1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * f2fs compress support 4 * 5 * Copyright (c) 2019 Chao Yu <chao@kernel.org> 6 */ 7 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/writeback.h> 11 #include <linux/backing-dev.h> 12 #include <linux/lzo.h> 13 #include <linux/lz4.h> 14 #include <linux/zstd.h> 15 #include <linux/pagevec.h> 16 17 #include "f2fs.h" 18 #include "node.h" 19 #include "segment.h" 20 #include <trace/events/f2fs.h> 21 22 static struct kmem_cache *cic_entry_slab; 23 static struct kmem_cache *dic_entry_slab; 24 25 static void *page_array_alloc(struct inode *inode, int nr) 26 { 27 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 28 unsigned int size = sizeof(struct page *) * nr; 29 30 if (likely(size <= sbi->page_array_slab_size)) 31 return kmem_cache_zalloc(sbi->page_array_slab, GFP_NOFS); 32 return f2fs_kzalloc(sbi, size, GFP_NOFS); 33 } 34 35 static void page_array_free(struct inode *inode, void *pages, int nr) 36 { 37 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 38 unsigned int size = sizeof(struct page *) * nr; 39 40 if (!pages) 41 return; 42 43 if (likely(size <= sbi->page_array_slab_size)) 44 kmem_cache_free(sbi->page_array_slab, pages); 45 else 46 kfree(pages); 47 } 48 49 struct f2fs_compress_ops { 50 int (*init_compress_ctx)(struct compress_ctx *cc); 51 void (*destroy_compress_ctx)(struct compress_ctx *cc); 52 int (*compress_pages)(struct compress_ctx *cc); 53 int (*init_decompress_ctx)(struct decompress_io_ctx *dic); 54 void (*destroy_decompress_ctx)(struct decompress_io_ctx *dic); 55 int (*decompress_pages)(struct decompress_io_ctx *dic); 56 }; 57 58 static unsigned int offset_in_cluster(struct compress_ctx *cc, pgoff_t index) 59 { 60 return index & (cc->cluster_size - 1); 61 } 62 63 static pgoff_t cluster_idx(struct compress_ctx *cc, pgoff_t index) 64 { 65 return index >> cc->log_cluster_size; 66 } 67 68 static pgoff_t start_idx_of_cluster(struct compress_ctx *cc) 69 { 70 return cc->cluster_idx << cc->log_cluster_size; 71 } 72 73 bool f2fs_is_compressed_page(struct page *page) 74 { 75 if (!PagePrivate(page)) 76 return false; 77 if (!page_private(page)) 78 return false; 79 if (page_private_nonpointer(page)) 80 return false; 81 82 f2fs_bug_on(F2FS_M_SB(page->mapping), 83 *((u32 *)page_private(page)) != F2FS_COMPRESSED_PAGE_MAGIC); 84 return true; 85 } 86 87 static void f2fs_set_compressed_page(struct page *page, 88 struct inode *inode, pgoff_t index, void *data) 89 { 90 attach_page_private(page, (void *)data); 91 92 /* i_crypto_info and iv index */ 93 page->index = index; 94 page->mapping = inode->i_mapping; 95 } 96 97 static void f2fs_drop_rpages(struct compress_ctx *cc, int len, bool unlock) 98 { 99 int i; 100 101 for (i = 0; i < len; i++) { 102 if (!cc->rpages[i]) 103 continue; 104 if (unlock) 105 unlock_page(cc->rpages[i]); 106 else 107 put_page(cc->rpages[i]); 108 } 109 } 110 111 static void f2fs_put_rpages(struct compress_ctx *cc) 112 { 113 f2fs_drop_rpages(cc, cc->cluster_size, false); 114 } 115 116 static void f2fs_unlock_rpages(struct compress_ctx *cc, int len) 117 { 118 f2fs_drop_rpages(cc, len, true); 119 } 120 121 static void f2fs_put_rpages_wbc(struct compress_ctx *cc, 122 struct writeback_control *wbc, bool redirty, int unlock) 123 { 124 unsigned int i; 125 126 for (i = 0; i < cc->cluster_size; i++) { 127 if (!cc->rpages[i]) 128 continue; 129 if (redirty) 130 redirty_page_for_writepage(wbc, cc->rpages[i]); 131 f2fs_put_page(cc->rpages[i], unlock); 132 } 133 } 134 135 struct page *f2fs_compress_control_page(struct page *page) 136 { 137 return ((struct compress_io_ctx *)page_private(page))->rpages[0]; 138 } 139 140 int f2fs_init_compress_ctx(struct compress_ctx *cc) 141 { 142 if (cc->rpages) 143 return 0; 144 145 cc->rpages = page_array_alloc(cc->inode, cc->cluster_size); 146 return cc->rpages ? 0 : -ENOMEM; 147 } 148 149 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse) 150 { 151 page_array_free(cc->inode, cc->rpages, cc->cluster_size); 152 cc->rpages = NULL; 153 cc->nr_rpages = 0; 154 cc->nr_cpages = 0; 155 if (!reuse) 156 cc->cluster_idx = NULL_CLUSTER; 157 } 158 159 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page) 160 { 161 unsigned int cluster_ofs; 162 163 if (!f2fs_cluster_can_merge_page(cc, page->index)) 164 f2fs_bug_on(F2FS_I_SB(cc->inode), 1); 165 166 cluster_ofs = offset_in_cluster(cc, page->index); 167 cc->rpages[cluster_ofs] = page; 168 cc->nr_rpages++; 169 cc->cluster_idx = cluster_idx(cc, page->index); 170 } 171 172 #ifdef CONFIG_F2FS_FS_LZO 173 static int lzo_init_compress_ctx(struct compress_ctx *cc) 174 { 175 cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), 176 LZO1X_MEM_COMPRESS, GFP_NOFS); 177 if (!cc->private) 178 return -ENOMEM; 179 180 cc->clen = lzo1x_worst_compress(PAGE_SIZE << cc->log_cluster_size); 181 return 0; 182 } 183 184 static void lzo_destroy_compress_ctx(struct compress_ctx *cc) 185 { 186 kvfree(cc->private); 187 cc->private = NULL; 188 } 189 190 static int lzo_compress_pages(struct compress_ctx *cc) 191 { 192 int ret; 193 194 ret = lzo1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata, 195 &cc->clen, cc->private); 196 if (ret != LZO_E_OK) { 197 printk_ratelimited("%sF2FS-fs (%s): lzo compress failed, ret:%d\n", 198 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret); 199 return -EIO; 200 } 201 return 0; 202 } 203 204 static int lzo_decompress_pages(struct decompress_io_ctx *dic) 205 { 206 int ret; 207 208 ret = lzo1x_decompress_safe(dic->cbuf->cdata, dic->clen, 209 dic->rbuf, &dic->rlen); 210 if (ret != LZO_E_OK) { 211 printk_ratelimited("%sF2FS-fs (%s): lzo decompress failed, ret:%d\n", 212 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret); 213 return -EIO; 214 } 215 216 if (dic->rlen != PAGE_SIZE << dic->log_cluster_size) { 217 printk_ratelimited("%sF2FS-fs (%s): lzo invalid rlen:%zu, " 218 "expected:%lu\n", KERN_ERR, 219 F2FS_I_SB(dic->inode)->sb->s_id, 220 dic->rlen, 221 PAGE_SIZE << dic->log_cluster_size); 222 return -EIO; 223 } 224 return 0; 225 } 226 227 static const struct f2fs_compress_ops f2fs_lzo_ops = { 228 .init_compress_ctx = lzo_init_compress_ctx, 229 .destroy_compress_ctx = lzo_destroy_compress_ctx, 230 .compress_pages = lzo_compress_pages, 231 .decompress_pages = lzo_decompress_pages, 232 }; 233 #endif 234 235 #ifdef CONFIG_F2FS_FS_LZ4 236 static int lz4_init_compress_ctx(struct compress_ctx *cc) 237 { 238 unsigned int size = LZ4_MEM_COMPRESS; 239 240 #ifdef CONFIG_F2FS_FS_LZ4HC 241 if (F2FS_I(cc->inode)->i_compress_flag >> COMPRESS_LEVEL_OFFSET) 242 size = LZ4HC_MEM_COMPRESS; 243 #endif 244 245 cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), size, GFP_NOFS); 246 if (!cc->private) 247 return -ENOMEM; 248 249 /* 250 * we do not change cc->clen to LZ4_compressBound(inputsize) to 251 * adapt worst compress case, because lz4 compressor can handle 252 * output budget properly. 