->bi_private = NULL; 186 187 /* 188 * Verify the bio's pages with fs-verity. Exclude compressed pages, 189 * as those were handled separately by f2fs_end_read_compressed_page(). 190 */ 191 if (may_have_compressed_pages) { 192 struct bio_vec *bv; 193 struct bvec_iter_all iter_all; 194 195 bio_for_each_segment_all(bv, bio, iter_all) { 196 struct page *page = bv->bv_page; 197 198 if (!f2fs_is_compressed_page(page) && 199 !fsverity_verify_page(page)) { 200 bio->bi_status = BLK_STS_IOERR; 201 break; 202 } 203 } 204 } else { 205 fsverity_verify_bio(bio); 206 } 207 208 f2fs_finish_read_bio(bio, true); 209 } 210 211 /* 212 * If the bio's data needs to be verified with fs-verity, then enqueue the 213 * verity work for the bio. Otherwise finish the bio now. 214 * 215 * Note that to avoid deadlocks, the verity work can't be done on the 216 * decryption/decompression workqueue. This is because verifying the data pages 217 * can involve reading verity metadata pages from the file, and these verity 218 * metadata pages may be encrypted and/or compressed. 219 */ 220 static void f2fs_verify_and_finish_bio(struct bio *bio, bool in_task) 221 { 222 struct bio_post_read_ctx *ctx = bio->bi_private; 223 224 if (ctx && (ctx->enabled_steps & STEP_VERITY)) { 225 INIT_WORK(&ctx->work, f2fs_verify_bio); 226 fsverity_enqueue_verify_work(&ctx->work); 227 } else { 228 f2fs_finish_read_bio(bio, in_task); 229 } 230 } 231 232 /* 233 * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last 234 * remaining page was read by @ctx->bio. 235 * 236 * Note that a bio may span clusters (even a mix of compressed and uncompressed 237 * clusters) or be for just part of a cluster. STEP_DECOMPRESS just indicates 238 * that the bio includes at least one compressed page. The actual decompression 239 * is done on a per-cluster basis, not a per-bio basis. 240 */ 241 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx, 242 bool in_task) 243 { 244 struct bio_vec *bv; 245 struct bvec_iter_all iter_all; 246 bool all_compressed = true; 247 block_t blkaddr = ctx->fs_blkaddr; 248 249 bio_for_each_segment_all(bv, ctx->bio, iter_all) { 250 struct page *page = bv->bv_page; 251 252 if (f2fs_is_compressed_page(page)) 253 f2fs_end_read_compressed_page(page, false, blkaddr, 254 in_task); 255 else 256 all_compressed = false; 257 258 blkaddr++; 259 } 260 261 ctx->decompression_attempted = true; 262 263 /* 264 * Optimization: if all the bio's pages are compressed, then scheduling 265 * the per-bio verity work is unnecessary, as verity will be fully 266 * handled at the compression cluster level. 267 */ 268 if (all_compressed) 269 ctx->enabled_steps &= ~STEP_VERITY; 270 } 271 272 static void f2fs_post_read_work(struct work_struct *work) 273 { 274 struct bio_post_read_ctx *ctx = 275 container_of(work, struct bio_post_read_ctx, work); 276 struct bio *bio = ctx->bio; 277 278 if ((ctx->enabled_steps & STEP_DECRYPT) && !fscrypt_decrypt_bio(bio)) { 279 f2fs_finish_read_bio(bio, true); 280 return; 281 } 282 283 if (ctx->enabled_steps & STEP_DECOMPRESS) 284 f2fs_handle_step_decompress(ctx, true); 285 286 f2fs_verify_and_finish_bio(bio, true); 287 } 288 289 static void f2fs_read_end_io(struct bio *bio) 290 { 291 struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio)); 292 struct bio_post_read_ctx *ctx; 293 bool intask = in_task(); 294 295 iostat_update_and_unbind_ctx(bio); 296 ctx = bio->bi_private; 297 298 if (time_to_inject(sbi, FAULT_READ_IO)) 299 bio->bi_status = BLK_STS_IOERR; 300 301 if (bio->bi_status) { 302 f2fs_finish_read_bio(bio, intask); 303 return; 304 } 305 306 if (ctx) { 307 unsigned int enabled_steps = ctx->enabled_steps & 308 (STEP_DECRYPT | STEP_DECOMPRESS); 309 310 /* 311 * If we have only decompression step between decompression and 312 * decrypt, we don't need post processing for this. 313 */ 314 if (enabled_steps == STEP_DECOMPRESS && 315 !f2fs_low_mem_mode(sbi)) { 316 f2fs_handle_step_decompress(ctx, intask); 317 } else if (enabled_steps) { 318 INIT_WORK(&ctx->work, f2fs_post_read_work); 319 queue_work(ctx->sbi->post_read_wq, &ctx->work); 320 return; 321 } 322 } 323 324 f2fs_verify_and_finish_bio(bio, intask); 325 } 326 327 static void f2fs_write_end_io(struct bio *bio) 328 { 329 struct f2fs_sb_info *sbi; 330 struct bio_vec *bvec; 331 struct bvec_iter_all iter_all; 332 333 iostat_update_and_unbind_ctx(bio); 334 sbi = bio->bi_private; 335 336 if (time_to_inject(sbi, FAULT_WRITE_IO)) 337 bio->bi_status = BLK_STS_IOERR; 338 339 bio_for_each_segment_all(bvec, bio, iter_all) { 340 struct page *page = bvec->bv_page; 341 enum count_type type = WB_DATA_TYPE(page); 342 343 if (page_private_dummy(page)) { 344 clear_page_private_dummy(page); 345 unlock_page(page); 346 mempool_free(page, sbi->write_io_dummy); 347 348 if (unlikely(bio->bi_status)) 349 f2fs_stop_checkpoint(sbi, true, 350 STOP_CP_REASON_WRITE_FAIL); 351 continue; 352 } 353 354 fscrypt_finalize_bounce_page(&page); 355 356 #ifdef CONFIG_F2FS_FS_COMPRESSION 357 if (f2fs_is_compressed_page(page)) { 358 f2fs_compress_write_end_io(bio, page); 359 continue; 360 } 361 #endif 362 363 if (unlikely(bio->bi_status)) { 364 mapping_set_error(page->mapping, -EIO); 365 if (type == F2FS_WB_CP_DATA) 366 f2fs_stop_checkpoint(sbi, true, 367 STOP_CP_REASON_WRITE_FAIL); 368 } 369 370 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) && 371 page->index != nid_of_node(page)); 372 373 dec_page_count(sbi, type); 374 if (f2fs_in_warm_node_list(sbi, page)) 375 f2fs_del_fsync_node_entry(sbi, page); 376 clear_page_private_gcing(page); 377 end_page_writeback(page); 378 } 379 if (!get_pages(sbi, F2FS_WB_CP_DATA) && 380 wq_has_sleeper(&sbi->cp_wait)) 381 wake_up(&sbi->cp_wait); 382 383 bio_put(bio); 384 } 385 386 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 387 block_t blk_addr, sector_t *sector) 388 { 389 struct block_device *bdev = sbi->sb->s_bdev; 390 int i; 391 392 if (f2fs_is_multi_device(sbi)) { 393 for (i = 0; i < sbi->s_ndevs; i++) { 394 if (FDEV(i).start_blk <= blk_addr && 395 FDEV(i).end_blk >= blk_addr) { 396 blk_addr -= FDEV(i).start_blk; 397 bdev = FDEV(i).bdev; 398 break; 399 } 400 } 401 } 402 403 if (sector) 404 *sector = SECTOR_FROM_BLOCK(blk_addr); 405 return bdev; 406 } 407 408 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr) 409 { 410 int i; 411 412 if (!f2fs_is_multi_device(sbi)) 413 return 0; 414 415 for (i = 0; i < sbi->s_ndevs; i++) 416 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr) 417 return i; 418 return 0; 419 } 420 421 static blk_opf_t f2fs_io_flags(struct f2fs_io_info *fio) 422 { 423 unsigned int temp_mask = GENMASK(NR_TEMP_TYPE - 1, 0); 424 unsigned int fua_flag, meta_flag, io_flag; 425 blk_opf_t op_flags = 0; 426 427 if (fio->op != REQ_OP_WRITE) 428 return 0; 429 if (fio->type == DATA) 430 io_flag = fio->sbi->data_io_flag; 431 else if (fio->type == NODE) 432 io_flag = fio->sbi->node_io_flag; 433 else 434 return 0; 435 436 fua_flag = io_flag & temp_mask; 437 meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask; 438 439 /* 440 * data/node io flag bits per temp: 441 * REQ_META | REQ_FUA | 442 * 5 | 4 | 3 | 2 | 1 | 0 | 443 * Cold | Warm | Hot | Cold | Warm | Hot | 444 */ 445 if (BIT(fio->temp) & meta_flag) 446 op_flags |= REQ_META; 447 if (BIT(fio->temp) & fua_flag) 448 op_flags |= REQ_FUA; 449 return op_flags; 450 } 451 452 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages) 453 { 454 struct f2fs_sb_info *sbi = fio->sbi; 455 struct block_device *bdev; 456 sector_t sector; 457 struct bio *bio; 458 459 bdev = f2fs_target_device(sbi, fio->new_blkaddr, §or); 460 bio = bio_alloc_bioset(bdev, npages, 461 fio->op | fio->op_flags | f2fs_io_flags(fio), 462 GFP_NOIO, &f2fs_bioset); 463 bio->bi_iter.bi_sector = sector; 464 if (is_read_io(fio->op)) { 465 bio->bi_end_io = f2fs_read_end_io; 466 bio->bi_private = NULL; 467 } else { 468 bio->bi_end_io = f2fs_write_end_io; 469 bio->bi_private = sbi; 470 } 471 iostat_alloc_and_bind_ctx(sbi, bio, NULL); 472 473 if (fio->io_wbc) 474 wbc_init_bio(fio->io_wbc, bio); 475 476 return bio; 477 } 478 479 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode, 480 pgoff_t first_idx, 481 const struct f2fs_io_info *fio, 482 gfp_t gfp_mask) 483 { 484 /* 485 * The f2fs garbage collector sets ->encrypted_page when it wants to 486 * read/write raw data without encryption. 487 */ 488 if (!fio || !fio->encrypted_page) 489 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask); 490 } 491 492 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode, 493 pgoff_t next_idx, 494 const struct f2fs_io_info *fio) 495 { 496 /* 497 * The f2fs garbage collector sets ->encrypted_page when it wants to 498 * read/write raw data without encryption. 499 */ 500 if (fio && fio->encrypted_page) 501 return !bio_has_crypt_ctx(bio); 502 503 return fscrypt_mergeable_bio(bio, inode, next_idx); 504 } 505 506 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio, 507 enum page_type type) 508 { 509 WARN_ON_ONCE(!is_read_io(bio_op(bio))); 510 trace_f2fs_submit_read_bio(sbi->sb, type, bio); 511 512 iostat_update_submit_ctx(bio, type); 513 submit_bio(bio); 514 } 515 516 static void f2fs_align_write_bio(struct f2fs_sb_info *sbi, struct bio *bio) 517 { 518 unsigned int start = 519 (bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS) % F2FS_IO_SIZE(sbi); 520 521 if (start == 0) 522 return; 523 524 /* fill dummy pages */ 525 for (; start < F2FS_IO_SIZE(sbi); start++) { 526 struct page *page = 527 mempool_alloc(sbi->write_io_dummy, 528 GFP_NOIO | __GFP_NOFAIL); 529 f2fs_bug_on(sbi, !page); 530 531 lock_page(page); 532 533 zero_user_segment(page, 0, PAGE_SIZE); 534 set_page_private_dummy(page); 535 536 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) 537 f2fs_bug_on(sbi, 1); 538 } 539 } 540 541 static void f2fs_submit_write_bio(struct f2fs_sb_info *sbi, struct bio *bio, 542 enum page_type type) 543 { 544 WARN_ON_ONCE(is_read_io(bio_op(bio))); 545 546 if (type == DATA || type == NODE) { 547 if (f2fs_lfs_mode(sbi) && current->plug) 548 blk_finish_plug(current->plug); 549 550 if (F2FS_IO_ALIGNED(sbi)) { 551 f2fs_align_write_bio(sbi, bio); 552 /* 553 * In the NODE case, we lose next block address chain. 554 * So, we need to do checkpoint in f2fs_sync_file. 555 */ 556 if (type == NODE) 557 set_sbi_flag(sbi, SBI_NEED_CP); 558 } 559 } 560 561 trace_f2fs_submit_write_bio(sbi->sb, type, bio); 562 iostat_update_submit_ctx(bio, type); 563 submit_bio(bio); 564 } 565 566 static void __submit_merged_bio(struct f2fs_bio_info *io) 567 { 568 struct f2fs_io_info *fio = &io->fio; 569 570 if (!io->bio) 571 return; 572 573 if (is_read_io(fio->op)) { 574 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio); 575 f2fs_submit_read_bio(io->sbi, io->bio, fio->type); 576 } else { 577 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio); 578 f2fs_submit_write_bio(io->sbi, io->bio, fio->type); 579 } 580 io->bio = NULL; 581 } 582 583 static bool __has_merged_page(struct bio *bio, struct inode *inode, 584 struct page *page, nid_t ino) 585 { 586 struct bio_vec *bvec; 587 struct bvec_iter_all iter_all; 588 589 if (!bio) 590 return false; 591 592 if (!inode && !page && !ino) 593 return true; 594 595 bio_for_each_segment_all(bvec, bio, iter_all) { 596 struct page *target = bvec->bv_page; 597 598 if (fscrypt_is_bounce_page(target)) { 599 target = fscrypt_pagecache_page(target); 600 if (IS_ERR(target)) 601 continue; 602 } 603 if (f2fs_is_compressed_page(target)) { 604 target = f2fs_compress_control_page(target); 605 if (IS_ERR(target)) 606 continue; 607 } 608 609 if (inode && inode == target->mapping->host) 610 return true; 611 if (page && page == target) 612 return true; 613 if (ino && ino == ino_of_node(target)) 614 return true; 615 } 616 617 return false; 618 } 619 620 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi) 621 { 622 int i; 623 624 for (i = 0; i < NR_PAGE_TYPE; i++) { 625 int n = (i == META) ? 1 : NR_TEMP_TYPE; 626 int j; 627 628 sbi->write_io[i] = f2fs_kmalloc(sbi, 629 array_size(n, sizeof(struct f2fs_bio_info)), 630 GFP_KERNEL); 631 if (!sbi->write_io[i]) 632 return -ENOMEM; 633 634 for (j = HOT; j < n; j++) { 635 init_f2fs_rwsem(&sbi->write_io[i][j].io_rwsem); 636 sbi->write_io[i][j].sbi = sbi; 637 sbi->write_io[i][j].bio = NULL; 638 spin_lock_init(&sbi->write_io[i][j].io_lock); 639 INIT_LIST_HEAD(&sbi->write_io[i][j].io_list); 640 INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list); 641 init_f2fs_rwsem(&sbi->write_io[i][j].bio_list_lock); 642 } 643 } 644 645 return 0; 646 } 647 648 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi, 649 enum page_type type, enum temp_type temp) 650 { 651 enum page_type btype = PAGE_TYPE_OF_BIO(type); 652 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 653 654 f2fs_down_write(&io->io_rwsem); 655 656 if (!io->bio) 657 goto unlock_out; 658 659 /* change META to META_FLUSH in the checkpoint procedure */ 660 if (type >= META_FLUSH) { 661 io->fio.type = META_FLUSH; 662 io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC; 663 if (!test_opt(sbi, NOBARRIER)) 664 io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA; 665 } 666 __submit_merged_bio(io); 667 unlock_out: 668 f2fs_up_write(&io->io_rwsem); 669 } 670 671 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi, 672 struct inode *inode, struct page *page, 673 nid_t ino, enum page_type type, bool force) 674 { 675 enum temp_type temp; 676 bool ret = true; 677 678 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) { 679 if (!force) { 680 enum page_type btype = PAGE_TYPE_OF_BIO(type); 681 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 682 683 f2fs_down_read(&io->io_rwsem); 684 ret = __has_merged_page(io->bio, inode, page, ino); 685 f2fs_up_read(&io->io_rwsem); 686 } 687 if (ret) 688 __f2fs_submit_merged_write(sbi, type, temp); 689 690 /* TODO: use HOT temp only for meta pages now. */ 691 if (type >= META) 692 break; 693 } 694 } 695 696 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type) 697 { 698 __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true); 699 } 700 701 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 702 struct inode *inode, struct page *page, 703 nid_t ino, enum page_type type) 704 { 705 __submit_merged_write_cond(sbi, inode, page, ino, type, false); 706 } 707 708 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi) 709 { 710 f2fs_submit_merged_write(sbi, DATA); 711 f2fs_submit_merged_write(sbi, NODE); 712 f2fs_submit_merged_write(sbi, META); 713 } 714 715 /* 716 * Fill the locked page with data located in the block address. 