1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * f2fs compress support 4 * 5 * Copyright (c) 2019 Chao Yu <chao@kernel.org> 6 */ 7 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/moduleparam.h> 11 #include <linux/writeback.h> 12 #include <linux/backing-dev.h> 13 #include <linux/lzo.h> 14 #include <linux/lz4.h> 15 #include <linux/zstd.h> 16 #include <linux/pagevec.h> 17 18 #include "f2fs.h" 19 #include "node.h" 20 #include "segment.h" 21 #include <trace/events/f2fs.h> 22 23 static struct kmem_cache *cic_entry_slab; 24 static struct kmem_cache *dic_entry_slab; 25 26 static void *page_array_alloc(struct inode *inode, int nr) 27 { 28 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 29 unsigned int size = sizeof(struct page *) * nr; 30 31 if (likely(size <= sbi->page_array_slab_size)) 32 return f2fs_kmem_cache_alloc(sbi->page_array_slab, 33 GFP_F2FS_ZERO, false, F2FS_I_SB(inode)); 34 return f2fs_kzalloc(sbi, size, GFP_NOFS); 35 } 36 37 static void page_array_free(struct inode *inode, void *pages, int nr) 38 { 39 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 40 unsigned int size = sizeof(struct page *) * nr; 41 42 if (!pages) 43 return; 44 45 if (likely(size <= sbi->page_array_slab_size)) 46 kmem_cache_free(sbi->page_array_slab, pages); 47 else 48 kfree(pages); 49 } 50 51 struct f2fs_compress_ops { 52 int (*init_compress_ctx)(struct compress_ctx *cc); 53 void (*destroy_compress_ctx)(struct compress_ctx *cc); 54 int (*compress_pages)(struct compress_ctx *cc); 55 int (*init_decompress_ctx)(struct decompress_io_ctx *dic); 56 void (*destroy_decompress_ctx)(struct decompress_io_ctx *dic); 57 int (*decompress_pages)(struct decompress_io_ctx *dic); 58 }; 59 60 static unsigned int offset_in_cluster(struct compress_ctx *cc, pgoff_t index) 61 { 62 return index & (cc->cluster_size - 1); 63 } 64 65 static pgoff_t cluster_idx(struct compress_ctx *cc, pgoff_t index) 66 { 67 return index >> cc->log_cluster_size; 68 } 69 70 static pgoff_t start_idx_of_cluster(struct compress_ctx *cc) 71 { 72 return cc->cluster_idx << cc->log_cluster_size; 73 } 74 75 bool f2fs_is_compressed_page(struct page *page) 76 { 77 if (!PagePrivate(page)) 78 return false; 79 if (!page_private(page)) 80 return false; 81 if (page_private_nonpointer(page)) 82 return false; 83 84 f2fs_bug_on(F2FS_M_SB(page->mapping), 85 *((u32 *)page_private(page)) != F2FS_COMPRESSED_PAGE_MAGIC); 86 return true; 87 } 88 89 static void f2fs_set_compressed_page(struct page *page, 90 struct inode *inode, pgoff_t index, void *data) 91 { 92 attach_page_private(page, (void *)data); 93 94 /* i_crypto_info and iv index */ 95 page->index = index; 96 page->mapping = inode->i_mapping; 97 } 98 99 static void f2fs_drop_rpages(struct compress_ctx *cc, int len, bool unlock) 100 { 101 int i; 102 103 for (i = 0; i < len; i++) { 104 if (!cc->rpages[i]) 105 continue; 106 if (unlock) 107 unlock_page(cc->rpages[i]); 108 else 109 put_page(cc->rpages[i]); 110 } 111 } 112 113 static void f2fs_put_rpages(struct compress_ctx *cc) 114 { 115 f2fs_drop_rpages(cc, cc->cluster_size, false); 116 } 117 118 static void f2fs_unlock_rpages(struct compress_ctx *cc, int len) 119 { 120 f2fs_drop_rpages(cc, len, true); 121 } 122 123 static void f2fs_put_rpages_wbc(struct compress_ctx *cc, 124 struct writeback_control *wbc, bool redirty, int unlock) 125 { 126 unsigned int i; 127 128 for (i = 0; i < cc->cluster_size; i++) { 129 if (!cc->rpages[i]) 130 continue; 131 if (redirty) 132 redirty_page_for_writepage(wbc, cc->rpages[i]); 133 f2fs_put_page(cc->rpages[i], unlock); 134 } 135 } 136 137 struct page *f2fs_compress_control_page(struct page *page) 138 { 139 return ((struct compress_io_ctx *)page_private(page))->rpages[0]; 140 } 141 142 int f2fs_init_compress_ctx(struct compress_ctx *cc) 143 { 144 if (cc->rpages) 145 return 0; 146 147 cc->rpages = page_array_alloc(cc->inode, cc->cluster_size); 148 return cc->rpages ? 0 : -ENOMEM; 149 } 150 151 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse) 152 { 153 page_array_free(cc->inode, cc->rpages, cc->cluster_size); 154 cc->rpages = NULL; 155 cc->nr_rpages = 0; 156 cc->nr_cpages = 0; 157 cc->valid_nr_cpages = 0; 158 if (!reuse) 159 cc->cluster_idx = NULL_CLUSTER; 160 } 161 162 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page) 163 { 164 unsigned int cluster_ofs; 165 166 if (!f2fs_cluster_can_merge_page(cc, page->index)) 167 f2fs_bug_on(F2FS_I_SB(cc->inode), 1); 168 169 cluster_ofs = offset_in_cluster(cc, page->index); 170 cc->rpages[cluster_ofs] = page; 171 cc->nr_rpages++; 172 cc->cluster_idx = cluster_idx(cc, page->index); 173 } 174 175 #ifdef CONFIG_F2FS_FS_LZO 176 static int lzo_init_compress_ctx(struct compress_ctx *cc) 177 { 178 cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), 179 LZO1X_MEM_COMPRESS, GFP_NOFS); 180 if (!cc->private) 181 return -ENOMEM; 182 183 cc->clen = lzo1x_worst_compress(PAGE_SIZE << cc->log_cluster_size); 184 return 0; 185 } 186 187 static void lzo_destroy_compress_ctx(struct compress_ctx *cc) 188 { 189 kvfree(cc->private); 190 cc->private = NULL; 191 } 192 193 static int lzo_compress_pages(struct compress_ctx *cc) 194 { 195 int ret; 196 197 ret = lzo1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata, 198 &cc->clen, cc->private); 199 if (ret != LZO_E_OK) { 200 printk_ratelimited("%sF2FS-fs (%s): lzo compress failed, ret:%d\n", 201 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret); 202 return -EIO; 203 } 204 return 0; 205 } 206 207 static int lzo_decompress_pages(struct decompress_io_ctx *dic) 208 { 209 int ret; 210 211 ret = lzo1x_decompress_safe(dic->cbuf->cdata, dic->clen, 212 dic->rbuf, &dic->rlen); 213 if (ret != LZO_E_OK) { 214 printk_ratelimited("%sF2FS-fs (%s): lzo decompress failed, ret:%d\n", 215 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret); 216 return -EIO; 217 } 218 219 if (dic->rlen != PAGE_SIZE << dic->log_cluster_size) { 220 printk_ratelimited("%sF2FS-fs (%s): lzo invalid rlen:%zu, " 221 "expected:%lu\n", KERN_ERR, 222 F2FS_I_SB(dic->inode)->sb->s_id, 223 dic->rlen, 224 PAGE_SIZE << dic->log_cluster_size); 225 return -EIO; 226 } 227 return 0; 228 } 229 230 static const struct f2fs_compress_ops f2fs_lzo_ops = { 231 .init_compress_ctx = lzo_init_compress_ctx, 232 .destroy_compress_ctx = lzo_destroy_compress_ctx, 233 .compress_pages = lzo_compress_pages, 234 .decompress_pages = lzo_decompress_pages, 235 }; 236 #endif 237 238 #ifdef CONFIG_F2FS_FS_LZ4 239 static int lz4_init_compress_ctx(struct compress_ctx *cc) 240 { 241 unsigned int size = LZ4_MEM_COMPRESS; 242 243 #ifdef CONFIG_F2FS_FS_LZ4HC 244 if (F2FS_I(cc->inode)->i_compress_flag >> COMPRESS_LEVEL_OFFSET) 245 size = LZ4HC_MEM_COMPRESS; 246 #endif 247 248 cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), size, GFP_NOFS); 249 if (!cc->private) 250 return -ENOMEM; 251 252 /* 253 * we do not change cc->clen to LZ4_compressBound(inputsize) to 254 * adapt worst compress case, because lz4 compressor can handle 255 * output budget properly. 