253 */ 254 cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE; 255 return 0; 256 } 257 258 static void lz4_destroy_compress_ctx(struct compress_ctx *cc) 259 { 260 kvfree(cc->private); 261 cc->private = NULL; 262 } 263 264 #ifdef CONFIG_F2FS_FS_LZ4HC 265 static int lz4hc_compress_pages(struct compress_ctx *cc) 266 { 267 unsigned char level = F2FS_I(cc->inode)->i_compress_flag >> 268 COMPRESS_LEVEL_OFFSET; 269 int len; 270 271 if (level) 272 len = LZ4_compress_HC(cc->rbuf, cc->cbuf->cdata, cc->rlen, 273 cc->clen, level, cc->private); 274 else 275 len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen, 276 cc->clen, cc->private); 277 if (!len) 278 return -EAGAIN; 279 280 cc->clen = len; 281 return 0; 282 } 283 #endif 284 285 static int lz4_compress_pages(struct compress_ctx *cc) 286 { 287 int len; 288 289 #ifdef CONFIG_F2FS_FS_LZ4HC 290 return lz4hc_compress_pages(cc); 291 #endif 292 len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen, 293 cc->clen, cc->private); 294 if (!len) 295 return -EAGAIN; 296 297 cc->clen = len; 298 return 0; 299 } 300 301 static int lz4_decompress_pages(struct decompress_io_ctx *dic) 302 { 303 int ret; 304 305 ret = LZ4_decompress_safe(dic->cbuf->cdata, dic->rbuf, 306 dic->clen, dic->rlen); 307 if (ret < 0) { 308 printk_ratelimited("%sF2FS-fs (%s): lz4 decompress failed, ret:%d\n", 309 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret); 310 return -EIO; 311 } 312 313 if (ret != PAGE_SIZE << dic->log_cluster_size) { 314 printk_ratelimited("%sF2FS-fs (%s): lz4 invalid rlen:%zu, " 315 "expected:%lu\n", KERN_ERR, 316 F2FS_I_SB(dic->inode)->sb->s_id, 317 dic->rlen, 318 PAGE_SIZE << dic->log_cluster_size); 319 return -EIO; 320 } 321 return 0; 322 } 323 324 static const struct f2fs_compress_ops f2fs_lz4_ops = { 325 .init_compress_ctx = lz4_init_compress_ctx, 326 .destroy_compress_ctx = lz4_destroy_compress_ctx, 327 .compress_pages = lz4_compress_pages, 328 .decompress_pages = lz4_decompress_pages, 329 }; 330 #endif 331 332 #ifdef CONFIG_F2FS_FS_ZSTD 333 #define F2FS_ZSTD_DEFAULT_CLEVEL 1 334 335 static int zstd_init_compress_ctx(struct compress_ctx *cc) 336 { 337 ZSTD_parameters params; 338 ZSTD_CStream *stream; 339 void *workspace; 340 unsigned int workspace_size; 341 unsigned char level = F2FS_I(cc->inode)->i_compress_flag >> 342 COMPRESS_LEVEL_OFFSET; 343 344 if (!level) 345 level = F2FS_ZSTD_DEFAULT_CLEVEL; 346 347 params = ZSTD_getParams(level, cc->rlen, 0); 348 workspace_size = ZSTD_CStreamWorkspaceBound(params.cParams); 349 350 workspace = f2fs_kvmalloc(F2FS_I_SB(cc->inode), 351 workspace_size, GFP_NOFS); 352 if (!workspace) 353 return -ENOMEM; 354 355 stream = ZSTD_initCStream(params, 0, workspace, workspace_size); 356 if (!stream) { 357 printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_initCStream failed\n", 358 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, 359 __func__); 360 kvfree(workspace); 361 return -EIO; 362 } 363 364 cc->private = workspace; 365 cc->private2 = stream; 366 367 cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE; 368 return 0; 369 } 370 371 static void zstd_destroy_compress_ctx(struct compress_ctx *cc) 372 { 373 kvfree(cc->private); 374 cc->private = NULL; 375 cc->private2 = NULL; 376 } 377 378 static int zstd_compress_pages(struct compress_ctx *cc) 379 { 380 ZSTD_CStream *stream = cc->private2; 381 ZSTD_inBuffer inbuf; 382 ZSTD_outBuffer outbuf; 383 int src_size = cc->rlen; 384 int dst_size = src_size - PAGE_SIZE - COMPRESS_HEADER_SIZE; 385 int ret; 386 387 inbuf.pos = 0; 388 inbuf.src = cc->rbuf; 389 inbuf.size = src_size; 390 391 outbuf.pos = 0; 392 outbuf.dst = cc->cbuf->cdata; 393 outbuf.size = dst_size; 394 395 ret = ZSTD_compressStream(stream, &outbuf, &inbuf); 396 if (ZSTD_isError(ret)) { 397 printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_compressStream failed, ret: %d\n", 398 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, 399 __func__, ZSTD_getErrorCode(ret)); 400 return -EIO; 401 } 402 403 ret = ZSTD_endStream(stream, &outbuf); 404 if (ZSTD_isError(ret)) { 405 printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_endStream returned %d\n", 406 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, 407 __func__, ZSTD_getErrorCode(ret)); 408 return -EIO; 409 } 410 411 /* 412 * there is compressed data remained in intermediate buffer due to 413 * no more space in cbuf.cdata 414 */ 415 if (ret) 416 return -EAGAIN; 417 418 cc->clen = outbuf.pos; 419 return 0; 420 } 421 422 static int zstd_init_decompress_ctx(struct decompress_io_ctx *dic) 423 { 424 ZSTD_DStream *stream; 425 void *workspace; 426 unsigned int workspace_size; 427 unsigned int max_window_size = 428 MAX_COMPRESS_WINDOW_SIZE(dic->log_cluster_size); 429 430 workspace_size = ZSTD_DStreamWorkspaceBound(max_window_size); 431 432 workspace = f2fs_kvmalloc(F2FS_I_SB(dic->inode), 433 workspace_size, GFP_NOFS); 434 if (!workspace) 435 return -ENOMEM; 436 437 stream = ZSTD_initDStream(max_window_size, workspace, workspace_size); 438 if (!stream) { 439 printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_initDStream failed\n", 440 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, 441 __func__); 442 kvfree(workspace); 443 return -EIO; 444 } 445 446 dic->private = workspace; 447 dic->private2 = stream; 448 449 return 0; 450 } 451 452 static void zstd_destroy_decompress_ctx(struct decompress_io_ctx *dic) 453 { 454 kvfree(dic->private); 455 dic->private = NULL; 456 dic->private2 = NULL; 457 } 458 459 static int zstd_decompress_pages(struct decompress_io_ctx *dic) 460 { 461 ZSTD_DStream *stream = dic->private2; 462 ZSTD_inBuffer inbuf; 463 ZSTD_outBuffer outbuf; 464 int ret; 465 466 inbuf.pos = 0; 467 inbuf.src = dic->cbuf->cdata; 468 inbuf.size = dic->clen; 