717 * A caller needs to unlock the page on failure. 718 */ 719 int f2fs_submit_page_bio(struct f2fs_io_info *fio) 720 { 721 struct bio *bio; 722 struct page *page = fio->encrypted_page ? 723 fio->encrypted_page : fio->page; 724 725 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, 726 fio->is_por ? META_POR : (__is_meta_io(fio) ? 727 META_GENERIC : DATA_GENERIC_ENHANCE))) { 728 f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR); 729 return -EFSCORRUPTED; 730 } 731 732 trace_f2fs_submit_page_bio(page, fio); 733 734 /* Allocate a new bio */ 735 bio = __bio_alloc(fio, 1); 736 737 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host, 738 fio->page->index, fio, GFP_NOIO); 739 740 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 741 bio_put(bio); 742 return -EFAULT; 743 } 744 745 if (fio->io_wbc && !is_read_io(fio->op)) 746 wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE); 747 748 inc_page_count(fio->sbi, is_read_io(fio->op) ? 749 __read_io_type(page) : WB_DATA_TYPE(fio->page)); 750 751 if (is_read_io(bio_op(bio))) 752 f2fs_submit_read_bio(fio->sbi, bio, fio->type); 753 else 754 f2fs_submit_write_bio(fio->sbi, bio, fio->type); 755 return 0; 756 } 757 758 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio, 759 block_t last_blkaddr, block_t cur_blkaddr) 760 { 761 if (unlikely(sbi->max_io_bytes && 762 bio->bi_iter.bi_size >= sbi->max_io_bytes)) 763 return false; 764 if (last_blkaddr + 1 != cur_blkaddr) 765 return false; 766 return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL); 767 } 768 769 static bool io_type_is_mergeable(struct f2fs_bio_info *io, 770 struct f2fs_io_info *fio) 771 { 772 if (io->fio.op != fio->op) 773 return false; 774 return io->fio.op_flags == fio->op_flags; 775 } 776 777 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio, 778 struct f2fs_bio_info *io, 779 struct f2fs_io_info *fio, 780 block_t last_blkaddr, 781 block_t cur_blkaddr) 782 { 783 if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) { 784 unsigned int filled_blocks = 785 F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size); 786 unsigned int io_size = F2FS_IO_SIZE(sbi); 787 unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt; 788 789 /* IOs in bio is aligned and left space of vectors is not enough */ 790 if (!(filled_blocks % io_size) && left_vecs < io_size) 791 return false; 792 } 793 if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr)) 794 return false; 795 return io_type_is_mergeable(io, fio); 796 } 797 798 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio, 799 struct page *page, enum temp_type temp) 800 { 801 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 802 struct bio_entry *be; 803 804 be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL); 805 be->bio = bio; 806 bio_get(bio); 807 808 if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE) 809 f2fs_bug_on(sbi, 1); 810 811 f2fs_down_write(&io->bio_list_lock); 812 list_add_tail(&be->list, &io->bio_list); 813 f2fs_up_write(&io->bio_list_lock); 814 } 815 816 static void del_bio_entry(struct bio_entry *be) 817 { 818 list_del(&be->list); 819 kmem_cache_free(bio_entry_slab, be); 820 } 821 822 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio, 823 struct page *page) 824 { 825 struct f2fs_sb_info *sbi = fio->sbi; 826 enum temp_type temp; 827 bool found = false; 828 int ret = -EAGAIN; 829 830 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) { 831 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 832 struct list_head *head = &io->bio_list; 833 struct bio_entry *be; 834 835 f2fs_down_write(&io->bio_list_lock); 836 list_for_each_entry(be, head, list) { 837 if (be->bio != *bio) 838 continue; 839 840 found = true; 841 842 f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio, 843 *fio->last_block, 844 fio->new_blkaddr)); 845 if (f2fs_crypt_mergeable_bio(*bio, 846 fio->page->mapping->host, 847 fio->page->index, fio) && 848 bio_add_page(*bio, page, PAGE_SIZE, 0) == 849 PAGE_SIZE) { 850 ret = 0; 851 break; 852 } 853 854 /* page can't be merged into bio; submit the bio */ 855 del_bio_entry(be); 856 f2fs_submit_write_bio(sbi, *bio, DATA); 857 break; 858 } 859 f2fs_up_write(&io->bio_list_lock); 860 } 861 862 if (ret) { 863 bio_put(*bio); 864 *bio = NULL; 865 } 866 867 return ret; 868 } 869 870 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi, 871 struct bio **bio, struct page *page) 872 { 873 enum temp_type temp; 874 bool found = false; 875 struct bio *target = bio ? *bio : NULL; 876 877 f2fs_bug_on(sbi, !target && !page); 878 879 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) { 880 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 881 struct list_head *head = &io->bio_list; 882 struct bio_entry *be; 883 884 if (list_empty(head)) 885 continue; 886 887 f2fs_down_read(&io->bio_list_lock); 888 list_for_each_entry(be, head, list) { 889 if (target) 890 found = (target == be->bio); 891 else 892 found = __has_merged_page(be->bio, NULL, 893 page, 0); 894 if (found) 895 break; 896 } 897 f2fs_up_read(&io->bio_list_lock); 898 899 if (!found) 900 continue; 901 902 found = false; 903 904 f2fs_down_write(&io->bio_list_lock); 905 list_for_each_entry(be, head, list) { 906 if (target) 907 found = (target == be->bio); 908 else 909 found = __has_merged_page(be->bio, NULL, 910 page, 0); 911 if (found) { 912 target = be->bio; 913 del_bio_entry(be); 914 break; 915 } 916 } 917 f2fs_up_write(&io->bio_list_lock); 918 } 919 920 if (found) 921 f2fs_submit_write_bio(sbi, target, DATA); 922 if (bio && *bio) { 923 bio_put(*bio); 924 *bio = NULL; 925 } 926 } 927 928 int f2fs_merge_page_bio(struct f2fs_io_info *fio) 929 { 930 struct bio *bio = *fio->bio; 931 struct page *page = fio->encrypted_page ? 932 fio->encrypted_page : fio->page; 933 934 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, 935 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC)) { 936 f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR); 937 return -EFSCORRUPTED; 938 } 939 940 trace_f2fs_submit_page_bio(page, fio); 941 942 if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block, 943 fio->new_blkaddr)) 944 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL); 945 alloc_new: 946 if (!bio) { 947 bio = __bio_alloc(fio, BIO_MAX_VECS); 948 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host, 949 fio->page->index, fio, GFP_NOIO); 950 951 add_bio_entry(fio->sbi, bio, page, fio->temp); 952 } else { 953 if (add_ipu_page(fio, &bio, page)) 954 goto alloc_new; 955 } 956 957 if (fio->io_wbc) 958 wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE); 959 960 inc_page_count(fio->sbi, WB_DATA_TYPE(page)); 961 962 *fio->last_block = fio->new_blkaddr; 963 *fio->bio = bio; 964 965 return 0; 966 } 967 968 void f2fs_submit_page_write(struct f2fs_io_info *fio) 969 { 970 struct f2fs_sb_info *sbi = fio->sbi; 971 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type); 972 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp; 973 struct page *bio_page; 974 975 f2fs_bug_on(sbi, is_read_io(fio->op)); 976 977 f2fs_down_write(&io->io_rwsem); 978 next: 979 if (fio->in_list) { 980 spin_lock(&io->io_lock); 981 if (list_empty(&io->io_list)) { 982 spin_unlock(&io->io_lock); 983 goto out; 984 } 985 fio = list_first_entry(&io->io_list, 986 struct f2fs_io_info, list); 987 list_del(&fio->list); 988 spin_unlock(&io->io_lock); 989 } 990 991 verify_fio_blkaddr(fio); 992 993 if (fio->encrypted_page) 994 bio_page = fio->encrypted_page; 995 else if (fio->compressed_page) 996 bio_page = fio->compressed_page; 997 else 998 bio_page = fio->page; 999 1000 /* set submitted = true as a return value */ 1001 fio->submitted = 1; 1002 1003 inc_page_count(sbi, WB_DATA_TYPE(bio_page)); 1004 1005 if (io->bio && 1006 (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio, 1007 fio->new_blkaddr) || 1008 !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host, 1009 bio_page->index, fio))) 1010 __submit_merged_bio(io); 1011 alloc_new: 1012 if (io->bio == NULL) { 1013 if (F2FS_IO_ALIGNED(sbi) && 1014 (fio->type == DATA || fio->type == NODE) && 1015 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) { 1016 dec_page_count(sbi, WB_DATA_TYPE(bio_page)); 1017 fio->retry = 1; 1018 goto skip; 1019 } 1020 io->bio = __bio_alloc(fio, BIO_MAX_VECS); 1021 f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host, 1022 bio_page->index, fio, GFP_NOIO); 1023 io->fio = *fio; 1024 } 1025 1026 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) { 1027 __submit_merged_bio(io); 1028 goto alloc_new; 1029 } 1030 1031 if (fio->io_wbc) 1032 wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE); 1033 1034 io->last_block_in_bio = fio->new_blkaddr; 1035 1036 trace_f2fs_submit_page_write(fio->page, fio); 1037 skip: 1038 if (fio->in_list) 1039 goto next; 1040 out: 1041 if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || 1042 !f2fs_is_checkpoint_ready(sbi)) 1043 __submit_merged_bio(io); 1044 f2fs_up_write(&io->io_rwsem); 1045 } 1046 1047 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr, 1048 unsigned nr_pages, blk_opf_t op_flag, 1049 pgoff_t first_idx, bool for_write) 1050 { 1051 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1052 struct bio *bio; 1053 struct bio_post_read_ctx *ctx = NULL; 1054 unsigned int post_read_steps = 0; 1055 sector_t sector; 1056 struct block_device *bdev = f2fs_target_device(sbi, blkaddr, §or); 1057 1058 bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages), 1059 REQ_OP_READ | op_flag, 1060 for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset); 1061 if (!bio) 1062 return ERR_PTR(-ENOMEM); 1063 bio->bi_iter.bi_sector = sector; 1064 f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS); 1065 bio->bi_end_io = f2fs_read_end_io; 1066 1067 if (fscrypt_inode_uses_fs_layer_crypto(inode)) 1068 post_read_steps |= STEP_DECRYPT; 1069 1070 if (f2fs_need_verity(inode, first_idx)) 1071 post_read_steps |= STEP_VERITY; 1072 1073 /* 1074 * STEP_DECOMPRESS is handled specially, since a compressed file might 1075 * contain both compressed and uncompressed clusters. We'll allocate a 1076 * bio_post_read_ctx if the file is compressed, but the caller is 1077 * responsible for enabling STEP_DECOMPRESS if it's actually needed. 1078 */ 1079 1080 if (post_read_steps || f2fs_compressed_file(inode)) { 1081 /* Due to the mempool, this never fails. */ 1082 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS); 1083 ctx->bio = bio; 1084 ctx->sbi = sbi; 1085 ctx->enabled_steps = post_read_steps; 1086 ctx->fs_blkaddr = blkaddr; 1087 ctx->decompression_attempted = false; 1088 bio->bi_private = ctx; 1089 } 1090 iostat_alloc_and_bind_ctx(sbi, bio, ctx); 1091 1092 return bio; 1093 } 1094 1095 /* This can handle encryption stuffs */ 1096 static int f2fs_submit_page_read(struct inode *inode, struct page *page, 1097 block_t blkaddr, blk_opf_t op_flags, 1098 bool for_write) 1099 { 1100 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1101 struct bio *bio; 1102 1103 bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags, 1104 page->index, for_write); 1105 if (IS_ERR(bio)) 1106 return PTR_ERR(bio); 1107 1108 /* wait for GCed page writeback via META_MAPPING */ 1109 f2fs_wait_on_block_writeback(inode, blkaddr); 1110 1111 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 1112 bio_put(bio); 1113 return -EFAULT; 1114 } 1115 inc_page_count(sbi, F2FS_RD_DATA); 1116 f2fs_update_iostat(sbi, NULL, FS_DATA_READ_IO, F2FS_BLKSIZE); 1117 f2fs_submit_read_bio(sbi, bio, DATA); 1118 return 0; 1119 } 1120 1121 static void __set_data_blkaddr(struct dnode_of_data *dn) 1122 { 1123 struct f2fs_node *rn = F2FS_NODE(dn->node_page); 1124 __le32 *addr_array; 1125 int base = 0; 1126 1127 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode)) 1128 base = get_extra_isize(dn->inode); 1129 1130 /* Get physical address of data block */ 1131 addr_array = blkaddr_in_node(rn); 1132 addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr); 1133 } 1134 1135 /* 1136 * Lock ordering for the change of data block address: 1137 * ->data_page 1138 * ->node_page 1139 * update block addresses in the node page 1140 */ 1141 void f2fs_set_data_blkaddr(struct dnode_of_data *dn) 1142 { 1143 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true); 1144 __set_data_blkaddr(dn); 1145 if (set_page_dirty(dn->node_page)) 1146 dn->node_changed = true; 1147 } 1148 1149 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) 1150 { 1151 dn->data_blkaddr = blkaddr; 1152 f2fs_set_data_blkaddr(dn); 1153 f2fs_update_read_extent_cache(dn); 1154 } 1155 1156 /* dn->ofs_in_node will be returned with up-to-date last block pointer */ 1157 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count) 1158 { 1159 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1160 int err; 1161 1162 if (!count) 1163 return 0; 1164 1165 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1166 return -EPERM; 1167 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count)))) 1168 return err; 1169 1170 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid, 1171 dn->ofs_in_node, count); 1172 1173 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true); 1174 1175 for (; count > 0; dn->ofs_in_node++) { 1176 block_t blkaddr = f2fs_data_blkaddr(dn); 1177 1178 if (blkaddr == NULL_ADDR) { 1179 dn->data_blkaddr = NEW_ADDR; 1180 __set_data_blkaddr(dn); 1181 count--; 1182 } 1183 } 1184 1185 if (set_page_dirty(dn->node_page)) 1186 dn->node_changed = true; 1187 return 0; 1188 } 1189 1190 /* Should keep dn->ofs_in_node unchanged */ 1191 int