xref: /linux/fs/f2fs/compress.c (revision effa76856f2d7111f8c44de49f15ebdfccea8ccc)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * f2fs compress support
4   *
5   * Copyright (c) 2019 Chao Yu <chao@kernel.org>
6   */
7  
8  #include <linux/fs.h>
9  #include <linux/f2fs_fs.h>
10  #include <linux/moduleparam.h>
11  #include <linux/writeback.h>
12  #include <linux/backing-dev.h>
13  #include <linux/lzo.h>
14  #include <linux/lz4.h>
15  #include <linux/zstd.h>
16  #include <linux/pagevec.h>
17  
18  #include "f2fs.h"
19  #include "node.h"
20  #include "segment.h"
21  #include <trace/events/f2fs.h>
22  
23  static struct kmem_cache *cic_entry_slab;
24  static struct kmem_cache *dic_entry_slab;
25  
26  static void *page_array_alloc(struct inode *inode, int nr)
27  {
28  	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
29  	unsigned int size = sizeof(struct page *) * nr;
30  
31  	if (likely(size <= sbi->page_array_slab_size))
32  		return f2fs_kmem_cache_alloc(sbi->page_array_slab,
33  					GFP_F2FS_ZERO, false, F2FS_I_SB(inode));
34  	return f2fs_kzalloc(sbi, size, GFP_NOFS);
35  }
36  
37  static void page_array_free(struct inode *inode, void *pages, int nr)
38  {
39  	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
40  	unsigned int size = sizeof(struct page *) * nr;
41  
42  	if (!pages)
43  		return;
44  
45  	if (likely(size <= sbi->page_array_slab_size))
46  		kmem_cache_free(sbi->page_array_slab, pages);
47  	else
48  		kfree(pages);
49  }
50  
51  struct f2fs_compress_ops {
52  	int (*init_compress_ctx)(struct compress_ctx *cc);
53  	void (*destroy_compress_ctx)(struct compress_ctx *cc);
54  	int (*compress_pages)(struct compress_ctx *cc);
55  	int (*init_decompress_ctx)(struct decompress_io_ctx *dic);
56  	void (*destroy_decompress_ctx)(struct decompress_io_ctx *dic);
57  	int (*decompress_pages)(struct decompress_io_ctx *dic);
58  };
59  
60  static unsigned int offset_in_cluster(struct compress_ctx *cc, pgoff_t index)
61  {
62  	return index & (cc->cluster_size - 1);
63  }
64  
65  static pgoff_t cluster_idx(struct compress_ctx *cc, pgoff_t index)
66  {
67  	return index >> cc->log_cluster_size;
68  }
69  
70  static pgoff_t start_idx_of_cluster(struct compress_ctx *cc)
71  {
72  	return cc->cluster_idx << cc->log_cluster_size;
73  }
74  
75  bool f2fs_is_compressed_page(struct page *page)
76  {
77  	if (!PagePrivate(page))
78  		return false;
79  	if (!page_private(page))
80  		return false;
81  	if (page_private_nonpointer(page))
82  		return false;
83  
84  	f2fs_bug_on(F2FS_M_SB(page->mapping),
85  		*((u32 *)page_private(page)) != F2FS_COMPRESSED_PAGE_MAGIC);
86  	return true;
87  }
88  
89  static void f2fs_set_compressed_page(struct page *page,
90  		struct inode *inode, pgoff_t index, void *data)
91  {
92  	attach_page_private(page, (void *)data);
93  
94  	/* i_crypto_info and iv index */
95  	page->index = index;
96  	page->mapping = inode->i_mapping;
97  }
98  
99  static void f2fs_drop_rpages(struct compress_ctx *cc, int len, bool unlock)
100  {
101  	int i;
102  
103  	for (i = 0; i < len; i++) {
104  		if (!cc->rpages[i])
105  			continue;
106  		if (unlock)
107  			unlock_page(cc->rpages[i]);
108  		else
109  			put_page(cc->rpages[i]);
110  	}
111  }
112  
113  static void f2fs_put_rpages(struct compress_ctx *cc)
114  {
115  	f2fs_drop_rpages(cc, cc->cluster_size, false);
116  }
117  
118  static void f2fs_unlock_rpages(struct compress_ctx *cc, int len)
119  {
120  	f2fs_drop_rpages(cc, len, true);
121  }
122  
123  static void f2fs_put_rpages_wbc(struct compress_ctx *cc,
124  		struct writeback_control *wbc, bool redirty, int unlock)
125  {
126  	unsigned int i;
127  
128  	for (i = 0; i < cc->cluster_size; i++) {
129  		if (!cc->rpages[i])
130  			continue;
131  		if (redirty)
132  			redirty_page_for_writepage(wbc, cc->rpages[i]);
133  		f2fs_put_page(cc->rpages[i], unlock);
134  	}
135  }
136  
137  struct page *f2fs_compress_control_page(struct page *page)
138  {
139  	return ((struct compress_io_ctx *)page_private(page))->rpages[0];
140  }
141  
142  int f2fs_init_compress_ctx(struct compress_ctx *cc)
143  {
144  	if (cc->rpages)
145  		return 0;
146  
147  	cc->rpages = page_array_alloc(cc->inode, cc->cluster_size);
148  	return cc->rpages ? 0 : -ENOMEM;
149  }
150  
151  void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse)
152  {
153  	page_array_free(cc->inode, cc->rpages, cc->cluster_size);
154  	cc->rpages = NULL;
155  	cc->nr_rpages = 0;
156  	cc->nr_cpages = 0;
157  	cc->valid_nr_cpages = 0;
158  	if (!reuse)
159  		cc->cluster_idx = NULL_CLUSTER;
160  }
161  
162  void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page)
163  {
164  	unsigned int cluster_ofs;
165  
166  	if (!f2fs_cluster_can_merge_page(cc, page->index))
167  		f2fs_bug_on(F2FS_I_SB(cc->inode), 1);
168  
169  	cluster_ofs = offset_in_cluster(cc, page->index);
170  	cc->rpages[cluster_ofs] = page;
171  	cc->nr_rpages++;
172  	cc->cluster_idx = cluster_idx(cc, page->index);
173  }
174  
175  #ifdef CONFIG_F2FS_FS_LZO
176  static int lzo_init_compress_ctx(struct compress_ctx *cc)
177  {
178  	cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
179  				LZO1X_MEM_COMPRESS, GFP_NOFS);
180  	if (!cc->private)
181  		return -ENOMEM;
182  
183  	cc->clen = lzo1x_worst_compress(PAGE_SIZE << cc->log_cluster_size);
184  	return 0;
185  }
186  
187  static void lzo_destroy_compress_ctx(struct compress_ctx *cc)
188  {
189  	kvfree(cc->private);
190  	cc->private = NULL;
191  }
192  
193  static int lzo_compress_pages(struct compress_ctx *cc)
194  {
195  	int ret;
196  
197  	ret = lzo1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
198  					&cc->clen, cc->private);
199  	if (ret != LZO_E_OK) {
200  		printk_ratelimited("%sF2FS-fs (%s): lzo compress failed, ret:%d\n",
201  				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret);
202  		return -EIO;
203  	}
204  	return 0;
205  }
206  
207  static int lzo_decompress_pages(struct decompress_io_ctx *dic)
208  {
209  	int ret;
210  
211  	ret = lzo1x_decompress_safe(dic->cbuf->cdata, dic->clen,
212  						dic->rbuf, &dic->rlen);
213  	if (ret != LZO_E_OK) {
214  		printk_ratelimited("%sF2FS-fs (%s): lzo decompress failed, ret:%d\n",
215  				KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret);
216  		return -EIO;
217  	}
218  
219  	if (dic->rlen != PAGE_SIZE << dic->log_cluster_size) {
220  		printk_ratelimited("%sF2FS-fs (%s): lzo invalid rlen:%zu, "
221  					"expected:%lu\n", KERN_ERR,
222  					F2FS_I_SB(dic->inode)->sb->s_id,
223  					dic->rlen,
224  					PAGE_SIZE << dic->log_cluster_size);
225  		return -EIO;
226  	}
227  	return 0;
228  }
229  
230  static const struct f2fs_compress_ops f2fs_lzo_ops = {
231  	.init_compress_ctx	= lzo_init_compress_ctx,
232  	.destroy_compress_ctx	= lzo_destroy_compress_ctx,
233  	.compress_pages		= lzo_compress_pages,
234  	.decompress_pages	= lzo_decompress_pages,
235  };
236  #endif
237  
238  #ifdef CONFIG_F2FS_FS_LZ4
239  static int lz4_init_compress_ctx(struct compress_ctx *cc)
240  {
241  	unsigned int size = LZ4_MEM_COMPRESS;
242  
243  #ifdef CONFIG_F2FS_FS_LZ4HC
244  	if (F2FS_I(cc->inode)->i_compress_flag >> COMPRESS_LEVEL_OFFSET)
245  		size = LZ4HC_MEM_COMPRESS;
246  #endif
247  
248  	cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), size, GFP_NOFS);
249  	if (!cc->private)
250  		return -ENOMEM;
251  
252  	/*
253  	 * we do not change cc->clen to LZ4_compressBound(inputsize) to
254  	 * adapt worst compress case, because lz4 compressor can handle
255  	 * output budget properly.
