1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * f2fs compress support 4 * 5 * Copyright (c) 2019 Chao Yu <chao@kernel.org> 6 */ 7 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/moduleparam.h> 11 #include <linux/writeback.h> 12 #include <linux/backing-dev.h> 13 #include <linux/lzo.h> 14 #include <linux/lz4.h> 15 #include <linux/zstd.h> 16 #include <linux/pagevec.h> 17 18 #include "f2fs.h" 19 #include "node.h" 20 #include "segment.h" 21 #include <trace/events/f2fs.h> 22 23 static struct kmem_cache *cic_entry_slab; 24 static struct kmem_cache *dic_entry_slab; 25 26 static void *page_array_alloc(struct inode *inode, int nr) 27 { 28 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 29 unsigned int size = sizeof(struct page *) * nr; 30 31 if (likely(size <= sbi->page_array_slab_size)) 32 return f2fs_kmem_cache_alloc(sbi->page_array_slab, 33 GFP_F2FS_ZERO, false, F2FS_I_SB(inode)); 34 return f2fs_kzalloc(sbi, size, GFP_NOFS); 35 } 36 37 static void page_array_free(struct inode *inode, void *pages, int nr) 38 { 39 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 40 unsigned int size = sizeof(struct page *) * nr; 41 42 if (!pages) 43 return; 44 45 if (likely(size <= sbi->page_array_slab_size)) 46 kmem_cache_free(sbi->page_array_slab, pages); 47 else 48 kfree(pages); 49 } 50 51 struct f2fs_compress_ops { 52 int (*init_compress_ctx)(struct compress_ctx *cc); 53 void (*destroy_compress_ctx)(struct compress_ctx *cc); 54 int (*compress_pages)(struct compress_ctx *cc); 55 int (*init_decompress_ctx)(struct decompress_io_ctx *dic); 56 void (*destroy_decompress_ctx)(struct decompress_io_ctx *dic); 57 int (*decompress_pages)(struct decompress_io_ctx *dic); 58 bool (*is_level_valid)(int level); 59 }; 60 61 static unsigned int offset_in_cluster(struct compress_ctx *cc, pgoff_t index) 62 { 63 return index & (cc->cluster_size - 1); 64 } 65 66 static pgoff_t cluster_idx(struct compress_ctx *cc, pgoff_t index) 67 { 68 return index >> cc->log_cluster_size; 69 } 70 71 static pgoff_t start_idx_of_cluster(struct compress_ctx *cc) 72 { 73 return cc->cluster_idx << cc->log_cluster_size; 74 } 75 76 bool f2fs_is_compressed_page(struct page *page) 77 { 78 if (!PagePrivate(page)) 79 return false; 80 if (!page_private(page)) 81 return false; 82 if (page_private_nonpointer(page)) 83 return false; 84 85 f2fs_bug_on(F2FS_M_SB(page->mapping), 86 *((u32 *)page_private(page)) != F2FS_COMPRESSED_PAGE_MAGIC); 87 return true; 88 } 89 90 static void f2fs_set_compressed_page(struct page *page, 91 struct inode *inode, pgoff_t index, void *data) 92 { 93 attach_page_private(page, (void *)data); 94 95 /* i_crypto_info and iv index */ 96 page->index = index; 97 page->mapping = inode->i_mapping; 98 } 99 100 static void f2fs_drop_rpages(struct compress_ctx *cc, int len, bool unlock) 101 { 102 int i; 103 104 for (i = 0; i < len; i++) { 105 if (!cc->rpages[i]) 106 continue; 107 if (unlock) 108 unlock_page(cc->rpages[i]); 109 else 110 put_page(cc->rpages[i]); 111 } 112 } 113 114 static void f2fs_put_rpages(struct compress_ctx *cc) 115 { 116 f2fs_drop_rpages(cc, cc->cluster_size, false); 117 } 118 119 static void f2fs_unlock_rpages(struct compress_ctx *cc, int len) 120 { 121 f2fs_drop_rpages(cc, len, true); 122 } 123 124 static void f2fs_put_rpages_wbc(struct compress_ctx *cc, 125 struct writeback_control *wbc, bool redirty, int unlock) 126 { 127 unsigned int i; 128 129 for (i = 0; i < cc->cluster_size; i++) { 130 if (!cc->rpages[i]) 131 continue; 132 if (redirty) 133 redirty_page_for_writepage(wbc, cc->rpages[i]); 134 f2fs_put_page(cc->rpages[i], unlock); 135 } 136 } 137 138 struct page *f2fs_compress_control_page(struct page *page) 139 { 140 return ((struct compress_io_ctx *)page_private(page))->rpages[0]; 141 } 142 143 int f2fs_init_compress_ctx(struct compress_ctx *cc) 144 { 145 if (cc->rpages) 146 return 0; 147 148 cc->rpages = page_array_alloc(cc->inode, cc->cluster_size); 149 return cc->rpages ? 0 : -ENOMEM; 150 } 151 152 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse) 153 { 154 page_array_free(cc->inode, cc->rpages, cc->cluster_size); 155 cc->rpages = NULL; 156 cc->nr_rpages = 0; 157 cc->nr_cpages = 0; 158 cc->valid_nr_cpages = 0; 159 if (!reuse) 160 cc->cluster_idx = NULL_CLUSTER; 161 } 162 163 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page) 164 { 165 unsigned int cluster_ofs; 166 167 if (!f2fs_cluster_can_merge_page(cc, page->index)) 168 f2fs_bug_on(F2FS_I_SB(cc->inode), 1); 169 170 cluster_ofs = offset_in_cluster(cc, page->index); 171 cc->rpages[cluster_ofs] = page; 172 cc->nr_rpages++; 173 cc->cluster_idx = cluster_idx(cc, page->index); 174 } 175 176 #ifdef CONFIG_F2FS_FS_LZO 177 static int lzo_init_compress_ctx(struct compress_ctx *cc) 178 { 179 cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), 180 LZO1X_MEM_COMPRESS, GFP_NOFS); 181 if (!cc->private) 182 return -ENOMEM; 183 184 cc->clen = lzo1x_worst_compress(PAGE_SIZE << cc->log_cluster_size); 185 return 0; 186 } 187 188 static void lzo_destroy_compress_ctx(struct compress_ctx *cc) 189 { 190 kvfree(cc->private); 191 cc->private = NULL; 192 } 193 194 static int lzo_compress_pages(struct compress_ctx *cc) 195 { 196 int ret; 197 198 ret = lzo1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata, 199 &cc->clen, cc->private); 200 if (ret != LZO_E_OK) { 201 printk_ratelimited("%sF2FS-fs (%s): lzo compress failed, ret:%d\n", 202 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret); 203 return -EIO; 204 } 205 return 0; 206 } 207 208 static int lzo_decompress_pages(struct decompress_io_ctx *dic) 209 { 210 int ret; 211 212 ret = lzo1x_decompress_safe(dic->cbuf->cdata, dic->clen, 213 dic->rbuf, &dic->rlen); 214 if (ret != LZO_E_OK) { 215 printk_ratelimited("%sF2FS-fs (%s): lzo decompress failed, ret:%d\n", 216 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret); 217 return -EIO; 218 } 219 220 if (dic->rlen != PAGE_SIZE << dic->log_cluster_size) { 221 printk_ratelimited("%sF2FS-fs (%s): lzo invalid rlen:%zu, " 222 "expected:%lu\n", KERN_ERR, 223 F2FS_I_SB(dic->inode)->sb->s_id, 224 dic->rlen, 225 PAGE_SIZE << dic->log_cluster_size); 226 return -EIO; 227 } 228 return 0; 229 } 230 231 static const struct f2fs_compress_ops f2fs_lzo_ops = { 232 .init_compress_ctx = lzo_init_compress_ctx, 233 .destroy_compress_ctx = lzo_destroy_compress_ctx, 234 .compress_pages = lzo_compress_pages, 235 .decompress_pages = lzo_decompress_pages, 236 }; 237 #endif 238 239 #ifdef CONFIG_F2FS_FS_LZ4 240 static int lz4_init_compress_ctx(struct compress_ctx *cc) 241 { 242 unsigned int size = LZ4_MEM_COMPRESS; 243 244 #ifdef CONFIG_F2FS_FS_LZ4HC 245 if (F2FS_I(cc->inode)->i_compress_level) 246 size = LZ4HC_MEM_COMPRESS; 247 #endif 248 249 cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), size, GFP_NOFS); 250 if (!cc->private) 251 return -ENOMEM; 252 253 /* 254 * we do not change cc->clen to LZ4_compressBound(inputsize) to 255 * adapt worst compress case, because lz4 compressor can handle 256 * output budget properly. 