f2fs_reserve_new_block(struct dnode_of_data *dn) 1192 { 1193 unsigned int ofs_in_node = dn->ofs_in_node; 1194 int ret; 1195 1196 ret = f2fs_reserve_new_blocks(dn, 1); 1197 dn->ofs_in_node = ofs_in_node; 1198 return ret; 1199 } 1200 1201 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index) 1202 { 1203 bool need_put = dn->inode_page ? false : true; 1204 int err; 1205 1206 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE); 1207 if (err) 1208 return err; 1209 1210 if (dn->data_blkaddr == NULL_ADDR) 1211 err = f2fs_reserve_new_block(dn); 1212 if (err || need_put) 1213 f2fs_put_dnode(dn); 1214 return err; 1215 } 1216 1217 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index, 1218 blk_opf_t op_flags, bool for_write, 1219 pgoff_t *next_pgofs) 1220 { 1221 struct address_space *mapping = inode->i_mapping; 1222 struct dnode_of_data dn; 1223 struct page *page; 1224 int err; 1225 1226 page = f2fs_grab_cache_page(mapping, index, for_write); 1227 if (!page) 1228 return ERR_PTR(-ENOMEM); 1229 1230 if (f2fs_lookup_read_extent_cache_block(inode, index, 1231 &dn.data_blkaddr)) { 1232 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr, 1233 DATA_GENERIC_ENHANCE_READ)) { 1234 err = -EFSCORRUPTED; 1235 f2fs_handle_error(F2FS_I_SB(inode), 1236 ERROR_INVALID_BLKADDR); 1237 goto put_err; 1238 } 1239 goto got_it; 1240 } 1241 1242 set_new_dnode(&dn, inode, NULL, NULL, 0); 1243 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 1244 if (err) { 1245 if (err == -ENOENT && next_pgofs) 1246 *next_pgofs = f2fs_get_next_page_offset(&dn, index); 1247 goto put_err; 1248 } 1249 f2fs_put_dnode(&dn); 1250 1251 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { 1252 err = -ENOENT; 1253 if (next_pgofs) 1254 *next_pgofs = index + 1; 1255 goto put_err; 1256 } 1257 if (dn.data_blkaddr != NEW_ADDR && 1258 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode), 1259 dn.data_blkaddr, 1260 DATA_GENERIC_ENHANCE)) { 1261 err = -EFSCORRUPTED; 1262 f2fs_handle_error(F2FS_I_SB(inode), 1263 ERROR_INVALID_BLKADDR); 1264 goto put_err; 1265 } 1266 got_it: 1267 if (PageUptodate(page)) { 1268 unlock_page(page); 1269 return page; 1270 } 1271 1272 /* 1273 * A new dentry page is allocated but not able to be written, since its 1274 * new inode page couldn't be allocated due to -ENOSPC. 1275 * In such the case, its blkaddr can be remained as NEW_ADDR. 1276 * see, f2fs_add_link -> f2fs_get_new_data_page -> 1277 * f2fs_init_inode_metadata. 1278 */ 1279 if (dn.data_blkaddr == NEW_ADDR) { 1280 zero_user_segment(page, 0, PAGE_SIZE); 1281 if (!PageUptodate(page)) 1282 SetPageUptodate(page); 1283 unlock_page(page); 1284 return page; 1285 } 1286 1287 err = f2fs_submit_page_read(inode, page, dn.data_blkaddr, 1288 op_flags, for_write); 1289 if (err) 1290 goto put_err; 1291 return page; 1292 1293 put_err: 1294 f2fs_put_page(page, 1); 1295 return ERR_PTR(err); 1296 } 1297 1298 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index, 1299 pgoff_t *next_pgofs) 1300 { 1301 struct address_space *mapping = inode->i_mapping; 1302 struct page *page; 1303 1304 page = find_get_page(mapping, index); 1305 if (page && PageUptodate(page)) 1306 return page; 1307 f2fs_put_page(page, 0); 1308 1309 page = f2fs_get_read_data_page(inode, index, 0, false, next_pgofs); 1310 if (IS_ERR(page)) 1311 return page; 1312 1313 if (PageUptodate(page)) 1314 return page; 1315 1316 wait_on_page_locked(page); 1317 if (unlikely(!PageUptodate(page))) { 1318 f2fs_put_page(page, 0); 1319 return ERR_PTR(-EIO); 1320 } 1321 return page; 1322 } 1323 1324 /* 1325 * If it tries to access a hole, return an error. 1326 * Because, the callers, functions in dir.c and GC, should be able to know 1327 * whether this page exists or not. 1328 */ 1329 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index, 1330 bool for_write) 1331 { 1332 struct address_space *mapping = inode->i_mapping; 1333 struct page *page; 1334 repeat: 1335 page = f2fs_get_read_data_page(inode, index, 0, for_write, NULL); 1336 if (IS_ERR(page)) 1337 return page; 1338 1339 /* wait for read completion */ 1340 lock_page(page); 1341 if (unlikely(page->mapping != mapping)) { 1342 f2fs_put_page(page, 1); 1343 goto repeat; 1344 } 1345 if (unlikely(!PageUptodate(page))) { 1346 f2fs_put_page(page, 1); 1347 return ERR_PTR(-EIO); 1348 } 1349 return page; 1350 } 1351 1352 /* 1353 * Caller ensures that this data page is never allocated. 1354 * A new zero-filled data page is allocated in the page cache. 1355 * 1356 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and 1357 * f2fs_unlock_op(). 1358 * Note that, ipage is set only by make_empty_dir, and if any error occur, 1359 * ipage should be released by this function. 1360 */ 1361 struct page *f2fs_get_new_data_page(struct inode *inode, 1362 struct page *ipage, pgoff_t index, bool new_i_size) 1363 { 1364 struct address_space *mapping = inode->i_mapping; 1365 struct page *page; 1366 struct dnode_of_data dn; 1367 int err; 1368 1369 page = f2fs_grab_cache_page(mapping, index, true); 1370 if (!page) { 1371 /* 1372 * before exiting, we should make sure ipage will be released 1373 * if any error occur. 1374 */ 1375 f2fs_put_page(ipage, 1); 1376 return ERR_PTR(-ENOMEM); 1377 } 1378 1379 set_new_dnode(&dn, inode, ipage, NULL, 0); 1380 err = f2fs_reserve_block(&dn, index); 1381 if (err) { 1382 f2fs_put_page(page, 1); 1383 return ERR_PTR(err); 1384 } 1385 if (!ipage) 1386 f2fs_put_dnode(&dn); 1387 1388 if (PageUptodate(page)) 1389 goto got_it; 1390 1391 if (dn.data_blkaddr == NEW_ADDR) { 1392 zero_user_segment(page, 0, PAGE_SIZE); 1393 if (!PageUptodate(page)) 1394 SetPageUptodate(page); 1395 } else { 1396 f2fs_put_page(page, 1); 1397 1398 /* if ipage exists, blkaddr should be NEW_ADDR */ 1399 f2fs_bug_on(F2FS_I_SB(inode), ipage); 1400 page = f2fs_get_lock_data_page(inode, index, true); 1401 if (IS_ERR(page)) 1402 return page; 1403 } 1404 got_it: 1405 if (new_i_size && i_size_read(inode) < 1406 ((loff_t)(index + 1) << PAGE_SHIFT)) 1407 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT)); 1408 return page; 1409 } 1410 1411 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type) 1412 { 1413 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1414 struct f2fs_summary sum; 1415 struct node_info ni; 1416 block_t old_blkaddr; 1417 blkcnt_t count = 1; 1418 int err; 1419 1420 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1421 return -EPERM; 1422 1423 err = f2fs_get_node_info(sbi, dn->nid, &ni, false); 1424 if (err) 1425 return err; 1426 1427 dn->data_blkaddr = f2fs_data_blkaddr(dn); 1428 if (dn->data_blkaddr == NULL_ADDR) { 1429 err = inc_valid_block_count(sbi, dn->inode, &count); 1430 if (unlikely(err)) 1431 return err; 1432 } 1433 1434 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 1435 old_blkaddr = dn->data_blkaddr; 1436 f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr, 1437 &sum, seg_type, NULL); 1438 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) { 1439 invalidate_mapping_pages(META_MAPPING(sbi), 1440 old_blkaddr, old_blkaddr); 1441 f2fs_invalidate_compress_page(sbi, old_blkaddr); 1442 } 1443 f2fs_update_data_blkaddr(dn, dn->data_blkaddr); 1444 return 0; 1445 } 1446 1447 static void f2fs_map_lock(struct f2fs_sb_info *sbi, int flag) 1448 { 1449 if (flag == F2FS_GET_BLOCK_PRE_AIO) 1450 f2fs_down_read(&sbi->node_change); 1451 else 1452 f2fs_lock_op(sbi); 1453 } 1454 1455 static void f2fs_map_unlock(struct f2fs_sb_info *sbi, int flag) 1456 { 1457 if (flag == F2FS_GET_BLOCK_PRE_AIO) 1458 f2fs_up_read(&sbi->node_change); 1459 else 1460 f2fs_unlock_op(sbi); 1461 } 1462 1463 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index) 1464 { 1465 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1466 int err = 0; 1467 1468 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO); 1469 if (!f2fs_lookup_read_extent_cache_block(dn->inode, index, 1470 &dn->data_blkaddr)) 1471 err = f2fs_reserve_block(dn, index); 1472 f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO); 1473 1474 return err; 1475 } 1476 1477 static int f2fs_map_no_dnode(struct inode *inode, 1478 struct f2fs_map_blocks *map, struct dnode_of_data *dn, 1479 pgoff_t pgoff) 1480 { 1481 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1482 1483 /* 1484 * There is one exceptional case that read_node_page() may return 1485 * -ENOENT due to filesystem has been shutdown or cp_error, return 1486 * -EIO in that case. 1487 */ 1488 if (map->m_may_create && 1489 (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || f2fs_cp_error(sbi))) 1490 return -EIO; 1491 1492 if (map->m_next_pgofs) 1493 *map->m_next_pgofs = f2fs_get_next_page_offset(dn, pgoff); 1494 if (map->m_next_extent) 1495 *map->m_next_extent = f2fs_get_next_page_offset(dn, pgoff); 1496 return 0; 1497 } 1498 1499 static bool f2fs_map_blocks_cached(struct inode *inode, 1500 struct f2fs_map_blocks *map, int flag) 1501 { 1502 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1503 unsigned int maxblocks = map->m_len; 1504 pgoff_t pgoff = (pgoff_t)map->m_lblk; 1505 struct extent_info ei = {}; 1506 1507 if (!f2fs_lookup_read_extent_cache(inode, pgoff, &ei)) 1508 return false; 1509 1510 map->m_pblk = ei.blk + pgoff - ei.fofs; 1511 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgoff); 1512 map->m_flags = F2FS_MAP_MAPPED; 1513 if (map->m_next_extent) 1514 *map->m_next_extent = pgoff + map->m_len; 1515 1516 /* for hardware encryption, but to avoid potential issue in future */ 1517 if (flag == F2FS_GET_BLOCK_DIO) 1518 f2fs_wait_on_block_writeback_range(inode, 1519 map->m_pblk, map->m_len); 1520 1521 if (f2fs_allow_multi_device_dio(sbi, flag)) { 1522 int bidx = f2fs_target_device_index(sbi, map->m_pblk); 1523 struct f2fs_dev_info *dev = &sbi->devs[bidx]; 1524 1525 map->m_bdev = dev->bdev; 1526 map->m_pblk -= dev->start_blk; 1527 map->m_len = min(map->m_len, dev->end_blk + 1 - map->m_pblk); 1528 } else { 1529 map->m_bdev = inode->i_sb->s_bdev; 1530 } 1531 return true; 1532 } 1533 1534 /* 1535 * f2fs_map_blocks() tries to find or build mapping relationship which 1536 * maps continuous logical blocks to physical blocks, and return such 1537 * info via f2fs_map_blocks structure. 1538 */ 1539 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag) 1540 { 1541 unsigned int maxblocks = map->m_len; 1542 struct dnode_of_data dn; 1543 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1544 int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE; 1545 pgoff_t pgofs, end_offset, end; 1546 int err = 0, ofs = 1; 1547 unsigned int ofs_in_node, last_ofs_in_node; 1548 blkcnt_t prealloc; 1549 block_t blkaddr; 1550 unsigned int start_pgofs; 1551 int bidx = 0; 1552 bool is_hole; 1553 1554 if (!maxblocks) 1555 return 0; 1556 1557 if (!map->m_may_create && f2fs_map_blocks_cached(inode, map, flag)) 1558 goto out; 1559 1560 map->m_bdev = inode->i_sb->s_bdev; 1561 map->m_multidev_dio = 1562 f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag); 1563 1564 map->m_len = 0; 1565 map->m_flags = 0; 1566 1567 /* it only supports block size == page size */ 1568 pgofs = (pgoff_t)map->m_lblk; 1569 end = pgofs + maxblocks; 1570 1571 next_dnode: 1572 if (map->m_may_create) 1573 f2fs_map_lock(sbi, flag); 1574 1575 /* When reading holes, we need its node page */ 1576 set_new_dnode(&dn, inode, NULL, NULL, 0); 1577 err = f2fs_get_dnode_of_data(&dn, pgofs, mode); 1578 if (err) { 1579 if (flag == F2FS_GET_BLOCK_BMAP) 1580 map->m_pblk = 0; 1581 if (err == -ENOENT) 1582 err = f2fs_map_no_dnode(inode, map, &dn, pgofs); 1583 goto unlock_out; 1584 } 1585 1586 start_pgofs = pgofs; 1587 prealloc = 0; 1588 last_ofs_in_node = ofs_in_node = dn.ofs_in_node; 1589 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1590 1591 next_block: 1592 blkaddr = f2fs_data_blkaddr(&dn); 1593 is_hole = !__is_valid_data_blkaddr(blkaddr); 1594 if (!is_hole && 1595 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) { 1596 err = -EFSCORRUPTED; 1597 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 1598 goto sync_out; 1599 } 1600 1601 /* use out-place-update for direct IO under LFS mode */ 1602 if (map->m_may_create && 1603 (is_hole || (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO))) { 1604 if (unlikely(f2fs_cp_error(sbi))) { 1605 err = -EIO; 1606 goto sync_out; 1607 } 1608 1609 switch (flag) { 1610 case F2FS_GET_BLOCK_PRE_AIO: 1611 if (blkaddr == NULL_ADDR) { 1612 prealloc++; 1613 last_ofs_in_node = dn.ofs_in_node; 1614 } 1615 break; 1616 case F2FS_GET_BLOCK_PRE_DIO: 1617 case F2FS_GET_BLOCK_DIO: 1618 err = __allocate_data_block(&dn, map->m_seg_type); 1619 if (err) 1620 goto sync_out; 1621 if (flag == F2FS_GET_BLOCK_PRE_DIO) 1622 file_need_truncate(inode); 1623 set_inode_flag(inode, FI_APPEND_WRITE); 1624 break; 1625 default: 1626 WARN_ON_ONCE(1); 1627 err = -EIO; 1628 goto sync_out; 1629 } 1630 1631 blkaddr = dn.data_blkaddr; 1632 if (is_hole) 1633 map->m_flags |= F2FS_MAP_NEW; 1634 } else if (is_hole) { 1635 if (f2fs_compressed_file(inode) && 1636 f2fs_sanity_check_cluster(&dn) && 1637 (flag != F2FS_GET_BLOCK_FIEMAP || 1638 IS_ENABLED(CONFIG_F2FS_CHECK_FS))) { 1639 err = -EFSCORRUPTED; 1640 f2fs_handle_error(sbi, 1641 ERROR_CORRUPTED_CLUSTER); 1642 goto sync_out; 1643 } 1644 1645 switch (flag) { 1646 case F2FS_GET_BLOCK_PRECACHE: 1647 goto sync_out; 1648 case F2FS_GET_BLOCK_BMAP: 1649 map->m_pblk = 0; 1650 goto sync_out; 1651 case F2FS_GET_BLOCK_FIEMAP: 1652 if (blkaddr == NULL_ADDR) { 1653 if (map->m_next_pgofs) 1654 *map->m_next_pgofs = pgofs + 1; 1655 goto sync_out; 1656 } 1657 break; 1658 default: 1659 /* for defragment case */ 1660 if (map->m_next_pgofs) 1661 *map->m_next_pgofs = pgofs + 1; 1662 goto sync_out; 1663 } 1664 } 1665 1666 if (flag == F2FS_GET_BLOCK_PRE_AIO) 1667 goto skip; 1668 1669 if (map->m_multidev_dio) 1670 bidx = f2fs_target_device_index(sbi, blkaddr); 1671 1672 if (map->m_len == 0) { 1673 /* reserved delalloc block should be mapped for fiemap. */ 1674 if (blkaddr == NEW_ADDR) 1675 map->m_flags |= F2FS_MAP_DELALLOC; 1676 map->m_flags |= F2FS_MAP_MAPPED; 1677 1678 map->m_pblk = blkaddr; 1679 