1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * f2fs compress support 4 * 5 * Copyright (c) 2019 Chao Yu <chao@kernel.org> 6 */ 7 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/moduleparam.h> 11 #include <linux/writeback.h> 12 #include <linux/backing-dev.h> 13 #include <linux/lzo.h> 14 #include <linux/lz4.h> 15 #include <linux/zstd.h> 16 #include <linux/pagevec.h> 17 18 #include "f2fs.h" 19 #include "node.h" 20 #include "segment.h" 21 #include <trace/events/f2fs.h> 22 23 static struct kmem_cache *cic_entry_slab; 24 static struct kmem_cache *dic_entry_slab; 25 26 static void *page_array_alloc(struct inode *inode, int nr) 27 { 28 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 29 unsigned int size = sizeof(struct page *) * nr; 30 31 if (likely(size <= sbi->page_array_slab_size)) 32 return f2fs_kmem_cache_alloc(sbi->page_array_slab, 33 GFP_F2FS_ZERO, false, F2FS_I_SB(inode)); 34 return f2fs_kzalloc(sbi, size, GFP_NOFS); 35 } 36 37 static void page_array_free(struct inode *inode, void *pages, int nr) 38 { 39 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 40 unsigned int size = sizeof(struct page *) * nr; 41 42 if (!pages) 43 return; 44 45 if (likely(size <= sbi->page_array_slab_size)) 46 kmem_cache_free(sbi->page_array_slab, pages); 47 else 48 kfree(pages); 49 } 50 51 struct f2fs_compress_ops { 52 int (*init_compress_ctx)(struct compress_ctx *cc); 53 void (*destroy_compress_ctx)(struct compress_ctx *cc); 54 int (*compress_pages)(struct compress_ctx *cc); 55 int (*init_decompress_ctx)(struct decompress_io_ctx *dic); 56 void (*destroy_decompress_ctx)(struct decompress_io_ctx *dic); 57 int (*decompress_pages)(struct decompress_io_ctx *dic); 58 bool (*is_level_valid)(int level); 59 }; 60 61 static unsigned int offset_in_cluster(struct compress_ctx *cc, pgoff_t index) 62 { 63 return index & (cc->cluster_size - 1); 64 } 65 66 static pgoff_t cluster_idx(struct compress_ctx *cc, pgoff_t index) 67 { 68 return index >> cc->log_cluster_size; 69 } 70 71 static pgoff_t start_idx_of_cluster(struct compress_ctx *cc) 72 { 73 return cc->cluster_idx << cc->log_cluster_size; 74 } 75 76 bool f2fs_is_compressed_page(struct page *page) 77 { 78 if (!PagePrivate(page)) 79 return false; 80 if (!page_private(page)) 81 return false; 82 if (page_private_nonpointer(page)) 83 return false; 84 85 f2fs_bug_on(F2FS_M_SB(page->mapping), 86 *((u32 *)page_private(page)) != F2FS_COMPRESSED_PAGE_MAGIC); 87 return true; 88 } 89 90 static void f2fs_set_compressed_page(struct page *page, 91 struct inode *inode, pgoff_t index, void *data) 92 { 93 struct folio *folio = page_folio(page); 94 95 folio_attach_private(folio, (void *)data); 96 97 /* i_crypto_info and iv index */ 98 folio->index = index; 99 folio->mapping = inode->i_mapping; 100 } 101 102 static void f2fs_drop_rpages(struct compress_ctx *cc, int len, bool unlock) 103 { 104 int i; 105 106 for (i = 0; i < len; i++) { 107 if (!cc->rpages[i]) 108 continue; 109 if (unlock) 110 unlock_page(cc->rpages[i]); 111 else 112 put_page(cc->rpages[i]); 113 } 114 } 115 116 static void f2fs_put_rpages(struct compress_ctx *cc) 117 { 118 f2fs_drop_rpages(cc, cc->cluster_size, false); 119 } 120 121 static void f2fs_unlock_rpages(struct compress_ctx *cc, int len) 122 { 123 f2fs_drop_rpages(cc, len, true); 124 } 125 126 static void f2fs_put_rpages_wbc(struct compress_ctx *cc, 127 struct writeback_control *wbc, bool redirty, int unlock) 128 { 129 unsigned int i; 130 131 for (i = 0; i < cc->cluster_size; i++) { 132 if (!cc->rpages[i]) 133 continue; 134 if (redirty) 135 redirty_page_for_writepage(wbc, cc->rpages[i]); 136 f2fs_put_page(cc->rpages[i], unlock); 137 } 138 } 139 140 struct page *f2fs_compress_control_page(struct page *page) 141 { 142 return ((struct compress_io_ctx *)page_private(page))->rpages[0]; 143 } 144 145 int f2fs_init_compress_ctx(struct compress_ctx *cc) 146 { 147 if (cc->rpages) 148 return 0; 149 150 cc->rpages = page_array_alloc(cc->inode, cc->cluster_size); 151 return cc->rpages ? 0 : -ENOMEM; 152 } 153 154 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse) 155 { 156 page_array_free(cc->inode, cc->rpages, cc->cluster_size); 157 cc->rpages = NULL; 158 cc->nr_rpages = 0; 159 cc->nr_cpages = 0; 160 cc->valid_nr_cpages = 0; 161 if (!reuse) 162 cc->cluster_idx = NULL_CLUSTER; 163 } 164 165 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct folio *folio) 166 { 167 unsigned int cluster_ofs; 168 169 if (!f2fs_cluster_can_merge_page(cc, folio->index)) 170 f2fs_bug_on(F2FS_I_SB(cc->inode), 1); 171 172 cluster_ofs = offset_in_cluster(cc, folio->index); 173 cc->rpages[cluster_ofs] = folio_page(folio, 0); 174 cc->nr_rpages++; 175 cc->cluster_idx = cluster_idx(cc, folio->index); 176 } 177 178 #ifdef CONFIG_F2FS_FS_LZO 179 static int lzo_init_compress_ctx(struct compress_ctx *cc) 180 { 181 cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), 182 LZO1X_MEM_COMPRESS, GFP_NOFS); 183 if (!cc->private) 184 return -ENOMEM; 185 186 cc->clen = lzo1x_worst_compress(PAGE_SIZE << cc->log_cluster_size); 187 return 0; 188 } 189 190 static void lzo_destroy_compress_ctx(struct compress_ctx *cc) 191 { 192 kvfree(cc->private); 193 cc->private = NULL; 194 } 195 196 static int lzo_compress_pages(struct compress_ctx *cc) 197 { 198 int ret; 199 200 ret = lzo1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata, 201 &cc->clen, cc->private); 202 if (ret != LZO_E_OK) { 203 f2fs_err_ratelimited(F2FS_I_SB(cc->inode), 204 "lzo compress failed, ret:%d", ret); 205 return -EIO; 206 } 207 return 0; 208 } 209 210 static int lzo_decompress_pages(struct decompress_io_ctx *dic) 211 { 212 int ret; 213 214 ret = lzo1x_decompress_safe(dic->cbuf->cdata, dic->clen, 215 dic->rbuf, &dic->rlen); 216 if (ret != LZO_E_OK) { 217 f2fs_err_ratelimited(F2FS_I_SB(dic->inode), 218 "lzo decompress failed, ret:%d", ret); 219 return -EIO; 220 } 221 222 if (dic->rlen != PAGE_SIZE << dic->log_cluster_size) { 223 f2fs_err_ratelimited(F2FS_I_SB(dic->inode), 224 "lzo invalid rlen:%zu, expected:%lu", 225 dic->rlen, PAGE_SIZE << dic->log_cluster_size); 226 return -EIO; 227 } 228 return 0; 229 } 230 231 static const struct f2fs_compress_ops f2fs_lzo_ops = { 232 .init_compress_ctx = lzo_init_compress_ctx, 233 .destroy_compress_ctx = lzo_destroy_compress_ctx, 234 .compress_pages = lzo_compress_pages, 235 .decompress_pages = lzo_decompress_pages, 236 }; 237 #endif 238 239 #ifdef CONFIG_F2FS_FS_LZ4 240 static int lz4_init_compress_ctx(struct compress_ctx *cc) 241 { 242 unsigned int size = LZ4_MEM_COMPRESS; 243 244 #ifdef CONFIG_F2FS_FS_LZ4HC 245 if (F2FS_I(cc->inode)->i_compress_level) 246 size = LZ4HC_MEM_COMPRESS; 247 #endif 248 249 cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), size, GFP_NOFS); 250 if (!cc->private) 251 return -ENOMEM; 252 253 /* 254 * we do not change cc->clen to LZ4_compressBound(inputsize) to 255 * adapt worst compress case, because lz4 compressor can handle 256 * output budget properly. 