256  	 */
257  	cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
258  	return 0;
259  }
260  
261  static void lz4_destroy_compress_ctx(struct compress_ctx *cc)
262  {
263  	kvfree(cc->private);
264  	cc->private = NULL;
265  }
266  
267  #ifdef CONFIG_F2FS_FS_LZ4HC
268  static int lz4hc_compress_pages(struct compress_ctx *cc)
269  {
270  	unsigned char level = F2FS_I(cc->inode)->i_compress_flag >>
271  						COMPRESS_LEVEL_OFFSET;
272  	int len;
273  
274  	if (level)
275  		len = LZ4_compress_HC(cc->rbuf, cc->cbuf->cdata, cc->rlen,
276  					cc->clen, level, cc->private);
277  	else
278  		len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen,
279  						cc->clen, cc->private);
280  	if (!len)
281  		return -EAGAIN;
282  
283  	cc->clen = len;
284  	return 0;
285  }
286  #endif
287  
288  static int lz4_compress_pages(struct compress_ctx *cc)
289  {
290  	int len;
291  
292  #ifdef CONFIG_F2FS_FS_LZ4HC
293  	return lz4hc_compress_pages(cc);
294  #endif
295  	len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen,
296  						cc->clen, cc->private);
297  	if (!len)
298  		return -EAGAIN;
299  
300  	cc->clen = len;
301  	return 0;
302  }
303  
304  static int lz4_decompress_pages(struct decompress_io_ctx *dic)
305  {
306  	int ret;
307  
308  	ret = LZ4_decompress_safe(dic->cbuf->cdata, dic->rbuf,
309  						dic->clen, dic->rlen);
310  	if (ret < 0) {
311  		printk_ratelimited("%sF2FS-fs (%s): lz4 decompress failed, ret:%d\n",
312  				KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret);
313  		return -EIO;
314  	}
315  
316  	if (ret != PAGE_SIZE << dic->log_cluster_size) {
317  		printk_ratelimited("%sF2FS-fs (%s): lz4 invalid ret:%d, "
318  					"expected:%lu\n", KERN_ERR,
319  					F2FS_I_SB(dic->inode)->sb->s_id, ret,
320  					PAGE_SIZE << dic->log_cluster_size);
321  		return -EIO;
322  	}
323  	return 0;
324  }
325  
326  static const struct f2fs_compress_ops f2fs_lz4_ops = {
327  	.init_compress_ctx	= lz4_init_compress_ctx,
328  	.destroy_compress_ctx	= lz4_destroy_compress_ctx,
329  	.compress_pages		= lz4_compress_pages,
330  	.decompress_pages	= lz4_decompress_pages,
331  };
332  #endif
333  
334  #ifdef CONFIG_F2FS_FS_ZSTD
335  #define F2FS_ZSTD_DEFAULT_CLEVEL	1
336  
337  static int zstd_init_compress_ctx(struct compress_ctx *cc)
338  {
339  	zstd_parameters params;
340  	zstd_cstream *stream;
341  	void *workspace;
342  	unsigned int workspace_size;
343  	unsigned char level = F2FS_I(cc->inode)->i_compress_flag >>
344  						COMPRESS_LEVEL_OFFSET;
345  
346  	if (!level)
347  		level = F2FS_ZSTD_DEFAULT_CLEVEL;
348  
349  	params = zstd_get_params(level, cc->rlen);
350  	workspace_size = zstd_cstream_workspace_bound(&params.cParams);
351  
352  	workspace = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
353  					workspace_size, GFP_NOFS);
354  	if (!workspace)
355  		return -ENOMEM;
356  
357  	stream = zstd_init_cstream(&params, 0, workspace, workspace_size);
358  	if (!stream) {
359  		printk_ratelimited("%sF2FS-fs (%s): %s zstd_init_cstream failed\n",
360  				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
361  				__func__);
362  		kvfree(workspace);
363  		return -EIO;
364  	}
365  
366  	cc->private = workspace;
367  	cc->private2 = stream;
368  
369  	cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
370  	return 0;
371  }
372  
373  static void zstd_destroy_compress_ctx(struct compress_ctx *cc)
374  {
375  	kvfree(cc->private);
376  	cc->private = NULL;
377  	cc->private2 = NULL;
378  }
379  
380  static int zstd_compress_pages(struct compress_ctx *cc)
381  {
382  	zstd_cstream *stream = cc->private2;
383  	zstd_in_buffer inbuf;
384  	zstd_out_buffer outbuf;
385  	int src_size = cc->rlen;
386  	int dst_size = src_size - PAGE_SIZE - COMPRESS_HEADER_SIZE;
387  	int ret;
388  
389  	inbuf.pos = 0;
390  	inbuf.src = cc->rbuf;
391  	inbuf.size = src_size;
392  
393  	outbuf.pos = 0;
394  	outbuf.dst = cc->cbuf->cdata;
395  	outbuf.size = dst_size;
396  
397  	ret = zstd_compress_stream(stream, &outbuf, &inbuf);
398  	if (zstd_is_error(ret)) {
399  		printk_ratelimited("%sF2FS-fs (%s): %s zstd_compress_stream failed, ret: %d\n",
400  				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
401  				__func__, zstd_get_error_code(ret));
402  		return -EIO;
403  	}
404  
405  	ret = zstd_end_stream(stream, &outbuf);
406  	if (zstd_is_error(ret)) {
407  		printk_ratelimited("%sF2FS-fs (%s): %s zstd_end_stream returned %d\n",
408  				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
409  				__func__, zstd_get_error_code(ret));
410  		return -EIO;
411  	}
412  
413  	/*
414  	 * there is compressed data remained in intermediate buffer due to
415  	 * no more space in cbuf.cdata
416  	 */
417  	if (ret)
418  		return -EAGAIN;
419  
420  	cc->clen = outbuf.pos;
421  	return 0;
422  }
423  
424  static int zstd_init_decompress_ctx(struct decompress_io_ctx *dic)
425  {
426  	zstd_dstream *stream;
427  	void *workspace;
428  	unsigned int workspace_size;
429  	unsigned int max_window_size =
430  			MAX_COMPRESS_WINDOW_SIZE(dic->log_cluster_size);
431  
432  	workspace_size = zstd_dstream_workspace_bound(max_window_size);
433  
434  	workspace = f2fs_kvmalloc(F2FS_I_SB(dic->inode),
435  					workspace_size, GFP_NOFS);
436  	if (!workspace)
437  		return -ENOMEM;
438  
439  	stream = zstd_init_dstream(max_window_size, workspace, workspace_size);
440  	if (!stream) {
441  		printk_ratelimited("%sF2FS-fs (%s): %s zstd_init_dstream failed\n",
442  				KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id,
443  				__func__);
444  		kvfree(workspace);
445  		return -EIO;
446  	}
447  
448  	dic->private = workspace;
449  	dic->private2 = stream;
450  
451  	return 0;
452  }
453  
454  static void zstd_destroy_decompress_ctx(struct decompress_io_ctx *dic)
455  {
456  	kvfree(dic->private);
457  	dic->private = NULL;
458  	dic->private2 = NULL;
459  }
460  
461  static int zstd_decompress_pages(struct decompress_io_ctx *dic)
462  {
463  	zstd_dstream *stream = dic->private2;
464  	zstd_in_buffer inbuf;
465  	zstd_out_buffer outbuf;
466  	int ret;
467  
468  	inbuf.pos = 0;
469  	inbuf.src = dic->cbuf->cdata;
470  	inbuf.size = dic->clen;
471  
472  	outbuf.pos = 0;
473  	outbuf.dst = dic->rbuf;
474  	outbuf.size = dic->rlen;
475  
476  	ret = zstd_decompress_stream(stream, &outbuf, &inbuf);
477  	if (zstd_is_error(ret)) {
478  		printk_ratelimited("%sF2FS-fs (%s): %s zstd_decompress_stream failed, ret: %d\n",
479  				KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id,
480  				__func__, zstd_get_error_code(ret));
481  		return -EIO;
482  	}
483  
484  	if (dic->rlen != outbuf.pos) {
485  		printk_ratelimited("%sF2FS-fs (%s): %s ZSTD invalid rlen:%zu, "
486  				"expected:%lu\n", KERN_ERR,
487  				F2FS_I_SB(dic->inode)->sb->s_id,
488  				__func__, dic->rlen,
489  				PAGE_SIZE << dic->log_cluster_size);
490  		return -EIO;
491  	}
492  
493  	return 0;
494  }
495  
496  static const struct f2fs_compress_ops f2fs_zstd_ops = {
497  	.init_compress_ctx	= zstd_init_compress_ctx,
498  	.destroy_compress_ctx	= zstd_destroy_compress_ctx,
499  	.compress_pages		= zstd_compress_pages,
500  	.init_decompress_ctx	= zstd_init_decompress_ctx,
501  	.destroy_decompress_ctx	= zstd_destroy_decompress_ctx,
502  	.decompress_pages	= zstd_decompress_pages,
503  };
504  #endif
505  
506  #ifdef CONFIG_F2FS_FS_LZO
507  #ifdef CONFIG_F2FS_FS_LZORLE
508  static int lzorle_compress_pages(struct compress_ctx *cc)
509  {
510  	int ret;
511  
512  	ret = lzorle1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
513  					&cc->clen, cc->private);
514  	if (ret != LZO_E_OK) {
515  		printk_ratelimited("%sF2FS-fs (%s): lzo-rle compress failed, ret:%d\n",
516  				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret);
517  		return -EIO;
518  	}
519  	return 0;
520  }
521  
522  static const struct f2fs_compress_ops f2fs_lzorle_ops = {
523  	.init_compress_ctx	= lzo_init_compress_ctx,
524  	.destroy_compress_ctx	= lzo_destroy_compress_ctx,