256 */ 257 cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE; 258 return 0; 259 } 260 261 static void lz4_destroy_compress_ctx(struct compress_ctx *cc) 262 { 263 kvfree(cc->private); 264 cc->private = NULL; 265 } 266 267 #ifdef CONFIG_F2FS_FS_LZ4HC 268 static int lz4hc_compress_pages(struct compress_ctx *cc) 269 { 270 unsigned char level = F2FS_I(cc->inode)->i_compress_flag >> 271 COMPRESS_LEVEL_OFFSET; 272 int len; 273 274 if (level) 275 len = LZ4_compress_HC(cc->rbuf, cc->cbuf->cdata, cc->rlen, 276 cc->clen, level, cc->private); 277 else 278 len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen, 279 cc->clen, cc->private); 280 if (!len) 281 return -EAGAIN; 282 283 cc->clen = len; 284 return 0; 285 } 286 #endif 287 288 static int lz4_compress_pages(struct compress_ctx *cc) 289 { 290 int len; 291 292 #ifdef CONFIG_F2FS_FS_LZ4HC 293 return lz4hc_compress_pages(cc); 294 #endif 295 len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen, 296 cc->clen, cc->private); 297 if (!len) 298 return -EAGAIN; 299 300 cc->clen = len; 301 return 0; 302 } 303 304 static int lz4_decompress_pages(struct decompress_io_ctx *dic) 305 { 306 int ret; 307 308 ret = LZ4_decompress_safe(dic->cbuf->cdata, dic->rbuf, 309 dic->clen, dic->rlen); 310 if (ret < 0) { 311 printk_ratelimited("%sF2FS-fs (%s): lz4 decompress failed, ret:%d\n", 312 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret); 313 return -EIO; 314 } 315 316 if (ret != PAGE_SIZE << dic->log_cluster_size) { 317 printk_ratelimited("%sF2FS-fs (%s): lz4 invalid rlen:%zu, " 318 "expected:%lu\n", KERN_ERR, 319 F2FS_I_SB(dic->inode)->sb->s_id, 320 dic->rlen, 321 PAGE_SIZE << dic->log_cluster_size); 322 return -EIO; 323 } 324 return 0; 325 } 326 327 static const struct f2fs_compress_ops f2fs_lz4_ops = { 328 .init_compress_ctx = lz4_init_compress_ctx, 329 .destroy_compress_ctx = lz4_destroy_compress_ctx, 330 .compress_pages = lz4_compress_pages, 331 .decompress_pages = lz4_decompress_pages, 332 }; 333 #endif 334 335 #ifdef CONFIG_F2FS_FS_ZSTD 336 #define F2FS_ZSTD_DEFAULT_CLEVEL 1 337 338 static int zstd_init_compress_ctx(struct compress_ctx *cc) 339 { 340 zstd_parameters params; 341 zstd_cstream *stream; 342 void *workspace; 343 unsigned int workspace_size; 344 unsigned char level = F2FS_I(cc->inode)->i_compress_flag >> 345 COMPRESS_LEVEL_OFFSET; 346 347 if (!level) 348 level = F2FS_ZSTD_DEFAULT_CLEVEL; 349 350 params = zstd_get_params(F2FS_ZSTD_DEFAULT_CLEVEL, cc->rlen); 351 workspace_size = zstd_cstream_workspace_bound(¶ms.cParams); 352 353 workspace = f2fs_kvmalloc(F2FS_I_SB(cc->inode), 354 workspace_size, GFP_NOFS); 355 if (!workspace) 356 return -ENOMEM; 357 358 stream = zstd_init_cstream(¶ms, 0, workspace, workspace_size); 359 if (!stream) { 360 printk_ratelimited("%sF2FS-fs (%s): %s zstd_init_cstream failed\n", 361 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, 362 __func__); 363 kvfree(workspace); 364 return -EIO; 365 } 366 367 cc->private = workspace; 368 cc->private2 = stream; 369 370 cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE; 371 return 0; 372 } 373 374 static void zstd_destroy_compress_ctx(struct compress_ctx *cc) 375 { 376 kvfree(cc->private); 377 cc->private = NULL; 378 cc->private2 = NULL; 379 } 380 381 static int zstd_compress_pages(struct compress_ctx *cc) 382 { 383 zstd_cstream *stream = cc->private2; 384 zstd_in_buffer inbuf; 385 zstd_out_buffer outbuf; 386 int src_size = cc->rlen; 387 int dst_size = src_size - PAGE_SIZE - COMPRESS_HEADER_SIZE; 388 int ret; 389 390 inbuf.pos = 0; 391 inbuf.src = cc->rbuf; 392 inbuf.size = src_size; 393 394 outbuf.pos = 0; 395 outbuf.dst = cc->cbuf->cdata; 396 outbuf.size = dst_size; 397 398 ret = zstd_compress_stream(stream, &outbuf, &inbuf); 399 if (zstd_is_error(ret)) { 400 printk_ratelimited("%sF2FS-fs (%s): %s zstd_compress_stream failed, ret: %d\n", 401 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, 402 __func__, zstd_get_error_code(ret)); 403 return -EIO; 404 } 405 406 ret = zstd_end_stream(stream, &outbuf); 407 if (zstd_is_error(ret)) { 408 printk_ratelimited("%sF2FS-fs (%s): %s zstd_end_stream returned %d\n", 409 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, 410 __func__, zstd_get_error_code(ret)); 411 return -EIO; 412 } 413 414 /* 415 * there is compressed data remained in intermediate buffer due to 416 * no more space in cbuf.cdata 417 */ 418 if (ret) 419 return -EAGAIN; 420 421 cc->clen = outbuf.pos; 422 return 0; 423 } 424 425 static int zstd_init_decompress_ctx(struct decompress_io_ctx *dic) 426 { 427 zstd_dstream *stream; 428 void *workspace; 429 unsigned int workspace_size; 430 unsigned int max_window_size = 431 MAX_COMPRESS_WINDOW_SIZE(dic->log_cluster_size); 432 433 workspace_size = zstd_dstream_workspace_bound(max_window_size); 434 435 workspace = f2fs_kvmalloc(F2FS_I_SB(dic->inode), 436 workspace_size, GFP_NOFS); 437 if (!workspace) 438 return -ENOMEM; 439 440 stream = zstd_init_dstream(max_window_size, workspace, workspace_size); 441 if (!stream) { 442 printk_ratelimited("%sF2FS-fs (%s): %s zstd_init_dstream failed\n", 443 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, 444 __func__); 445 kvfree(workspace); 446 return -EIO; 447 } 448 449 dic->private = workspace; 450 dic->private2 = stream; 451 452 return 0; 453 } 454 455 static void zstd_destroy_decompress_ctx(struct decompress_io_ctx *dic) 456 { 457 kvfree(dic->private); 458 dic->private = NULL; 459 dic->private2 = NULL; 460 } 461 462 static int zstd_decompress_pages(struct decompress_io_ctx *dic) 463 { 464 zstd_dstream *stream = dic->private2; 465 zstd_in_buffer inbuf; 466 zstd_out_buffer outbuf; 467 int ret; 468 469 inbuf.pos = 0; 470 inbuf.src = dic->cbuf->cdata; 471 inbuf.size = dic->clen; 472 473 outbuf.pos = 0; 474 outbuf.dst = dic->rbuf; 475 outbuf.size = dic->rlen; 476 477 ret = zstd_decompress_stream(stream, &outbuf, &inbuf); 478 if (zstd_is_error(ret)) { 479 printk_ratelimited("%sF2FS-fs (%s): %s zstd_decompress_stream failed, ret: %d\n", 480 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, 481 __func__, zstd_get_error_code(ret)); 482 return -EIO; 483 } 484 485 if (dic->rlen != outbuf.pos) { 486 printk_ratelimited("%sF2FS-fs (%s): %s ZSTD invalid rlen:%zu, " 487 "expected:%lu\n", KERN_ERR, 