257 */ 258 cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE; 259 return 0; 260 } 261 262 static void lz4_destroy_compress_ctx(struct compress_ctx *cc) 263 { 264 kvfree(cc->private); 265 cc->private = NULL; 266 } 267 268 static int lz4_compress_pages(struct compress_ctx *cc) 269 { 270 int len = -EINVAL; 271 unsigned char level = F2FS_I(cc->inode)->i_compress_level; 272 273 if (!level) 274 len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen, 275 cc->clen, cc->private); 276 #ifdef CONFIG_F2FS_FS_LZ4HC 277 else 278 len = LZ4_compress_HC(cc->rbuf, cc->cbuf->cdata, cc->rlen, 279 cc->clen, level, cc->private); 280 #endif 281 if (len < 0) 282 return len; 283 if (!len) 284 return -EAGAIN; 285 286 cc->clen = len; 287 return 0; 288 } 289 290 static int lz4_decompress_pages(struct decompress_io_ctx *dic) 291 { 292 int ret; 293 294 ret = LZ4_decompress_safe(dic->cbuf->cdata, dic->rbuf, 295 dic->clen, dic->rlen); 296 if (ret < 0) { 297 f2fs_err_ratelimited(F2FS_I_SB(dic->inode), 298 "lz4 decompress failed, ret:%d", ret); 299 return -EIO; 300 } 301 302 if (ret != PAGE_SIZE << dic->log_cluster_size) { 303 f2fs_err_ratelimited(F2FS_I_SB(dic->inode), 304 "lz4 invalid ret:%d, expected:%lu", 305 ret, PAGE_SIZE << dic->log_cluster_size); 306 return -EIO; 307 } 308 return 0; 309 } 310 311 static bool lz4_is_level_valid(int lvl) 312 { 313 #ifdef CONFIG_F2FS_FS_LZ4HC 314 return !lvl || (lvl >= LZ4HC_MIN_CLEVEL && lvl <= LZ4HC_MAX_CLEVEL); 315 #else 316 return lvl == 0; 317 #endif 318 } 319 320 static const struct f2fs_compress_ops f2fs_lz4_ops = { 321 .init_compress_ctx = lz4_init_compress_ctx, 322 .destroy_compress_ctx = lz4_destroy_compress_ctx, 323 .compress_pages = lz4_compress_pages, 324 .decompress_pages = lz4_decompress_pages, 325 .is_level_valid = lz4_is_level_valid, 326 }; 327 #endif 328 329 #ifdef CONFIG_F2FS_FS_ZSTD 330 static int zstd_init_compress_ctx(struct compress_ctx *cc) 331 { 332 zstd_parameters params; 333 zstd_cstream *stream; 334 void *workspace; 335 unsigned int workspace_size; 336 unsigned char level = F2FS_I(cc->inode)->i_compress_level; 337 338 /* Need to remain this for backward compatibility */ 339 if (!level) 340 level = F2FS_ZSTD_DEFAULT_CLEVEL; 341 342 params = zstd_get_params(level, cc->rlen); 343 workspace_size = zstd_cstream_workspace_bound(¶ms.cParams); 344 345 workspace = f2fs_kvmalloc(F2FS_I_SB(cc->inode), 346 workspace_size, GFP_NOFS); 347 if (!workspace) 348 return -ENOMEM; 349 350 stream = zstd_init_cstream(¶ms, 0, workspace, workspace_size); 351 if (!stream) { 352 f2fs_err_ratelimited(F2FS_I_SB(cc->inode), 353 "%s zstd_init_cstream failed", __func__); 354 kvfree(workspace); 355 return -EIO; 356 } 357 358 cc->private = workspace; 359 cc->private2 = stream; 360 361 cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE; 362 return 0; 363 } 364 365 static void zstd_destroy_compress_ctx(struct compress_ctx *cc) 366 { 367 kvfree(cc->private); 368 cc->private = NULL; 369 cc->private2 = NULL; 370 } 371 372 static int zstd_compress_pages(struct compress_ctx *cc) 373 { 374 zstd_cstream *stream = cc->private2; 375 zstd_in_buffer inbuf; 376 zstd_out_buffer outbuf; 377 int src_size = cc->rlen; 378 int dst_size = src_size - PAGE_SIZE - COMPRESS_HEADER_SIZE; 379 int ret; 380 381 inbuf.pos = 0; 382 inbuf.src = cc->rbuf; 383 inbuf.size = src_size; 384 385 outbuf.pos = 0; 386 outbuf.dst = cc->cbuf->cdata; 387 outbuf.size = dst_size; 388 389 ret = zstd_compress_stream(stream, &outbuf, &inbuf); 390 if (zstd_is_error(ret)) { 391 f2fs_err_ratelimited(F2FS_I_SB(cc->inode), 392 "%s zstd_compress_stream failed, ret: %d", 393 __func__, zstd_get_error_code(ret)); 394 return -EIO; 395 } 396 397 ret = zstd_end_stream(stream, &outbuf); 398 if (zstd_is_error(ret)) { 399 f2fs_err_ratelimited(F2FS_I_SB(cc->inode), 400 "%s zstd_end_stream returned %d", 401 __func__, zstd_get_error_code(ret)); 402 return -EIO; 403 } 404 405 /* 406 * there is compressed data remained in intermediate buffer due to 407 * no more space in cbuf.cdata 408 */ 409 if (ret) 410 return -EAGAIN; 411 412 cc->clen = outbuf.pos; 413 return 0; 414 } 415 416 static int zstd_init_decompress_ctx(struct decompress_io_ctx *dic) 417 { 418 zstd_dstream *stream; 419 void *workspace; 420 unsigned int workspace_size; 421 unsigned int max_window_size = 422 MAX_COMPRESS_WINDOW_SIZE(dic->log_cluster_size); 423 424 workspace_size = zstd_dstream_workspace_bound(max_window_size); 425 426 workspace = f2fs_kvmalloc(F2FS_I_SB(dic->inode), 427 workspace_size, GFP_NOFS); 428 if (!workspace) 429 return -ENOMEM; 430 431 stream = zstd_init_dstream(max_window_size, workspace, workspace_size); 432 if (!stream) { 433 f2fs_err_ratelimited(F2FS_I_SB(dic->inode), 434 "%s zstd_init_dstream failed", __func__); 435 kvfree(workspace); 436 return -EIO; 437 } 438 439 dic->private = workspace; 440 dic->private2 = stream; 441 442 return 0; 443 } 444 445 static void zstd_destroy_decompress_ctx(struct decompress_io_ctx *dic) 446 { 447 kvfree(dic->private); 448 dic->private = NULL; 449 dic->private2 = NULL; 450 } 451 452 static int zstd_decompress_pages(struct decompress_io_ctx *dic) 453 { 454 zstd_dstream *stream = dic->private2; 455 zstd_in_buffer inbuf; 456 zstd_out_buffer outbuf; 457 int ret; 458 459 inbuf.pos = 0; 460 inbuf.src = dic->cbuf->cdata; 461 inbuf.size = dic->clen; 462 463 outbuf.pos = 0; 464 outbuf.dst = dic->rbuf; 465 outbuf.size = dic->rlen; 466 467 ret = zstd_decompress_stream(stream, &outbuf, &inbuf); 468 if (zstd_is_error(ret)) { 469 f2fs_err_ratelimited(F2FS_I_SB(dic->inode), 470 "%s zstd_decompress_stream failed, ret: %d", 471 __func__, zstd_get_error_code(ret)); 472 return -EIO; 473 } 474 475 if (dic->rlen != outbuf.pos) { 476 f2fs_err_ratelimited(F2FS_I_SB(dic->inode), 477 "%s ZSTD invalid rlen:%zu, expected:%lu", 478 __func__, dic->rlen, 479 PAGE_SIZE << dic->log_cluster_size); 480 return -EIO; 481 } 482 483 return 0; 484 } 485 486 static bool zstd_is_level_valid(int lvl) 487 { 488 return lvl >= zstd_min_clevel() && lvl <= zstd_max_clevel(); 489 } 490 491 static const struct f2fs_compress_ops f2fs_zstd_ops = { 492 .init_compress_ctx = zstd_init_compress_ctx, 493 .destroy_compress_ctx = zstd_destroy_compress_ctx, 494 .compress_pages = zstd_compress_pages, 495 .init_decompress_ctx = zstd_init_decompress_ctx, 496 .destroy_decompress_ctx = zstd_destroy_decompress_ctx, 497 .decompress_pages = zstd_decompress_pages, 498 .is_level_valid = zstd_is_level_valid, 499 }; 500 #endif 501 502 #ifdef CONFIG_F2FS_FS_LZO 503 #ifdef CONFIG_F2FS_FS_LZORLE 504 static int lzorle_compress_pages(struct compress_ctx *cc) 505 { 506 int ret; 507 508 ret = lzorle1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata, 509 &cc->clen, cc->private); 510 if (ret != LZO_E_OK) { 511 f2fs_err_ratelimited(F2FS_I_SB(cc->inode), 512 "lzo-rle compress failed, ret:%d", ret); 513 return -EIO; 514 } 515 return 0; 516 } 517 518 static const struct f2fs_compress_ops f2fs_lzorle_ops = { 519 .init_compress_ctx = lzo_init_compress_ctx, 520 .destroy_compress_ctx = lzo_destroy_compress_ctx, 521 .compress_pages = lzorle_compress_pages, 522 .decompress_pages = lzo_decompress_pages, 523 }; 524 #endif 525 #endif 526 527 static const struct f2fs_compress_ops *f2fs_cops[COMPRESS_MAX] = { 