xref: /linux/fs/f2fs/compress.c (revision bd912c991d2ef079a32558f057b8663bcf1fb6fc)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * f2fs compress support
4  *
5  * Copyright (c) 2019 Chao Yu <chao@kernel.org>
6  */
7 
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/moduleparam.h>
11 #include <linux/writeback.h>
12 #include <linux/backing-dev.h>
13 #include <linux/lzo.h>
14 #include <linux/lz4.h>
15 #include <linux/zstd.h>
16 #include <linux/pagevec.h>
17 
18 #include "f2fs.h"
19 #include "node.h"
20 #include "segment.h"
21 #include <trace/events/f2fs.h>
22 
23 static struct kmem_cache *cic_entry_slab;
24 static struct kmem_cache *dic_entry_slab;
25 
26 static void *page_array_alloc(struct inode *inode, int nr)
27 {
28 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
29 	unsigned int size = sizeof(struct page *) * nr;
30 
31 	if (likely(size <= sbi->page_array_slab_size))
32 		return f2fs_kmem_cache_alloc(sbi->page_array_slab,
33 					GFP_F2FS_ZERO, false, F2FS_I_SB(inode));
34 	return f2fs_kzalloc(sbi, size, GFP_NOFS);
35 }
36 
37 static void page_array_free(struct inode *inode, void *pages, int nr)
38 {
39 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
40 	unsigned int size = sizeof(struct page *) * nr;
41 
42 	if (!pages)
43 		return;
44 
45 	if (likely(size <= sbi->page_array_slab_size))
46 		kmem_cache_free(sbi->page_array_slab, pages);
47 	else
48 		kfree(pages);
49 }
50 
51 struct f2fs_compress_ops {
52 	int (*init_compress_ctx)(struct compress_ctx *cc);
53 	void (*destroy_compress_ctx)(struct compress_ctx *cc);
54 	int (*compress_pages)(struct compress_ctx *cc);
55 	int (*init_decompress_ctx)(struct decompress_io_ctx *dic);
56 	void (*destroy_decompress_ctx)(struct decompress_io_ctx *dic);
57 	int (*decompress_pages)(struct decompress_io_ctx *dic);
58 };
59 
60 static unsigned int offset_in_cluster(struct compress_ctx *cc, pgoff_t index)
61 {
62 	return index & (cc->cluster_size - 1);
63 }
64 
65 static pgoff_t cluster_idx(struct compress_ctx *cc, pgoff_t index)
66 {
67 	return index >> cc->log_cluster_size;
68 }
69 
70 static pgoff_t start_idx_of_cluster(struct compress_ctx *cc)
71 {
72 	return cc->cluster_idx << cc->log_cluster_size;
73 }
74 
75 bool f2fs_is_compressed_page(struct page *page)
76 {
77 	if (!PagePrivate(page))
78 		return false;
79 	if (!page_private(page))
80 		return false;
81 	if (page_private_nonpointer(page))
82 		return false;
83 
84 	f2fs_bug_on(F2FS_M_SB(page->mapping),
85 		*((u32 *)page_private(page)) != F2FS_COMPRESSED_PAGE_MAGIC);
86 	return true;
87 }
88 
89 static void f2fs_set_compressed_page(struct page *page,
90 		struct inode *inode, pgoff_t index, void *data)
91 {
92 	attach_page_private(page, (void *)data);
93 
94 	/* i_crypto_info and iv index */
95 	page->index = index;
96 	page->mapping = inode->i_mapping;
97 }
98 
99 static void f2fs_drop_rpages(struct compress_ctx *cc, int len, bool unlock)
100 {
101 	int i;
102 
103 	for (i = 0; i < len; i++) {
104 		if (!cc->rpages[i])
105 			continue;
106 		if (unlock)
107 			unlock_page(cc->rpages[i]);
108 		else
109 			put_page(cc->rpages[i]);
110 	}
111 }
112 
113 static void f2fs_put_rpages(struct compress_ctx *cc)
114 {
115 	f2fs_drop_rpages(cc, cc->cluster_size, false);
116 }
117 
118 static void f2fs_unlock_rpages(struct compress_ctx *cc, int len)
119 {
120 	f2fs_drop_rpages(cc, len, true);
121 }
122 
123 static void f2fs_put_rpages_wbc(struct compress_ctx *cc,
124 		struct writeback_control *wbc, bool redirty, int unlock)
125 {
126 	unsigned int i;
127 
128 	for (i = 0; i < cc->cluster_size; i++) {
129 		if (!cc->rpages[i])
130 			continue;
131 		if (redirty)
132 			redirty_page_for_writepage(wbc, cc->rpages[i]);
133 		f2fs_put_page(cc->rpages[i], unlock);
134 	}
135 }
136 
137 struct page *f2fs_compress_control_page(struct page *page)
138 {
139 	return ((struct compress_io_ctx *)page_private(page))->rpages[0];
140 }
141 
142 int f2fs_init_compress_ctx(struct compress_ctx *cc)
143 {
144 	if (cc->rpages)
145 		return 0;
146 
147 	cc->rpages = page_array_alloc(cc->inode, cc->cluster_size);
148 	return cc->rpages ? 0 : -ENOMEM;
149 }
150 
151 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse)
152 {
153 	page_array_free(cc->inode, cc->rpages, cc->cluster_size);
154 	cc->rpages = NULL;
155 	cc->nr_rpages = 0;
156 	cc->nr_cpages = 0;
157 	cc->valid_nr_cpages = 0;
158 	if (!reuse)
159 		cc->cluster_idx = NULL_CLUSTER;
160 }
161 
162 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page)
163 {
164 	unsigned int cluster_ofs;
165 
166 	if (!f2fs_cluster_can_merge_page(cc, page->index))
167 		f2fs_bug_on(F2FS_I_SB(cc->inode), 1);
168 
169 	cluster_ofs = offset_in_cluster(cc, page->index);
170 	cc->rpages[cluster_ofs] = page;
171 	cc->nr_rpages++;
172 	cc->cluster_idx = cluster_idx(cc, page->index);
173 }
174 
175 #ifdef CONFIG_F2FS_FS_LZO
176 static int lzo_init_compress_ctx(struct compress_ctx *cc)
177 {
178 	cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
179 				LZO1X_MEM_COMPRESS, GFP_NOFS);
180 	if (!cc->private)
181 		return -ENOMEM;
182 
183 	cc->clen = lzo1x_worst_compress(PAGE_SIZE << cc->log_cluster_size);
184 	return 0;
185 }
186 
187 static void lzo_destroy_compress_ctx(struct compress_ctx *cc)
188 {
189 	kvfree(cc->private);
190 	cc->private = NULL;
191 }
192 
193 static int lzo_compress_pages(struct compress_ctx *cc)
194 {
195 	int ret;
196 
197 	ret = lzo1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
198 					&cc->clen, cc->private);
199 	if (ret != LZO_E_OK) {
200 		printk_ratelimited("%sF2FS-fs (%s): lzo compress failed, ret:%d\n",
201 				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret);
202 		return -EIO;
203 	}
204 	return 0;
205 }
206 
207 static int lzo_decompress_pages(struct decompress_io_ctx *dic)
208 {
209 	int ret;
210 
211 	ret = lzo1x_decompress_safe(dic->cbuf->cdata, dic->clen,
212 						dic->rbuf, &dic->rlen);
213 	if (ret != LZO_E_OK) {
214 		printk_ratelimited("%sF2FS-fs (%s): lzo decompress failed, ret:%d\n",
215 				KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret);
216 		return -EIO;
217 	}
218 
219 	if (dic->rlen != PAGE_SIZE << dic->log_cluster_size) {
220 		printk_ratelimited("%sF2FS-fs (%s): lzo invalid rlen:%zu, "
221 					"expected:%lu\n", KERN_ERR,
222 					F2FS_I_SB(dic->inode)->sb->s_id,
223 					dic->rlen,
224 					PAGE_SIZE << dic->log_cluster_size);
225 		return -EIO;
226 	}
227 	return 0;
228 }
229 
230 static const struct f2fs_compress_ops f2fs_lzo_ops = {
231 	.init_compress_ctx	= lzo_init_compress_ctx,
232 	.destroy_compress_ctx	= lzo_destroy_compress_ctx,
233 	.compress_pages		= lzo_compress_pages,
234 	.decompress_pages	= lzo_decompress_pages,
235 };
236 #endif
237 
238 #ifdef CONFIG_F2FS_FS_LZ4
239 static int lz4_init_compress_ctx(struct compress_ctx *cc)
240 {
241 	unsigned int size = LZ4_MEM_COMPRESS;
242 
243 #ifdef CONFIG_F2FS_FS_LZ4HC
244 	if (F2FS_I(cc->inode)->i_compress_level)
245 		size = LZ4HC_MEM_COMPRESS;
246 #endif
247 
248 	cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), size, GFP_NOFS);
249 	if (!cc->private)
250 		return -ENOMEM;
251 
252 	/*
253 	 * we do not change cc->clen to LZ4_compressBound(inputsize) to
254 	 * adapt worst compress case, because lz4 compressor can handle
255 	 * output budget properly.