525  	.compress_pages		= lzorle_compress_pages,
526  	.decompress_pages	= lzo_decompress_pages,
527  };
528  #endif
529  #endif
530  
531  static const struct f2fs_compress_ops *f2fs_cops[COMPRESS_MAX] = {
532  #ifdef CONFIG_F2FS_FS_LZO
533  	&f2fs_lzo_ops,
534  #else
535  	NULL,
536  #endif
537  #ifdef CONFIG_F2FS_FS_LZ4
538  	&f2fs_lz4_ops,
539  #else
540  	NULL,
541  #endif
542  #ifdef CONFIG_F2FS_FS_ZSTD
543  	&f2fs_zstd_ops,
544  #else
545  	NULL,
546  #endif
547  #if defined(CONFIG_F2FS_FS_LZO) && defined(CONFIG_F2FS_FS_LZORLE)
548  	&f2fs_lzorle_ops,
549  #else
550  	NULL,
551  #endif
552  };
553  
554  bool f2fs_is_compress_backend_ready(struct inode *inode)
555  {
556  	if (!f2fs_compressed_file(inode))
557  		return true;
558  	return f2fs_cops[F2FS_I(inode)->i_compress_algorithm];
559  }
560  
561  static mempool_t *compress_page_pool;
562  static int num_compress_pages = 512;
563  module_param(num_compress_pages, uint, 0444);
564  MODULE_PARM_DESC(num_compress_pages,
565  		"Number of intermediate compress pages to preallocate");
566  
567  int f2fs_init_compress_mempool(void)
568  {
569  	compress_page_pool = mempool_create_page_pool(num_compress_pages, 0);
570  	return compress_page_pool ? 0 : -ENOMEM;
571  }
572  
573  void f2fs_destroy_compress_mempool(void)
574  {
575  	mempool_destroy(compress_page_pool);
576  }
577  
578  static struct page *f2fs_compress_alloc_page(void)
579  {
580  	struct page *page;
581  
582  	page = mempool_alloc(compress_page_pool, GFP_NOFS);
583  	lock_page(page);
584  
585  	return page;
586  }
587  
588  static void f2fs_compress_free_page(struct page *page)
589  {
590  	if (!page)
591  		return;
592  	detach_page_private(page);
593  	page->mapping = NULL;
594  	unlock_page(page);
595  	mempool_free(page, compress_page_pool);
596  }
597  
598  #define MAX_VMAP_RETRIES	3
599  
600  static void *f2fs_vmap(struct page **pages, unsigned int count)
601  {
602  	int i;
603  	void *buf = NULL;
604  
605  	for (i = 0; i < MAX_VMAP_RETRIES; i++) {
606  		buf = vm_map_ram(pages, count, -1);
607  		if (buf)
608  			break;
609  		vm_unmap_aliases();
610  	}
611  	return buf;
612  }
613  
614  static int f2fs_compress_pages(struct compress_ctx *cc)
615  {
616  	struct f2fs_inode_info *fi = F2FS_I(cc->inode);
617  	const struct f2fs_compress_ops *cops =
618  				f2fs_cops[fi->i_compress_algorithm];
619  	unsigned int max_len, new_nr_cpages;
620  	u32 chksum = 0;
621  	int i, ret;
622  
623  	trace_f2fs_compress_pages_start(cc->inode, cc->cluster_idx,
624  				cc->cluster_size, fi->i_compress_algorithm);
625  
626  	if (cops->init_compress_ctx) {
627  		ret = cops->init_compress_ctx(cc);
628  		if (ret)
629  			goto out;
630  	}
631  
632  	max_len = COMPRESS_HEADER_SIZE + cc->clen;
633  	cc->nr_cpages = DIV_ROUND_UP(max_len, PAGE_SIZE);
634  	cc->valid_nr_cpages = cc->nr_cpages;
635  
636  	cc->cpages = page_array_alloc(cc->inode, cc->nr_cpages);
637  	if (!cc->cpages) {
638  		ret = -ENOMEM;
639  		goto destroy_compress_ctx;
640  	}
641  
642  	for (i = 0; i < cc->nr_cpages; i++) {
643  		cc->cpages[i] = f2fs_compress_alloc_page();
644  		if (!cc->cpages[i]) {
645  			ret = -ENOMEM;
646  			goto out_free_cpages;
647  		}
648  	}
649  
650  	cc->rbuf = f2fs_vmap(cc->rpages, cc->cluster_size);
651  	if (!cc->rbuf) {
652  		ret = -ENOMEM;
653  		goto out_free_cpages;
654  	}
655  
656  	cc->cbuf = f2fs_vmap(cc->cpages, cc->nr_cpages);
657  	if (!cc->cbuf) {
658  		ret = -ENOMEM;
659  		goto out_vunmap_rbuf;
660  	}
661  
662  	ret = cops->compress_pages(cc);
663  	if (ret)
664  		goto out_vunmap_cbuf;
665  
666  	max_len = PAGE_SIZE * (cc->cluster_size - 1) - COMPRESS_HEADER_SIZE;
667  
668  	if (cc->clen > max_len) {
669  		ret = -EAGAIN;
670  		goto out_vunmap_cbuf;
671  	}
672  
673  	cc->cbuf->clen = cpu_to_le32(cc->clen);
674  
675  	if (fi->i_compress_flag & 1 << COMPRESS_CHKSUM)
676  		chksum = f2fs_crc32(F2FS_I_SB(cc->inode),
677  					cc->cbuf->cdata, cc->clen);
678  	cc->cbuf->chksum = cpu_to_le32(chksum);
679  
680  	for (i = 0; i < COMPRESS_DATA_RESERVED_SIZE; i++)
681  		cc->cbuf->reserved[i] = cpu_to_le32(0);
682  
683  	new_nr_cpages = DIV_ROUND_UP(cc->clen + COMPRESS_HEADER_SIZE, PAGE_SIZE);
684  
685  	/* zero out any unused part of the last page */
686  	memset(&cc->cbuf->cdata[cc->clen], 0,
687  			(new_nr_cpages * PAGE_SIZE) -
688  			(cc->clen + COMPRESS_HEADER_SIZE));
689  
690  	vm_unmap_ram(cc->cbuf, cc->nr_cpages);
691  	vm_unmap_ram(cc->rbuf, cc->cluster_size);
692  
693  	for (i = 0; i < cc->nr_cpages; i++) {
694  		if (i < new_nr_cpages)
695  			continue;
696  		f2fs_compress_free_page(cc->cpages[i]);
697  		cc->cpages[i] = NULL;
698  	}
699  
700  	if (cops->destroy_compress_ctx)
701  		cops->destroy_compress_ctx(cc);
702  
703  	cc->valid_nr_cpages = new_nr_cpages;
704  
705  	trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
706  							cc->clen, ret);
707  	return 0;
708  
709  out_vunmap_cbuf:
710  	vm_unmap_ram(cc->cbuf, cc->nr_cpages);
711  out_vunmap_rbuf:
712  	vm_unmap_ram(cc->rbuf, cc->cluster_size);
713  out_free_cpages:
714  	for (i = 0; i < cc->nr_cpages; i++) {
715  		if (cc->cpages[i])
716  			f2fs_compress_free_page(cc->cpages[i]);
717  	}
718  	page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
719  	cc->cpages = NULL;
720  destroy_compress_ctx:
721  	if (cops->destroy_compress_ctx)
722  		cops->destroy_compress_ctx(cc);
723  out:
724  	trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
725  							cc->clen, ret);
726  	return ret;
727  }
728  
729  static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic,
730  		bool pre_alloc);
731  static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic,
732  		bool bypass_destroy_callback, bool pre_alloc);
733  
734  void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task)
735  {
736  	struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
737  	struct f2fs_inode_info *fi = F2FS_I(dic->inode);
738  	const struct f2fs_compress_ops *cops =
739  			f2fs_cops[fi->i_compress_algorithm];
740  	bool bypass_callback = false;
741  	int ret;
742  
743  	trace_f2fs_decompress_pages_start(dic->inode, dic->cluster_idx,
744  				dic->cluster_size, fi->i_compress_algorithm);
745  
746  	if (dic->failed) {
747  		ret = -EIO;
748  		goto out_end_io;
749  	}
750  
751  	ret = f2fs_prepare_decomp_mem(dic, false);
752  	if (ret) {
753  		bypass_callback = true;
754  		goto out_release;
755  	}
756  
757  	dic->clen = le32_to_cpu(dic->cbuf->clen);
758  	dic->rlen = PAGE_SIZE << dic->log_cluster_size;
759  
760  	if (dic->clen > PAGE_SIZE * dic->nr_cpages - COMPRESS_HEADER_SIZE) {
761  		ret = -EFSCORRUPTED;
762  		f2fs_handle_error(sbi, ERROR_FAIL_DECOMPRESSION);
763  		goto out_release;
764  	}
765  
766  	ret = cops->decompress_pages(dic);
767  
768  	if (!ret && (fi->i_compress_flag & 1 << COMPRESS_CHKSUM)) {
769  		u32 provided = le32_to_cpu(dic->cbuf->chksum);
770  		u32 calculated = f2fs_crc32(sbi, dic->cbuf->cdata, dic->clen);
771  
772  		if (provided != calculated) {
773  			if (!is_inode_flag_set(dic->inode, FI_COMPRESS_CORRUPT)) {
774  				set_inode_flag(dic->inode, FI_COMPRESS_CORRUPT);
775  				printk_ratelimited(
776  					"%sF2FS-fs (%s): checksum invalid, nid = %lu, %x vs %x",
777  					KERN_INFO, sbi->sb->s_id, dic->inode->i_ino,
778  					provided, calculated);
779  			}
780  			set_sbi_flag(sbi, SBI_NEED_FSCK);
781  		}
782  	}
783  
784  out_release:
785  	f2fs_release_decomp_mem(dic, bypass_callback, false);
786  
787  out_end_io:
788  	trace_f2fs_decompress_pages_end(dic->inode, dic->cluster_idx,
789  							dic->clen, ret);
790  	f2fs_decompress_end_io(dic, ret, in_task);
791  }
792  
793  /*
794   * This is called when a page of a compressed cluster has been read from disk
795   * (or failed to be read from disk).  It checks whether this page was the last
796   * page being waited on in the cluster, and if so, it decompresses the cluster
797   * (or in the case of a failure, cleans up without actually decompressing).