528 #ifdef CONFIG_F2FS_FS_LZO 529 &f2fs_lzo_ops, 530 #else 531 NULL, 532 #endif 533 #ifdef CONFIG_F2FS_FS_LZ4 534 &f2fs_lz4_ops, 535 #else 536 NULL, 537 #endif 538 #ifdef CONFIG_F2FS_FS_ZSTD 539 &f2fs_zstd_ops, 540 #else 541 NULL, 542 #endif 543 #if defined(CONFIG_F2FS_FS_LZO) && defined(CONFIG_F2FS_FS_LZORLE) 544 &f2fs_lzorle_ops, 545 #else 546 NULL, 547 #endif 548 }; 549 550 bool f2fs_is_compress_backend_ready(struct inode *inode) 551 { 552 if (!f2fs_compressed_file(inode)) 553 return true; 554 return f2fs_cops[F2FS_I(inode)->i_compress_algorithm]; 555 } 556 557 bool f2fs_is_compress_level_valid(int alg, int lvl) 558 { 559 const struct f2fs_compress_ops *cops = f2fs_cops[alg]; 560 561 if (cops->is_level_valid) 562 return cops->is_level_valid(lvl); 563 564 return lvl == 0; 565 } 566 567 static mempool_t *compress_page_pool; 568 static int num_compress_pages = 512; 569 module_param(num_compress_pages, uint, 0444); 570 MODULE_PARM_DESC(num_compress_pages, 571 "Number of intermediate compress pages to preallocate"); 572 573 int __init f2fs_init_compress_mempool(void) 574 { 575 compress_page_pool = mempool_create_page_pool(num_compress_pages, 0); 576 return compress_page_pool ? 0 : -ENOMEM; 577 } 578 579 void f2fs_destroy_compress_mempool(void) 580 { 581 mempool_destroy(compress_page_pool); 582 } 583 584 static struct page *f2fs_compress_alloc_page(void) 585 { 586 struct page *page; 587 588 page = mempool_alloc(compress_page_pool, GFP_NOFS); 589 lock_page(page); 590 591 return page; 592 } 593 594 static void f2fs_compress_free_page(struct page *page) 595 { 596 if (!page) 597 return; 598 detach_page_private(page); 599 page->mapping = NULL; 600 unlock_page(page); 601 mempool_free(page, compress_page_pool); 602 } 603 604 #define MAX_VMAP_RETRIES 3 605 606 static void *f2fs_vmap(struct page **pages, unsigned int count) 607 { 608 int i; 609 void *buf = NULL; 610 611 for (i = 0; i < MAX_VMAP_RETRIES; i++) { 612 buf = vm_map_ram(pages, count, -1); 613 if (buf) 614 break; 615 vm_unmap_aliases(); 616 } 617 return buf; 618 } 619 620 static int f2fs_compress_pages(struct compress_ctx *cc) 621 { 622 struct f2fs_inode_info *fi = F2FS_I(cc->inode); 623 const struct f2fs_compress_ops *cops = 624 f2fs_cops[fi->i_compress_algorithm]; 625 unsigned int max_len, new_nr_cpages; 626 u32 chksum = 0; 627 int i, ret; 628 629 trace_f2fs_compress_pages_start(cc->inode, cc->cluster_idx, 630 cc->cluster_size, fi->i_compress_algorithm); 631 632 if (cops->init_compress_ctx) { 633 ret = cops->init_compress_ctx(cc); 634 if (ret) 635 goto out; 636 } 637 638 max_len = COMPRESS_HEADER_SIZE + cc->clen; 639 cc->nr_cpages = DIV_ROUND_UP(max_len, PAGE_SIZE); 640 cc->valid_nr_cpages = cc->nr_cpages; 641 642 cc->cpages = page_array_alloc(cc->inode, cc->nr_cpages); 643 if (!cc->cpages) { 644 ret = -ENOMEM; 645 goto destroy_compress_ctx; 646 } 647 648 for (i = 0; i < cc->nr_cpages; i++) 649 cc->cpages[i] = f2fs_compress_alloc_page(); 650 651 cc->rbuf = f2fs_vmap(cc->rpages, cc->cluster_size); 652 if (!cc->rbuf) { 653 ret = -ENOMEM; 654 goto out_free_cpages; 655 } 656 657 cc->cbuf = f2fs_vmap(cc->cpages, cc->nr_cpages); 658 if (!cc->cbuf) { 659 ret = -ENOMEM; 660 goto out_vunmap_rbuf; 661 } 662 663 ret = cops->compress_pages(cc); 664 if (ret) 665 goto out_vunmap_cbuf; 666 667 max_len = PAGE_SIZE * (cc->cluster_size - 1) - COMPRESS_HEADER_SIZE; 668 669 if (cc->clen > max_len) { 670 ret = -EAGAIN; 671 goto out_vunmap_cbuf; 672 } 673 674 cc->cbuf->clen = cpu_to_le32(cc->clen); 675 676 if (fi->i_compress_flag & BIT(COMPRESS_CHKSUM)) 677 chksum = f2fs_crc32(F2FS_I_SB(cc->inode), 678 cc->cbuf->cdata, cc->clen); 679 cc->cbuf->chksum = cpu_to_le32(chksum); 680 681 for (i = 0; i < COMPRESS_DATA_RESERVED_SIZE; i++) 682 cc->cbuf->reserved[i] = cpu_to_le32(0); 683 684 new_nr_cpages = DIV_ROUND_UP(cc->clen + COMPRESS_HEADER_SIZE, PAGE_SIZE); 685 686 /* zero out any unused part of the last page */ 687 memset(&cc->cbuf->cdata[cc->clen], 0, 688 (new_nr_cpages * PAGE_SIZE) - 689 (cc->clen + COMPRESS_HEADER_SIZE)); 690 691 vm_unmap_ram(cc->cbuf, cc->nr_cpages); 692 vm_unmap_ram(cc->rbuf, cc->cluster_size); 693 694 for (i = new_nr_cpages; i < cc->nr_cpages; i++) { 695 f2fs_compress_free_page(cc->cpages[i]); 696 cc->cpages[i] = NULL; 697 } 698 699 if (cops->destroy_compress_ctx) 700 cops->destroy_compress_ctx(cc); 701 702 cc->valid_nr_cpages = new_nr_cpages; 703 704 trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx, 705 cc->clen, ret); 706 return 0; 707 708 out_vunmap_cbuf: 709 vm_unmap_ram(cc->cbuf, cc->nr_cpages); 710 out_vunmap_rbuf: 711 vm_unmap_ram(cc->rbuf, cc->cluster_size); 712 out_free_cpages: 713 for (i = 0; i < cc->nr_cpages; i++) { 714 if (cc->cpages[i]) 715 f2fs_compress_free_page(cc->cpages[i]); 716 } 717 page_array_free(cc->inode, cc->cpages, cc->nr_cpages); 718 cc->cpages = NULL; 719 destroy_compress_ctx: 720 if (cops->destroy_compress_ctx) 721 cops->destroy_compress_ctx(cc); 722 out: 723 trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx, 724 cc->clen, ret); 725 return ret; 726 } 727 728 static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic, 729 bool pre_alloc); 730 static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic, 731 bool bypass_destroy_callback, bool pre_alloc); 732 733 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task) 734 { 735 struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode); 736 struct f2fs_inode_info *fi = F2FS_I(dic->inode); 737 const struct f2fs_compress_ops *cops = 738 f2fs_cops[fi->i_compress_algorithm]; 739 bool bypass_callback = false; 740 int ret; 741 742 trace_f2fs_decompress_pages_start(dic->inode, dic->cluster_idx, 743 dic->cluster_size, fi->i_compress_algorithm); 744 745 if (dic->failed) { 746 ret = -EIO; 747 goto out_end_io; 748 } 749 750 ret = f2fs_prepare_decomp_mem(dic, false); 751 if (ret) { 752 bypass_callback = true; 753 goto out_release; 754 } 755 756 dic->clen = le32_to_cpu(dic->cbuf->clen); 757 dic->rlen = PAGE_SIZE << dic->log_cluster_size; 758 759 if (dic->clen > PAGE_SIZE * dic->nr_cpages - COMPRESS_HEADER_SIZE) { 760 ret = -EFSCORRUPTED; 761 762 /* Avoid f2fs_commit_super in irq context */ 763 if (!in_task) 764 f2fs_handle_error_async(sbi, ERROR_FAIL_DECOMPRESSION); 765 else 766 f2fs_handle_error(sbi, ERROR_FAIL_DECOMPRESSION); 767 goto out_release; 768 } 769 770 ret = cops->decompress_pages(dic); 771 772 if (!ret && (fi->i_compress_flag & BIT(COMPRESS_CHKSUM))) { 773 u32 provided = le32_to_cpu(dic->cbuf->chksum); 774 u32 calculated = f2fs_crc32(sbi, dic->cbuf->cdata, dic->clen); 775 776 if (provided != calculated) { 777 if (!is_inode_flag_set(dic->inode, FI_COMPRESS_CORRUPT)) { 778 set_inode_flag(dic->inode, FI_COMPRESS_CORRUPT); 779 f2fs_info_ratelimited(sbi, 780 "checksum invalid, nid = %lu, %x vs %x", 781 dic->inode->i_ino, 782 provided, calculated); 783 } 784 set_sbi_flag(sbi, SBI_NEED_FSCK); 785 } 786 } 787 788 out_release: 789 f2fs_release_decomp_mem(dic, bypass_callback, false); 790 791 out_end_io: 792 trace_f2fs_decompress_pages_end(dic->inode, dic->cluster_idx, 793 dic->clen, ret); 794 f2fs_decompress_end_io(dic, ret, in_task); 795 } 796 797 /* 798 * This is called when a page of a compressed cluster has been read from disk 799 * (or failed to be read from disk). It checks whether this page was the last 800 * page being waited on in the cluster, and if so, it decompresses the cluster 801 * (or in the case of a failure, cleans up without actually decompressing). 