map->m_len = 1; 1680 1681 if (map->m_multidev_dio) 1682 map->m_bdev = FDEV(bidx).bdev; 1683 } else if ((map->m_pblk != NEW_ADDR && 1684 blkaddr == (map->m_pblk + ofs)) || 1685 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) || 1686 flag == F2FS_GET_BLOCK_PRE_DIO) { 1687 if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev) 1688 goto sync_out; 1689 ofs++; 1690 map->m_len++; 1691 } else { 1692 goto sync_out; 1693 } 1694 1695 skip: 1696 dn.ofs_in_node++; 1697 pgofs++; 1698 1699 /* preallocate blocks in batch for one dnode page */ 1700 if (flag == F2FS_GET_BLOCK_PRE_AIO && 1701 (pgofs == end || dn.ofs_in_node == end_offset)) { 1702 1703 dn.ofs_in_node = ofs_in_node; 1704 err = f2fs_reserve_new_blocks(&dn, prealloc); 1705 if (err) 1706 goto sync_out; 1707 1708 map->m_len += dn.ofs_in_node - ofs_in_node; 1709 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) { 1710 err = -ENOSPC; 1711 goto sync_out; 1712 } 1713 dn.ofs_in_node = end_offset; 1714 } 1715 1716 if (pgofs >= end) 1717 goto sync_out; 1718 else if (dn.ofs_in_node < end_offset) 1719 goto next_block; 1720 1721 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1722 if (map->m_flags & F2FS_MAP_MAPPED) { 1723 unsigned int ofs = start_pgofs - map->m_lblk; 1724 1725 f2fs_update_read_extent_cache_range(&dn, 1726 start_pgofs, map->m_pblk + ofs, 1727 map->m_len - ofs); 1728 } 1729 } 1730 1731 f2fs_put_dnode(&dn); 1732 1733 if (map->m_may_create) { 1734 f2fs_map_unlock(sbi, flag); 1735 f2fs_balance_fs(sbi, dn.node_changed); 1736 } 1737 goto next_dnode; 1738 1739 sync_out: 1740 1741 if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) { 1742 /* 1743 * for hardware encryption, but to avoid potential issue 1744 * in future 1745 */ 1746 f2fs_wait_on_block_writeback_range(inode, 1747 map->m_pblk, map->m_len); 1748 1749 if (map->m_multidev_dio) { 1750 block_t blk_addr = map->m_pblk; 1751 1752 bidx = f2fs_target_device_index(sbi, map->m_pblk); 1753 1754 map->m_bdev = FDEV(bidx).bdev; 1755 map->m_pblk -= FDEV(bidx).start_blk; 1756 1757 if (map->m_may_create) 1758 f2fs_update_device_state(sbi, inode->i_ino, 1759 blk_addr, map->m_len); 1760 1761 f2fs_bug_on(sbi, blk_addr + map->m_len > 1762 FDEV(bidx).end_blk + 1); 1763 } 1764 } 1765 1766 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1767 if (map->m_flags & F2FS_MAP_MAPPED) { 1768 unsigned int ofs = start_pgofs - map->m_lblk; 1769 1770 f2fs_update_read_extent_cache_range(&dn, 1771 start_pgofs, map->m_pblk + ofs, 1772 map->m_len - ofs); 1773 } 1774 if (map->m_next_extent) 1775 *map->m_next_extent = pgofs + 1; 1776 } 1777 f2fs_put_dnode(&dn); 1778 unlock_out: 1779 if (map->m_may_create) { 1780 f2fs_map_unlock(sbi, flag); 1781 f2fs_balance_fs(sbi, dn.node_changed); 1782 } 1783 out: 1784 trace_f2fs_map_blocks(inode, map, flag, err); 1785 return err; 1786 } 1787 1788 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len) 1789 { 1790 struct f2fs_map_blocks map; 1791 block_t last_lblk; 1792 int err; 1793 1794 if (pos + len > i_size_read(inode)) 1795 return false; 1796 1797 map.m_lblk = F2FS_BYTES_TO_BLK(pos); 1798 map.m_next_pgofs = NULL; 1799 map.m_next_extent = NULL; 1800 map.m_seg_type = NO_CHECK_TYPE; 1801 map.m_may_create = false; 1802 last_lblk = F2FS_BLK_ALIGN(pos + len); 1803 1804 while (map.m_lblk < last_lblk) { 1805 map.m_len = last_lblk - map.m_lblk; 1806 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT); 1807 if (err || map.m_len == 0) 1808 return false; 1809 map.m_lblk += map.m_len; 1810 } 1811 return true; 1812 } 1813 1814 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes) 1815 { 1816 return (bytes >> inode->i_blkbits); 1817 } 1818 1819 static inline u64 blks_to_bytes(struct inode *inode, u64 blks) 1820 { 1821 return (blks << inode->i_blkbits); 1822 } 1823 1824 static int f2fs_xattr_fiemap(struct inode *inode, 1825 struct fiemap_extent_info *fieinfo) 1826 { 1827 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1828 struct page *page; 1829 struct node_info ni; 1830 __u64 phys = 0, len; 1831 __u32 flags; 1832 nid_t xnid = F2FS_I(inode)->i_xattr_nid; 1833 int err = 0; 1834 1835 if (f2fs_has_inline_xattr(inode)) { 1836 int offset; 1837 1838 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), 1839 inode->i_ino, false); 1840 if (!page) 1841 return -ENOMEM; 1842 1843 err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false); 1844 if (err) { 1845 f2fs_put_page(page, 1); 1846 return err; 1847 } 1848 1849 phys = blks_to_bytes(inode, ni.blk_addr); 1850 offset = offsetof(struct f2fs_inode, i_addr) + 1851 sizeof(__le32) * (DEF_ADDRS_PER_INODE - 1852 get_inline_xattr_addrs(inode)); 1853 1854 phys += offset; 1855 len = inline_xattr_size(inode); 1856 1857 f2fs_put_page(page, 1); 1858 1859 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED; 1860 1861 if (!xnid) 1862 flags |= FIEMAP_EXTENT_LAST; 1863 1864 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1865 trace_f2fs_fiemap(inode, 0, phys, len, flags, err); 1866 if (err) 1867 return err; 1868 } 1869 1870 if (xnid) { 1871 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false); 1872 if (!page) 1873 return -ENOMEM; 1874 1875 err = f2fs_get_node_info(sbi, xnid, &ni, false); 1876 if (err) { 1877 f2fs_put_page(page, 1); 1878 return err; 1879 } 1880 1881 phys = blks_to_bytes(inode, ni.blk_addr); 1882 len = inode->i_sb->s_blocksize; 1883 1884 f2fs_put_page(page, 1); 1885 1886 flags = FIEMAP_EXTENT_LAST; 1887 } 1888 1889 if (phys) { 1890 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1891 trace_f2fs_fiemap(inode, 0, phys, len, flags, err); 1892 } 1893 1894 return (err < 0 ? err : 0); 1895 } 1896 1897 static loff_t max_inode_blocks(struct inode *inode) 1898 { 1899 loff_t result = ADDRS_PER_INODE(inode); 1900 loff_t leaf_count = ADDRS_PER_BLOCK(inode); 1901 1902 /* two direct node blocks */ 1903 result += (leaf_count * 2); 1904 1905 /* two indirect node blocks */ 1906 leaf_count *= NIDS_PER_BLOCK; 1907 result += (leaf_count * 2); 1908 1909 /* one double indirect node block */ 1910 leaf_count *= NIDS_PER_BLOCK; 1911 result += leaf_count; 1912 1913 return result; 1914 } 1915 1916 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 1917 u64 start, u64 len) 1918 { 1919 struct f2fs_map_blocks map; 1920 sector_t start_blk, last_blk; 1921 pgoff_t next_pgofs; 1922 u64 logical = 0, phys = 0, size = 0; 1923 u32 flags = 0; 1924 int ret = 0; 1925 bool compr_cluster = false, compr_appended; 1926 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size; 1927 unsigned int count_in_cluster = 0; 1928 loff_t maxbytes; 1929 1930 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) { 1931 ret = f2fs_precache_extents(inode); 1932 if (ret) 1933 return ret; 1934 } 1935 1936 ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR); 1937 if (ret) 1938 return ret; 1939 1940 inode_lock(inode); 1941 1942 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS; 1943 if (start > maxbytes) { 1944 ret = -EFBIG; 1945 goto out; 1946 } 1947 1948 if (len > maxbytes || (maxbytes - len) < start) 1949 len = maxbytes - start; 1950 1951 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 1952 ret = f2fs_xattr_fiemap(inode, fieinfo); 1953 goto out; 1954 } 1955 1956 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) { 1957 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len); 1958 if (ret != -EAGAIN) 1959 goto out; 1960 } 1961 1962 if (bytes_to_blks(inode, len) == 0) 1963 len = blks_to_bytes(inode, 1); 1964 1965 start_blk = bytes_to_blks(inode, start); 1966 last_blk = bytes_to_blks(inode, start + len - 1); 1967 1968 next: 1969 memset(&map, 0, sizeof(map)); 1970 map.m_lblk = start_blk; 1971 map.m_len = bytes_to_blks(inode, len); 1972 map.m_next_pgofs = &next_pgofs; 1973 map.m_seg_type = NO_CHECK_TYPE; 1974 1975 if (compr_cluster) { 1976 map.m_lblk += 1; 1977 map.m_len = cluster_size - count_in_cluster; 1978 } 1979 1980 ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP); 1981 if (ret) 1982 goto out; 1983 1984 /* HOLE */ 1985 if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) { 1986 start_blk = next_pgofs; 1987 1988 if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode, 1989 max_inode_blocks(inode))) 1990 goto prep_next; 1991 1992 flags |= FIEMAP_EXTENT_LAST; 1993 } 1994 1995 compr_appended = false; 1996 /* In a case of compressed cluster, append this to the last extent */ 1997 if (compr_cluster && ((map.m_flags & F2FS_MAP_DELALLOC) || 1998 !(map.m_flags & F2FS_MAP_FLAGS))) { 1999 compr_appended = true; 2000 goto skip_fill; 2001 } 2002 2003 if (size) { 2004 flags |= FIEMAP_EXTENT_MERGED; 2005 if (IS_ENCRYPTED(inode)) 2006 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED; 2007 2008 ret = fiemap_fill_next_extent(fieinfo, logical, 2009 phys, size, flags); 2010 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret); 2011 if (ret) 2012 goto out; 2013 size = 0; 2014 } 2015 2016 if (start_blk > last_blk) 2017 goto out; 2018 2019 skip_fill: 2020 if (map.m_pblk == COMPRESS_ADDR) { 2021 compr_cluster = true; 2022 count_in_cluster = 1; 2023 } else if (compr_appended) { 2024 unsigned int appended_blks = cluster_size - 2025 count_in_cluster + 1; 2026 size += blks_to_bytes(inode, appended_blks); 2027 start_blk += appended_blks; 2028 compr_cluster = false; 2029 } else { 2030 logical = blks_to_bytes(inode, start_blk); 2031 phys = __is_valid_data_blkaddr(map.m_pblk) ? 2032 blks_to_bytes(inode, map.m_pblk) : 0; 2033 size = blks_to_bytes(inode, map.m_len); 2034 flags = 0; 2035 2036 if (compr_cluster) { 2037 flags = FIEMAP_EXTENT_ENCODED; 2038 count_in_cluster += map.m_len; 2039 if (count_in_cluster == cluster_size) { 2040 compr_cluster = false; 2041 size += blks_to_bytes(inode, 1); 2042 } 2043 } else if (map.m_flags & F2FS_MAP_DELALLOC) { 2044 flags = FIEMAP_EXTENT_UNWRITTEN; 2045 } 2046 2047 start_blk += bytes_to_blks(inode, size); 2048 } 2049 2050 prep_next: 2051 cond_resched(); 2052 if (fatal_signal_pending(current)) 2053 ret = -EINTR; 2054 else 2055 goto next; 2056 out: 2057 if (ret == 1) 2058 ret = 0; 2059 2060 inode_unlock(inode); 2061 return ret; 2062 } 2063 2064 static inline loff_t f2fs_readpage_limit(struct inode *inode) 2065 { 2066 if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode)) 2067 return inode->i_sb->s_maxbytes; 2068 2069 return i_size_read(inode); 2070 } 2071 2072 static int f2fs_read_single_page(struct inode *inode, struct page *page, 2073 unsigned nr_pages, 2074 struct f2fs_map_blocks *map, 2075 struct bio **bio_ret, 2076 sector_t *last_block_in_bio, 2077 bool is_readahead) 2078 { 2079 struct bio *bio = *bio_ret; 2080 const unsigned blocksize = blks_to_bytes(inode, 1); 2081 sector_t block_in_file; 2082 sector_t last_block; 2083 sector_t last_block_in_file; 2084 sector_t block_nr; 2085 int ret = 0; 2086 2087 block_in_file = (sector_t)page_index(page); 2088 last_block = block_in_file + nr_pages; 2089 last_block_in_file = bytes_to_blks(inode, 2090 f2fs_readpage_limit(inode) + blocksize - 1); 2091 if (last_block > last_block_in_file) 2092 last_block = last_block_in_file; 2093 2094 /* just zeroing out page which is beyond EOF */ 2095 if (block_in_file >= last_block) 2096 goto zero_out; 2097 /* 2098 * Map blocks using the previous result first. 2099 */ 2100 if ((map->m_flags & F2FS_MAP_MAPPED) && 2101 block_in_file > map->m_lblk && 2102 block_in_file < (map->m_lblk + map->m_len)) 2103 goto got_it; 2104 2105 /* 2106 * Then do more f2fs_map_blocks() calls until we are 2107 * done with this page. 2108 */ 2109 map->m_lblk = block_in_file; 2110 map->m_len = last_block - block_in_file; 2111 2112 ret = f2fs_map_blocks(inode, map, F2FS_GET_BLOCK_DEFAULT); 2113 if (ret) 2114 goto out; 2115 got_it: 2116 if ((map->m_flags & F2FS_MAP_MAPPED)) { 2117 block_nr = map->m_pblk + block_in_file - map->m_lblk; 2118 SetPageMappedToDisk(page); 2119 2120 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr, 2121 DATA_GENERIC_ENHANCE_READ)) { 2122 ret = -EFSCORRUPTED; 2123 f2fs_handle_error(F2FS_I_SB(inode), 2124 ERROR_INVALID_BLKADDR); 2125 goto out; 2126 } 2127 } else { 2128 zero_out: 2129 zero_user_segment(page, 0, PAGE_SIZE); 2130 if (f2fs_need_verity(inode, page->index) && 2131 !fsverity_verify_page(page)) { 2132 ret = -EIO; 2133 goto out; 2134 } 2135 if (!PageUptodate(page)) 2136 SetPageUptodate(page); 2137 unlock_page(page); 2138 goto out; 2139 } 2140 2141 /* 2142 * This page will go to BIO. Do we need to send this 2143 * BIO off first? 2144 */ 2145 if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio, 2146 *last_block_in_bio, block_nr) || 2147 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) { 2148 submit_and_realloc: 2149 f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA); 2150 bio = NULL; 2151 } 2152 if (bio == NULL) { 2153 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages, 2154 is_readahead ? REQ_RAHEAD : 0, page->index, 2155 false); 2156 if (IS_ERR(bio)) { 2157 ret = PTR_ERR(bio); 2158 bio = NULL; 2159 goto out; 2160 } 2161 } 2162 2163 /* 2164 * If the page is under writeback, we need to wait for 2165 * its completion to see the correct decrypted data. 2166 */ 2167 f2fs_wait_on_block_writeback(inode, block_nr); 2168 2169 if (bio_add_page(bio, page, blocksize, 0) < blocksize) 2170 goto submit_and_realloc; 2171 2172 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA); 2173 f2fs_update_iostat(F2FS_I_SB(inode), NULL, FS_DATA_READ_IO, 2174 F2FS_BLKSIZE); 2175 *last_block_in_bio = block_nr; 2176 goto out; 2177 out: 2178 *bio_ret = bio; 2179 return ret; 2180 } 2181 2182 #ifdef CONFIG_F2FS_FS_COMPRESSION 2183 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret, 2184 unsigned nr_pages, sector_t *last_block_in_bio, 2185 bool is_readahead, bool for_write) 2186 { 2187 struct dnode_of_data dn; 2188 struct inode *inode = cc->inode; 2189 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2190 struct bio *bio = *bio_ret; 2191 unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size; 2192 sector_t last_block_in_file; 2193 const unsigned blocksize = blks_to_bytes(inode, 1); 2194 struct decompress_io_ctx *dic = NULL; 2195 struct extent_info ei = {}; 2196 bool from_dnode = true; 2197 int i; 2198 int ret = 0; 2199 2200 f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc)); 2201 2202 last_block_in_file = bytes_to_blks(inode, 2203 f2fs_readpage_limit(inode) + blocksize - 1); 2204 2205 /* get rid of pages beyond EOF */ 2206 for (i = 0; i < cc->cluster_size; i++) { 2207 struct page *page = cc->rpages[i]; 2208 2209 if (!page) 2210 continue; 2211 if ((sector_t)page->index >= last_block_in_file) { 2212 zero_user_segment(page, 0, PAGE_SIZE); 2213 if (!PageUptodate(page)) 2214 SetPageUptodate(page); 2215 } else if (!PageUptodate(page)) { 2216 continue; 2217 } 2218 unlock_page(page); 2219 if (for_write) 2220 put_page(page); 2221 cc->rpages[i] = NULL; 2222 cc->nr_rpages--; 2223 } 2224 2225 /* we are done since all pages are beyond EOF */ 2226 if (f2fs_cluster_is_empty(cc)) 2227 goto out; 2228 2229 if (f2fs_lookup_read_extent_cache(inode, start_idx, &ei)) 2230 from_dnode = false; 2231 2232 if (!from_dnode) 2233 goto skip_reading_dnode; 2234 2235 set_new_dnode(&dn, inode, NULL, NULL, 0); 2236 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 2237 if (ret) 2238 goto out; 2239 2240 if (unlikely(f2fs_cp_error(sbi))) { 2241 ret = -EIO; 2242 goto out_put_dnode; 2243 } 2244 f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR); 2245 2246 skip_reading_dnode: 2247 for (i = 1; i < cc->cluster_size; i++) { 2248 block_t blkaddr; 2249 2250 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page, 2251 dn.ofs_in_node + i) : 2252 ei.blk + i - 1; 2253 2254 if (!