798   */
799  void f2fs_end_read_compressed_page(struct page *page, bool failed,
800  		block_t blkaddr, bool in_task)
801  {
802  	struct decompress_io_ctx *dic =
803  			(struct decompress_io_ctx *)page_private(page);
804  	struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
805  
806  	dec_page_count(sbi, F2FS_RD_DATA);
807  
808  	if (failed)
809  		WRITE_ONCE(dic->failed, true);
810  	else if (blkaddr && in_task)
811  		f2fs_cache_compressed_page(sbi, page,
812  					dic->inode->i_ino, blkaddr);
813  
814  	if (atomic_dec_and_test(&dic->remaining_pages))
815  		f2fs_decompress_cluster(dic, in_task);
816  }
817  
818  static bool is_page_in_cluster(struct compress_ctx *cc, pgoff_t index)
819  {
820  	if (cc->cluster_idx == NULL_CLUSTER)
821  		return true;
822  	return cc->cluster_idx == cluster_idx(cc, index);
823  }
824  
825  bool f2fs_cluster_is_empty(struct compress_ctx *cc)
826  {
827  	return cc->nr_rpages == 0;
828  }
829  
830  static bool f2fs_cluster_is_full(struct compress_ctx *cc)
831  {
832  	return cc->cluster_size == cc->nr_rpages;
833  }
834  
835  bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index)
836  {
837  	if (f2fs_cluster_is_empty(cc))
838  		return true;
839  	return is_page_in_cluster(cc, index);
840  }
841  
842  bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
843  				int index, int nr_pages, bool uptodate)
844  {
845  	unsigned long pgidx = pages[index]->index;
846  	int i = uptodate ? 0 : 1;
847  
848  	/*
849  	 * when uptodate set to true, try to check all pages in cluster is
850  	 * uptodate or not.
851  	 */
852  	if (uptodate && (pgidx % cc->cluster_size))
853  		return false;
854  
855  	if (nr_pages - index < cc->cluster_size)
856  		return false;
857  
858  	for (; i < cc->cluster_size; i++) {
859  		if (pages[index + i]->index != pgidx + i)
860  			return false;
861  		if (uptodate && !PageUptodate(pages[index + i]))
862  			return false;
863  	}
864  
865  	return true;
866  }
867  
868  static bool cluster_has_invalid_data(struct compress_ctx *cc)
869  {
870  	loff_t i_size = i_size_read(cc->inode);
871  	unsigned nr_pages = DIV_ROUND_UP(i_size, PAGE_SIZE);
872  	int i;
873  
874  	for (i = 0; i < cc->cluster_size; i++) {
875  		struct page *page = cc->rpages[i];
876  
877  		f2fs_bug_on(F2FS_I_SB(cc->inode), !page);
878  
879  		/* beyond EOF */
880  		if (page->index >= nr_pages)
881  			return true;
882  	}
883  	return false;
884  }
885  
886  bool f2fs_sanity_check_cluster(struct dnode_of_data *dn)
887  {
888  	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
889  	unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
890  	bool compressed = dn->data_blkaddr == COMPRESS_ADDR;
891  	int cluster_end = 0;
892  	int i;
893  	char *reason = "";
894  
895  	if (!compressed)
896  		return false;
897  
898  	/* [..., COMPR_ADDR, ...] */
899  	if (dn->ofs_in_node % cluster_size) {
900  		reason = "[*|C|*|*]";
901  		goto out;
902  	}
903  
904  	for (i = 1; i < cluster_size; i++) {
905  		block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
906  							dn->ofs_in_node + i);
907  
908  		/* [COMPR_ADDR, ..., COMPR_ADDR] */
909  		if (blkaddr == COMPRESS_ADDR) {
910  			reason = "[C|*|C|*]";
911  			goto out;
912  		}
913  		if (!__is_valid_data_blkaddr(blkaddr)) {
914  			if (!cluster_end)
915  				cluster_end = i;
916  			continue;
917  		}
918  		/* [COMPR_ADDR, NULL_ADDR or NEW_ADDR, valid_blkaddr] */
919  		if (cluster_end) {
920  			reason = "[C|N|N|V]";
921  			goto out;
922  		}
923  	}
924  	return false;
925  out:
926  	f2fs_warn(sbi, "access invalid cluster, ino:%lu, nid:%u, ofs_in_node:%u, reason:%s",
927  			dn->inode->i_ino, dn->nid, dn->ofs_in_node, reason);
928  	set_sbi_flag(sbi, SBI_NEED_FSCK);
929  	return true;
930  }
931  
932  static int __f2fs_cluster_blocks(struct inode *inode,
933  				unsigned int cluster_idx, bool compr)
934  {
935  	struct dnode_of_data dn;
936  	unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
937  	unsigned int start_idx = cluster_idx <<
938  				F2FS_I(inode)->i_log_cluster_size;
939  	int ret;
940  
941  	set_new_dnode(&dn, inode, NULL, NULL, 0);
942  	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
943  	if (ret) {
944  		if (ret == -ENOENT)
945  			ret = 0;
946  		goto fail;
947  	}
948  
949  	if (f2fs_sanity_check_cluster(&dn)) {
950  		ret = -EFSCORRUPTED;
951  		f2fs_handle_error(F2FS_I_SB(inode), ERROR_CORRUPTED_CLUSTER);
952  		goto fail;
953  	}
954  
955  	if (dn.data_blkaddr == COMPRESS_ADDR) {
956  		int i;
957  
958  		ret = 1;
959  		for (i = 1; i < cluster_size; i++) {
960  			block_t blkaddr;
961  
962  			blkaddr = data_blkaddr(dn.inode,
963  					dn.node_page, dn.ofs_in_node + i);
964  			if (compr) {
965  				if (__is_valid_data_blkaddr(blkaddr))
966  					ret++;
967  			} else {
968  				if (blkaddr != NULL_ADDR)
969  					ret++;
970  			}
971  		}
972  
973  		f2fs_bug_on(F2FS_I_SB(inode),
974  			!compr && ret != cluster_size &&
975  			!is_inode_flag_set(inode, FI_COMPRESS_RELEASED));
976  	}
977  fail:
978  	f2fs_put_dnode(&dn);
979  	return ret;
980  }
981  
982  /* return # of compressed blocks in compressed cluster */
983  static int f2fs_compressed_blocks(struct compress_ctx *cc)
984  {
985  	return __f2fs_cluster_blocks(cc->inode, cc->cluster_idx, true);
986  }
987  
988  /* return # of valid blocks in compressed cluster */
989  int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index)
990  {
991  	return __f2fs_cluster_blocks(inode,
992  		index >> F2FS_I(inode)->i_log_cluster_size,
993  		false);
994  }
995  
996  static bool cluster_may_compress(struct compress_ctx *cc)
997  {
998  	if (!f2fs_need_compress_data(cc->inode))
999  		return false;
1000  	if (f2fs_is_atomic_file(cc->inode))
1001  		return false;
1002  	if (!f2fs_cluster_is_full(cc))
1003  		return false;
1004  	if (unlikely(f2fs_cp_error(F2FS_I_SB(cc->inode))))
1005  		return false;
1006  	return !cluster_has_invalid_data(cc);
1007  }
1008  
1009  static void set_cluster_writeback(struct compress_ctx *cc)
1010  {
1011  	int i;
1012  
1013  	for (i = 0; i < cc->cluster_size; i++) {
1014  		if (cc->rpages[i])
1015  			set_page_writeback(cc->rpages[i]);
1016  	}
1017  }
1018  
1019  static void set_cluster_dirty(struct compress_ctx *cc)
1020  {
1021  	int i;
1022  
1023  	for (i = 0; i < cc->cluster_size; i++)
1024  		if (cc->rpages[i])
1025  			set_page_dirty(cc->rpages[i]);
1026  }
1027  
1028  static int prepare_compress_overwrite(struct compress_ctx *cc,