257 */ 258 cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE; 259 return 0; 260 } 261 262 static void lz4_destroy_compress_ctx(struct compress_ctx *cc) 263 { 264 kvfree(cc->private); 265 cc->private = NULL; 266 } 267 268 static int lz4_compress_pages(struct compress_ctx *cc) 269 { 270 int len = -EINVAL; 271 unsigned char level = F2FS_I(cc->inode)->i_compress_level; 272 273 if (!level) 274 len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen, 275 cc->clen, cc->private); 276 #ifdef CONFIG_F2FS_FS_LZ4HC 277 else 278 len = LZ4_compress_HC(cc->rbuf, cc->cbuf->cdata, cc->rlen, 279 cc->clen, level, cc->private); 280 #endif 281 if (len < 0) 282 return len; 283 if (!len) 284 return -EAGAIN; 285 286 cc->clen = len; 287 return 0; 288 } 289 290 static int lz4_decompress_pages(struct decompress_io_ctx *dic) 291 { 292 int ret; 293 294 ret = LZ4_decompress_safe(dic->cbuf->cdata, dic->rbuf, 295 dic->clen, dic->rlen); 296 if (ret < 0) { 297 printk_ratelimited("%sF2FS-fs (%s): lz4 decompress failed, ret:%d\n", 298 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret); 299 return -EIO; 300 } 301 302 if (ret != PAGE_SIZE << dic->log_cluster_size) { 303 printk_ratelimited("%sF2FS-fs (%s): lz4 invalid ret:%d, " 304 "expected:%lu\n", KERN_ERR, 305 F2FS_I_SB(dic->inode)->sb->s_id, ret, 306 PAGE_SIZE << dic->log_cluster_size); 307 return -EIO; 308 } 309 return 0; 310 } 311 312 static bool lz4_is_level_valid(int lvl) 313 { 314 #ifdef CONFIG_F2FS_FS_LZ4HC 315 return !lvl || (lvl >= LZ4HC_MIN_CLEVEL && lvl <= LZ4HC_MAX_CLEVEL); 316 #else 317 return lvl == 0; 318 #endif 319 } 320 321 static const struct f2fs_compress_ops f2fs_lz4_ops = { 322 .init_compress_ctx = lz4_init_compress_ctx, 323 .destroy_compress_ctx = lz4_destroy_compress_ctx, 324 .compress_pages = lz4_compress_pages, 325 .decompress_pages = lz4_decompress_pages, 326 .is_level_valid = lz4_is_level_valid, 327 }; 328 #endif 329 330 #ifdef CONFIG_F2FS_FS_ZSTD 331 static int zstd_init_compress_ctx(struct compress_ctx *cc) 332 { 333 zstd_parameters params; 334 zstd_cstream *stream; 335 void *workspace; 336 unsigned int workspace_size; 337 unsigned char level = F2FS_I(cc->inode)->i_compress_level; 338 339 /* Need to remain this for backward compatibility */ 340 if (!level) 341 level = F2FS_ZSTD_DEFAULT_CLEVEL; 342 343 params = zstd_get_params(level, cc->rlen); 344 workspace_size = zstd_cstream_workspace_bound(¶ms.cParams); 345 346 workspace = f2fs_kvmalloc(F2FS_I_SB(cc->inode), 347 workspace_size, GFP_NOFS); 348 if (!workspace) 349 return -ENOMEM; 350 351 stream = zstd_init_cstream(¶ms, 0, workspace, workspace_size); 352 if (!stream) { 353 printk_ratelimited("%sF2FS-fs (%s): %s zstd_init_cstream failed\n", 354 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, 355 __func__); 356 kvfree(workspace); 357 return -EIO; 358 } 359 360 cc->private = workspace; 361 cc->private2 = stream; 362 363 cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE; 364 return 0; 365 } 366 367 static void zstd_destroy_compress_ctx(struct compress_ctx *cc) 368 { 369 kvfree(cc->private); 370 cc->private = NULL; 371 cc->private2 = NULL; 372 } 373 374 static int zstd_compress_pages(struct compress_ctx *cc) 375 { 376 zstd_cstream *stream = cc->private2; 377 zstd_in_buffer inbuf; 378 zstd_out_buffer outbuf; 379 int src_size = cc->rlen; 380 int dst_size = src_size - PAGE_SIZE - COMPRESS_HEADER_SIZE; 381 int ret; 382 383 inbuf.pos = 0; 384 inbuf.src = cc->rbuf; 385 inbuf.size = src_size; 386 387 outbuf.pos = 0; 388 outbuf.dst = cc->cbuf->cdata; 389 outbuf.size = dst_size; 390 391 ret = zstd_compress_stream(stream, &outbuf, &inbuf); 392 if (zstd_is_error(ret)) { 393 printk_ratelimited("%sF2FS-fs (%s): %s zstd_compress_stream failed, ret: %d\n", 394 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, 395 __func__, zstd_get_error_code(ret)); 396 return -EIO; 397 } 398 399 ret = zstd_end_stream(stream, &outbuf); 400 if (zstd_is_error(ret)) { 401 printk_ratelimited("%sF2FS-fs (%s): %s zstd_end_stream returned %d\n", 402 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, 403 __func__, zstd_get_error_code(ret)); 404 return -EIO; 405 } 406 407 /* 408 * there is compressed data remained in intermediate buffer due to 409 * no more space in cbuf.cdata 410 */ 411 if (ret) 412 return -EAGAIN; 413 414 cc->clen = outbuf.pos; 415 return 0; 416 } 417 418 static int zstd_init_decompress_ctx(struct decompress_io_ctx *dic) 419 { 420 zstd_dstream *stream; 421 void *workspace; 422 unsigned int workspace_size; 423 unsigned int max_window_size = 424 MAX_COMPRESS_WINDOW_SIZE(dic->log_cluster_size); 425 426 workspace_size = zstd_dstream_workspace_bound(max_window_size); 427 428 workspace = f2fs_kvmalloc(F2FS_I_SB(dic->inode), 429 workspace_size, GFP_NOFS); 430 if (!workspace) 431 return -ENOMEM; 432 433 stream = zstd_init_dstream(max_window_size, workspace, workspace_size); 434 if (!stream) { 435 printk_ratelimited("%sF2FS-fs (%s): %s zstd_init_dstream failed\n", 436 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, 437 __func__); 438 kvfree(workspace); 439 return -EIO; 440 } 441 442 dic->private = workspace; 443 dic->private2 = stream; 444 445 return 0; 446 } 447 448 static void zstd_destroy_decompress_ctx(struct decompress_io_ctx *dic) 449 { 450 kvfree(dic->private); 451 dic->private = NULL; 452 dic->private2 = NULL; 453 } 454 455 static int zstd_decompress_pages(struct decompress_io_ctx *dic) 456 { 457 zstd_dstream *stream = dic->private2; 458 zstd_in_buffer inbuf; 459 zstd_out_buffer outbuf; 460 int ret; 461 462 inbuf.pos = 0; 463 inbuf.src = dic->cbuf->cdata; 464 inbuf.size = dic->clen; 465 466 outbuf.pos = 0; 467 outbuf.dst = dic->rbuf; 468 outbuf.size = dic->rlen; 469 470 ret = zstd_decompress_stream(stream, &outbuf, &inbuf); 471 if (zstd_is_error(ret)) { 472 printk_ratelimited("%sF2FS-fs (%s): %s zstd_decompress_stream failed, ret: %d\n", 473 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, 474 __func__, zstd_get_error_code(ret)); 475 return -EIO; 476 } 477 478 if (dic->rlen != outbuf.pos) { 479 printk_ratelimited("%sF2FS-fs (%s): %s ZSTD invalid rlen:%zu, " 480 "expected:%lu\n", KERN_ERR, 481 F2FS_I_SB(dic->inode)->sb->s_id, 482 __func__, dic->rlen, 483 PAGE_SIZE << dic->log_cluster_size); 484 return -EIO; 485 } 486 487 return 0; 488 } 489 490 static bool zstd_is_level_valid(int lvl) 491 { 492 return lvl >= zstd_min_clevel() && lvl <= zstd_max_clevel(); 493 } 494 495 static const struct f2fs_compress_ops f2fs_zstd_ops = { 496 .init_compress_ctx = zstd_init_compress_ctx, 497 .destroy_compress_ctx = zstd_destroy_compress_ctx, 498 .compress_pages = zstd_compress_pages, 499 .init_decompress_ctx = zstd_init_decompress_ctx, 500 .destroy_decompress_ctx = zstd_destroy_decompress_ctx, 501 .decompress_pages = zstd_decompress_pages, 502 .is_level_valid = zstd_is_level_valid, 503 }; 504 #endif 505 506 #ifdef CONFIG_F2FS_FS_LZO 507 #ifdef CONFIG_F2FS_FS_LZORLE 508 static int lzorle_compress_pages(struct compress_ctx *cc) 509 { 510 int ret; 511 512 ret = lzorle1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata, 513 &cc->clen, cc->private); 514 if (ret != LZO_E_OK) { 515 printk_ratelimited("%sF2FS-fs (%s): lzo-rle compress failed, ret:%d\n", 516 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret); 517 return -EIO; 518 } 519 return 0; 520 } 521 522 static const struct f2fs_compress_ops f2fs_lzorle_ops = { 523 .init_compress_ctx = lzo_init_compress_ctx, 524 .destroy_compress_ctx = lzo_destroy_compress_ctx, 525 .compress_pages = lzorle_compress_pages, 526 .decompress_pages = lzo_decompress_pages, 527 }; 528 #endif 529 #endif 530 531 static const struct f2fs_compress_ops *f2fs_cops[COMPRESS_MAX] = { 532 #ifdef CONFIG_F2FS_FS_LZO 533 &f2fs_lzo_ops, 534 #else 535 NULL, 536 #endif 537 #ifdef CONFIG_F2FS_FS_LZ4 538 &f2fs_lz4_ops, 539 #else 540 NULL, 541 #endif 542 #ifdef CONFIG_F2FS_FS_ZSTD 543 &f2fs_zstd_ops, 544 #else 545 NULL, 546 #endif 547 #if defined(CONFIG_F2FS_FS_LZO) && defined(CONFIG_F2FS_FS_LZORLE) 548 &f2fs_lzorle_ops, 549 #else 550 NULL, 551 #endif 552 }; 553 554 bool f2fs_is_compress_backend_ready(struct inode *inode) 555 { 556 if (!f2fs_compressed_file(inode)) 557 return true; 558 return f2fs_cops[F2FS_I(inode)->i_compress_algorithm]; 559 } 560 561 bool f2fs_is_compress_level_valid(int alg, int lvl) 562 { 563 const struct f2fs_compress_ops *cops = f2fs_cops[alg]; 564 565 if (cops->is_level_valid) 566 return cops->is_level_valid(lvl); 567 568 return lvl == 0; 569 } 570 571 static mempool_t *compress_page_pool; 572 static int num_compress_pages = 512; 573 module_param(num_compress_pages, uint, 0444); 574 MODULE_PARM_DESC(num_compress_pages, 575 "Number of intermediate compress pages to preallocate"); 576 577 int __init f2fs_init_compress_mempool(void) 578 { 579 compress_page_pool = mempool_create_page_pool(num_compress_pages, 0); 580 return compress_page_pool ? 0 : -ENOMEM; 581 } 582 583 void f2fs_destroy_compress_mempool(void) 584 { 585 mempool_destroy(compress_page_pool); 586 } 587 588 static struct page *f2fs_compress_alloc_page(void) 589 { 590 struct page *page; 591 592 page = mempool_alloc(compress_page_pool, GFP_NOFS); 593 lock_page(page); 594 595 return page; 596 } 597 598 static void f2fs_compress_free_page(struct page *page) 599 { 600 if (!page) 601 return; 602 detach_page_private(page); 603 page->mapping = NULL; 604 unlock_page(page); 605 mempool_free(page, compress_page_pool); 606 } 607 608 #define MAX_VMAP_RETRIES 3 609 610 static void *f2fs_vmap(struct page **pages, unsigned int count) 611 { 612 int i; 613 void *buf = NULL; 614 615 for (i = 0; i < MAX_VMAP_RETRIES; i++) { 616 buf = vm_map_ram(pages, count, -1); 617 if (buf) 618 break; 619 vm_unmap_aliases(); 620 } 621 return buf; 622 } 623 624 static int f2fs_compress_pages(struct compress_ctx *cc) 625 { 626 struct f2fs_inode_info *fi = F2FS_I(cc->inode); 627 const struct f2fs_compress_ops *cops = 628 f2fs_cops[fi->i_compress_algorithm]; 629 unsigned int max_len, new_nr_cpages; 630 u32 chksum = 0; 631 int i, ret; 632 633 trace_f2fs_compress_pages_start(cc->inode, cc->cluster_idx, 634 cc->cluster_size, fi->i_compress_algorithm); 635 636 if (cops->init_compress_ctx) { 637 ret = cops->init_compress_ctx(cc); 638 if (ret) 639 goto out; 640 } 641 642 max_len = COMPRESS_HEADER_SIZE + cc->clen; 643 cc->nr_cpages = DIV_ROUND_UP(max_len, PAGE_SIZE); 644 cc->valid_nr_cpages = cc->nr_cpages; 645 646 cc->cpages = page_array_alloc(cc->inode, cc->nr_cpages); 647 if (!cc->cpages) { 648 ret = -ENOMEM; 649 goto destroy_compress_ctx; 650 } 651 652 for (i = 0; i < cc->nr_cpages; i++) 653 cc->cpages[i] = f2fs_compress_alloc_page(); 654 655 cc->rbuf = f2fs_vmap(cc->rpages, cc->cluster_size); 656 if (!cc->rbuf) { 657 ret = -ENOMEM; 658 goto out_free_cpages; 659 } 660 661 cc->cbuf = f2fs_vmap(cc->cpages, cc->nr_cpages); 662 if (!cc->cbuf) { 663 ret = -ENOMEM; 664 goto out_vunmap_rbuf; 665 } 666 667 ret = cops->compress_pages(cc); 668 if (ret) 669 goto out_vunmap_cbuf; 670 671 max_len = PAGE_SIZE * (cc->cluster_size - 1) - COMPRESS_HEADER_SIZE; 672 673 if (cc->clen > max_len) { 674 ret = -EAGAIN; 675 goto out_vunmap_cbuf; 676 } 677 678 cc->cbuf->clen = cpu_to_le32(cc->clen); 679 680 if (fi->i_compress_flag & BIT(COMPRESS_CHKSUM)) 681 chksum = f2fs_crc32(F2FS_I_SB(cc->inode), 682 cc->cbuf->cdata, cc->clen); 683 cc->cbuf->chksum = cpu_to_le32(chksum); 684 685 for (i = 0; i < COMPRESS_DATA_RESERVED_SIZE; i++) 686 cc->cbuf->reserved[i] = cpu_to_le32(0); 687 688 new_nr_cpages = DIV_ROUND_UP(cc->clen + COMPRESS_HEADER_SIZE, PAGE_SIZE); 689 690 /* zero out any unused part of the last page */ 691 memset(&cc->cbuf->cdata[cc->clen], 0, 692 (new_nr_cpages * PAGE_SIZE) - 693 (cc->clen + COMPRESS_HEADER_SIZE)); 694 695 vm_unmap_ram(cc->cbuf, cc->nr_cpages); 696 vm_unmap_ram(cc->rbuf, cc->cluster_size); 697 698 for (i = new_nr_cpages; i < cc->nr_cpages; i++) { 699 f2fs_compress_free_page(cc->cpages[i]); 700 cc->cpages[i] = NULL; 701 } 702 703 if (cops->destroy_compress_ctx) 704 cops->destroy_compress_ctx(cc); 705 706 cc->valid_nr_cpages = new_nr_cpages; 707 708 trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx, 709 cc->clen, ret); 710 return 0; 711 712 out_vunmap_cbuf: 713 vm_unmap_ram(cc->cbuf, cc->nr_cpages); 714 out_vunmap_rbuf: 715 vm_unmap_ram(cc->rbuf, cc->cluster_size); 716 out_free_cpages: 717 for (i = 0; i < cc->nr_cpages; i++) { 718 if (cc->cpages[i]) 719 f2fs_compress_free_page(cc->cpages[i]); 720 } 721 page_array_free(cc->inode, cc->cpages, cc->nr_cpages); 722 cc->cpages = NULL; 723 destroy_compress_ctx: 724 if (cops->destroy_compress_ctx) 725 cops->destroy_compress_ctx(cc); 726 out: 727 trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx, 728 cc->clen, ret); 729 return ret; 730 } 731 732 static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic, 733 bool pre_alloc); 734 static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic, 735 bool bypass_destroy_callback, bool pre_alloc); 736 737 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task) 738 { 739 struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode); 740 struct f2fs_inode_info *fi = F2FS_I(dic->inode); 741 const struct f2fs_compress_ops *cops = 742 f2fs_cops[fi->i_compress_algorithm]; 743 bool bypass_callback = false; 744 int ret; 745 746 trace_f2fs_decompress_pages_start(dic->inode, dic->cluster_idx, 747 dic->cluster_size, fi->i_compress_algorithm); 748 749 if (dic->failed) { 750 ret = -EIO; 751 goto out_end_io; 752 } 753 754 ret = f2fs_prepare_decomp_mem(dic, false); 755 if (ret) { 756 bypass_callback = true; 757 goto out_release; 758 } 759 760 dic->clen = le32_to_cpu(dic->cbuf->clen); 761 dic->rlen = PAGE_SIZE << dic->log_cluster_size; 762 763 if (dic->clen > PAGE_SIZE * dic->nr_cpages - COMPRESS_HEADER_SIZE) { 764 ret = -EFSCORRUPTED; 765 766 /* Avoid f2fs_commit_super in irq context */ 767 if (!in_task) 768 f2fs_handle_error_async(sbi, ERROR_FAIL_DECOMPRESSION); 769 else 770 f2fs_handle_error(sbi, ERROR_FAIL_DECOMPRESSION); 771 goto out_release; 772 } 773 774 ret = cops->decompress_pages(dic); 775 776 if (!ret && (fi->i_compress_flag & BIT(COMPRESS_CHKSUM))) { 777 u32 provided = le32_to_cpu(dic->cbuf->chksum); 778 u32 calculated = f2fs_crc32(sbi, dic->cbuf->cdata, dic->clen); 779 780 if (provided != calculated) { 781 if (!is_inode_flag_set(dic->inode, FI_COMPRESS_CORRUPT)) { 782 set_inode_flag(dic->inode, FI_COMPRESS_CORRUPT); 783 printk_ratelimited( 784 "%sF2FS-fs (%s): checksum invalid, nid = %lu, %x vs %x", 785 KERN_INFO, sbi->sb->s_id, dic->inode->i_ino, 786 provided, calculated); 787 } 788 set_sbi_flag(sbi, SBI_NEED_FSCK); 789 } 790 } 791 792 out_release: 793 f2fs_release_decomp_mem(dic, bypass_callback, false); 794 795 out_end_io: 796 trace_f2fs_decompress_pages_end(dic->inode, dic->cluster_idx, 797 dic->clen, ret); 798 f2fs_decompress_end_io(dic, ret, in_task); 799 } 800 801 /* 802 * This is called when a page of a compressed cluster has been read from disk 803 * (or failed to be read from disk). It checks whether this page was the last 804 * page being waited on in the cluster, and if so, it decompresses the cluster 805 * (or in the case of a failure, cleans up without actually decompressing). 806 */ 807 void f2fs_end_read_compressed_page(struct page *page, bool failed, 808 block_t blkaddr, bool in_task) 809 { 810 struct decompress_io_ctx *dic = 811 (struct decompress_io_ctx *)page_private(page); 812 struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode); 813 814 dec_page_count(sbi, F2FS_RD_DATA); 815 816 if (failed) 817 WRITE_ONCE(dic->failed, true); 818 else if (blkaddr && in_task) 819 f2fs_cache_compressed_page(sbi, page, 820 dic->inode->i_ino, blkaddr); 821 822 if (atomic_dec_and_test(&dic->remaining_pages)) 823 f2fs_decompress_cluster(dic, in_task); 824 } 825 826 static bool is_page_in_cluster(struct compress_ctx *cc, pgoff_t index) 827 { 828 if (cc->cluster_idx == NULL_CLUSTER) 829 return true; 830 return cc->cluster_idx == cluster_idx(cc, index); 831 } 832 833 bool f2fs_cluster_is_empty(struct compress_ctx *cc) 834 { 835 return cc->nr_rpages == 0; 836 } 837 838 static bool f2fs_cluster_is_full(struct compress_ctx *cc) 839 { 840 return cc->cluster_size == cc->nr_rpages; 841 } 842 843 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index) 844 { 845 if (f2fs_cluster_is_empty(cc)) 846 return true; 847 return is_page_in_cluster(cc, index); 848 } 849 850 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages, 851 int index, int nr_pages, bool uptodate) 852 { 853 unsigned long pgidx = pages[index]->index; 854 int i = uptodate ? 0 : 1; 855 856 /* 857 * when uptodate set to true, try to check all pages in cluster is 858 * uptodate or not. 859 */ 860 if (uptodate && (pgidx % cc->cluster_size)) 861 return false; 862 863 if (nr_pages - index < cc->cluster_size) 864 return false; 865 866 for (; i < cc->cluster_size; i++) { 867 if (pages[index + i]->index != pgidx + i) 868 return false; 869 if (uptodate && !PageUptodate(pages[index + i])) 870 return false; 871 } 872 873 return true; 874 } 875 876 static bool cluster_has_invalid_data(struct compress_ctx *cc) 877 { 878 loff_t i_size = i_size_read(cc->inode); 879 unsigned nr_pages = DIV_ROUND_UP(i_size, PAGE_SIZE); 880 int i; 881 882 for (i = 0; i < cc->cluster_size; i++) { 883 struct page *page = cc->rpages[i]; 884 885 f2fs_bug_on(F2FS_I_SB(cc->inode), !page); 886 887 /* beyond EOF */ 888 if (page->index >= nr_pages) 889 return true; 890 } 891 return false; 892 } 893 894 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) 895 { 896 #ifdef CONFIG_F2FS_CHECK_FS 897 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 898 unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 899 int cluster_end = 0; 900 unsigned int count; 901 int i; 902 char *reason = ""; 903 904 if (dn->data_blkaddr != COMPRESS_ADDR) 905 return false; 906 907 /* [..., COMPR_ADDR, ...] */ 908 if (dn->ofs_in_node % cluster_size) { 909 reason = "[*|C|*|*]"; 910 goto out; 911 } 912 913 for (i = 1, count = 1; i < cluster_size; i++, count++) { 914 block_t blkaddr = data_blkaddr(dn->inode, dn->node_page, 915 dn->ofs_in_node + i); 916 917 /* [COMPR_ADDR, ..., COMPR_ADDR] */ 918 if (blkaddr == COMPRESS_ADDR) { 919 reason = "[C|*|C|*]"; 920 goto out; 921 } 922 if (!__is_valid_data_blkaddr(blkaddr)) { 923 if (!cluster_end) 924 cluster_end = i; 925 continue; 926 } 927 /* [COMPR_ADDR, NULL_ADDR or NEW_ADDR, valid_blkaddr] */ 928 if (cluster_end) { 929 reason = "[C|N|N|V]"; 930 goto out; 931 } 932 } 933 934 f2fs_bug_on(F2FS_I_SB(dn->inode), count != cluster_size && 935 !is_inode_flag_set(dn->inode, FI_COMPRESS_RELEASED)); 936 937 return false; 938 out: 939 f2fs_warn(sbi, "access invalid cluster, ino:%lu, nid:%u, ofs_in_node:%u, reason:%s", 940 dn->inode->i_ino, dn->nid, dn->ofs_in_node, reason); 941 set_sbi_flag(sbi, SBI_NEED_FSCK); 942 return true; 943 #else 944 return false; 945 #endif 946 } 947 948 static int __f2fs_get_cluster_blocks(struct inode *inode, 949 struct dnode_of_data *dn) 950 { 951 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size; 952 int count, i; 953 954 for (i = 1, count = 1; i < cluster_size; i++) { 955 block_t blkaddr = data_blkaddr(dn->inode, dn->node_page, 956 dn->ofs_in_node + i); 957 958 if (__is_valid_data_blkaddr(blkaddr)) 959 count++; 960 } 961 962 return count; 963 } 964 965 static int __f2fs_cluster_blocks(struct inode *inode, 966 unsigned int cluster_idx, bool compr_blks) 967 { 968 struct dnode_of_data dn; 969 unsigned int start_idx = cluster_idx << 970 F2FS_I(inode)->i_log_cluster_size; 971 int ret; 972 973 set_new_dnode(&dn, inode, NULL, NULL, 0); 974 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 975 if (ret) { 976 if (ret == -ENOENT) 977 ret = 0; 978 goto fail; 979 } 980 981 if (f2fs_sanity_check_cluster(&dn)) { 982 ret = -EFSCORRUPTED; 983 goto fail; 984 } 985 986 if (dn.data_blkaddr == COMPRESS_ADDR) { 987 if (compr_blks) 988 ret = __f2fs_get_cluster_blocks(inode, &dn); 989 else 990 ret = 1; 991 } 992 fail: 993 f2fs_put_dnode(&dn); 994 return ret; 995 } 996 997 /* return # of compressed blocks in compressed cluster */ 998 static int f2fs_compressed_blocks(struct compress_ctx *cc) 999 { 1000 return __f2fs_cluster_blocks(cc->inode, cc->cluster_idx, true); 1001 } 1002 1003 /* return whether cluster is compressed one or not */ 1004 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index) 1005 { 1006 return __f2fs_cluster_blocks(inode, 1007 index >> F2FS_I(inode)->i_log_cluster_size, 1008 false); 1009 } 1010 1011 static bool cluster_may_compress(struct compress_ctx *cc) 