xref: /linux/fs/f2fs/compress.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * f2fs compress support
4  *
5  * Copyright (c) 2019 Chao Yu <chao@kernel.org>
6  */
7 
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/moduleparam.h>
11 #include <linux/writeback.h>
12 #include <linux/backing-dev.h>
13 #include <linux/lzo.h>
14 #include <linux/lz4.h>
15 #include <linux/zstd.h>
16 #include <linux/pagevec.h>
17 
18 #include "f2fs.h"
19 #include "node.h"
20 #include "segment.h"
21 #include <trace/events/f2fs.h>
22 
23 static struct kmem_cache *cic_entry_slab;
24 static struct kmem_cache *dic_entry_slab;
25 
26 static void *page_array_alloc(struct inode *inode, int nr)
27 {
28 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
29 	unsigned int size = sizeof(struct page *) * nr;
30 
31 	if (likely(size <= sbi->page_array_slab_size))
32 		return f2fs_kmem_cache_alloc(sbi->page_array_slab,
33 					GFP_F2FS_ZERO, false, F2FS_I_SB(inode));
34 	return f2fs_kzalloc(sbi, size, GFP_NOFS);
35 }
36 
37 static void page_array_free(struct inode *inode, void *pages, int nr)
38 {
39 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
40 	unsigned int size = sizeof(struct page *) * nr;
41 
42 	if (!pages)
43 		return;
44 
45 	if (likely(size <= sbi->page_array_slab_size))
46 		kmem_cache_free(sbi->page_array_slab, pages);
47 	else
48 		kfree(pages);
49 }
50 
51 struct f2fs_compress_ops {
52 	int (*init_compress_ctx)(struct compress_ctx *cc);
53 	void (*destroy_compress_ctx)(struct compress_ctx *cc);
54 	int (*compress_pages)(struct compress_ctx *cc);
55 	int (*init_decompress_ctx)(struct decompress_io_ctx *dic);
56 	void (*destroy_decompress_ctx)(struct decompress_io_ctx *dic);
57 	int (*decompress_pages)(struct decompress_io_ctx *dic);
58 	bool (*is_level_valid)(int level);
59 };
60 
61 static unsigned int offset_in_cluster(struct compress_ctx *cc, pgoff_t index)
62 {
63 	return index & (cc->cluster_size - 1);
64 }
65 
66 static pgoff_t cluster_idx(struct compress_ctx *cc, pgoff_t index)
67 {
68 	return index >> cc->log_cluster_size;
69 }
70 
71 static pgoff_t start_idx_of_cluster(struct compress_ctx *cc)
72 {
73 	return cc->cluster_idx << cc->log_cluster_size;
74 }
75 
76 bool f2fs_is_compressed_page(struct page *page)
77 {
78 	if (!PagePrivate(page))
79 		return false;
80 	if (!page_private(page))
81 		return false;
82 	if (page_private_nonpointer(page))
83 		return false;
84 
85 	f2fs_bug_on(F2FS_M_SB(page->mapping),
86 		*((u32 *)page_private(page)) != F2FS_COMPRESSED_PAGE_MAGIC);
87 	return true;
88 }
89 
90 static void f2fs_set_compressed_page(struct page *page,
91 		struct inode *inode, pgoff_t index, void *data)
92 {
93 	attach_page_private(page, (void *)data);
94 
95 	/* i_crypto_info and iv index */
96 	page->index = index;
97 	page->mapping = inode->i_mapping;
98 }
99 
100 static void f2fs_drop_rpages(struct compress_ctx *cc, int len, bool unlock)
101 {
102 	int i;
103 
104 	for (i = 0; i < len; i++) {
105 		if (!cc->rpages[i])
106 			continue;
107 		if (unlock)
108 			unlock_page(cc->rpages[i]);
109 		else
110 			put_page(cc->rpages[i]);
111 	}
112 }
113 
114 static void f2fs_put_rpages(struct compress_ctx *cc)
115 {
116 	f2fs_drop_rpages(cc, cc->cluster_size, false);
117 }
118 
119 static void f2fs_unlock_rpages(struct compress_ctx *cc, int len)
120 {
121 	f2fs_drop_rpages(cc, len, true);
122 }
123 
124 static void f2fs_put_rpages_wbc(struct compress_ctx *cc,
125 		struct writeback_control *wbc, bool redirty, int unlock)
126 {
127 	unsigned int i;
128 
129 	for (i = 0; i < cc->cluster_size; i++) {
130 		if (!cc->rpages[i])
131 			continue;
132 		if (redirty)
133 			redirty_page_for_writepage(wbc, cc->rpages[i]);
134 		f2fs_put_page(cc->rpages[i], unlock);
135 	}
136 }
137 
138 struct page *f2fs_compress_control_page(struct page *page)
139 {
140 	return ((struct compress_io_ctx *)page_private(page))->rpages[0];
141 }
142 
143 int f2fs_init_compress_ctx(struct compress_ctx *cc)
144 {
145 	if (cc->rpages)
146 		return 0;
147 
148 	cc->rpages = page_array_alloc(cc->inode, cc->cluster_size);
149 	return cc->rpages ? 0 : -ENOMEM;
150 }
151 
152 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse)
153 {
154 	page_array_free(cc->inode, cc->rpages, cc->cluster_size);
155 	cc->rpages = NULL;
156 	cc->nr_rpages = 0;
157 	cc->nr_cpages = 0;
158 	cc->valid_nr_cpages = 0;
159 	if (!reuse)
160 		cc->cluster_idx = NULL_CLUSTER;
161 }
162 
163 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page)
164 {
165 	unsigned int cluster_ofs;
166 
167 	if (!f2fs_cluster_can_merge_page(cc, page->index))
168 		f2fs_bug_on(F2FS_I_SB(cc->inode), 1);
169 
170 	cluster_ofs = offset_in_cluster(cc, page->index);
171 	cc->rpages[cluster_ofs] = page;
172 	cc->nr_rpages++;
173 	cc->cluster_idx = cluster_idx(cc, page->index);
174 }
175 
176 #ifdef CONFIG_F2FS_FS_LZO
177 static int lzo_init_compress_ctx(struct compress_ctx *cc)
178 {
179 	cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
180 				LZO1X_MEM_COMPRESS, GFP_NOFS);
181 	if (!cc->private)
182 		return -ENOMEM;
183 
184 	cc->clen = lzo1x_worst_compress(PAGE_SIZE << cc->log_cluster_size);
185 	return 0;
186 }
187 
188 static void lzo_destroy_compress_ctx(struct compress_ctx *cc)
189 {
190 	kvfree(cc->private);
191 	cc->private = NULL;
192 }
193 
194 static int lzo_compress_pages(struct compress_ctx *cc)
195 {
196 	int ret;
197 
198 	ret = lzo1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
199 					&cc->clen, cc->private);
200 	if (ret != LZO_E_OK) {
201 		printk_ratelimited("%sF2FS-fs (%s): lzo compress failed, ret:%d\n",
202 				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret);
203 		return -EIO;
204 	}
205 	return 0;
206 }
207 
208 static int lzo_decompress_pages(struct decompress_io_ctx *dic)
209 {
210 	int ret;
211 
212 	ret = lzo1x_decompress_safe(dic->cbuf->cdata, dic->clen,
213 						dic->rbuf, &dic->rlen);
214 	if (ret != LZO_E_OK) {
215 		printk_ratelimited("%sF2FS-fs (%s): lzo decompress failed, ret:%d\n",
216 				KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret);
217 		return -EIO;
218 	}
219 
220 	if (dic->rlen != PAGE_SIZE << dic->log_cluster_size) {
221 		printk_ratelimited("%sF2FS-fs (%s): lzo invalid rlen:%zu, "
222 					"expected:%lu\n", KERN_ERR,
223 					F2FS_I_SB(dic->inode)->sb->s_id,
224 					dic->rlen,
225 					PAGE_SIZE << dic->log_cluster_size);
226 		return -EIO;
227 	}
228 	return 0;
229 }
230 
231 static const struct f2fs_compress_ops f2fs_lzo_ops = {
232 	.init_compress_ctx	= lzo_init_compress_ctx,
233 	.destroy_compress_ctx	= lzo_destroy_compress_ctx,
234 	.compress_pages		= lzo_compress_pages,
235 	.decompress_pages	= lzo_decompress_pages,
236 };
237 #endif
238 
239 #ifdef CONFIG_F2FS_FS_LZ4
240 static int lz4_init_compress_ctx(struct compress_ctx *cc)
241 {
242 	unsigned int size = LZ4_MEM_COMPRESS;
243 
244 #ifdef CONFIG_F2FS_FS_LZ4HC
245 	if (F2FS_I(cc->inode)->i_compress_level)
246 		size = LZ4HC_MEM_COMPRESS;
247 #endif
248 
249 	cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), size, GFP_NOFS);
250 	if (!cc->private)
251 		return -ENOMEM;
252 
253 	/*
254 	 * we do not change cc->clen to LZ4_compressBound(inputsize) to
255 	 * adapt worst compress case, because lz4 compressor can handle
256 	 * output budget properly.