1029  		struct page **pagep, pgoff_t index, void **fsdata)
1030  {
1031  	struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode);
1032  	struct address_space *mapping = cc->inode->i_mapping;
1033  	struct page *page;
1034  	sector_t last_block_in_bio;
1035  	unsigned fgp_flag = FGP_LOCK | FGP_WRITE | FGP_CREAT;
1036  	pgoff_t start_idx = start_idx_of_cluster(cc);
1037  	int i, ret;
1038  
1039  retry:
1040  	ret = f2fs_is_compressed_cluster(cc->inode, start_idx);
1041  	if (ret <= 0)
1042  		return ret;
1043  
1044  	ret = f2fs_init_compress_ctx(cc);
1045  	if (ret)
1046  		return ret;
1047  
1048  	/* keep page reference to avoid page reclaim */
1049  	for (i = 0; i < cc->cluster_size; i++) {
1050  		page = f2fs_pagecache_get_page(mapping, start_idx + i,
1051  							fgp_flag, GFP_NOFS);
1052  		if (!page) {
1053  			ret = -ENOMEM;
1054  			goto unlock_pages;
1055  		}
1056  
1057  		if (PageUptodate(page))
1058  			f2fs_put_page(page, 1);
1059  		else
1060  			f2fs_compress_ctx_add_page(cc, page);
1061  	}
1062  
1063  	if (!f2fs_cluster_is_empty(cc)) {
1064  		struct bio *bio = NULL;
1065  
1066  		ret = f2fs_read_multi_pages(cc, &bio, cc->cluster_size,
1067  					&last_block_in_bio, false, true);
1068  		f2fs_put_rpages(cc);
1069  		f2fs_destroy_compress_ctx(cc, true);
1070  		if (ret)
1071  			goto out;
1072  		if (bio)
1073  			f2fs_submit_bio(sbi, bio, DATA);
1074  
1075  		ret = f2fs_init_compress_ctx(cc);
1076  		if (ret)
1077  			goto out;
1078  	}
1079  
1080  	for (i = 0; i < cc->cluster_size; i++) {
1081  		f2fs_bug_on(sbi, cc->rpages[i]);
1082  
1083  		page = find_lock_page(mapping, start_idx + i);
1084  		if (!page) {
1085  			/* page can be truncated */
1086  			goto release_and_retry;
1087  		}
1088  
1089  		f2fs_wait_on_page_writeback(page, DATA, true, true);
1090  		f2fs_compress_ctx_add_page(cc, page);
1091  
1092  		if (!PageUptodate(page)) {
1093  release_and_retry:
1094  			f2fs_put_rpages(cc);
1095  			f2fs_unlock_rpages(cc, i + 1);
1096  			f2fs_destroy_compress_ctx(cc, true);
1097  			goto retry;
1098  		}
1099  	}
1100  
1101  	if (likely(!ret)) {
1102  		*fsdata = cc->rpages;
1103  		*pagep = cc->rpages[offset_in_cluster(cc, index)];
1104  		return cc->cluster_size;
1105  	}
1106  
1107  unlock_pages:
1108  	f2fs_put_rpages(cc);
1109  	f2fs_unlock_rpages(cc, i);
1110  	f2fs_destroy_compress_ctx(cc, true);
1111  out:
1112  	return ret;
1113  }
1114  
1115  int f2fs_prepare_compress_overwrite(struct inode *inode,
1116  		struct page **pagep, pgoff_t index, void **fsdata)
1117  {
1118  	struct compress_ctx cc = {
1119  		.inode = inode,
1120  		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1121  		.cluster_size = F2FS_I(inode)->i_cluster_size,
1122  		.cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size,
1123  		.rpages = NULL,
1124  		.nr_rpages = 0,
1125  	};
1126  
1127  	return prepare_compress_overwrite(&cc, pagep, index, fsdata);
1128  }
1129  
1130  bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
1131  					pgoff_t index, unsigned copied)
1132  
1133  {
1134  	struct compress_ctx cc = {
1135  		.inode = inode,
1136  		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1137  		.cluster_size = F2FS_I(inode)->i_cluster_size,
1138  		.rpages = fsdata,
1139  	};
1140  	bool first_index = (index == cc.rpages[0]->index);
1141  
1142  	if (copied)
1143  		set_cluster_dirty(&cc);
1144  
1145  	f2fs_put_rpages_wbc(&cc, NULL, false, 1);
1146  	f2fs_destroy_compress_ctx(&cc, false);
1147  
1148  	return first_index;
1149  }
1150  
1151  int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock)
1152  {
1153  	void *fsdata = NULL;
1154  	struct page *pagep;
1155  	int log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
1156  	pgoff_t start_idx = from >> (PAGE_SHIFT + log_cluster_size) <<
1157  							log_cluster_size;
1158  	int err;
1159  
1160  	err = f2fs_is_compressed_cluster(inode, start_idx);
1161  	if (err < 0)
1162  		return err;
1163  
1164  	/* truncate normal cluster */
1165  	if (!err)
1166  		return f2fs_do_truncate_blocks(inode, from, lock);
1167  
1168  	/* truncate compressed cluster */
1169  	err = f2fs_prepare_compress_overwrite(inode, &pagep,
1170  						start_idx, &fsdata);
1171  
1172  	/* should not be a normal cluster */
1173  	f2fs_bug_on(F2FS_I_SB(inode), err == 0);
1174  
1175  	if (err <= 0)
1176  		return err;
1177  
1178  	if (err > 0) {
1179  		struct page **rpages = fsdata;
1180  		int cluster_size = F2FS_I(inode)->i_cluster_size;
1181  		int i;
1182  
1183  		for (i = cluster_size - 1; i >= 0; i--) {
1184  			loff_t start = rpages[i]->index << PAGE_SHIFT;
1185  
1186  			if (from <= start) {
1187  				zero_user_segment(rpages[i], 0, PAGE_SIZE);
1188  			} else {
1189  				zero_user_segment(rpages[i], from - start,
1190  								PAGE_SIZE);
1191  				break;
1192  			}
1193  		}
1194  
1195  		f2fs_compress_write_end(inode, fsdata, start_idx, true);
1196  	}
1197  	return 0;
1198  }
1199  
1200  static int f2fs_write_compressed_pages(struct compress_ctx *cc,
1201  					int *submitted,
1202  					struct writeback_control *wbc,
1203  					enum iostat_type io_type)
1204  {
1205  	struct inode *inode = cc->inode;
1206  	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1207  	struct f2fs_inode_info *fi = F2FS_I(inode);
1208  	struct f2fs_io_info fio = {
1209  		.sbi = sbi,
1210  		.ino = cc->inode->i_ino,
1211  		.type = DATA,
1212  		.op = REQ_OP_WRITE,
1213  		.op_flags = wbc_to_write_flags(wbc),
1214  		.old_blkaddr = NEW_ADDR,
1215  		.page = NULL,
1216  		.encrypted_page = NULL,
1217  		.compressed_page = NULL,
1218  		.submitted = false,
1219  		.io_type = io_type,
1220  		.io_wbc = wbc,
1221  		.encrypted = fscrypt_inode_uses_fs_layer_crypto(cc->inode),
1222  	};
1223  	struct dnode_of_data dn;
1224  	struct node_info ni;
1225  	struct compress_io_ctx *cic;
1226  	pgoff_t start_idx = start_idx_of_cluster(cc);
1227  	unsigned int last_index = cc->cluster_size - 1;
1228  	loff_t psize;
1229  	int i, err;
1230  
1231  	/* we should bypass data pages to proceed the kworkder jobs */
1232  	if (unlikely(f2fs_cp_error(sbi))) {
1233  		mapping_set_error(cc->rpages[0]->mapping, -EIO);
1234  		goto out_free;
1235  	}
1236  
1237  	if (IS_NOQUOTA(inode)) {
1238  		/*
1239  		 * We need to wait for node_write to avoid block allocation during
1240  		 * checkpoint. This can only happen to quota writes which can cause
1241  		 * the below discard race condition.
