1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * f2fs compress support 4 * 5 * Copyright (c) 2019 Chao Yu <chao@kernel.org> 6 */ 7 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/moduleparam.h> 11 #include <linux/writeback.h> 12 #include <linux/backing-dev.h> 13 #include <linux/lzo.h> 14 #include <linux/lz4.h> 15 #include <linux/zstd.h> 16 #include <linux/pagevec.h> 17 18 #include "f2fs.h" 19 #include "node.h" 20 #include "segment.h" 21 #include <trace/events/f2fs.h> 22 23 static struct kmem_cache *cic_entry_slab; 24 static struct kmem_cache *dic_entry_slab; 25 26 static void *page_array_alloc(struct inode *inode, int nr) 27 { 28 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 29 unsigned int size = sizeof(struct page *) * nr; 30 31 if (likely(size <= sbi->page_array_slab_size)) 32 return f2fs_kmem_cache_alloc(sbi->page_array_slab, 33 GFP_F2FS_ZERO, false, F2FS_I_SB(inode)); 34 return f2fs_kzalloc(sbi, size, GFP_NOFS); 35 } 36 37 static void page_array_free(struct inode *inode, void *pages, int nr) 38 { 39 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 40 unsigned int size = sizeof(struct page *) * nr; 41 42 if (!pages) 43 return; 44 45 if (likely(size <= sbi->page_array_slab_size)) 46 kmem_cache_free(sbi->page_array_slab, pages); 47 else 48 kfree(pages); 49 } 50 51 struct f2fs_compress_ops { 52 int (*init_compress_ctx)(struct compress_ctx *cc); 53 void (*destroy_compress_ctx)(struct compress_ctx *cc); 54 int (*compress_pages)(struct compress_ctx *cc); 55 int (*init_decompress_ctx)(struct decompress_io_ctx *dic); 56 void (*destroy_decompress_ctx)(struct decompress_io_ctx *dic); 57 int (*decompress_pages)(struct decompress_io_ctx *dic); 58 }; 59 60 static unsigned int offset_in_cluster(struct compress_ctx *cc, pgoff_t index) 61 { 62 return index & (cc->cluster_size - 1); 63 } 64 65 static pgoff_t cluster_idx(struct compress_ctx *cc, pgoff_t index) 66 { 67 return index >> cc->log_cluster_size; 68 } 69 70 static pgoff_t start_idx_of_cluster(struct compress_ctx *cc) 71 { 72 return cc->cluster_idx << cc->log_cluster_size; 73 } 74 75 bool f2fs_is_compressed_page(struct page *page) 76 { 77 if (!PagePrivate(page)) 78 return false; 79 if (!page_private(page)) 80 return false; 81 if (page_private_nonpointer(page)) 82 return false; 83 84 f2fs_bug_on(F2FS_M_SB(page->mapping), 85 *((u32 *)page_private(page)) != F2FS_COMPRESSED_PAGE_MAGIC); 86 return true; 87 } 88 89 static void f2fs_set_compressed_page(struct page *page, 90 struct inode *inode, pgoff_t index, void *data) 91 { 92 attach_page_private(page, (void *)data); 93 94 /* i_crypto_info and iv index */ 95 page->index = index; 96 page->mapping = inode->i_mapping; 97 } 98 99 static void f2fs_drop_rpages(struct compress_ctx *cc, int len, bool unlock) 100 { 101 int i; 102 103 for (i = 0; i < len; i++) { 104 if (!cc->rpages[i]) 105 continue; 106 if (unlock) 107 unlock_page(cc->rpages[i]); 108 else 109 put_page(cc->rpages[i]); 110 } 111 } 112 113 static void f2fs_put_rpages(struct compress_ctx *cc) 114 { 115 f2fs_drop_rpages(cc, cc->cluster_size, false); 116 } 117 118 static void f2fs_unlock_rpages(struct compress_ctx *cc, int len) 119 { 120 f2fs_drop_rpages(cc, len, true); 121 } 122 123 static void f2fs_put_rpages_wbc(struct compress_ctx *cc, 124 struct writeback_control *wbc, bool redirty, int unlock) 125 { 126 unsigned int i; 127 128 for (i = 0; i < cc->cluster_size; i++) { 129 if (!cc->rpages[i]) 130 continue; 131 if (redirty) 132 redirty_page_for_writepage(wbc, cc->rpages[i]); 133 f2fs_put_page(cc->rpages[i], unlock); 134 } 135 } 136 137 struct page *f2fs_compress_control_page(struct page *page) 138 { 139 return ((struct compress_io_ctx *)page_private(page))->rpages[0]; 140 } 141 142 int f2fs_init_compress_ctx(struct compress_ctx *cc) 143 { 144 if (cc->rpages) 145 return 0; 146 147 cc->rpages = page_array_alloc(cc->inode, cc->cluster_size); 148 return cc->rpages ? 0 : -ENOMEM; 149 } 150 151 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse) 152 { 153 page_array_free(cc->inode, cc->rpages, cc->cluster_size); 154 cc->rpages = NULL; 155 cc->nr_rpages = 0; 156 cc->nr_cpages = 0; 157 cc->valid_nr_cpages = 0; 158 if (!reuse) 159 cc->cluster_idx = NULL_CLUSTER; 160 } 161 162 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page) 163 { 164 unsigned int cluster_ofs; 165 166 if (!f2fs_cluster_can_merge_page(cc, page->index)) 167 f2fs_bug_on(F2FS_I_SB(cc->inode), 1); 168 169 cluster_ofs = offset_in_cluster(cc, page->index); 170 cc->rpages[cluster_ofs] = page; 171 cc->nr_rpages++; 172 cc->cluster_idx = cluster_idx(cc, page->index); 173 } 174 175 #ifdef CONFIG_F2FS_FS_LZO 176 static int lzo_init_compress_ctx(struct compress_ctx *cc) 177 { 178 cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), 179 LZO1X_MEM_COMPRESS, GFP_NOFS); 180 if (!cc->private) 181 return -ENOMEM; 182 183 cc->clen = lzo1x_worst_compress(PAGE_SIZE << cc->log_cluster_size); 184 return 0; 185 } 186 187 static void lzo_destroy_compress_ctx(struct compress_ctx *cc) 188 { 189 kvfree(cc->private); 190 cc->private = NULL; 191 } 192 193 static int lzo_compress_pages(struct compress_ctx *cc) 194 { 195 int ret; 196 197 ret = lzo1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata, 198 &cc->clen, cc->private); 199 if (ret != LZO_E_OK) { 200 printk_ratelimited("%sF2FS-fs (%s): lzo compress failed, ret:%d\n", 201 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret); 202 return -EIO; 203 } 204 return 0; 205 } 206 207 static int lzo_decompress_pages(struct decompress_io_ctx *dic) 208 { 209 int ret; 210 211 ret = lzo1x_decompress_safe(dic->cbuf->cdata, dic->clen, 212 dic->rbuf, &dic->rlen); 213 if (ret != LZO_E_OK) { 214 printk_ratelimited("%sF2FS-fs (%s): lzo decompress failed, ret:%d\n", 215 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret); 216 return -EIO; 217 } 218 219 if (dic->rlen != PAGE_SIZE << dic->log_cluster_size) { 220 printk_ratelimited("%sF2FS-fs (%s): lzo invalid rlen:%zu, " 221 "expected:%lu\n", KERN_ERR, 222 F2FS_I_SB(dic->inode)->sb->s_id, 223 dic->rlen, 224 PAGE_SIZE << dic->log_cluster_size); 225 return -EIO; 226 } 227 return 0; 228 } 229 230 static const struct f2fs_compress_ops f2fs_lzo_ops = { 231 .init_compress_ctx = lzo_init_compress_ctx, 232 .destroy_compress_ctx = lzo_destroy_compress_ctx, 233 .compress_pages = lzo_compress_pages, 234 .decompress_pages = lzo_decompress_pages, 235 }; 236 #endif 237 238 #ifdef CONFIG_F2FS_FS_LZ4 239 static int lz4_init_compress_ctx(struct compress_ctx *cc) 240 { 241 unsigned int size = LZ4_MEM_COMPRESS; 242 243 #ifdef CONFIG_F2FS_FS_LZ4HC 244 if (F2FS_I(cc->inode)->i_compress_flag >> COMPRESS_LEVEL_OFFSET) 245 size = LZ4HC_MEM_COMPRESS; 246 #endif 247 248 cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), size, GFP_NOFS); 249 if (!cc->private) 250 return -ENOMEM; 251 252 /* 253 * we do not change cc->clen to LZ4_compressBound(inputsize) to 254 * adapt worst compress case, because lz4 compressor can handle 255 * output budget properly. 