257 	 */
258 	cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
259 	return 0;
260 }
261 
262 static void lz4_destroy_compress_ctx(struct compress_ctx *cc)
263 {
264 	kvfree(cc->private);
265 	cc->private = NULL;
266 }
267 
268 static int lz4_compress_pages(struct compress_ctx *cc)
269 {
270 	int len = -EINVAL;
271 	unsigned char level = F2FS_I(cc->inode)->i_compress_level;
272 
273 	if (!level)
274 		len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen,
275 						cc->clen, cc->private);
276 #ifdef CONFIG_F2FS_FS_LZ4HC
277 	else
278 		len = LZ4_compress_HC(cc->rbuf, cc->cbuf->cdata, cc->rlen,
279 					cc->clen, level, cc->private);
280 #endif
281 	if (len < 0)
282 		return len;
283 	if (!len)
284 		return -EAGAIN;
285 
286 	cc->clen = len;
287 	return 0;
288 }
289 
290 static int lz4_decompress_pages(struct decompress_io_ctx *dic)
291 {
292 	int ret;
293 
294 	ret = LZ4_decompress_safe(dic->cbuf->cdata, dic->rbuf,
295 						dic->clen, dic->rlen);
296 	if (ret < 0) {
297 		printk_ratelimited("%sF2FS-fs (%s): lz4 decompress failed, ret:%d\n",
298 				KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret);
299 		return -EIO;
300 	}
301 
302 	if (ret != PAGE_SIZE << dic->log_cluster_size) {
303 		printk_ratelimited("%sF2FS-fs (%s): lz4 invalid ret:%d, "
304 					"expected:%lu\n", KERN_ERR,
305 					F2FS_I_SB(dic->inode)->sb->s_id, ret,
306 					PAGE_SIZE << dic->log_cluster_size);
307 		return -EIO;
308 	}
309 	return 0;
310 }
311 
312 static bool lz4_is_level_valid(int lvl)
313 {
314 #ifdef CONFIG_F2FS_FS_LZ4HC
315 	return !lvl || (lvl >= LZ4HC_MIN_CLEVEL && lvl <= LZ4HC_MAX_CLEVEL);
316 #else
317 	return lvl == 0;
318 #endif
319 }
320 
321 static const struct f2fs_compress_ops f2fs_lz4_ops = {
322 	.init_compress_ctx	= lz4_init_compress_ctx,
323 	.destroy_compress_ctx	= lz4_destroy_compress_ctx,
324 	.compress_pages		= lz4_compress_pages,
325 	.decompress_pages	= lz4_decompress_pages,
326 	.is_level_valid		= lz4_is_level_valid,
327 };
328 #endif
329 
330 #ifdef CONFIG_F2FS_FS_ZSTD
331 static int zstd_init_compress_ctx(struct compress_ctx *cc)
332 {
333 	zstd_parameters params;
334 	zstd_cstream *stream;
335 	void *workspace;
336 	unsigned int workspace_size;
337 	unsigned char level = F2FS_I(cc->inode)->i_compress_level;
338 
339 	/* Need to remain this for backward compatibility */
340 	if (!level)
341 		level = F2FS_ZSTD_DEFAULT_CLEVEL;
342 
343 	params = zstd_get_params(level, cc->rlen);
344 	workspace_size = zstd_cstream_workspace_bound(&params.cParams);
345 
346 	workspace = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
347 					workspace_size, GFP_NOFS);
348 	if (!workspace)
349 		return -ENOMEM;
350 
351 	stream = zstd_init_cstream(&params, 0, workspace, workspace_size);
352 	if (!stream) {
353 		printk_ratelimited("%sF2FS-fs (%s): %s zstd_init_cstream failed\n",
354 				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
355 				__func__);
356 		kvfree(workspace);
357 		return -EIO;
358 	}
359 
360 	cc->private = workspace;
361 	cc->private2 = stream;
362 
363 	cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
364 	return 0;
365 }
366 
367 static void zstd_destroy_compress_ctx(struct compress_ctx *cc)
368 {
369 	kvfree(cc->private);
370 	cc->private = NULL;
371 	cc->private2 = NULL;
372 }
373 
374 static int zstd_compress_pages(struct compress_ctx *cc)
375 {
376 	zstd_cstream *stream = cc->private2;
377 	zstd_in_buffer inbuf;
378 	zstd_out_buffer outbuf;
379 	int src_size = cc->rlen;
380 	int dst_size = src_size - PAGE_SIZE - COMPRESS_HEADER_SIZE;
381 	int ret;
382 
383 	inbuf.pos = 0;
384 	inbuf.src = cc->rbuf;
385 	inbuf.size = src_size;
386 
387 	outbuf.pos = 0;
388 	outbuf.dst = cc->cbuf->cdata;
389 	outbuf.size = dst_size;
390 
391 	ret = zstd_compress_stream(stream, &outbuf, &inbuf);
392 	if (zstd_is_error(ret)) {
393 		printk_ratelimited("%sF2FS-fs (%s): %s zstd_compress_stream failed, ret: %d\n",
394 				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
395 				__func__, zstd_get_error_code(ret));
396 		return -EIO;
397 	}
398 
399 	ret = zstd_end_stream(stream, &outbuf);
400 	if (zstd_is_error(ret)) {
401 		printk_ratelimited("%sF2FS-fs (%s): %s zstd_end_stream returned %d\n",
402 				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
403 				__func__, zstd_get_error_code(ret));
404 		return -EIO;
405 	}
406 
407 	/*
408 	 * there is compressed data remained in intermediate buffer due to
409 	 * no more space in cbuf.cdata
410 	 */
411 	if (ret)
412 		return -EAGAIN;
413 
414 	cc->clen = outbuf.pos;
415 	return 0;
416 }
417 
418 static int zstd_init_decompress_ctx(struct decompress_io_ctx *dic)
419 {
420 	zstd_dstream *stream;
421 	void *workspace;
422 	unsigned int workspace_size;
423 	unsigned int max_window_size =
424 			MAX_COMPRESS_WINDOW_SIZE(dic->log_cluster_size);
425 
426 	workspace_size = zstd_dstream_workspace_bound(max_window_size);
427 
428 	workspace = f2fs_kvmalloc(F2FS_I_SB(dic->inode),
429 					workspace_size, GFP_NOFS);
430 	if (!workspace)
431 		return -ENOMEM;
432 
433 	stream = zstd_init_dstream(max_window_size, workspace, workspace_size);
434 	if (!stream) {
435 		printk_ratelimited("%sF2FS-fs (%s): %s zstd_init_dstream failed\n",
436 				KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id,
437 				__func__);
438 		kvfree(workspace);
439 		return -EIO;
440 	}
441 
442 	dic->private = workspace;
443 	dic->private2 = stream;
444 
445 	return 0;
446 }
447 
448 static void zstd_destroy_decompress_ctx(struct decompress_io_ctx *dic)
449 {
450 	kvfree(dic->private);
451 	dic->private = NULL;
452 	dic->private2 = NULL;
453 }
454 
455 static int zstd_decompress_pages(struct decompress_io_ctx *dic)
456 {
457 	zstd_dstream *stream = dic->private2;
458 	zstd_in_buffer inbuf;
459 	zstd_out_buffer outbuf;
460 	int ret;
461 
462 	inbuf.pos = 0;
463 	inbuf.src = dic->cbuf->cdata;
464 	inbuf.size = dic->clen;
465 
466 	outbuf.pos = 0;
467 	outbuf.dst = dic->rbuf;
468 	outbuf.size = dic->rlen;
469 
470 	ret = zstd_decompress_stream(stream, &outbuf, &inbuf);
471 	if (zstd_is_error(ret)) {
472 		printk_ratelimited("%sF2FS-fs (%s): %s zstd_decompress_stream failed, ret: %d\n",
473 				KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id,
474 				__func__, zstd_get_error_code(ret));
475 		return -EIO;
476 	}
477 
478 	if (dic->rlen != outbuf.pos) {
479 		printk_ratelimited("%sF2FS-fs (%s): %s ZSTD invalid rlen:%zu, "
480 				"expected:%lu\n", KERN_ERR,
481 				F2FS_I_SB(dic->inode)->sb->s_id,
482 				__func__, dic->rlen,
483 				PAGE_SIZE << dic->log_cluster_size);
484 		return -EIO;
485 	}
486 
487 	return 0;
488 }
489 
490 static bool zstd_is_level_valid(int lvl)
491 {
492 	return lvl >= zstd_min_clevel() && lvl <= zstd_max_clevel();
493 }
494 
495 static const struct f2fs_compress_ops f2fs_zstd_ops = {
496 	.init_compress_ctx	= zstd_init_compress_ctx,
497 	.destroy_compress_ctx	= zstd_destroy_compress_ctx,
498 	.compress_pages		= zstd_compress_pages,
499 	.init_decompress_ctx	= zstd_init_decompress_ctx,
500 	.destroy_decompress_ctx	= zstd_destroy_decompress_ctx,
501 	.decompress_pages	= zstd_decompress_pages,
502 	.is_level_valid		= zstd_is_level_valid,
503 };
504 #endif
505 
506 #ifdef CONFIG_F2FS_FS_LZO
507 #ifdef CONFIG_F2FS_FS_LZORLE
508 static int lzorle_compress_pages(struct compress_ctx *cc)
509 {
510 	int ret;
511 
512 	ret = lzorle1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
513 					&cc->clen, cc->private);
514 	if (ret != LZO_E_OK) {
515 		f2fs_err_ratelimited(F2FS_I_SB(cc->inode),
516 				"lzo-rle compress failed, ret:%d", ret);
517 		return -EIO;
518 	}
519 	return 0;
520 }
521 
522 static const struct f2fs_compress_ops f2fs_lzorle_ops = {
523 	.init_compress_ctx	= lzo_init_compress_ctx,
524 	.destroy_compress_ctx	= lzo_destroy_compress_ctx,
525 	.compress_pages		= lzorle_compress_pages,
526 	.decompress_pages	= lzo_decompress_pages,
527 };