1242  		 */
1243  		f2fs_down_read(&sbi->node_write);
1244  	} else if (!f2fs_trylock_op(sbi)) {
1245  		goto out_free;
1246  	}
1247  
1248  	set_new_dnode(&dn, cc->inode, NULL, NULL, 0);
1249  
1250  	err = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
1251  	if (err)
1252  		goto out_unlock_op;
1253  
1254  	for (i = 0; i < cc->cluster_size; i++) {
1255  		if (data_blkaddr(dn.inode, dn.node_page,
1256  					dn.ofs_in_node + i) == NULL_ADDR)
1257  			goto out_put_dnode;
1258  	}
1259  
1260  	psize = (loff_t)(cc->rpages[last_index]->index + 1) << PAGE_SHIFT;
1261  
1262  	err = f2fs_get_node_info(fio.sbi, dn.nid, &ni, false);
1263  	if (err)
1264  		goto out_put_dnode;
1265  
1266  	fio.version = ni.version;
1267  
1268  	cic = f2fs_kmem_cache_alloc(cic_entry_slab, GFP_F2FS_ZERO, false, sbi);
1269  	if (!cic)
1270  		goto out_put_dnode;
1271  
1272  	cic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1273  	cic->inode = inode;
1274  	atomic_set(&cic->pending_pages, cc->valid_nr_cpages);
1275  	cic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
1276  	if (!cic->rpages)
1277  		goto out_put_cic;
1278  
1279  	cic->nr_rpages = cc->cluster_size;
1280  
1281  	for (i = 0; i < cc->valid_nr_cpages; i++) {
1282  		f2fs_set_compressed_page(cc->cpages[i], inode,
1283  					cc->rpages[i + 1]->index, cic);
1284  		fio.compressed_page = cc->cpages[i];
1285  
1286  		fio.old_blkaddr = data_blkaddr(dn.inode, dn.node_page,
1287  						dn.ofs_in_node + i + 1);
1288  
1289  		/* wait for GCed page writeback via META_MAPPING */
1290  		f2fs_wait_on_block_writeback(inode, fio.old_blkaddr);
1291  
1292  		if (fio.encrypted) {
1293  			fio.page = cc->rpages[i + 1];
1294  			err = f2fs_encrypt_one_page(&fio);
1295  			if (err)
1296  				goto out_destroy_crypt;
1297  			cc->cpages[i] = fio.encrypted_page;
1298  		}
1299  	}
1300  
1301  	set_cluster_writeback(cc);
1302  
1303  	for (i = 0; i < cc->cluster_size; i++)
1304  		cic->rpages[i] = cc->rpages[i];
1305  
1306  	for (i = 0; i < cc->cluster_size; i++, dn.ofs_in_node++) {
1307  		block_t blkaddr;
1308  
1309  		blkaddr = f2fs_data_blkaddr(&dn);
1310  		fio.page = cc->rpages[i];
1311  		fio.old_blkaddr = blkaddr;
1312  
1313  		/* cluster header */
1314  		if (i == 0) {
1315  			if (blkaddr == COMPRESS_ADDR)
1316  				fio.compr_blocks++;
1317  			if (__is_valid_data_blkaddr(blkaddr))
1318  				f2fs_invalidate_blocks(sbi, blkaddr);
1319  			f2fs_update_data_blkaddr(&dn, COMPRESS_ADDR);
1320  			goto unlock_continue;
1321  		}
1322  
1323  		if (fio.compr_blocks && __is_valid_data_blkaddr(blkaddr))
1324  			fio.compr_blocks++;
1325  
1326  		if (i > cc->valid_nr_cpages) {
1327  			if (__is_valid_data_blkaddr(blkaddr)) {
1328  				f2fs_invalidate_blocks(sbi, blkaddr);
1329  				f2fs_update_data_blkaddr(&dn, NEW_ADDR);
1330  			}
1331  			goto unlock_continue;
1332  		}
1333  
1334  		f2fs_bug_on(fio.sbi, blkaddr == NULL_ADDR);
1335  
1336  		if (fio.encrypted)
1337  			fio.encrypted_page = cc->cpages[i - 1];
1338  		else
1339  			fio.compressed_page = cc->cpages[i - 1];
1340  
1341  		cc->cpages[i - 1] = NULL;
1342  		f2fs_outplace_write_data(&dn, &fio);
1343  		(*submitted)++;
1344  unlock_continue:
1345  		inode_dec_dirty_pages(cc->inode);
1346  		unlock_page(fio.page);
1347  	}
1348  
1349  	if (fio.compr_blocks)
1350  		f2fs_i_compr_blocks_update(inode, fio.compr_blocks - 1, false);
1351  	f2fs_i_compr_blocks_update(inode, cc->valid_nr_cpages, true);
1352  	add_compr_block_stat(inode, cc->valid_nr_cpages);
1353  
1354  	set_inode_flag(cc->inode, FI_APPEND_WRITE);
1355  	if (cc->cluster_idx == 0)
1356  		set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1357  
1358  	f2fs_put_dnode(&dn);
1359  	if (IS_NOQUOTA(inode))
1360  		f2fs_up_read(&sbi->node_write);
1361  	else
1362  		f2fs_unlock_op(sbi);
1363  
1364  	spin_lock(&fi->i_size_lock);
1365  	if (fi->last_disk_size < psize)
1366  		fi->last_disk_size = psize;
1367  	spin_unlock(&fi->i_size_lock);
1368  
1369  	f2fs_put_rpages(cc);
1370  	page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
1371  	cc->cpages = NULL;
1372  	f2fs_destroy_compress_ctx(cc, false);
1373  	return 0;
1374  
1375  out_destroy_crypt:
1376  	page_array_free(cc->inode, cic->rpages, cc->cluster_size);
1377  
1378  	for (--i; i >= 0; i--)
1379  		fscrypt_finalize_bounce_page(&cc->cpages[i]);
1380  out_put_cic:
1381  	kmem_cache_free(cic_entry_slab, cic);
1382  out_put_dnode:
1383  	f2fs_put_dnode(&dn);
1384  out_unlock_op:
1385  	if (IS_NOQUOTA(inode))
1386  		f2fs_up_read(&sbi->node_write);
1387  	else
1388  		f2fs_unlock_op(sbi);
1389  out_free:
1390  	for (i = 0; i < cc->valid_nr_cpages; i++) {
1391  		f2fs_compress_free_page(cc->cpages[i]);
1392  		cc->cpages[i] = NULL;
1393  	}
1394  	page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
1395  	cc->cpages = NULL;
1396  	return -EAGAIN;
1397  }
1398  
1399  void f2fs_compress_write_end_io(struct bio *bio, struct page *page)
1400  {
1401  	struct f2fs_sb_info *sbi = bio->bi_private;
1402  	struct compress_io_ctx *cic =
1403  			(struct compress_io_ctx *)page_private(page);
1404  	int i;
1405  
1406  	if (unlikely(bio->bi_status))
1407  		mapping_set_error(cic->inode->i_mapping, -EIO);
1408  
1409  	f2fs_compress_free_page(page);
1410  
1411  	dec_page_count(sbi, F2FS_WB_DATA);
1412  
1413  	if (atomic_dec_return(&cic->pending_pages))
1414  		return;
1415  
1416  	for (i = 0; i < cic->nr_rpages; i++) {
1417  		WARN_ON(!cic->rpages[i]);
1418  		clear_page_private_gcing(cic->rpages[i]);
1419  		end_page_writeback(cic->rpages[i]);
1420  	}
1421  
1422  	page_array_free(cic->inode, cic->rpages, cic->nr_rpages);
1423  	kmem_cache_free(cic_entry_slab, cic);
1424  }
1425  
1426  static int f2fs_write_raw_pages(struct compress_ctx *cc,
1427  					int *submitted,
1428  					struct writeback_control *wbc,
1429  					enum iostat_type io_type)
1430  {
1431  	struct address_space *mapping = cc->inode->i_mapping;
1432  	int _submitted, compr_blocks, ret, i;
1433  
1434  	compr_blocks = f2fs_compressed_blocks(cc);
1435  
1436  	for (i = 0; i < cc->cluster_size; i++) {
1437  		if (!cc->rpages[i])
1438  			continue;
1439  
1440  		redirty_page_for_writepage(wbc, cc->rpages[i]);
1441  		unlock_page(cc->rpages[i]);
1442  	}
1443  
1444  	if (compr_blocks < 0)
1445  		return compr_blocks;
1446  
1447  	for (i = 0; i < cc->cluster_size; i++) {
1448  		if (!cc->rpages[i])
1449  			continue;
1450  retry_write:
1451  		lock_page(cc->rpages[i]);
1452  
1453  		if (cc->rpages[i]->mapping != mapping) {
1454  continue_unlock:
1455  			unlock_page(cc->rpages[i]);
1456  			continue;
1457  		}
1458  
1459  		if (!PageDirty(cc->rpages[i]))
1460  			goto continue_unlock;
1461  
1462  		if (!clear_page_dirty_for_io(cc->rpages[i]))
1463  			goto continue_unlock;
1464  
1465  		ret = f2fs_write_single_data_page(cc->rpages[i], &_submitted,
1466  						NULL, NULL, wbc, io_type,
1467  						compr_blocks, false);
1468  		if (ret) {
1469  			if (ret == AOP_WRITEPAGE_ACTIVATE) {
1470  				unlock_page(cc->rpages[i]);
1471  				ret = 0;
1472  			} else if (ret == -EAGAIN) {
1473  				/*
1474  				 * for quota file, just redirty left pages to
1475  				 * avoid deadlock caused by cluster update race
1476  				 * from foreground operation.