802 */ 803 void f2fs_end_read_compressed_page(struct page *page, bool failed, 804 block_t blkaddr, bool in_task) 805 { 806 struct decompress_io_ctx *dic = 807 (struct decompress_io_ctx *)page_private(page); 808 struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode); 809 810 dec_page_count(sbi, F2FS_RD_DATA); 811 812 if (failed) 813 WRITE_ONCE(dic->failed, true); 814 else if (blkaddr && in_task) 815 f2fs_cache_compressed_page(sbi, page, 816 dic->inode->i_ino, blkaddr); 817 818 if (atomic_dec_and_test(&dic->remaining_pages)) 819 f2fs_decompress_cluster(dic, in_task); 820 } 821 822 static bool is_page_in_cluster(struct compress_ctx *cc, pgoff_t index) 823 { 824 if (cc->cluster_idx == NULL_CLUSTER) 825 return true; 826 return cc->cluster_idx == cluster_idx(cc, index); 827 } 828 829 bool f2fs_cluster_is_empty(struct compress_ctx *cc) 830 { 831 return cc->nr_rpages == 0; 832 } 833 834 static bool f2fs_cluster_is_full(struct compress_ctx *cc) 835 { 836 return cc->cluster_size == cc->nr_rpages; 837 } 838 839 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index) 840 { 841 if (f2fs_cluster_is_empty(cc)) 842 return true; 843 return is_page_in_cluster(cc, index); 844 } 845 846 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages, 847 int index, int nr_pages, bool uptodate) 848 { 849 unsigned long pgidx = pages[index]->index; 850 int i = uptodate ? 0 : 1; 851 852 /* 853 * when uptodate set to true, try to check all pages in cluster is 854 * uptodate or not. 855 */ 856 if (uptodate && (pgidx % cc->cluster_size)) 857 return false; 858 859 if (nr_pages - index < cc->cluster_size) 860 return false; 861 862 for (; i < cc->cluster_size; i++) { 863 if (pages[index + i]->index != pgidx + i) 864 return false; 865 if (uptodate && !PageUptodate(pages[index + i])) 866 return false; 867 } 868 869 return true; 870 } 871 872 static bool cluster_has_invalid_data(struct compress_ctx *cc) 873 { 874 loff_t i_size = i_size_read(cc->inode); 875 unsigned nr_pages = DIV_ROUND_UP(i_size, PAGE_SIZE); 876 int i; 877 878 for (i = 0; i < cc->cluster_size; i++) { 879 struct page *page = cc->rpages[i]; 880 881 f2fs_bug_on(F2FS_I_SB(cc->inode), !page); 882 883 /* beyond EOF */ 884 if (page_folio(page)->index >= nr_pages) 885 return true; 886 } 887 return false; 888 } 889 890 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) 891 { 892 #ifdef CONFIG_F2FS_CHECK_FS 893 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 894 unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 895 int cluster_end = 0; 896 unsigned int count; 897 int i; 898 char *reason = ""; 899 900 if (dn->data_blkaddr != COMPRESS_ADDR) 901 return false; 902 903 /* [..., COMPR_ADDR, ...] */ 904 if (dn->ofs_in_node % cluster_size) { 905 reason = "[*|C|*|*]"; 906 goto out; 907 } 908 909 for (i = 1, count = 1; i < cluster_size; i++, count++) { 910 block_t blkaddr = data_blkaddr(dn->inode, dn->node_page, 911 dn->ofs_in_node + i); 912 913 /* [COMPR_ADDR, ..., COMPR_ADDR] */ 914 if (blkaddr == COMPRESS_ADDR) { 915 reason = "[C|*|C|*]"; 916 goto out; 917 } 918 if (!__is_valid_data_blkaddr(blkaddr)) { 919 if (!cluster_end) 920 cluster_end = i; 921 continue; 922 } 923 /* [COMPR_ADDR, NULL_ADDR or NEW_ADDR, valid_blkaddr] */ 924 if (cluster_end) { 925 reason = "[C|N|N|V]"; 926 goto out; 927 } 928 } 929 930 f2fs_bug_on(F2FS_I_SB(dn->inode), count != cluster_size && 931 !is_inode_flag_set(dn->inode, FI_COMPRESS_RELEASED)); 932 933 return false; 934 out: 935 f2fs_warn(sbi, "access invalid cluster, ino:%lu, nid:%u, ofs_in_node:%u, reason:%s", 936 dn->inode->i_ino, dn->nid, dn->ofs_in_node, reason); 937 set_sbi_flag(sbi, SBI_NEED_FSCK); 938 return true; 939 #else 940 return false; 941 #endif 942 } 943 944 static int __f2fs_get_cluster_blocks(struct inode *inode, 945 struct dnode_of_data *dn) 946 { 947 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size; 948 int count, i; 949 950 for (i = 0, count = 0; i < cluster_size; i++) { 951 block_t blkaddr = data_blkaddr(dn->inode, dn->node_page, 952 dn->ofs_in_node + i); 953 954 if (__is_valid_data_blkaddr(blkaddr)) 955 count++; 956 } 957 958 return count; 959 } 960 961 static int __f2fs_cluster_blocks(struct inode *inode, unsigned int cluster_idx, 962 enum cluster_check_type type) 963 { 964 struct dnode_of_data dn; 965 unsigned int start_idx = cluster_idx << 966 F2FS_I(inode)->i_log_cluster_size; 967 int ret; 968 969 set_new_dnode(&dn, inode, NULL, NULL, 0); 970 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 971 if (ret) { 972 if (ret == -ENOENT) 973 ret = 0; 974 goto fail; 975 } 976 977 if (f2fs_sanity_check_cluster(&dn)) { 978 ret = -EFSCORRUPTED; 979 goto fail; 980 } 981 982 if (dn.data_blkaddr == COMPRESS_ADDR) { 983 if (type == CLUSTER_COMPR_BLKS) 984 ret = 1 + __f2fs_get_cluster_blocks(inode, &dn); 985 else if (type == CLUSTER_IS_COMPR) 986 ret = 1; 987 } else if (type == CLUSTER_RAW_BLKS) { 988 ret = __f2fs_get_cluster_blocks(inode, &dn); 989 } 990 fail: 991 f2fs_put_dnode(&dn); 992 return ret; 993 } 994 995 /* return # of compressed blocks in compressed cluster */ 996 static int f2fs_compressed_blocks(struct compress_ctx *cc) 997 { 998 return __f2fs_cluster_blocks(cc->inode, cc->cluster_idx, 999 CLUSTER_COMPR_BLKS); 1000 } 1001 1002 /* return # of raw blocks in non-compressed cluster */ 1003 static int f2fs_decompressed_blocks(struct inode *inode, 1004 unsigned int cluster_idx) 1005 { 1006 return __f2fs_cluster_blocks(inode, cluster_idx, 1007 CLUSTER_RAW_BLKS); 1008 } 1009 1010 /* return whether cluster is compressed one or not */ 1011 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index) 1012 { 1013 return __f2fs_cluster_blocks(inode, 1014 index >> F2FS_I(inode)->i_log_cluster_size, 1015 CLUSTER_IS_COMPR); 1016 } 1017 1018 /* return whether cluster contains non raw blocks or not */ 1019 bool f2fs_is_sparse_cluster(struct inode *inode, pgoff_t index) 1020 { 1021 unsigned int cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size; 1022 1023 return f2fs_decompressed_blocks(inode, cluster_idx) != 1024 F2FS_I(inode)->i_cluster_size; 1025 } 1026 1027 static bool cluster_may_compress(struct compress_ctx *cc) 1028 { 1029 if (!f2fs_need_compress_data(cc->inode)) 1030 return false; 1031 if (f2fs_is_atomic_file(cc->inode)) 1032 return false; 1033 if (!f2fs_cluster_is_full(cc)) 1034 return false; 1035 if (unlikely(f2fs_cp_error(F2FS_I_SB(cc->inode)))) 1036 return false; 1037 return !cluster_has_invalid_data(cc); 1038 } 1039 1040 static void set_cluster_writeback(struct compress_ctx *cc) 1041 { 1042 int i; 1043 1044 for (i = 0; i < cc->cluster_size; i++) { 1045 if (cc->rpages[i]) 1046 set_page_writeback(cc->rpages[i]); 1047 } 1048 } 1049 1050 static void