469 470 outbuf.pos = 0; 471 outbuf.dst = dic->rbuf; 472 outbuf.size = dic->rlen; 473 474 ret = ZSTD_decompressStream(stream, &outbuf, &inbuf); 475 if (ZSTD_isError(ret)) { 476 printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_compressStream failed, ret: %d\n", 477 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, 478 __func__, ZSTD_getErrorCode(ret)); 479 return -EIO; 480 } 481 482 if (dic->rlen != outbuf.pos) { 483 printk_ratelimited("%sF2FS-fs (%s): %s ZSTD invalid rlen:%zu, " 484 "expected:%lu\n", KERN_ERR, 485 F2FS_I_SB(dic->inode)->sb->s_id, 486 __func__, dic->rlen, 487 PAGE_SIZE << dic->log_cluster_size); 488 return -EIO; 489 } 490 491 return 0; 492 } 493 494 static const struct f2fs_compress_ops f2fs_zstd_ops = { 495 .init_compress_ctx = zstd_init_compress_ctx, 496 .destroy_compress_ctx = zstd_destroy_compress_ctx, 497 .compress_pages = zstd_compress_pages, 498 .init_decompress_ctx = zstd_init_decompress_ctx, 499 .destroy_decompress_ctx = zstd_destroy_decompress_ctx, 500 .decompress_pages = zstd_decompress_pages, 501 }; 502 #endif 503 504 #ifdef CONFIG_F2FS_FS_LZO 505 #ifdef CONFIG_F2FS_FS_LZORLE 506 static int lzorle_compress_pages(struct compress_ctx *cc) 507 { 508 int ret; 509 510 ret = lzorle1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata, 511 &cc->clen, cc->private); 512 if (ret != LZO_E_OK) { 513 printk_ratelimited("%sF2FS-fs (%s): lzo-rle compress failed, ret:%d\n", 514 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret); 515 return -EIO; 516 } 517 return 0; 518 } 519 520 static const struct f2fs_compress_ops f2fs_lzorle_ops = { 521 .init_compress_ctx = lzo_init_compress_ctx, 522 .destroy_compress_ctx = lzo_destroy_compress_ctx, 523 .compress_pages = lzorle_compress_pages, 524 .decompress_pages = lzo_decompress_pages, 525 }; 526 #endif 527 #endif 528 529 static const struct f2fs_compress_ops *f2fs_cops[COMPRESS_MAX] = { 530 #ifdef CONFIG_F2FS_FS_LZO 531 &f2fs_lzo_ops, 532 #else 533 NULL, 534 #endif 535 #ifdef CONFIG_F2FS_FS_LZ4 536 &f2fs_lz4_ops, 537 #else 538 NULL, 539 #endif 540 #ifdef CONFIG_F2FS_FS_ZSTD 541 &f2fs_zstd_ops, 542 #else 543 NULL, 544 #endif 545 #if defined(CONFIG_F2FS_FS_LZO) && defined(CONFIG_F2FS_FS_LZORLE) 546 &f2fs_lzorle_ops, 547 #else 548 NULL, 549 #endif 550 }; 551 552 bool f2fs_is_compress_backend_ready(struct inode *inode) 553 { 554 if (!f2fs_compressed_file(inode)) 555 return true; 556 return f2fs_cops[F2FS_I(inode)->i_compress_algorithm]; 557 } 558 559 static mempool_t *compress_page_pool; 560 static int num_compress_pages = 512; 561 module_param(num_compress_pages, uint, 0444); 562 MODULE_PARM_DESC(num_compress_pages, 563 "Number of intermediate compress pages to preallocate"); 564 565 int f2fs_init_compress_mempool(void) 566 { 567 compress_page_pool = mempool_create_page_pool(num_compress_pages, 0); 568 if (!compress_page_pool) 569 return -ENOMEM; 570 571 return 0; 572 } 573 574 void f2fs_destroy_compress_mempool(void) 575 { 576 mempool_destroy(compress_page_pool); 577 } 578 579 static struct page *f2fs_compress_alloc_page(void) 580 { 581 struct page *page; 582 583 page = mempool_alloc(compress_page_pool, GFP_NOFS); 584 lock_page(page); 585 586 return page; 587 } 588 589 static void f2fs_compress_free_page(struct page *page) 590 { 591 if (!page) 592 return; 593 detach_page_private(page); 594 page->mapping = NULL; 595 unlock_page(page); 596 mempool_free(page, compress_page_pool); 597 } 598 599 #define MAX_VMAP_RETRIES 3 600 601 static void *f2fs_vmap(struct page **pages, unsigned int count) 602 { 603 int i; 604 void *buf = NULL; 605 606 for (i = 0; i < MAX_VMAP_RETRIES; i++) { 607 buf = vm_map_ram(pages, count, -1); 608 if (buf) 609 break; 610 vm_unmap_aliases(); 611 } 612 return buf; 613 } 614 615 static int f2fs_compress_pages(struct compress_ctx *cc) 616 { 617 struct f2fs_inode_info *fi = F2FS_I(cc->inode); 618 const struct f2fs_compress_ops *cops = 619 f2fs_cops[fi->i_compress_algorithm]; 620 unsigned int max_len, new_nr_cpages; 621 struct page **new_cpages; 622 u32 chksum = 0; 623 int i, ret; 624 625 trace_f2fs_compress_pages_start(cc->inode, cc->cluster_idx, 626 cc->cluster_size, fi->i_compress_algorithm); 627 628 if (cops->init_compress_ctx) { 629 ret = cops->init_compress_ctx(cc); 630 if (ret) 631 goto out; 632 } 633 634 max_len = COMPRESS_HEADER_SIZE + cc->clen; 635 cc->nr_cpages = DIV_ROUND_UP(max_len, PAGE_SIZE); 636 637 cc->cpages = page_array_alloc(cc->inode, cc->nr_cpages); 638 if (!cc->cpages) { 639 ret = -ENOMEM; 640 goto destroy_compress_ctx; 641 } 642 643 for (i = 0; i < cc->nr_cpages; i++) { 644 cc->cpages[i] = f2fs_compress_alloc_page(); 645 if (!cc->cpages[i]) { 646 ret = -ENOMEM; 647 goto out_free_cpages; 648 } 649 } 650 651 cc->rbuf = f2fs_vmap(cc->rpages, cc->cluster_size); 652 if (!cc->rbuf) { 653 ret = -ENOMEM; 654 goto out_free_cpages; 655 } 656 657 cc->cbuf = f2fs_vmap(cc->cpages, cc->nr_cpages); 658 if (!cc->cbuf) { 659 ret = -ENOMEM; 660 goto out_vunmap_rbuf; 661 } 662 663 ret = cops->compress_pages(cc); 664 if (ret) 665 goto out_vunmap_cbuf; 666 667 max_len = PAGE_SIZE * (cc->cluster_size - 1) - COMPRESS_HEADER_SIZE; 668 669 if (cc->clen > max_len) { 670 ret = -EAGAIN; 671 goto out_vunmap_cbuf; 672 } 673 674 cc->cbuf->clen = cpu_to_le32(cc->clen); 675 676 if (fi->i_compress_flag & 1 << COMPRESS_CHKSUM) 677 chksum = f2fs_crc32(F2FS_I_SB(cc->inode), 678 cc->cbuf->cdata, cc->clen); 679 cc->cbuf->chksum = cpu_to_le32(chksum); 680 681 for (i = 0; i < COMPRESS_DATA_RESERVED_SIZE; i++) 682 cc->cbuf->reserved[i] = cpu_to_le32(0); 683 684 new_nr_cpages = DIV_ROUND_UP(cc->clen + COMPRESS_HEADER_SIZE, PAGE_SIZE); 685 686 /* Now we're going to cut unnecessary tail pages */ 687 new_cpages = page_array_alloc(cc->inode, new_nr_cpages); 688 if (!new_cpages) { 689 ret = -ENOMEM; 690 goto out_vunmap_cbuf; 691 } 692 693 /* zero out any unused part of the last page */ 694 memset(&cc->cbuf->cdata[cc->clen], 0, 695 (new_nr_cpages * PAGE_SIZE) - 696 (cc->clen + COMPRESS_HEADER_SIZE)); 697 698 vm_unmap_ram(cc->cbuf, cc->nr_cpages); 699 vm_unmap_ram(cc->rbuf, cc->cluster_size); 700 701 for (i = 0; i < cc->nr_cpages; i++) { 702 if (i < new_nr_cpages) { 703 new_cpages[i] = cc->cpages[i]; 704 continue; 705 } 706 f2fs_compress_free_page(cc->cpages[i]); 707 cc->cpages[i] = NULL; 708 } 709 710 if (cops->destroy_compress_ctx) 