1477  				 */
1478  				if (IS_NOQUOTA(cc->inode))
1479  					return 0;
1480  				ret = 0;
1481  				f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1482  				goto retry_write;
1483  			}
1484  			return ret;
1485  		}
1486  
1487  		*submitted += _submitted;
1488  	}
1489  
1490  	f2fs_balance_fs(F2FS_M_SB(mapping), true);
1491  
1492  	return 0;
1493  }
1494  
1495  int f2fs_write_multi_pages(struct compress_ctx *cc,
1496  					int *submitted,
1497  					struct writeback_control *wbc,
1498  					enum iostat_type io_type)
1499  {
1500  	int err;
1501  
1502  	*submitted = 0;
1503  	if (cluster_may_compress(cc)) {
1504  		err = f2fs_compress_pages(cc);
1505  		if (err == -EAGAIN) {
1506  			add_compr_block_stat(cc->inode, cc->cluster_size);
1507  			goto write;
1508  		} else if (err) {
1509  			f2fs_put_rpages_wbc(cc, wbc, true, 1);
1510  			goto destroy_out;
1511  		}
1512  
1513  		err = f2fs_write_compressed_pages(cc, submitted,
1514  							wbc, io_type);
1515  		if (!err)
1516  			return 0;
1517  		f2fs_bug_on(F2FS_I_SB(cc->inode), err != -EAGAIN);
1518  	}
1519  write:
1520  	f2fs_bug_on(F2FS_I_SB(cc->inode), *submitted);
1521  
1522  	err = f2fs_write_raw_pages(cc, submitted, wbc, io_type);
1523  	f2fs_put_rpages_wbc(cc, wbc, false, 0);
1524  destroy_out:
1525  	f2fs_destroy_compress_ctx(cc, false);
1526  	return err;
1527  }
1528  
1529  static inline bool allow_memalloc_for_decomp(struct f2fs_sb_info *sbi,
1530  		bool pre_alloc)
1531  {
1532  	return pre_alloc ^ f2fs_low_mem_mode(sbi);
1533  }
1534  
1535  static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic,
1536  		bool pre_alloc)
1537  {
1538  	const struct f2fs_compress_ops *cops =
1539  		f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm];
1540  	int i;
1541  
1542  	if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc))
1543  		return 0;
1544  
1545  	dic->tpages = page_array_alloc(dic->inode, dic->cluster_size);
1546  	if (!dic->tpages)
1547  		return -ENOMEM;
1548  
1549  	for (i = 0; i < dic->cluster_size; i++) {
1550  		if (dic->rpages[i]) {
1551  			dic->tpages[i] = dic->rpages[i];
1552  			continue;
1553  		}
1554  
1555  		dic->tpages[i] = f2fs_compress_alloc_page();
1556  		if (!dic->tpages[i])
1557  			return -ENOMEM;
1558  	}
1559  
1560  	dic->rbuf = f2fs_vmap(dic->tpages, dic->cluster_size);
1561  	if (!dic->rbuf)
1562  		return -ENOMEM;
1563  
1564  	dic->cbuf = f2fs_vmap(dic->cpages, dic->nr_cpages);
1565  	if (!dic->cbuf)
1566  		return -ENOMEM;
1567  
1568  	if (cops->init_decompress_ctx)
1569  		return cops->init_decompress_ctx(dic);
1570  
1571  	return 0;
1572  }
1573  
1574  static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic,
1575  		bool bypass_destroy_callback, bool pre_alloc)
1576  {
1577  	const struct f2fs_compress_ops *cops =
1578  		f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm];
1579  
1580  	if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc))
1581  		return;
1582  
1583  	if (!bypass_destroy_callback && cops->destroy_decompress_ctx)
1584  		cops->destroy_decompress_ctx(dic);
1585  
1586  	if (dic->cbuf)
1587  		vm_unmap_ram(dic->cbuf, dic->nr_cpages);
1588  
1589  	if (dic->rbuf)
1590  		vm_unmap_ram(dic->rbuf, dic->cluster_size);
1591  }
1592  
1593  static void f2fs_free_dic(struct decompress_io_ctx *dic,
1594  		bool bypass_destroy_callback);
1595  
1596  struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc)
1597  {
1598  	struct decompress_io_ctx *dic;
1599  	pgoff_t start_idx = start_idx_of_cluster(cc);
1600  	struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode);
1601  	int i, ret;
1602  
1603  	dic = f2fs_kmem_cache_alloc(dic_entry_slab, GFP_F2FS_ZERO, false, sbi);
1604  	if (!dic)
1605  		return ERR_PTR(-ENOMEM);
1606  
1607  	dic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
1608  	if (!dic->rpages) {
1609  		kmem_cache_free(dic_entry_slab, dic);
1610  		return ERR_PTR(-ENOMEM);
1611  	}
1612  
1613  	dic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1614  	dic->inode = cc->inode;
1615  	atomic_set(&dic->remaining_pages, cc->nr_cpages);
1616  	dic->cluster_idx = cc->cluster_idx;
1617  	dic->cluster_size = cc->cluster_size;
1618  	dic->log_cluster_size = cc->log_cluster_size;
1619  	dic->nr_cpages = cc->nr_cpages;
1620  	refcount_set(&dic->refcnt, 1);
1621  	dic->failed = false;
1622  	dic->need_verity = f2fs_need_verity(cc->inode, start_idx);
1623  
1624  	for (i = 0; i < dic->cluster_size; i++)
1625  		dic->rpages[i] = cc->rpages[i];
1626  	dic->nr_rpages = cc->cluster_size;
1627  
1628  	dic->cpages = page_array_alloc(dic->inode, dic->nr_cpages);
1629  	if (!dic->cpages) {
1630  		ret = -ENOMEM;
1631  		goto out_free;
1632  	}
1633  
1634  	for (i = 0; i < dic->nr_cpages; i++) {
1635  		struct page *page;
1636  
1637  		page = f2fs_compress_alloc_page();
1638  		if (!page) {
1639  			ret = -ENOMEM;
1640  			goto out_free;
1641  		}
1642  
1643  		f2fs_set_compressed_page(page, cc->inode,
1644  					start_idx + i + 1, dic);
1645  		dic->cpages[i] = page;
1646  	}
1647  
1648  	ret = f2fs_prepare_decomp_mem(dic, true);
1649  	if (ret)
1650  		goto out_free;
1651  
1652  	return dic;
1653  
1654  out_free:
1655  	f2fs_free_dic(dic, true);
1656  	return ERR_PTR(ret);
1657  }
1658  
1659  static void f2fs_free_dic(struct decompress_io_ctx *dic,
1660  		bool bypass_destroy_callback)
1661  {
1662  	int i;
1663  
1664  	f2fs_release_decomp_mem(dic, bypass_destroy_callback, true);
1665  
1666  	if (dic->tpages) {
1667  		for (i = 0; i < dic->cluster_size; i++) {
1668  			if (dic->rpages[i])
1669  				continue;
1670  			if (!dic->tpages[i])
1671  				continue;
1672  			f2fs_compress_free_page(dic->tpages[i]);
1673  		}
1674  		page_array_free(dic->inode, dic->tpages, dic->cluster_size);
1675  	}
1676  
1677  	if (dic->cpages) {
1678  		for (i = 0; i < dic->nr_cpages; i++) {
1679  			if (!dic->cpages[i])
1680  				continue;
1681  			f2fs_compress_free_page(dic->cpages[i]);
1682  		}
1683  		page_array_free(dic->inode, dic->cpages, dic->nr_cpages);
1684  	}
1685  
1686  	page_array_free(dic->inode, dic->rpages, dic->nr_rpages);
1687  	kmem_cache_free(dic_entry_slab, dic);
1688  }
1689  
1690  static void f2fs_late_free_dic(struct work_struct *work)
1691  {
1692  	struct decompress_io_ctx *dic =
1693  		container_of(work, struct decompress_io_ctx, free_work);
1694  
1695  	f2fs_free_dic(dic, false);
1696  }
1697  
1698  static void f2fs_put_dic(struct decompress_io_ctx *dic, bool in_task)
1699  {
1700  	if (refcount_dec_and_test(&dic->refcnt)) {
1701  		if (in_task) {
1702  			f2fs_free_dic(dic, false);
1703  		} else {
1704  			INIT_WORK(&dic->free_work, f2fs_late_free_dic);
1705  			queue_work(F2FS_I_SB(dic->inode)->post_read_wq,
1706  					&dic->free_work);
1707  		}
1708  	}
1709  }
1710  
1711  static void f2fs_verify_cluster(struct work_struct *work)
1712  {
1713  	struct decompress_io_ctx *dic =
1714  		container_of(work, struct decompress_io_ctx, verity_work);
1715  	int i;
1716  
1717  	/* Verify, update, and unlock the decompressed pages. */
1718  	for (i = 0; i < dic->cluster_size; i++) {
1719  		struct page *rpage = dic->rpages[i];
1720  
1721  		if (!rpage)
1722  			continue;
1723  
1724  		if (fsverity_verify_page(rpage))
1725  			SetPageUptodate(rpage);
1726  		else
1727  			ClearPageUptodate(rpage);
1728  		unlock_page(rpage);
1729  	}
1730  
1731  	f2fs_put_dic(dic, true);
1732  }
1733  
1734  /*
1735   * This is called when a compressed cluster has been decompressed
1736   * (or failed to be read and/or decompressed).