256 	 */
257 	cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
258 	return 0;
259 }
260 
261 static void lz4_destroy_compress_ctx(struct compress_ctx *cc)
262 {
263 	kvfree(cc->private);
264 	cc->private = NULL;
265 }
266 
267 static int lz4_compress_pages(struct compress_ctx *cc)
268 {
269 	int len = -EINVAL;
270 	unsigned char level = F2FS_I(cc->inode)->i_compress_level;
271 
272 	if (!level)
273 		len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen,
274 						cc->clen, cc->private);
275 #ifdef CONFIG_F2FS_FS_LZ4HC
276 	else
277 		len = LZ4_compress_HC(cc->rbuf, cc->cbuf->cdata, cc->rlen,
278 					cc->clen, level, cc->private);
279 #endif
280 	if (len < 0)
281 		return len;
282 	if (!len)
283 		return -EAGAIN;
284 
285 	cc->clen = len;
286 	return 0;
287 }
288 
289 static int lz4_decompress_pages(struct decompress_io_ctx *dic)
290 {
291 	int ret;
292 
293 	ret = LZ4_decompress_safe(dic->cbuf->cdata, dic->rbuf,
294 						dic->clen, dic->rlen);
295 	if (ret < 0) {
296 		printk_ratelimited("%sF2FS-fs (%s): lz4 decompress failed, ret:%d\n",
297 				KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret);
298 		return -EIO;
299 	}
300 
301 	if (ret != PAGE_SIZE << dic->log_cluster_size) {
302 		printk_ratelimited("%sF2FS-fs (%s): lz4 invalid ret:%d, "
303 					"expected:%lu\n", KERN_ERR,
304 					F2FS_I_SB(dic->inode)->sb->s_id, ret,
305 					PAGE_SIZE << dic->log_cluster_size);
306 		return -EIO;
307 	}
308 	return 0;
309 }
310 
311 static const struct f2fs_compress_ops f2fs_lz4_ops = {
312 	.init_compress_ctx	= lz4_init_compress_ctx,
313 	.destroy_compress_ctx	= lz4_destroy_compress_ctx,
314 	.compress_pages		= lz4_compress_pages,
315 	.decompress_pages	= lz4_decompress_pages,
316 };
317 #endif
318 
319 #ifdef CONFIG_F2FS_FS_ZSTD
320 #define F2FS_ZSTD_DEFAULT_CLEVEL	1
321 
322 static int zstd_init_compress_ctx(struct compress_ctx *cc)
323 {
324 	zstd_parameters params;
325 	zstd_cstream *stream;
326 	void *workspace;
327 	unsigned int workspace_size;
328 	unsigned char level = F2FS_I(cc->inode)->i_compress_level;
329 
330 	if (!level)
331 		level = F2FS_ZSTD_DEFAULT_CLEVEL;
332 
333 	params = zstd_get_params(level, cc->rlen);
334 	workspace_size = zstd_cstream_workspace_bound(&params.cParams);
335 
336 	workspace = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
337 					workspace_size, GFP_NOFS);
338 	if (!workspace)
339 		return -ENOMEM;
340 
341 	stream = zstd_init_cstream(&params, 0, workspace, workspace_size);
342 	if (!stream) {
343 		printk_ratelimited("%sF2FS-fs (%s): %s zstd_init_cstream failed\n",
344 				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
345 				__func__);
346 		kvfree(workspace);
347 		return -EIO;
348 	}
349 
350 	cc->private = workspace;
351 	cc->private2 = stream;
352 
353 	cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
354 	return 0;
355 }
356 
357 static void zstd_destroy_compress_ctx(struct compress_ctx *cc)
358 {
359 	kvfree(cc->private);
360 	cc->private = NULL;
361 	cc->private2 = NULL;
362 }
363 
364 static int zstd_compress_pages(struct compress_ctx *cc)
365 {
366 	zstd_cstream *stream = cc->private2;
367 	zstd_in_buffer inbuf;
368 	zstd_out_buffer outbuf;
369 	int src_size = cc->rlen;
370 	int dst_size = src_size - PAGE_SIZE - COMPRESS_HEADER_SIZE;
371 	int ret;
372 
373 	inbuf.pos = 0;
374 	inbuf.src = cc->rbuf;
375 	inbuf.size = src_size;
376 
377 	outbuf.pos = 0;
378 	outbuf.dst = cc->cbuf->cdata;
379 	outbuf.size = dst_size;
380 
381 	ret = zstd_compress_stream(stream, &outbuf, &inbuf);
382 	if (zstd_is_error(ret)) {
383 		printk_ratelimited("%sF2FS-fs (%s): %s zstd_compress_stream failed, ret: %d\n",
384 				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
385 				__func__, zstd_get_error_code(ret));
386 		return -EIO;
387 	}
388 
389 	ret = zstd_end_stream(stream, &outbuf);
390 	if (zstd_is_error(ret)) {
391 		printk_ratelimited("%sF2FS-fs (%s): %s zstd_end_stream returned %d\n",
392 				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
393 				__func__, zstd_get_error_code(ret));
394 		return -EIO;
395 	}
396 
397 	/*
398 	 * there is compressed data remained in intermediate buffer due to
399 	 * no more space in cbuf.cdata
400 	 */
401 	if (ret)
402 		return -EAGAIN;
403 
404 	cc->clen = outbuf.pos;
405 	return 0;
406 }
407 
408 static int zstd_init_decompress_ctx(struct decompress_io_ctx *dic)
409 {
410 	zstd_dstream *stream;
411 	void *workspace;
412 	unsigned int workspace_size;
413 	unsigned int max_window_size =
414 			MAX_COMPRESS_WINDOW_SIZE(dic->log_cluster_size);
415 
416 	workspace_size = zstd_dstream_workspace_bound(max_window_size);
417 
418 	workspace = f2fs_kvmalloc(F2FS_I_SB(dic->inode),
419 					workspace_size, GFP_NOFS);
420 	if (!workspace)
421 		return -ENOMEM;
422 
423 	stream = zstd_init_dstream(max_window_size, workspace, workspace_size);
424 	if (!stream) {
425 		printk_ratelimited("%sF2FS-fs (%s): %s zstd_init_dstream failed\n",
426 				KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id,
427 				__func__);
428 		kvfree(workspace);
429 		return -EIO;
430 	}
431 
432 	dic->private = workspace;
433 	dic->private2 = stream;
434 
435 	return 0;
436 }
437 
438 static void zstd_destroy_decompress_ctx(struct decompress_io_ctx *dic)
439 {
440 	kvfree(dic->private);
441 	dic->private = NULL;
442 	dic->private2 = NULL;
443 }
444 
445 static int zstd_decompress_pages(struct decompress_io_ctx *dic)
446 {
447 	zstd_dstream *stream = dic->private2;
448 	zstd_in_buffer inbuf;
449 	zstd_out_buffer outbuf;
450 	int ret;
451 
452 	inbuf.pos = 0;
453 	inbuf.src = dic->cbuf->cdata;
454 	inbuf.size = dic->clen;
455 
456 	outbuf.pos = 0;
457 	outbuf.dst = dic->rbuf;
458 	outbuf.size = dic->rlen;
459 
460 	ret = zstd_decompress_stream(stream, &outbuf, &inbuf);
461 	if (zstd_is_error(ret)) {
462 		printk_ratelimited("%sF2FS-fs (%s): %s zstd_decompress_stream failed, ret: %d\n",
463 				KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id,
464 				__func__, zstd_get_error_code(ret));
465 		return -EIO;
466 	}
467 
468 	if (dic->rlen != outbuf.pos) {
469 		printk_ratelimited("%sF2FS-fs (%s): %s ZSTD invalid rlen:%zu, "
470 				"expected:%lu\n", KERN_ERR,
471 				F2FS_I_SB(dic->inode)->sb->s_id,
472 				__func__, dic->rlen,
473 				PAGE_SIZE << dic->log_cluster_size);
474 		return -EIO;
475 	}
476 
477 	return 0;
478 }
479 
480 static const struct f2fs_compress_ops f2fs_zstd_ops = {
481 	.init_compress_ctx	= zstd_init_compress_ctx,
482 	.destroy_compress_ctx	= zstd_destroy_compress_ctx,
483 	.compress_pages		= zstd_compress_pages,
484 	.init_decompress_ctx	= zstd_init_decompress_ctx,
485 	.destroy_decompress_ctx	= zstd_destroy_decompress_ctx,
486 	.decompress_pages	= zstd_decompress_pages,
487 };
488 #endif
489 
490 #ifdef CONFIG_F2FS_FS_LZO
491 #ifdef CONFIG_F2FS_FS_LZORLE
492 static int lzorle_compress_pages(struct compress_ctx *cc)
493 {
494 	int ret;
495 
496 	ret = lzorle1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
497 					&cc->clen, cc->private);
498 	if (ret != LZO_E_OK) {
499 		printk_ratelimited("%sF2FS-fs (%s): lzo-rle compress failed, ret:%d\n",
500 				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret);
501 		return -EIO;
502 	}
503 	return 0;
504 }
505 
506 static const struct f2fs_compress_ops f2fs_lzorle_ops = {
507 	.init_compress_ctx	= lzo_init_compress_ctx,
508 	.destroy_compress_ctx	= lzo_destroy_compress_ctx,
509 	.compress_pages		= lzorle_compress_pages,
510 	.decompress_pages	= lzo_decompress_pages,
511 };
512 #endif
513 #endif
514 
515 static const struct f2fs_compress_ops *f2fs_cops[COMPRESS_MAX] = {
516 #ifdef CONFIG_F2FS_FS_LZO
517 	&f2fs_lzo_ops,