256 */ 257 cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE; 258 return 0; 259 } 260 261 static void lz4_destroy_compress_ctx(struct compress_ctx *cc) 262 { 263 kvfree(cc->private); 264 cc->private = NULL; 265 } 266 267 #ifdef CONFIG_F2FS_FS_LZ4HC 268 static int lz4hc_compress_pages(struct compress_ctx *cc) 269 { 270 unsigned char level = F2FS_I(cc->inode)->i_compress_flag >> 271 COMPRESS_LEVEL_OFFSET; 272 int len; 273 274 if (level) 275 len = LZ4_compress_HC(cc->rbuf, cc->cbuf->cdata, cc->rlen, 276 cc->clen, level, cc->private); 277 else 278 len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen, 279 cc->clen, cc->private); 280 if (!len) 281 return -EAGAIN; 282 283 cc->clen = len; 284 return 0; 285 } 286 #endif 287 288 static int lz4_compress_pages(struct compress_ctx *cc) 289 { 290 int len; 291 292 #ifdef CONFIG_F2FS_FS_LZ4HC 293 return lz4hc_compress_pages(cc); 294 #endif 295 len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen, 296 cc->clen, cc->private); 297 if (!len) 298 return -EAGAIN; 299 300 cc->clen = len; 301 return 0; 302 } 303 304 static int lz4_decompress_pages(struct decompress_io_ctx *dic) 305 { 306 int ret; 307 308 ret = LZ4_decompress_safe(dic->cbuf->cdata, dic->rbuf, 309 dic->clen, dic->rlen); 310 if (ret < 0) { 311 printk_ratelimited("%sF2FS-fs (%s): lz4 decompress failed, ret:%d\n", 312 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret); 313 return -EIO; 314 } 315 316 if (ret != PAGE_SIZE << dic->log_cluster_size) { 317 printk_ratelimited("%sF2FS-fs (%s): lz4 invalid ret:%d, " 318 "expected:%lu\n", KERN_ERR, 319 F2FS_I_SB(dic->inode)->sb->s_id, ret, 320 PAGE_SIZE << dic->log_cluster_size); 321 return -EIO; 322 } 323 return 0; 324 } 325 326 static const struct f2fs_compress_ops f2fs_lz4_ops = { 327 .init_compress_ctx = lz4_init_compress_ctx, 328 .destroy_compress_ctx = lz4_destroy_compress_ctx, 329 .compress_pages = lz4_compress_pages, 330 .decompress_pages = lz4_decompress_pages, 331 }; 332 #endif 333 334 #ifdef CONFIG_F2FS_FS_ZSTD 335 #define F2FS_ZSTD_DEFAULT_CLEVEL 1 336 337 static int zstd_init_compress_ctx(struct compress_ctx *cc) 338 { 339 zstd_parameters params; 340 zstd_cstream *stream; 341 void *workspace; 342 unsigned int workspace_size; 343 unsigned char level = F2FS_I(cc->inode)->i_compress_flag >> 344 COMPRESS_LEVEL_OFFSET; 345 346 if (!level) 347 level = F2FS_ZSTD_DEFAULT_CLEVEL; 348 349 params = zstd_get_params(level, cc->rlen); 350 workspace_size = zstd_cstream_workspace_bound(¶ms.cParams); 351 352 workspace = f2fs_kvmalloc(F2FS_I_SB(cc->inode), 353 workspace_size, GFP_NOFS); 354 if (!workspace) 355 return -ENOMEM; 356 357 stream = zstd_init_cstream(¶ms, 0, workspace, workspace_size); 358 if (!stream) { 359 printk_ratelimited("%sF2FS-fs (%s): %s zstd_init_cstream failed\n", 360 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, 361 __func__); 362 kvfree(workspace); 363 return -EIO; 364 } 365 366 cc->private = workspace; 367 cc->private2 = stream; 368 369 cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE; 370 return 0; 371 } 372 373 static void zstd_destroy_compress_ctx(struct compress_ctx *cc) 374 { 375 kvfree(cc->private); 376 cc->private = NULL; 377 cc->private2 = NULL; 378 } 379 380 static int zstd_compress_pages(struct compress_ctx *cc) 381 { 382 zstd_cstream *stream = cc->private2; 383 zstd_in_buffer inbuf; 384 zstd_out_buffer outbuf; 385 int src_size = cc->rlen; 386 int dst_size = src_size - PAGE_SIZE - COMPRESS_HEADER_SIZE; 387 int ret; 388 389 inbuf.pos = 0; 390 inbuf.src = cc->rbuf; 391 inbuf.size = src_size; 392 393 outbuf.pos = 0; 394 outbuf.dst = cc->cbuf->cdata; 395 outbuf.size = dst_size; 396 397 ret = zstd_compress_stream(stream, &outbuf, &inbuf); 398 if (zstd_is_error(ret)) { 399 printk_ratelimited("%sF2FS-fs (%s): %s zstd_compress_stream failed, ret: %d\n", 400 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, 401 __func__, zstd_get_error_code(ret)); 402 return -EIO; 403 } 404 405 ret = zstd_end_stream(stream, &outbuf); 406 if (zstd_is_error(ret)) { 407 printk_ratelimited("%sF2FS-fs (%s): %s zstd_end_stream returned %d\n", 408 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, 409 __func__, zstd_get_error_code(ret)); 410 return -EIO; 411 } 412 413 /* 414 * there is compressed data remained in intermediate buffer due to 415 * no more space in cbuf.cdata 416 */ 417 if (ret) 418 return -EAGAIN; 419 420 cc->clen = outbuf.pos; 421 return 0; 422 } 423 424 static int zstd_init_decompress_ctx(struct decompress_io_ctx *dic) 425 { 426 zstd_dstream *stream; 427 void *workspace; 428 unsigned int workspace_size; 429 unsigned int max_window_size = 430 MAX_COMPRESS_WINDOW_SIZE(dic->log_cluster_size); 431 432 workspace_size = zstd_dstream_workspace_bound(max_window_size); 433 434 workspace = f2fs_kvmalloc(F2FS_I_SB(dic->inode), 435 workspace_size, GFP_NOFS); 436 if (!workspace) 437 return -ENOMEM; 438 439 stream = zstd_init_dstream(max_window_size, workspace, workspace_size); 440 if (!stream) { 441 printk_ratelimited("%sF2FS-fs (%s): %s zstd_init_dstream failed\n", 442 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, 443 __func__); 444 kvfree(workspace); 445 return -EIO; 446 } 447 448 dic->private = workspace; 449 dic->private2 = stream; 450 451 return 0; 452 } 453 454 static void zstd_destroy_decompress_ctx(struct decompress_io_ctx *dic) 455 { 456 kvfree(dic->private); 457 dic->private = NULL; 458 dic->private2 = NULL; 459 } 460 461 static int zstd_decompress_pages(struct decompress_io_ctx *dic) 462 { 463 zstd_dstream *stream = dic->private2; 464 zstd_in_buffer inbuf; 465 zstd_out_buffer outbuf; 466 int ret; 467 468 inbuf.pos = 0; 469 inbuf.src = dic->cbuf->cdata; 470 inbuf.size = dic->clen; 471 472 outbuf.pos = 0; 473 outbuf.dst = dic->rbuf; 474 outbuf.size = dic->rlen; 475 476 ret = zstd_decompress_stream(stream, &outbuf, &inbuf); 477 if (zstd_is_error(ret)) { 478 printk_ratelimited("%sF2FS-fs (%s): %s zstd_decompress_stream failed, ret: %d\n", 479 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, 480 __func__, zstd_get_error_code(ret)); 481 return -EIO; 482 } 483 484 if (dic->rlen != outbuf.pos) { 485 printk_ratelimited("%sF2FS-fs (%s): %s ZSTD invalid rlen:%zu, " 486 "expected:%lu\n", KERN_ERR, 487 F2FS_I_SB(dic->inode)->sb->s_id, 488 __func__, dic->rlen, 489 PAGE_SIZE << dic->log_cluster_size); 490 return -EIO; 491 } 492 493 return 0; 494 } 495 496 static const struct f2fs_compress_ops f2fs_zstd_ops = { 497 .init_compress_ctx = zstd_init_compress_ctx, 498 .destroy_compress_ctx = zstd_destroy_compress_ctx, 499 .compress_pages = zstd_compress_pages, 500 .init_decompress_ctx = zstd_init_decompress_ctx, 501 .destroy_decompress_ctx = zstd_destroy_decompress_ctx, 502 .decompress_pages = zstd_decompress_pages, 503 }; 504 #endif 505 506 #ifdef CONFIG_F2FS_FS_LZO 507 #ifdef CONFIG_F2FS_FS_LZORLE 508 static int lzorle_compress_pages(struct compress_ctx *cc) 509 { 510 int ret; 511 512 ret = lzorle1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata, 513 &cc->clen, cc->private); 514 if (ret != LZO_E_OK) { 515 printk_ratelimited("%sF2FS-fs (%s): lzo-rle compress failed, ret:%d\n", 516 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret); 517 return -EIO; 518 } 519 return 0; 520 } 521 522 static const struct f2fs_compress_ops f2fs_lzorle_ops = { 523 .init_compress_ctx = lzo_init_compress_ctx, 524 .destroy_compress_ctx = lzo_destroy_compress_ctx, 525 .compress_pages = lzorle_compress_pages, 526 .decompress_pages = lzo_decompress_pages, 527 }; 528 #endif 529 #endif 530 531 static const struct f2fs_compress_ops *f2fs_cops[COMPRESS_MAX] = { 532 #ifdef CONFIG_F2FS_FS_LZO 533 &f2fs_lzo_ops, 534 #else 535 NULL, 536 #endif 537 #ifdef CONFIG_F2FS_FS_LZ4 538 &f2fs_lz4_ops, 539 #else 540 NULL, 541 #endif 542 #ifdef CONFIG_F2FS_FS_ZSTD 543 &f2fs_zstd_ops, 544 #else 545 NULL, 546 #endif 547 #if defined(CONFIG_F2FS_FS_LZO) && defined(CONFIG_F2FS_FS_LZORLE) 548 &f2fs_lzorle_ops, 549 #else 550 NULL, 551 #endif 552 }; 553 554 bool f2fs_is_compress_backend_ready(struct inode *inode) 555 { 556 if (!f2fs_compressed_file(inode)) 557 return true; 558 return f2fs_cops[F2FS_I(inode)->i_compress_algorithm]; 559 } 560 561 static mempool_t *compress_page_pool; 562 static int num_compress_pages = 512; 563 module_param(num_compress_pages, uint, 0444); 564 MODULE_PARM_DESC(num_compress_pages, 565 "Number of intermediate compress pages to preallocate"); 566 567 int f2fs_init_compress_mempool(void) 568 { 569 compress_page_pool = mempool_create_page_pool(num_compress_pages, 0); 570 return compress_page_pool ? 0 : -ENOMEM; 571 } 572 573 void f2fs_destroy_compress_mempool(void) 574 { 575 mempool_destroy(compress_page_pool); 576 } 577 578 static struct page *f2fs_compress_alloc_page(void) 579 { 580 struct page *page; 581 582 page = mempool_alloc(compress_page_pool, GFP_NOFS); 583 lock_page(page); 584 585 return page; 586 } 587 588 static void f2fs_compress_free_page(struct page *page) 589 { 590 if (!page) 591 return; 592 detach_page_private(page); 593 page->mapping = NULL; 594 unlock_page(page); 595 mempool_free(page, compress_page_pool); 596 } 597 598 #define MAX_VMAP_RETRIES 3 599 600 static void *f2fs_vmap(struct page **pages, unsigned int count) 601 { 602 int i; 603 void *buf = NULL; 604 605 for (i = 0; i < MAX_VMAP_RETRIES; i++) { 606 buf = vm_map_ram(pages, count, -1); 607 if (buf) 608 break; 609 vm_unmap_aliases(); 610 } 611 return buf; 612 } 613 614 static int f2fs_compress_pages(struct compress_ctx *cc) 615 { 616 struct f2fs_inode_info *fi = F2FS_I(cc->inode); 617 const struct f2fs_compress_ops *cops = 618 f2fs_cops[fi->i_compress_algorithm]; 619 unsigned int max_len, new_nr_cpages; 620 u32 chksum = 0; 621 int i, ret; 622 623 trace_f2fs_compress_pages_start(cc->inode, cc->cluster_idx, 624 cc->cluster_size, fi->i_compress_algorithm); 625 626 if (cops->init_compress_ctx) { 627 ret = cops->init_compress_ctx(cc); 628 if (ret) 629 goto out; 630 } 631 632 max_len = COMPRESS_HEADER_SIZE + cc->clen; 633 cc->nr_cpages = DIV_ROUND_UP(max_len, PAGE_SIZE); 634 cc->valid_nr_cpages = cc->nr_cpages; 635 636 cc->cpages = page_array_alloc(cc->inode, cc->nr_cpages); 637 if (!cc->cpages) { 638 ret = -ENOMEM; 639 goto destroy_compress_ctx; 640 } 641 642 for (i = 0; i < cc->nr_cpages; i++) { 643 cc->cpages[i] = f2fs_compress_alloc_page(); 644 if (!cc->cpages[i]) { 645 ret = -ENOMEM; 646 goto out_free_cpages; 647 } 648 } 649 650 cc->rbuf = f2fs_vmap(cc->rpages, cc->cluster_size); 651 if (!cc->rbuf) { 652 ret = -ENOMEM; 653 goto out_free_cpages; 654 } 655 656 cc->cbuf = f2fs_vmap(cc->cpages, cc->nr_cpages); 657 if (!cc->cbuf) { 658 ret = -ENOMEM; 659 goto out_vunmap_rbuf; 660 } 661 662 ret = cops->compress_pages(cc); 663 if (ret) 664 goto out_vunmap_cbuf; 665 666 max_len = PAGE_SIZE * (cc->cluster_size - 1) - COMPRESS_HEADER_SIZE; 667 668 if (cc->clen > max_len) { 669 ret = -EAGAIN; 670 goto out_vunmap_cbuf; 671 } 672 673 cc->cbuf->clen = cpu_to_le32(cc->clen); 674 675 if (fi->i_compress_flag & 1 << COMPRESS_CHKSUM) 676 chksum = f2fs_crc32(F2FS_I_SB(cc->inode), 677 cc->cbuf->cdata, cc->clen); 678 cc->cbuf->chksum = cpu_to_le32(chksum); 679 680 for (i = 0; i < COMPRESS_DATA_RESERVED_SIZE; i++) 681 cc->cbuf->reserved[i] = cpu_to_le32(0); 682 683 new_nr_cpages = DIV_ROUND_UP(cc->clen + COMPRESS_HEADER_SIZE, PAGE_SIZE); 684 685 /* zero out any unused part of the last page */ 686 memset(&cc->cbuf->cdata[cc->clen], 0, 687 (new_nr_cpages * PAGE_SIZE) - 688 (cc->clen + COMPRESS_HEADER_SIZE)); 689 690 vm_unmap_ram(cc->cbuf, cc->nr_cpages); 691 vm_unmap_ram(cc->rbuf, cc->cluster_size); 692 693 for (i = 0; i < cc->nr_cpages; i++) { 694 if (i < new_nr_cpages) 695 continue; 696 f2fs_compress_free_page(cc->cpages[i]); 697 cc->cpages[i] = NULL; 698 } 699 700 if (cops->destroy_compress_ctx) 701 cops->destroy_compress_ctx(cc); 702 703 cc->valid_nr_cpages = new_nr_cpages; 704 705 trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx, 706 cc->clen, ret); 707 return 0; 708 709 out_vunmap_cbuf: 710 vm_unmap_ram(cc->cbuf, cc->nr_cpages); 711 out_vunmap_rbuf: 712 vm_unmap_ram(cc->rbuf, cc->cluster_size); 713 out_free_cpages: 714 for (i = 0; i < cc->nr_cpages; i++) { 715 if (cc->cpages[i]) 716 f2fs_compress_free_page(cc->cpages[i]); 717 } 718 page_array_free(cc->inode, cc->cpages, cc->nr_cpages); 719 cc->cpages = NULL; 720 destroy_compress_ctx: 721 if (cops->destroy_compress_ctx) 722 cops->destroy_compress_ctx(cc); 723 out: 724 trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx, 725 cc->clen, ret); 726 return ret; 727 } 728 729 static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic, 730 bool pre_alloc); 731 static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic, 732 bool bypass_destroy_callback, bool pre_alloc); 733 734 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task) 735 { 736 struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode); 737 struct f2fs_inode_info *fi = F2FS_I(dic->inode); 738 const struct f2fs_compress_ops *cops = 739 f2fs_cops[fi->i_compress_algorithm]; 740 bool bypass_callback = false; 741 int ret; 742 743 trace_f2fs_decompress_pages_start(dic->inode, dic->cluster_idx, 744 dic->cluster_size, fi->i_compress_algorithm); 745 746 if (dic->failed) { 747 ret = -EIO; 748 goto out_end_io; 749 } 750 751 ret = f2fs_prepare_decomp_mem(dic, false); 752 if (ret) { 753 bypass_callback = true; 754 goto out_release; 755 } 756 757 dic->clen = le32_to_cpu(dic->cbuf->clen); 758 