528 #endif
529 #endif
530 
531 static const struct f2fs_compress_ops *f2fs_cops[COMPRESS_MAX] = {
532 #ifdef CONFIG_F2FS_FS_LZO
533 	&f2fs_lzo_ops,
534 #else
535 	NULL,
536 #endif
537 #ifdef CONFIG_F2FS_FS_LZ4
538 	&f2fs_lz4_ops,
539 #else
540 	NULL,
541 #endif
542 #ifdef CONFIG_F2FS_FS_ZSTD
543 	&f2fs_zstd_ops,
544 #else
545 	NULL,
546 #endif
547 #if defined(CONFIG_F2FS_FS_LZO) && defined(CONFIG_F2FS_FS_LZORLE)
548 	&f2fs_lzorle_ops,
549 #else
550 	NULL,
551 #endif
552 };
553 
554 bool f2fs_is_compress_backend_ready(struct inode *inode)
555 {
556 	if (!f2fs_compressed_file(inode))
557 		return true;
558 	return f2fs_cops[F2FS_I(inode)->i_compress_algorithm];
559 }
560 
561 bool f2fs_is_compress_level_valid(int alg, int lvl)
562 {
563 	const struct f2fs_compress_ops *cops = f2fs_cops[alg];
564 
565 	if (cops->is_level_valid)
566 		return cops->is_level_valid(lvl);
567 
568 	return lvl == 0;
569 }
570 
571 static mempool_t *compress_page_pool;
572 static int num_compress_pages = 512;
573 module_param(num_compress_pages, uint, 0444);
574 MODULE_PARM_DESC(num_compress_pages,
575 		"Number of intermediate compress pages to preallocate");
576 
577 int __init f2fs_init_compress_mempool(void)
578 {
579 	compress_page_pool = mempool_create_page_pool(num_compress_pages, 0);
580 	return compress_page_pool ? 0 : -ENOMEM;
581 }
582 
583 void f2fs_destroy_compress_mempool(void)
584 {
585 	mempool_destroy(compress_page_pool);
586 }
587 
588 static struct page *f2fs_compress_alloc_page(void)
589 {
590 	struct page *page;
591 
592 	page = mempool_alloc(compress_page_pool, GFP_NOFS);
593 	lock_page(page);
594 
595 	return page;
596 }
597 
598 static void f2fs_compress_free_page(struct page *page)
599 {
600 	if (!page)
601 		return;
602 	detach_page_private(page);
603 	page->mapping = NULL;
604 	unlock_page(page);
605 	mempool_free(page, compress_page_pool);
606 }
607 
608 #define MAX_VMAP_RETRIES	3
609 
610 static void *f2fs_vmap(struct page **pages, unsigned int count)
611 {
612 	int i;
613 	void *buf = NULL;
614 
615 	for (i = 0; i < MAX_VMAP_RETRIES; i++) {
616 		buf = vm_map_ram(pages, count, -1);
617 		if (buf)
618 			break;
619 		vm_unmap_aliases();
620 	}
621 	return buf;
622 }
623 
624 static int f2fs_compress_pages(struct compress_ctx *cc)
625 {
626 	struct f2fs_inode_info *fi = F2FS_I(cc->inode);
627 	const struct f2fs_compress_ops *cops =
628 				f2fs_cops[fi->i_compress_algorithm];
629 	unsigned int max_len, new_nr_cpages;
630 	u32 chksum = 0;
631 	int i, ret;
632 
633 	trace_f2fs_compress_pages_start(cc->inode, cc->cluster_idx,
634 				cc->cluster_size, fi->i_compress_algorithm);
635 
636 	if (cops->init_compress_ctx) {
637 		ret = cops->init_compress_ctx(cc);
638 		if (ret)
639 			goto out;
640 	}
641 
642 	max_len = COMPRESS_HEADER_SIZE + cc->clen;
643 	cc->nr_cpages = DIV_ROUND_UP(max_len, PAGE_SIZE);
644 	cc->valid_nr_cpages = cc->nr_cpages;
645 
646 	cc->cpages = page_array_alloc(cc->inode, cc->nr_cpages);
647 	if (!cc->cpages) {
648 		ret = -ENOMEM;
649 		goto destroy_compress_ctx;
650 	}
651 
652 	for (i = 0; i < cc->nr_cpages; i++)
653 		cc->cpages[i] = f2fs_compress_alloc_page();
654 
655 	cc->rbuf = f2fs_vmap(cc->rpages, cc->cluster_size);
656 	if (!cc->rbuf) {
657 		ret = -ENOMEM;
658 		goto out_free_cpages;
659 	}
660 
661 	cc->cbuf = f2fs_vmap(cc->cpages, cc->nr_cpages);
662 	if (!cc->cbuf) {
663 		ret = -ENOMEM;
664 		goto out_vunmap_rbuf;
665 	}
666 
667 	ret = cops->compress_pages(cc);
668 	if (ret)
669 		goto out_vunmap_cbuf;
670 
671 	max_len = PAGE_SIZE * (cc->cluster_size - 1) - COMPRESS_HEADER_SIZE;
672 
673 	if (cc->clen > max_len) {
674 		ret = -EAGAIN;
675 		goto out_vunmap_cbuf;
676 	}
677 
678 	cc->cbuf->clen = cpu_to_le32(cc->clen);
679 
680 	if (fi->i_compress_flag & BIT(COMPRESS_CHKSUM))
681 		chksum = f2fs_crc32(F2FS_I_SB(cc->inode),
682 					cc->cbuf->cdata, cc->clen);
683 	cc->cbuf->chksum = cpu_to_le32(chksum);
684 
685 	for (i = 0; i < COMPRESS_DATA_RESERVED_SIZE; i++)
686 		cc->cbuf->reserved[i] = cpu_to_le32(0);
687 
688 	new_nr_cpages = DIV_ROUND_UP(cc->clen + COMPRESS_HEADER_SIZE, PAGE_SIZE);
689 
690 	/* zero out any unused part of the last page */
691 	memset(&cc->cbuf->cdata[cc->clen], 0,
692 			(new_nr_cpages * PAGE_SIZE) -
693 			(cc->clen + COMPRESS_HEADER_SIZE));
694 
695 	vm_unmap_ram(cc->cbuf, cc->nr_cpages);
696 	vm_unmap_ram(cc->rbuf, cc->cluster_size);
697 
698 	for (i = new_nr_cpages; i < cc->nr_cpages; i++) {
699 		f2fs_compress_free_page(cc->cpages[i]);
700 		cc->cpages[i] = NULL;
701 	}
702 
703 	if (cops->destroy_compress_ctx)
704 		cops->destroy_compress_ctx(cc);
705 
706 	cc->valid_nr_cpages = new_nr_cpages;
707 
708 	trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
709 							cc->clen, ret);
710 	return 0;
711 
712 out_vunmap_cbuf:
713 	vm_unmap_ram(cc->cbuf, cc->nr_cpages);
714 out_vunmap_rbuf:
715 	vm_unmap_ram(cc->rbuf, cc->cluster_size);
716 out_free_cpages:
717 	for (i = 0; i < cc->nr_cpages; i++) {
718 		if (cc->cpages[i])
719 			f2fs_compress_free_page(cc->cpages[i]);
720 	}
721 	page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
722 	cc->cpages = NULL;
723 destroy_compress_ctx:
724 	if (cops->destroy_compress_ctx)
725 		cops->destroy_compress_ctx(cc);
726 out:
727 	trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
728 							cc->clen, ret);
729 	return ret;
730 }
731 
732 static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic,
733 		bool pre_alloc);
734 static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic,
735 		bool bypass_destroy_callback, bool pre_alloc);
736 
737 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task)
738 {
739 	struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
740 	struct f2fs_inode_info *fi = F2FS_I(dic->inode);
741 	const struct f2fs_compress_ops *cops =
742 			f2fs_cops[fi->i_compress_algorithm];
743 	bool bypass_callback = false;
744 	int ret;
745 
746 	trace_f2fs_decompress_pages_start(dic->inode, dic->cluster_idx,
747 				dic->cluster_size, fi->i_compress_algorithm);
748 
749 	if (dic->failed) {
750 		ret = -EIO;
751 		goto out_end_io;
752 	}
753 
754 	ret = f2fs_prepare_decomp_mem(dic, false);
755 	if (ret) {
756 		bypass_callback = true;
757 		goto out_release;
758 	}
759 
760 	dic->clen = le32_to_cpu(dic->cbuf->clen);
761 	dic->rlen = PAGE_SIZE << dic->log_cluster_size;
762 
763 	if (dic->clen > PAGE_SIZE * dic->nr_cpages - COMPRESS_HEADER_SIZE) {
764 		ret = -EFSCORRUPTED;
765 
766 		/* Avoid f2fs_commit_super in irq context */
767 		if (!in_task)
768 			f2fs_handle_error_async(sbi, ERROR_FAIL_DECOMPRESSION);
769 		else
770 			f2fs_handle_error(sbi, ERROR_FAIL_DECOMPRESSION);
771 		goto out_release;
772 	}
773 
774 	ret = cops->decompress_pages(dic);
775 
776 	if (!ret && (fi->i_compress_flag & BIT(COMPRESS_CHKSUM))) {
777 		u32 provided = le32_to_cpu(dic->cbuf->chksum);
778 		u32 calculated = f2fs_crc32(sbi, dic->cbuf->cdata, dic->clen);
779 
780 		if (provided != calculated) {
781 			if (!is_inode_flag_set(dic->inode, FI_COMPRESS_CORRUPT)) {
782 				set_inode_flag(dic->inode, FI_COMPRESS_CORRUPT);
783 				f2fs_info_ratelimited(sbi,
784 					"checksum invalid, nid = %lu, %x vs %x",
785 					dic->inode->i_ino,
786 					provided, calculated);
787 			}
788 			set_sbi_flag(sbi, SBI_NEED_FSCK);
789 		}
790 	}
791 
792 out_release:
793 	f2fs_release_decomp_mem(dic, bypass_callback, false);
794 
795 out_end_io:
796 	trace_f2fs_decompress_pages_end(dic->inode, dic->cluster_idx,
797 							dic->clen, ret);
798 	f2fs_decompress_end_io(dic, ret, in_task);
799 }
800 
801 /*
802  * This is called when a page of a compressed cluster has been read from disk
803  * (or failed to be read from disk).  It checks whether this page was the last
804  * page being waited on in the cluster, and if so, it decompresses the cluster
805  * (or in the case of a failure, cleans up without actually decompressing).