518 #else
519 	NULL,
520 #endif
521 #ifdef CONFIG_F2FS_FS_LZ4
522 	&f2fs_lz4_ops,
523 #else
524 	NULL,
525 #endif
526 #ifdef CONFIG_F2FS_FS_ZSTD
527 	&f2fs_zstd_ops,
528 #else
529 	NULL,
530 #endif
531 #if defined(CONFIG_F2FS_FS_LZO) && defined(CONFIG_F2FS_FS_LZORLE)
532 	&f2fs_lzorle_ops,
533 #else
534 	NULL,
535 #endif
536 };
537 
538 bool f2fs_is_compress_backend_ready(struct inode *inode)
539 {
540 	if (!f2fs_compressed_file(inode))
541 		return true;
542 	return f2fs_cops[F2FS_I(inode)->i_compress_algorithm];
543 }
544 
545 static mempool_t *compress_page_pool;
546 static int num_compress_pages = 512;
547 module_param(num_compress_pages, uint, 0444);
548 MODULE_PARM_DESC(num_compress_pages,
549 		"Number of intermediate compress pages to preallocate");
550 
551 int __init f2fs_init_compress_mempool(void)
552 {
553 	compress_page_pool = mempool_create_page_pool(num_compress_pages, 0);
554 	return compress_page_pool ? 0 : -ENOMEM;
555 }
556 
557 void f2fs_destroy_compress_mempool(void)
558 {
559 	mempool_destroy(compress_page_pool);
560 }
561 
562 static struct page *f2fs_compress_alloc_page(void)
563 {
564 	struct page *page;
565 
566 	page = mempool_alloc(compress_page_pool, GFP_NOFS);
567 	lock_page(page);
568 
569 	return page;
570 }
571 
572 static void f2fs_compress_free_page(struct page *page)
573 {
574 	if (!page)
575 		return;
576 	detach_page_private(page);
577 	page->mapping = NULL;
578 	unlock_page(page);
579 	mempool_free(page, compress_page_pool);
580 }
581 
582 #define MAX_VMAP_RETRIES	3
583 
584 static void *f2fs_vmap(struct page **pages, unsigned int count)
585 {
586 	int i;
587 	void *buf = NULL;
588 
589 	for (i = 0; i < MAX_VMAP_RETRIES; i++) {
590 		buf = vm_map_ram(pages, count, -1);
591 		if (buf)
592 			break;
593 		vm_unmap_aliases();
594 	}
595 	return buf;
596 }
597 
598 static int f2fs_compress_pages(struct compress_ctx *cc)
599 {
600 	struct f2fs_inode_info *fi = F2FS_I(cc->inode);
601 	const struct f2fs_compress_ops *cops =
602 				f2fs_cops[fi->i_compress_algorithm];
603 	unsigned int max_len, new_nr_cpages;
604 	u32 chksum = 0;
605 	int i, ret;
606 
607 	trace_f2fs_compress_pages_start(cc->inode, cc->cluster_idx,
608 				cc->cluster_size, fi->i_compress_algorithm);
609 
610 	if (cops->init_compress_ctx) {
611 		ret = cops->init_compress_ctx(cc);
612 		if (ret)
613 			goto out;
614 	}
615 
616 	max_len = COMPRESS_HEADER_SIZE + cc->clen;
617 	cc->nr_cpages = DIV_ROUND_UP(max_len, PAGE_SIZE);
618 	cc->valid_nr_cpages = cc->nr_cpages;
619 
620 	cc->cpages = page_array_alloc(cc->inode, cc->nr_cpages);
621 	if (!cc->cpages) {
622 		ret = -ENOMEM;
623 		goto destroy_compress_ctx;
624 	}
625 
626 	for (i = 0; i < cc->nr_cpages; i++) {
627 		cc->cpages[i] = f2fs_compress_alloc_page();
628 		if (!cc->cpages[i]) {
629 			ret = -ENOMEM;
630 			goto out_free_cpages;
631 		}
632 	}
633 
634 	cc->rbuf = f2fs_vmap(cc->rpages, cc->cluster_size);
635 	if (!cc->rbuf) {
636 		ret = -ENOMEM;
637 		goto out_free_cpages;
638 	}
639 
640 	cc->cbuf = f2fs_vmap(cc->cpages, cc->nr_cpages);
641 	if (!cc->cbuf) {
642 		ret = -ENOMEM;
643 		goto out_vunmap_rbuf;
644 	}
645 
646 	ret = cops->compress_pages(cc);
647 	if (ret)
648 		goto out_vunmap_cbuf;
649 
650 	max_len = PAGE_SIZE * (cc->cluster_size - 1) - COMPRESS_HEADER_SIZE;
651 
652 	if (cc->clen > max_len) {
653 		ret = -EAGAIN;
654 		goto out_vunmap_cbuf;
655 	}
656 
657 	cc->cbuf->clen = cpu_to_le32(cc->clen);
658 
659 	if (fi->i_compress_flag & BIT(COMPRESS_CHKSUM))
660 		chksum = f2fs_crc32(F2FS_I_SB(cc->inode),
661 					cc->cbuf->cdata, cc->clen);
662 	cc->cbuf->chksum = cpu_to_le32(chksum);
663 
664 	for (i = 0; i < COMPRESS_DATA_RESERVED_SIZE; i++)
665 		cc->cbuf->reserved[i] = cpu_to_le32(0);
666 
667 	new_nr_cpages = DIV_ROUND_UP(cc->clen + COMPRESS_HEADER_SIZE, PAGE_SIZE);
668 
669 	/* zero out any unused part of the last page */
670 	memset(&cc->cbuf->cdata[cc->clen], 0,
671 			(new_nr_cpages * PAGE_SIZE) -
672 			(cc->clen + COMPRESS_HEADER_SIZE));
673 
674 	vm_unmap_ram(cc->cbuf, cc->nr_cpages);
675 	vm_unmap_ram(cc->rbuf, cc->cluster_size);
676 
677 	for (i = new_nr_cpages; i < cc->nr_cpages; i++) {
678 		f2fs_compress_free_page(cc->cpages[i]);
679 		cc->cpages[i] = NULL;
680 	}
681 
682 	if (cops->destroy_compress_ctx)
683 		cops->destroy_compress_ctx(cc);
684 
685 	cc->valid_nr_cpages = new_nr_cpages;
686 
687 	trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
688 							cc->clen, ret);
689 	return 0;
690 
691 out_vunmap_cbuf:
692 	vm_unmap_ram(cc->cbuf, cc->nr_cpages);
693 out_vunmap_rbuf:
694 	vm_unmap_ram(cc->rbuf, cc->cluster_size);
695 out_free_cpages:
696 	for (i = 0; i < cc->nr_cpages; i++) {
697 		if (cc->cpages[i])
698 			f2fs_compress_free_page(cc->cpages[i]);
699 	}
700 	page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
701 	cc->cpages = NULL;
702 destroy_compress_ctx:
703 	if (cops->destroy_compress_ctx)
704 		cops->destroy_compress_ctx(cc);
705 out:
706 	trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
707 							cc->clen, ret);
708 	return ret;
709 }
710 
711 static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic,
712 		bool pre_alloc);
713 static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic,
714 		bool bypass_destroy_callback, bool pre_alloc);
715 
716 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task)
717 {
718 	struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
719 	struct f2fs_inode_info *fi = F2FS_I(dic->inode);
720 	const struct f2fs_compress_ops *cops =
721 			f2fs_cops[fi->i_compress_algorithm];
722 	bool bypass_callback = false;
723 	int ret;
724 
725 	trace_f2fs_decompress_pages_start(dic->inode, dic->cluster_idx,
726 				dic->cluster_size, fi->i_compress_algorithm);
727 
728 	if (dic->failed) {
729 		ret = -EIO;
730 		goto out_end_io;
731 	}
732 
733 	ret = f2fs_prepare_decomp_mem(dic, false);
734 	if (ret) {
735 		bypass_callback = true;
736 		goto out_release;
737 	}
738 
739 	dic->clen = le32_to_cpu(dic->cbuf->clen);
740 	dic->rlen = PAGE_SIZE << dic->log_cluster_size;
741 
742 	if (dic->clen > PAGE_SIZE * dic->nr_cpages - COMPRESS_HEADER_SIZE) {
743 		ret = -EFSCORRUPTED;
744 
745 		/* Avoid f2fs_commit_super in irq context */
746 		if (in_task)
747 			f2fs_save_errors(sbi, ERROR_FAIL_DECOMPRESSION);
748 		else
749 			f2fs_handle_error(sbi, ERROR_FAIL_DECOMPRESSION);
750 		goto out_release;
751 	}
752 
753 	ret = cops->decompress_pages(dic);
754 
755 	if (!ret && (fi->i_compress_flag & BIT(COMPRESS_CHKSUM))) {
756 		u32 provided = le32_to_cpu(dic->cbuf->chksum);
757 		u32 calculated = f2fs_crc32(sbi, dic->cbuf->cdata, dic->clen);
758 
759 		if (provided != calculated) {
760 			if (!is_inode_flag_set(dic->inode, FI_COMPRESS_CORRUPT)) {
761 				set_inode_flag(dic->inode, FI_COMPRESS_CORRUPT);
762 				printk_ratelimited(
763 					"%sF2FS-fs (%s): checksum invalid, nid = %lu, %x vs %x",
764 					KERN_INFO, sbi->sb->s_id, dic->inode->i_ino,
765 					provided, calculated);
766 			}
767 			set_sbi_flag(sbi, SBI_NEED_FSCK);
768 		}
769 	}
770 
771 out_release:
772 	f2fs_release_decomp_mem(dic, bypass_callback, false);
773 
774 out_end_io:
775 	trace_f2fs_decompress_pages_end(dic->inode, dic->cluster_idx,
776 							dic->clen, ret);
777 	f2fs_decompress_end_io(dic, ret, in_task);
778 }
779 
780 /*
781  * This is called when a page of a compressed cluster has been read from disk
782  * (or failed to be read from disk).  It checks whether this page was the last
783  * page being waited on in the cluster, and if so, it decompresses the cluster
784  * (or in the case of a failure, cleans up without actually decompressing).