711 cops->destroy_compress_ctx(cc); 712 713 page_array_free(cc->inode, cc->cpages, cc->nr_cpages); 714 cc->cpages = new_cpages; 715 cc->nr_cpages = new_nr_cpages; 716 717 trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx, 718 cc->clen, ret); 719 return 0; 720 721 out_vunmap_cbuf: 722 vm_unmap_ram(cc->cbuf, cc->nr_cpages); 723 out_vunmap_rbuf: 724 vm_unmap_ram(cc->rbuf, cc->cluster_size); 725 out_free_cpages: 726 for (i = 0; i < cc->nr_cpages; i++) { 727 if (cc->cpages[i]) 728 f2fs_compress_free_page(cc->cpages[i]); 729 } 730 page_array_free(cc->inode, cc->cpages, cc->nr_cpages); 731 cc->cpages = NULL; 732 destroy_compress_ctx: 733 if (cops->destroy_compress_ctx) 734 cops->destroy_compress_ctx(cc); 735 out: 736 trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx, 737 cc->clen, ret); 738 return ret; 739 } 740 741 void f2fs_decompress_cluster(struct decompress_io_ctx *dic) 742 { 743 struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode); 744 struct f2fs_inode_info *fi = F2FS_I(dic->inode); 745 const struct f2fs_compress_ops *cops = 746 f2fs_cops[fi->i_compress_algorithm]; 747 int ret; 748 int i; 749 750 trace_f2fs_decompress_pages_start(dic->inode, dic->cluster_idx, 751 dic->cluster_size, fi->i_compress_algorithm); 752 753 if (dic->failed) { 754 ret = -EIO; 755 goto out_end_io; 756 } 757 758 dic->tpages = page_array_alloc(dic->inode, dic->cluster_size); 759 if (!dic->tpages) { 760 ret = -ENOMEM; 761 goto out_end_io; 762 } 763 764 for (i = 0; i < dic->cluster_size; i++) { 765 if (dic->rpages[i]) { 766 dic->tpages[i] = dic->rpages[i]; 767 continue; 768 } 769 770 dic->tpages[i] = f2fs_compress_alloc_page(); 771 if (!dic->tpages[i]) { 772 ret = -ENOMEM; 773 goto out_end_io; 774 } 775 } 776 777 if (cops->init_decompress_ctx) { 778 ret = cops->init_decompress_ctx(dic); 779 if (ret) 780 goto out_end_io; 781 } 782 783 dic->rbuf = f2fs_vmap(dic->tpages, dic->cluster_size); 784 if (!dic->rbuf) { 785 ret = -ENOMEM; 786 goto out_destroy_decompress_ctx; 787 } 788 789 dic->cbuf = f2fs_vmap(dic->cpages, dic->nr_cpages); 790 if (!dic->cbuf) { 791 ret = -ENOMEM; 792 goto out_vunmap_rbuf; 793 } 794 795 dic->clen = le32_to_cpu(dic->cbuf->clen); 796 dic->rlen = PAGE_SIZE << dic->log_cluster_size; 797 798 if (dic->clen > PAGE_SIZE * dic->nr_cpages - COMPRESS_HEADER_SIZE) { 799 ret = -EFSCORRUPTED; 800 goto out_vunmap_cbuf; 801 } 802 803 ret = cops->decompress_pages(dic); 804 805 if (!ret && (fi->i_compress_flag & 1 << COMPRESS_CHKSUM)) { 806 u32 provided = le32_to_cpu(dic->cbuf->chksum); 807 u32 calculated = f2fs_crc32(sbi, dic->cbuf->cdata, dic->clen); 808 809 if (provided != calculated) { 810 if (!is_inode_flag_set(dic->inode, FI_COMPRESS_CORRUPT)) { 811 set_inode_flag(dic->inode, FI_COMPRESS_CORRUPT); 812 printk_ratelimited( 813 "%sF2FS-fs (%s): checksum invalid, nid = %lu, %x vs %x", 814 KERN_INFO, sbi->sb->s_id, dic->inode->i_ino, 815 provided, calculated); 816 } 817 set_sbi_flag(sbi, SBI_NEED_FSCK); 818 } 819 } 820 821 out_vunmap_cbuf: 822 vm_unmap_ram(dic->cbuf, dic->nr_cpages); 823 out_vunmap_rbuf: 824 vm_unmap_ram(dic->rbuf, dic->cluster_size); 825 out_destroy_decompress_ctx: 826 if (cops->destroy_decompress_ctx) 827 cops->destroy_decompress_ctx(dic); 828 out_end_io: 829 trace_f2fs_decompress_pages_end(dic->inode, dic->cluster_idx, 830 dic->clen, ret); 831 f2fs_decompress_end_io(dic, ret); 832 } 833 834 /* 835 * This is called when a page of a compressed cluster has been read from disk 836 * (or failed to be read from disk). It checks whether this page was the last 837 * page being waited on in the cluster, and if so, it decompresses the cluster 838 * (or in the case of a failure, cleans up without actually decompressing). 839 */ 840 void f2fs_end_read_compressed_page(struct page *page, bool failed, 841 block_t blkaddr) 842 { 843 struct decompress_io_ctx *dic = 844 (struct decompress_io_ctx *)page_private(page); 845 struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode); 846 847 dec_page_count(sbi, F2FS_RD_DATA); 848 849 if (failed) 850 WRITE_ONCE(dic->failed, true); 851 else if (blkaddr) 852 f2fs_cache_compressed_page(sbi, page, 853 dic->inode->i_ino, blkaddr); 854 855 if (atomic_dec_and_test(&dic->remaining_pages)) 856 f2fs_decompress_cluster(dic); 857 } 858 859 static bool is_page_in_cluster(struct compress_ctx *cc, pgoff_t index) 860 { 861 if (cc->cluster_idx == NULL_CLUSTER) 862 return true; 863 return cc->cluster_idx == cluster_idx(cc, index); 864 } 865 866 bool f2fs_cluster_is_empty(struct compress_ctx *cc) 867 { 868 return cc->nr_rpages == 0; 869 } 870 871 static bool f2fs_cluster_is_full(struct compress_ctx *cc) 872 { 873 return cc->cluster_size == cc->nr_rpages; 874 } 875 876 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index) 877 { 878 if (f2fs_cluster_is_empty(cc)) 879 return true; 880 return is_page_in_cluster(cc, index); 881 } 882 883 static bool cluster_has_invalid_data(struct compress_ctx *cc) 884 { 885 loff_t i_size = i_size_read(cc->inode); 886 unsigned nr_pages = DIV_ROUND_UP(i_size, PAGE_SIZE); 887 int i; 888 889 for (i = 0; i < cc->cluster_size; i++) { 890 struct page *page = cc->rpages[i]; 891 892 f2fs_bug_on(F2FS_I_SB(cc->inode), !page); 893 894 /* beyond EOF */ 895 if (page->index >= nr_pages) 896 return true; 897 } 898 return false; 899 } 900 901 static int __f2fs_cluster_blocks(struct inode *inode, 902 unsigned int cluster_idx, bool compr) 903 { 904 struct dnode_of_data dn; 905 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size; 906 unsigned int start_idx = cluster_idx << 907 F2FS_I(inode)->i_log_cluster_size; 908 int ret; 909 910 set_new_dnode(&dn, inode, NULL, NULL, 0); 911 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 912 if (ret) { 913 if (ret == -ENOENT) 914 ret = 0; 915 goto fail; 916 } 917 918 if (dn.data_blkaddr == COMPRESS_ADDR) { 919 int i; 920 921 ret = 1; 922 for (i = 1; i < cluster_size; i++) { 923 block_t blkaddr; 924 925 blkaddr = data_blkaddr(dn.inode, 926 dn.node_page, dn.ofs_in_node + i); 927 if (compr) { 928 if (__is_valid_data_blkaddr(blkaddr)) 929 ret++; 930 } else { 931 if (blkaddr != NULL_ADDR) 932 ret++; 933 } 934 } 935 936 f2fs_bug_on(F2FS_I_SB(inode), 937 !compr && ret != cluster_size && 938 !is_inode_flag_set(inode, FI_COMPRESS_RELEASED)); 939 } 940 fail: 941 f2fs_put_dnode(&dn); 942 return ret; 