dic->rlen = PAGE_SIZE << dic->log_cluster_size; 759 760 if (dic->clen > PAGE_SIZE * dic->nr_cpages - COMPRESS_HEADER_SIZE) { 761 ret = -EFSCORRUPTED; 762 f2fs_handle_error(sbi, ERROR_FAIL_DECOMPRESSION); 763 goto out_release; 764 } 765 766 ret = cops->decompress_pages(dic); 767 768 if (!ret && (fi->i_compress_flag & 1 << COMPRESS_CHKSUM)) { 769 u32 provided = le32_to_cpu(dic->cbuf->chksum); 770 u32 calculated = f2fs_crc32(sbi, dic->cbuf->cdata, dic->clen); 771 772 if (provided != calculated) { 773 if (!is_inode_flag_set(dic->inode, FI_COMPRESS_CORRUPT)) { 774 set_inode_flag(dic->inode, FI_COMPRESS_CORRUPT); 775 printk_ratelimited( 776 "%sF2FS-fs (%s): checksum invalid, nid = %lu, %x vs %x", 777 KERN_INFO, sbi->sb->s_id, dic->inode->i_ino, 778 provided, calculated); 779 } 780 set_sbi_flag(sbi, SBI_NEED_FSCK); 781 } 782 } 783 784 out_release: 785 f2fs_release_decomp_mem(dic, bypass_callback, false); 786 787 out_end_io: 788 trace_f2fs_decompress_pages_end(dic->inode, dic->cluster_idx, 789 dic->clen, ret); 790 f2fs_decompress_end_io(dic, ret, in_task); 791 } 792 793 /* 794 * This is called when a page of a compressed cluster has been read from disk 795 * (or failed to be read from disk). It checks whether this page was the last 796 * page being waited on in the cluster, and if so, it decompresses the cluster 797 * (or in the case of a failure, cleans up without actually decompressing). 798 */ 799 void f2fs_end_read_compressed_page(struct page *page, bool failed, 800 block_t blkaddr, bool in_task) 801 { 802 struct decompress_io_ctx *dic = 803 (struct decompress_io_ctx *)page_private(page); 804 struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode); 805 806 dec_page_count(sbi, F2FS_RD_DATA); 807 808 if (failed) 809 WRITE_ONCE(dic->failed, true); 810 else if (blkaddr && in_task) 811 f2fs_cache_compressed_page(sbi, page, 812 dic->inode->i_ino, blkaddr); 813 814 if (atomic_dec_and_test(&dic->remaining_pages)) 815 f2fs_decompress_cluster(dic, in_task); 816 } 817 818 static bool is_page_in_cluster(struct compress_ctx *cc, pgoff_t index) 819 { 820 if (cc->cluster_idx == NULL_CLUSTER) 821 return true; 822 return cc->cluster_idx == cluster_idx(cc, index); 823 } 824 825 bool f2fs_cluster_is_empty(struct compress_ctx *cc) 826 { 827 return cc->nr_rpages == 0; 828 } 829 830 static bool f2fs_cluster_is_full(struct compress_ctx *cc) 831 { 832 return cc->cluster_size == cc->nr_rpages; 833 } 834 835 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index) 836 { 837 if (f2fs_cluster_is_empty(cc)) 838 return true; 839 return is_page_in_cluster(cc, index); 840 } 841 842 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages, 843 int index, int nr_pages, bool uptodate) 844 { 845 unsigned long pgidx = pages[index]->index; 846 int i = uptodate ? 0 : 1; 847 848 /* 849 * when uptodate set to true, try to check all pages in cluster is 850 * uptodate or not. 851 */ 852 if (uptodate && (pgidx % cc->cluster_size)) 853 return false; 854 855 if (nr_pages - index < cc->cluster_size) 856 return false; 857 858 for (; i < cc->cluster_size; i++) { 859 if (pages[index + i]->index != pgidx + i) 860 return false; 861 if (uptodate && !PageUptodate(pages[index + i])) 862 return false; 863 } 864 865 return true; 866 } 867 868 static bool cluster_has_invalid_data(struct compress_ctx *cc) 869 { 870 loff_t i_size = i_size_read(cc->inode); 871 unsigned nr_pages = DIV_ROUND_UP(i_size, PAGE_SIZE); 872 int i; 873 874 for (i = 0; i < cc->cluster_size; i++) { 875 struct page *page = cc->rpages[i]; 876 877 f2fs_bug_on(F2FS_I_SB(cc->inode), !page); 878 879 /* beyond EOF */ 880 if (page->index >= nr_pages) 881 return true; 882 } 883 return false; 884 } 885 886 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) 887 { 888 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 889 unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 890 bool compressed = dn->data_blkaddr == COMPRESS_ADDR; 891 int cluster_end = 0; 892 int i; 893 char *reason = ""; 894 895 if (!compressed) 896 return false; 897 898 /* [..., COMPR_ADDR, ...] */ 899 if (dn->ofs_in_node % cluster_size) { 900 reason = "[*|C|*|*]"; 901 goto out; 902 } 903 904 for (i = 1; i < cluster_size; i++) { 905 block_t blkaddr = data_blkaddr(dn->inode, dn->node_page, 906 dn->ofs_in_node + i); 907 908 /* [COMPR_ADDR, ..., COMPR_ADDR] */ 909 if (blkaddr == COMPRESS_ADDR) { 910 reason = "[C|*|C|*]"; 911 goto out; 912 } 913 if (!__is_valid_data_blkaddr(blkaddr)) { 914 if (!cluster_end) 915 cluster_end = i; 916 continue; 917 } 918 /* [COMPR_ADDR, NULL_ADDR or NEW_ADDR, valid_blkaddr] */ 919 if (cluster_end) { 920 reason = "[C|N|N|V]"; 921 goto out; 922 } 923 } 924 return false; 925 out: 926 f2fs_warn(sbi, "access invalid cluster, ino:%lu, nid:%u, ofs_in_node:%u, reason:%s", 927 dn->inode->i_ino, dn->nid, dn->ofs_in_node, reason); 928 set_sbi_flag(sbi, SBI_NEED_FSCK); 929 return true; 930 } 931 932 static int __f2fs_cluster_blocks(struct inode *inode, 933 unsigned int cluster_idx, bool compr) 934 { 935 struct dnode_of_data dn; 936 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size; 937 unsigned int start_idx = cluster_idx << 938 F2FS_I(inode)->i_log_cluster_size; 939 int ret; 940 941 set_new_dnode(&dn, inode, NULL, NULL, 0); 942 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 943 if (ret) { 944 if (ret == -ENOENT) 945 ret = 0; 946 goto fail; 947 } 948 949 if (f2fs_sanity_check_cluster(&dn)) { 950 ret = -EFSCORRUPTED; 951 f2fs_handle_error(F2FS_I_SB(inode), ERROR_CORRUPTED_CLUSTER); 952 goto fail; 953 } 954 955 if (dn.data_blkaddr == COMPRESS_ADDR) { 956 int i; 957 958 ret = 1; 959 for (i = 1; i < cluster_size; i++) { 960 block_t blkaddr; 961 962 blkaddr = data_blkaddr(dn.inode, 963 dn.node_page, dn.ofs_in_node + i); 964 if (compr) { 965 if (__is_valid_data_blkaddr(blkaddr)) 966 ret++; 967 } else { 968 if (blkaddr != NULL_ADDR) 969 ret++; 970 } 971 } 972 973 f2fs_bug_on(F2FS_I_SB(inode), 974 !compr && ret != cluster_size && 975 !is_inode_flag_set(inode, FI_COMPRESS_RELEASED)); 976 } 977 fail: 978 f2fs_put_dnode(&dn); 979 return ret; 980 } 981 982 /* return # of compressed blocks in compressed cluster */ 983 static int f2fs_compressed_blocks(struct compress_ctx *cc) 984 { 985 return __f2fs_cluster_blocks(cc->inode, cc->cluster_idx, true); 986 } 987 988 /* return # of valid blocks in compressed cluster */ 989 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index) 990 { 991 return __f2fs_cluster_blocks(inode, 992 index >> F2FS_I(inode)->i_log_cluster_size, 993 false); 994 } 995 996 static bool cluster_may_compress(struct compress_ctx *cc) 997 { 998 if (!f2fs_need_compress_data(cc->inode)) 999 return false; 1000 if (f2fs_is_atomic_file(cc->inode)) 1001 return false; 1002 if (!f2fs_cluster_is_full(cc)) 1003 return false; 1004 if (unlikely(f2fs_cp_error(F2FS_I_SB(cc->inode)))) 1005 return false; 1006 return !cluster_has_invalid_data(cc); 1007 } 1008 1009 static void set_cluster_writeback(struct compress_ctx *cc) 1010 { 1011 int i; 1012 1013 for (i = 0; i < cc->cluster_size; i++) { 1014 if (cc->rpages[i]) 1015 set_page_writeback(cc->rpages[i]); 1016 } 1017 } 1018 1019 static void set_cluster_dirty(struct compress_ctx *cc) 1020 { 1021 int i; 1022 1023 for (i = 0; i < cc->cluster_size; i++) 1024 if (cc->rpages[i]) 1025 set_page_dirty(cc->rpages[i]); 1026 } 1027 1028 static int prepare_compress_overwrite(struct compress_ctx *cc, 1029 struct page **pagep, pgoff_t index, void **fsdata) 1030 { 1031 struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode); 1032 struct address_space *mapping = cc->inode->i_mapping; 1033 struct page *page; 1034 sector_t last_block_in_bio; 1035 unsigned fgp_flag = FGP_LOCK | FGP_WRITE | FGP_CREAT; 1036 pgoff_t start_idx = start_idx_of_cluster(cc); 1037 int i, ret; 1038 1039 retry: 1040 ret = f2fs_is_compressed_cluster(cc->inode, start_idx); 1041 if (ret <= 0) 1042 return ret; 1043 1044 ret = f2fs_init_compress_ctx(cc); 1045 if (ret) 1046 return ret; 1047 1048 /* keep page reference to avoid page reclaim */ 1049 for (i = 0; i < cc->cluster_size; i++) { 1050 page = f2fs_pagecache_get_page(mapping, start_idx + i, 1051 fgp_flag, GFP_NOFS); 1052 if (!page) { 1053 ret = -ENOMEM; 1054 goto unlock_pages; 1055 } 1056 1057 if (PageUptodate(page)) 1058 f2fs_put_page(page, 1); 1059 else 1060 f2fs_compress_ctx_add_page(cc, page); 1061 } 1062 1063 if (!f2fs_cluster_is_empty(cc)) { 1064 struct bio *bio = NULL; 1065 1066 ret = f2fs_read_multi_pages(cc, &bio, cc->cluster_size, 1067 &last_block_in_bio, false, true); 1068 f2fs_put_rpages(cc); 1069 f2fs_destroy_compress_ctx(cc, true); 1070 if (ret) 1071 goto out; 1072 if (bio) 1073 f2fs_submit_bio(sbi, bio, DATA); 1074 1075 ret = f2fs_init_compress_ctx(cc); 1076 if (ret) 1077 goto out; 1078 } 1079 1080 for (i = 0; i < cc->cluster_size; i++) { 1081 f2fs_bug_on(sbi, cc->rpages[i]); 1082 1083 page = find_lock_page(mapping, start_idx + i); 1084 if (!page) { 1085 /* page can be truncated */ 1086 goto release_and_retry; 1087 } 1088 1089 f2fs_wait_on_page_writeback(page, DATA, true, true); 1090 f2fs_compress_ctx_add_page(cc, page); 1091 1092 if (!PageUptodate(page)) { 1093 release_and_retry: 1094 f2fs_put_rpages(cc); 1095 f2fs_unlock_rpages(cc, i + 1); 1096 f2fs_destroy_compress_ctx(cc, true); 1097 goto retry; 1098 } 1099 } 1100 1101 if (likely(!ret)) { 1102 *fsdata = cc->rpages; 1103 *pagep = cc->rpages[offset_in_cluster(cc, index)]; 1104 return cc->cluster_size; 1105 } 1106 1107 unlock_pages: 1108 f2fs_put_rpages(cc); 1109 f2fs_unlock_rpages(cc, i); 1110 f2fs_destroy_compress_ctx(cc, true); 1111 out: 1112 return ret; 1113 } 1114 1115 int f2fs_prepare_compress_overwrite(struct inode *inode, 1116 struct page **pagep, pgoff_t index, void **fsdata) 1117 { 1118 struct compress_ctx cc = { 1119 .inode = inode, 1120 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 1121 .cluster_size = F2FS_I(inode)->i_cluster_size, 1122 .cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size, 1123 .rpages = NULL, 1124 .nr_rpages = 0, 1125 }; 1126 1127 return prepare_compress_overwrite(&cc, pagep, index, fsdata); 1128 } 1129 1130 bool f2fs_compress_write_end(struct inode *inode, void *fsdata, 1131 pgoff_t index, unsigned copied) 1132 1133 { 1134 struct compress_ctx cc = { 1135 .inode = inode, 1136 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 1137 .cluster_size = F2FS_I(inode)->i_cluster_size, 1138 .rpages = fsdata, 1139 }; 1140 bool first_index = (index == cc.rpages[0]->index); 1141 1142 if (copied) 1143 set_cluster_dirty(&cc); 1144 1145 f2fs_put_rpages_wbc(&cc, NULL, false, 1); 1146 f2fs_destroy_compress_ctx(&cc, false); 1147 1148 return first_index; 1149 } 1150 1151 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock) 1152 { 1153 void *fsdata = NULL; 1154 struct page *pagep; 1155 int log_cluster_size = F2FS_I(inode)->i_log_cluster_size; 1156 pgoff_t start_idx = from >> (PAGE_SHIFT + log_cluster_size) << 1157 log_cluster_size; 1158 int err; 1159 1160 err = f2fs_is_compressed_cluster(inode, start_idx); 1161 if (err < 0) 1162 return err; 1163 1164 /* truncate normal cluster */ 1165 if (!err) 1166 return f2fs_do_truncate_blocks(inode, from, lock); 1167 1168 /* truncate compressed cluster */ 1169 err = f2fs_prepare_compress_overwrite(inode, &pagep, 1170 start_idx, &fsdata); 1171 1172 /* should not be a normal cluster */ 1173 f2fs_bug_on(F2FS_I_SB(inode), err == 0); 1174 1175 if (err <= 0) 1176 return err; 1177 1178 if (err > 0) { 1179 struct page **rpages = fsdata; 1180 int cluster_size = F2FS_I(inode)->i_cluster_size; 1181 int i; 1182 1183 for (i = cluster_size - 1; i >= 0; i--) { 1184 loff_t start = rpages[i]->index << PAGE_SHIFT; 1185 1186 if (from <= start) { 1187 zero_user_segment(rpages[i], 0, PAGE_SIZE); 1188 } else { 1189 zero_user_segment(rpages[i], from - start, 1190 PAGE_SIZE); 1191 break; 1192 } 1193 } 1194 1195 f2fs_compress_write_end(inode, fsdata, start_idx, true); 1196 } 1197 return 0; 1198 } 1199 1200 static int f2fs_write_compressed_pages(struct compress_ctx *cc, 1201 int *submitted, 1202 struct writeback_control *wbc, 1203 enum iostat_type io_type) 1204 { 1205 struct inode *inode = cc->inode; 1206 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1207 struct f2fs_inode_info *fi = F2FS_I(inode); 1208 struct f2fs_io_info fio = { 1209 .sbi = sbi, 1210 .ino = cc->inode->i_ino, 1211 .type = DATA, 1212 .op = REQ_OP_WRITE, 1213 .op_flags = wbc_to_write_flags(wbc), 1214 .old_blkaddr = NEW_ADDR, 1215 .page = NULL, 1216 .encrypted_page = NULL, 1217 .compressed_page = NULL, 1218 .submitted = false, 1219 .io_type = io_type, 1220 .io_wbc = wbc, 1221 .encrypted = fscrypt_inode_uses_fs_layer_crypto(cc->inode), 1222 }; 1223 struct dnode_of_data dn; 1224 struct node_info ni; 1225 struct compress_io_ctx *cic; 1226 pgoff_t start_idx = start_idx_of_cluster(cc); 1227 unsigned int last_index = cc->cluster_size - 1; 1228 loff_t psize; 1229 int i, err; 1230 1231 /* we should bypass data pages to proceed the kworkder jobs */ 1232 if (unlikely(f2fs_cp_error(sbi))) { 1233 mapping_set_error(cc->rpages[0]->mapping, -EIO); 1234 goto out_free; 1235 } 1236 1237 if (IS_NOQUOTA(inode)) { 1238 /* 1239 * We need to wait for node_write to avoid block allocation during 1240 * checkpoint. This can only happen to quota writes which can cause 1241 * the below discard race condition. 