785  */
786 void f2fs_end_read_compressed_page(struct page *page, bool failed,
787 		block_t blkaddr, bool in_task)
788 {
789 	struct decompress_io_ctx *dic =
790 			(struct decompress_io_ctx *)page_private(page);
791 	struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
792 
793 	dec_page_count(sbi, F2FS_RD_DATA);
794 
795 	if (failed)
796 		WRITE_ONCE(dic->failed, true);
797 	else if (blkaddr && in_task)
798 		f2fs_cache_compressed_page(sbi, page,
799 					dic->inode->i_ino, blkaddr);
800 
801 	if (atomic_dec_and_test(&dic->remaining_pages))
802 		f2fs_decompress_cluster(dic, in_task);
803 }
804 
805 static bool is_page_in_cluster(struct compress_ctx *cc, pgoff_t index)
806 {
807 	if (cc->cluster_idx == NULL_CLUSTER)
808 		return true;
809 	return cc->cluster_idx == cluster_idx(cc, index);
810 }
811 
812 bool f2fs_cluster_is_empty(struct compress_ctx *cc)
813 {
814 	return cc->nr_rpages == 0;
815 }
816 
817 static bool f2fs_cluster_is_full(struct compress_ctx *cc)
818 {
819 	return cc->cluster_size == cc->nr_rpages;
820 }
821 
822 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index)
823 {
824 	if (f2fs_cluster_is_empty(cc))
825 		return true;
826 	return is_page_in_cluster(cc, index);
827 }
828 
829 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
830 				int index, int nr_pages, bool uptodate)
831 {
832 	unsigned long pgidx = pages[index]->index;
833 	int i = uptodate ? 0 : 1;
834 
835 	/*
836 	 * when uptodate set to true, try to check all pages in cluster is
837 	 * uptodate or not.
838 	 */
839 	if (uptodate && (pgidx % cc->cluster_size))
840 		return false;
841 
842 	if (nr_pages - index < cc->cluster_size)
843 		return false;
844 
845 	for (; i < cc->cluster_size; i++) {
846 		if (pages[index + i]->index != pgidx + i)
847 			return false;
848 		if (uptodate && !PageUptodate(pages[index + i]))
849 			return false;
850 	}
851 
852 	return true;
853 }
854 
855 static bool cluster_has_invalid_data(struct compress_ctx *cc)
856 {
857 	loff_t i_size = i_size_read(cc->inode);
858 	unsigned nr_pages = DIV_ROUND_UP(i_size, PAGE_SIZE);
859 	int i;
860 
861 	for (i = 0; i < cc->cluster_size; i++) {
862 		struct page *page = cc->rpages[i];
863 
864 		f2fs_bug_on(F2FS_I_SB(cc->inode), !page);
865 
866 		/* beyond EOF */
867 		if (page->index >= nr_pages)
868 			return true;
869 	}
870 	return false;
871 }
872 
873 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn)
874 {
875 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
876 	unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
877 	bool compressed = dn->data_blkaddr == COMPRESS_ADDR;
878 	int cluster_end = 0;
879 	int i;
880 	char *reason = "";
881 
882 	if (!compressed)
883 		return false;
884 
885 	/* [..., COMPR_ADDR, ...] */
886 	if (dn->ofs_in_node % cluster_size) {
887 		reason = "[*|C|*|*]";
888 		goto out;
889 	}
890 
891 	for (i = 1; i < cluster_size; i++) {
892 		block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
893 							dn->ofs_in_node + i);
894 
895 		/* [COMPR_ADDR, ..., COMPR_ADDR] */
896 		if (blkaddr == COMPRESS_ADDR) {
897 			reason = "[C|*|C|*]";
898 			goto out;
899 		}
900 		if (!__is_valid_data_blkaddr(blkaddr)) {
901 			if (!cluster_end)
902 				cluster_end = i;
903 			continue;
904 		}
905 		/* [COMPR_ADDR, NULL_ADDR or NEW_ADDR, valid_blkaddr] */
906 		if (cluster_end) {
907 			reason = "[C|N|N|V]";
908 			goto out;
909 		}
910 	}
911 	return false;
912 out:
913 	f2fs_warn(sbi, "access invalid cluster, ino:%lu, nid:%u, ofs_in_node:%u, reason:%s",
914 			dn->inode->i_ino, dn->nid, dn->ofs_in_node, reason);
915 	set_sbi_flag(sbi, SBI_NEED_FSCK);
916 	return true;
917 }
918 
919 static int __f2fs_cluster_blocks(struct inode *inode,
920 				unsigned int cluster_idx, bool compr)
921 {
922 	struct dnode_of_data dn;
923 	unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
924 	unsigned int start_idx = cluster_idx <<
925 				F2FS_I(inode)->i_log_cluster_size;
926 	int ret;
927 
928 	set_new_dnode(&dn, inode, NULL, NULL, 0);
929 	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
930 	if (ret) {
931 		if (ret == -ENOENT)
932 			ret = 0;
933 		goto fail;
934 	}
935 
936 	if (f2fs_sanity_check_cluster(&dn)) {
937 		ret = -EFSCORRUPTED;
938 		f2fs_handle_error(F2FS_I_SB(inode), ERROR_CORRUPTED_CLUSTER);
939 		goto fail;
940 	}
941 
942 	if (dn.data_blkaddr == COMPRESS_ADDR) {
943 		int i;
944 
945 		ret = 1;
946 		for (i = 1; i < cluster_size; i++) {
947 			block_t blkaddr;
948 
949 			blkaddr = data_blkaddr(dn.inode,
950 					dn.node_page, dn.ofs_in_node + i);
951 			if (compr) {
952 				if (__is_valid_data_blkaddr(blkaddr))
953 					ret++;
954 			} else {
955 				if (blkaddr != NULL_ADDR)
956 					ret++;
957 			}
958 		}
959 
960 		f2fs_bug_on(F2FS_I_SB(inode),
961 			!compr && ret != cluster_size &&
962 			!is_inode_flag_set(inode, FI_COMPRESS_RELEASED));
963 	}
964 fail:
965 	f2fs_put_dnode(&dn);
966 	return ret;
967 }
968 
969 /* return # of compressed blocks in compressed cluster */
970 static int f2fs_compressed_blocks(struct compress_ctx *cc)
971 {
972 	return __f2fs_cluster_blocks(cc->inode, cc->cluster_idx, true);
973 }
974 
975 /* return # of valid blocks in compressed cluster */
976 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index)
977 {
978 	return __f2fs_cluster_blocks(inode,
979 		index >> F2FS_I(inode)->i_log_cluster_size,
980 		false);
981 }
982 
983 static bool cluster_may_compress(struct compress_ctx *cc)
984 {
985 	if (!f2fs_need_compress_data(cc->inode))
986 		return false;
987 	if (f2fs_is_atomic_file(cc->inode))
988 		return false;
989 	if (!f2fs_cluster_is_full(cc))
990 		return false;
991 	if (unlikely(f2fs_cp_error(F2FS_I_SB(cc->inode))))
992 		return false;
993 	return !cluster_has_invalid_data(cc);
994 }
995 
996 static void set_cluster_writeback(struct compress_ctx *cc)
997 {
998 	int i;
999 
1000 	for (i = 0; i < cc->cluster_size; i++) {
1001 		if (cc->rpages[i])
1002 			set_page_writeback(cc->rpages[i]);
1003 	}
1004 }
1005 
1006 static void set_cluster_dirty(struct compress_ctx *cc)
1007 {
1008 	int i;
1009 
1010 	for (i = 0; i < cc->cluster_size; i++)
1011 		if (cc->rpages[i])
1012 			set_page_dirty(cc->rpages[i]);
1013 }
1014 
1015 static int prepare_compress_overwrite(struct compress_ctx *cc,