943 } 944 945 /* return # of compressed blocks in compressed cluster */ 946 static int f2fs_compressed_blocks(struct compress_ctx *cc) 947 { 948 return __f2fs_cluster_blocks(cc->inode, cc->cluster_idx, true); 949 } 950 951 /* return # of valid blocks in compressed cluster */ 952 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index) 953 { 954 return __f2fs_cluster_blocks(inode, 955 index >> F2FS_I(inode)->i_log_cluster_size, 956 false); 957 } 958 959 static bool cluster_may_compress(struct compress_ctx *cc) 960 { 961 if (!f2fs_need_compress_data(cc->inode)) 962 return false; 963 if (f2fs_is_atomic_file(cc->inode)) 964 return false; 965 if (!f2fs_cluster_is_full(cc)) 966 return false; 967 if (unlikely(f2fs_cp_error(F2FS_I_SB(cc->inode)))) 968 return false; 969 return !cluster_has_invalid_data(cc); 970 } 971 972 static void set_cluster_writeback(struct compress_ctx *cc) 973 { 974 int i; 975 976 for (i = 0; i < cc->cluster_size; i++) { 977 if (cc->rpages[i]) 978 set_page_writeback(cc->rpages[i]); 979 } 980 } 981 982 static void set_cluster_dirty(struct compress_ctx *cc) 983 { 984 int i; 985 986 for (i = 0; i < cc->cluster_size; i++) 987 if (cc->rpages[i]) 988 set_page_dirty(cc->rpages[i]); 989 } 990 991 static int prepare_compress_overwrite(struct compress_ctx *cc, 992 struct page **pagep, pgoff_t index, void **fsdata) 993 { 994 struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode); 995 struct address_space *mapping = cc->inode->i_mapping; 996 struct page *page; 997 sector_t last_block_in_bio; 998 unsigned fgp_flag = FGP_LOCK | FGP_WRITE | FGP_CREAT; 999 pgoff_t start_idx = start_idx_of_cluster(cc); 1000 int i, ret; 1001 1002 retry: 1003 ret = f2fs_is_compressed_cluster(cc->inode, start_idx); 1004 if (ret <= 0) 1005 return ret; 1006 1007 ret = f2fs_init_compress_ctx(cc); 1008 if (ret) 1009 return ret; 1010 1011 /* keep page reference to avoid page reclaim */ 1012 for (i = 0; i < cc->cluster_size; i++) { 1013 page = f2fs_pagecache_get_page(mapping, start_idx + i, 1014 fgp_flag, GFP_NOFS); 1015 if (!page) { 1016 ret = -ENOMEM; 1017 goto unlock_pages; 1018 } 1019 1020 if (PageUptodate(page)) 1021 f2fs_put_page(page, 1); 1022 else 1023 f2fs_compress_ctx_add_page(cc, page); 1024 } 1025 1026 if (!f2fs_cluster_is_empty(cc)) { 1027 struct bio *bio = NULL; 1028 1029 ret = f2fs_read_multi_pages(cc, &bio, cc->cluster_size, 1030 &last_block_in_bio, false, true); 1031 f2fs_put_rpages(cc); 1032 f2fs_destroy_compress_ctx(cc, true); 1033 if (ret) 1034 goto out; 1035 if (bio) 1036 f2fs_submit_bio(sbi, bio, DATA); 1037 1038 ret = f2fs_init_compress_ctx(cc); 1039 if (ret) 1040 goto out; 1041 } 1042 1043 for (i = 0; i < cc->cluster_size; i++) { 1044 f2fs_bug_on(sbi, cc->rpages[i]); 1045 1046 page = find_lock_page(mapping, start_idx + i); 1047 if (!page) { 1048 /* page can be truncated */ 1049 goto release_and_retry; 1050 } 1051 1052 f2fs_wait_on_page_writeback(page, DATA, true, true); 1053 f2fs_compress_ctx_add_page(cc, page); 1054 1055 if (!PageUptodate(page)) { 1056 release_and_retry: 1057 f2fs_put_rpages(cc); 1058 f2fs_unlock_rpages(cc, i + 1); 1059 f2fs_destroy_compress_ctx(cc, true); 1060 goto retry; 1061 } 1062 } 1063 1064 if (likely(!ret)) { 1065 *fsdata = cc->rpages; 1066 *pagep = cc->rpages[offset_in_cluster(cc, index)]; 1067 return cc->cluster_size; 1068 } 1069 1070 unlock_pages: 1071 f2fs_put_rpages(cc); 1072 f2fs_unlock_rpages(cc, i); 1073 f2fs_destroy_compress_ctx(cc, true); 1074 out: 1075 return ret; 1076 } 1077 1078 int f2fs_prepare_compress_overwrite(struct inode *inode, 1079 struct page **pagep, pgoff_t index, void **fsdata) 1080 { 1081 struct compress_ctx cc = { 1082 .inode = inode, 1083 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 1084 .cluster_size = F2FS_I(inode)->i_cluster_size, 1085 .cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size, 1086 .rpages = NULL, 1087 .nr_rpages = 0, 1088 }; 1089 1090 return prepare_compress_overwrite(&cc, pagep, index, fsdata); 1091 } 1092 1093 bool f2fs_compress_write_end(struct inode *inode, void *fsdata, 1094 pgoff_t index, unsigned copied) 1095 1096 { 1097 struct compress_ctx cc = { 1098 .inode = inode, 1099 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 1100 .cluster_size = F2FS_I(inode)->i_cluster_size, 1101 .rpages = fsdata, 1102 }; 1103 bool first_index = (index == cc.rpages[0]->index); 1104 1105 if (copied) 1106 set_cluster_dirty(&cc); 1107 1108 f2fs_put_rpages_wbc(&cc, NULL, false, 1); 1109 f2fs_destroy_compress_ctx(&cc, false); 1110 1111 return first_index; 1112 } 1113 1114 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock) 1115 { 1116 void *fsdata = NULL; 1117 struct page *pagep; 1118 int log_cluster_size = F2FS_I(inode)->i_log_cluster_size; 1119 pgoff_t start_idx = from >> (PAGE_SHIFT + log_cluster_size) << 1120 log_cluster_size; 1121 int err; 1122 1123 err = f2fs_is_compressed_cluster(inode, start_idx); 1124 if (err < 0) 1125 return err; 1126 1127 /* truncate normal cluster */ 1128 if (!err) 1129 return f2fs_do_truncate_blocks(inode, from, lock); 1130 1131 /* truncate compressed cluster */ 1132 err = f2fs_prepare_compress_overwrite(inode, &pagep, 1133 start_idx, &fsdata); 1134 1135 /* should not be a normal cluster */ 1136 f2fs_bug_on(F2FS_I_SB(inode), err == 0); 1137 1138 if (err <= 0) 1139 return err; 1140 1141 if (err > 0) { 1142 struct page **rpages = fsdata; 1143 int cluster_size = F2FS_I(inode)->i_cluster_size; 1144 int i; 1145 1146 for (i = cluster_size - 1; i >= 0; i--) { 1147 loff_t start = rpages[i]->index << PAGE_SHIFT; 1148 1149 if (from <= start) { 1150 zero_user_segment(rpages[i], 0, PAGE_SIZE); 1151 } else { 1152 zero_user_segment(rpages[i], from - start, 1153 PAGE_SIZE); 1154 break; 1155 } 1156 } 1157 1158 f2fs_compress_write_end(inode, fsdata, start_idx, true); 1159 } 1160 return 0; 1161 } 1162 1163 static int f2fs_write_compressed_pages(struct compress_ctx *cc, 1164 int *submitted, 1165 struct writeback_control *wbc, 1166 enum iostat_type io_type) 1167 { 1168 struct inode *inode = cc->inode; 1169 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1170 struct f2fs_inode_info *fi = F2FS_I(inode); 1171 struct f2fs_io_info fio = { 1172 .sbi = sbi, 1173 .ino = cc->inode->i_ino, 1174 .type = DATA, 1175 .op = REQ_OP_WRITE, 1176 .op_flags = wbc_to_write_flags(wbc), 1177 .old_blkaddr = NEW_ADDR, 1178 .page = NULL, 1179 .encrypted_page = NULL, 1180 .compressed_page = NULL, 1181 .submitted = false, 1182 .io_type = io_type, 1183 .io_wbc = wbc, 1184 .encrypted = fscrypt_inode_uses_fs_layer_crypto(cc->inode), 1185 }; 1186 struct dnode_of_data dn; 1187 struct node_info ni; 1188 struct compress_io_ctx *cic; 1189 pgoff_t start_idx = start_idx_of_cluster(cc); 1190 unsigned int last_index = cc->cluster_size - 1; 1191 loff_t psize; 1192 int i, err; 1193 1194 /* we should bypass data pages to proceed the kworkder jobs */ 1195 if (unlikely(f2fs_cp_error(sbi))) { 1196 mapping_set_error(cc->rpages[0]->mapping, -EIO); 1197 goto out_free; 1198 } 1199 1200 if (IS_NOQUOTA(inode)) { 1201 /* 1202 * We need to wait for node_write to avoid block allocation during 1203 * checkpoint. This can only happen to quota writes which can cause 1204 * the below discard race condition. 