cancel_cluster_writeback(struct compress_ctx *cc, 1051 struct compress_io_ctx *cic, int submitted) 1052 { 1053 int i; 1054 1055 /* Wait for submitted IOs. */ 1056 if (submitted > 1) { 1057 f2fs_submit_merged_write(F2FS_I_SB(cc->inode), DATA); 1058 while (atomic_read(&cic->pending_pages) != 1059 (cc->valid_nr_cpages - submitted + 1)) 1060 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 1061 } 1062 1063 /* Cancel writeback and stay locked. */ 1064 for (i = 0; i < cc->cluster_size; i++) { 1065 if (i < submitted) { 1066 inode_inc_dirty_pages(cc->inode); 1067 lock_page(cc->rpages[i]); 1068 } 1069 clear_page_private_gcing(cc->rpages[i]); 1070 if (folio_test_writeback(page_folio(cc->rpages[i]))) 1071 end_page_writeback(cc->rpages[i]); 1072 } 1073 } 1074 1075 static void set_cluster_dirty(struct compress_ctx *cc) 1076 { 1077 int i; 1078 1079 for (i = 0; i < cc->cluster_size; i++) 1080 if (cc->rpages[i]) { 1081 set_page_dirty(cc->rpages[i]); 1082 set_page_private_gcing(cc->rpages[i]); 1083 } 1084 } 1085 1086 static int prepare_compress_overwrite(struct compress_ctx *cc, 1087 struct page **pagep, pgoff_t index, void **fsdata) 1088 { 1089 struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode); 1090 struct address_space *mapping = cc->inode->i_mapping; 1091 struct page *page; 1092 sector_t last_block_in_bio; 1093 fgf_t fgp_flag = FGP_LOCK | FGP_WRITE | FGP_CREAT; 1094 pgoff_t start_idx = start_idx_of_cluster(cc); 1095 int i, ret; 1096 1097 retry: 1098 ret = f2fs_is_compressed_cluster(cc->inode, start_idx); 1099 if (ret <= 0) 1100 return ret; 1101 1102 ret = f2fs_init_compress_ctx(cc); 1103 if (ret) 1104 return ret; 1105 1106 /* keep page reference to avoid page reclaim */ 1107 for (i = 0; i < cc->cluster_size; i++) { 1108 page = f2fs_pagecache_get_page(mapping, start_idx + i, 1109 fgp_flag, GFP_NOFS); 1110 if (!page) { 1111 ret = -ENOMEM; 1112 goto unlock_pages; 1113 } 1114 1115 if (PageUptodate(page)) 1116 f2fs_put_page(page, 1); 1117 else 1118 f2fs_compress_ctx_add_page(cc, page_folio(page)); 1119 } 1120 1121 if (!f2fs_cluster_is_empty(cc)) { 1122 struct bio *bio = NULL; 1123 1124 ret = f2fs_read_multi_pages(cc, &bio, cc->cluster_size, 1125 &last_block_in_bio, NULL, true); 1126 f2fs_put_rpages(cc); 1127 f2fs_destroy_compress_ctx(cc, true); 1128 if (ret) 1129 goto out; 1130 if (bio) 1131 f2fs_submit_read_bio(sbi, bio, DATA); 1132 1133 ret = f2fs_init_compress_ctx(cc); 1134 if (ret) 1135 goto out; 1136 } 1137 1138 for (i = 0; i < cc->cluster_size; i++) { 1139 f2fs_bug_on(sbi, cc->rpages[i]); 1140 1141 page = find_lock_page(mapping, start_idx + i); 1142 if (!page) { 1143 /* page can be truncated */ 1144 goto release_and_retry; 1145 } 1146 1147 f2fs_wait_on_page_writeback(page, DATA, true, true); 1148 f2fs_compress_ctx_add_page(cc, page_folio(page)); 1149 1150 if (!PageUptodate(page)) { 1151 release_and_retry: 1152 f2fs_put_rpages(cc); 1153 f2fs_unlock_rpages(cc, i + 1); 1154 f2fs_destroy_compress_ctx(cc, true); 1155 goto retry; 1156 } 1157 } 1158 1159 if (likely(!ret)) { 1160 *fsdata = cc->rpages; 1161 *pagep = cc->rpages[offset_in_cluster(cc, index)]; 1162 return cc->cluster_size; 1163 } 1164 1165 unlock_pages: 1166 f2fs_put_rpages(cc); 1167 f2fs_unlock_rpages(cc, i); 1168 f2fs_destroy_compress_ctx(cc, true); 1169 out: 1170 return ret; 1171 } 1172 1173 int f2fs_prepare_compress_overwrite(struct inode *inode, 1174 struct page **pagep, pgoff_t index, void **fsdata) 1175 { 1176 struct compress_ctx cc = { 1177 .inode = inode, 1178 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 1179 .cluster_size = F2FS_I(inode)->i_cluster_size, 1180 .cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size, 1181 .rpages = NULL, 1182 .nr_rpages = 0, 1183 }; 1184 1185 return prepare_compress_overwrite(&cc, pagep, index, fsdata); 1186 } 1187 1188 bool f2fs_compress_write_end(struct inode *inode, void *fsdata, 1189 pgoff_t index, unsigned copied) 1190 1191 { 1192 struct compress_ctx cc = { 1193 .inode = inode, 1194 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 1195 .cluster_size = F2FS_I(inode)->i_cluster_size, 1196 .rpages = fsdata, 1197 }; 1198 bool first_index = (index == cc.rpages[0]->index); 1199 1200 if (copied) 1201 set_cluster_dirty(&cc); 1202 1203 f2fs_put_rpages_wbc(&cc, NULL, false, 1); 1204 f2fs_destroy_compress_ctx(&cc, false); 1205 1206 return first_index; 1207 } 1208 1209 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock) 1210 { 1211 void *fsdata = NULL; 1212 struct page *pagep; 1213 int log_cluster_size = F2FS_I(inode)->i_log_cluster_size; 1214 pgoff_t start_idx = from >> (PAGE_SHIFT + log_cluster_size) << 1215 log_cluster_size; 1216 int err; 1217 1218 err = f2fs_is_compressed_cluster(inode, start_idx); 1219 if (err < 0) 1220 return err; 1221 1222 /* truncate normal cluster */ 1223 if (!err) 1224 return f2fs_do_truncate_blocks(inode, from, lock); 1225 1226 /* truncate compressed cluster */ 1227 err = f2fs_prepare_compress_overwrite(inode, &pagep, 1228 start_idx, &fsdata); 1229 1230 /* should not be a normal cluster */ 1231 f2fs_bug_on(F2FS_I_SB(inode), err == 0); 1232 1233 if (err <= 0) 1234 return err; 1235 1236 if (err > 0) { 1237 struct page **rpages = fsdata; 1238 int cluster_size = F2FS_I(inode)->i_cluster_size; 1239 int i; 1240 1241 for (i = cluster_size - 1; i >= 0; i--) { 1242 loff_t start = rpages[i]->index << PAGE_SHIFT; 1243 1244 if (from <= start) { 1245 zero_user_segment(rpages[i], 0, PAGE_SIZE); 1246 } else { 1247 zero_user_segment(rpages[i], from - start, 1248 PAGE_SIZE); 1249 break; 1250 } 1251 } 1252 1253 f2fs_compress_write_end(inode, fsdata, start_idx, true); 1254 } 1255 return 0; 1256 } 1257 1258 static int f2fs_write_compressed_pages(struct compress_ctx *cc, 1259 int *submitted, 1260 struct writeback_control *wbc, 1261 enum iostat_type io_type) 1262 { 1263 struct inode *inode = cc->inode; 1264 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1265 struct f2fs_inode_info *fi = F2FS_I(inode); 1266 struct f2fs_io_info fio = { 1267 .sbi = sbi, 1268 .ino = cc->inode->i_ino, 1269 .type = DATA, 1270 .op = REQ_OP_WRITE, 1271 .op_flags = wbc_to_write_flags(wbc), 1272 .old_blkaddr = NEW_ADDR, 1273 .page = NULL, 1274 .encrypted_page = NULL, 1275 .compressed_page = NULL, 1276 .io_type = io_type, 1277 .io_wbc = wbc, 1278 .encrypted = fscrypt_inode_uses_fs_layer_crypto(cc->inode) ? 1279 1 : 0, 1280 }; 1281 struct dnode_of_data dn; 1282 struct node_info ni; 1283 struct compress_io_ctx *cic; 1284 pgoff_t start_idx = start_idx_of_cluster(cc); 1285 unsigned int last_index = cc->cluster_size - 1; 1286 loff_t psize; 1287 int i, err; 1288 bool quota_inode = IS_NOQUOTA(inode); 1289 1290 /* we should bypass data pages to proceed the kworker jobs */ 1291 if (unlikely(f2fs_cp_error(sbi))) { 1292 mapping_set_error(cc->rpages[0]->mapping, -EIO); 1293 goto out_free; 1294 } 1295 1296 if (quota_inode) { 1297 /* 1298 * We need to wait for node_write to avoid block allocation during 1299 * checkpoint. This can only happen to quota writes which can cause 1300 * the below discard race condition. 