806  */
807 void f2fs_end_read_compressed_page(struct page *page, bool failed,
808 		block_t blkaddr, bool in_task)
809 {
810 	struct decompress_io_ctx *dic =
811 			(struct decompress_io_ctx *)page_private(page);
812 	struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
813 
814 	dec_page_count(sbi, F2FS_RD_DATA);
815 
816 	if (failed)
817 		WRITE_ONCE(dic->failed, true);
818 	else if (blkaddr && in_task)
819 		f2fs_cache_compressed_page(sbi, page,
820 					dic->inode->i_ino, blkaddr);
821 
822 	if (atomic_dec_and_test(&dic->remaining_pages))
823 		f2fs_decompress_cluster(dic, in_task);
824 }
825 
826 static bool is_page_in_cluster(struct compress_ctx *cc, pgoff_t index)
827 {
828 	if (cc->cluster_idx == NULL_CLUSTER)
829 		return true;
830 	return cc->cluster_idx == cluster_idx(cc, index);
831 }
832 
833 bool f2fs_cluster_is_empty(struct compress_ctx *cc)
834 {
835 	return cc->nr_rpages == 0;
836 }
837 
838 static bool f2fs_cluster_is_full(struct compress_ctx *cc)
839 {
840 	return cc->cluster_size == cc->nr_rpages;
841 }
842 
843 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index)
844 {
845 	if (f2fs_cluster_is_empty(cc))
846 		return true;
847 	return is_page_in_cluster(cc, index);
848 }
849 
850 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
851 				int index, int nr_pages, bool uptodate)
852 {
853 	unsigned long pgidx = pages[index]->index;
854 	int i = uptodate ? 0 : 1;
855 
856 	/*
857 	 * when uptodate set to true, try to check all pages in cluster is
858 	 * uptodate or not.
859 	 */
860 	if (uptodate && (pgidx % cc->cluster_size))
861 		return false;
862 
863 	if (nr_pages - index < cc->cluster_size)
864 		return false;
865 
866 	for (; i < cc->cluster_size; i++) {
867 		if (pages[index + i]->index != pgidx + i)
868 			return false;
869 		if (uptodate && !PageUptodate(pages[index + i]))
870 			return false;
871 	}
872 
873 	return true;
874 }
875 
876 static bool cluster_has_invalid_data(struct compress_ctx *cc)
877 {
878 	loff_t i_size = i_size_read(cc->inode);
879 	unsigned nr_pages = DIV_ROUND_UP(i_size, PAGE_SIZE);
880 	int i;
881 
882 	for (i = 0; i < cc->cluster_size; i++) {
883 		struct page *page = cc->rpages[i];
884 
885 		f2fs_bug_on(F2FS_I_SB(cc->inode), !page);
886 
887 		/* beyond EOF */
888 		if (page->index >= nr_pages)
889 			return true;
890 	}
891 	return false;
892 }
893 
894 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn)
895 {
896 #ifdef CONFIG_F2FS_CHECK_FS
897 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
898 	unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
899 	int cluster_end = 0;
900 	unsigned int count;
901 	int i;
902 	char *reason = "";
903 
904 	if (dn->data_blkaddr != COMPRESS_ADDR)
905 		return false;
906 
907 	/* [..., COMPR_ADDR, ...] */
908 	if (dn->ofs_in_node % cluster_size) {
909 		reason = "[*|C|*|*]";
910 		goto out;
911 	}
912 
913 	for (i = 1, count = 1; i < cluster_size; i++, count++) {
914 		block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
915 							dn->ofs_in_node + i);
916 
917 		/* [COMPR_ADDR, ..., COMPR_ADDR] */
918 		if (blkaddr == COMPRESS_ADDR) {
919 			reason = "[C|*|C|*]";
920 			goto out;
921 		}
922 		if (!__is_valid_data_blkaddr(blkaddr)) {
923 			if (!cluster_end)
924 				cluster_end = i;
925 			continue;
926 		}
927 		/* [COMPR_ADDR, NULL_ADDR or NEW_ADDR, valid_blkaddr] */
928 		if (cluster_end) {
929 			reason = "[C|N|N|V]";
930 			goto out;
931 		}
932 	}
933 
934 	f2fs_bug_on(F2FS_I_SB(dn->inode), count != cluster_size &&
935 		!is_inode_flag_set(dn->inode, FI_COMPRESS_RELEASED));
936 
937 	return false;
938 out:
939 	f2fs_warn(sbi, "access invalid cluster, ino:%lu, nid:%u, ofs_in_node:%u, reason:%s",
940 			dn->inode->i_ino, dn->nid, dn->ofs_in_node, reason);
941 	set_sbi_flag(sbi, SBI_NEED_FSCK);
942 	return true;
943 #else
944 	return false;
945 #endif
946 }
947 
948 static int __f2fs_get_cluster_blocks(struct inode *inode,
949 					struct dnode_of_data *dn)
950 {
951 	unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
952 	int count, i;
953 
954 	for (i = 1, count = 1; i < cluster_size; i++) {
955 		block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
956 							dn->ofs_in_node + i);
957 
958 		if (__is_valid_data_blkaddr(blkaddr))
959 			count++;
960 	}
961 
962 	return count;
963 }
964 
965 static int __f2fs_cluster_blocks(struct inode *inode,
966 				unsigned int cluster_idx, bool compr_blks)
967 {
968 	struct dnode_of_data dn;
969 	unsigned int start_idx = cluster_idx <<
970 				F2FS_I(inode)->i_log_cluster_size;
971 	int ret;
972 
973 	set_new_dnode(&dn, inode, NULL, NULL, 0);
974 	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
975 	if (ret) {
976 		if (ret == -ENOENT)
977 			ret = 0;
978 		goto fail;
979 	}
980 
981 	if (f2fs_sanity_check_cluster(&dn)) {
982 		ret = -EFSCORRUPTED;
983 		goto fail;
984 	}
985 
986 	if (dn.data_blkaddr == COMPRESS_ADDR) {
987 		if (compr_blks)
988 			ret = __f2fs_get_cluster_blocks(inode, &dn);
989 		else
990 			ret = 1;
991 	}
992 fail:
993 	f2fs_put_dnode(&dn);
994 	return ret;
995 }
996 
997 /* return # of compressed blocks in compressed cluster */
998 static int f2fs_compressed_blocks(struct compress_ctx *cc)
999 {
1000 	return __f2fs_cluster_blocks(cc->inode, cc->cluster_idx, true);
1001 }
1002 
1003 /* return whether cluster is compressed one or not */
1004 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index)
1005 {
1006 	return __f2fs_cluster_blocks(inode,
1007 		index >> F2FS_I(inode)->i_log_cluster_size,
1008 		false);
1009 }
1010 
1011 static bool cluster_may_compress(struct compress_ctx *cc)
1012 {
1013 	if (!f2fs_need_compress_data(cc->inode))
1014 		return false;
1015 	if (f2fs_is_atomic_file(cc->inode))
1016 		return false;
1017 	if (!f2fs_cluster_is_full(cc))
1018 		return false;
1019 	if (unlikely(f2fs_cp_error(F2FS_I_SB(cc->inode))))
1020 		return false;
1021 	return !cluster_has_invalid_data(cc);
1022 }
1023 
1024 static void set_cluster_writeback(struct compress_ctx *cc)
1025 {
1026 	int i;
1027 
1028 	for (i = 0; i < cc->cluster_size; i++) {
1029 		if (cc->rpages[i])
1030 			set_page_writeback(cc->rpages[i]);
1031 	}
1032 }
1033 
1034 static void set_cluster_dirty(struct compress_ctx *cc)
1035 {
1036 	int i;
1037 
1038 	for (i = 0; i < cc->cluster_size; i++)
1039 		if (cc->rpages[i]) {
1040 			set_page_dirty(cc->rpages[i]);
1041 			set_page_private_gcing(cc->rpages[i]);