1205 */ 1206 down_read(&sbi->node_write); 1207 } else if (!f2fs_trylock_op(sbi)) { 1208 goto out_free; 1209 } 1210 1211 set_new_dnode(&dn, cc->inode, NULL, NULL, 0); 1212 1213 err = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 1214 if (err) 1215 goto out_unlock_op; 1216 1217 for (i = 0; i < cc->cluster_size; i++) { 1218 if (data_blkaddr(dn.inode, dn.node_page, 1219 dn.ofs_in_node + i) == NULL_ADDR) 1220 goto out_put_dnode; 1221 } 1222 1223 psize = (loff_t)(cc->rpages[last_index]->index + 1) << PAGE_SHIFT; 1224 1225 err = f2fs_get_node_info(fio.sbi, dn.nid, &ni); 1226 if (err) 1227 goto out_put_dnode; 1228 1229 fio.version = ni.version; 1230 1231 cic = kmem_cache_zalloc(cic_entry_slab, GFP_NOFS); 1232 if (!cic) 1233 goto out_put_dnode; 1234 1235 cic->magic = F2FS_COMPRESSED_PAGE_MAGIC; 1236 cic->inode = inode; 1237 atomic_set(&cic->pending_pages, cc->nr_cpages); 1238 cic->rpages = page_array_alloc(cc->inode, cc->cluster_size); 1239 if (!cic->rpages) 1240 goto out_put_cic; 1241 1242 cic->nr_rpages = cc->cluster_size; 1243 1244 for (i = 0; i < cc->nr_cpages; i++) { 1245 f2fs_set_compressed_page(cc->cpages[i], inode, 1246 cc->rpages[i + 1]->index, cic); 1247 fio.compressed_page = cc->cpages[i]; 1248 1249 fio.old_blkaddr = data_blkaddr(dn.inode, dn.node_page, 1250 dn.ofs_in_node + i + 1); 1251 1252 /* wait for GCed page writeback via META_MAPPING */ 1253 f2fs_wait_on_block_writeback(inode, fio.old_blkaddr); 1254 1255 if (fio.encrypted) { 1256 fio.page = cc->rpages[i + 1]; 1257 err = f2fs_encrypt_one_page(&fio); 1258 if (err) 1259 goto out_destroy_crypt; 1260 cc->cpages[i] = fio.encrypted_page; 1261 } 1262 } 1263 1264 set_cluster_writeback(cc); 1265 1266 for (i = 0; i < cc->cluster_size; i++) 1267 cic->rpages[i] = cc->rpages[i]; 1268 1269 for (i = 0; i < cc->cluster_size; i++, dn.ofs_in_node++) { 1270 block_t blkaddr; 1271 1272 blkaddr = f2fs_data_blkaddr(&dn); 1273 fio.page = cc->rpages[i]; 1274 fio.old_blkaddr = blkaddr; 1275 1276 /* cluster header */ 1277 if (i == 0) { 1278 if (blkaddr == COMPRESS_ADDR) 1279 fio.compr_blocks++; 1280 if (__is_valid_data_blkaddr(blkaddr)) 1281 f2fs_invalidate_blocks(sbi, blkaddr); 1282 f2fs_update_data_blkaddr(&dn, COMPRESS_ADDR); 1283 goto unlock_continue; 1284 } 1285 1286 if (fio.compr_blocks && __is_valid_data_blkaddr(blkaddr)) 1287 fio.compr_blocks++; 1288 1289 if (i > cc->nr_cpages) { 1290 if (__is_valid_data_blkaddr(blkaddr)) { 1291 f2fs_invalidate_blocks(sbi, blkaddr); 1292 f2fs_update_data_blkaddr(&dn, NEW_ADDR); 1293 } 1294 goto unlock_continue; 1295 } 1296 1297 f2fs_bug_on(fio.sbi, blkaddr == NULL_ADDR); 1298 1299 if (fio.encrypted) 1300 fio.encrypted_page = cc->cpages[i - 1]; 1301 else 1302 fio.compressed_page = cc->cpages[i - 1]; 1303 1304 cc->cpages[i - 1] = NULL; 1305 f2fs_outplace_write_data(&dn, &fio); 1306 (*submitted)++; 1307 unlock_continue: 1308 inode_dec_dirty_pages(cc->inode); 1309 unlock_page(fio.page); 1310 } 1311 1312 if (fio.compr_blocks) 1313 f2fs_i_compr_blocks_update(inode, fio.compr_blocks - 1, false); 1314 f2fs_i_compr_blocks_update(inode, cc->nr_cpages, true); 1315 add_compr_block_stat(inode, cc->nr_cpages); 1316 1317 set_inode_flag(cc->inode, FI_APPEND_WRITE); 1318 if (cc->cluster_idx == 0) 1319 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); 1320 1321 f2fs_put_dnode(&dn); 1322 if (IS_NOQUOTA(inode)) 1323 up_read(&sbi->node_write); 1324 else 1325 f2fs_unlock_op(sbi); 1326 1327 spin_lock(&fi->i_size_lock); 1328 if (fi->last_disk_size < psize) 1329 fi->last_disk_size = psize; 1330 spin_unlock(&fi->i_size_lock); 1331 1332 f2fs_put_rpages(cc); 1333 page_array_free(cc->inode, cc->cpages, cc->nr_cpages); 1334 cc->cpages = NULL; 1335 f2fs_destroy_compress_ctx(cc, false); 1336 return 0; 1337 1338 out_destroy_crypt: 1339 page_array_free(cc->inode, cic->rpages, cc->cluster_size); 1340 1341 for (--i; i >= 0; i--) 1342 fscrypt_finalize_bounce_page(&cc->cpages[i]); 1343 for (i = 0; i < cc->nr_cpages; i++) { 1344 if (!cc->cpages[i]) 1345 continue; 1346 f2fs_compress_free_page(cc->cpages[i]); 1347 cc->cpages[i] = NULL; 1348 } 1349 out_put_cic: 1350 kmem_cache_free(cic_entry_slab, cic); 1351 out_put_dnode: 1352 f2fs_put_dnode(&dn); 1353 out_unlock_op: 1354 if (IS_NOQUOTA(inode)) 1355 up_read(&sbi->node_write); 1356 else 1357 f2fs_unlock_op(sbi); 1358 out_free: 1359 page_array_free(cc->inode, cc->cpages, cc->nr_cpages); 1360 cc->cpages = NULL; 1361 return -EAGAIN; 1362 } 1363 1364 void f2fs_compress_write_end_io(struct bio *bio, struct page *page) 1365 { 1366 struct f2fs_sb_info *sbi = bio->bi_private; 1367 struct compress_io_ctx *cic = 1368 (struct compress_io_ctx *)page_private(page); 1369 int i; 1370 1371 if (unlikely(bio->bi_status)) 1372 mapping_set_error(cic->inode->i_mapping, -EIO); 1373 1374 f2fs_compress_free_page(page); 1375 1376 dec_page_count(sbi, F2FS_WB_DATA); 1377 1378 if (atomic_dec_return(&cic->pending_pages)) 1379 return; 1380 1381 for (i = 0; i < cic->nr_rpages; i++) { 1382 WARN_ON(!cic->rpages[i]); 1383 clear_page_private_gcing(cic->rpages[i]); 1384 end_page_writeback(cic->rpages[i]); 1385 } 1386 1387 page_array_free(cic->inode, cic->rpages, cic->nr_rpages); 1388 kmem_cache_free(cic_entry_slab, cic); 1389 } 1390 1391 static int f2fs_write_raw_pages(struct compress_ctx *cc, 1392 int *submitted, 1393 struct writeback_control *wbc, 1394 enum iostat_type io_type) 1395 { 1396 struct address_space *mapping = cc->inode->i_mapping; 1397 int _submitted, compr_blocks, ret; 1398 int i = -1, err = 0; 1399 1400 compr_blocks = f2fs_compressed_blocks(cc); 1401 if (compr_blocks < 0) { 1402 err = compr_blocks; 1403 goto out_err; 1404 } 1405 1406 for (i = 0; i < cc->cluster_size; i++) { 1407 if (!cc->rpages[i]) 1408 continue; 1409 retry_write: 1410 if (cc->rpages[i]->mapping != mapping) { 1411 unlock_page(cc->rpages[i]); 1412 continue; 1413 } 1414 1415 BUG_ON(!PageLocked(cc->rpages[i])); 1416 1417 ret = f2fs_write_single_data_page(cc->rpages[i], &_submitted, 1418 NULL, NULL, wbc, io_type, 1419 compr_blocks, false); 1420 if (ret) { 1421 if (ret == AOP_WRITEPAGE_ACTIVATE) { 1422 unlock_page(cc->rpages[i]); 1423 ret = 0; 1424 } else if (ret == -EAGAIN) { 1425 /* 1426 * for quota file, just redirty left pages to 1427 * avoid deadlock caused by cluster update race 1428 * from foreground operation. 