1737   */
1738  void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
1739  				bool in_task)
1740  {
1741  	int i;
1742  
1743  	if (!failed && dic->need_verity) {
1744  		/*
1745  		 * Note that to avoid deadlocks, the verity work can't be done
1746  		 * on the decompression workqueue.  This is because verifying
1747  		 * the data pages can involve reading metadata pages from the
1748  		 * file, and these metadata pages may be compressed.
1749  		 */
1750  		INIT_WORK(&dic->verity_work, f2fs_verify_cluster);
1751  		fsverity_enqueue_verify_work(&dic->verity_work);
1752  		return;
1753  	}
1754  
1755  	/* Update and unlock the cluster's pagecache pages. */
1756  	for (i = 0; i < dic->cluster_size; i++) {
1757  		struct page *rpage = dic->rpages[i];
1758  
1759  		if (!rpage)
1760  			continue;
1761  
1762  		if (failed)
1763  			ClearPageUptodate(rpage);
1764  		else
1765  			SetPageUptodate(rpage);
1766  		unlock_page(rpage);
1767  	}
1768  
1769  	/*
1770  	 * Release the reference to the decompress_io_ctx that was being held
1771  	 * for I/O completion.
1772  	 */
1773  	f2fs_put_dic(dic, in_task);
1774  }
1775  
1776  /*
1777   * Put a reference to a compressed page's decompress_io_ctx.
1778   *
1779   * This is called when the page is no longer needed and can be freed.
1780   */
1781  void f2fs_put_page_dic(struct page *page, bool in_task)
1782  {
1783  	struct decompress_io_ctx *dic =
1784  			(struct decompress_io_ctx *)page_private(page);
1785  
1786  	f2fs_put_dic(dic, in_task);
1787  }
1788  
1789  /*
1790   * check whether cluster blocks are contiguous, and add extent cache entry
1791   * only if cluster blocks are logically and physically contiguous.
1792   */
1793  unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn)
1794  {
1795  	bool compressed = f2fs_data_blkaddr(dn) == COMPRESS_ADDR;
1796  	int i = compressed ? 1 : 0;
1797  	block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_page,
1798  						dn->ofs_in_node + i);
1799  
1800  	for (i += 1; i < F2FS_I(dn->inode)->i_cluster_size; i++) {
1801  		block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
1802  						dn->ofs_in_node + i);
1803  
1804  		if (!__is_valid_data_blkaddr(blkaddr))
1805  			break;
1806  		if (first_blkaddr + i - (compressed ? 1 : 0) != blkaddr)
1807  			return 0;
1808  	}
1809  
1810  	return compressed ? i - 1 : i;
1811  }
1812  
1813  const struct address_space_operations f2fs_compress_aops = {
1814  	.release_folio = f2fs_release_folio,
1815  	.invalidate_folio = f2fs_invalidate_folio,
1816  };
1817  
1818  struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi)
1819  {
1820  	return sbi->compress_inode->i_mapping;
1821  }
1822  
1823  void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr)
1824  {
1825  	if (!sbi->compress_inode)
1826  		return;
1827  	invalidate_mapping_pages(COMPRESS_MAPPING(sbi), blkaddr, blkaddr);
1828  }
1829  
1830  void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
1831  						nid_t ino, block_t blkaddr)
1832  {
1833  	struct page *cpage;
1834  	int ret;
1835  
1836  	if (!test_opt(sbi, COMPRESS_CACHE))
1837  		return;
1838  
1839  	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ))
1840  		return;
1841  
1842  	if (!f2fs_available_free_memory(sbi, COMPRESS_PAGE))
1843  		return;
1844  
1845  	cpage = find_get_page(COMPRESS_MAPPING(sbi), blkaddr);
1846  	if (cpage) {
1847  		f2fs_put_page(cpage, 0);
1848  		return;
1849  	}
1850  
1851  	cpage = alloc_page(__GFP_NOWARN | __GFP_IO);
1852  	if (!cpage)
1853  		return;
1854  
1855  	ret = add_to_page_cache_lru(cpage, COMPRESS_MAPPING(sbi),
1856  						blkaddr, GFP_NOFS);
1857  	if (ret) {
1858  		f2fs_put_page(cpage, 0);
1859  		return;
1860  	}
1861  
1862  	set_page_private_data(cpage, ino);
1863  
1864  	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ))
1865  		goto out;
1866  
1867  	memcpy(page_address(cpage), page_address(page), PAGE_SIZE);
1868  	SetPageUptodate(cpage);
1869  out:
1870  	f2fs_put_page(cpage, 1);
1871  }
1872  
1873  bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
1874  								block_t blkaddr)
1875  {
1876  	struct page *cpage;
1877  	bool hitted = false;
1878  
1879  	if (!test_opt(sbi, COMPRESS_CACHE))
1880  		return false;
1881  
1882  	cpage = f2fs_pagecache_get_page(COMPRESS_MAPPING(sbi),
1883  				blkaddr, FGP_LOCK | FGP_NOWAIT, GFP_NOFS);
1884  	if (cpage) {
1885  		if (PageUptodate(cpage)) {
1886  			atomic_inc(&sbi->compress_page_hit);
1887  			memcpy(page_address(page),
1888  				page_address(cpage), PAGE_SIZE);
1889  			hitted = true;
1890  		}
1891  		f2fs_put_page(cpage, 1);
1892  	}
1893  
1894  	return hitted;
1895  }
1896  
1897  void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino)
1898  {
1899  	struct address_space *mapping = COMPRESS_MAPPING(sbi);
1900  	struct folio_batch fbatch;
1901  	pgoff_t index = 0;
1902  	pgoff_t end = MAX_BLKADDR(sbi);
1903  
1904  	if (!mapping->nrpages)
1905  		return;
1906  
1907  	folio_batch_init(&fbatch);
1908  
1909  	do {
1910  		unsigned int nr, i;
1911  
1912  		nr = filemap_get_folios(mapping, &index, end - 1, &fbatch);
1913  		if (!nr)
1914  			break;
1915  
1916  		for (i = 0; i < nr; i++) {
1917  			struct folio *folio = fbatch.folios[i];
1918  
1919  			folio_lock(folio);
1920  			if (folio->mapping != mapping) {
1921  				folio_unlock(folio);
1922  				continue;
1923  			}
1924  
1925  			if (ino != get_page_private_data(&folio->page)) {
1926  				folio_unlock(folio);
1927  				continue;
1928  			}
1929  
1930  			generic_error_remove_page(mapping, &folio->page);
1931  			folio_unlock(folio);
1932  		}
1933  		folio_batch_release(&fbatch);
1934  		cond_resched();
1935  	} while (index < end);
1936  }
1937  
1938  int f2fs_init_compress_inode(struct f2fs_sb_info *sbi)
1939  {
1940  	struct inode *inode;
1941  
1942  	if (!test_opt(sbi, COMPRESS_CACHE))
1943  		return 0;
1944  
1945  	inode = f2fs_iget(sbi->sb, F2FS_COMPRESS_INO(sbi));
1946  	if (IS_ERR(inode))
1947  		return PTR_ERR(inode);
1948  	sbi->compress_inode = inode;
1949  
1950  	sbi->compress_percent = COMPRESS_PERCENT;
1951  	sbi->compress_watermark = COMPRESS_WATERMARK;
1952  
1953  	atomic_set(&sbi->compress_page_hit, 0);
1954  
1955  	return 0;
1956  }
1957  
1958  void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi)
1959  {
1960  	if (!sbi->compress_inode)
1961  		return;
1962  	iput(sbi->compress_inode);
1963  	sbi->compress_inode = NULL;
1964  }
1965  
1966  int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi)
1967  {
1968  	dev_t dev = sbi->sb->s_bdev->bd_dev;
1969  	char slab_name[32];
1970  
1971  	if (!f2fs_sb_has_compression(sbi))
1972  		return 0;
1973  
1974  	sprintf(slab_name, "f2fs_page_array_entry-%u:%u", MAJOR(dev), MINOR(dev));
1975  
1976  	sbi->page_array_slab_size = sizeof(struct page *) <<
1977  					F2FS_OPTION(sbi).compress_log_size;
1978  
1979  	sbi->page_array_slab = f2fs_kmem_cache_create(slab_name,
1980  					sbi->page_array_slab_size);
1981  	return sbi->page_array_slab ? 0 : -ENOMEM;
1982  }
1983  
1984  void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi)
1985  {
1986  	kmem_cache_destroy(sbi->page_array_slab);
1987  }
1988  
1989  int __init f2fs_init_compress_cache(void)
1990  {
1991  	cic_entry_slab = f2fs_kmem_cache_create("f2fs_cic_entry",
1992  					sizeof(struct compress_io_ctx));
1993  	if (!cic_entry_slab)
1994  		return -ENOMEM;
1995  	dic_entry_slab = f2fs_kmem_cache_create("f2fs_dic_entry",
1996  					sizeof(struct decompress_io_ctx));
1997  	if (!dic_entry_slab)
1998  		goto free_cic;
1999  	return 0;
2000  free_cic:
2001  	kmem_cache_destroy(cic_entry_slab);
2002  	return -ENOMEM;
2003  }
2004  
2005  void f2fs_destroy_compress_cache(void)
2006  {
2007  	kmem_cache_destroy(dic_entry_slab);
2008  	kmem_cache_destroy(cic_entry_slab);
2009  }
2010