1012 { 1013 if (!f2fs_need_compress_data(cc->inode)) 1014 return false; 1015 if (f2fs_is_atomic_file(cc->inode)) 1016 return false; 1017 if (!f2fs_cluster_is_full(cc)) 1018 return false; 1019 if (unlikely(f2fs_cp_error(F2FS_I_SB(cc->inode)))) 1020 return false; 1021 return !cluster_has_invalid_data(cc); 1022 } 1023 1024 static void set_cluster_writeback(struct compress_ctx *cc) 1025 { 1026 int i; 1027 1028 for (i = 0; i < cc->cluster_size; i++) { 1029 if (cc->rpages[i]) 1030 set_page_writeback(cc->rpages[i]); 1031 } 1032 } 1033 1034 static void set_cluster_dirty(struct compress_ctx *cc) 1035 { 1036 int i; 1037 1038 for (i = 0; i < cc->cluster_size; i++) 1039 if (cc->rpages[i]) { 1040 set_page_dirty(cc->rpages[i]); 1041 set_page_private_gcing(cc->rpages[i]); 1042 } 1043 } 1044 1045 static int prepare_compress_overwrite(struct compress_ctx *cc, 1046 struct page **pagep, pgoff_t index, void **fsdata) 1047 { 1048 struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode); 1049 struct address_space *mapping = cc->inode->i_mapping; 1050 struct page *page; 1051 sector_t last_block_in_bio; 1052 fgf_t fgp_flag = FGP_LOCK | FGP_WRITE | FGP_CREAT; 1053 pgoff_t start_idx = start_idx_of_cluster(cc); 1054 int i, ret; 1055 1056 retry: 1057 ret = f2fs_is_compressed_cluster(cc->inode, start_idx); 1058 if (ret <= 0) 1059 return ret; 1060 1061 ret = f2fs_init_compress_ctx(cc); 1062 if (ret) 1063 return ret; 1064 1065 /* keep page reference to avoid page reclaim */ 1066 for (i = 0; i < cc->cluster_size; i++) { 1067 page = f2fs_pagecache_get_page(mapping, start_idx + i, 1068 fgp_flag, GFP_NOFS); 1069 if (!page) { 1070 ret = -ENOMEM; 1071 goto unlock_pages; 1072 } 1073 1074 if (PageUptodate(page)) 1075 f2fs_put_page(page, 1); 1076 else 1077 f2fs_compress_ctx_add_page(cc, page); 1078 } 1079 1080 if (!f2fs_cluster_is_empty(cc)) { 1081 struct bio *bio = NULL; 1082 1083 ret = f2fs_read_multi_pages(cc, &bio, cc->cluster_size, 1084 &last_block_in_bio, false, true); 1085 f2fs_put_rpages(cc); 1086 f2fs_destroy_compress_ctx(cc, true); 1087 if (ret) 1088 goto out; 1089 if (bio) 1090 f2fs_submit_read_bio(sbi, bio, DATA); 1091 1092 ret = f2fs_init_compress_ctx(cc); 1093 if (ret) 1094 goto out; 1095 } 1096 1097 for (i = 0; i < cc->cluster_size; i++) { 1098 f2fs_bug_on(sbi, cc->rpages[i]); 1099 1100 page = find_lock_page(mapping, start_idx + i); 1101 if (!page) { 1102 /* page can be truncated */ 1103 goto release_and_retry; 1104 } 1105 1106 f2fs_wait_on_page_writeback(page, DATA, true, true); 1107 f2fs_compress_ctx_add_page(cc, page); 1108 1109 if (!PageUptodate(page)) { 1110 release_and_retry: 1111 f2fs_put_rpages(cc); 1112 f2fs_unlock_rpages(cc, i + 1); 1113 f2fs_destroy_compress_ctx(cc, true); 1114 goto retry; 1115 } 1116 } 1117 1118 if (likely(!ret)) { 1119 *fsdata = cc->rpages; 1120 *pagep = cc->rpages[offset_in_cluster(cc, index)]; 1121 return cc->cluster_size; 1122 } 1123 1124 unlock_pages: 1125 f2fs_put_rpages(cc); 1126 f2fs_unlock_rpages(cc, i); 1127 f2fs_destroy_compress_ctx(cc, true); 1128 out: 1129 return ret; 1130 } 1131 1132 int f2fs_prepare_compress_overwrite(struct inode *inode, 1133 struct page **pagep, pgoff_t index, void **fsdata) 1134 { 1135 struct compress_ctx cc = { 1136 .inode = inode, 1137 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 1138 .cluster_size = F2FS_I(inode)->i_cluster_size, 1139 .cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size, 1140 .rpages = NULL, 1141 .nr_rpages = 0, 1142 }; 1143 1144 return prepare_compress_overwrite(&cc, pagep, index, fsdata); 1145 } 1146 1147 bool f2fs_compress_write_end(struct inode *inode, void *fsdata, 1148 pgoff_t index, unsigned copied) 1149 1150 { 1151 struct compress_ctx cc = { 1152 .inode = inode, 1153 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 1154 .cluster_size = F2FS_I(inode)->i_cluster_size, 1155 .rpages = fsdata, 1156 }; 1157 bool first_index = (index == cc.rpages[0]->index); 1158 1159 if (copied) 1160 set_cluster_dirty(&cc); 1161 1162 f2fs_put_rpages_wbc(&cc, NULL, false, 1); 1163 f2fs_destroy_compress_ctx(&cc, false); 1164 1165 return first_index; 1166 } 1167 1168 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock) 1169 { 1170 void *fsdata = NULL; 1171 struct page *pagep; 1172 int log_cluster_size = F2FS_I(inode)->i_log_cluster_size; 1173 pgoff_t start_idx = from >> (PAGE_SHIFT + log_cluster_size) << 1174 log_cluster_size; 1175 int err; 1176 1177 err = f2fs_is_compressed_cluster(inode, start_idx); 1178 if (err < 0) 1179 return err; 1180 1181 /* truncate normal cluster */ 1182 if (!err) 1183 return f2fs_do_truncate_blocks(inode, from, lock); 1184 1185 /* truncate compressed cluster */ 1186 err = f2fs_prepare_compress_overwrite(inode, &pagep, 1187 start_idx, &fsdata); 1188 1189 /* should not be a normal cluster */ 1190 f2fs_bug_on(F2FS_I_SB(inode), err == 0); 1191 1192 if (err <= 0) 1193 return err; 1194 1195 if (err > 0) { 1196 struct page **rpages = fsdata; 1197 int cluster_size = F2FS_I(inode)->i_cluster_size; 1198 int i; 1199 1200 for (i = cluster_size - 1; i >= 0; i--) { 1201 loff_t start = rpages[i]->index << PAGE_SHIFT; 1202 1203 if (from <= start) { 1204 zero_user_segment(rpages[i], 0, PAGE_SIZE); 1205 } else { 1206 zero_user_segment(rpages[i], from - start, 1207 PAGE_SIZE); 1208 break; 1209 } 1210 } 1211 1212 f2fs_compress_write_end(inode, fsdata, start_idx, true); 1213 } 1214 return 0; 1215 } 1216 1217 static int f2fs_write_compressed_pages(struct compress_ctx *cc, 1218 int *submitted, 1219 struct writeback_control *wbc, 1220 enum iostat_type io_type) 1221 { 1222 struct inode *inode = cc->inode; 1223 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1224 struct f2fs_inode_info *fi = F2FS_I(inode); 1225 struct f2fs_io_info fio = { 1226 .sbi = sbi, 1227 .ino = cc->inode->i_ino, 1228 .type = DATA, 1229 .op = REQ_OP_WRITE, 1230 .op_flags = wbc_to_write_flags(wbc), 1231 .old_blkaddr = NEW_ADDR, 1232 .page = NULL, 1233 .encrypted_page = NULL, 1234 .compressed_page = NULL, 1235 .submitted = 0, 1236 .io_type = io_type, 1237 .io_wbc = wbc, 1238 .encrypted = fscrypt_inode_uses_fs_layer_crypto(cc->inode) ? 1239 1 : 0, 1240 }; 1241 struct dnode_of_data dn; 1242 struct node_info ni; 1243 struct compress_io_ctx *cic; 1244 pgoff_t start_idx = start_idx_of_cluster(cc); 1245 unsigned int last_index = cc->cluster_size - 1; 1246 loff_t psize; 1247 int i, err; 1248 bool quota_inode = IS_NOQUOTA(inode); 1249 1250 /* we should bypass data pages to proceed the kworker jobs */ 1251 if (unlikely(f2fs_cp_error(sbi))) { 1252 mapping_set_error(cc->rpages[0]->mapping, -EIO); 1253 goto out_free; 1254 } 1255 1256 if (quota_inode) { 1257 /* 1258 * We need to wait for node_write to avoid block allocation during 1259 * checkpoint. This can only happen to quota writes which can cause 1260 * the below discard race condition. 