1016 		struct page **pagep, pgoff_t index, void **fsdata)
1017 {
1018 	struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode);
1019 	struct address_space *mapping = cc->inode->i_mapping;
1020 	struct page *page;
1021 	sector_t last_block_in_bio;
1022 	unsigned fgp_flag = FGP_LOCK | FGP_WRITE | FGP_CREAT;
1023 	pgoff_t start_idx = start_idx_of_cluster(cc);
1024 	int i, ret;
1025 
1026 retry:
1027 	ret = f2fs_is_compressed_cluster(cc->inode, start_idx);
1028 	if (ret <= 0)
1029 		return ret;
1030 
1031 	ret = f2fs_init_compress_ctx(cc);
1032 	if (ret)
1033 		return ret;
1034 
1035 	/* keep page reference to avoid page reclaim */
1036 	for (i = 0; i < cc->cluster_size; i++) {
1037 		page = f2fs_pagecache_get_page(mapping, start_idx + i,
1038 							fgp_flag, GFP_NOFS);
1039 		if (!page) {
1040 			ret = -ENOMEM;
1041 			goto unlock_pages;
1042 		}
1043 
1044 		if (PageUptodate(page))
1045 			f2fs_put_page(page, 1);
1046 		else
1047 			f2fs_compress_ctx_add_page(cc, page);
1048 	}
1049 
1050 	if (!f2fs_cluster_is_empty(cc)) {
1051 		struct bio *bio = NULL;
1052 
1053 		ret = f2fs_read_multi_pages(cc, &bio, cc->cluster_size,
1054 					&last_block_in_bio, false, true);
1055 		f2fs_put_rpages(cc);
1056 		f2fs_destroy_compress_ctx(cc, true);
1057 		if (ret)
1058 			goto out;
1059 		if (bio)
1060 			f2fs_submit_read_bio(sbi, bio, DATA);
1061 
1062 		ret = f2fs_init_compress_ctx(cc);
1063 		if (ret)
1064 			goto out;
1065 	}
1066 
1067 	for (i = 0; i < cc->cluster_size; i++) {
1068 		f2fs_bug_on(sbi, cc->rpages[i]);
1069 
1070 		page = find_lock_page(mapping, start_idx + i);
1071 		if (!page) {
1072 			/* page can be truncated */
1073 			goto release_and_retry;
1074 		}
1075 
1076 		f2fs_wait_on_page_writeback(page, DATA, true, true);
1077 		f2fs_compress_ctx_add_page(cc, page);
1078 
1079 		if (!PageUptodate(page)) {
1080 release_and_retry:
1081 			f2fs_put_rpages(cc);
1082 			f2fs_unlock_rpages(cc, i + 1);
1083 			f2fs_destroy_compress_ctx(cc, true);
1084 			goto retry;
1085 		}
1086 	}
1087 
1088 	if (likely(!ret)) {
1089 		*fsdata = cc->rpages;
1090 		*pagep = cc->rpages[offset_in_cluster(cc, index)];
1091 		return cc->cluster_size;
1092 	}
1093 
1094 unlock_pages:
1095 	f2fs_put_rpages(cc);
1096 	f2fs_unlock_rpages(cc, i);
1097 	f2fs_destroy_compress_ctx(cc, true);
1098 out:
1099 	return ret;
1100 }
1101 
1102 int f2fs_prepare_compress_overwrite(struct inode *inode,
1103 		struct page **pagep, pgoff_t index, void **fsdata)
1104 {
1105 	struct compress_ctx cc = {
1106 		.inode = inode,
1107 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1108 		.cluster_size = F2FS_I(inode)->i_cluster_size,
1109 		.cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size,
1110 		.rpages = NULL,
1111 		.nr_rpages = 0,
1112 	};
1113 
1114 	return prepare_compress_overwrite(&cc, pagep, index, fsdata);
1115 }
1116 
1117 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
1118 					pgoff_t index, unsigned copied)
1119 
1120 {
1121 	struct compress_ctx cc = {
1122 		.inode = inode,
1123 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1124 		.cluster_size = F2FS_I(inode)->i_cluster_size,
1125 		.rpages = fsdata,
1126 	};
1127 	bool first_index = (index == cc.rpages[0]->index);
1128 
1129 	if (copied)
1130 		set_cluster_dirty(&cc);
1131 
1132 	f2fs_put_rpages_wbc(&cc, NULL, false, 1);
1133 	f2fs_destroy_compress_ctx(&cc, false);
1134 
1135 	return first_index;
1136 }
1137 
1138 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock)
1139 {
1140 	void *fsdata = NULL;
1141 	struct page *pagep;
1142 	int log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
1143 	pgoff_t start_idx = from >> (PAGE_SHIFT + log_cluster_size) <<
1144 							log_cluster_size;
1145 	int err;
1146 
1147 	err = f2fs_is_compressed_cluster(inode, start_idx);
1148 	if (err < 0)
1149 		return err;
1150 
1151 	/* truncate normal cluster */
1152 	if (!err)
1153 		return f2fs_do_truncate_blocks(inode, from, lock);
1154 
1155 	/* truncate compressed cluster */
1156 	err = f2fs_prepare_compress_overwrite(inode, &pagep,
1157 						start_idx, &fsdata);
1158 
1159 	/* should not be a normal cluster */
1160 	f2fs_bug_on(F2FS_I_SB(inode), err == 0);
1161 
1162 	if (err <= 0)
1163 		return err;
1164 
1165 	if (err > 0) {
1166 		struct page **rpages = fsdata;
1167 		int cluster_size = F2FS_I(inode)->i_cluster_size;
1168 		int i;
1169 
1170 		for (i = cluster_size - 1; i >= 0; i--) {
1171 			loff_t start = rpages[i]->index << PAGE_SHIFT;
1172 
1173 			if (from <= start) {
1174 				zero_user_segment(rpages[i], 0, PAGE_SIZE);
1175 			} else {
1176 				zero_user_segment(rpages[i], from - start,
1177 								PAGE_SIZE);
1178 				break;
1179 			}
1180 		}
1181 
1182 		f2fs_compress_write_end(inode, fsdata, start_idx, true);
1183 	}
1184 	return 0;
1185 }
1186 
1187 static int f2fs_write_compressed_pages(struct compress_ctx *cc,
1188 					int *submitted,
1189 					struct writeback_control *wbc,
1190 					enum iostat_type io_type)
1191 {
1192 	struct inode *inode = cc->inode;
1193 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1194 	struct f2fs_inode_info *fi = F2FS_I(inode);
1195 	struct f2fs_io_info fio = {
1196 		.sbi = sbi,
1197 		.ino = cc->inode->i_ino,
1198 		.type = DATA,
1199 		.op = REQ_OP_WRITE,
1200 		.op_flags = wbc_to_write_flags(wbc),
1201 		.old_blkaddr = NEW_ADDR,
1202 		.page = NULL,
1203 		.encrypted_page = NULL,
1204 		.compressed_page = NULL,
1205 		.submitted = 0,
1206 		.io_type = io_type,
1207 		.io_wbc = wbc,
1208 		.encrypted = fscrypt_inode_uses_fs_layer_crypto(cc->inode) ?
1209 									1 : 0,
1210 	};
1211 	struct dnode_of_data dn;
1212 	struct node_info ni;
1213 	struct compress_io_ctx *cic;
1214 	pgoff_t start_idx = start_idx_of_cluster(cc);
1215 	unsigned int last_index = cc->cluster_size - 1;
1216 	loff_t psize;
1217 	int i, err;
1218 
1219 	/* we should bypass data pages to proceed the kworker jobs */
1220 	if (unlikely(f2fs_cp_error(sbi))) {
1221 		mapping_set_error(cc->rpages[0]->mapping, -EIO);
1222 		goto out_free;
1223 	}
1224 
1225 	if (IS_NOQUOTA(inode)) {
1226 		/*
1227 		 * We need to wait for node_write to avoid block allocation during
1228 		 * checkpoint. This can only happen to quota writes which can cause
1229 		 * the below discard race condition.