488 F2FS_I_SB(dic->inode)->sb->s_id, 489 __func__, dic->rlen, 490 PAGE_SIZE << dic->log_cluster_size); 491 return -EIO; 492 } 493 494 return 0; 495 } 496 497 static const struct f2fs_compress_ops f2fs_zstd_ops = { 498 .init_compress_ctx = zstd_init_compress_ctx, 499 .destroy_compress_ctx = zstd_destroy_compress_ctx, 500 .compress_pages = zstd_compress_pages, 501 .init_decompress_ctx = zstd_init_decompress_ctx, 502 .destroy_decompress_ctx = zstd_destroy_decompress_ctx, 503 .decompress_pages = zstd_decompress_pages, 504 }; 505 #endif 506 507 #ifdef CONFIG_F2FS_FS_LZO 508 #ifdef CONFIG_F2FS_FS_LZORLE 509 static int lzorle_compress_pages(struct compress_ctx *cc) 510 { 511 int ret; 512 513 ret = lzorle1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata, 514 &cc->clen, cc->private); 515 if (ret != LZO_E_OK) { 516 printk_ratelimited("%sF2FS-fs (%s): lzo-rle compress failed, ret:%d\n", 517 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret); 518 return -EIO; 519 } 520 return 0; 521 } 522 523 static const struct f2fs_compress_ops f2fs_lzorle_ops = { 524 .init_compress_ctx = lzo_init_compress_ctx, 525 .destroy_compress_ctx = lzo_destroy_compress_ctx, 526 .compress_pages = lzorle_compress_pages, 527 .decompress_pages = lzo_decompress_pages, 528 }; 529 #endif 530 #endif 531 532 static const struct f2fs_compress_ops *f2fs_cops[COMPRESS_MAX] = { 533 #ifdef CONFIG_F2FS_FS_LZO 534 &f2fs_lzo_ops, 535 #else 536 NULL, 537 #endif 538 #ifdef CONFIG_F2FS_FS_LZ4 539 &f2fs_lz4_ops, 540 #else 541 NULL, 542 #endif 543 #ifdef CONFIG_F2FS_FS_ZSTD 544 &f2fs_zstd_ops, 545 #else 546 NULL, 547 #endif 548 #if defined(CONFIG_F2FS_FS_LZO) && defined(CONFIG_F2FS_FS_LZORLE) 549 &f2fs_lzorle_ops, 550 #else 551 NULL, 552 #endif 553 }; 554 555 bool f2fs_is_compress_backend_ready(struct inode *inode) 556 { 557 if (!f2fs_compressed_file(inode)) 558 return true; 559 return f2fs_cops[F2FS_I(inode)->i_compress_algorithm]; 560 } 561 562 static mempool_t *compress_page_pool; 563 static int num_compress_pages = 512; 564 module_param(num_compress_pages, uint, 0444); 565 MODULE_PARM_DESC(num_compress_pages, 566 "Number of intermediate compress pages to preallocate"); 567 568 int f2fs_init_compress_mempool(void) 569 { 570 compress_page_pool = mempool_create_page_pool(num_compress_pages, 0); 571 if (!compress_page_pool) 572 return -ENOMEM; 573 574 return 0; 575 } 576 577 void f2fs_destroy_compress_mempool(void) 578 { 579 mempool_destroy(compress_page_pool); 580 } 581 582 static struct page *f2fs_compress_alloc_page(void) 583 { 584 struct page *page; 585 586 page = mempool_alloc(compress_page_pool, GFP_NOFS); 587 lock_page(page); 588 589 return page; 590 } 591 592 static void f2fs_compress_free_page(struct page *page) 593 { 594 if (!page) 595 return; 596 detach_page_private(page); 597 page->mapping = NULL; 598 unlock_page(page); 599 mempool_free(page, compress_page_pool); 600 } 601 602 #define MAX_VMAP_RETRIES 3 603 604 static void *f2fs_vmap(struct page **pages, unsigned int count) 605 { 606 int i; 607 void *buf = NULL; 608 609 for (i = 0; i < MAX_VMAP_RETRIES; i++) { 610 buf = vm_map_ram(pages, count, -1); 611 if (buf) 612 break; 613 vm_unmap_aliases(); 614 } 615 return buf; 616 } 617 618 static int f2fs_compress_pages(struct compress_ctx *cc) 619 { 620 struct f2fs_inode_info *fi = F2FS_I(cc->inode); 621 const struct f2fs_compress_ops *cops = 622 f2fs_cops[fi->i_compress_algorithm]; 623 unsigned int max_len, new_nr_cpages; 624 u32 chksum = 0; 625 int i, ret; 626 627 trace_f2fs_compress_pages_start(cc->inode, cc->cluster_idx, 628 cc->cluster_size, fi->i_compress_algorithm); 629 630 if (cops->init_compress_ctx) { 631 ret = cops->init_compress_ctx(cc); 632 if (ret) 633 goto out; 634 } 635 636 max_len = COMPRESS_HEADER_SIZE + cc->clen; 637 cc->nr_cpages = DIV_ROUND_UP(max_len, PAGE_SIZE); 638 cc->valid_nr_cpages = cc->nr_cpages; 639 640 cc->cpages = page_array_alloc(cc->inode, cc->nr_cpages); 641 if (!cc->cpages) { 642 ret = -ENOMEM; 643 goto destroy_compress_ctx; 644 } 645 646 for (i = 0; i < cc->nr_cpages; i++) { 647 cc->cpages[i] = f2fs_compress_alloc_page(); 648 if (!cc->cpages[i]) { 649 ret = -ENOMEM; 650 goto out_free_cpages; 651 } 652 } 653 654 cc->rbuf = f2fs_vmap(cc->rpages, cc->cluster_size); 655 if (!cc->rbuf) { 656 ret = -ENOMEM; 657 goto out_free_cpages; 658 } 659 660 cc->cbuf = f2fs_vmap(cc->cpages, cc->nr_cpages); 661 if (!cc->cbuf) { 662 ret = -ENOMEM; 663 goto out_vunmap_rbuf; 664 } 665 666 ret = cops->compress_pages(cc); 667 if (ret) 668 goto out_vunmap_cbuf; 669 670 max_len = PAGE_SIZE * (cc->cluster_size - 1) - COMPRESS_HEADER_SIZE; 671 672 if (cc->clen > max_len) { 673 ret = -EAGAIN; 674 goto out_vunmap_cbuf; 675 } 676 677 cc->cbuf->clen = cpu_to_le32(cc->clen); 678 679 if (fi->i_compress_flag & 1 << COMPRESS_CHKSUM) 680 chksum = f2fs_crc32(F2FS_I_SB(cc->inode), 681 cc->cbuf->cdata, cc->clen); 682 cc->cbuf->chksum = cpu_to_le32(chksum); 683 684 for (i = 0; i < COMPRESS_DATA_RESERVED_SIZE; i++) 685 cc->cbuf->reserved[i] = cpu_to_le32(0); 686 687 new_nr_cpages = DIV_ROUND_UP(cc->clen + COMPRESS_HEADER_SIZE, PAGE_SIZE); 688 689 /* zero out any unused part of the last page */ 690 memset(&cc->cbuf->cdata[cc->clen], 0, 691 (new_nr_cpages * PAGE_SIZE) - 692 (cc->clen + COMPRESS_HEADER_SIZE)); 693 694 vm_unmap_ram(cc->cbuf, cc->nr_cpages); 695 vm_unmap_ram(cc->rbuf, cc->cluster_size); 696 697 for (i = 0; i < cc->nr_cpages; i++) { 698 if (i < new_nr_cpages) 699 continue; 700 f2fs_compress_free_page(cc->cpages[i]); 701 cc->cpages[i] = NULL; 702 } 703 704 if (cops->destroy_compress_ctx) 705 cops->destroy_compress_ctx(cc); 706 707 cc->valid_nr_cpages = new_nr_cpages; 708 709 trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx, 710 cc->clen, ret); 711 return 0; 712 713 out_vunmap_cbuf: 714 vm_unmap_ram(cc->cbuf, cc->nr_cpages); 715 out_vunmap_rbuf: 716 vm_unmap_ram(cc->rbuf, cc->cluster_size); 717 out_free_cpages: 718 for (i = 0; i < cc->nr_cpages; i++) { 719 if (cc->cpages[i]) 720 f2fs_compress_free_page(cc->cpages[i]); 721 } 722 page_array_free(cc->inode, cc->cpages, cc->nr_cpages); 723 cc->cpages = NULL; 724 destroy_compress_ctx: 725 if (cops->destroy_compress_ctx) 726 cops->destroy_compress_ctx(cc); 727 out: 728 trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx, 729 cc->clen, ret); 730 return ret; 731 } 732 733 void f2fs_decompress_cluster(struct decompress_io_ctx *dic) 734 { 735 struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode); 736 struct f2fs_inode_info *fi = F2FS_I(dic->inode); 737 const struct f2fs_compress_ops *cops = 738 f2fs_cops[fi->i_compress_algorithm]; 739 int