__is_valid_data_blkaddr(blkaddr)) 2255 break; 2256 2257 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) { 2258 ret = -EFAULT; 2259 goto out_put_dnode; 2260 } 2261 cc->nr_cpages++; 2262 2263 if (!from_dnode && i >= ei.c_len) 2264 break; 2265 } 2266 2267 /* nothing to decompress */ 2268 if (cc->nr_cpages == 0) { 2269 ret = 0; 2270 goto out_put_dnode; 2271 } 2272 2273 dic = f2fs_alloc_dic(cc); 2274 if (IS_ERR(dic)) { 2275 ret = PTR_ERR(dic); 2276 goto out_put_dnode; 2277 } 2278 2279 for (i = 0; i < cc->nr_cpages; i++) { 2280 struct page *page = dic->cpages[i]; 2281 block_t blkaddr; 2282 struct bio_post_read_ctx *ctx; 2283 2284 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page, 2285 dn.ofs_in_node + i + 1) : 2286 ei.blk + i; 2287 2288 f2fs_wait_on_block_writeback(inode, blkaddr); 2289 2290 if (f2fs_load_compressed_page(sbi, page, blkaddr)) { 2291 if (atomic_dec_and_test(&dic->remaining_pages)) 2292 f2fs_decompress_cluster(dic, true); 2293 continue; 2294 } 2295 2296 if (bio && (!page_is_mergeable(sbi, bio, 2297 *last_block_in_bio, blkaddr) || 2298 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) { 2299 submit_and_realloc: 2300 f2fs_submit_read_bio(sbi, bio, DATA); 2301 bio = NULL; 2302 } 2303 2304 if (!bio) { 2305 bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages, 2306 is_readahead ? REQ_RAHEAD : 0, 2307 page->index, for_write); 2308 if (IS_ERR(bio)) { 2309 ret = PTR_ERR(bio); 2310 f2fs_decompress_end_io(dic, ret, true); 2311 f2fs_put_dnode(&dn); 2312 *bio_ret = NULL; 2313 return ret; 2314 } 2315 } 2316 2317 if (bio_add_page(bio, page, blocksize, 0) < blocksize) 2318 goto submit_and_realloc; 2319 2320 ctx = get_post_read_ctx(bio); 2321 ctx->enabled_steps |= STEP_DECOMPRESS; 2322 refcount_inc(&dic->refcnt); 2323 2324 inc_page_count(sbi, F2FS_RD_DATA); 2325 f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE); 2326 *last_block_in_bio = blkaddr; 2327 } 2328 2329 if (from_dnode) 2330 f2fs_put_dnode(&dn); 2331 2332 *bio_ret = bio; 2333 return 0; 2334 2335 out_put_dnode: 2336 if (from_dnode) 2337 f2fs_put_dnode(&dn); 2338 out: 2339 for (i = 0; i < cc->cluster_size; i++) { 2340 if (cc->rpages[i]) { 2341 ClearPageUptodate(cc->rpages[i]); 2342 unlock_page(cc->rpages[i]); 2343 } 2344 } 2345 *bio_ret = bio; 2346 return ret; 2347 } 2348 #endif 2349 2350 /* 2351 * This function was originally taken from fs/mpage.c, and customized for f2fs. 2352 * Major change was from block_size == page_size in f2fs by default. 2353 */ 2354 static int f2fs_mpage_readpages(struct inode *inode, 2355 struct readahead_control *rac, struct page *page) 2356 { 2357 struct bio *bio = NULL; 2358 sector_t last_block_in_bio = 0; 2359 struct f2fs_map_blocks map; 2360 #ifdef CONFIG_F2FS_FS_COMPRESSION 2361 struct compress_ctx cc = { 2362 .inode = inode, 2363 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 2364 .cluster_size = F2FS_I(inode)->i_cluster_size, 2365 .cluster_idx = NULL_CLUSTER, 2366 .rpages = NULL, 2367 .cpages = NULL, 2368 .nr_rpages = 0, 2369 .nr_cpages = 0, 2370 }; 2371 pgoff_t nc_cluster_idx = NULL_CLUSTER; 2372 #endif 2373 unsigned nr_pages = rac ? readahead_count(rac) : 1; 2374 unsigned max_nr_pages = nr_pages; 2375 int ret = 0; 2376 2377 map.m_pblk = 0; 2378 map.m_lblk = 0; 2379 map.m_len = 0; 2380 map.m_flags = 0; 2381 map.m_next_pgofs = NULL; 2382 map.m_next_extent = NULL; 2383 map.m_seg_type = NO_CHECK_TYPE; 2384 map.m_may_create = false; 2385 2386 for (; nr_pages; nr_pages--) { 2387 if (rac) { 2388 page = readahead_page(rac); 2389 prefetchw(&page->flags); 2390 } 2391 2392 #ifdef CONFIG_F2FS_FS_COMPRESSION 2393 if (f2fs_compressed_file(inode)) { 2394 /* there are remained compressed pages, submit them */ 2395 if (!f2fs_cluster_can_merge_page(&cc, page->index)) { 2396 ret = f2fs_read_multi_pages(&cc, &bio, 2397 max_nr_pages, 2398 &last_block_in_bio, 2399 rac != NULL, false); 2400 f2fs_destroy_compress_ctx(&cc, false); 2401 if (ret) 2402 goto set_error_page; 2403 } 2404 if (cc.cluster_idx == NULL_CLUSTER) { 2405 if (nc_cluster_idx == 2406 page->index >> cc.log_cluster_size) { 2407 goto read_single_page; 2408 } 2409 2410 ret = f2fs_is_compressed_cluster(inode, page->index); 2411 if (ret < 0) 2412 goto set_error_page; 2413 else if (!ret) { 2414 nc_cluster_idx = 2415 page->index >> cc.log_cluster_size; 2416 goto read_single_page; 2417 } 2418 2419 nc_cluster_idx = NULL_CLUSTER; 2420 } 2421 ret = f2fs_init_compress_ctx(&cc); 2422 if (ret) 2423 goto set_error_page; 2424 2425 f2fs_compress_ctx_add_page(&cc, page); 2426 2427 goto next_page; 2428 } 2429 read_single_page: 2430 #endif 2431 2432 ret = f2fs_read_single_page(inode, page, max_nr_pages, &map, 2433 &bio, &last_block_in_bio, rac); 2434 if (ret) { 2435 #ifdef CONFIG_F2FS_FS_COMPRESSION 2436 set_error_page: 2437 #endif 2438 zero_user_segment(page, 0, PAGE_SIZE); 2439 unlock_page(page); 2440 } 2441 #ifdef CONFIG_F2FS_FS_COMPRESSION 2442 next_page: 2443 #endif 2444 if (rac) 2445 put_page(page); 2446 2447 #ifdef CONFIG_F2FS_FS_COMPRESSION 2448 if (f2fs_compressed_file(inode)) { 2449 /* last page */ 2450 if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) { 2451 ret = f2fs_read_multi_pages(&cc, &bio, 2452 max_nr_pages, 2453 &last_block_in_bio, 2454 rac != NULL, false); 2455 f2fs_destroy_compress_ctx(&cc, false); 2456 } 2457 } 2458 #endif 2459 } 2460 if (bio) 2461 f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA); 2462 return ret; 2463 } 2464 2465 static int f2fs_read_data_folio(struct file *file, struct folio *folio) 2466 { 2467 struct page *page = &folio->page; 2468 struct inode *inode = page_file_mapping(page)->host; 2469 int ret = -EAGAIN; 2470 2471 trace_f2fs_readpage(page, DATA); 2472 2473 if (!f2fs_is_compress_backend_ready(inode)) { 2474 unlock_page(page); 2475 return -EOPNOTSUPP; 2476 } 2477 2478 /* If the file has inline data, try to read it directly */ 2479 if (f2fs_has_inline_data(inode)) 2480 ret = f2fs_read_inline_data(inode, page); 2481 if (ret == -EAGAIN) 2482 ret = f2fs_mpage_readpages(inode, NULL, page); 2483 return ret; 2484 } 2485 2486 static void f2fs_readahead(struct readahead_control *rac) 2487 { 2488 struct inode *inode = rac->mapping->host; 2489 2490 trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac)); 2491 2492 if (!f2fs_is_compress_backend_ready(inode)) 2493 return; 2494 2495 /* If the file has inline data, skip readahead */ 2496 if (f2fs_has_inline_data(inode)) 2497 return; 2498 2499 f2fs_mpage_readpages(inode, rac, NULL); 2500 } 2501 2502 int f2fs_encrypt_one_page(struct f2fs_io_info *fio) 2503 { 2504 struct inode *inode = fio->page->mapping->host; 2505 struct page *mpage, *page; 2506 gfp_t gfp_flags = GFP_NOFS; 2507 2508 if (!f2fs_encrypted_file(inode)) 2509 return 0; 2510 2511 page = fio->compressed_page ? fio->compressed_page : fio->page; 2512 2513 /* wait for GCed page writeback via META_MAPPING */ 2514 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr); 2515 2516 if (fscrypt_inode_uses_inline_crypto(inode)) 2517 return 0; 2518 2519 retry_encrypt: 2520 fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page, 2521 PAGE_SIZE, 0, gfp_flags); 2522 if (IS_ERR(fio->encrypted_page)) { 2523 /* flush pending IOs and wait for a while in the ENOMEM case */ 2524 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) { 2525 f2fs_flush_merged_writes(fio->sbi); 2526 memalloc_retry_wait(GFP_NOFS); 2527 gfp_flags |= __GFP_NOFAIL; 2528 goto retry_encrypt; 2529 } 2530 return PTR_ERR(fio->encrypted_page); 2531 } 2532 2533 mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr); 2534 if (mpage) { 2535 if (PageUptodate(mpage)) 2536 memcpy(page_address(mpage), 2537 page_address(fio->encrypted_page), PAGE_SIZE); 2538 f2fs_put_page(mpage, 1); 2539 } 2540 return 0; 2541 } 2542 2543 static inline bool check_inplace_update_policy(struct inode *inode, 2544 struct f2fs_io_info *fio) 2545 { 2546 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2547 2548 if (IS_F2FS_IPU_HONOR_OPU_WRITE(sbi) && 2549 is_inode_flag_set(inode, FI_OPU_WRITE)) 2550 return false; 2551 if (IS_F2FS_IPU_FORCE(sbi)) 2552 return true; 2553 if (IS_F2FS_IPU_SSR(sbi) && f2fs_need_SSR(sbi)) 2554 return true; 2555 if (IS_F2FS_IPU_UTIL(sbi) && utilization(sbi) > SM_I(sbi)->min_ipu_util) 2556 return true; 2557 if (IS_F2FS_IPU_SSR_UTIL(sbi) && f2fs_need_SSR(sbi) && 2558 utilization(sbi) > SM_I(sbi)->min_ipu_util) 2559 return true; 2560 2561 /* 2562 * IPU for rewrite async pages 2563 */ 2564 if (IS_F2FS_IPU_ASYNC(sbi) && fio && fio->op == REQ_OP_WRITE && 2565 !(fio->op_flags & REQ_SYNC) && !IS_ENCRYPTED(inode)) 2566 return true; 2567 2568 /* this is only set during fdatasync */ 2569 if (IS_F2FS_IPU_FSYNC(sbi) && is_inode_flag_set(inode, FI_NEED_IPU)) 2570 return true; 2571 2572 if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 2573 !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) 2574 return true; 2575 2576 return false; 2577 } 2578 2579 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio) 2580 { 2581 /* swap file is migrating in aligned write mode */ 2582 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE)) 2583 return false; 2584 2585 if (f2fs_is_pinned_file(inode)) 2586 return true; 2587 2588 /* if this is cold file, we should overwrite to avoid fragmentation */ 2589 if (file_is_cold(inode) && !is_inode_flag_set(inode, FI_OPU_WRITE)) 2590 return true; 2591 2592 return check_inplace_update_policy(inode, fio); 2593 } 2594 2595 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio) 2596 { 2597 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2598 2599 /* The below cases were checked when setting it. */ 2600 if (f2fs_is_pinned_file(inode)) 2601 return false; 2602 if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 2603 return true; 2604 if (f2fs_lfs_mode(sbi)) 2605 return true; 2606 if (S_ISDIR(inode->i_mode)) 2607 return true; 2608 if (IS_NOQUOTA(inode)) 2609 return true; 2610 if (f2fs_is_atomic_file(inode)) 2611 return true; 2612 2613 /* swap file is migrating in aligned write mode */ 2614 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE)) 2615 return true; 2616 2617 if (is_inode_flag_set(inode, FI_OPU_WRITE)) 2618 return true; 2619 2620 if (fio) { 2621 if (page_private_gcing(fio->page)) 2622 return true; 2623 if (page_private_dummy(fio->page)) 2624 return true; 2625 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 2626 f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) 2627 return true; 2628 } 2629 return false; 2630 } 2631 2632 static inline bool need_inplace_update(struct f2fs_io_info *fio) 2633 { 2634 struct inode *inode = fio->page->mapping->host; 2635 2636 if (f2fs_should_update_outplace(inode, fio)) 2637 return false; 2638 2639 return f2fs_should_update_inplace(inode, fio); 2640 } 2641 2642 int f2fs_do_write_data_page(struct f2fs_io_info *fio) 2643 { 2644 struct page *page = fio->page; 2645 struct inode *inode = page->mapping->host; 2646 struct dnode_of_data dn; 2647 struct node_info ni; 2648 bool ipu_force = false; 2649 int err = 0; 2650 2651 /* Use COW inode to make dnode_of_data for atomic write */ 2652 if (f2fs_is_atomic_file(inode)) 2653 set_new_dnode(&dn, F2FS_I(inode)->cow_inode, NULL, NULL, 0); 2654 else 2655 set_new_dnode(&dn, inode, NULL, NULL, 0); 2656 2657 if (need_inplace_update(fio) && 2658 f2fs_lookup_read_extent_cache_block(inode, page->index, 2659 &fio->old_blkaddr)) { 2660 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 2661 DATA_GENERIC_ENHANCE)) { 2662 f2fs_handle_error(fio->sbi, 2663 ERROR_INVALID_BLKADDR); 2664 return -EFSCORRUPTED; 2665 } 2666 2667 ipu_force = true; 2668 fio->need_lock = LOCK_DONE; 2669 goto got_it; 2670 } 2671 2672 /* Deadlock due to between page->lock and f2fs_lock_op */ 2673 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi)) 2674 return -EAGAIN; 2675 2676 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE); 2677 if (err) 2678 goto out; 2679 2680 fio->old_blkaddr = dn.data_blkaddr; 2681 2682 /* This page is already truncated */ 2683 if (fio->old_blkaddr == NULL_ADDR) { 2684 ClearPageUptodate(page); 2685 clear_page_private_gcing(page); 2686 goto out_writepage; 2687 } 2688 got_it: 2689 if (__is_valid_data_blkaddr(fio->old_blkaddr) && 2690 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 2691 DATA_GENERIC_ENHANCE)) { 2692 err = -EFSCORRUPTED; 2693 f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR); 2694 goto out_writepage; 2695 } 2696 2697 /* 2698 * If current allocation needs SSR, 2699 * it had better in-place writes