1042 		}
1043 }
1044 
1045 static int prepare_compress_overwrite(struct compress_ctx *cc,
1046 		struct page **pagep, pgoff_t index, void **fsdata)
1047 {
1048 	struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode);
1049 	struct address_space *mapping = cc->inode->i_mapping;
1050 	struct page *page;
1051 	sector_t last_block_in_bio;
1052 	fgf_t fgp_flag = FGP_LOCK | FGP_WRITE | FGP_CREAT;
1053 	pgoff_t start_idx = start_idx_of_cluster(cc);
1054 	int i, ret;
1055 
1056 retry:
1057 	ret = f2fs_is_compressed_cluster(cc->inode, start_idx);
1058 	if (ret <= 0)
1059 		return ret;
1060 
1061 	ret = f2fs_init_compress_ctx(cc);
1062 	if (ret)
1063 		return ret;
1064 
1065 	/* keep page reference to avoid page reclaim */
1066 	for (i = 0; i < cc->cluster_size; i++) {
1067 		page = f2fs_pagecache_get_page(mapping, start_idx + i,
1068 							fgp_flag, GFP_NOFS);
1069 		if (!page) {
1070 			ret = -ENOMEM;
1071 			goto unlock_pages;
1072 		}
1073 
1074 		if (PageUptodate(page))
1075 			f2fs_put_page(page, 1);
1076 		else
1077 			f2fs_compress_ctx_add_page(cc, page);
1078 	}
1079 
1080 	if (!f2fs_cluster_is_empty(cc)) {
1081 		struct bio *bio = NULL;
1082 
1083 		ret = f2fs_read_multi_pages(cc, &bio, cc->cluster_size,
1084 					&last_block_in_bio, false, true);
1085 		f2fs_put_rpages(cc);
1086 		f2fs_destroy_compress_ctx(cc, true);
1087 		if (ret)
1088 			goto out;
1089 		if (bio)
1090 			f2fs_submit_read_bio(sbi, bio, DATA);
1091 
1092 		ret = f2fs_init_compress_ctx(cc);
1093 		if (ret)
1094 			goto out;
1095 	}
1096 
1097 	for (i = 0; i < cc->cluster_size; i++) {
1098 		f2fs_bug_on(sbi, cc->rpages[i]);
1099 
1100 		page = find_lock_page(mapping, start_idx + i);
1101 		if (!page) {
1102 			/* page can be truncated */
1103 			goto release_and_retry;
1104 		}
1105 
1106 		f2fs_wait_on_page_writeback(page, DATA, true, true);
1107 		f2fs_compress_ctx_add_page(cc, page);
1108 
1109 		if (!PageUptodate(page)) {
1110 release_and_retry:
1111 			f2fs_put_rpages(cc);
1112 			f2fs_unlock_rpages(cc, i + 1);
1113 			f2fs_destroy_compress_ctx(cc, true);
1114 			goto retry;
1115 		}
1116 	}
1117 
1118 	if (likely(!ret)) {
1119 		*fsdata = cc->rpages;
1120 		*pagep = cc->rpages[offset_in_cluster(cc, index)];
1121 		return cc->cluster_size;
1122 	}
1123 
1124 unlock_pages:
1125 	f2fs_put_rpages(cc);
1126 	f2fs_unlock_rpages(cc, i);
1127 	f2fs_destroy_compress_ctx(cc, true);
1128 out:
1129 	return ret;
1130 }
1131 
1132 int f2fs_prepare_compress_overwrite(struct inode *inode,
1133 		struct page **pagep, pgoff_t index, void **fsdata)
1134 {
1135 	struct compress_ctx cc = {
1136 		.inode = inode,
1137 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1138 		.cluster_size = F2FS_I(inode)->i_cluster_size,
1139 		.cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size,
1140 		.rpages = NULL,
1141 		.nr_rpages = 0,
1142 	};
1143 
1144 	return prepare_compress_overwrite(&cc, pagep, index, fsdata);
1145 }
1146 
1147 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
1148 					pgoff_t index, unsigned copied)
1149 
1150 {
1151 	struct compress_ctx cc = {
1152 		.inode = inode,
1153 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1154 		.cluster_size = F2FS_I(inode)->i_cluster_size,
1155 		.rpages = fsdata,
1156 	};
1157 	bool first_index = (index == cc.rpages[0]->index);
1158 
1159 	if (copied)
1160 		set_cluster_dirty(&cc);
1161 
1162 	f2fs_put_rpages_wbc(&cc, NULL, false, 1);
1163 	f2fs_destroy_compress_ctx(&cc, false);
1164 
1165 	return first_index;
1166 }
1167 
1168 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock)
1169 {
1170 	void *fsdata = NULL;
1171 	struct page *pagep;
1172 	int log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
1173 	pgoff_t start_idx = from >> (PAGE_SHIFT + log_cluster_size) <<
1174 							log_cluster_size;
1175 	int err;
1176 
1177 	err = f2fs_is_compressed_cluster(inode, start_idx);
1178 	if (err < 0)
1179 		return err;
1180 
1181 	/* truncate normal cluster */
1182 	if (!err)
1183 		return f2fs_do_truncate_blocks(inode, from, lock);
1184 
1185 	/* truncate compressed cluster */
1186 	err = f2fs_prepare_compress_overwrite(inode, &pagep,
1187 						start_idx, &fsdata);
1188 
1189 	/* should not be a normal cluster */
1190 	f2fs_bug_on(F2FS_I_SB(inode), err == 0);
1191 
1192 	if (err <= 0)
1193 		return err;
1194 
1195 	if (err > 0) {
1196 		struct page **rpages = fsdata;
1197 		int cluster_size = F2FS_I(inode)->i_cluster_size;
1198 		int i;
1199 
1200 		for (i = cluster_size - 1; i >= 0; i--) {
1201 			loff_t start = rpages[i]->index << PAGE_SHIFT;
1202 
1203 			if (from <= start) {
1204 				zero_user_segment(rpages[i], 0, PAGE_SIZE);
1205 			} else {
1206 				zero_user_segment(rpages[i], from - start,
1207 								PAGE_SIZE);
1208 				break;
1209 			}
1210 		}
1211 
1212 		f2fs_compress_write_end(inode, fsdata, start_idx, true);
1213 	}
1214 	return 0;
1215 }
1216 
1217 static int f2fs_write_compressed_pages(struct compress_ctx *cc,
1218 					int *submitted,
1219 					struct writeback_control *wbc,
1220 					enum iostat_type io_type)
1221 {
1222 	struct inode *inode = cc->inode;
1223 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1224 	struct f2fs_inode_info *fi = F2FS_I(inode);
1225 	struct f2fs_io_info fio = {
1226 		.sbi = sbi,
1227 		.ino = cc->inode->i_ino,
1228 		.type = DATA,
1229 		.op = REQ_OP_WRITE,
1230 		.op_flags = wbc_to_write_flags(wbc),
1231 		.old_blkaddr = NEW_ADDR,
1232 		.page = NULL,
1233 		.encrypted_page = NULL,
1234 		.compressed_page = NULL,
1235 		.submitted = 0,
1236 		.io_type = io_type,
1237 		.io_wbc = wbc,
1238 		.encrypted = fscrypt_inode_uses_fs_layer_crypto(cc->inode) ?
1239 									1 : 0,
1240 	};
1241 	struct dnode_of_data dn;
1242 	struct node_info ni;
1243 	struct compress_io_ctx *cic;
1244 	pgoff_t start_idx = start_idx_of_cluster(cc);
1245 	unsigned int last_index = cc->cluster_size - 1;
1246 	loff_t psize;
1247 	int i, err;
1248 	bool quota_inode = IS_NOQUOTA(inode);
1249 
1250 	/* we should bypass data pages to proceed the kworker jobs */
1251 	if (unlikely(f2fs_cp_error(sbi))) {
1252 		mapping_set_error(cc->rpages[0]->mapping, -EIO);
1253 		goto out_free;
1254 	}
1255 
1256 	if (quota_inode) {
1257 		/*
1258 		 * We need to wait for node_write to avoid block allocation during
1259 		 * checkpoint. This can only happen to quota writes which can cause
1260 		 * the below discard race condition.