ret; 740 int i; 741 742 trace_f2fs_decompress_pages_start(dic->inode, dic->cluster_idx, 743 dic->cluster_size, fi->i_compress_algorithm); 744 745 if (dic->failed) { 746 ret = -EIO; 747 goto out_end_io; 748 } 749 750 dic->tpages = page_array_alloc(dic->inode, dic->cluster_size); 751 if (!dic->tpages) { 752 ret = -ENOMEM; 753 goto out_end_io; 754 } 755 756 for (i = 0; i < dic->cluster_size; i++) { 757 if (dic->rpages[i]) { 758 dic->tpages[i] = dic->rpages[i]; 759 continue; 760 } 761 762 dic->tpages[i] = f2fs_compress_alloc_page(); 763 if (!dic->tpages[i]) { 764 ret = -ENOMEM; 765 goto out_end_io; 766 } 767 } 768 769 if (cops->init_decompress_ctx) { 770 ret = cops->init_decompress_ctx(dic); 771 if (ret) 772 goto out_end_io; 773 } 774 775 dic->rbuf = f2fs_vmap(dic->tpages, dic->cluster_size); 776 if (!dic->rbuf) { 777 ret = -ENOMEM; 778 goto out_destroy_decompress_ctx; 779 } 780 781 dic->cbuf = f2fs_vmap(dic->cpages, dic->nr_cpages); 782 if (!dic->cbuf) { 783 ret = -ENOMEM; 784 goto out_vunmap_rbuf; 785 } 786 787 dic->clen = le32_to_cpu(dic->cbuf->clen); 788 dic->rlen = PAGE_SIZE << dic->log_cluster_size; 789 790 if (dic->clen > PAGE_SIZE * dic->nr_cpages - COMPRESS_HEADER_SIZE) { 791 ret = -EFSCORRUPTED; 792 goto out_vunmap_cbuf; 793 } 794 795 ret = cops->decompress_pages(dic); 796 797 if (!ret && (fi->i_compress_flag & 1 << COMPRESS_CHKSUM)) { 798 u32 provided = le32_to_cpu(dic->cbuf->chksum); 799 u32 calculated = f2fs_crc32(sbi, dic->cbuf->cdata, dic->clen); 800 801 if (provided != calculated) { 802 if (!is_inode_flag_set(dic->inode, FI_COMPRESS_CORRUPT)) { 803 set_inode_flag(dic->inode, FI_COMPRESS_CORRUPT); 804 printk_ratelimited( 805 "%sF2FS-fs (%s): checksum invalid, nid = %lu, %x vs %x", 806 KERN_INFO, sbi->sb->s_id, dic->inode->i_ino, 807 provided, calculated); 808 } 809 set_sbi_flag(sbi, SBI_NEED_FSCK); 810 } 811 } 812 813 out_vunmap_cbuf: 814 vm_unmap_ram(dic->cbuf, dic->nr_cpages); 815 out_vunmap_rbuf: 816 vm_unmap_ram(dic->rbuf, dic->cluster_size); 817 out_destroy_decompress_ctx: 818 if (cops->destroy_decompress_ctx) 819 cops->destroy_decompress_ctx(dic); 820 out_end_io: 821 trace_f2fs_decompress_pages_end(dic->inode, dic->cluster_idx, 822 dic->clen, ret); 823 f2fs_decompress_end_io(dic, ret); 824 } 825 826 /* 827 * This is called when a page of a compressed cluster has been read from disk 828 * (or failed to be read from disk). It checks whether this page was the last 829 * page being waited on in the cluster, and if so, it decompresses the cluster 830 * (or in the case of a failure, cleans up without actually decompressing). 831 */ 832 void f2fs_end_read_compressed_page(struct page *page, bool failed, 833 block_t blkaddr) 834 { 835 struct decompress_io_ctx *dic = 836 (struct decompress_io_ctx *)page_private(page); 837 struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode); 838 839 dec_page_count(sbi, F2FS_RD_DATA); 840 841 if (failed) 842 WRITE_ONCE(dic->failed, true); 843 else if (blkaddr) 844 f2fs_cache_compressed_page(sbi, page, 845 dic->inode->i_ino, blkaddr); 846 847 if (atomic_dec_and_test(&dic->remaining_pages)) 848 f2fs_decompress_cluster(dic); 849 } 850 851 static bool is_page_in_cluster(struct compress_ctx *cc, pgoff_t index) 852 { 853 if (cc->cluster_idx == NULL_CLUSTER) 854 return true; 855 return cc->cluster_idx == cluster_idx(cc, index); 856 } 857 858 bool f2fs_cluster_is_empty(struct compress_ctx *cc) 859 { 860 return cc->nr_rpages == 0; 861 } 862 863 static bool f2fs_cluster_is_full(struct compress_ctx *cc) 864 { 865 return cc->cluster_size == cc->nr_rpages; 866 } 867 868 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index) 869 { 870 if (f2fs_cluster_is_empty(cc)) 871 return true; 872 return is_page_in_cluster(cc, index); 873 } 874 875 bool f2fs_all_cluster_page_loaded(struct compress_ctx *cc, struct pagevec *pvec, 876 int index, int nr_pages) 877 { 878 unsigned long pgidx; 879 int i; 880 881 if (nr_pages - index < cc->cluster_size) 882 return false; 883 884 pgidx = pvec->pages[index]->index; 885 886 for (i = 1; i < cc->cluster_size; i++) { 887 if (pvec->pages[index + i]->index != pgidx + i) 888 return false; 889 } 890 891 return true; 892 } 893 894 static bool cluster_has_invalid_data(struct compress_ctx *cc) 895 { 896 loff_t i_size = i_size_read(cc->inode); 897 unsigned nr_pages = DIV_ROUND_UP(i_size, PAGE_SIZE); 898 int i; 899 900 for (i = 0; i < cc->cluster_size; i++) { 901 struct page *page = cc->rpages[i]; 902 903 f2fs_bug_on(F2FS_I_SB(cc->inode), !page); 904 905 /* beyond EOF */ 906 if (page->index >= nr_pages) 907 return true; 908 } 909 return false; 910 } 911 912 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) 913 { 914 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 915 unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 916 bool compressed = dn->data_blkaddr == COMPRESS_ADDR; 917 int cluster_end = 0; 918 int i; 919 char *reason = ""; 920 921 if (!compressed) 922 return false; 923 924 /* [..., COMPR_ADDR, ...] */ 925 if (dn->ofs_in_node % cluster_size) { 926 reason = "[*|C|*|*]"; 927 goto out; 928 } 929 930 for (i = 1; i < cluster_size; i++) { 931 block_t blkaddr = data_blkaddr(dn->inode, dn->node_page, 932 dn->ofs_in_node + i); 933 934 /* [COMPR_ADDR, ..., COMPR_ADDR] */ 935 if (blkaddr == COMPRESS_ADDR) { 936 reason = "[C|*|C|*]"; 937 goto out; 938 } 939 if (compressed) { 940 if (!__is_valid_data_blkaddr(blkaddr)) { 941 if (!cluster_end) 942 cluster_end = i; 943 continue; 944 } 945 /* [COMPR_ADDR, NULL_ADDR or NEW_ADDR, valid_blkaddr] */ 946 if (cluster_end) { 947 reason = "[C|N|N|V]"; 948 goto out; 949 } 950 } 951 } 952 return false; 953 out: 954 f2fs_warn(sbi, "access invalid cluster, ino:%lu, nid:%u, ofs_in_node:%u, reason:%s", 955 dn->inode->i_ino, dn->nid, dn->ofs_in_node, reason); 956 set_sbi_flag(sbi, SBI_NEED_FSCK); 957 return true; 958 } 959 960 static int __f2fs_cluster_blocks(struct inode *inode, 961 unsigned int cluster_idx, bool compr) 962 { 963 struct dnode_of_data dn; 964 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size; 965 unsigned int start_idx = cluster_idx << 966 F2FS_I(inode)->i_log_cluster_size; 967 int ret; 968 969 set_new_dnode(&dn, inode, NULL, NULL, 0); 970 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 971 if (ret) { 972 if (ret == -ENOENT) 973 ret = 0; 974 goto fail; 975 } 976 977 if (f2fs_sanity_check_cluster(&dn)) { 978 ret = -EFSCORRUPTED; 979 goto fail; 980 } 981 982 if (dn.data_blkaddr == COMPRESS_ADDR) { 983 int i; 984 985 ret = 1; 986 for (i = 1; i < cluster_size; i++) { 987 block_t blkaddr; 988 989 blkaddr = data_blkaddr(dn.inode, 990 dn.node_page, dn.ofs_in_node + i); 991 if (compr) { 992 if (__is_valid_data_blkaddr(blkaddr)) 993 ret++; 994 } else { 995 if (blkaddr != NULL_ADDR) 996 ret++; 997 } 998 } 999 1000 f2fs_bug_on(F2FS_I_SB(inode), 1001 !compr && ret != cluster_size && 1002 !is_inode_flag_set(inode, FI_COMPRESS_RELEASED)); 1003 } 1004 fail: 1005 f2fs_put_dnode(&dn); 1006 return ret; 1007 } 1008 1009 /* return # of compressed blocks in compressed cluster */ 1010 static int f2fs_compressed_blocks(struct compress_ctx *cc) 1011 { 1012 return __f2fs_cluster_blocks(cc->inode, cc->cluster_idx, true); 1013 } 1014 1015 /* return # of valid blocks in compressed cluster */ 1016 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index) 1017 { 1018 return __f2fs_cluster_blocks(inode, 1019 index >> F2FS_I(inode)->i_log_cluster_size, 1020 false); 1021 } 1022 1023 static bool cluster_may_compress(struct compress_ctx *cc) 1024 { 1025 if (!f2fs_need_compress_data(cc->inode)) 1026 return false; 1027 if (f2fs_is_atomic_file(cc->inode)) 1028 return false; 1029 if (!f2fs_cluster_is_full(cc)) 1030 return false; 1031 if (unlikely(f2fs_cp_error(F2FS_I_SB(cc->inode)))) 1032 return false; 1033 return !cluster_has_invalid_data(cc); 1034 } 1035 1036 static void set_cluster_writeback(struct compress_ctx *cc) 1037 { 1038 int i; 1039 1040 for (i = 0; i < cc->cluster_size; i++) { 1041 if (cc->rpages[i]) 1042 set_page_writeback(cc->rpages[i]); 1043 } 1044 } 1045 1046 static void set_cluster_dirty(struct compress_ctx *cc) 1047 { 1048 int i; 1049 1050 for (i = 0; i < cc->cluster_size; i++) 1051 if (cc->rpages[i]) 1052 set_page_dirty(cc->rpages[i]); 1053 } 1054 1055 static int prepare_compress_overwrite(struct compress_ctx *cc, 1056 struct page **pagep, pgoff_t index, void **fsdata) 1057 { 1058 struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode); 1059 struct address_space *mapping = cc->inode->i_mapping; 1060 struct page *page; 1061 sector_t last_block_in_bio; 1062 unsigned fgp_flag = FGP_LOCK | FGP_WRITE | FGP_CREAT; 1063 pgoff_t start_idx = start_idx_of_cluster(cc); 1064 int i, ret; 1065 1066 retry: 1067 ret = f2fs_is_compressed_cluster(cc->inode, start_idx); 1068 if (ret <= 0) 1069 return ret; 1070 1071 ret = f2fs_init_compress_ctx(cc); 1072 if (ret) 1073 return ret; 1074 1075 /* keep page reference to avoid page reclaim */ 1076 for (i = 0; i < cc->cluster_size; i++) { 1077 page = f2fs_pagecache_get_page(mapping, start_idx + i, 1078 fgp_flag, GFP_NOFS); 1079 if (!page) { 1080 ret = -ENOMEM; 1081 goto unlock_pages; 1082 } 1083 1084 if (PageUptodate(page)) 1085 f2fs_put_page(page, 1); 1086 else 1087 f2fs_compress_ctx_add_page(cc, page); 1088 } 1089 1090 if (!f2fs_cluster_is_empty(cc)) { 1091 struct bio *bio = NULL; 1092 1093 ret = f2fs_read_multi_pages(cc, &bio, cc->cluster_size, 1094 &last_block_in_bio, false, true); 1095 f2fs_put_rpages(cc); 1096 f2fs_destroy_compress_ctx(cc, true); 1097 if (ret) 1098 goto out; 1099 if (bio) 1100 f2fs_submit_bio(sbi, bio, DATA); 1101 1102 ret = f2fs_init_compress_ctx(cc); 1103 if (ret) 1104 goto out; 1105 } 1106 1107 for (i = 0; i < cc->cluster_size; i++) { 1108 f2fs_bug_on(sbi, cc->rpages[i]); 1109 1110 page = find_lock_page(mapping, start_idx + i); 1111 if (!page) { 1112 /* page can be truncated */ 1113 goto release_and_retry; 1114 } 1115 1116 f2fs_wait_on_page_writeback(page, DATA, true, true); 1117 f2fs_compress_ctx_add_page(cc, page); 1118 1119 if (!PageUptodate(page)) { 1120 release_and_retry: 1121 f2fs_put_rpages(cc); 1122 f2fs_unlock_rpages(cc, i + 1); 1123 f2fs_destroy_compress_ctx(cc, true); 1124 goto retry; 1125 } 1126 } 1127 1128 if (likely(!ret)) { 1129 *fsdata = cc->rpages; 1130 *pagep = cc->rpages[offset_in_cluster(cc, index)]; 1131 return cc->cluster_size; 1132 } 1133 1134 unlock_pages: 1135 f2fs_put_rpages(cc); 1136 f2fs_unlock_rpages(cc, i); 1137 f2fs_destroy_compress_ctx(cc, true); 1138 out: 1139 return ret; 1140 } 1141 1142 int f2fs_prepare_compress_overwrite(struct inode *inode, 1143 struct page **pagep, pgoff_t index, void **fsdata) 1144 { 1145 struct compress_ctx cc = { 1146 .inode = inode, 1147 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 1148 .cluster_size = F2FS_I(inode)->i_cluster_size, 1149 .cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size, 1150 .rpages = NULL, 1151 .nr_rpages = 0, 1152 }; 1153 1154 return prepare_compress_overwrite(&cc, pagep, index, fsdata); 1155 } 1156 1157 bool f2fs_compress_write_end(struct inode *inode, void *fsdata, 1158 pgoff_t index, unsigned copied) 1159 1160 { 1161 struct compress_ctx cc = { 1162 .inode = inode, 1163 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 1164 .cluster_size = F2FS_I(inode)->i_cluster_size, 1165 .rpages = fsdata, 1166 }; 1167 bool first_index = (index == cc.rpages[0]->index); 1168 1169 if (copied) 1170 set_cluster_dirty(&cc); 1171 1172 f2fs_put_rpages_wbc(&cc, NULL, false, 1); 1173 f2fs_destroy_compress_ctx(&cc, false); 1174 1175 return first_index; 1176 } 1177 1178 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock) 1179 { 1180 void *fsdata = NULL; 1181 struct page *pagep; 1182 int log_cluster_size = F2FS_I(inode)->i_log_cluster_size; 1183 pgoff_t start_idx = from >> (PAGE_SHIFT + log_cluster_size) << 1184 log_cluster_size; 1185 int err; 1186 1187 err = f2fs_is_compressed_cluster(inode, start_idx); 1188 if (err < 0) 1189 return err; 1190 1191 /* truncate normal cluster */ 1192 if (!err) 1193 return f2fs_do_truncate_blocks(inode, from, lock); 1194 1195 /* truncate compressed cluster */ 1196 err = f2fs_prepare_compress_overwrite(inode, &pagep, 1197 start_idx, &fsdata); 1198 1199 /* should not be a normal cluster */ 1200 f2fs_bug_on(F2FS_I_SB(inode), err == 0); 1201 1202 if (err <= 0) 1203 return err; 1204 1205 if (err > 0) { 1206 struct page **rpages = fsdata; 1207 int cluster_size = F2FS_I(inode)->i_cluster_size; 1208 int i; 1209 1210 for (i = cluster_size - 1; i >= 0; i--) { 1211 loff_t start = rpages[i]->index << PAGE_SHIFT; 1212 1213 if (from <= start) { 1214 zero_user_segment(rpages[i], 0, PAGE_SIZE); 1215 } else { 1216 zero_user_segment(rpages[i], from - start, 1217 PAGE_SIZE); 1218 break; 1219 } 1220 } 1221 1222 f2fs_compress_write_end(inode, fsdata, start_idx, true); 1223 } 1224 return 0; 1225 } 1226 1227 static int f2fs_write_compressed_pages(struct compress_ctx *cc, 1228 int *submitted, 1229 struct writeback_control *wbc, 1230 enum iostat_type io_type) 1231 { 1232 struct inode *inode = cc->inode; 1233 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1234 struct f2fs_inode_info *fi = F2FS_I(inode); 1235 struct f2fs_io_info fio = { 1236 .sbi = sbi, 1237 .ino = cc->inode->i_ino, 1238 .type = DATA, 1239 .op = REQ_OP_WRITE, 1240 .op_flags = wbc_to_write_flags(wbc), 1241 .old_blkaddr = NEW_ADDR, 1242 .page = NULL, 1243 .encrypted_page = NULL, 1244 .compressed_page = NULL, 1245 .submitted = false, 1246 .io_type = io_type, 1247 .io_wbc = wbc, 1248 .encrypted = fscrypt_inode_uses_fs_layer_crypto(cc->inode), 1249 }; 1250 struct dnode_of_data dn; 1251 struct node_info ni; 1252 struct compress_io_ctx *cic; 1253 pgoff_t start_idx = start_idx_of_cluster(cc); 1254 unsigned int last_index = cc->cluster_size - 1; 1255 loff_t psize; 1256 int i, err; 1257 1258 /* we should bypass data pages to proceed the kworkder jobs */ 1259 if (unlikely(f2fs_cp_error(sbi))) { 1260 mapping_set_error(cc->rpages[0]->mapping, -EIO); 1261 goto out_free; 1262 } 1263 1264 if (IS_NOQUOTA(inode)) { 1265 /* 1266 * We need to wait for node_write to avoid block allocation during 1267 * checkpoint. This can only happen to quota writes which can cause 1268 * the below discard race condition. 