1230 		 */
1231 		f2fs_down_read(&sbi->node_write);
1232 	} else if (!f2fs_trylock_op(sbi)) {
1233 		goto out_free;
1234 	}
1235 
1236 	set_new_dnode(&dn, cc->inode, NULL, NULL, 0);
1237 
1238 	err = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
1239 	if (err)
1240 		goto out_unlock_op;
1241 
1242 	for (i = 0; i < cc->cluster_size; i++) {
1243 		if (data_blkaddr(dn.inode, dn.node_page,
1244 					dn.ofs_in_node + i) == NULL_ADDR)
1245 			goto out_put_dnode;
1246 	}
1247 
1248 	psize = (loff_t)(cc->rpages[last_index]->index + 1) << PAGE_SHIFT;
1249 
1250 	err = f2fs_get_node_info(fio.sbi, dn.nid, &ni, false);
1251 	if (err)
1252 		goto out_put_dnode;
1253 
1254 	fio.version = ni.version;
1255 
1256 	cic = f2fs_kmem_cache_alloc(cic_entry_slab, GFP_F2FS_ZERO, false, sbi);
1257 	if (!cic)
1258 		goto out_put_dnode;
1259 
1260 	cic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1261 	cic->inode = inode;
1262 	atomic_set(&cic->pending_pages, cc->valid_nr_cpages);
1263 	cic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
1264 	if (!cic->rpages)
1265 		goto out_put_cic;
1266 
1267 	cic->nr_rpages = cc->cluster_size;
1268 
1269 	for (i = 0; i < cc->valid_nr_cpages; i++) {
1270 		f2fs_set_compressed_page(cc->cpages[i], inode,
1271 					cc->rpages[i + 1]->index, cic);
1272 		fio.compressed_page = cc->cpages[i];
1273 
1274 		fio.old_blkaddr = data_blkaddr(dn.inode, dn.node_page,
1275 						dn.ofs_in_node + i + 1);
1276 
1277 		/* wait for GCed page writeback via META_MAPPING */
1278 		f2fs_wait_on_block_writeback(inode, fio.old_blkaddr);
1279 
1280 		if (fio.encrypted) {
1281 			fio.page = cc->rpages[i + 1];
1282 			err = f2fs_encrypt_one_page(&fio);
1283 			if (err)
1284 				goto out_destroy_crypt;
1285 			cc->cpages[i] = fio.encrypted_page;
1286 		}
1287 	}
1288 
1289 	set_cluster_writeback(cc);
1290 
1291 	for (i = 0; i < cc->cluster_size; i++)
1292 		cic->rpages[i] = cc->rpages[i];
1293 
1294 	for (i = 0; i < cc->cluster_size; i++, dn.ofs_in_node++) {
1295 		block_t blkaddr;
1296 
1297 		blkaddr = f2fs_data_blkaddr(&dn);
1298 		fio.page = cc->rpages[i];
1299 		fio.old_blkaddr = blkaddr;
1300 
1301 		/* cluster header */
1302 		if (i == 0) {
1303 			if (blkaddr == COMPRESS_ADDR)
1304 				fio.compr_blocks++;
1305 			if (__is_valid_data_blkaddr(blkaddr))
1306 				f2fs_invalidate_blocks(sbi, blkaddr);
1307 			f2fs_update_data_blkaddr(&dn, COMPRESS_ADDR);
1308 			goto unlock_continue;
1309 		}
1310 
1311 		if (fio.compr_blocks && __is_valid_data_blkaddr(blkaddr))
1312 			fio.compr_blocks++;
1313 
1314 		if (i > cc->valid_nr_cpages) {
1315 			if (__is_valid_data_blkaddr(blkaddr)) {
1316 				f2fs_invalidate_blocks(sbi, blkaddr);
1317 				f2fs_update_data_blkaddr(&dn, NEW_ADDR);
1318 			}
1319 			goto unlock_continue;
1320 		}
1321 
1322 		f2fs_bug_on(fio.sbi, blkaddr == NULL_ADDR);
1323 
1324 		if (fio.encrypted)
1325 			fio.encrypted_page = cc->cpages[i - 1];
1326 		else
1327 			fio.compressed_page = cc->cpages[i - 1];
1328 
1329 		cc->cpages[i - 1] = NULL;
1330 		f2fs_outplace_write_data(&dn, &fio);
1331 		(*submitted)++;
1332 unlock_continue:
1333 		inode_dec_dirty_pages(cc->inode);
1334 		unlock_page(fio.page);
1335 	}
1336 
1337 	if (fio.compr_blocks)
1338 		f2fs_i_compr_blocks_update(inode, fio.compr_blocks - 1, false);
1339 	f2fs_i_compr_blocks_update(inode, cc->valid_nr_cpages, true);
1340 	add_compr_block_stat(inode, cc->valid_nr_cpages);
1341 
1342 	set_inode_flag(cc->inode, FI_APPEND_WRITE);
1343 	if (cc->cluster_idx == 0)
1344 		set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1345 
1346 	f2fs_put_dnode(&dn);
1347 	if (IS_NOQUOTA(inode))
1348 		f2fs_up_read(&sbi->node_write);
1349 	else
1350 		f2fs_unlock_op(sbi);
1351 
1352 	spin_lock(&fi->i_size_lock);
1353 	if (fi->last_disk_size < psize)
1354 		fi->last_disk_size = psize;
1355 	spin_unlock(&fi->i_size_lock);
1356 
1357 	f2fs_put_rpages(cc);
1358 	page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
1359 	cc->cpages = NULL;
1360 	f2fs_destroy_compress_ctx(cc, false);
1361 	return 0;
1362 
1363 out_destroy_crypt:
1364 	page_array_free(cc->inode, cic->rpages, cc->cluster_size);
1365 
1366 	for (--i; i >= 0; i--)
1367 		fscrypt_finalize_bounce_page(&cc->cpages[i]);
1368 out_put_cic:
1369 	kmem_cache_free(cic_entry_slab, cic);
1370 out_put_dnode:
1371 	f2fs_put_dnode(&dn);
1372 out_unlock_op:
1373 	if (IS_NOQUOTA(inode))
1374 		f2fs_up_read(&sbi->node_write);
1375 	else
1376 		f2fs_unlock_op(sbi);
1377 out_free:
1378 	for (i = 0; i < cc->valid_nr_cpages; i++) {
1379 		f2fs_compress_free_page(cc->cpages[i]);
1380 		cc->cpages[i] = NULL;
1381 	}
1382 	page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
1383 	cc->cpages = NULL;
1384 	return -EAGAIN;
1385 }
1386 
1387 void f2fs_compress_write_end_io(struct bio *bio, struct page *page)
1388 {
1389 	struct f2fs_sb_info *sbi = bio->bi_private;
1390 	struct compress_io_ctx *cic =
1391 			(struct compress_io_ctx *)page_private(page);
1392 	int i;
1393 
1394 	if (unlikely(bio->bi_status))
1395 		mapping_set_error(cic->inode->i_mapping, -EIO);
1396 
1397 	f2fs_compress_free_page(page);
1398 
1399 	dec_page_count(sbi, F2FS_WB_DATA);
1400 
1401 	if (atomic_dec_return(&cic->pending_pages))
1402 		return;
1403 
1404 	for (i = 0; i < cic->nr_rpages; i++) {
1405 		WARN_ON(!cic->rpages[i]);
1406 		clear_page_private_gcing(cic->rpages[i]);
1407 		end_page_writeback(cic->rpages[i]);
1408 	}
1409 
1410 	page_array_free(cic->inode, cic->rpages, cic->nr_rpages);
1411 	kmem_cache_free(cic_entry_slab, cic);
1412 }
1413 
1414 static int f2fs_write_raw_pages(struct compress_ctx *cc,
1415 					int *submitted,
1416 					struct writeback_control *wbc,
1417 					enum iostat_type io_type)
1418 {
1419 	struct address_space *mapping = cc->inode->i_mapping;
1420 	int _submitted, compr_blocks, ret, i;
1421 
1422 	compr_blocks = f2fs_compressed_blocks(cc);
1423 
1424 	for (i = 0; i < cc->cluster_size; i++) {
1425 		if (!cc->rpages[i])
1426 			continue;
1427 
1428 		redirty_page_for_writepage(wbc, cc->rpages[i]);
1429 		unlock_page(cc->rpages[i]);
1430 	}
1431 
1432 	if (compr_blocks < 0)
1433 		return compr_blocks;
1434 
1435 	for (i = 0; i < cc->cluster_size; i++) {
1436 		if (!cc->rpages[i])
1437 			continue;
1438 retry_write:
1439 		lock_page(cc->rpages[i]);
1440 
1441 		if (cc->rpages[i]->mapping != mapping) {
1442 continue_unlock:
1443 			unlock_page(cc->rpages[i]);
1444 			continue;
1445 		}
1446 
1447 		if (!PageDirty(cc->rpages[i]))
1448 			goto continue_unlock;
1449 
1450 		if (PageWriteback(cc->rpages[i])) {
1451 			if (wbc->sync_mode == WB_SYNC_NONE)
1452 				goto continue_unlock;
1453 			f2fs_wait_on_page_writeback(cc->rpages[i], DATA, true, true);
1454 		}
1455 
1456 		if (!clear_page_dirty_for_io(cc->rpages[i]))
1457 			goto continue_unlock;
1458 
1459 		ret = f2fs_write_single_data_page(cc->rpages[i], &_submitted,
1460 						NULL, NULL, wbc, io_type,
1461 						compr_blocks, false);
1462 		if (ret) {
1463 			if (ret == AOP_WRITEPAGE_ACTIVATE) {
1464 				unlock_page(cc->rpages[i]);
1465 				ret = 0;
1466 			} else if (ret == -EAGAIN) {
1467 				/*
1468 				 * for quota file, just redirty left pages to
1469 				 * avoid deadlock caused by cluster update race
1470 				 * from foreground operation.