for updated data. 2700 */ 2701 if (ipu_force || 2702 (__is_valid_data_blkaddr(fio->old_blkaddr) && 2703 need_inplace_update(fio))) { 2704 err = f2fs_encrypt_one_page(fio); 2705 if (err) 2706 goto out_writepage; 2707 2708 set_page_writeback(page); 2709 f2fs_put_dnode(&dn); 2710 if (fio->need_lock == LOCK_REQ) 2711 f2fs_unlock_op(fio->sbi); 2712 err = f2fs_inplace_write_data(fio); 2713 if (err) { 2714 if (fscrypt_inode_uses_fs_layer_crypto(inode)) 2715 fscrypt_finalize_bounce_page(&fio->encrypted_page); 2716 if (PageWriteback(page)) 2717 end_page_writeback(page); 2718 } else { 2719 set_inode_flag(inode, FI_UPDATE_WRITE); 2720 } 2721 trace_f2fs_do_write_data_page(fio->page, IPU); 2722 return err; 2723 } 2724 2725 if (fio->need_lock == LOCK_RETRY) { 2726 if (!f2fs_trylock_op(fio->sbi)) { 2727 err = -EAGAIN; 2728 goto out_writepage; 2729 } 2730 fio->need_lock = LOCK_REQ; 2731 } 2732 2733 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false); 2734 if (err) 2735 goto out_writepage; 2736 2737 fio->version = ni.version; 2738 2739 err = f2fs_encrypt_one_page(fio); 2740 if (err) 2741 goto out_writepage; 2742 2743 set_page_writeback(page); 2744 2745 if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR) 2746 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false); 2747 2748 /* LFS mode write path */ 2749 f2fs_outplace_write_data(&dn, fio); 2750 trace_f2fs_do_write_data_page(page, OPU); 2751 set_inode_flag(inode, FI_APPEND_WRITE); 2752 if (page->index == 0) 2753 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); 2754 out_writepage: 2755 f2fs_put_dnode(&dn); 2756 out: 2757 if (fio->need_lock == LOCK_REQ) 2758 f2fs_unlock_op(fio->sbi); 2759 return err; 2760 } 2761 2762 int f2fs_write_single_data_page(struct page *page, int *submitted, 2763 struct bio **bio, 2764 sector_t *last_block, 2765 struct writeback_control *wbc, 2766 enum iostat_type io_type, 2767 int compr_blocks, 2768 bool allow_balance) 2769 { 2770 struct inode *inode = page->mapping->host; 2771 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2772 loff_t i_size = i_size_read(inode); 2773 const pgoff_t end_index = ((unsigned long long)i_size) 2774 >> PAGE_SHIFT; 2775 loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT; 2776 unsigned offset = 0; 2777 bool need_balance_fs = false; 2778 int err = 0; 2779 struct f2fs_io_info fio = { 2780 .sbi = sbi, 2781 .ino = inode->i_ino, 2782 .type = DATA, 2783 .op = REQ_OP_WRITE, 2784 .op_flags = wbc_to_write_flags(wbc), 2785 .old_blkaddr = NULL_ADDR, 2786 .page = page, 2787 .encrypted_page = NULL, 2788 .submitted = 0, 2789 .compr_blocks = compr_blocks, 2790 .need_lock = LOCK_RETRY, 2791 .post_read = f2fs_post_read_required(inode) ? 1 : 0, 2792 .io_type = io_type, 2793 .io_wbc = wbc, 2794 .bio = bio, 2795 .last_block = last_block, 2796 }; 2797 2798 trace_f2fs_writepage(page, DATA); 2799 2800 /* we should bypass data pages to proceed the kworker jobs */ 2801 if (unlikely(f2fs_cp_error(sbi))) { 2802 mapping_set_error(page->mapping, -EIO); 2803 /* 2804 * don't drop any dirty dentry pages for keeping lastest 2805 * directory structure. 2806 */ 2807 if (S_ISDIR(inode->i_mode) && 2808 !is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 2809 goto redirty_out; 2810 goto out; 2811 } 2812 2813 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 2814 goto redirty_out; 2815 2816 if (page->index < end_index || 2817 f2fs_verity_in_progress(inode) || 2818 compr_blocks) 2819 goto write; 2820 2821 /* 2822 * If the offset is out-of-range of file size, 2823 * this page does not have to be written to disk. 2824 */ 2825 offset = i_size & (PAGE_SIZE - 1); 2826 if ((page->index >= end_index + 1) || !offset) 2827 goto out; 2828 2829 zero_user_segment(page, offset, PAGE_SIZE); 2830 write: 2831 if (f2fs_is_drop_cache(inode)) 2832 goto out; 2833 2834 /* Dentry/quota blocks are controlled by checkpoint */ 2835 if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) { 2836 /* 2837 * We need to wait for node_write to avoid block allocation during 2838 * checkpoint. This can only happen to quota writes which can cause 2839 * the below discard race condition. 2840 */ 2841 if (IS_NOQUOTA(inode)) 2842 f2fs_down_read(&sbi->node_write); 2843 2844 fio.need_lock = LOCK_DONE; 2845 err = f2fs_do_write_data_page(&fio); 2846 2847 if (IS_NOQUOTA(inode)) 2848 f2fs_up_read(&sbi->node_write); 2849 2850 goto done; 2851 } 2852 2853 if (!wbc->for_reclaim) 2854 need_balance_fs = true; 2855 else if (has_not_enough_free_secs(sbi, 0, 0)) 2856 goto redirty_out; 2857 else 2858 set_inode_flag(inode, FI_HOT_DATA); 2859 2860 err = -EAGAIN; 2861 if (f2fs_has_inline_data(inode)) { 2862 err = f2fs_write_inline_data(inode, page); 2863 if (!err) 2864 goto out; 2865 } 2866 2867 if (err == -EAGAIN) { 2868 err = f2fs_do_write_data_page(&fio); 2869 if (err == -EAGAIN) { 2870 fio.need_lock = LOCK_REQ; 2871 err = f2fs_do_write_data_page(&fio); 2872 } 2873 } 2874 2875 if (err) { 2876 file_set_keep_isize(inode); 2877 } else { 2878 spin_lock(&F2FS_I(inode)->i_size_lock); 2879 if (F2FS_I(inode)->last_disk_size < psize) 2880 F2FS_I(inode)->last_disk_size = psize; 2881 spin_unlock(&F2FS_I(inode)->i_size_lock); 2882 } 2883 2884 done: 2885 if (err && err != -ENOENT) 2886 goto redirty_out; 2887 2888 out: 2889 inode_dec_dirty_pages(inode); 2890 if (err) { 2891 ClearPageUptodate(page); 2892 clear_page_private_gcing(page); 2893 } 2894 2895 if (wbc->for_reclaim) { 2896 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA); 2897 clear_inode_flag(inode, FI_HOT_DATA); 2898 f2fs_remove_dirty_inode(inode); 2899 submitted = NULL; 2900 } 2901 unlock_page(page); 2902 if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) && 2903 !F2FS_I(inode)->wb_task && allow_balance) 2904 f2fs_balance_fs(sbi, need_balance_fs); 2905 2906 if (unlikely(f2fs_cp_error(sbi))) { 2907 f2fs_submit_merged_write(sbi, DATA); 2908 if (bio && *bio) 2909 f2fs_submit_merged_ipu_write(sbi, bio, NULL); 2910 submitted = NULL; 2911 } 2912 2913 if (submitted) 2914 *submitted = fio.submitted; 2915 2916 return 0; 2917 2918 redirty_out: 2919 redirty_page_for_writepage(wbc, page); 2920 /* 2921 * pageout() in MM translates EAGAIN, so calls handle_write_error() 2922 * -> mapping_set_error() -> set_bit(AS_EIO, ...). 2923 * file_write_and_wait_range() will see EIO error, which is critical 2924 * to return value of fsync() followed by atomic_write failure to user. 2925 */ 2926 if (!err || wbc->for_reclaim) 2927 return AOP_WRITEPAGE_ACTIVATE; 2928 unlock_page(page); 2929 return err; 2930 } 2931 2932 static int f2fs_write_data_page(struct page *page, 2933 struct writeback_control *wbc) 2934 { 2935 #ifdef CONFIG_F2FS_FS_COMPRESSION 2936 struct inode *inode = page->mapping->host; 2937 2938 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 2939 goto out; 2940 2941 if (f2fs_compressed_file(inode)) { 2942 if (f2fs_is_compressed_cluster(inode, page->index)) { 2943 redirty_page_for_writepage(wbc, page); 2944 return AOP_WRITEPAGE_ACTIVATE; 2945 } 2946 } 2947 out: 2948 #endif 2949 2950 return f2fs_write_single_data_page(page, NULL, NULL, NULL, 2951 wbc, FS_DATA_IO, 0, true); 2952 } 2953 2954 /* 2955 * This function was copied from write_cache_pages from mm/page-writeback.c. 2956 * The major change is making write step of cold data page separately from 2957 * warm/hot data page. 2958 */ 2959 static int f2fs_write_cache_pages(struct address_space *mapping, 2960 struct writeback_control *wbc, 2961 enum iostat_type io_type) 2962 { 2963 int ret = 0; 2964 int done = 0, retry = 0; 2965 struct page *pages[F2FS_ONSTACK_PAGES]; 2966 struct folio_batch fbatch; 2967 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 2968 struct bio *bio = NULL; 2969 sector_t last_block; 2970 #ifdef CONFIG_F2FS_FS_COMPRESSION 2971 struct inode *inode = mapping->host; 2972 struct compress_ctx cc = { 2973 .inode = inode, 2974 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 2975 .cluster_size = F2FS_I(inode)->i_cluster_size, 2976 .cluster_idx = NULL_CLUSTER, 2977 .rpages = NULL, 2978 .nr_rpages = 0, 2979 .cpages = NULL, 2980 .valid_nr_cpages = 0, 2981 .rbuf = NULL, 2982 .cbuf = NULL, 2983 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size, 2984 .private = NULL, 2985 }; 2986 #endif 2987 int nr_folios, p, idx; 2988 int nr_pages; 2989 pgoff_t index; 2990 pgoff_t end; /* Inclusive */ 2991 pgoff_t done_index; 2992 int range_whole = 0; 2993 xa_mark_t tag; 2994 int nwritten = 0; 2995 int submitted = 0; 2996 int i; 2997 2998 folio_batch_init(&fbatch); 2999 3000 if (get_dirty_pages(mapping->host) <= 3001 SM_I(F2FS_M_SB(mapping))->min_hot_blocks) 3002 set_inode_flag(mapping->host, FI_HOT_DATA); 3003 else 3004 clear_inode_flag(mapping->host, FI_HOT_DATA); 3005 3006 if (wbc->range_cyclic) { 3007 index = mapping->writeback_index; /* prev offset */ 3008 end = -1; 3009 } else { 3010 index = wbc->range_start >> PAGE_SHIFT; 3011 end = wbc->range_end >> PAGE_SHIFT; 3012 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 3013 range_whole = 1; 3014 } 3015 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 3016 tag = PAGECACHE_TAG_TOWRITE; 3017 else 3018 tag = PAGECACHE_TAG_DIRTY; 3019 retry: 3020 retry = 0; 3021 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 3022 tag_pages_for_writeback(mapping, index, end); 3023 done_index = index; 3024 while (!done && !retry && (index <= end)) { 3025 nr_pages = 0; 3026 again: 3027 nr_folios = filemap_get_folios_tag(mapping, &index, end, 3028 tag, &fbatch); 3029 if (nr_folios == 0) { 3030 if (nr_pages) 3031 goto write; 3032 break; 3033 } 3034 3035 for (i = 0; i < nr_folios; i++) { 3036 struct folio *folio = fbatch.folios[i]; 3037 3038 idx = 0; 3039 p = folio_nr_pages(folio); 3040 add_more: 3041 pages[nr_pages] = folio_page(folio, idx); 3042 folio_get(folio); 3043 if (++nr_pages == F2FS_ONSTACK_PAGES) { 3044 index = folio->index + idx + 1; 3045 folio_batch_release(&fbatch); 3046 goto write; 3047 } 3048 if (++idx < p) 3049 goto add_more; 3050 } 3051 folio_batch_release(&fbatch); 3052 goto again; 3053 write: 3054 for (i = 0; i < nr_pages; i++) { 3055 struct page *page = pages[i]; 3056 struct folio *folio = page_folio(page); 3057 bool need_readd; 3058 readd: 3059 need_readd = false; 3060 #ifdef CONFIG_F2FS_FS_COMPRESSION 3061 if (f2fs_compressed_file(inode)) { 3062 void *fsdata = NULL; 3063 struct page *pagep; 3064 int ret2; 3065 3066 ret = f2fs_init_compress_ctx(&cc); 3067 if (ret) { 3068 done = 1; 3069 break; 3070 } 3071 3072 if (!f2fs_cluster_can_merge_page(&cc, 3073 folio->index)) { 3074 ret = f2fs_write_multi_pages(&cc, 3075 &submitted, wbc, io_type); 3076 if (!ret) 3077 need_readd = true; 3078 goto result; 3079 } 3080 3081 if (unlikely(f2fs_cp_error(sbi))) 3082 goto lock_folio; 3083 3084 if (!f2fs_cluster_is_empty(&cc)) 3085 goto lock_folio; 3086 3087 if (f2fs_all_cluster_page_ready(&cc, 3088 pages, i, nr_pages, true)) 3089 goto lock_folio; 3090 3091 ret2 = f2fs_prepare_compress_overwrite( 3092 inode, &pagep, 3093 folio->index, &fsdata); 3094 if (ret2 < 0) { 3095 ret = ret2; 3096 done = 1; 3097 break; 3098 } else if (ret2 && 3099 (!f2fs_compress_write_end(inode, 3100 fsdata, folio->index, 1) || 3101 !f2fs_all_cluster_page_ready(&cc, 3102 pages, i, nr_pages, 3103 false))) { 3104 retry = 1; 3105 break; 3106 } 3107 } 3108 #endif 3109 /* give a priority to WB_SYNC threads */ 3110 if (atomic_read(&sbi->wb_sync_req[DATA]) && 3111 wbc->sync_mode == WB_SYNC_NONE) { 3112 done = 1; 3113 break; 3114 } 3115 #ifdef CONFIG_F2FS_FS_COMPRESSION 3116 lock_folio: 3117 #endif 3118 done_index = folio->index; 3119 retry_write: 3120 folio_lock(folio); 3121 3122 if (unlikely(folio->mapping != mapping)) { 3123 continue_unlock: 3124 folio_unlock(folio); 3125 continue; 3126 } 3127 3128 if (!folio_test_dirty(folio)) { 3129 /* someone wrote it for us */ 3130 goto continue_unlock; 3131 } 3132 3133 if (folio_test_writeback(folio)) { 3134 if (wbc->sync_mode == WB_SYNC_NONE) 3135 goto continue_unlock; 3136 f2fs_wait_on_page_writeback(&folio->page, DATA, true, true); 3137 } 3138 3139 if (!folio_clear_dirty_for_io(folio)) 3140 goto continue_unlock; 3141 3142 #ifdef CONFIG_F2FS_FS_COMPRESSION 3143 if (f2fs_compressed_file(inode)) { 3144 folio_get(folio); 3145 f2fs_compress_ctx_add_page(&cc, &folio->page); 3146 continue; 3147 } 3148 #endif 3149 ret = f2fs_write_single_data_page(&folio->page, 3150 &submitted, &bio, &last_block, 3151 wbc, io_type, 0, true); 3152 if (ret == AOP_WRITEPAGE_ACTIVATE) 3153 folio_unlock(folio); 3154 #ifdef CONFIG_F2FS_FS_COMPRESSION 3155 result: 3156 #endif 3157 nwritten += submitted; 3158 wbc->nr_to_write -= submitted; 3159 3160 if (unlikely(ret)) { 3161 /* 3162 * keep nr_to_write, since vfs uses this to 3163 * get # of written pages. 