1301 */ 1302 f2fs_down_read(&sbi->node_write); 1303 } else if (!f2fs_trylock_op(sbi)) { 1304 goto out_free; 1305 } 1306 1307 set_new_dnode(&dn, cc->inode, NULL, NULL, 0); 1308 1309 err = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 1310 if (err) 1311 goto out_unlock_op; 1312 1313 for (i = 0; i < cc->cluster_size; i++) { 1314 if (data_blkaddr(dn.inode, dn.node_page, 1315 dn.ofs_in_node + i) == NULL_ADDR) 1316 goto out_put_dnode; 1317 } 1318 1319 psize = (loff_t)(cc->rpages[last_index]->index + 1) << PAGE_SHIFT; 1320 1321 err = f2fs_get_node_info(fio.sbi, dn.nid, &ni, false); 1322 if (err) 1323 goto out_put_dnode; 1324 1325 fio.version = ni.version; 1326 1327 cic = f2fs_kmem_cache_alloc(cic_entry_slab, GFP_F2FS_ZERO, false, sbi); 1328 if (!cic) 1329 goto out_put_dnode; 1330 1331 cic->magic = F2FS_COMPRESSED_PAGE_MAGIC; 1332 cic->inode = inode; 1333 atomic_set(&cic->pending_pages, cc->valid_nr_cpages); 1334 cic->rpages = page_array_alloc(cc->inode, cc->cluster_size); 1335 if (!cic->rpages) 1336 goto out_put_cic; 1337 1338 cic->nr_rpages = cc->cluster_size; 1339 1340 for (i = 0; i < cc->valid_nr_cpages; i++) { 1341 f2fs_set_compressed_page(cc->cpages[i], inode, 1342 cc->rpages[i + 1]->index, cic); 1343 fio.compressed_page = cc->cpages[i]; 1344 1345 fio.old_blkaddr = data_blkaddr(dn.inode, dn.node_page, 1346 dn.ofs_in_node + i + 1); 1347 1348 /* wait for GCed page writeback via META_MAPPING */ 1349 f2fs_wait_on_block_writeback(inode, fio.old_blkaddr); 1350 1351 if (fio.encrypted) { 1352 fio.page = cc->rpages[i + 1]; 1353 err = f2fs_encrypt_one_page(&fio); 1354 if (err) 1355 goto out_destroy_crypt; 1356 cc->cpages[i] = fio.encrypted_page; 1357 } 1358 } 1359 1360 set_cluster_writeback(cc); 1361 1362 for (i = 0; i < cc->cluster_size; i++) 1363 cic->rpages[i] = cc->rpages[i]; 1364 1365 for (i = 0; i < cc->cluster_size; i++, dn.ofs_in_node++) { 1366 block_t blkaddr; 1367 1368 blkaddr = f2fs_data_blkaddr(&dn); 1369 fio.page = cc->rpages[i]; 1370 fio.old_blkaddr = blkaddr; 1371 1372 /* cluster header */ 1373 if (i == 0) { 1374 if (blkaddr == COMPRESS_ADDR) 1375 fio.compr_blocks++; 1376 if (__is_valid_data_blkaddr(blkaddr)) 1377 f2fs_invalidate_blocks(sbi, blkaddr); 1378 f2fs_update_data_blkaddr(&dn, COMPRESS_ADDR); 1379 goto unlock_continue; 1380 } 1381 1382 if (fio.compr_blocks && __is_valid_data_blkaddr(blkaddr)) 1383 fio.compr_blocks++; 1384 1385 if (i > cc->valid_nr_cpages) { 1386 if (__is_valid_data_blkaddr(blkaddr)) { 1387 f2fs_invalidate_blocks(sbi, blkaddr); 1388 f2fs_update_data_blkaddr(&dn, NEW_ADDR); 1389 } 1390 goto unlock_continue; 1391 } 1392 1393 f2fs_bug_on(fio.sbi, blkaddr == NULL_ADDR); 1394 1395 if (fio.encrypted) 1396 fio.encrypted_page = cc->cpages[i - 1]; 1397 else 1398 fio.compressed_page = cc->cpages[i - 1]; 1399 1400 cc->cpages[i - 1] = NULL; 1401 fio.submitted = 0; 1402 f2fs_outplace_write_data(&dn, &fio); 1403 if (unlikely(!fio.submitted)) { 1404 cancel_cluster_writeback(cc, cic, i); 1405 1406 /* To call fscrypt_finalize_bounce_page */ 1407 i = cc->valid_nr_cpages; 1408 *submitted = 0; 1409 goto out_destroy_crypt; 1410 } 1411 (*submitted)++; 1412 unlock_continue: 1413 inode_dec_dirty_pages(cc->inode); 1414 unlock_page(fio.page); 1415 } 1416 1417 if (fio.compr_blocks) 1418 f2fs_i_compr_blocks_update(inode, fio.compr_blocks - 1, false); 1419 f2fs_i_compr_blocks_update(inode, cc->valid_nr_cpages, true); 1420 add_compr_block_stat(inode, cc->valid_nr_cpages); 1421 1422 set_inode_flag(cc->inode, FI_APPEND_WRITE); 1423 1424 f2fs_put_dnode(&dn); 1425 if (quota_inode) 1426 f2fs_up_read(&sbi->node_write); 1427 else 1428 f2fs_unlock_op(sbi); 1429 1430 spin_lock(&fi->i_size_lock); 1431 if (fi->last_disk_size < psize) 1432 fi->last_disk_size = psize; 1433 spin_unlock(&fi->i_size_lock); 1434 1435 f2fs_put_rpages(cc); 1436 page_array_free(cc->inode, cc->cpages, cc->nr_cpages); 1437 cc->cpages = NULL; 1438 f2fs_destroy_compress_ctx(cc, false); 1439 return 0; 1440 1441 out_destroy_crypt: 1442 page_array_free(cc->inode, cic->rpages, cc->cluster_size); 1443 1444 for (--i; i >= 0; i--) { 1445 if (!cc->cpages[i]) 1446 continue; 1447 fscrypt_finalize_bounce_page(&cc->cpages[i]); 1448 } 1449 out_put_cic: 1450 kmem_cache_free(cic_entry_slab, cic); 1451 out_put_dnode: 1452 f2fs_put_dnode(&dn); 1453 out_unlock_op: 1454 if (quota_inode) 1455 f2fs_up_read(&sbi->node_write); 1456 else 1457 f2fs_unlock_op(sbi); 1458 out_free: 1459 for (i = 0; i < cc->valid_nr_cpages; i++) { 1460 f2fs_compress_free_page(cc->cpages[i]); 1461 cc->cpages[i] = NULL; 1462 } 1463 page_array_free(cc->inode, cc->cpages, cc->nr_cpages); 1464 cc->cpages = NULL; 1465 return -EAGAIN; 1466 } 1467 1468 void f2fs_compress_write_end_io(struct bio *bio, struct page *page) 1469 { 1470 struct f2fs_sb_info *sbi = bio->bi_private; 1471 struct compress_io_ctx *cic = 1472 (struct compress_io_ctx *)page_private(page); 1473 enum count_type type = WB_DATA_TYPE(page, 1474 f2fs_is_compressed_page(page)); 1475 int i; 1476 1477 if (unlikely(bio->bi_status)) 1478 mapping_set_error(cic->inode->i_mapping, -EIO); 1479 1480 f2fs_compress_free_page(page); 1481 1482 dec_page_count(sbi, type); 1483 1484 if (atomic_dec_return(&cic->pending_pages)) 1485 return; 1486 1487 for (i = 0; i < cic->nr_rpages; i++) { 1488 WARN_ON(!cic->rpages[i]); 1489 clear_page_private_gcing(cic->rpages[i]); 1490 end_page_writeback(cic->rpages[i]); 1491 } 1492 1493 page_array_free(cic->inode, cic->rpages, cic->nr_rpages); 1494 kmem_cache_free(cic_entry_slab, cic); 1495 } 1496 1497 static int f2fs_write_raw_pages(struct compress_ctx *cc, 1498 int *submitted_p, 1499 struct writeback_control *wbc, 1500 enum iostat_type io_type) 1501 { 1502 struct address_space *mapping = cc->inode->i_mapping; 1503 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 1504 int submitted, compr_blocks, i; 1505 int ret = 0; 1506 1507 compr_blocks = f2fs_compressed_blocks(cc); 1508 1509 for (i = 0; i < cc->cluster_size; i++) { 1510 if (!cc->rpages[i]) 1511 continue; 1512 1513 redirty_page_for_writepage(wbc, cc->rpages[i]); 1514 unlock_page(cc->rpages[i]); 1515 } 1516 1517 if (compr_blocks < 0) 1518 return compr_blocks; 1519 1520 /* overwrite compressed cluster w/ normal cluster */ 1521 if (compr_blocks > 0) 1522 f2fs_lock_op(sbi); 1523 1524 for (i = 0; i < cc->cluster_size; i++) { 1525 if (!cc->rpages[i]) 1526 continue; 1527 retry_write: 1528 lock_page(cc->rpages[i]); 1529 1530 if (cc->rpages[i]->mapping != mapping) { 1531 continue_unlock: 1532 unlock_page(cc->rpages[i]); 1533 continue; 1534 } 1535 1536 if (!PageDirty(cc->rpages[i])) 1537 goto continue_unlock; 1538 1539 if (folio_test_writeback(page_folio(cc->rpages[i]))) { 1540 if (wbc->sync_mode == WB_SYNC_NONE) 1541 goto continue_unlock; 1542 f2fs_wait_on_page_writeback(cc->rpages[i], DATA, true, true); 1543 } 1544 1545 if (!clear_page_dirty_for_io(cc->rpages[i])) 1546 goto continue_unlock; 1547 1548 ret = f2fs_write_single_data_page(page_folio(cc->rpages[i]), 1549 &submitted, 1550 NULL, NULL, wbc, io_type, 1551 compr_blocks, false); 1552 if (ret) { 1553 if (ret == AOP_WRITEPAGE_ACTIVATE) { 1554 unlock_page(cc->rpages[i]); 1555 ret = 0; 1556 } else if (ret == -EAGAIN) { 1557 ret = 0; 1558 /* 1559 * for quota file, just redirty left pages to 1560 * avoid deadlock caused by cluster update race 1561 * from foreground operation. 