1261 */ 1262 f2fs_down_read(&sbi->node_write); 1263 } else if (!f2fs_trylock_op(sbi)) { 1264 goto out_free; 1265 } 1266 1267 set_new_dnode(&dn, cc->inode, NULL, NULL, 0); 1268 1269 err = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 1270 if (err) 1271 goto out_unlock_op; 1272 1273 for (i = 0; i < cc->cluster_size; i++) { 1274 if (data_blkaddr(dn.inode, dn.node_page, 1275 dn.ofs_in_node + i) == NULL_ADDR) 1276 goto out_put_dnode; 1277 } 1278 1279 psize = (loff_t)(cc->rpages[last_index]->index + 1) << PAGE_SHIFT; 1280 1281 err = f2fs_get_node_info(fio.sbi, dn.nid, &ni, false); 1282 if (err) 1283 goto out_put_dnode; 1284 1285 fio.version = ni.version; 1286 1287 cic = f2fs_kmem_cache_alloc(cic_entry_slab, GFP_F2FS_ZERO, false, sbi); 1288 if (!cic) 1289 goto out_put_dnode; 1290 1291 cic->magic = F2FS_COMPRESSED_PAGE_MAGIC; 1292 cic->inode = inode; 1293 atomic_set(&cic->pending_pages, cc->valid_nr_cpages); 1294 cic->rpages = page_array_alloc(cc->inode, cc->cluster_size); 1295 if (!cic->rpages) 1296 goto out_put_cic; 1297 1298 cic->nr_rpages = cc->cluster_size; 1299 1300 for (i = 0; i < cc->valid_nr_cpages; i++) { 1301 f2fs_set_compressed_page(cc->cpages[i], inode, 1302 cc->rpages[i + 1]->index, cic); 1303 fio.compressed_page = cc->cpages[i]; 1304 1305 fio.old_blkaddr = data_blkaddr(dn.inode, dn.node_page, 1306 dn.ofs_in_node + i + 1); 1307 1308 /* wait for GCed page writeback via META_MAPPING */ 1309 f2fs_wait_on_block_writeback(inode, fio.old_blkaddr); 1310 1311 if (fio.encrypted) { 1312 fio.page = cc->rpages[i + 1]; 1313 err = f2fs_encrypt_one_page(&fio); 1314 if (err) 1315 goto out_destroy_crypt; 1316 cc->cpages[i] = fio.encrypted_page; 1317 } 1318 } 1319 1320 set_cluster_writeback(cc); 1321 1322 for (i = 0; i < cc->cluster_size; i++) 1323 cic->rpages[i] = cc->rpages[i]; 1324 1325 for (i = 0; i < cc->cluster_size; i++, dn.ofs_in_node++) { 1326 block_t blkaddr; 1327 1328 blkaddr = f2fs_data_blkaddr(&dn); 1329 fio.page = cc->rpages[i]; 1330 fio.old_blkaddr = blkaddr; 1331 1332 /* cluster header */ 1333 if (i == 0) { 1334 if (blkaddr == COMPRESS_ADDR) 1335 fio.compr_blocks++; 1336 if (__is_valid_data_blkaddr(blkaddr)) 1337 f2fs_invalidate_blocks(sbi, blkaddr); 1338 f2fs_update_data_blkaddr(&dn, COMPRESS_ADDR); 1339 goto unlock_continue; 1340 } 1341 1342 if (fio.compr_blocks && __is_valid_data_blkaddr(blkaddr)) 1343 fio.compr_blocks++; 1344 1345 if (i > cc->valid_nr_cpages) { 1346 if (__is_valid_data_blkaddr(blkaddr)) { 1347 f2fs_invalidate_blocks(sbi, blkaddr); 1348 f2fs_update_data_blkaddr(&dn, NEW_ADDR); 1349 } 1350 goto unlock_continue; 1351 } 1352 1353 f2fs_bug_on(fio.sbi, blkaddr == NULL_ADDR); 1354 1355 if (fio.encrypted) 1356 fio.encrypted_page = cc->cpages[i - 1]; 1357 else 1358 fio.compressed_page = cc->cpages[i - 1]; 1359 1360 cc->cpages[i - 1] = NULL; 1361 f2fs_outplace_write_data(&dn, &fio); 1362 (*submitted)++; 1363 unlock_continue: 1364 inode_dec_dirty_pages(cc->inode); 1365 unlock_page(fio.page); 1366 } 1367 1368 if (fio.compr_blocks) 1369 f2fs_i_compr_blocks_update(inode, fio.compr_blocks - 1, false); 1370 f2fs_i_compr_blocks_update(inode, cc->valid_nr_cpages, true); 1371 add_compr_block_stat(inode, cc->valid_nr_cpages); 1372 1373 set_inode_flag(cc->inode, FI_APPEND_WRITE); 1374 1375 f2fs_put_dnode(&dn); 1376 if (quota_inode) 1377 f2fs_up_read(&sbi->node_write); 1378 else 1379 f2fs_unlock_op(sbi); 1380 1381 spin_lock(&fi->i_size_lock); 1382 if (fi->last_disk_size < psize) 1383 fi->last_disk_size = psize; 1384 spin_unlock(&fi->i_size_lock); 1385 1386 f2fs_put_rpages(cc); 1387 page_array_free(cc->inode, cc->cpages, cc->nr_cpages); 1388 cc->cpages = NULL; 1389 f2fs_destroy_compress_ctx(cc, false); 1390 return 0; 1391 1392 out_destroy_crypt: 1393 page_array_free(cc->inode, cic->rpages, cc->cluster_size); 1394 1395 for (--i; i >= 0; i--) 1396 fscrypt_finalize_bounce_page(&cc->cpages[i]); 1397 out_put_cic: 1398 kmem_cache_free(cic_entry_slab, cic); 1399 out_put_dnode: 1400 f2fs_put_dnode(&dn); 1401 out_unlock_op: 1402 if (quota_inode) 1403 f2fs_up_read(&sbi->node_write); 1404 else 1405 f2fs_unlock_op(sbi); 1406 out_free: 1407 for (i = 0; i < cc->valid_nr_cpages; i++) { 1408 f2fs_compress_free_page(cc->cpages[i]); 1409 cc->cpages[i] = NULL; 1410 } 1411 page_array_free(cc->inode, cc->cpages, cc->nr_cpages); 1412 cc->cpages = NULL; 1413 return -EAGAIN; 1414 } 1415 1416 void f2fs_compress_write_end_io(struct bio *bio, struct page *page) 1417 { 1418 struct f2fs_sb_info *sbi = bio->bi_private; 1419 struct compress_io_ctx *cic = 1420 (struct compress_io_ctx *)page_private(page); 1421 int i; 1422 1423 if (unlikely(bio->bi_status)) 1424 mapping_set_error(cic->inode->i_mapping, -EIO); 1425 1426 f2fs_compress_free_page(page); 1427 1428 dec_page_count(sbi, F2FS_WB_DATA); 1429 1430 if (atomic_dec_return(&cic->pending_pages)) 1431 return; 1432 1433 for (i = 0; i < cic->nr_rpages; i++) { 1434 WARN_ON(!cic->rpages[i]); 1435 clear_page_private_gcing(cic->rpages[i]); 1436 end_page_writeback(cic->rpages[i]); 1437 } 1438 1439 page_array_free(cic->inode, cic->rpages, cic->nr_rpages); 1440 kmem_cache_free(cic_entry_slab, cic); 1441 } 1442 1443 static int f2fs_write_raw_pages(struct compress_ctx *cc, 1444 int *submitted, 1445 struct writeback_control *wbc, 1446 enum iostat_type io_type) 1447 { 1448 struct address_space *mapping = cc->inode->i_mapping; 1449 int _submitted, compr_blocks, ret, i; 1450 1451 compr_blocks = f2fs_compressed_blocks(cc); 1452 1453 for (i = 0; i < cc->cluster_size; i++) { 1454 if (!cc->rpages[i]) 1455 continue; 1456 1457 redirty_page_for_writepage(wbc, cc->rpages[i]); 1458 unlock_page(cc->rpages[i]); 1459 } 1460 1461 if (compr_blocks < 0) 1462 return compr_blocks; 1463 1464 for (i = 0; i < cc->cluster_size; i++) { 1465 if (!cc->rpages[i]) 1466 continue; 1467 retry_write: 1468 lock_page(cc->rpages[i]); 1469 1470 if (cc->rpages[i]->mapping != mapping) { 1471 continue_unlock: 1472 unlock_page(cc->rpages[i]); 1473 continue; 1474 } 1475 1476 if (!PageDirty(cc->rpages[i])) 1477 goto continue_unlock; 1478 1479 if (PageWriteback(cc->rpages[i])) { 1480 if (wbc->sync_mode == WB_SYNC_NONE) 1481 goto continue_unlock; 1482 f2fs_wait_on_page_writeback(cc->rpages[i], DATA, true, true); 1483 } 1484 1485 if (!clear_page_dirty_for_io(cc->rpages[i])) 1486 goto continue_unlock; 1487 1488 ret = f2fs_write_single_data_page(cc->rpages[i], &_submitted, 1489 NULL, NULL, wbc, io_type, 1490 compr_blocks, false); 1491 if (ret) { 1492 if (ret == AOP_WRITEPAGE_ACTIVATE) { 1493 unlock_page(cc->rpages[i]); 1494 ret = 0; 1495 } else if (ret == -EAGAIN) { 1496 /* 1497 * for quota file, just redirty left pages to 1498 * avoid deadlock caused by cluster update race 1499 * from foreground operation. 