1429 */ 1430 if (IS_NOQUOTA(cc->inode)) { 1431 err = 0; 1432 goto out_err; 1433 } 1434 ret = 0; 1435 cond_resched(); 1436 congestion_wait(BLK_RW_ASYNC, 1437 DEFAULT_IO_TIMEOUT); 1438 lock_page(cc->rpages[i]); 1439 1440 if (!PageDirty(cc->rpages[i])) { 1441 unlock_page(cc->rpages[i]); 1442 continue; 1443 } 1444 1445 clear_page_dirty_for_io(cc->rpages[i]); 1446 goto retry_write; 1447 } 1448 err = ret; 1449 goto out_err; 1450 } 1451 1452 *submitted += _submitted; 1453 } 1454 1455 f2fs_balance_fs(F2FS_M_SB(mapping), true); 1456 1457 return 0; 1458 out_err: 1459 for (++i; i < cc->cluster_size; i++) { 1460 if (!cc->rpages[i]) 1461 continue; 1462 redirty_page_for_writepage(wbc, cc->rpages[i]); 1463 unlock_page(cc->rpages[i]); 1464 } 1465 return err; 1466 } 1467 1468 int f2fs_write_multi_pages(struct compress_ctx *cc, 1469 int *submitted, 1470 struct writeback_control *wbc, 1471 enum iostat_type io_type) 1472 { 1473 int err; 1474 1475 *submitted = 0; 1476 if (cluster_may_compress(cc)) { 1477 err = f2fs_compress_pages(cc); 1478 if (err == -EAGAIN) { 1479 goto write; 1480 } else if (err) { 1481 f2fs_put_rpages_wbc(cc, wbc, true, 1); 1482 goto destroy_out; 1483 } 1484 1485 err = f2fs_write_compressed_pages(cc, submitted, 1486 wbc, io_type); 1487 if (!err) 1488 return 0; 1489 f2fs_bug_on(F2FS_I_SB(cc->inode), err != -EAGAIN); 1490 } 1491 write: 1492 f2fs_bug_on(F2FS_I_SB(cc->inode), *submitted); 1493 1494 err = f2fs_write_raw_pages(cc, submitted, wbc, io_type); 1495 f2fs_put_rpages_wbc(cc, wbc, false, 0); 1496 destroy_out: 1497 f2fs_destroy_compress_ctx(cc, false); 1498 return err; 1499 } 1500 1501 static void f2fs_free_dic(struct decompress_io_ctx *dic); 1502 1503 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc) 1504 { 1505 struct decompress_io_ctx *dic; 1506 pgoff_t start_idx = start_idx_of_cluster(cc); 1507 int i; 1508 1509 dic = kmem_cache_zalloc(dic_entry_slab, GFP_NOFS); 1510 if (!dic) 1511 return ERR_PTR(-ENOMEM); 1512 1513 dic->rpages = page_array_alloc(cc->inode, cc->cluster_size); 1514 if (!dic->rpages) { 1515 kmem_cache_free(dic_entry_slab, dic); 1516 return ERR_PTR(-ENOMEM); 1517 } 1518 1519 dic->magic = F2FS_COMPRESSED_PAGE_MAGIC; 1520 dic->inode = cc->inode; 1521 atomic_set(&dic->remaining_pages, cc->nr_cpages); 1522 dic->cluster_idx = cc->cluster_idx; 1523 dic->cluster_size = cc->cluster_size; 1524 dic->log_cluster_size = cc->log_cluster_size; 1525 dic->nr_cpages = cc->nr_cpages; 1526 refcount_set(&dic->refcnt, 1); 1527 dic->failed = false; 1528 dic->need_verity = f2fs_need_verity(cc->inode, start_idx); 1529 1530 for (i = 0; i < dic->cluster_size; i++) 1531 dic->rpages[i] = cc->rpages[i]; 1532 dic->nr_rpages = cc->cluster_size; 1533 1534 dic->cpages = page_array_alloc(dic->inode, dic->nr_cpages); 1535 if (!dic->cpages) 1536 goto out_free; 1537 1538 for (i = 0; i < dic->nr_cpages; i++) { 1539 struct page *page; 1540 1541 page = f2fs_compress_alloc_page(); 1542 if (!page) 1543 goto out_free; 1544 1545 f2fs_set_compressed_page(page, cc->inode, 1546 start_idx + i + 1, dic); 1547 dic->cpages[i] = page; 1548 } 1549 1550 return dic; 1551 1552 out_free: 1553 f2fs_free_dic(dic); 1554 return ERR_PTR(-ENOMEM); 1555 } 1556 1557 static void f2fs_free_dic(struct decompress_io_ctx *dic) 1558 { 1559 int i; 1560 1561 if (dic->tpages) { 1562 for (i = 0; i < dic->cluster_size; i++) { 1563 if (dic->rpages[i]) 1564 continue; 1565 if (!dic->tpages[i]) 1566 continue; 1567 f2fs_compress_free_page(dic->tpages[i]); 1568 } 1569 page_array_free(dic->inode, dic->tpages, dic->cluster_size); 1570 } 1571 1572 if (dic->cpages) { 1573 for (i = 0; i < dic->nr_cpages; i++) { 1574 if (!dic->cpages[i]) 1575 continue; 1576 f2fs_compress_free_page(dic->cpages[i]); 1577 } 1578 page_array_free(dic->inode, dic->cpages, dic->nr_cpages); 1579 } 1580 1581 page_array_free(dic->inode, dic->rpages, dic->nr_rpages); 1582 kmem_cache_free(dic_entry_slab, dic); 1583 } 1584 1585 static void f2fs_put_dic(struct decompress_io_ctx *dic) 1586 { 1587 if (refcount_dec_and_test(&dic->refcnt)) 1588 f2fs_free_dic(dic); 1589 } 1590 1591 /* 1592 * Update and unlock the cluster's pagecache pages, and release the reference to 1593 * the decompress_io_ctx that was being held for I/O completion. 1594 */ 1595 static void __f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed) 1596 { 1597 int i; 1598 1599 for (i = 0; i < dic->cluster_size; i++) { 1600 struct page *rpage = dic->rpages[i]; 1601 1602 if (!rpage) 1603 continue; 1604 1605 /* PG_error was set if verity failed. */ 1606 if (failed || PageError(rpage)) { 1607 ClearPageUptodate(rpage); 1608 /* will re-read again later */ 1609 ClearPageError(rpage); 1610 } else { 1611 SetPageUptodate(rpage); 1612 } 1613 unlock_page(rpage); 1614 } 1615 1616 f2fs_put_dic(dic); 1617 } 1618 1619 static void f2fs_verify_cluster(struct work_struct *work) 1620 { 1621 struct decompress_io_ctx *dic = 1622 container_of(work, struct decompress_io_ctx, verity_work); 1623 int i; 1624 1625 /* Verify the cluster's decompressed pages with fs-verity. */ 1626 for (i = 0; i < dic->cluster_size; i++) { 1627 struct page *rpage = dic->rpages[i]; 1628 1629 if (rpage && !fsverity_verify_page(rpage)) 1630 SetPageError(rpage); 1631 } 1632 1633 __f2fs_decompress_end_io(dic, false); 1634 } 1635 1636 /* 1637 * This is called when a compressed cluster has been decompressed 1638 * (or failed to be read and/or decompressed). 