1261 		 */
1262 		f2fs_down_read(&sbi->node_write);
1263 	} else if (!f2fs_trylock_op(sbi)) {
1264 		goto out_free;
1265 	}
1266 
1267 	set_new_dnode(&dn, cc->inode, NULL, NULL, 0);
1268 
1269 	err = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
1270 	if (err)
1271 		goto out_unlock_op;
1272 
1273 	for (i = 0; i < cc->cluster_size; i++) {
1274 		if (data_blkaddr(dn.inode, dn.node_page,
1275 					dn.ofs_in_node + i) == NULL_ADDR)
1276 			goto out_put_dnode;
1277 	}
1278 
1279 	psize = (loff_t)(cc->rpages[last_index]->index + 1) << PAGE_SHIFT;
1280 
1281 	err = f2fs_get_node_info(fio.sbi, dn.nid, &ni, false);
1282 	if (err)
1283 		goto out_put_dnode;
1284 
1285 	fio.version = ni.version;
1286 
1287 	cic = f2fs_kmem_cache_alloc(cic_entry_slab, GFP_F2FS_ZERO, false, sbi);
1288 	if (!cic)
1289 		goto out_put_dnode;
1290 
1291 	cic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1292 	cic->inode = inode;
1293 	atomic_set(&cic->pending_pages, cc->valid_nr_cpages);
1294 	cic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
1295 	if (!cic->rpages)
1296 		goto out_put_cic;
1297 
1298 	cic->nr_rpages = cc->cluster_size;
1299 
1300 	for (i = 0; i < cc->valid_nr_cpages; i++) {
1301 		f2fs_set_compressed_page(cc->cpages[i], inode,
1302 					cc->rpages[i + 1]->index, cic);
1303 		fio.compressed_page = cc->cpages[i];
1304 
1305 		fio.old_blkaddr = data_blkaddr(dn.inode, dn.node_page,
1306 						dn.ofs_in_node + i + 1);
1307 
1308 		/* wait for GCed page writeback via META_MAPPING */
1309 		f2fs_wait_on_block_writeback(inode, fio.old_blkaddr);
1310 
1311 		if (fio.encrypted) {
1312 			fio.page = cc->rpages[i + 1];
1313 			err = f2fs_encrypt_one_page(&fio);
1314 			if (err)
1315 				goto out_destroy_crypt;
1316 			cc->cpages[i] = fio.encrypted_page;
1317 		}
1318 	}
1319 
1320 	set_cluster_writeback(cc);
1321 
1322 	for (i = 0; i < cc->cluster_size; i++)
1323 		cic->rpages[i] = cc->rpages[i];
1324 
1325 	for (i = 0; i < cc->cluster_size; i++, dn.ofs_in_node++) {
1326 		block_t blkaddr;
1327 
1328 		blkaddr = f2fs_data_blkaddr(&dn);
1329 		fio.page = cc->rpages[i];
1330 		fio.old_blkaddr = blkaddr;
1331 
1332 		/* cluster header */
1333 		if (i == 0) {
1334 			if (blkaddr == COMPRESS_ADDR)
1335 				fio.compr_blocks++;
1336 			if (__is_valid_data_blkaddr(blkaddr))
1337 				f2fs_invalidate_blocks(sbi, blkaddr);
1338 			f2fs_update_data_blkaddr(&dn, COMPRESS_ADDR);
1339 			goto unlock_continue;
1340 		}
1341 
1342 		if (fio.compr_blocks && __is_valid_data_blkaddr(blkaddr))
1343 			fio.compr_blocks++;
1344 
1345 		if (i > cc->valid_nr_cpages) {
1346 			if (__is_valid_data_blkaddr(blkaddr)) {
1347 				f2fs_invalidate_blocks(sbi, blkaddr);
1348 				f2fs_update_data_blkaddr(&dn, NEW_ADDR);
1349 			}
1350 			goto unlock_continue;
1351 		}
1352 
1353 		f2fs_bug_on(fio.sbi, blkaddr == NULL_ADDR);
1354 
1355 		if (fio.encrypted)
1356 			fio.encrypted_page = cc->cpages[i - 1];
1357 		else
1358 			fio.compressed_page = cc->cpages[i - 1];
1359 
1360 		cc->cpages[i - 1] = NULL;
1361 		f2fs_outplace_write_data(&dn, &fio);
1362 		(*submitted)++;
1363 unlock_continue:
1364 		inode_dec_dirty_pages(cc->inode);
1365 		unlock_page(fio.page);
1366 	}
1367 
1368 	if (fio.compr_blocks)
1369 		f2fs_i_compr_blocks_update(inode, fio.compr_blocks - 1, false);
1370 	f2fs_i_compr_blocks_update(inode, cc->valid_nr_cpages, true);
1371 	add_compr_block_stat(inode, cc->valid_nr_cpages);
1372 
1373 	set_inode_flag(cc->inode, FI_APPEND_WRITE);
1374 
1375 	f2fs_put_dnode(&dn);
1376 	if (quota_inode)
1377 		f2fs_up_read(&sbi->node_write);
1378 	else
1379 		f2fs_unlock_op(sbi);
1380 
1381 	spin_lock(&fi->i_size_lock);
1382 	if (fi->last_disk_size < psize)
1383 		fi->last_disk_size = psize;
1384 	spin_unlock(&fi->i_size_lock);
1385 
1386 	f2fs_put_rpages(cc);
1387 	page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
1388 	cc->cpages = NULL;
1389 	f2fs_destroy_compress_ctx(cc, false);
1390 	return 0;
1391 
1392 out_destroy_crypt:
1393 	page_array_free(cc->inode, cic->rpages, cc->cluster_size);
1394 
1395 	for (--i; i >= 0; i--)
1396 		fscrypt_finalize_bounce_page(&cc->cpages[i]);
1397 out_put_cic:
1398 	kmem_cache_free(cic_entry_slab, cic);
1399 out_put_dnode:
1400 	f2fs_put_dnode(&dn);
1401 out_unlock_op:
1402 	if (quota_inode)
1403 		f2fs_up_read(&sbi->node_write);
1404 	else
1405 		f2fs_unlock_op(sbi);
1406 out_free:
1407 	for (i = 0; i < cc->valid_nr_cpages; i++) {
1408 		f2fs_compress_free_page(cc->cpages[i]);
1409 		cc->cpages[i] = NULL;
1410 	}
1411 	page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
1412 	cc->cpages = NULL;
1413 	return -EAGAIN;
1414 }
1415 
1416 void f2fs_compress_write_end_io(struct bio *bio, struct page *page)
1417 {
1418 	struct f2fs_sb_info *sbi = bio->bi_private;
1419 	struct compress_io_ctx *cic =
1420 			(struct compress_io_ctx *)page_private(page);
1421 	enum count_type type = WB_DATA_TYPE(page,
1422 				f2fs_is_compressed_page(page));
1423 	int i;
1424 
1425 	if (unlikely(bio->bi_status))
1426 		mapping_set_error(cic->inode->i_mapping, -EIO);
1427 
1428 	f2fs_compress_free_page(page);
1429 
1430 	dec_page_count(sbi, type);
1431 
1432 	if (atomic_dec_return(&cic->pending_pages))
1433 		return;
1434 
1435 	for (i = 0; i < cic->nr_rpages; i++) {
1436 		WARN_ON(!cic->rpages[i]);
1437 		clear_page_private_gcing(cic->rpages[i]);
1438 		end_page_writeback(cic->rpages[i]);
1439 	}
1440 
1441 	page_array_free(cic->inode, cic->rpages, cic->nr_rpages);
1442 	kmem_cache_free(cic_entry_slab, cic);
1443 }
1444 
1445 static int f2fs_write_raw_pages(struct compress_ctx *cc,
1446 					int *submitted_p,
1447 					struct writeback_control *wbc,
1448 					enum iostat_type io_type)
1449 {
1450 	struct address_space *mapping = cc->inode->i_mapping;
1451 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1452 	int submitted, compr_blocks, i;
1453 	int ret = 0;
1454 
1455 	compr_blocks = f2fs_compressed_blocks(cc);
1456 
1457 	for (i = 0; i < cc->cluster_size; i++) {
1458 		if (!cc->rpages[i])
1459 			continue;
1460 
1461 		redirty_page_for_writepage(wbc, cc->rpages[i]);
1462 		unlock_page(cc->rpages[i]);
1463 	}
1464 
1465 	if (compr_blocks < 0)
1466 		return compr_blocks;
1467 
1468 	/* overwrite compressed cluster w/ normal cluster */
1469 	if (compr_blocks > 0)
1470 		f2fs_lock_op(sbi);
1471 
1472 	for (i = 0; i < cc->cluster_size; i++) {
1473 		if (!cc->rpages[i])
1474 			continue;
1475 retry_write:
1476 		lock_page(cc->rpages[i]);
1477 
1478 		if (cc->rpages[i]->mapping != mapping) {
1479 continue_unlock:
1480 			unlock_page(cc->rpages[i]);
1481 			continue;
1482 		}
1483 
1484 		if (!PageDirty(cc->rpages[i]))
1485 			goto continue_unlock;
1486 
1487 		if (PageWriteback(cc->rpages[i])) {
1488 			if (wbc->sync_mode == WB_SYNC_NONE)
1489 				goto continue_unlock;
1490 			f2fs_wait_on_page_writeback(cc->rpages[i], DATA, true, true);
1491 		}
1492 
1493 		if (!clear_page_dirty_for_io(cc->rpages[i]))
1494 			goto continue_unlock;
1495 
1496 		ret = f2fs_write_single_data_page(cc->rpages[i], &submitted,
1497 						NULL, NULL, wbc, io_type,
1498 						compr_blocks, false);
1499 		if (ret) {
1500 			if (ret == AOP_WRITEPAGE_ACTIVATE) {
1501 				unlock_page(cc->rpages[i]);
1502 				ret = 0;
1503 			} else if (ret == -EAGAIN) {
1504 				ret = 0;
1505 				/*
1506 				 * for quota file, just redirty left pages to
1507 				 * avoid deadlock caused by cluster update race
1508 				 * from foreground operation.