1500 */ 1501 if (IS_NOQUOTA(cc->inode)) 1502 return 0; 1503 ret = 0; 1504 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 1505 goto retry_write; 1506 } 1507 return ret; 1508 } 1509 1510 *submitted += _submitted; 1511 } 1512 1513 f2fs_balance_fs(F2FS_M_SB(mapping), true); 1514 1515 return 0; 1516 } 1517 1518 int f2fs_write_multi_pages(struct compress_ctx *cc, 1519 int *submitted, 1520 struct writeback_control *wbc, 1521 enum iostat_type io_type) 1522 { 1523 int err; 1524 1525 *submitted = 0; 1526 if (cluster_may_compress(cc)) { 1527 err = f2fs_compress_pages(cc); 1528 if (err == -EAGAIN) { 1529 add_compr_block_stat(cc->inode, cc->cluster_size); 1530 goto write; 1531 } else if (err) { 1532 f2fs_put_rpages_wbc(cc, wbc, true, 1); 1533 goto destroy_out; 1534 } 1535 1536 err = f2fs_write_compressed_pages(cc, submitted, 1537 wbc, io_type); 1538 if (!err) 1539 return 0; 1540 f2fs_bug_on(F2FS_I_SB(cc->inode), err != -EAGAIN); 1541 } 1542 write: 1543 f2fs_bug_on(F2FS_I_SB(cc->inode), *submitted); 1544 1545 err = f2fs_write_raw_pages(cc, submitted, wbc, io_type); 1546 f2fs_put_rpages_wbc(cc, wbc, false, 0); 1547 destroy_out: 1548 f2fs_destroy_compress_ctx(cc, false); 1549 return err; 1550 } 1551 1552 static inline bool allow_memalloc_for_decomp(struct f2fs_sb_info *sbi, 1553 bool pre_alloc) 1554 { 1555 return pre_alloc ^ f2fs_low_mem_mode(sbi); 1556 } 1557 1558 static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic, 1559 bool pre_alloc) 1560 { 1561 const struct f2fs_compress_ops *cops = 1562 f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm]; 1563 int i; 1564 1565 if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc)) 1566 return 0; 1567 1568 dic->tpages = page_array_alloc(dic->inode, dic->cluster_size); 1569 if (!dic->tpages) 1570 return -ENOMEM; 1571 1572 for (i = 0; i < dic->cluster_size; i++) { 1573 if (dic->rpages[i]) { 1574 dic->tpages[i] = dic->rpages[i]; 1575 continue; 1576 } 1577 1578 dic->tpages[i] = f2fs_compress_alloc_page(); 1579 } 1580 1581 dic->rbuf = f2fs_vmap(dic->tpages, dic->cluster_size); 1582 if (!dic->rbuf) 1583 return -ENOMEM; 1584 1585 dic->cbuf = f2fs_vmap(dic->cpages, dic->nr_cpages); 1586 if (!dic->cbuf) 1587 return -ENOMEM; 1588 1589 if (cops->init_decompress_ctx) 1590 return cops->init_decompress_ctx(dic); 1591 1592 return 0; 1593 } 1594 1595 static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic, 1596 bool bypass_destroy_callback, bool pre_alloc) 1597 { 1598 const struct f2fs_compress_ops *cops = 1599 f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm]; 1600 1601 if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc)) 1602 return; 1603 1604 if (!bypass_destroy_callback && cops->destroy_decompress_ctx) 1605 cops->destroy_decompress_ctx(dic); 1606 1607 if (dic->cbuf) 1608 vm_unmap_ram(dic->cbuf, dic->nr_cpages); 1609 1610 if (dic->rbuf) 1611 vm_unmap_ram(dic->rbuf, dic->cluster_size); 1612 } 1613 1614 static void f2fs_free_dic(struct decompress_io_ctx *dic, 1615 bool bypass_destroy_callback); 1616 1617 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc) 1618 { 1619 struct decompress_io_ctx *dic; 1620 pgoff_t start_idx = start_idx_of_cluster(cc); 1621 struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode); 1622 int i, ret; 1623 1624 dic = f2fs_kmem_cache_alloc(dic_entry_slab, GFP_F2FS_ZERO, false, sbi); 1625 if (!dic) 1626 return ERR_PTR(-ENOMEM); 1627 1628 dic->rpages = page_array_alloc(cc->inode, cc->cluster_size); 1629 if (!dic->rpages) { 1630 kmem_cache_free(dic_entry_slab, dic); 1631 return ERR_PTR(-ENOMEM); 1632 } 1633 1634 dic->magic = F2FS_COMPRESSED_PAGE_MAGIC; 1635 dic->inode = cc->inode; 1636 atomic_set(&dic->remaining_pages, cc->nr_cpages); 1637 dic->cluster_idx = cc->cluster_idx; 1638 dic->cluster_size = cc->cluster_size; 1639 dic->log_cluster_size = cc->log_cluster_size; 1640 dic->nr_cpages = cc->nr_cpages; 1641 refcount_set(&dic->refcnt, 1); 1642 dic->failed = false; 1643 dic->need_verity = f2fs_need_verity(cc->inode, start_idx); 1644 1645 for (i = 0; i < dic->cluster_size; i++) 1646 dic->rpages[i] = cc->rpages[i]; 1647 dic->nr_rpages = cc->cluster_size; 1648 1649 dic->cpages = page_array_alloc(dic->inode, dic->nr_cpages); 1650 if (!dic->cpages) { 1651 ret = -ENOMEM; 1652 goto out_free; 1653 } 1654 1655 for (i = 0; i < dic->nr_cpages; i++) { 1656 struct page *page; 1657 1658 page = f2fs_compress_alloc_page(); 1659 f2fs_set_compressed_page(page, cc->inode, 1660 start_idx + i + 1, dic); 1661 dic->cpages[i] = page; 1662 } 1663 1664 ret = f2fs_prepare_decomp_mem(dic, true); 1665 if (ret) 1666 goto out_free; 1667 1668 return dic; 1669 1670 out_free: 1671 f2fs_free_dic(dic, true); 1672 return ERR_PTR(ret); 1673 } 1674 1675 static void f2fs_free_dic(struct decompress_io_ctx *dic, 1676 bool bypass_destroy_callback) 1677 { 1678 int i; 1679 1680 f2fs_release_decomp_mem(dic, bypass_destroy_callback, true); 1681 1682 if (dic->tpages) { 1683 for (i = 0; i < dic->cluster_size; i++) { 1684 if (dic->rpages[i]) 1685 continue; 1686 if (!dic->tpages[i]) 1687 continue; 1688 f2fs_compress_free_page(dic->tpages[i]); 1689 } 1690 page_array_free(dic->inode, dic->tpages, dic->cluster_size); 1691 } 1692 1693 if (dic->cpages) { 1694 for (i = 0; i < dic->nr_cpages; i++) { 1695 if (!dic->cpages[i]) 1696 continue; 1697 f2fs_compress_free_page(dic->cpages[i]); 1698 } 1699 page_array_free(dic->inode, dic->cpages, dic->nr_cpages); 1700 } 1701 1702 page_array_free(dic->inode, dic->rpages, dic->nr_rpages); 1703 kmem_cache_free(dic_entry_slab, dic); 1704 } 1705 1706 static void f2fs_late_free_dic(struct work_struct *work) 1707 { 1708 struct decompress_io_ctx *dic = 1709 container_of(work, struct decompress_io_ctx, free_work); 1710 1711 f2fs_free_dic(dic, false); 1712 } 1713 1714 static void f2fs_put_dic(struct decompress_io_ctx *dic, bool in_task) 1715 { 1716 if (refcount_dec_and_test(&dic->refcnt)) { 1717 if (in_task) { 1718 f2fs_free_dic(dic, false); 1719 } else { 1720 INIT_WORK(&dic->free_work, f2fs_late_free_dic); 1721 queue_work(F2FS_I_SB(dic->inode)->post_read_wq, 1722 &dic->free_work); 1723 } 1724 } 1725 } 1726 1727 static void f2fs_verify_cluster(struct work_struct *work) 1728 { 1729 struct decompress_io_ctx *dic = 1730 container_of(work, struct decompress_io_ctx, verity_work); 1731 int i; 1732 1733 /* Verify, update, and unlock the decompressed pages. */ 1734 for (i = 0; i < dic->cluster_size; i++) { 1735 struct page *rpage = dic->rpages[i]; 1736 1737 if (!rpage) 1738 continue; 1739 1740 if (fsverity_verify_page(rpage)) 1741 SetPageUptodate(rpage); 1742 else 1743 ClearPageUptodate(rpage); 1744 unlock_page(rpage); 1745 } 1746 1747 f2fs_put_dic(dic, true); 1748 } 1749 1750 /* 1751 * This is called when a compressed cluster has been decompressed 1752 * (or failed to be read and/or decompressed). 1753 */ 1754 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed, 1755 bool in_task) 1756 { 1757 int i; 1758 1759 if (!failed && dic->need_verity) { 1760 /* 1761 * Note that to avoid deadlocks, the verity work can't be done 1762 * on the decompression workqueue. This is because verifying 1763 * the data pages can involve reading metadata pages from the 1764 * file, and these metadata pages may be compressed. 