1639 */ 1640 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed) 1641 { 1642 if (!failed && dic->need_verity) { 1643 /* 1644 * Note that to avoid deadlocks, the verity work can't be done 1645 * on the decompression workqueue. This is because verifying 1646 * the data pages can involve reading metadata pages from the 1647 * file, and these metadata pages may be compressed. 1648 */ 1649 INIT_WORK(&dic->verity_work, f2fs_verify_cluster); 1650 fsverity_enqueue_verify_work(&dic->verity_work); 1651 } else { 1652 __f2fs_decompress_end_io(dic, failed); 1653 } 1654 } 1655 1656 /* 1657 * Put a reference to a compressed page's decompress_io_ctx. 1658 * 1659 * This is called when the page is no longer needed and can be freed. 1660 */ 1661 void f2fs_put_page_dic(struct page *page) 1662 { 1663 struct decompress_io_ctx *dic = 1664 (struct decompress_io_ctx *)page_private(page); 1665 1666 f2fs_put_dic(dic); 1667 } 1668 1669 const struct address_space_operations f2fs_compress_aops = { 1670 .releasepage = f2fs_release_page, 1671 .invalidatepage = f2fs_invalidate_page, 1672 }; 1673 1674 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi) 1675 { 1676 return sbi->compress_inode->i_mapping; 1677 } 1678 1679 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr) 1680 { 1681 if (!sbi->compress_inode) 1682 return; 1683 invalidate_mapping_pages(COMPRESS_MAPPING(sbi), blkaddr, blkaddr); 1684 } 1685 1686 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page, 1687 nid_t ino, block_t blkaddr) 1688 { 1689 struct page *cpage; 1690 int ret; 1691 1692 if (!test_opt(sbi, COMPRESS_CACHE)) 1693 return; 1694 1695 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ)) 1696 return; 1697 1698 if (!f2fs_available_free_memory(sbi, COMPRESS_PAGE)) 1699 return; 1700 1701 cpage = find_get_page(COMPRESS_MAPPING(sbi), blkaddr); 1702 if (cpage) { 1703 f2fs_put_page(cpage, 0); 1704 return; 1705 } 1706 1707 cpage = alloc_page(__GFP_NOWARN | __GFP_IO); 1708 if (!cpage) 1709 return; 1710 1711 ret = add_to_page_cache_lru(cpage, COMPRESS_MAPPING(sbi), 1712 blkaddr, GFP_NOFS); 1713 if (ret) { 1714 f2fs_put_page(cpage, 0); 1715 return; 1716 } 1717 1718 set_page_private_data(cpage, ino); 1719 1720 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ)) 1721 goto out; 1722 1723 memcpy(page_address(cpage), page_address(page), PAGE_SIZE); 1724 SetPageUptodate(cpage); 1725 out: 1726 f2fs_put_page(cpage, 1); 1727 } 1728 1729 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page, 1730 block_t blkaddr) 1731 { 1732 struct page *cpage; 1733 bool hitted = false; 1734 1735 if (!test_opt(sbi, COMPRESS_CACHE)) 1736 return false; 1737 1738 cpage = f2fs_pagecache_get_page(COMPRESS_MAPPING(sbi), 1739 blkaddr, FGP_LOCK | FGP_NOWAIT, GFP_NOFS); 1740 if (cpage) { 1741 if (PageUptodate(cpage)) { 1742 atomic_inc(&sbi->compress_page_hit); 1743 memcpy(page_address(page), 1744 page_address(cpage), PAGE_SIZE); 1745 hitted = true; 1746 } 1747 f2fs_put_page(cpage, 1); 1748 } 1749 1750 return hitted; 1751 } 1752 1753 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino) 1754 { 1755 struct address_space *mapping = sbi->compress_inode->i_mapping; 1756 struct pagevec pvec; 1757 pgoff_t index = 0; 1758 pgoff_t end = MAX_BLKADDR(sbi); 1759 1760 if (!mapping->nrpages) 1761 return; 1762 1763 pagevec_init(&pvec); 1764 1765 do { 1766 unsigned int nr_pages; 1767 int i; 1768 1769 nr_pages = pagevec_lookup_range(&pvec, mapping, 1770 &index, end - 1); 1771 if (!nr_pages) 1772 break; 1773 1774 for (i = 0; i < nr_pages; i++) { 1775 struct page *page = pvec.pages[i]; 1776 1777 if (page->index > end) 1778 break; 1779 1780 lock_page(page); 1781 if (page->mapping != mapping) { 1782 unlock_page(page); 1783 continue; 1784 } 1785 1786 if (ino != get_page_private_data(page)) { 1787 unlock_page(page); 1788 continue; 1789 } 1790 1791 generic_error_remove_page(mapping, page); 1792 unlock_page(page); 1793 } 1794 pagevec_release(&pvec); 1795 cond_resched(); 1796 } while (index < end); 1797 } 1798 1799 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) 1800 { 1801 struct inode *inode; 1802 1803 if (!test_opt(sbi, COMPRESS_CACHE)) 1804 return 0; 1805 1806 inode = f2fs_iget(sbi->sb, F2FS_COMPRESS_INO(sbi)); 1807 if (IS_ERR(inode)) 1808 return PTR_ERR(inode); 1809 sbi->compress_inode = inode; 1810 1811 sbi->compress_percent = COMPRESS_PERCENT; 1812 sbi->compress_watermark = COMPRESS_WATERMARK; 1813 1814 atomic_set(&sbi->compress_page_hit, 0); 1815 1816 return 0; 1817 } 1818 1819 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) 1820 { 1821 if (!sbi->compress_inode) 1822 return; 1823 iput(sbi->compress_inode); 1824 sbi->compress_inode = NULL; 1825 } 1826 1827 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) 1828 { 1829 dev_t dev = sbi->sb->s_bdev->bd_dev; 1830 char slab_name[32]; 1831 1832 sprintf(slab_name, "f2fs_page_array_entry-%u:%u", MAJOR(dev), MINOR(dev)); 1833 1834 sbi->page_array_slab_size = sizeof(struct page *) << 1835 F2FS_OPTION(sbi).compress_log_size; 1836 1837 sbi->page_array_slab = f2fs_kmem_cache_create(slab_name, 1838 sbi->page_array_slab_size); 1839 if (!sbi->page_array_slab) 1840 return -ENOMEM; 1841 return 0; 1842 } 1843 1844 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) 1845 { 1846 kmem_cache_destroy(sbi->page_array_slab); 1847 } 1848 1849 static int __init f2fs_init_cic_cache(void) 1850 { 1851 cic_entry_slab = f2fs_kmem_cache_create("f2fs_cic_entry", 1852 sizeof(struct compress_io_ctx)); 1853 if (!cic_entry_slab) 1854 return -ENOMEM; 1855 return 0; 1856 } 1857 1858 static void f2fs_destroy_cic_cache(void) 1859 { 1860 kmem_cache_destroy(cic_entry_slab); 1861 } 1862 1863 static int __init f2fs_init_dic_cache(void) 1864 { 1865 dic_entry_slab = f2fs_kmem_cache_create("f2fs_dic_entry", 1866 sizeof(struct decompress_io_ctx)); 1867 if (!dic_entry_slab) 1868 return -ENOMEM; 1869 return 0; 1870 } 1871 1872 static void f2fs_destroy_dic_cache(void) 1873 { 1874 kmem_cache_destroy(dic_entry_slab); 1875 } 1876 1877 int __init f2fs_init_compress_cache(void) 1878 { 1879 int err; 1880 1881 err = f2fs_init_cic_cache(); 1882 if (err) 1883 goto out; 1884 err = f2fs_init_dic_cache(); 1885 if (err) 1886 goto free_cic; 1887 return 0; 1888 free_cic: 1889 f2fs_destroy_cic_cache(); 1890 out: 1891 return -ENOMEM; 1892 } 1893 1894 void f2fs_destroy_compress_cache(void) 1895 { 1896 f2fs_destroy_dic_cache(); 1897 f2fs_destroy_cic_cache(); 1898 } 1899