1242 */ 1243 f2fs_down_read(&sbi->node_write); 1244 } else if (!f2fs_trylock_op(sbi)) { 1245 goto out_free; 1246 } 1247 1248 set_new_dnode(&dn, cc->inode, NULL, NULL, 0); 1249 1250 err = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 1251 if (err) 1252 goto out_unlock_op; 1253 1254 for (i = 0; i < cc->cluster_size; i++) { 1255 if (data_blkaddr(dn.inode, dn.node_page, 1256 dn.ofs_in_node + i) == NULL_ADDR) 1257 goto out_put_dnode; 1258 } 1259 1260 psize = (loff_t)(cc->rpages[last_index]->index + 1) << PAGE_SHIFT; 1261 1262 err = f2fs_get_node_info(fio.sbi, dn.nid, &ni, false); 1263 if (err) 1264 goto out_put_dnode; 1265 1266 fio.version = ni.version; 1267 1268 cic = f2fs_kmem_cache_alloc(cic_entry_slab, GFP_F2FS_ZERO, false, sbi); 1269 if (!cic) 1270 goto out_put_dnode; 1271 1272 cic->magic = F2FS_COMPRESSED_PAGE_MAGIC; 1273 cic->inode = inode; 1274 atomic_set(&cic->pending_pages, cc->valid_nr_cpages); 1275 cic->rpages = page_array_alloc(cc->inode, cc->cluster_size); 1276 if (!cic->rpages) 1277 goto out_put_cic; 1278 1279 cic->nr_rpages = cc->cluster_size; 1280 1281 for (i = 0; i < cc->valid_nr_cpages; i++) { 1282 f2fs_set_compressed_page(cc->cpages[i], inode, 1283 cc->rpages[i + 1]->index, cic); 1284 fio.compressed_page = cc->cpages[i]; 1285 1286 fio.old_blkaddr = data_blkaddr(dn.inode, dn.node_page, 1287 dn.ofs_in_node + i + 1); 1288 1289 /* wait for GCed page writeback via META_MAPPING */ 1290 f2fs_wait_on_block_writeback(inode, fio.old_blkaddr); 1291 1292 if (fio.encrypted) { 1293 fio.page = cc->rpages[i + 1]; 1294 err = f2fs_encrypt_one_page(&fio); 1295 if (err) 1296 goto out_destroy_crypt; 1297 cc->cpages[i] = fio.encrypted_page; 1298 } 1299 } 1300 1301 set_cluster_writeback(cc); 1302 1303 for (i = 0; i < cc->cluster_size; i++) 1304 cic->rpages[i] = cc->rpages[i]; 1305 1306 for (i = 0; i < cc->cluster_size; i++, dn.ofs_in_node++) { 1307 block_t blkaddr; 1308 1309 blkaddr = f2fs_data_blkaddr(&dn); 1310 fio.page = cc->rpages[i]; 1311 fio.old_blkaddr = blkaddr; 1312 1313 /* cluster header */ 1314 if (i == 0) { 1315 if (blkaddr == COMPRESS_ADDR) 1316 fio.compr_blocks++; 1317 if (__is_valid_data_blkaddr(blkaddr)) 1318 f2fs_invalidate_blocks(sbi, blkaddr); 1319 f2fs_update_data_blkaddr(&dn, COMPRESS_ADDR); 1320 goto unlock_continue; 1321 } 1322 1323 if (fio.compr_blocks && __is_valid_data_blkaddr(blkaddr)) 1324 fio.compr_blocks++; 1325 1326 if (i > cc->valid_nr_cpages) { 1327 if (__is_valid_data_blkaddr(blkaddr)) { 1328 f2fs_invalidate_blocks(sbi, blkaddr); 1329 f2fs_update_data_blkaddr(&dn, NEW_ADDR); 1330 } 1331 goto unlock_continue; 1332 } 1333 1334 f2fs_bug_on(fio.sbi, blkaddr == NULL_ADDR); 1335 1336 if (fio.encrypted) 1337 fio.encrypted_page = cc->cpages[i - 1]; 1338 else 1339 fio.compressed_page = cc->cpages[i - 1]; 1340 1341 cc->cpages[i - 1] = NULL; 1342 f2fs_outplace_write_data(&dn, &fio); 1343 (*submitted)++; 1344 unlock_continue: 1345 inode_dec_dirty_pages(cc->inode); 1346 unlock_page(fio.page); 1347 } 1348 1349 if (fio.compr_blocks) 1350 f2fs_i_compr_blocks_update(inode, fio.compr_blocks - 1, false); 1351 f2fs_i_compr_blocks_update(inode, cc->valid_nr_cpages, true); 1352 add_compr_block_stat(inode, cc->valid_nr_cpages); 1353 1354 set_inode_flag(cc->inode, FI_APPEND_WRITE); 1355 if (cc->cluster_idx == 0) 1356 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); 1357 1358 f2fs_put_dnode(&dn); 1359 if (IS_NOQUOTA(inode)) 1360 f2fs_up_read(&sbi->node_write); 1361 else 1362 f2fs_unlock_op(sbi); 1363 1364 spin_lock(&fi->i_size_lock); 1365 if (fi->last_disk_size < psize) 1366 fi->last_disk_size = psize; 1367 spin_unlock(&fi->i_size_lock); 1368 1369 f2fs_put_rpages(cc); 1370 page_array_free(cc->inode, cc->cpages, cc->nr_cpages); 1371 cc->cpages = NULL; 1372 f2fs_destroy_compress_ctx(cc, false); 1373 return 0; 1374 1375 out_destroy_crypt: 1376 page_array_free(cc->inode, cic->rpages, cc->cluster_size); 1377 1378 for (--i; i >= 0; i--) 1379 fscrypt_finalize_bounce_page(&cc->cpages[i]); 1380 out_put_cic: 1381 kmem_cache_free(cic_entry_slab, cic); 1382 out_put_dnode: 1383 f2fs_put_dnode(&dn); 1384 out_unlock_op: 1385 if (IS_NOQUOTA(inode)) 1386 f2fs_up_read(&sbi->node_write); 1387 else 1388 f2fs_unlock_op(sbi); 1389 out_free: 1390 for (i = 0; i < cc->valid_nr_cpages; i++) { 1391 f2fs_compress_free_page(cc->cpages[i]); 1392 cc->cpages[i] = NULL; 1393 } 1394 page_array_free(cc->inode, cc->cpages, cc->nr_cpages); 1395 cc->cpages = NULL; 1396 return -EAGAIN; 1397 } 1398 1399 void f2fs_compress_write_end_io(struct bio *bio, struct page *page) 1400 { 1401 struct f2fs_sb_info *sbi = bio->bi_private; 1402 struct compress_io_ctx *cic = 1403 (struct compress_io_ctx *)page_private(page); 1404 int i; 1405 1406 if (unlikely(bio->bi_status)) 1407 mapping_set_error(cic->inode->i_mapping, -EIO); 1408 1409 f2fs_compress_free_page(page); 1410 1411 dec_page_count(sbi, F2FS_WB_DATA); 1412 1413 if (atomic_dec_return(&cic->pending_pages)) 1414 return; 1415 1416 for (i = 0; i < cic->nr_rpages; i++) { 1417 WARN_ON(!cic->rpages[i]); 1418 clear_page_private_gcing(cic->rpages[i]); 1419 end_page_writeback(cic->rpages[i]); 1420 } 1421 1422 page_array_free(cic->inode, cic->rpages, cic->nr_rpages); 1423 kmem_cache_free(cic_entry_slab, cic); 1424 } 1425 1426 static int f2fs_write_raw_pages(struct compress_ctx *cc, 1427 int *submitted, 1428 struct writeback_control *wbc, 1429 enum iostat_type io_type) 1430 { 1431 struct address_space *mapping = cc->inode->i_mapping; 1432 int _submitted, compr_blocks, ret, i; 1433 1434 compr_blocks = f2fs_compressed_blocks(cc); 1435 1436 for (i = 0; i < cc->cluster_size; i++) { 1437 if (!cc->rpages[i]) 1438 continue; 1439 1440 redirty_page_for_writepage(wbc, cc->rpages[i]); 1441 unlock_page(cc->rpages[i]); 1442 } 1443 1444 if (compr_blocks < 0) 1445 return compr_blocks; 1446 1447 for (i = 0; i < cc->cluster_size; i++) { 1448 if (!cc->rpages[i]) 1449 continue; 1450 retry_write: 1451 lock_page(cc->rpages[i]); 1452 1453 if (cc->rpages[i]->mapping != mapping) { 1454 continue_unlock: 1455 unlock_page(cc->rpages[i]); 1456 continue; 1457 } 1458 1459 if (!PageDirty(cc->rpages[i])) 1460 goto continue_unlock; 1461 1462 if (!clear_page_dirty_for_io(cc->rpages[i])) 1463 goto continue_unlock; 1464 1465 ret = f2fs_write_single_data_page(cc->rpages[i], &_submitted, 1466 NULL, NULL, wbc, io_type, 1467 compr_blocks, false); 1468 if (ret) { 1469 if (ret == AOP_WRITEPAGE_ACTIVATE) { 1470 unlock_page(cc->rpages[i]); 1471 ret = 0; 1472 } else if (ret == -EAGAIN) { 1473 /* 1474 * for quota file, just redirty left pages to 1475 * avoid deadlock caused by cluster update race 1476 * from foreground operation. 