1509 				 */
1510 				if (IS_NOQUOTA(cc->inode))
1511 					goto out;
1512 				f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1513 				goto retry_write;
1514 			}
1515 			goto out;
1516 		}
1517 
1518 		*submitted_p += submitted;
1519 	}
1520 
1521 out:
1522 	if (compr_blocks > 0)
1523 		f2fs_unlock_op(sbi);
1524 
1525 	f2fs_balance_fs(sbi, true);
1526 	return ret;
1527 }
1528 
1529 int f2fs_write_multi_pages(struct compress_ctx *cc,
1530 					int *submitted,
1531 					struct writeback_control *wbc,
1532 					enum iostat_type io_type)
1533 {
1534 	int err;
1535 
1536 	*submitted = 0;
1537 	if (cluster_may_compress(cc)) {
1538 		err = f2fs_compress_pages(cc);
1539 		if (err == -EAGAIN) {
1540 			add_compr_block_stat(cc->inode, cc->cluster_size);
1541 			goto write;
1542 		} else if (err) {
1543 			f2fs_put_rpages_wbc(cc, wbc, true, 1);
1544 			goto destroy_out;
1545 		}
1546 
1547 		err = f2fs_write_compressed_pages(cc, submitted,
1548 							wbc, io_type);
1549 		if (!err)
1550 			return 0;
1551 		f2fs_bug_on(F2FS_I_SB(cc->inode), err != -EAGAIN);
1552 	}
1553 write:
1554 	f2fs_bug_on(F2FS_I_SB(cc->inode), *submitted);
1555 
1556 	err = f2fs_write_raw_pages(cc, submitted, wbc, io_type);
1557 	f2fs_put_rpages_wbc(cc, wbc, false, 0);
1558 destroy_out:
1559 	f2fs_destroy_compress_ctx(cc, false);
1560 	return err;
1561 }
1562 
1563 static inline bool allow_memalloc_for_decomp(struct f2fs_sb_info *sbi,
1564 		bool pre_alloc)
1565 {
1566 	return pre_alloc ^ f2fs_low_mem_mode(sbi);
1567 }
1568 
1569 static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic,
1570 		bool pre_alloc)
1571 {
1572 	const struct f2fs_compress_ops *cops =
1573 		f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm];
1574 	int i;
1575 
1576 	if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc))
1577 		return 0;
1578 
1579 	dic->tpages = page_array_alloc(dic->inode, dic->cluster_size);
1580 	if (!dic->tpages)
1581 		return -ENOMEM;
1582 
1583 	for (i = 0; i < dic->cluster_size; i++) {
1584 		if (dic->rpages[i]) {
1585 			dic->tpages[i] = dic->rpages[i];
1586 			continue;
1587 		}
1588 
1589 		dic->tpages[i] = f2fs_compress_alloc_page();
1590 	}
1591 
1592 	dic->rbuf = f2fs_vmap(dic->tpages, dic->cluster_size);
1593 	if (!dic->rbuf)
1594 		return -ENOMEM;
1595 
1596 	dic->cbuf = f2fs_vmap(dic->cpages, dic->nr_cpages);
1597 	if (!dic->cbuf)
1598 		return -ENOMEM;
1599 
1600 	if (cops->init_decompress_ctx)
1601 		return cops->init_decompress_ctx(dic);
1602 
1603 	return 0;
1604 }
1605 
1606 static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic,
1607 		bool bypass_destroy_callback, bool pre_alloc)
1608 {
1609 	const struct f2fs_compress_ops *cops =
1610 		f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm];
1611 
1612 	if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc))
1613 		return;
1614 
1615 	if (!bypass_destroy_callback && cops->destroy_decompress_ctx)
1616 		cops->destroy_decompress_ctx(dic);
1617 
1618 	if (dic->cbuf)
1619 		vm_unmap_ram(dic->cbuf, dic->nr_cpages);
1620 
1621 	if (dic->rbuf)
1622 		vm_unmap_ram(dic->rbuf, dic->cluster_size);
1623 }
1624 
1625 static void f2fs_free_dic(struct decompress_io_ctx *dic,
1626 		bool bypass_destroy_callback);
1627 
1628 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc)
1629 {
1630 	struct decompress_io_ctx *dic;
1631 	pgoff_t start_idx = start_idx_of_cluster(cc);
1632 	struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode);
1633 	int i, ret;
1634 
1635 	dic = f2fs_kmem_cache_alloc(dic_entry_slab, GFP_F2FS_ZERO, false, sbi);
1636 	if (!dic)
1637 		return ERR_PTR(-ENOMEM);
1638 
1639 	dic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
1640 	if (!dic->rpages) {
1641 		kmem_cache_free(dic_entry_slab, dic);
1642 		return ERR_PTR(-ENOMEM);
1643 	}
1644 
1645 	dic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1646 	dic->inode = cc->inode;
1647 	atomic_set(&dic->remaining_pages, cc->nr_cpages);
1648 	dic->cluster_idx = cc->cluster_idx;
1649 	dic->cluster_size = cc->cluster_size;
1650 	dic->log_cluster_size = cc->log_cluster_size;
1651 	dic->nr_cpages = cc->nr_cpages;
1652 	refcount_set(&dic->refcnt, 1);
1653 	dic->failed = false;
1654 	dic->need_verity = f2fs_need_verity(cc->inode, start_idx);
1655 
1656 	for (i = 0; i < dic->cluster_size; i++)
1657 		dic->rpages[i] = cc->rpages[i];
1658 	dic->nr_rpages = cc->cluster_size;
1659 
1660 	dic->cpages = page_array_alloc(dic->inode, dic->nr_cpages);
1661 	if (!dic->cpages) {
1662 		ret = -ENOMEM;
1663 		goto out_free;
1664 	}
1665 
1666 	for (i = 0; i < dic->nr_cpages; i++) {
1667 		struct page *page;
1668 
1669 		page = f2fs_compress_alloc_page();
1670 		f2fs_set_compressed_page(page, cc->inode,
1671 					start_idx + i + 1, dic);
1672 		dic->cpages[i] = page;
1673 	}
1674 
1675 	ret = f2fs_prepare_decomp_mem(dic, true);
1676 	if (ret)
1677 		goto out_free;
1678 
1679 	return dic;
1680 
1681 out_free:
1682 	f2fs_free_dic(dic, true);
1683 	return ERR_PTR(ret);
1684 }
1685 
1686 static void f2fs_free_dic(struct decompress_io_ctx *dic,
1687 		bool bypass_destroy_callback)
1688 {
1689 	int i;
1690 
1691 	f2fs_release_decomp_mem(dic, bypass_destroy_callback, true);
1692 
1693 	if (dic->tpages) {
1694 		for (i = 0; i < dic->cluster_size; i++) {
1695 			if (dic->rpages[i])
1696 				continue;
1697 			if (!dic->tpages[i])
1698 				continue;
1699 			f2fs_compress_free_page(dic->tpages[i]);
1700 		}
1701 		page_array_free(dic->inode, dic->tpages, dic->cluster_size);
1702 	}
1703 
1704 	if (dic->cpages) {
1705 		for (i = 0; i < dic->nr_cpages; i++) {
1706 			if (!dic->cpages[i])
1707 				continue;
1708 			f2fs_compress_free_page(dic->cpages[i]);
1709 		}
1710 		page_array_free(dic->inode, dic->cpages, dic->nr_cpages);
1711 	}
1712 
1713 	page_array_free(dic->inode, dic->rpages, dic->nr_rpages);
1714 	kmem_cache_free(dic_entry_slab, dic);
1715 }
1716 
1717 static void f2fs_late_free_dic(struct work_struct *work)
1718 {
1719 	struct decompress_io_ctx *dic =
1720 		container_of(work, struct decompress_io_ctx, free_work);
1721 
1722 	f2fs_free_dic(dic, false);
1723 }
1724 
1725 static void f2fs_put_dic(struct decompress_io_ctx *dic, bool in_task)
1726 {
1727 	if (refcount_dec_and_test(&dic->refcnt)) {
1728 		if (in_task) {
1729 			f2fs_free_dic(dic, false);
1730 		} else {
1731 			INIT_WORK(&dic->free_work, f2fs_late_free_dic);
1732 			queue_work(F2FS_I_SB(dic->inode)->post_read_wq,
1733 					&dic->free_work);
1734 		}
1735 	}
1736 }
1737 
1738 static void f2fs_verify_cluster(struct work_struct *work)
1739 {
1740 	struct decompress_io_ctx *dic =
1741 		container_of(work, struct decompress_io_ctx, verity_work);
1742 	int i;
1743 
1744 	/* Verify, update, and unlock the decompressed pages. */
1745 	for (i = 0; i < dic->cluster_size; i++) {
1746 		struct page *rpage = dic->rpages[i];
1747 
1748 		if (!rpage)
1749 			continue;
1750 
1751 		if (fsverity_verify_page(rpage))
1752 			SetPageUptodate(rpage);
1753 		else
1754 			ClearPageUptodate(rpage);
1755 		unlock_page(rpage);
1756 	}
1757 
1758 	f2fs_put_dic(dic, true);
1759 }
1760 
1761 /*
1762  * This is called when a compressed cluster has been decompressed
1763  * (or failed to be read and/or decompressed).