1765 */ 1766 INIT_WORK(&dic->verity_work, f2fs_verify_cluster); 1767 fsverity_enqueue_verify_work(&dic->verity_work); 1768 return; 1769 } 1770 1771 /* Update and unlock the cluster's pagecache pages. */ 1772 for (i = 0; i < dic->cluster_size; i++) { 1773 struct page *rpage = dic->rpages[i]; 1774 1775 if (!rpage) 1776 continue; 1777 1778 if (failed) 1779 ClearPageUptodate(rpage); 1780 else 1781 SetPageUptodate(rpage); 1782 unlock_page(rpage); 1783 } 1784 1785 /* 1786 * Release the reference to the decompress_io_ctx that was being held 1787 * for I/O completion. 1788 */ 1789 f2fs_put_dic(dic, in_task); 1790 } 1791 1792 /* 1793 * Put a reference to a compressed page's decompress_io_ctx. 1794 * 1795 * This is called when the page is no longer needed and can be freed. 1796 */ 1797 void f2fs_put_page_dic(struct page *page, bool in_task) 1798 { 1799 struct decompress_io_ctx *dic = 1800 (struct decompress_io_ctx *)page_private(page); 1801 1802 f2fs_put_dic(dic, in_task); 1803 } 1804 1805 /* 1806 * check whether cluster blocks are contiguous, and add extent cache entry 1807 * only if cluster blocks are logically and physically contiguous. 1808 */ 1809 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn) 1810 { 1811 bool compressed = f2fs_data_blkaddr(dn) == COMPRESS_ADDR; 1812 int i = compressed ? 1 : 0; 1813 block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_page, 1814 dn->ofs_in_node + i); 1815 1816 for (i += 1; i < F2FS_I(dn->inode)->i_cluster_size; i++) { 1817 block_t blkaddr = data_blkaddr(dn->inode, dn->node_page, 1818 dn->ofs_in_node + i); 1819 1820 if (!__is_valid_data_blkaddr(blkaddr)) 1821 break; 1822 if (first_blkaddr + i - (compressed ? 1 : 0) != blkaddr) 1823 return 0; 1824 } 1825 1826 return compressed ? i - 1 : i; 1827 } 1828 1829 const struct address_space_operations f2fs_compress_aops = { 1830 .release_folio = f2fs_release_folio, 1831 .invalidate_folio = f2fs_invalidate_folio, 1832 .migrate_folio = filemap_migrate_folio, 1833 }; 1834 1835 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi) 1836 { 1837 return sbi->compress_inode->i_mapping; 1838 } 1839 1840 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr) 1841 { 1842 if (!sbi->compress_inode) 1843 return; 1844 invalidate_mapping_pages(COMPRESS_MAPPING(sbi), blkaddr, blkaddr); 1845 } 1846 1847 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page, 1848 nid_t ino, block_t blkaddr) 1849 { 1850 struct page *cpage; 1851 int ret; 1852 1853 if (!test_opt(sbi, COMPRESS_CACHE)) 1854 return; 1855 1856 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ)) 1857 return; 1858 1859 if (!f2fs_available_free_memory(sbi, COMPRESS_PAGE)) 1860 return; 1861 1862 cpage = find_get_page(COMPRESS_MAPPING(sbi), blkaddr); 1863 if (cpage) { 1864 f2fs_put_page(cpage, 0); 1865 return; 1866 } 1867 1868 cpage = alloc_page(__GFP_NOWARN | __GFP_IO); 1869 if (!cpage) 1870 return; 1871 1872 ret = add_to_page_cache_lru(cpage, COMPRESS_MAPPING(sbi), 1873 blkaddr, GFP_NOFS); 1874 if (ret) { 1875 f2fs_put_page(cpage, 0); 1876 return; 1877 } 1878 1879 set_page_private_data(cpage, ino); 1880 1881 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ)) 1882 goto out; 1883 1884 memcpy(page_address(cpage), page_address(page), PAGE_SIZE); 1885 SetPageUptodate(cpage); 1886 out: 1887 f2fs_put_page(cpage, 1); 1888 } 1889 1890 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page, 1891 block_t blkaddr) 1892 { 1893 struct page *cpage; 1894 bool hitted = false; 1895 1896 if (!test_opt(sbi, COMPRESS_CACHE)) 1897 return false; 1898 1899 cpage = f2fs_pagecache_get_page(COMPRESS_MAPPING(sbi), 1900 blkaddr, FGP_LOCK | FGP_NOWAIT, GFP_NOFS); 1901 if (cpage) { 1902 if (PageUptodate(cpage)) { 1903 atomic_inc(&sbi->compress_page_hit); 1904 memcpy(page_address(page), 1905 page_address(cpage), PAGE_SIZE); 1906 hitted = true; 1907 } 1908 f2fs_put_page(cpage, 1); 1909 } 1910 1911 return hitted; 1912 } 1913 1914 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino) 1915 { 1916 struct address_space *mapping = COMPRESS_MAPPING(sbi); 1917 struct folio_batch fbatch; 1918 pgoff_t index = 0; 1919 pgoff_t end = MAX_BLKADDR(sbi); 1920 1921 if (!mapping->nrpages) 1922 return; 1923 1924 folio_batch_init(&fbatch); 1925 1926 do { 1927 unsigned int nr, i; 1928 1929 nr = filemap_get_folios(mapping, &index, end - 1, &fbatch); 1930 if (!nr) 1931 break; 1932 1933 for (i = 0; i < nr; i++) { 1934 struct folio *folio = fbatch.folios[i]; 1935 1936 folio_lock(folio); 1937 if (folio->mapping != mapping) { 1938 folio_unlock(folio); 1939 continue; 1940 } 1941 1942 if (ino != get_page_private_data(&folio->page)) { 1943 folio_unlock(folio); 1944 continue; 1945 } 1946 1947 generic_error_remove_folio(mapping, folio); 1948 folio_unlock(folio); 1949 } 1950 folio_batch_release(&fbatch); 1951 cond_resched(); 1952 } while (index < end); 1953 } 1954 1955 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) 1956 { 1957 struct inode *inode; 1958 1959 if (!test_opt(sbi, COMPRESS_CACHE)) 1960 return 0; 1961 1962 inode = f2fs_iget(sbi->sb, F2FS_COMPRESS_INO(sbi)); 1963 if (IS_ERR(inode)) 1964 return PTR_ERR(inode); 1965 sbi->compress_inode = inode; 1966 1967 sbi->compress_percent = COMPRESS_PERCENT; 1968 sbi->compress_watermark = COMPRESS_WATERMARK; 1969 1970 atomic_set(&sbi->compress_page_hit, 0); 1971 1972 return 0; 1973 } 1974 1975 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) 1976 { 1977 if (!sbi->compress_inode) 1978 return; 1979 iput(sbi->compress_inode); 1980 sbi->compress_inode = NULL; 1981 } 1982 1983 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) 1984 { 1985 dev_t dev = sbi->sb->s_bdev->bd_dev; 1986 char slab_name[35]; 1987 1988 if (!f2fs_sb_has_compression(sbi)) 1989 return 0; 1990 1991 sprintf(slab_name, "f2fs_page_array_entry-%u:%u", MAJOR(dev), MINOR(dev)); 1992 1993 sbi->page_array_slab_size = sizeof(struct page *) << 1994 F2FS_OPTION(sbi).compress_log_size; 1995 1996 sbi->page_array_slab = f2fs_kmem_cache_create(slab_name, 1997 sbi->page_array_slab_size); 1998 return sbi->page_array_slab ? 0 : -ENOMEM; 1999 } 2000 2001 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) 2002 { 2003 kmem_cache_destroy(sbi->page_array_slab); 2004 } 2005 2006 int __init f2fs_init_compress_cache(void) 2007 { 2008 cic_entry_slab = f2fs_kmem_cache_create("f2fs_cic_entry", 2009 sizeof(struct compress_io_ctx)); 2010 if (!cic_entry_slab) 2011 return -ENOMEM; 2012 dic_entry_slab = f2fs_kmem_cache_create("f2fs_dic_entry", 2013 sizeof(struct decompress_io_ctx)); 2014 if (!dic_entry_slab) 2015 goto free_cic; 2016 return 0; 2017 free_cic: 2018 kmem_cache_destroy(cic_entry_slab); 2019 return -ENOMEM; 2020 } 2021 2022 void f2fs_destroy_compress_cache(void) 2023 { 2024 kmem_cache_destroy(dic_entry_slab); 2025 kmem_cache_destroy(cic_entry_slab); 2026 } 2027