1477 */ 1478 if (IS_NOQUOTA(cc->inode)) 1479 return 0; 1480 ret = 0; 1481 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 1482 goto retry_write; 1483 } 1484 return ret; 1485 } 1486 1487 *submitted += _submitted; 1488 } 1489 1490 f2fs_balance_fs(F2FS_M_SB(mapping), true); 1491 1492 return 0; 1493 } 1494 1495 int f2fs_write_multi_pages(struct compress_ctx *cc, 1496 int *submitted, 1497 struct writeback_control *wbc, 1498 enum iostat_type io_type) 1499 { 1500 int err; 1501 1502 *submitted = 0; 1503 if (cluster_may_compress(cc)) { 1504 err = f2fs_compress_pages(cc); 1505 if (err == -EAGAIN) { 1506 add_compr_block_stat(cc->inode, cc->cluster_size); 1507 goto write; 1508 } else if (err) { 1509 f2fs_put_rpages_wbc(cc, wbc, true, 1); 1510 goto destroy_out; 1511 } 1512 1513 err = f2fs_write_compressed_pages(cc, submitted, 1514 wbc, io_type); 1515 if (!err) 1516 return 0; 1517 f2fs_bug_on(F2FS_I_SB(cc->inode), err != -EAGAIN); 1518 } 1519 write: 1520 f2fs_bug_on(F2FS_I_SB(cc->inode), *submitted); 1521 1522 err = f2fs_write_raw_pages(cc, submitted, wbc, io_type); 1523 f2fs_put_rpages_wbc(cc, wbc, false, 0); 1524 destroy_out: 1525 f2fs_destroy_compress_ctx(cc, false); 1526 return err; 1527 } 1528 1529 static inline bool allow_memalloc_for_decomp(struct f2fs_sb_info *sbi, 1530 bool pre_alloc) 1531 { 1532 return pre_alloc ^ f2fs_low_mem_mode(sbi); 1533 } 1534 1535 static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic, 1536 bool pre_alloc) 1537 { 1538 const struct f2fs_compress_ops *cops = 1539 f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm]; 1540 int i; 1541 1542 if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc)) 1543 return 0; 1544 1545 dic->tpages = page_array_alloc(dic->inode, dic->cluster_size); 1546 if (!dic->tpages) 1547 return -ENOMEM; 1548 1549 for (i = 0; i < dic->cluster_size; i++) { 1550 if (dic->rpages[i]) { 1551 dic->tpages[i] = dic->rpages[i]; 1552 continue; 1553 } 1554 1555 dic->tpages[i] = f2fs_compress_alloc_page(); 1556 if (!dic->tpages[i]) 1557 return -ENOMEM; 1558 } 1559 1560 dic->rbuf = f2fs_vmap(dic->tpages, dic->cluster_size); 1561 if (!dic->rbuf) 1562 return -ENOMEM; 1563 1564 dic->cbuf = f2fs_vmap(dic->cpages, dic->nr_cpages); 1565 if (!dic->cbuf) 1566 return -ENOMEM; 1567 1568 if (cops->init_decompress_ctx) 1569 return cops->init_decompress_ctx(dic); 1570 1571 return 0; 1572 } 1573 1574 static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic, 1575 bool bypass_destroy_callback, bool pre_alloc) 1576 { 1577 const struct f2fs_compress_ops *cops = 1578 f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm]; 1579 1580 if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc)) 1581 return; 1582 1583 if (!bypass_destroy_callback && cops->destroy_decompress_ctx) 1584 cops->destroy_decompress_ctx(dic); 1585 1586 if (dic->cbuf) 1587 vm_unmap_ram(dic->cbuf, dic->nr_cpages); 1588 1589 if (dic->rbuf) 1590 vm_unmap_ram(dic->rbuf, dic->cluster_size); 1591 } 1592 1593 static void f2fs_free_dic(struct decompress_io_ctx *dic, 1594 bool bypass_destroy_callback); 1595 1596 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc) 1597 { 1598 struct decompress_io_ctx *dic; 1599 pgoff_t start_idx = start_idx_of_cluster(cc); 1600 struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode); 1601 int i, ret; 1602 1603 dic = f2fs_kmem_cache_alloc(dic_entry_slab, GFP_F2FS_ZERO, false, sbi); 1604 if (!dic) 1605 return ERR_PTR(-ENOMEM); 1606 1607 dic->rpages = page_array_alloc(cc->inode, cc->cluster_size); 1608 if (!dic->rpages) { 1609 kmem_cache_free(dic_entry_slab, dic); 1610 return ERR_PTR(-ENOMEM); 1611 } 1612 1613 dic->magic = F2FS_COMPRESSED_PAGE_MAGIC; 1614 dic->inode = cc->inode; 1615 atomic_set(&dic->remaining_pages, cc->nr_cpages); 1616 dic->cluster_idx = cc->cluster_idx; 1617 dic->cluster_size = cc->cluster_size; 1618 dic->log_cluster_size = cc->log_cluster_size; 1619 dic->nr_cpages = cc->nr_cpages; 1620 refcount_set(&dic->refcnt, 1); 1621 dic->failed = false; 1622 dic->need_verity = f2fs_need_verity(cc->inode, start_idx); 1623 1624 for (i = 0; i < dic->cluster_size; i++) 1625 dic->rpages[i] = cc->rpages[i]; 1626 dic->nr_rpages = cc->cluster_size; 1627 1628 dic->cpages = page_array_alloc(dic->inode, dic->nr_cpages); 1629 if (!dic->cpages) { 1630 ret = -ENOMEM; 1631 goto out_free; 1632 } 1633 1634 for (i = 0; i < dic->nr_cpages; i++) { 1635 struct page *page; 1636 1637 page = f2fs_compress_alloc_page(); 1638 if (!page) { 1639 ret = -ENOMEM; 1640 goto out_free; 1641 } 1642 1643 f2fs_set_compressed_page(page, cc->inode, 1644 start_idx + i + 1, dic); 1645 dic->cpages[i] = page; 1646 } 1647 1648 ret = f2fs_prepare_decomp_mem(dic, true); 1649 if (ret) 1650 goto out_free; 1651 1652 return dic; 1653 1654 out_free: 1655 f2fs_free_dic(dic, true); 1656 return ERR_PTR(ret); 1657 } 1658 1659 static void f2fs_free_dic(struct decompress_io_ctx *dic, 1660 bool bypass_destroy_callback) 1661 { 1662 int i; 1663 1664 f2fs_release_decomp_mem(dic, bypass_destroy_callback, true); 1665 1666 if (dic->tpages) { 1667 for (i = 0; i < dic->cluster_size; i++) { 1668 if (dic->rpages[i]) 1669 continue; 1670 if (!dic->tpages[i]) 1671 continue; 1672 f2fs_compress_free_page(dic->tpages[i]); 1673 } 1674 page_array_free(dic->inode, dic->tpages, dic->cluster_size); 1675 } 1676 1677 if (dic->cpages) { 1678 for (i = 0; i < dic->nr_cpages; i++) { 1679 if (!dic->cpages[i]) 1680 continue; 1681 f2fs_compress_free_page(dic->cpages[i]); 1682 } 1683 page_array_free(dic->inode, dic->cpages, dic->nr_cpages); 1684 } 1685 1686 page_array_free(dic->inode, dic->rpages, dic->nr_rpages); 1687 kmem_cache_free(dic_entry_slab, dic); 1688 } 1689 1690 static void f2fs_late_free_dic(struct work_struct *work) 1691 { 1692 struct decompress_io_ctx *dic = 1693 container_of(work, struct decompress_io_ctx, free_work); 1694 1695 f2fs_free_dic(dic, false); 1696 } 1697 1698 static void f2fs_put_dic(struct decompress_io_ctx *dic, bool in_task) 1699 { 1700 if (refcount_dec_and_test(&dic->refcnt)) { 1701 if (in_task) { 1702 f2fs_free_dic(dic, false); 1703 } else { 1704 INIT_WORK(&dic->free_work, f2fs_late_free_dic); 1705 queue_work(F2FS_I_SB(dic->inode)->post_read_wq, 1706 &dic->free_work); 1707 } 1708 } 1709 } 1710 1711 static void f2fs_verify_cluster(struct work_struct *work) 1712 { 1713 struct decompress_io_ctx *dic = 1714 container_of(work, struct decompress_io_ctx, verity_work); 1715 int i; 1716 1717 /* Verify, update, and unlock the decompressed pages. */ 1718 for (i = 0; i < dic->cluster_size; i++) { 1719 struct page *rpage = dic->rpages[i]; 1720 1721 if (!rpage) 1722 continue; 1723 1724 if (fsverity_verify_page(rpage)) 1725 SetPageUptodate(rpage); 1726 else 1727 ClearPageUptodate(rpage); 1728 unlock_page(rpage); 1729 } 1730 1731 f2fs_put_dic(dic, true); 1732 } 1733 1734 /* 1735 * This is called when a compressed cluster has been decompressed 1736 * (or failed to be read and/or decompressed). 1737 */ 1738 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed, 1739 bool in_task) 1740 { 1741 int i; 1742 1743 if (!failed && dic->need_verity) { 1744 /* 1745 * Note that to avoid deadlocks, the verity work can't be done 1746 * on the decompression workqueue. This is because verifying 1747 * the data pages can involve reading metadata pages from the 1748 * file, and these metadata pages may be compressed. 