1471 				 */
1472 				if (IS_NOQUOTA(cc->inode))
1473 					return 0;
1474 				ret = 0;
1475 				f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1476 				goto retry_write;
1477 			}
1478 			return ret;
1479 		}
1480 
1481 		*submitted += _submitted;
1482 	}
1483 
1484 	f2fs_balance_fs(F2FS_M_SB(mapping), true);
1485 
1486 	return 0;
1487 }
1488 
1489 int f2fs_write_multi_pages(struct compress_ctx *cc,
1490 					int *submitted,
1491 					struct writeback_control *wbc,
1492 					enum iostat_type io_type)
1493 {
1494 	int err;
1495 
1496 	*submitted = 0;
1497 	if (cluster_may_compress(cc)) {
1498 		err = f2fs_compress_pages(cc);
1499 		if (err == -EAGAIN) {
1500 			add_compr_block_stat(cc->inode, cc->cluster_size);
1501 			goto write;
1502 		} else if (err) {
1503 			f2fs_put_rpages_wbc(cc, wbc, true, 1);
1504 			goto destroy_out;
1505 		}
1506 
1507 		err = f2fs_write_compressed_pages(cc, submitted,
1508 							wbc, io_type);
1509 		if (!err)
1510 			return 0;
1511 		f2fs_bug_on(F2FS_I_SB(cc->inode), err != -EAGAIN);
1512 	}
1513 write:
1514 	f2fs_bug_on(F2FS_I_SB(cc->inode), *submitted);
1515 
1516 	err = f2fs_write_raw_pages(cc, submitted, wbc, io_type);
1517 	f2fs_put_rpages_wbc(cc, wbc, false, 0);
1518 destroy_out:
1519 	f2fs_destroy_compress_ctx(cc, false);
1520 	return err;
1521 }
1522 
1523 static inline bool allow_memalloc_for_decomp(struct f2fs_sb_info *sbi,
1524 		bool pre_alloc)
1525 {
1526 	return pre_alloc ^ f2fs_low_mem_mode(sbi);
1527 }
1528 
1529 static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic,
1530 		bool pre_alloc)
1531 {
1532 	const struct f2fs_compress_ops *cops =
1533 		f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm];
1534 	int i;
1535 
1536 	if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc))
1537 		return 0;
1538 
1539 	dic->tpages = page_array_alloc(dic->inode, dic->cluster_size);
1540 	if (!dic->tpages)
1541 		return -ENOMEM;
1542 
1543 	for (i = 0; i < dic->cluster_size; i++) {
1544 		if (dic->rpages[i]) {
1545 			dic->tpages[i] = dic->rpages[i];
1546 			continue;
1547 		}
1548 
1549 		dic->tpages[i] = f2fs_compress_alloc_page();
1550 		if (!dic->tpages[i])
1551 			return -ENOMEM;
1552 	}
1553 
1554 	dic->rbuf = f2fs_vmap(dic->tpages, dic->cluster_size);
1555 	if (!dic->rbuf)
1556 		return -ENOMEM;
1557 
1558 	dic->cbuf = f2fs_vmap(dic->cpages, dic->nr_cpages);
1559 	if (!dic->cbuf)
1560 		return -ENOMEM;
1561 
1562 	if (cops->init_decompress_ctx)
1563 		return cops->init_decompress_ctx(dic);
1564 
1565 	return 0;
1566 }
1567 
1568 static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic,
1569 		bool bypass_destroy_callback, bool pre_alloc)
1570 {
1571 	const struct f2fs_compress_ops *cops =
1572 		f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm];
1573 
1574 	if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc))
1575 		return;
1576 
1577 	if (!bypass_destroy_callback && cops->destroy_decompress_ctx)
1578 		cops->destroy_decompress_ctx(dic);
1579 
1580 	if (dic->cbuf)
1581 		vm_unmap_ram(dic->cbuf, dic->nr_cpages);
1582 
1583 	if (dic->rbuf)
1584 		vm_unmap_ram(dic->rbuf, dic->cluster_size);
1585 }
1586 
1587 static void f2fs_free_dic(struct decompress_io_ctx *dic,
1588 		bool bypass_destroy_callback);
1589 
1590 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc)
1591 {
1592 	struct decompress_io_ctx *dic;
1593 	pgoff_t start_idx = start_idx_of_cluster(cc);
1594 	struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode);
1595 	int i, ret;
1596 
1597 	dic = f2fs_kmem_cache_alloc(dic_entry_slab, GFP_F2FS_ZERO, false, sbi);
1598 	if (!dic)
1599 		return ERR_PTR(-ENOMEM);
1600 
1601 	dic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
1602 	if (!dic->rpages) {
1603 		kmem_cache_free(dic_entry_slab, dic);
1604 		return ERR_PTR(-ENOMEM);
1605 	}
1606 
1607 	dic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1608 	dic->inode = cc->inode;
1609 	atomic_set(&dic->remaining_pages, cc->nr_cpages);
1610 	dic->cluster_idx = cc->cluster_idx;
1611 	dic->cluster_size = cc->cluster_size;
1612 	dic->log_cluster_size = cc->log_cluster_size;
1613 	dic->nr_cpages = cc->nr_cpages;
1614 	refcount_set(&dic->refcnt, 1);
1615 	dic->failed = false;
1616 	dic->need_verity = f2fs_need_verity(cc->inode, start_idx);
1617 
1618 	for (i = 0; i < dic->cluster_size; i++)
1619 		dic->rpages[i] = cc->rpages[i];
1620 	dic->nr_rpages = cc->cluster_size;
1621 
1622 	dic->cpages = page_array_alloc(dic->inode, dic->nr_cpages);
1623 	if (!dic->cpages) {
1624 		ret = -ENOMEM;
1625 		goto out_free;
1626 	}
1627 
1628 	for (i = 0; i < dic->nr_cpages; i++) {
1629 		struct page *page;
1630 
1631 		page = f2fs_compress_alloc_page();
1632 		if (!page) {
1633 			ret = -ENOMEM;
1634 			goto out_free;
1635 		}
1636 
1637 		f2fs_set_compressed_page(page, cc->inode,
1638 					start_idx + i + 1, dic);
1639 		dic->cpages[i] = page;
1640 	}
1641 
1642 	ret = f2fs_prepare_decomp_mem(dic, true);
1643 	if (ret)
1644 		goto out_free;
1645 
1646 	return dic;
1647 
1648 out_free:
1649 	f2fs_free_dic(dic, true);
1650 	return ERR_PTR(ret);
1651 }
1652 
1653 static void f2fs_free_dic(struct decompress_io_ctx *dic,
1654 		bool bypass_destroy_callback)
1655 {
1656 	int i;
1657 
1658 	f2fs_release_decomp_mem(dic, bypass_destroy_callback, true);
1659 
1660 	if (dic->tpages) {
1661 		for (i = 0; i < dic->cluster_size; i++) {
1662 			if (dic->rpages[i])
1663 				continue;
1664 			if (!dic->tpages[i])
1665 				continue;
1666 			f2fs_compress_free_page(dic->tpages[i]);
1667 		}
1668 		page_array_free(dic->inode, dic->tpages, dic->cluster_size);
1669 	}
1670 
1671 	if (dic->cpages) {
1672 		for (i = 0; i < dic->nr_cpages; i++) {
1673 			if (!dic->cpages[i])
1674 				continue;
1675 			f2fs_compress_free_page(dic->cpages[i]);
1676 		}
1677 		page_array_free(dic->inode, dic->cpages, dic->nr_cpages);
1678 	}
1679 
1680 	page_array_free(dic->inode, dic->rpages, dic->nr_rpages);
1681 	kmem_cache_free(dic_entry_slab, dic);
1682 }
1683 
1684 static void f2fs_late_free_dic(struct work_struct *work)
1685 {
1686 	struct decompress_io_ctx *dic =
1687 		container_of(work, struct decompress_io_ctx, free_work);
1688 
1689 	f2fs_free_dic(dic, false);
1690 }
1691 
1692 static void f2fs_put_dic(struct decompress_io_ctx *dic, bool in_task)
1693 {
1694 	if (refcount_dec_and_test(&dic->refcnt)) {
1695 		if (in_task) {
1696 			f2fs_free_dic(dic, false);
1697 		} else {
1698 			INIT_WORK(&dic->free_work, f2fs_late_free_dic);
1699 			queue_work(F2FS_I_SB(dic->inode)->post_read_wq,
1700 					&dic->free_work);
1701 		}
1702 	}
1703 }
1704 
1705 static void f2fs_verify_cluster(struct work_struct *work)
1706 {
1707 	struct decompress_io_ctx *dic =
1708 		container_of(work, struct decompress_io_ctx, verity_work);
1709 	int i;
1710 
1711 	/* Verify, update, and unlock the decompressed pages. */
1712 	for (i = 0; i < dic->cluster_size; i++) {
1713 		struct page *rpage = dic->rpages[i];
1714 
1715 		if (!rpage)
1716 			continue;
1717 
1718 		if (fsverity_verify_page(rpage))
1719 			SetPageUptodate(rpage);
1720 		else
1721 			ClearPageUptodate(rpage);
1722 		unlock_page(rpage);
1723 	}
1724 
1725 	f2fs_put_dic(dic, true);
1726 }
1727 
1728 /*
1729  * This is called when a compressed cluster has been decompressed
1730  * (or failed to be read and/or decompressed).