1269 */ 1270 down_read(&sbi->node_write); 1271 } else if (!f2fs_trylock_op(sbi)) { 1272 goto out_free; 1273 } 1274 1275 set_new_dnode(&dn, cc->inode, NULL, NULL, 0); 1276 1277 err = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 1278 if (err) 1279 goto out_unlock_op; 1280 1281 for (i = 0; i < cc->cluster_size; i++) { 1282 if (data_blkaddr(dn.inode, dn.node_page, 1283 dn.ofs_in_node + i) == NULL_ADDR) 1284 goto out_put_dnode; 1285 } 1286 1287 psize = (loff_t)(cc->rpages[last_index]->index + 1) << PAGE_SHIFT; 1288 1289 err = f2fs_get_node_info(fio.sbi, dn.nid, &ni, false); 1290 if (err) 1291 goto out_put_dnode; 1292 1293 fio.version = ni.version; 1294 1295 cic = f2fs_kmem_cache_alloc(cic_entry_slab, GFP_F2FS_ZERO, false, sbi); 1296 if (!cic) 1297 goto out_put_dnode; 1298 1299 cic->magic = F2FS_COMPRESSED_PAGE_MAGIC; 1300 cic->inode = inode; 1301 atomic_set(&cic->pending_pages, cc->valid_nr_cpages); 1302 cic->rpages = page_array_alloc(cc->inode, cc->cluster_size); 1303 if (!cic->rpages) 1304 goto out_put_cic; 1305 1306 cic->nr_rpages = cc->cluster_size; 1307 1308 for (i = 0; i < cc->valid_nr_cpages; i++) { 1309 f2fs_set_compressed_page(cc->cpages[i], inode, 1310 cc->rpages[i + 1]->index, cic); 1311 fio.compressed_page = cc->cpages[i]; 1312 1313 fio.old_blkaddr = data_blkaddr(dn.inode, dn.node_page, 1314 dn.ofs_in_node + i + 1); 1315 1316 /* wait for GCed page writeback via META_MAPPING */ 1317 f2fs_wait_on_block_writeback(inode, fio.old_blkaddr); 1318 1319 if (fio.encrypted) { 1320 fio.page = cc->rpages[i + 1]; 1321 err = f2fs_encrypt_one_page(&fio); 1322 if (err) 1323 goto out_destroy_crypt; 1324 cc->cpages[i] = fio.encrypted_page; 1325 } 1326 } 1327 1328 set_cluster_writeback(cc); 1329 1330 for (i = 0; i < cc->cluster_size; i++) 1331 cic->rpages[i] = cc->rpages[i]; 1332 1333 for (i = 0; i < cc->cluster_size; i++, dn.ofs_in_node++) { 1334 block_t blkaddr; 1335 1336 blkaddr = f2fs_data_blkaddr(&dn); 1337 fio.page = cc->rpages[i]; 1338 fio.old_blkaddr = blkaddr; 1339 1340 /* cluster header */ 1341 if (i == 0) { 1342 if (blkaddr == COMPRESS_ADDR) 1343 fio.compr_blocks++; 1344 if (__is_valid_data_blkaddr(blkaddr)) 1345 f2fs_invalidate_blocks(sbi, blkaddr); 1346 f2fs_update_data_blkaddr(&dn, COMPRESS_ADDR); 1347 goto unlock_continue; 1348 } 1349 1350 if (fio.compr_blocks && __is_valid_data_blkaddr(blkaddr)) 1351 fio.compr_blocks++; 1352 1353 if (i > cc->valid_nr_cpages) { 1354 if (__is_valid_data_blkaddr(blkaddr)) { 1355 f2fs_invalidate_blocks(sbi, blkaddr); 1356 f2fs_update_data_blkaddr(&dn, NEW_ADDR); 1357 } 1358 goto unlock_continue; 1359 } 1360 1361 f2fs_bug_on(fio.sbi, blkaddr == NULL_ADDR); 1362 1363 if (fio.encrypted) 1364 fio.encrypted_page = cc->cpages[i - 1]; 1365 else 1366 fio.compressed_page = cc->cpages[i - 1]; 1367 1368 cc->cpages[i - 1] = NULL; 1369 f2fs_outplace_write_data(&dn, &fio); 1370 (*submitted)++; 1371 unlock_continue: 1372 inode_dec_dirty_pages(cc->inode); 1373 unlock_page(fio.page); 1374 } 1375 1376 if (fio.compr_blocks) 1377 f2fs_i_compr_blocks_update(inode, fio.compr_blocks - 1, false); 1378 f2fs_i_compr_blocks_update(inode, cc->valid_nr_cpages, true); 1379 add_compr_block_stat(inode, cc->valid_nr_cpages); 1380 1381 set_inode_flag(cc->inode, FI_APPEND_WRITE); 1382 if (cc->cluster_idx == 0) 1383 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); 1384 1385 f2fs_put_dnode(&dn); 1386 if (IS_NOQUOTA(inode)) 1387 up_read(&sbi->node_write); 1388 else 1389 f2fs_unlock_op(sbi); 1390 1391 spin_lock(&fi->i_size_lock); 1392 if (fi->last_disk_size < psize) 1393 fi->last_disk_size = psize; 1394 spin_unlock(&fi->i_size_lock); 1395 1396 f2fs_put_rpages(cc); 1397 page_array_free(cc->inode, cc->cpages, cc->nr_cpages); 1398 cc->cpages = NULL; 1399 f2fs_destroy_compress_ctx(cc, false); 1400 return 0; 1401 1402 out_destroy_crypt: 1403 page_array_free(cc->inode, cic->rpages, cc->cluster_size); 1404 1405 for (--i; i >= 0; i--) 1406 fscrypt_finalize_bounce_page(&cc->cpages[i]); 1407 out_put_cic: 1408 kmem_cache_free(cic_entry_slab, cic); 1409 out_put_dnode: 1410 f2fs_put_dnode(&dn); 1411 out_unlock_op: 1412 if (IS_NOQUOTA(inode)) 1413 up_read(&sbi->node_write); 1414 else 1415 f2fs_unlock_op(sbi); 1416 out_free: 1417 for (i = 0; i < cc->valid_nr_cpages; i++) { 1418 f2fs_compress_free_page(cc->cpages[i]); 1419 cc->cpages[i] = NULL; 1420 } 1421 page_array_free(cc->inode, cc->cpages, cc->nr_cpages); 1422 cc->cpages = NULL; 1423 return -EAGAIN; 1424 } 1425 1426 void f2fs_compress_write_end_io(struct bio *bio, struct page *page) 1427 { 1428 struct f2fs_sb_info *sbi = bio->bi_private; 1429 struct compress_io_ctx *cic = 1430 (struct compress_io_ctx *)page_private(page); 1431 int i; 1432 1433 if (unlikely(bio->bi_status)) 1434 mapping_set_error(cic->inode->i_mapping, -EIO); 1435 1436 f2fs_compress_free_page(page); 1437 1438 dec_page_count(sbi, F2FS_WB_DATA); 1439 1440 if (atomic_dec_return(&cic->pending_pages)) 1441 return; 1442 1443 for (i = 0; i < cic->nr_rpages; i++) { 1444 WARN_ON(!cic->rpages[i]); 1445 clear_page_private_gcing(cic->rpages[i]); 1446 end_page_writeback(cic->rpages[i]); 1447 } 1448 1449 page_array_free(cic->inode, cic->rpages, cic->nr_rpages); 1450 kmem_cache_free(cic_entry_slab, cic); 1451 } 1452 1453 static int f2fs_write_raw_pages(struct compress_ctx *cc, 1454 int *submitted, 1455 struct writeback_control *wbc, 1456 enum iostat_type io_type) 1457 { 1458 struct address_space *mapping = cc->inode->i_mapping; 1459 int _submitted, compr_blocks, ret, i; 1460 1461 compr_blocks = f2fs_compressed_blocks(cc); 1462 1463 for (i = 0; i < cc->cluster_size; i++) { 1464 if (!cc->rpages[i]) 1465 continue; 1466 1467 redirty_page_for_writepage(wbc, cc->rpages[i]); 1468 unlock_page(cc->rpages[i]); 1469 } 1470 1471 if (compr_blocks < 0) 1472 return compr_blocks; 1473 1474 for (i = 0; i < cc->cluster_size; i++) { 1475 if (!cc->rpages[i]) 1476 continue; 1477 retry_write: 1478 lock_page(cc->rpages[i]); 1479 1480 if (cc->rpages[i]->mapping != mapping) { 1481 continue_unlock: 1482 unlock_page(cc->rpages[i]); 1483 continue; 1484 } 1485 1486 if (!PageDirty(cc->rpages[i])) 1487 goto continue_unlock; 1488 1489 if (!clear_page_dirty_for_io(cc->rpages[i])) 1490 goto continue_unlock; 1491 1492 ret = f2fs_write_single_data_page(cc->rpages[i], &_submitted, 1493 NULL, NULL, wbc, io_type, 1494 compr_blocks, false); 1495 if (ret) { 1496 if (ret == AOP_WRITEPAGE_ACTIVATE) { 1497 unlock_page(cc->rpages[i]); 1498 ret = 0; 1499 } else if (ret == -EAGAIN) { 1500 /* 1501 * for quota file, just redirty left pages to 1502 * avoid deadlock caused by cluster update race 1503 * from foreground operation. 