1562 */ 1563 if (IS_NOQUOTA(cc->inode)) 1564 goto out; 1565 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 1566 goto retry_write; 1567 } 1568 goto out; 1569 } 1570 1571 *submitted_p += submitted; 1572 } 1573 1574 out: 1575 if (compr_blocks > 0) 1576 f2fs_unlock_op(sbi); 1577 1578 f2fs_balance_fs(sbi, true); 1579 return ret; 1580 } 1581 1582 int f2fs_write_multi_pages(struct compress_ctx *cc, 1583 int *submitted, 1584 struct writeback_control *wbc, 1585 enum iostat_type io_type) 1586 { 1587 int err; 1588 1589 *submitted = 0; 1590 if (cluster_may_compress(cc)) { 1591 err = f2fs_compress_pages(cc); 1592 if (err == -EAGAIN) { 1593 add_compr_block_stat(cc->inode, cc->cluster_size); 1594 goto write; 1595 } else if (err) { 1596 f2fs_put_rpages_wbc(cc, wbc, true, 1); 1597 goto destroy_out; 1598 } 1599 1600 err = f2fs_write_compressed_pages(cc, submitted, 1601 wbc, io_type); 1602 if (!err) 1603 return 0; 1604 f2fs_bug_on(F2FS_I_SB(cc->inode), err != -EAGAIN); 1605 } 1606 write: 1607 f2fs_bug_on(F2FS_I_SB(cc->inode), *submitted); 1608 1609 err = f2fs_write_raw_pages(cc, submitted, wbc, io_type); 1610 f2fs_put_rpages_wbc(cc, wbc, false, 0); 1611 destroy_out: 1612 f2fs_destroy_compress_ctx(cc, false); 1613 return err; 1614 } 1615 1616 static inline bool allow_memalloc_for_decomp(struct f2fs_sb_info *sbi, 1617 bool pre_alloc) 1618 { 1619 return pre_alloc ^ f2fs_low_mem_mode(sbi); 1620 } 1621 1622 static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic, 1623 bool pre_alloc) 1624 { 1625 const struct f2fs_compress_ops *cops = 1626 f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm]; 1627 int i; 1628 1629 if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc)) 1630 return 0; 1631 1632 dic->tpages = page_array_alloc(dic->inode, dic->cluster_size); 1633 if (!dic->tpages) 1634 return -ENOMEM; 1635 1636 for (i = 0; i < dic->cluster_size; i++) { 1637 if (dic->rpages[i]) { 1638 dic->tpages[i] = dic->rpages[i]; 1639 continue; 1640 } 1641 1642 dic->tpages[i] = f2fs_compress_alloc_page(); 1643 } 1644 1645 dic->rbuf = f2fs_vmap(dic->tpages, dic->cluster_size); 1646 if (!dic->rbuf) 1647 return -ENOMEM; 1648 1649 dic->cbuf = f2fs_vmap(dic->cpages, dic->nr_cpages); 1650 if (!dic->cbuf) 1651 return -ENOMEM; 1652 1653 if (cops->init_decompress_ctx) 1654 return cops->init_decompress_ctx(dic); 1655 1656 return 0; 1657 } 1658 1659 static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic, 1660 bool bypass_destroy_callback, bool pre_alloc) 1661 { 1662 const struct f2fs_compress_ops *cops = 1663 f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm]; 1664 1665 if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc)) 1666 return; 1667 1668 if (!bypass_destroy_callback && cops->destroy_decompress_ctx) 1669 cops->destroy_decompress_ctx(dic); 1670 1671 if (dic->cbuf) 1672 vm_unmap_ram(dic->cbuf, dic->nr_cpages); 1673 1674 if (dic->rbuf) 1675 vm_unmap_ram(dic->rbuf, dic->cluster_size); 1676 } 1677 1678 static void f2fs_free_dic(struct decompress_io_ctx *dic, 1679 bool bypass_destroy_callback); 1680 1681 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc) 1682 { 1683 struct decompress_io_ctx *dic; 1684 pgoff_t start_idx = start_idx_of_cluster(cc); 1685 struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode); 1686 int i, ret; 1687 1688 dic = f2fs_kmem_cache_alloc(dic_entry_slab, GFP_F2FS_ZERO, false, sbi); 1689 if (!dic) 1690 return ERR_PTR(-ENOMEM); 1691 1692 dic->rpages = page_array_alloc(cc->inode, cc->cluster_size); 1693 if (!dic->rpages) { 1694 kmem_cache_free(dic_entry_slab, dic); 1695 return ERR_PTR(-ENOMEM); 1696 } 1697 1698 dic->magic = F2FS_COMPRESSED_PAGE_MAGIC; 1699 dic->inode = cc->inode; 1700 atomic_set(&dic->remaining_pages, cc->nr_cpages); 1701 dic->cluster_idx = cc->cluster_idx; 1702 dic->cluster_size = cc->cluster_size; 1703 dic->log_cluster_size = cc->log_cluster_size; 1704 dic->nr_cpages = cc->nr_cpages; 1705 refcount_set(&dic->refcnt, 1); 1706 dic->failed = false; 1707 dic->need_verity = f2fs_need_verity(cc->inode, start_idx); 1708 1709 for (i = 0; i < dic->cluster_size; i++) 1710 dic->rpages[i] = cc->rpages[i]; 1711 dic->nr_rpages = cc->cluster_size; 1712 1713 dic->cpages = page_array_alloc(dic->inode, dic->nr_cpages); 1714 if (!dic->cpages) { 1715 ret = -ENOMEM; 1716 goto out_free; 1717 } 1718 1719 for (i = 0; i < dic->nr_cpages; i++) { 1720 struct page *page; 1721 1722 page = f2fs_compress_alloc_page(); 1723 f2fs_set_compressed_page(page, cc->inode, 1724 start_idx + i + 1, dic); 1725 dic->cpages[i] = page; 1726 } 1727 1728 ret = f2fs_prepare_decomp_mem(dic, true); 1729 if (ret) 1730 goto out_free; 1731 1732 return dic; 1733 1734 out_free: 1735 f2fs_free_dic(dic, true); 1736 return ERR_PTR(ret); 1737 } 1738 1739 static void f2fs_free_dic(struct decompress_io_ctx *dic, 1740 bool bypass_destroy_callback) 1741 { 1742 int i; 1743 1744 f2fs_release_decomp_mem(dic, bypass_destroy_callback, true); 1745 1746 if (dic->tpages) { 1747 for (i = 0; i < dic->cluster_size; i++) { 1748 if (dic->rpages[i]) 1749 continue; 1750 if (!dic->tpages[i]) 1751 continue; 1752 f2fs_compress_free_page(dic->tpages[i]); 1753 } 1754 page_array_free(dic->inode, dic->tpages, dic->cluster_size); 1755 } 1756 1757 if (dic->cpages) { 1758 for (i = 0; i < dic->nr_cpages; i++) { 1759 if (!dic->cpages[i]) 1760 continue; 1761 f2fs_compress_free_page(dic->cpages[i]); 1762 } 1763 page_array_free(dic->inode, dic->cpages, dic->nr_cpages); 1764 } 1765 1766 page_array_free(dic->inode, dic->rpages, dic->nr_rpages); 1767 kmem_cache_free(dic_entry_slab, dic); 1768 } 1769 1770 static void f2fs_late_free_dic(struct work_struct *work) 1771 { 1772 struct decompress_io_ctx *dic = 1773 container_of(work, struct decompress_io_ctx, free_work); 1774 1775 f2fs_free_dic(dic, false); 1776 } 1777 1778 static void f2fs_put_dic(struct decompress_io_ctx *dic, bool in_task) 1779 { 1780 if (refcount_dec_and_test(&dic->refcnt)) { 1781 if (in_task) { 1782 f2fs_free_dic(dic, false); 1783 } else { 1784 INIT_WORK(&dic->free_work, f2fs_late_free_dic); 1785 queue_work(F2FS_I_SB(dic->inode)->post_read_wq, 1786 &dic->free_work); 1787 } 1788 } 1789 } 1790 1791 static void f2fs_verify_cluster(struct work_struct *work) 1792 { 1793 struct decompress_io_ctx *dic = 1794 container_of(work, struct decompress_io_ctx, verity_work); 1795 int i; 1796 1797 /* Verify, update, and unlock the decompressed pages. */ 1798 for (i = 0; i < dic->cluster_size; i++) { 1799 struct page *rpage = dic->rpages[i]; 1800 1801 if (!rpage) 1802 continue; 1803 1804 if (fsverity_verify_page(rpage)) 1805 SetPageUptodate(rpage); 1806 else 1807 ClearPageUptodate(rpage); 1808 unlock_page(rpage); 1809 } 1810 1811 f2fs_put_dic(dic, true); 1812 } 1813 1814 /* 1815 * This is called when a compressed cluster has been decompressed 1816 * (or failed to be read and/or decompressed). 