1731  */
1732 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
1733 				bool in_task)
1734 {
1735 	int i;
1736 
1737 	if (!failed && dic->need_verity) {
1738 		/*
1739 		 * Note that to avoid deadlocks, the verity work can't be done
1740 		 * on the decompression workqueue.  This is because verifying
1741 		 * the data pages can involve reading metadata pages from the
1742 		 * file, and these metadata pages may be compressed.
1743 		 */
1744 		INIT_WORK(&dic->verity_work, f2fs_verify_cluster);
1745 		fsverity_enqueue_verify_work(&dic->verity_work);
1746 		return;
1747 	}
1748 
1749 	/* Update and unlock the cluster's pagecache pages. */
1750 	for (i = 0; i < dic->cluster_size; i++) {
1751 		struct page *rpage = dic->rpages[i];
1752 
1753 		if (!rpage)
1754 			continue;
1755 
1756 		if (failed)
1757 			ClearPageUptodate(rpage);
1758 		else
1759 			SetPageUptodate(rpage);
1760 		unlock_page(rpage);
1761 	}
1762 
1763 	/*
1764 	 * Release the reference to the decompress_io_ctx that was being held
1765 	 * for I/O completion.
1766 	 */
1767 	f2fs_put_dic(dic, in_task);
1768 }
1769 
1770 /*
1771  * Put a reference to a compressed page's decompress_io_ctx.
1772  *
1773  * This is called when the page is no longer needed and can be freed.
1774  */
1775 void f2fs_put_page_dic(struct page *page, bool in_task)
1776 {
1777 	struct decompress_io_ctx *dic =
1778 			(struct decompress_io_ctx *)page_private(page);
1779 
1780 	f2fs_put_dic(dic, in_task);
1781 }
1782 
1783 /*
1784  * check whether cluster blocks are contiguous, and add extent cache entry
1785  * only if cluster blocks are logically and physically contiguous.
1786  */
1787 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn)
1788 {
1789 	bool compressed = f2fs_data_blkaddr(dn) == COMPRESS_ADDR;
1790 	int i = compressed ? 1 : 0;
1791 	block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_page,
1792 						dn->ofs_in_node + i);
1793 
1794 	for (i += 1; i < F2FS_I(dn->inode)->i_cluster_size; i++) {
1795 		block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
1796 						dn->ofs_in_node + i);
1797 
1798 		if (!__is_valid_data_blkaddr(blkaddr))
1799 			break;
1800 		if (first_blkaddr + i - (compressed ? 1 : 0) != blkaddr)
1801 			return 0;
1802 	}
1803 
1804 	return compressed ? i - 1 : i;
1805 }
1806 
1807 const struct address_space_operations f2fs_compress_aops = {
1808 	.release_folio = f2fs_release_folio,
1809 	.invalidate_folio = f2fs_invalidate_folio,
1810 	.migrate_folio	= filemap_migrate_folio,
1811 };
1812 
1813 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi)
1814 {
1815 	return sbi->compress_inode->i_mapping;
1816 }
1817 
1818 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr)
1819 {
1820 	if (!sbi->compress_inode)
1821 		return;
1822 	invalidate_mapping_pages(COMPRESS_MAPPING(sbi), blkaddr, blkaddr);
1823 }
1824 
1825 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
1826 						nid_t ino, block_t blkaddr)
1827 {
1828 	struct page *cpage;
1829 	int ret;
1830 
1831 	if (!test_opt(sbi, COMPRESS_CACHE))
1832 		return;
1833 
1834 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ))
1835 		return;
1836 
1837 	if (!f2fs_available_free_memory(sbi, COMPRESS_PAGE))
1838 		return;
1839 
1840 	cpage = find_get_page(COMPRESS_MAPPING(sbi), blkaddr);
1841 	if (cpage) {
1842 		f2fs_put_page(cpage, 0);
1843 		return;
1844 	}
1845 
1846 	cpage = alloc_page(__GFP_NOWARN | __GFP_IO);
1847 	if (!cpage)
1848 		return;
1849 
1850 	ret = add_to_page_cache_lru(cpage, COMPRESS_MAPPING(sbi),
1851 						blkaddr, GFP_NOFS);
1852 	if (ret) {
1853 		f2fs_put_page(cpage, 0);
1854 		return;
1855 	}
1856 
1857 	set_page_private_data(cpage, ino);
1858 
1859 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ))
1860 		goto out;
1861 
1862 	memcpy(page_address(cpage), page_address(page), PAGE_SIZE);
1863 	SetPageUptodate(cpage);
1864 out:
1865 	f2fs_put_page(cpage, 1);
1866 }
1867 
1868 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
1869 								block_t blkaddr)
1870 {
1871 	struct page *cpage;
1872 	bool hitted = false;
1873 
1874 	if (!test_opt(sbi, COMPRESS_CACHE))
1875 		return false;
1876 
1877 	cpage = f2fs_pagecache_get_page(COMPRESS_MAPPING(sbi),
1878 				blkaddr, FGP_LOCK | FGP_NOWAIT, GFP_NOFS);
1879 	if (cpage) {
1880 		if (PageUptodate(cpage)) {
1881 			atomic_inc(&sbi->compress_page_hit);
1882 			memcpy(page_address(page),
1883 				page_address(cpage), PAGE_SIZE);
1884 			hitted = true;
1885 		}
1886 		f2fs_put_page(cpage, 1);
1887 	}
1888 
1889 	return hitted;
1890 }
1891 
1892 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino)
1893 {
1894 	struct address_space *mapping = COMPRESS_MAPPING(sbi);
1895 	struct folio_batch fbatch;
1896 	pgoff_t index = 0;
1897 	pgoff_t end = MAX_BLKADDR(sbi);
1898 
1899 	if (!mapping->nrpages)
1900 		return;
1901 
1902 	folio_batch_init(&fbatch);
1903 
1904 	do {
1905 		unsigned int nr, i;
1906 
1907 		nr = filemap_get_folios(mapping, &index, end - 1, &fbatch);
1908 		if (!nr)
1909 			break;
1910 
1911 		for (i = 0; i < nr; i++) {
1912 			struct folio *folio = fbatch.folios[i];
1913 
1914 			folio_lock(folio);
1915 			if (folio->mapping != mapping) {
1916 				folio_unlock(folio);
1917 				continue;
1918 			}
1919 
1920 			if (ino != get_page_private_data(&folio->page)) {
1921 				folio_unlock(folio);
1922 				continue;
1923 			}
1924 
1925 			generic_error_remove_page(mapping, &folio->page);
1926 			folio_unlock(folio);
1927 		}
1928 		folio_batch_release(&fbatch);
1929 		cond_resched();
1930 	} while (index < end);
1931 }
1932 
1933 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi)
1934 {
1935 	struct inode *inode;
1936 
1937 	if (!test_opt(sbi, COMPRESS_CACHE))
1938 		return 0;
1939 
1940 	inode = f2fs_iget(sbi->sb, F2FS_COMPRESS_INO(sbi));
1941 	if (IS_ERR(inode))
1942 		return PTR_ERR(inode);
1943 	sbi->compress_inode = inode;
1944 
1945 	sbi->compress_percent = COMPRESS_PERCENT;
1946 	sbi->compress_watermark = COMPRESS_WATERMARK;
1947 
1948 	atomic_set(&sbi->compress_page_hit, 0);
1949 
1950 	return 0;
1951 }
1952 
1953 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi)
1954 {
1955 	if (!sbi->compress_inode)
1956 		return;
1957 	iput(sbi->compress_inode);
1958 	sbi->compress_inode = NULL;
1959 }
1960 
1961 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi)
1962 {
1963 	dev_t dev = sbi->sb->s_bdev->bd_dev;
1964 	char slab_name[32];
1965 
1966 	if (!f2fs_sb_has_compression(sbi))
1967 		return 0;
1968 
1969 	sprintf(slab_name, "f2fs_page_array_entry-%u:%u", MAJOR(dev), MINOR(dev));
1970 
1971 	sbi->page_array_slab_size = sizeof(struct page *) <<
1972 					F2FS_OPTION(sbi).compress_log_size;
1973 
1974 	sbi->page_array_slab = f2fs_kmem_cache_create(slab_name,
1975 					sbi->page_array_slab_size);
1976 	return sbi->page_array_slab ? 0 : -ENOMEM;
1977 }
1978 
1979 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi)
1980 {
1981 	kmem_cache_destroy(sbi->page_array_slab);
1982 }
1983 
1984 int __init f2fs_init_compress_cache(void)
1985 {
1986 	cic_entry_slab = f2fs_kmem_cache_create("f2fs_cic_entry",
1987 					sizeof(struct compress_io_ctx));
1988 	if (!cic_entry_slab)
1989 		return -ENOMEM;
1990 	dic_entry_slab = f2fs_kmem_cache_create("f2fs_dic_entry",
1991 					sizeof(struct decompress_io_ctx));
1992 	if (!dic_entry_slab)
1993 		goto free_cic;
1994 	return 0;
1995 free_cic:
1996 	kmem_cache_destroy(cic_entry_slab);
1997 	return -ENOMEM;
1998 }
1999 
2000 void f2fs_destroy_compress_cache(void)
2001 {
2002 	kmem_cache_destroy(dic_entry_slab);
2003 	kmem_cache_destroy(cic_entry_slab);
2004 }
2005