3164 */ 3165 if (ret == AOP_WRITEPAGE_ACTIVATE) { 3166 ret = 0; 3167 goto next; 3168 } else if (ret == -EAGAIN) { 3169 ret = 0; 3170 if (wbc->sync_mode == WB_SYNC_ALL) { 3171 f2fs_io_schedule_timeout( 3172 DEFAULT_IO_TIMEOUT); 3173 goto retry_write; 3174 } 3175 goto next; 3176 } 3177 done_index = folio->index + 3178 folio_nr_pages(folio); 3179 done = 1; 3180 break; 3181 } 3182 3183 if (wbc->nr_to_write <= 0 && 3184 wbc->sync_mode == WB_SYNC_NONE) { 3185 done = 1; 3186 break; 3187 } 3188 next: 3189 if (need_readd) 3190 goto readd; 3191 } 3192 release_pages(pages, nr_pages); 3193 cond_resched(); 3194 } 3195 #ifdef CONFIG_F2FS_FS_COMPRESSION 3196 /* flush remained pages in compress cluster */ 3197 if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) { 3198 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type); 3199 nwritten += submitted; 3200 wbc->nr_to_write -= submitted; 3201 if (ret) { 3202 done = 1; 3203 retry = 0; 3204 } 3205 } 3206 if (f2fs_compressed_file(inode)) 3207 f2fs_destroy_compress_ctx(&cc, false); 3208 #endif 3209 if (retry) { 3210 index = 0; 3211 end = -1; 3212 goto retry; 3213 } 3214 if (wbc->range_cyclic && !done) 3215 done_index = 0; 3216 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 3217 mapping->writeback_index = done_index; 3218 3219 if (nwritten) 3220 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host, 3221 NULL, 0, DATA); 3222 /* submit cached bio of IPU write */ 3223 if (bio) 3224 f2fs_submit_merged_ipu_write(sbi, &bio, NULL); 3225 3226 return ret; 3227 } 3228 3229 static inline bool __should_serialize_io(struct inode *inode, 3230 struct writeback_control *wbc) 3231 { 3232 /* to avoid deadlock in path of data flush */ 3233 if (F2FS_I(inode)->wb_task) 3234 return false; 3235 3236 if (!S_ISREG(inode->i_mode)) 3237 return false; 3238 if (IS_NOQUOTA(inode)) 3239 return false; 3240 3241 if (f2fs_need_compress_data(inode)) 3242 return true; 3243 if (wbc->sync_mode != WB_SYNC_ALL) 3244 return true; 3245 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks) 3246 return true; 3247 return false; 3248 } 3249 3250 static int __f2fs_write_data_pages(struct address_space *mapping, 3251 struct writeback_control *wbc, 3252 enum iostat_type io_type) 3253 { 3254 struct inode *inode = mapping->host; 3255 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3256 struct blk_plug plug; 3257 int ret; 3258 bool locked = false; 3259 3260 /* deal with chardevs and other special file */ 3261 if (!mapping->a_ops->writepage) 3262 return 0; 3263 3264 /* skip writing if there is no dirty page in this inode */ 3265 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE) 3266 return 0; 3267 3268 /* during POR, we don't need to trigger writepage at all. */ 3269 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 3270 goto skip_write; 3271 3272 if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) && 3273 wbc->sync_mode == WB_SYNC_NONE && 3274 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) && 3275 f2fs_available_free_memory(sbi, DIRTY_DENTS)) 3276 goto skip_write; 3277 3278 /* skip writing in file defragment preparing stage */ 3279 if (is_inode_flag_set(inode, FI_SKIP_WRITES)) 3280 goto skip_write; 3281 3282 trace_f2fs_writepages(mapping->host, wbc, DATA); 3283 3284 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */ 3285 if (wbc->sync_mode == WB_SYNC_ALL) 3286 atomic_inc(&sbi->wb_sync_req[DATA]); 3287 else if (atomic_read(&sbi->wb_sync_req[DATA])) { 3288 /* to avoid potential deadlock */ 3289 if (current->plug) 3290 blk_finish_plug(current->plug); 3291 goto skip_write; 3292 } 3293 3294 if (__should_serialize_io(inode, wbc)) { 3295 mutex_lock(&sbi->writepages); 3296 locked = true; 3297 } 3298 3299 blk_start_plug(&plug); 3300 ret = f2fs_write_cache_pages(mapping, wbc, io_type); 3301 blk_finish_plug(&plug); 3302 3303 if (locked) 3304 mutex_unlock(&sbi->writepages); 3305 3306 if (wbc->sync_mode == WB_SYNC_ALL) 3307 atomic_dec(&sbi->wb_sync_req[DATA]); 3308 /* 3309 * if some pages were truncated, we cannot guarantee its mapping->host 3310 * to detect pending bios. 3311 */ 3312 3313 f2fs_remove_dirty_inode(inode); 3314 return ret; 3315 3316 skip_write: 3317 wbc->pages_skipped += get_dirty_pages(inode); 3318 trace_f2fs_writepages(mapping->host, wbc, DATA); 3319 return 0; 3320 } 3321 3322 static int f2fs_write_data_pages(struct address_space *mapping, 3323 struct writeback_control *wbc) 3324 { 3325 struct inode *inode = mapping->host; 3326 3327 return __f2fs_write_data_pages(mapping, wbc, 3328 F2FS_I(inode)->cp_task == current ? 3329 FS_CP_DATA_IO : FS_DATA_IO); 3330 } 3331 3332 void f2fs_write_failed(struct inode *inode, loff_t to) 3333 { 3334 loff_t i_size = i_size_read(inode); 3335 3336 if (IS_NOQUOTA(inode)) 3337 return; 3338 3339 /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */ 3340 if (to > i_size && !f2fs_verity_in_progress(inode)) { 3341 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3342 filemap_invalidate_lock(inode->i_mapping); 3343 3344 truncate_pagecache(inode, i_size); 3345 f2fs_truncate_blocks(inode, i_size, true); 3346 3347 filemap_invalidate_unlock(inode->i_mapping); 3348 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3349 } 3350 } 3351 3352 static int prepare_write_begin(struct f2fs_sb_info *sbi, 3353 struct page *page, loff_t pos, unsigned len, 3354 block_t *blk_addr, bool *node_changed) 3355 { 3356 struct inode *inode = page->mapping->host; 3357 pgoff_t index = page->index; 3358 struct dnode_of_data dn; 3359 struct page *ipage; 3360 bool locked = false; 3361 int flag = F2FS_GET_BLOCK_PRE_AIO; 3362 int err = 0; 3363 3364 /* 3365 * If a whole page is being written and we already preallocated all the 3366 * blocks, then there is no need to get a block address now. 3367 */ 3368 if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL)) 3369 return 0; 3370 3371 /* f2fs_lock_op avoids race between write CP and convert_inline_page */ 3372 if (f2fs_has_inline_data(inode)) { 3373 if (pos + len > MAX_INLINE_DATA(inode)) 3374 flag = F2FS_GET_BLOCK_DEFAULT; 3375 f2fs_map_lock(sbi, flag); 3376 locked = true; 3377 } else if ((pos & PAGE_MASK) >= i_size_read(inode)) { 3378 f2fs_map_lock(sbi, flag); 3379 locked = true; 3380 } 3381 3382 restart: 3383 /* check inline_data */ 3384 ipage = f2fs_get_node_page(sbi, inode->i_ino); 3385 if (IS_ERR(ipage)) { 3386 err = PTR_ERR(ipage); 3387 goto unlock_out; 3388 } 3389 3390 set_new_dnode(&dn, inode, ipage, ipage, 0); 3391 3392 if (f2fs_has_inline_data(inode)) { 3393 if (pos + len <= MAX_INLINE_DATA(inode)) { 3394 f2fs_do_read_inline_data(page, ipage); 3395 set_inode_flag(inode, FI_DATA_EXIST); 3396 if (inode->i_nlink) 3397 set_page_private_inline(ipage); 3398 goto out; 3399 } 3400 err = f2fs_convert_inline_page(&dn, page); 3401 if (err || dn.data_blkaddr != NULL_ADDR) 3402 goto out; 3403 } 3404 3405 if (!f2fs_lookup_read_extent_cache_block(inode, index, 3406 &dn.data_blkaddr)) { 3407 if (locked) { 3408 err = f2fs_reserve_block(&dn, index); 3409 goto out; 3410 } 3411 3412 /* hole case */ 3413 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 3414 if (!err && dn.data_blkaddr != NULL_ADDR) 3415 goto out; 3416 f2fs_put_dnode(&dn); 3417 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO); 3418 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO); 3419 locked = true; 3420 goto restart; 3421 } 3422 out: 3423 if (!err) { 3424 /* convert_inline_page can make node_changed */ 3425 *blk_addr = dn.data_blkaddr; 3426 *node_changed = dn.node_changed; 3427 } 3428 f2fs_put_dnode(&dn); 3429 unlock_out: 3430 if (locked) 3431 f2fs_map_unlock(sbi, flag); 3432 return err; 3433 } 3434 3435 static int __find_data_block(struct inode *inode, pgoff_t index, 3436 block_t *blk_addr) 3437 { 3438 struct dnode_of_data dn; 3439 struct page *ipage; 3440 int err = 0; 3441 3442 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino); 3443 if (IS_ERR(ipage)) 3444 return PTR_ERR(ipage); 3445 3446 set_new_dnode(&dn, inode, ipage, ipage, 0); 3447 3448 if (!f2fs_lookup_read_extent_cache_block(inode, index, 3449 &dn.data_blkaddr)) { 3450 /* hole case */ 3451 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 3452 if (err) { 3453 dn.data_blkaddr = NULL_ADDR; 3454 err = 0; 3455 } 3456 } 3457 *blk_addr = dn.data_blkaddr; 3458 f2fs_put_dnode(&dn); 3459 return err; 3460 } 3461 3462 static int __reserve_data_block(struct inode *inode, pgoff_t index, 3463 block_t *blk_addr, bool *node_changed) 3464 { 3465 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3466 struct dnode_of_data dn; 3467 struct page *ipage; 3468 int err = 0; 3469 3470 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO); 3471 3472 ipage = f2fs_get_node_page(sbi, inode->i_ino); 3473 if (IS_ERR(ipage)) { 3474 err = PTR_ERR(ipage); 3475 goto unlock_out; 3476 } 3477 set_new_dnode(&dn, inode, ipage, ipage, 0); 3478 3479 if (!f2fs_lookup_read_extent_cache_block(dn.inode, index, 3480 &dn.data_blkaddr)) 3481 err = f2fs_reserve_block(&dn, index); 3482 3483 *blk_addr = dn.data_blkaddr; 3484 *node_changed = dn.node_changed; 3485 f2fs_put_dnode(&dn); 3486 3487 unlock_out: 3488 f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO); 3489 return err; 3490 } 3491 3492 static int prepare_atomic_write_begin(struct f2fs_sb_info *sbi, 3493 struct page *page, loff_t pos, unsigned int len, 3494 block_t *blk_addr, bool *node_changed, bool *use_cow) 3495 { 3496 struct inode *inode = page->mapping->host; 3497 struct inode *cow_inode = F2FS_I(inode)->cow_inode; 3498 pgoff_t index = page->index; 3499 int err = 0; 3500 block_t ori_blk_addr = NULL_ADDR; 3501 3502 /* If pos is beyond the end of file, reserve a new block in COW inode */ 3503 if ((pos & PAGE_MASK) >= i_size_read(inode)) 3504 goto reserve_block; 3505 3506 /* Look for the block in COW inode first */ 3507 err = __find_data_block(cow_inode, index, blk_addr); 3508 if (err) { 3509 return err; 3510 } else if (*blk_addr != NULL_ADDR) { 3511 *use_cow = true; 3512 return 0; 3513 } 3514 3515 if (is_inode_flag_set(inode, FI_ATOMIC_REPLACE)) 3516 goto reserve_block; 3517 3518 /* Look for the block in the original inode */ 3519 err = __find_data_block(inode, index, &ori_blk_addr); 3520 if (err) 3521 return err; 3522 3523 reserve_block: 3524 /* Finally, we should reserve a new block in COW inode for the update */ 3525 err = __reserve_data_block(cow_inode, index, blk_addr, node_changed); 3526 if (err) 3527 return err; 3528 inc_atomic_write_cnt(inode); 3529 3530 if (ori_blk_addr != NULL_ADDR) 3531 *blk_addr = ori_blk_addr; 3532 return 0; 3533 } 3534 3535 static int f2fs_write_begin(struct file *file, struct address_space *mapping, 3536 loff_t pos, unsigned len, struct page **pagep, void **fsdata) 3537 { 3538 struct inode *inode = mapping->host; 3539 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3540 struct page *page = NULL; 3541 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT; 3542 bool need_balance = false; 3543 bool use_cow = false; 3544 block_t blkaddr = NULL_ADDR; 3545 int err = 0; 3546 3547 trace_f2fs_write_begin(inode, pos, len); 3548 3549 if (!f2fs_is_checkpoint_ready(sbi)) { 3550 err = -ENOSPC; 3551 goto fail; 3552 } 3553 3554 /* 3555 * We should check this at this moment to avoid deadlock on inode page 3556 * and #0 page. The locking rule for inline_data conversion should be: 3557 * lock_page(page #0) -> lock_page(inode_page) 3558 */ 3559 if (index != 0) { 3560 err = f2fs_convert_inline_inode(inode); 3561 if (err) 3562 goto fail; 3563 } 3564 3565 #ifdef CONFIG_F2FS_FS_COMPRESSION 3566 if (f2fs_compressed_file(inode)) { 3567 int ret; 3568 3569 *fsdata = NULL; 3570 3571 if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode))) 3572 goto repeat; 3573 3574 ret = f2fs_prepare_compress_overwrite(inode, pagep, 3575 index, fsdata); 3576 if (ret < 0) { 3577 err = ret; 3578 goto fail; 3579 } else if (ret) { 3580 return 0; 3581 } 3582 } 3583 #endif 3584 3585 repeat: 3586 /* 3587 * Do not use grab_cache_page_write_begin() to avoid deadlock due to 3588 * wait_for_stable_page. Will wait that below with our IO control. 3589 */ 3590 page = f2fs_pagecache_get_page(mapping, index, 3591 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS); 3592 if (!page) { 3593 err = -ENOMEM; 3594 goto fail; 3595 } 3596 3597 /* TODO: cluster can be compressed due to race with .writepage */ 3598 3599 *pagep = page; 3600 3601 if (f2fs_is_atomic_file(inode)) 3602 err = prepare_atomic_write_begin(sbi, page, pos, len, 3603 &blkaddr, &need_balance, &use_cow); 3604 else 3605 err = prepare_write_begin(sbi, page, pos, len, 3606 &blkaddr, &need_balance); 3607 if (err) 3608 goto fail; 3609 3610 if (need_balance && !IS_NOQUOTA(inode) && 3611 has_not_enough_free_secs(sbi, 0, 0)) { 3612 unlock_page(page); 3613 f2fs_balance_fs(sbi, true); 3614 lock_page(page); 3615 if (page->mapping != mapping) { 3616 /* The page got truncated from under us */ 3617 f2fs_put_page(page, 1); 3618 goto repeat; 3619 } 3620 } 3621 3622 f2fs_wait_on_page_writeback(page, DATA, false, true); 3623 3624 if (len == PAGE_SIZE || PageUptodate(page)) 3625 return 0; 3626 3627 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) && 3628 !f2fs_verity_in_progress(inode)) { 3629 zero_user_segment(page, len, PAGE_SIZE); 3630 return 0; 3631 } 3632 3633 if (blkaddr == NEW_ADDR) { 3634 zero_user_segment(page, 0, PAGE_SIZE); 3635 SetPageUptodate(page); 3636 } else { 3637 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 3638 DATA_GENERIC_ENHANCE_READ)) { 3639 err = -EFSCORRUPTED; 3640 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 3641 goto fail; 3642 } 3643 err = f2fs_submit_page_read(use_cow ? 3644 F2FS_I(inode)->cow_inode : inode, page, 3645 blkaddr, 0, true); 3646 if (err) 3647 goto fail; 3648 3649 lock_page(page); 3650 if (unlikely(page->mapping != mapping)) { 3651 f2fs_put_page(page, 1); 3652 goto repeat; 3653 } 3654 if (unlikely(!PageUptodate(page))) { 3655 err = -EIO; 3656 goto fail; 3657 } 3658 } 3659 return 0; 3660 3661 fail: 3662 f2fs_put_page(page, 1); 3663 f2fs_write_failed(inode, pos + len); 3664 return err; 3665 } 3666 3667 static int f2fs_write_end(struct file *file, 3668 struct address_space *mapping, 3669 loff_t pos, unsigned len, unsigned copied, 3670 struct page *page, void *fsdata) 3671 { 3672 struct inode *inode = page->mapping->host; 3673 3674 trace_f2fs_write_end(inode, pos, len, copied); 3675 3676 /* 3677 * This should be come from len == PAGE_SIZE, and we expect copied 3678 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and 3679 * let generic_perform_write() try to copy data again through copied=0. 