1764  */
1765 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
1766 				bool in_task)
1767 {
1768 	int i;
1769 
1770 	if (!failed && dic->need_verity) {
1771 		/*
1772 		 * Note that to avoid deadlocks, the verity work can't be done
1773 		 * on the decompression workqueue.  This is because verifying
1774 		 * the data pages can involve reading metadata pages from the
1775 		 * file, and these metadata pages may be compressed.
1776 		 */
1777 		INIT_WORK(&dic->verity_work, f2fs_verify_cluster);
1778 		fsverity_enqueue_verify_work(&dic->verity_work);
1779 		return;
1780 	}
1781 
1782 	/* Update and unlock the cluster's pagecache pages. */
1783 	for (i = 0; i < dic->cluster_size; i++) {
1784 		struct page *rpage = dic->rpages[i];
1785 
1786 		if (!rpage)
1787 			continue;
1788 
1789 		if (failed)
1790 			ClearPageUptodate(rpage);
1791 		else
1792 			SetPageUptodate(rpage);
1793 		unlock_page(rpage);
1794 	}
1795 
1796 	/*
1797 	 * Release the reference to the decompress_io_ctx that was being held
1798 	 * for I/O completion.
1799 	 */
1800 	f2fs_put_dic(dic, in_task);
1801 }
1802 
1803 /*
1804  * Put a reference to a compressed page's decompress_io_ctx.
1805  *
1806  * This is called when the page is no longer needed and can be freed.
1807  */
1808 void f2fs_put_page_dic(struct page *page, bool in_task)
1809 {
1810 	struct decompress_io_ctx *dic =
1811 			(struct decompress_io_ctx *)page_private(page);
1812 
1813 	f2fs_put_dic(dic, in_task);
1814 }
1815 
1816 /*
1817  * check whether cluster blocks are contiguous, and add extent cache entry
1818  * only if cluster blocks are logically and physically contiguous.
1819  */
1820 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn,
1821 						unsigned int ofs_in_node)
1822 {
1823 	bool compressed = data_blkaddr(dn->inode, dn->node_page,
1824 					ofs_in_node) == COMPRESS_ADDR;
1825 	int i = compressed ? 1 : 0;
1826 	block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_page,
1827 							ofs_in_node + i);
1828 
1829 	for (i += 1; i < F2FS_I(dn->inode)->i_cluster_size; i++) {
1830 		block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
1831 							ofs_in_node + i);
1832 
1833 		if (!__is_valid_data_blkaddr(blkaddr))
1834 			break;
1835 		if (first_blkaddr + i - (compressed ? 1 : 0) != blkaddr)
1836 			return 0;
1837 	}
1838 
1839 	return compressed ? i - 1 : i;
1840 }
1841 
1842 const struct address_space_operations f2fs_compress_aops = {
1843 	.release_folio = f2fs_release_folio,
1844 	.invalidate_folio = f2fs_invalidate_folio,
1845 	.migrate_folio	= filemap_migrate_folio,
1846 };
1847 
1848 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi)
1849 {
1850 	return sbi->compress_inode->i_mapping;
1851 }
1852 
1853 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr)
1854 {
1855 	if (!sbi->compress_inode)
1856 		return;
1857 	invalidate_mapping_pages(COMPRESS_MAPPING(sbi), blkaddr, blkaddr);
1858 }
1859 
1860 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
1861 						nid_t ino, block_t blkaddr)
1862 {
1863 	struct page *cpage;
1864 	int ret;
1865 
1866 	if (!test_opt(sbi, COMPRESS_CACHE))
1867 		return;
1868 
1869 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ))
1870 		return;
1871 
1872 	if (!f2fs_available_free_memory(sbi, COMPRESS_PAGE))
1873 		return;
1874 
1875 	cpage = find_get_page(COMPRESS_MAPPING(sbi), blkaddr);
1876 	if (cpage) {
1877 		f2fs_put_page(cpage, 0);
1878 		return;
1879 	}
1880 
1881 	cpage = alloc_page(__GFP_NOWARN | __GFP_IO);
1882 	if (!cpage)
1883 		return;
1884 
1885 	ret = add_to_page_cache_lru(cpage, COMPRESS_MAPPING(sbi),
1886 						blkaddr, GFP_NOFS);
1887 	if (ret) {
1888 		f2fs_put_page(cpage, 0);
1889 		return;
1890 	}
1891 
1892 	set_page_private_data(cpage, ino);
1893 
1894 	memcpy(page_address(cpage), page_address(page), PAGE_SIZE);
1895 	SetPageUptodate(cpage);
1896 	f2fs_put_page(cpage, 1);
1897 }
1898 
1899 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
1900 								block_t blkaddr)
1901 {
1902 	struct page *cpage;
1903 	bool hitted = false;
1904 
1905 	if (!test_opt(sbi, COMPRESS_CACHE))
1906 		return false;
1907 
1908 	cpage = f2fs_pagecache_get_page(COMPRESS_MAPPING(sbi),
1909 				blkaddr, FGP_LOCK | FGP_NOWAIT, GFP_NOFS);
1910 	if (cpage) {
1911 		if (PageUptodate(cpage)) {
1912 			atomic_inc(&sbi->compress_page_hit);
1913 			memcpy(page_address(page),
1914 				page_address(cpage), PAGE_SIZE);
1915 			hitted = true;
1916 		}
1917 		f2fs_put_page(cpage, 1);
1918 	}
1919 
1920 	return hitted;
1921 }
1922 
1923 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino)
1924 {
1925 	struct address_space *mapping = COMPRESS_MAPPING(sbi);
1926 	struct folio_batch fbatch;
1927 	pgoff_t index = 0;
1928 	pgoff_t end = MAX_BLKADDR(sbi);
1929 
1930 	if (!mapping->nrpages)
1931 		return;
1932 
1933 	folio_batch_init(&fbatch);
1934 
1935 	do {
1936 		unsigned int nr, i;
1937 
1938 		nr = filemap_get_folios(mapping, &index, end - 1, &fbatch);
1939 		if (!nr)
1940 			break;
1941 
1942 		for (i = 0; i < nr; i++) {
1943 			struct folio *folio = fbatch.folios[i];
1944 
1945 			folio_lock(folio);
1946 			if (folio->mapping != mapping) {
1947 				folio_unlock(folio);
1948 				continue;
1949 			}
1950 
1951 			if (ino != get_page_private_data(&folio->page)) {
1952 				folio_unlock(folio);
1953 				continue;
1954 			}
1955 
1956 			generic_error_remove_folio(mapping, folio);
1957 			folio_unlock(folio);
1958 		}
1959 		folio_batch_release(&fbatch);
1960 		cond_resched();
1961 	} while (index < end);
1962 }
1963 
1964 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi)
1965 {
1966 	struct inode *inode;
1967 
1968 	if (!test_opt(sbi, COMPRESS_CACHE))
1969 		return 0;
1970 
1971 	inode = f2fs_iget(sbi->sb, F2FS_COMPRESS_INO(sbi));
1972 	if (IS_ERR(inode))
1973 		return PTR_ERR(inode);
1974 	sbi->compress_inode = inode;
1975 
1976 	sbi->compress_percent = COMPRESS_PERCENT;
1977 	sbi->compress_watermark = COMPRESS_WATERMARK;
1978 
1979 	atomic_set(&sbi->compress_page_hit, 0);
1980 
1981 	return 0;
1982 }
1983 
1984 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi)
1985 {
1986 	if (!sbi->compress_inode)
1987 		return;
1988 	iput(sbi->compress_inode);
1989 	sbi->compress_inode = NULL;
1990 }
1991 
1992 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi)
1993 {
1994 	dev_t dev = sbi->sb->s_bdev->bd_dev;
1995 	char slab_name[35];
1996 
1997 	if (!f2fs_sb_has_compression(sbi))
1998 		return 0;
1999 
2000 	sprintf(slab_name, "f2fs_page_array_entry-%u:%u", MAJOR(dev), MINOR(dev));
2001 
2002 	sbi->page_array_slab_size = sizeof(struct page *) <<
2003 					F2FS_OPTION(sbi).compress_log_size;
2004 
2005 	sbi->page_array_slab = f2fs_kmem_cache_create(slab_name,
2006 					sbi->page_array_slab_size);
2007 	return sbi->page_array_slab ? 0 : -ENOMEM;
2008 }
2009 
2010 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi)
2011 {
2012 	kmem_cache_destroy(sbi->page_array_slab);
2013 }
2014 
2015 int __init f2fs_init_compress_cache(void)
2016 {
2017 	cic_entry_slab = f2fs_kmem_cache_create("f2fs_cic_entry",
2018 					sizeof(struct compress_io_ctx));
2019 	if (!cic_entry_slab)
2020 		return -ENOMEM;
2021 	dic_entry_slab = f2fs_kmem_cache_create("f2fs_dic_entry",
2022 					sizeof(struct decompress_io_ctx));
2023 	if (!dic_entry_slab)
2024 		goto free_cic;
2025 	return 0;
2026 free_cic:
2027 	kmem_cache_destroy(cic_entry_slab);
2028 	return -ENOMEM;
2029 }
2030 
2031 void f2fs_destroy_compress_cache(void)
2032 {
2033 	kmem_cache_destroy(dic_entry_slab);
2034 	kmem_cache_destroy(cic_entry_slab);
2035 }
2036