1504 */ 1505 if (IS_NOQUOTA(cc->inode)) 1506 return 0; 1507 ret = 0; 1508 cond_resched(); 1509 congestion_wait(BLK_RW_ASYNC, 1510 DEFAULT_IO_TIMEOUT); 1511 goto retry_write; 1512 } 1513 return ret; 1514 } 1515 1516 *submitted += _submitted; 1517 } 1518 1519 f2fs_balance_fs(F2FS_M_SB(mapping), true); 1520 1521 return 0; 1522 } 1523 1524 int f2fs_write_multi_pages(struct compress_ctx *cc, 1525 int *submitted, 1526 struct writeback_control *wbc, 1527 enum iostat_type io_type) 1528 { 1529 int err; 1530 1531 *submitted = 0; 1532 if (cluster_may_compress(cc)) { 1533 err = f2fs_compress_pages(cc); 1534 if (err == -EAGAIN) { 1535 add_compr_block_stat(cc->inode, cc->cluster_size); 1536 goto write; 1537 } else if (err) { 1538 f2fs_put_rpages_wbc(cc, wbc, true, 1); 1539 goto destroy_out; 1540 } 1541 1542 err = f2fs_write_compressed_pages(cc, submitted, 1543 wbc, io_type); 1544 if (!err) 1545 return 0; 1546 f2fs_bug_on(F2FS_I_SB(cc->inode), err != -EAGAIN); 1547 } 1548 write: 1549 f2fs_bug_on(F2FS_I_SB(cc->inode), *submitted); 1550 1551 err = f2fs_write_raw_pages(cc, submitted, wbc, io_type); 1552 f2fs_put_rpages_wbc(cc, wbc, false, 0); 1553 destroy_out: 1554 f2fs_destroy_compress_ctx(cc, false); 1555 return err; 1556 } 1557 1558 static void f2fs_free_dic(struct decompress_io_ctx *dic); 1559 1560 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc) 1561 { 1562 struct decompress_io_ctx *dic; 1563 pgoff_t start_idx = start_idx_of_cluster(cc); 1564 int i; 1565 1566 dic = f2fs_kmem_cache_alloc(dic_entry_slab, GFP_F2FS_ZERO, 1567 false, F2FS_I_SB(cc->inode)); 1568 if (!dic) 1569 return ERR_PTR(-ENOMEM); 1570 1571 dic->rpages = page_array_alloc(cc->inode, cc->cluster_size); 1572 if (!dic->rpages) { 1573 kmem_cache_free(dic_entry_slab, dic); 1574 return ERR_PTR(-ENOMEM); 1575 } 1576 1577 dic->magic = F2FS_COMPRESSED_PAGE_MAGIC; 1578 dic->inode = cc->inode; 1579 atomic_set(&dic->remaining_pages, cc->nr_cpages); 1580 dic->cluster_idx = cc->cluster_idx; 1581 dic->cluster_size = cc->cluster_size; 1582 dic->log_cluster_size = cc->log_cluster_size; 1583 dic->nr_cpages = cc->nr_cpages; 1584 refcount_set(&dic->refcnt, 1); 1585 dic->failed = false; 1586 dic->need_verity = f2fs_need_verity(cc->inode, start_idx); 1587 1588 for (i = 0; i < dic->cluster_size; i++) 1589 dic->rpages[i] = cc->rpages[i]; 1590 dic->nr_rpages = cc->cluster_size; 1591 1592 dic->cpages = page_array_alloc(dic->inode, dic->nr_cpages); 1593 if (!dic->cpages) 1594 goto out_free; 1595 1596 for (i = 0; i < dic->nr_cpages; i++) { 1597 struct page *page; 1598 1599 page = f2fs_compress_alloc_page(); 1600 if (!page) 1601 goto out_free; 1602 1603 f2fs_set_compressed_page(page, cc->inode, 1604 start_idx + i + 1, dic); 1605 dic->cpages[i] = page; 1606 } 1607 1608 return dic; 1609 1610 out_free: 1611 f2fs_free_dic(dic); 1612 return ERR_PTR(-ENOMEM); 1613 } 1614 1615 static void f2fs_free_dic(struct decompress_io_ctx *dic) 1616 { 1617 int i; 1618 1619 if (dic->tpages) { 1620 for (i = 0; i < dic->cluster_size; i++) { 1621 if (dic->rpages[i]) 1622 continue; 1623 if (!dic->tpages[i]) 1624 continue; 1625 f2fs_compress_free_page(dic->tpages[i]); 1626 } 1627 page_array_free(dic->inode, dic->tpages, dic->cluster_size); 1628 } 1629 1630 if (dic->cpages) { 1631 for (i = 0; i < dic->nr_cpages; i++) { 1632 if (!dic->cpages[i]) 1633 continue; 1634 f2fs_compress_free_page(dic->cpages[i]); 1635 } 1636 page_array_free(dic->inode, dic->cpages, dic->nr_cpages); 1637 } 1638 1639 page_array_free(dic->inode, dic->rpages, dic->nr_rpages); 1640 kmem_cache_free(dic_entry_slab, dic); 1641 } 1642 1643 static void f2fs_put_dic(struct decompress_io_ctx *dic) 1644 { 1645 if (refcount_dec_and_test(&dic->refcnt)) 1646 f2fs_free_dic(dic); 1647 } 1648 1649 /* 1650 * Update and unlock the cluster's pagecache pages, and release the reference to 1651 * the decompress_io_ctx that was being held for I/O completion. 1652 */ 1653 static void __f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed) 1654 { 1655 int i; 1656 1657 for (i = 0; i < dic->cluster_size; i++) { 1658 struct page *rpage = dic->rpages[i]; 1659 1660 if (!rpage) 1661 continue; 1662 1663 /* PG_error was set if verity failed. */ 1664 if (failed || PageError(rpage)) { 1665 ClearPageUptodate(rpage); 1666 /* will re-read again later */ 1667 ClearPageError(rpage); 1668 } else { 1669 SetPageUptodate(rpage); 1670 } 1671 unlock_page(rpage); 1672 } 1673 1674 f2fs_put_dic(dic); 1675 } 1676 1677 static void f2fs_verify_cluster(struct work_struct *work) 1678 { 1679 struct decompress_io_ctx *dic = 1680 container_of(work, struct decompress_io_ctx, verity_work); 1681 int i; 1682 1683 /* Verify the cluster's decompressed pages with fs-verity. */ 1684 for (i = 0; i < dic->cluster_size; i++) { 1685 struct page *rpage = dic->rpages[i]; 1686 1687 if (rpage && !fsverity_verify_page(rpage)) 1688 SetPageError(rpage); 1689 } 1690 1691 __f2fs_decompress_end_io(dic, false); 1692 } 1693 1694 /* 1695 * This is called when a compressed cluster has been decompressed 1696 * (or failed to be read and/or decompressed). 1697 */ 1698 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed) 1699 { 1700 if (!failed && dic->need_verity) { 1701 /* 1702 * Note that to avoid deadlocks, the verity work can't be done 1703 * on the decompression workqueue. This is because verifying 1704 * the data pages can involve reading metadata pages from the 1705 * file, and these metadata pages may be compressed. 1706 */ 1707 INIT_WORK(&dic->verity_work, f2fs_verify_cluster); 1708 fsverity_enqueue_verify_work(&dic->verity_work); 1709 } else { 1710 __f2fs_decompress_end_io(dic, failed); 1711 } 1712 } 1713 1714 /* 1715 * Put a reference to a compressed page's decompress_io_ctx. 1716 * 1717 * This is called when the page is no longer needed and can be freed. 