3680 */ 3681 if (!PageUptodate(page)) { 3682 if (unlikely(copied != len)) 3683 copied = 0; 3684 else 3685 SetPageUptodate(page); 3686 } 3687 3688 #ifdef CONFIG_F2FS_FS_COMPRESSION 3689 /* overwrite compressed file */ 3690 if (f2fs_compressed_file(inode) && fsdata) { 3691 f2fs_compress_write_end(inode, fsdata, page->index, copied); 3692 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3693 3694 if (pos + copied > i_size_read(inode) && 3695 !f2fs_verity_in_progress(inode)) 3696 f2fs_i_size_write(inode, pos + copied); 3697 return copied; 3698 } 3699 #endif 3700 3701 if (!copied) 3702 goto unlock_out; 3703 3704 set_page_dirty(page); 3705 3706 if (pos + copied > i_size_read(inode) && 3707 !f2fs_verity_in_progress(inode)) { 3708 f2fs_i_size_write(inode, pos + copied); 3709 if (f2fs_is_atomic_file(inode)) 3710 f2fs_i_size_write(F2FS_I(inode)->cow_inode, 3711 pos + copied); 3712 } 3713 unlock_out: 3714 f2fs_put_page(page, 1); 3715 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3716 return copied; 3717 } 3718 3719 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length) 3720 { 3721 struct inode *inode = folio->mapping->host; 3722 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3723 3724 if (inode->i_ino >= F2FS_ROOT_INO(sbi) && 3725 (offset || length != folio_size(folio))) 3726 return; 3727 3728 if (folio_test_dirty(folio)) { 3729 if (inode->i_ino == F2FS_META_INO(sbi)) { 3730 dec_page_count(sbi, F2FS_DIRTY_META); 3731 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) { 3732 dec_page_count(sbi, F2FS_DIRTY_NODES); 3733 } else { 3734 inode_dec_dirty_pages(inode); 3735 f2fs_remove_dirty_inode(inode); 3736 } 3737 } 3738 clear_page_private_all(&folio->page); 3739 } 3740 3741 bool f2fs_release_folio(struct folio *folio, gfp_t wait) 3742 { 3743 /* If this is dirty folio, keep private data */ 3744 if (folio_test_dirty(folio)) 3745 return false; 3746 3747 clear_page_private_all(&folio->page); 3748 return true; 3749 } 3750 3751 static bool f2fs_dirty_data_folio(struct address_space *mapping, 3752 struct folio *folio) 3753 { 3754 struct inode *inode = mapping->host; 3755 3756 trace_f2fs_set_page_dirty(&folio->page, DATA); 3757 3758 if (!folio_test_uptodate(folio)) 3759 folio_mark_uptodate(folio); 3760 BUG_ON(folio_test_swapcache(folio)); 3761 3762 if (filemap_dirty_folio(mapping, folio)) { 3763 f2fs_update_dirty_folio(inode, folio); 3764 return true; 3765 } 3766 return false; 3767 } 3768 3769 3770 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block) 3771 { 3772 #ifdef CONFIG_F2FS_FS_COMPRESSION 3773 struct dnode_of_data dn; 3774 sector_t start_idx, blknr = 0; 3775 int ret; 3776 3777 start_idx = round_down(block, F2FS_I(inode)->i_cluster_size); 3778 3779 set_new_dnode(&dn, inode, NULL, NULL, 0); 3780 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 3781 if (ret) 3782 return 0; 3783 3784 if (dn.data_blkaddr != COMPRESS_ADDR) { 3785 dn.ofs_in_node += block - start_idx; 3786 blknr = f2fs_data_blkaddr(&dn); 3787 if (!__is_valid_data_blkaddr(blknr)) 3788 blknr = 0; 3789 } 3790 3791 f2fs_put_dnode(&dn); 3792 return blknr; 3793 #else 3794 return 0; 3795 #endif 3796 } 3797 3798 3799 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block) 3800 { 3801 struct inode *inode = mapping->host; 3802 sector_t blknr = 0; 3803 3804 if (f2fs_has_inline_data(inode)) 3805 goto out; 3806 3807 /* make sure allocating whole blocks */ 3808 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 3809 filemap_write_and_wait(mapping); 3810 3811 /* Block number less than F2FS MAX BLOCKS */ 3812 if (unlikely(block >= max_file_blocks(inode))) 3813 goto out; 3814 3815 if (f2fs_compressed_file(inode)) { 3816 blknr = f2fs_bmap_compress(inode, block); 3817 } else { 3818 struct f2fs_map_blocks map; 3819 3820 memset(&map, 0, sizeof(map)); 3821 map.m_lblk = block; 3822 map.m_len = 1; 3823 map.m_next_pgofs = NULL; 3824 map.m_seg_type = NO_CHECK_TYPE; 3825 3826 if (!f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_BMAP)) 3827 blknr = map.m_pblk; 3828 } 3829 out: 3830 trace_f2fs_bmap(inode, block, blknr); 3831 return blknr; 3832 } 3833 3834 #ifdef CONFIG_SWAP 3835 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk, 3836 unsigned int blkcnt) 3837 { 3838 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3839 unsigned int blkofs; 3840 unsigned int blk_per_sec = BLKS_PER_SEC(sbi); 3841 unsigned int secidx = start_blk / blk_per_sec; 3842 unsigned int end_sec = secidx + blkcnt / blk_per_sec; 3843 int ret = 0; 3844 3845 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3846 filemap_invalidate_lock(inode->i_mapping); 3847 3848 set_inode_flag(inode, FI_ALIGNED_WRITE); 3849 set_inode_flag(inode, FI_OPU_WRITE); 3850 3851 for (; secidx < end_sec; secidx++) { 3852 f2fs_down_write(&sbi->pin_sem); 3853 3854 f2fs_lock_op(sbi); 3855 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false); 3856 f2fs_unlock_op(sbi); 3857 3858 set_inode_flag(inode, FI_SKIP_WRITES); 3859 3860 for (blkofs = 0; blkofs < blk_per_sec; blkofs++) { 3861 struct page *page; 3862 unsigned int blkidx = secidx * blk_per_sec + blkofs; 3863 3864 page = f2fs_get_lock_data_page(inode, blkidx, true); 3865 if (IS_ERR(page)) { 3866 f2fs_up_write(&sbi->pin_sem); 3867 ret = PTR_ERR(page); 3868 goto done; 3869 } 3870 3871 set_page_dirty(page); 3872 f2fs_put_page(page, 1); 3873 } 3874 3875 clear_inode_flag(inode, FI_SKIP_WRITES); 3876 3877 ret = filemap_fdatawrite(inode->i_mapping); 3878 3879 f2fs_up_write(&sbi->pin_sem); 3880 3881 if (ret) 3882 break; 3883 } 3884 3885 done: 3886 clear_inode_flag(inode, FI_SKIP_WRITES); 3887 clear_inode_flag(inode, FI_OPU_WRITE); 3888 clear_inode_flag(inode, FI_ALIGNED_WRITE); 3889 3890 filemap_invalidate_unlock(inode->i_mapping); 3891 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3892 3893 return ret; 3894 } 3895 3896 static int check_swap_activate(struct swap_info_struct *sis, 3897 struct file *swap_file, sector_t *span) 3898 { 3899 struct address_space *mapping = swap_file->f_mapping; 3900 struct inode *inode = mapping->host; 3901 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3902 sector_t cur_lblock; 3903 sector_t last_lblock; 3904 sector_t pblock; 3905 sector_t lowest_pblock = -1; 3906 sector_t highest_pblock = 0; 3907 int nr_extents = 0; 3908 unsigned long nr_pblocks; 3909 unsigned int blks_per_sec = BLKS_PER_SEC(sbi); 3910 unsigned int sec_blks_mask = BLKS_PER_SEC(sbi) - 1; 3911 unsigned int not_aligned = 0; 3912 int ret = 0; 3913 3914 /* 3915 * Map all the blocks into the extent list. This code doesn't try 3916 * to be very smart. 3917 */ 3918 cur_lblock = 0; 3919 last_lblock = bytes_to_blks(inode, i_size_read(inode)); 3920 3921 while (cur_lblock < last_lblock && cur_lblock < sis->max) { 3922 struct f2fs_map_blocks map; 3923 retry: 3924 cond_resched(); 3925 3926 memset(&map, 0, sizeof(map)); 3927 map.m_lblk = cur_lblock; 3928 map.m_len = last_lblock - cur_lblock; 3929 map.m_next_pgofs = NULL; 3930 map.m_next_extent = NULL; 3931 map.m_seg_type = NO_CHECK_TYPE; 3932 map.m_may_create = false; 3933 3934 ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP); 3935 if (ret) 3936 goto out; 3937 3938 /* hole */ 3939 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 3940 f2fs_err(sbi, "Swapfile has holes"); 3941 ret = -EINVAL; 3942 goto out; 3943 } 3944 3945 pblock = map.m_pblk; 3946 nr_pblocks = map.m_len; 3947 3948 if ((pblock - SM_I(sbi)->main_blkaddr) & sec_blks_mask || 3949 nr_pblocks & sec_blks_mask) { 3950 not_aligned++; 3951 3952 nr_pblocks = roundup(nr_pblocks, blks_per_sec); 3953 if (cur_lblock + nr_pblocks > sis->max) 3954 nr_pblocks -= blks_per_sec; 3955 3956 if (!nr_pblocks) { 3957 /* this extent is last one */ 3958 nr_pblocks = map.m_len; 3959 f2fs_warn(sbi, "Swapfile: last extent is not aligned to section"); 3960 goto next; 3961 } 3962 3963 ret = f2fs_migrate_blocks(inode, cur_lblock, 3964 nr_pblocks); 3965 if (ret) 3966 goto out; 3967 goto retry; 3968 } 3969 next: 3970 if (cur_lblock + nr_pblocks >= sis->max) 3971 nr_pblocks = sis->max - cur_lblock; 3972 3973 if (cur_lblock) { /* exclude the header page */ 3974 if (pblock < lowest_pblock) 3975 lowest_pblock = pblock; 3976 if (pblock + nr_pblocks - 1 > highest_pblock) 3977 highest_pblock = pblock + nr_pblocks - 1; 3978 } 3979 3980 /* 3981 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks 3982 */ 3983 ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock); 3984 if (ret < 0) 3985 goto out; 3986 nr_extents += ret; 3987 cur_lblock += nr_pblocks; 3988 } 3989 ret = nr_extents; 3990 *span = 1 + highest_pblock - lowest_pblock; 3991 if (cur_lblock == 0) 3992 cur_lblock = 1; /* force Empty message */ 3993 sis->max = cur_lblock; 3994 sis->pages = cur_lblock - 1; 3995 sis->highest_bit = cur_lblock - 1; 3996 out: 3997 if (not_aligned) 3998 f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%u * N)", 3999 not_aligned, blks_per_sec * F2FS_BLKSIZE); 4000 return ret; 4001 } 4002 4003 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, 4004 sector_t *span) 4005 { 4006 struct inode *inode = file_inode(file); 4007 int ret; 4008 4009 if (!S_ISREG(inode->i_mode)) 4010 return -EINVAL; 4011 4012 if (f2fs_readonly(F2FS_I_SB(inode)->sb)) 4013 return -EROFS; 4014 4015 if (f2fs_lfs_mode(F2FS_I_SB(inode))) { 4016 f2fs_err(F2FS_I_SB(inode), 4017 "Swapfile not supported in LFS mode"); 4018 return -EINVAL; 4019 } 4020 4021 ret = f2fs_convert_inline_inode(inode); 4022 if (ret) 4023 return ret; 4024 4025 if (!f2fs_disable_compressed_file(inode)) 4026 return -EINVAL; 4027 4028 f2fs_precache_extents(inode); 4029 4030 ret = check_swap_activate(sis, file, span); 4031 if (ret < 0) 4032 return ret; 4033 4034 stat_inc_swapfile_inode(inode); 4035 set_inode_flag(inode, FI_PIN_FILE); 4036 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 4037 return ret; 4038 } 4039 4040 static void f2fs_swap_deactivate(struct file *file) 4041 { 4042 struct inode *inode = file_inode(file); 4043 4044 stat_dec_swapfile_inode(inode); 4045 clear_inode_flag(inode, FI_PIN_FILE); 4046 } 4047 #else 4048 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, 4049 sector_t *span) 4050 { 4051 return -EOPNOTSUPP; 4052 } 4053 4054 static void f2fs_swap_deactivate(struct file *file) 4055 { 4056 } 4057 #endif 4058 4059 const struct address_space_operations f2fs_dblock_aops = { 4060 .read_folio = f2fs_read_data_folio, 4061 .readahead = f2fs_readahead, 4062 .writepage = f2fs_write_data_page, 4063 .writepages = f2fs_write_data_pages, 4064 .write_begin = f2fs_write_begin, 4065 .write_end = f2fs_write_end, 4066 .dirty_folio = f2fs_dirty_data_folio, 4067 .migrate_folio = filemap_migrate_folio, 4068 .invalidate_folio = f2fs_invalidate_folio, 4069 .release_folio = f2fs_release_folio, 4070 .direct_IO = noop_direct_IO, 4071 .bmap = f2fs_bmap, 4072 .swap_activate = f2fs_swap_activate, 4073 .swap_deactivate = f2fs_swap_deactivate, 4074 }; 4075 4076 void f2fs_clear_page_cache_dirty_tag(struct page *page) 4077 { 4078 struct address_space *mapping = page_mapping(page); 4079 unsigned long flags; 4080 4081 xa_lock_irqsave(&mapping->i_pages, flags); 4082 __xa_clear_mark(&mapping->i_pages, page_index(page), 4083 PAGECACHE_TAG_DIRTY); 4084 xa_unlock_irqrestore(&mapping->i_pages, flags); 4085 } 4086 4087 int __init f2fs_init_post_read_processing(void) 4088 { 4089 bio_post_read_ctx_cache = 4090 kmem_cache_create("f2fs_bio_post_read_ctx", 4091 sizeof(struct bio_post_read_ctx), 0, 0, NULL); 4092 if (!bio_post_read_ctx_cache) 4093 goto fail; 4094 bio_post_read_ctx_pool = 4095 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS, 4096 bio_post_read_ctx_cache); 4097 if (!bio_post_read_ctx_pool) 4098 goto fail_free_cache; 4099 return 0; 4100 4101 fail_free_cache: 4102 kmem_cache_destroy(bio_post_read_ctx_cache); 4103 fail: 4104 return -ENOMEM; 4105 } 4106 4107 void f2fs_destroy_post_read_processing(void) 4108 { 4109 mempool_destroy(bio_post_read_ctx_pool); 4110 kmem_cache_destroy(bio_post_read_ctx_cache); 4111 } 4112 4113 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi) 4114 { 4115 if (!f2fs_sb_has_encrypt(sbi) && 4116 !f2fs_sb_has_verity(sbi) && 4117 !f2fs_sb_has_compression(sbi)) 4118 return 0; 4119 4120 sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq", 4121 WQ_UNBOUND | WQ_HIGHPRI, 4122 num_online_cpus()); 4123 return sbi->post_read_wq ? 0 : -ENOMEM; 4124 } 4125 4126 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi) 4127 { 4128 if (sbi->post_read_wq) 4129 destroy_workqueue(sbi->post_read_wq); 4130 } 4131 4132 int __init f2fs_init_bio_entry_cache(void) 4133 { 4134 bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab", 4135 sizeof(struct bio_entry)); 4136 return bio_entry_slab ? 0 : -ENOMEM; 4137 } 4138 4139 void f2fs_destroy_bio_entry_cache(void) 4140 { 4141 kmem_cache_destroy(bio_entry_slab); 4142 } 4143 4144 static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 4145 unsigned int flags, struct iomap *iomap, 4146 struct iomap *srcmap) 4147 { 4148 struct f2fs_map_blocks map = {}; 4149 pgoff_t next_pgofs = 0; 4150 int err; 4151 4152 map.m_lblk = bytes_to_blks(inode, offset); 4153 map.m_len = bytes_to_blks(inode, offset + length - 1) - map.m_lblk + 1; 4154 map.m_next_pgofs = &next_pgofs; 4155 map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint); 4156 if (flags & IOMAP_WRITE) 4157 map.m_may_create = true; 4158 4159 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DIO); 4160 if (err) 4161 return err; 4162 4163 iomap->offset = blks_to_bytes(inode, map.m_lblk); 4164 4165 /* 4166 * When inline encryption is enabled, sometimes I/O to an encrypted file 4167 * has to be broken up to guarantee DUN contiguity. Handle this by 4168 * limiting the length of the mapping returned. 4169 */ 4170 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len); 4171 4172 /* 4173 * We should never see delalloc or compressed extents here based on 4174 * prior flushing and checks. 4175 */ 4176 if (WARN_ON_ONCE(map.m_pblk == NEW_ADDR)) 4177 return -EINVAL; 4178 if (WARN_ON_ONCE(map.m_pblk == COMPRESS_ADDR)) 4179 return -EINVAL; 4180 4181 if (map.m_pblk != NULL_ADDR) { 4182 iomap->length = blks_to_bytes(inode, map.m_len); 4183 iomap->type = IOMAP_MAPPED; 4184 iomap->flags |= IOMAP_F_MERGED; 4185 iomap->bdev = map.m_bdev; 4186 iomap->addr = blks_to_bytes(inode, map.m_pblk); 4187 } else { 4188 if (flags & IOMAP_WRITE) 4189 return -ENOTBLK; 4190 iomap->length = blks_to_bytes(inode, next_pgofs) - 4191 iomap->offset; 4192 iomap->type = IOMAP_HOLE; 4193 iomap->addr = IOMAP_NULL_ADDR; 4194 } 4195 4196 if (map.m_flags & F2FS_MAP_NEW) 4197 iomap->flags |= IOMAP_F_NEW; 4198 if ((inode->i_state & I_DIRTY_DATASYNC) || 4199 offset + length > i_size_read(inode)) 4200 iomap->flags |= IOMAP_F_DIRTY; 4201 4202 return 0; 4203 } 4204 4205 const struct iomap_ops f2fs_iomap_ops = { 4206 .iomap_begin = f2fs_iomap_begin, 4207 }; 4208