1749 */ 1750 INIT_WORK(&dic->verity_work, f2fs_verify_cluster); 1751 fsverity_enqueue_verify_work(&dic->verity_work); 1752 return; 1753 } 1754 1755 /* Update and unlock the cluster's pagecache pages. */ 1756 for (i = 0; i < dic->cluster_size; i++) { 1757 struct page *rpage = dic->rpages[i]; 1758 1759 if (!rpage) 1760 continue; 1761 1762 if (failed) 1763 ClearPageUptodate(rpage); 1764 else 1765 SetPageUptodate(rpage); 1766 unlock_page(rpage); 1767 } 1768 1769 /* 1770 * Release the reference to the decompress_io_ctx that was being held 1771 * for I/O completion. 1772 */ 1773 f2fs_put_dic(dic, in_task); 1774 } 1775 1776 /* 1777 * Put a reference to a compressed page's decompress_io_ctx. 1778 * 1779 * This is called when the page is no longer needed and can be freed. 1780 */ 1781 void f2fs_put_page_dic(struct page *page, bool in_task) 1782 { 1783 struct decompress_io_ctx *dic = 1784 (struct decompress_io_ctx *)page_private(page); 1785 1786 f2fs_put_dic(dic, in_task); 1787 } 1788 1789 /* 1790 * check whether cluster blocks are contiguous, and add extent cache entry 1791 * only if cluster blocks are logically and physically contiguous. 1792 */ 1793 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn) 1794 { 1795 bool compressed = f2fs_data_blkaddr(dn) == COMPRESS_ADDR; 1796 int i = compressed ? 1 : 0; 1797 block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_page, 1798 dn->ofs_in_node + i); 1799 1800 for (i += 1; i < F2FS_I(dn->inode)->i_cluster_size; i++) { 1801 block_t blkaddr = data_blkaddr(dn->inode, dn->node_page, 1802 dn->ofs_in_node + i); 1803 1804 if (!__is_valid_data_blkaddr(blkaddr)) 1805 break; 1806 if (first_blkaddr + i - (compressed ? 1 : 0) != blkaddr) 1807 return 0; 1808 } 1809 1810 return compressed ? i - 1 : i; 1811 } 1812 1813 const struct address_space_operations f2fs_compress_aops = { 1814 .release_folio = f2fs_release_folio, 1815 .invalidate_folio = f2fs_invalidate_folio, 1816 }; 1817 1818 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi) 1819 { 1820 return sbi->compress_inode->i_mapping; 1821 } 1822 1823 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr) 1824 { 1825 if (!sbi->compress_inode) 1826 return; 1827 invalidate_mapping_pages(COMPRESS_MAPPING(sbi), blkaddr, blkaddr); 1828 } 1829 1830 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page, 1831 nid_t ino, block_t blkaddr) 1832 { 1833 struct page *cpage; 1834 int ret; 1835 1836 if (!test_opt(sbi, COMPRESS_CACHE)) 1837 return; 1838 1839 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ)) 1840 return; 1841 1842 if (!f2fs_available_free_memory(sbi, COMPRESS_PAGE)) 1843 return; 1844 1845 cpage = find_get_page(COMPRESS_MAPPING(sbi), blkaddr); 1846 if (cpage) { 1847 f2fs_put_page(cpage, 0); 1848 return; 1849 } 1850 1851 cpage = alloc_page(__GFP_NOWARN | __GFP_IO); 1852 if (!cpage) 1853 return; 1854 1855 ret = add_to_page_cache_lru(cpage, COMPRESS_MAPPING(sbi), 1856 blkaddr, GFP_NOFS); 1857 if (ret) { 1858 f2fs_put_page(cpage, 0); 1859 return; 1860 } 1861 1862 set_page_private_data(cpage, ino); 1863 1864 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ)) 1865 goto out; 1866 1867 memcpy(page_address(cpage), page_address(page), PAGE_SIZE); 1868 SetPageUptodate(cpage); 1869 out: 1870 f2fs_put_page(cpage, 1); 1871 } 1872 1873 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page, 1874 block_t blkaddr) 1875 { 1876 struct page *cpage; 1877 bool hitted = false; 1878 1879 if (!test_opt(sbi, COMPRESS_CACHE)) 1880 return false; 1881 1882 cpage = f2fs_pagecache_get_page(COMPRESS_MAPPING(sbi), 1883 blkaddr, FGP_LOCK | FGP_NOWAIT, GFP_NOFS); 1884 if (cpage) { 1885 if (PageUptodate(cpage)) { 1886 atomic_inc(&sbi->compress_page_hit); 1887 memcpy(page_address(page), 1888 page_address(cpage), PAGE_SIZE); 1889 hitted = true; 1890 } 1891 f2fs_put_page(cpage, 1); 1892 } 1893 1894 return hitted; 1895 } 1896 1897 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino) 1898 { 1899 struct address_space *mapping = COMPRESS_MAPPING(sbi); 1900 struct folio_batch fbatch; 1901 pgoff_t index = 0; 1902 pgoff_t end = MAX_BLKADDR(sbi); 1903 1904 if (!mapping->nrpages) 1905 return; 1906 1907 folio_batch_init(&fbatch); 1908 1909 do { 1910 unsigned int nr, i; 1911 1912 nr = filemap_get_folios(mapping, &index, end - 1, &fbatch); 1913 if (!nr) 1914 break; 1915 1916 for (i = 0; i < nr; i++) { 1917 struct folio *folio = fbatch.folios[i]; 1918 1919 folio_lock(folio); 1920 if (folio->mapping != mapping) { 1921 folio_unlock(folio); 1922 continue; 1923 } 1924 1925 if (ino != get_page_private_data(&folio->page)) { 1926 folio_unlock(folio); 1927 continue; 1928 } 1929 1930 generic_error_remove_page(mapping, &folio->page); 1931 folio_unlock(folio); 1932 } 1933 folio_batch_release(&fbatch); 1934 cond_resched(); 1935 } while (index < end); 1936 } 1937 1938 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) 1939 { 1940 struct inode *inode; 1941 1942 if (!test_opt(sbi, COMPRESS_CACHE)) 1943 return 0; 1944 1945 inode = f2fs_iget(sbi->sb, F2FS_COMPRESS_INO(sbi)); 1946 if (IS_ERR(inode)) 1947 return PTR_ERR(inode); 1948 sbi->compress_inode = inode; 1949 1950 sbi->compress_percent = COMPRESS_PERCENT; 1951 sbi->compress_watermark = COMPRESS_WATERMARK; 1952 1953 atomic_set(&sbi->compress_page_hit, 0); 1954 1955 return 0; 1956 } 1957 1958 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) 1959 { 1960 if (!sbi->compress_inode) 1961 return; 1962 iput(sbi->compress_inode); 1963 sbi->compress_inode = NULL; 1964 } 1965 1966 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) 1967 { 1968 dev_t dev = sbi->sb->s_bdev->bd_dev; 1969 char slab_name[32]; 1970 1971 if (!f2fs_sb_has_compression(sbi)) 1972 return 0; 1973 1974 sprintf(slab_name, "f2fs_page_array_entry-%u:%u", MAJOR(dev), MINOR(dev)); 1975 1976 sbi->page_array_slab_size = sizeof(struct page *) << 1977 F2FS_OPTION(sbi).compress_log_size; 1978 1979 sbi->page_array_slab = f2fs_kmem_cache_create(slab_name, 1980 sbi->page_array_slab_size); 1981 return sbi->page_array_slab ? 0 : -ENOMEM; 1982 } 1983 1984 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) 1985 { 1986 kmem_cache_destroy(sbi->page_array_slab); 1987 } 1988 1989 int __init f2fs_init_compress_cache(void) 1990 { 1991 cic_entry_slab = f2fs_kmem_cache_create("f2fs_cic_entry", 1992 sizeof(struct compress_io_ctx)); 1993 if (!cic_entry_slab) 1994 return -ENOMEM; 1995 dic_entry_slab = f2fs_kmem_cache_create("f2fs_dic_entry", 1996 sizeof(struct decompress_io_ctx)); 1997 if (!dic_entry_slab) 1998 goto free_cic; 1999 return 0; 2000 free_cic: 2001 kmem_cache_destroy(cic_entry_slab); 2002 return -ENOMEM; 2003 } 2004 2005 void f2fs_destroy_compress_cache(void) 2006 { 2007 kmem_cache_destroy(dic_entry_slab); 2008 kmem_cache_destroy(cic_entry_slab); 2009 } 2010