1817 */ 1818 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed, 1819 bool in_task) 1820 { 1821 int i; 1822 1823 if (!failed && dic->need_verity) { 1824 /* 1825 * Note that to avoid deadlocks, the verity work can't be done 1826 * on the decompression workqueue. This is because verifying 1827 * the data pages can involve reading metadata pages from the 1828 * file, and these metadata pages may be compressed. 1829 */ 1830 INIT_WORK(&dic->verity_work, f2fs_verify_cluster); 1831 fsverity_enqueue_verify_work(&dic->verity_work); 1832 return; 1833 } 1834 1835 /* Update and unlock the cluster's pagecache pages. */ 1836 for (i = 0; i < dic->cluster_size; i++) { 1837 struct page *rpage = dic->rpages[i]; 1838 1839 if (!rpage) 1840 continue; 1841 1842 if (failed) 1843 ClearPageUptodate(rpage); 1844 else 1845 SetPageUptodate(rpage); 1846 unlock_page(rpage); 1847 } 1848 1849 /* 1850 * Release the reference to the decompress_io_ctx that was being held 1851 * for I/O completion. 1852 */ 1853 f2fs_put_dic(dic, in_task); 1854 } 1855 1856 /* 1857 * Put a reference to a compressed page's decompress_io_ctx. 1858 * 1859 * This is called when the page is no longer needed and can be freed. 1860 */ 1861 void f2fs_put_page_dic(struct page *page, bool in_task) 1862 { 1863 struct decompress_io_ctx *dic = 1864 (struct decompress_io_ctx *)page_private(page); 1865 1866 f2fs_put_dic(dic, in_task); 1867 } 1868 1869 /* 1870 * check whether cluster blocks are contiguous, and add extent cache entry 1871 * only if cluster blocks are logically and physically contiguous. 1872 */ 1873 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn, 1874 unsigned int ofs_in_node) 1875 { 1876 bool compressed = data_blkaddr(dn->inode, dn->node_page, 1877 ofs_in_node) == COMPRESS_ADDR; 1878 int i = compressed ? 1 : 0; 1879 block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_page, 1880 ofs_in_node + i); 1881 1882 for (i += 1; i < F2FS_I(dn->inode)->i_cluster_size; i++) { 1883 block_t blkaddr = data_blkaddr(dn->inode, dn->node_page, 1884 ofs_in_node + i); 1885 1886 if (!__is_valid_data_blkaddr(blkaddr)) 1887 break; 1888 if (first_blkaddr + i - (compressed ? 1 : 0) != blkaddr) 1889 return 0; 1890 } 1891 1892 return compressed ? i - 1 : i; 1893 } 1894 1895 const struct address_space_operations f2fs_compress_aops = { 1896 .release_folio = f2fs_release_folio, 1897 .invalidate_folio = f2fs_invalidate_folio, 1898 .migrate_folio = filemap_migrate_folio, 1899 }; 1900 1901 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi) 1902 { 1903 return sbi->compress_inode->i_mapping; 1904 } 1905 1906 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr) 1907 { 1908 if (!sbi->compress_inode) 1909 return; 1910 invalidate_mapping_pages(COMPRESS_MAPPING(sbi), blkaddr, blkaddr); 1911 } 1912 1913 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page, 1914 nid_t ino, block_t blkaddr) 1915 { 1916 struct page *cpage; 1917 int ret; 1918 1919 if (!test_opt(sbi, COMPRESS_CACHE)) 1920 return; 1921 1922 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ)) 1923 return; 1924 1925 if (!f2fs_available_free_memory(sbi, COMPRESS_PAGE)) 1926 return; 1927 1928 cpage = find_get_page(COMPRESS_MAPPING(sbi), blkaddr); 1929 if (cpage) { 1930 f2fs_put_page(cpage, 0); 1931 return; 1932 } 1933 1934 cpage = alloc_page(__GFP_NOWARN | __GFP_IO); 1935 if (!cpage) 1936 return; 1937 1938 ret = add_to_page_cache_lru(cpage, COMPRESS_MAPPING(sbi), 1939 blkaddr, GFP_NOFS); 1940 if (ret) { 1941 f2fs_put_page(cpage, 0); 1942 return; 1943 } 1944 1945 set_page_private_data(cpage, ino); 1946 1947 memcpy(page_address(cpage), page_address(page), PAGE_SIZE); 1948 SetPageUptodate(cpage); 1949 f2fs_put_page(cpage, 1); 1950 } 1951 1952 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page, 1953 block_t blkaddr) 1954 { 1955 struct page *cpage; 1956 bool hitted = false; 1957 1958 if (!test_opt(sbi, COMPRESS_CACHE)) 1959 return false; 1960 1961 cpage = f2fs_pagecache_get_page(COMPRESS_MAPPING(sbi), 1962 blkaddr, FGP_LOCK | FGP_NOWAIT, GFP_NOFS); 1963 if (cpage) { 1964 if (PageUptodate(cpage)) { 1965 atomic_inc(&sbi->compress_page_hit); 1966 memcpy(page_address(page), 1967 page_address(cpage), PAGE_SIZE); 1968 hitted = true; 1969 } 1970 f2fs_put_page(cpage, 1); 1971 } 1972 1973 return hitted; 1974 } 1975 1976 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino) 1977 { 1978 struct address_space *mapping = COMPRESS_MAPPING(sbi); 1979 struct folio_batch fbatch; 1980 pgoff_t index = 0; 1981 pgoff_t end = MAX_BLKADDR(sbi); 1982 1983 if (!mapping->nrpages) 1984 return; 1985 1986 folio_batch_init(&fbatch); 1987 1988 do { 1989 unsigned int nr, i; 1990 1991 nr = filemap_get_folios(mapping, &index, end - 1, &fbatch); 1992 if (!nr) 1993 break; 1994 1995 for (i = 0; i < nr; i++) { 1996 struct folio *folio = fbatch.folios[i]; 1997 1998 folio_lock(folio); 1999 if (folio->mapping != mapping) { 2000 folio_unlock(folio); 2001 continue; 2002 } 2003 2004 if (ino != get_page_private_data(&folio->page)) { 2005 folio_unlock(folio); 2006 continue; 2007 } 2008 2009 generic_error_remove_folio(mapping, folio); 2010 folio_unlock(folio); 2011 } 2012 folio_batch_release(&fbatch); 2013 cond_resched(); 2014 } while (index < end); 2015 } 2016 2017 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) 2018 { 2019 struct inode *inode; 2020 2021 if (!test_opt(sbi, COMPRESS_CACHE)) 2022 return 0; 2023 2024 inode = f2fs_iget(sbi->sb, F2FS_COMPRESS_INO(sbi)); 2025 if (IS_ERR(inode)) 2026 return PTR_ERR(inode); 2027 sbi->compress_inode = inode; 2028 2029 sbi->compress_percent = COMPRESS_PERCENT; 2030 sbi->compress_watermark = COMPRESS_WATERMARK; 2031 2032 atomic_set(&sbi->compress_page_hit, 0); 2033 2034 return 0; 2035 } 2036 2037 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) 2038 { 2039 if (!sbi->compress_inode) 2040 return; 2041 iput(sbi->compress_inode); 2042 sbi->compress_inode = NULL; 2043 } 2044 2045 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) 2046 { 2047 dev_t dev = sbi->sb->s_bdev->bd_dev; 2048 char slab_name[35]; 2049 2050 if (!f2fs_sb_has_compression(sbi)) 2051 return 0; 2052 2053 sprintf(slab_name, "f2fs_page_array_entry-%u:%u", MAJOR(dev), MINOR(dev)); 2054 2055 sbi->page_array_slab_size = sizeof(struct page *) << 2056 F2FS_OPTION(sbi).compress_log_size; 2057 2058 sbi->page_array_slab = f2fs_kmem_cache_create(slab_name, 2059 sbi->page_array_slab_size); 2060 return sbi->page_array_slab ? 0 : -ENOMEM; 2061 } 2062 2063 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) 2064 { 2065 kmem_cache_destroy(sbi->page_array_slab); 2066 } 2067 2068 int __init f2fs_init_compress_cache(void) 2069 { 2070 cic_entry_slab = f2fs_kmem_cache_create("f2fs_cic_entry", 2071 sizeof(struct compress_io_ctx)); 2072 if (!cic_entry_slab) 2073 return -ENOMEM; 2074 dic_entry_slab = f2fs_kmem_cache_create("f2fs_dic_entry", 2075 sizeof(struct decompress_io_ctx)); 2076 if (!dic_entry_slab) 2077 goto free_cic; 2078 return 0; 2079 free_cic: 2080 kmem_cache_destroy(cic_entry_slab); 2081 return -ENOMEM; 2082 } 2083 2084 void f2fs_destroy_compress_cache(void) 2085 { 2086 kmem_cache_destroy(dic_entry_slab); 2087 kmem_cache_destroy(cic_entry_slab); 2088 } 2089