1718 */ 1719 void f2fs_put_page_dic(struct page *page) 1720 { 1721 struct decompress_io_ctx *dic = 1722 (struct decompress_io_ctx *)page_private(page); 1723 1724 f2fs_put_dic(dic); 1725 } 1726 1727 /* 1728 * check whether cluster blocks are contiguous, and add extent cache entry 1729 * only if cluster blocks are logically and physically contiguous. 1730 */ 1731 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn) 1732 { 1733 bool compressed = f2fs_data_blkaddr(dn) == COMPRESS_ADDR; 1734 int i = compressed ? 1 : 0; 1735 block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_page, 1736 dn->ofs_in_node + i); 1737 1738 for (i += 1; i < F2FS_I(dn->inode)->i_cluster_size; i++) { 1739 block_t blkaddr = data_blkaddr(dn->inode, dn->node_page, 1740 dn->ofs_in_node + i); 1741 1742 if (!__is_valid_data_blkaddr(blkaddr)) 1743 break; 1744 if (first_blkaddr + i - (compressed ? 1 : 0) != blkaddr) 1745 return 0; 1746 } 1747 1748 return compressed ? i - 1 : i; 1749 } 1750 1751 const struct address_space_operations f2fs_compress_aops = { 1752 .releasepage = f2fs_release_page, 1753 .invalidatepage = f2fs_invalidate_page, 1754 }; 1755 1756 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi) 1757 { 1758 return sbi->compress_inode->i_mapping; 1759 } 1760 1761 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr) 1762 { 1763 if (!sbi->compress_inode) 1764 return; 1765 invalidate_mapping_pages(COMPRESS_MAPPING(sbi), blkaddr, blkaddr); 1766 } 1767 1768 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page, 1769 nid_t ino, block_t blkaddr) 1770 { 1771 struct page *cpage; 1772 int ret; 1773 1774 if (!test_opt(sbi, COMPRESS_CACHE)) 1775 return; 1776 1777 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ)) 1778 return; 1779 1780 if (!f2fs_available_free_memory(sbi, COMPRESS_PAGE)) 1781 return; 1782 1783 cpage = find_get_page(COMPRESS_MAPPING(sbi), blkaddr); 1784 if (cpage) { 1785 f2fs_put_page(cpage, 0); 1786 return; 1787 } 1788 1789 cpage = alloc_page(__GFP_NOWARN | __GFP_IO); 1790 if (!cpage) 1791 return; 1792 1793 ret = add_to_page_cache_lru(cpage, COMPRESS_MAPPING(sbi), 1794 blkaddr, GFP_NOFS); 1795 if (ret) { 1796 f2fs_put_page(cpage, 0); 1797 return; 1798 } 1799 1800 set_page_private_data(cpage, ino); 1801 1802 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ)) 1803 goto out; 1804 1805 memcpy(page_address(cpage), page_address(page), PAGE_SIZE); 1806 SetPageUptodate(cpage); 1807 out: 1808 f2fs_put_page(cpage, 1); 1809 } 1810 1811 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page, 1812 block_t blkaddr) 1813 { 1814 struct page *cpage; 1815 bool hitted = false; 1816 1817 if (!test_opt(sbi, COMPRESS_CACHE)) 1818 return false; 1819 1820 cpage = f2fs_pagecache_get_page(COMPRESS_MAPPING(sbi), 1821 blkaddr, FGP_LOCK | FGP_NOWAIT, GFP_NOFS); 1822 if (cpage) { 1823 if (PageUptodate(cpage)) { 1824 atomic_inc(&sbi->compress_page_hit); 1825 memcpy(page_address(page), 1826 page_address(cpage), PAGE_SIZE); 1827 hitted = true; 1828 } 1829 f2fs_put_page(cpage, 1); 1830 } 1831 1832 return hitted; 1833 } 1834 1835 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino) 1836 { 1837 struct address_space *mapping = sbi->compress_inode->i_mapping; 1838 struct pagevec pvec; 1839 pgoff_t index = 0; 1840 pgoff_t end = MAX_BLKADDR(sbi); 1841 1842 if (!mapping->nrpages) 1843 return; 1844 1845 pagevec_init(&pvec); 1846 1847 do { 1848 unsigned int nr_pages; 1849 int i; 1850 1851 nr_pages = pagevec_lookup_range(&pvec, mapping, 1852 &index, end - 1); 1853 if (!nr_pages) 1854 break; 1855 1856 for (i = 0; i < nr_pages; i++) { 1857 struct page *page = pvec.pages[i]; 1858 1859 if (page->index > end) 1860 break; 1861 1862 lock_page(page); 1863 if (page->mapping != mapping) { 1864 unlock_page(page); 1865 continue; 1866 } 1867 1868 if (ino != get_page_private_data(page)) { 1869 unlock_page(page); 1870 continue; 1871 } 1872 1873 generic_error_remove_page(mapping, page); 1874 unlock_page(page); 1875 } 1876 pagevec_release(&pvec); 1877 cond_resched(); 1878 } while (index < end); 1879 } 1880 1881 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) 1882 { 1883 struct inode *inode; 1884 1885 if (!test_opt(sbi, COMPRESS_CACHE)) 1886 return 0; 1887 1888 inode = f2fs_iget(sbi->sb, F2FS_COMPRESS_INO(sbi)); 1889 if (IS_ERR(inode)) 1890 return PTR_ERR(inode); 1891 sbi->compress_inode = inode; 1892 1893 sbi->compress_percent = COMPRESS_PERCENT; 1894 sbi->compress_watermark = COMPRESS_WATERMARK; 1895 1896 atomic_set(&sbi->compress_page_hit, 0); 1897 1898 return 0; 1899 } 1900 1901 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) 1902 { 1903 if (!sbi->compress_inode) 1904 return; 1905 iput(sbi->compress_inode); 1906 sbi->compress_inode = NULL; 1907 } 1908 1909 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) 1910 { 1911 dev_t dev = sbi->sb->s_bdev->bd_dev; 1912 char slab_name[32]; 1913 1914 sprintf(slab_name, "f2fs_page_array_entry-%u:%u", MAJOR(dev), MINOR(dev)); 1915 1916 sbi->page_array_slab_size = sizeof(struct page *) << 1917 F2FS_OPTION(sbi).compress_log_size; 1918 1919 sbi->page_array_slab = f2fs_kmem_cache_create(slab_name, 1920 sbi->page_array_slab_size); 1921 if (!sbi->page_array_slab) 1922 return -ENOMEM; 1923 return 0; 1924 } 1925 1926 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) 1927 { 1928 kmem_cache_destroy(sbi->page_array_slab); 1929 } 1930 1931 static int __init f2fs_init_cic_cache(void) 1932 { 1933 cic_entry_slab = f2fs_kmem_cache_create("f2fs_cic_entry", 1934 sizeof(struct compress_io_ctx)); 1935 if (!cic_entry_slab) 1936 return -ENOMEM; 1937 return 0; 1938 } 1939 1940 static void f2fs_destroy_cic_cache(void) 1941 { 1942 kmem_cache_destroy(cic_entry_slab); 1943 } 1944 1945 static int __init f2fs_init_dic_cache(void) 1946 { 1947 dic_entry_slab = f2fs_kmem_cache_create("f2fs_dic_entry", 1948 sizeof(struct decompress_io_ctx)); 1949 if (!dic_entry_slab) 1950 return -ENOMEM; 1951 return 0; 1952 } 1953 1954 static void f2fs_destroy_dic_cache(void) 1955 { 1956 kmem_cache_destroy(dic_entry_slab); 1957 } 1958 1959 int __init f2fs_init_compress_cache(void) 1960 { 1961 int err; 1962 1963 err = f2fs_init_cic_cache(); 1964 if (err) 1965 goto out; 1966 err = f2fs_init_dic_cache(); 1967 if (err) 1968 goto free_cic; 1969 return 0; 1970 free_cic: 1971 f2fs_destroy_cic_cache(); 1972 out: 1973 return -ENOMEM; 1974 } 1975 1976 void f2fs_destroy_compress_cache(void) 1977 { 1978 f2fs_destroy_dic_cache(); 1979 f2fs_destroy_cic_cache(); 1980 } 1981