xref: /linux/fs/f2fs/compress.c (revision 4359a011e259a4608afc7fb3635370c9d4ba5943)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * f2fs compress support
4  *
5  * Copyright (c) 2019 Chao Yu <chao@kernel.org>
6  */
7 
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/moduleparam.h>
11 #include <linux/writeback.h>
12 #include <linux/backing-dev.h>
13 #include <linux/lzo.h>
14 #include <linux/lz4.h>
15 #include <linux/zstd.h>
16 #include <linux/pagevec.h>
17 
18 #include "f2fs.h"
19 #include "node.h"
20 #include "segment.h"
21 #include <trace/events/f2fs.h>
22 
23 static struct kmem_cache *cic_entry_slab;
24 static struct kmem_cache *dic_entry_slab;
25 
26 static void *page_array_alloc(struct inode *inode, int nr)
27 {
28 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
29 	unsigned int size = sizeof(struct page *) * nr;
30 
31 	if (likely(size <= sbi->page_array_slab_size))
32 		return f2fs_kmem_cache_alloc(sbi->page_array_slab,
33 					GFP_F2FS_ZERO, false, F2FS_I_SB(inode));
34 	return f2fs_kzalloc(sbi, size, GFP_NOFS);
35 }
36 
37 static void page_array_free(struct inode *inode, void *pages, int nr)
38 {
39 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
40 	unsigned int size = sizeof(struct page *) * nr;
41 
42 	if (!pages)
43 		return;
44 
45 	if (likely(size <= sbi->page_array_slab_size))
46 		kmem_cache_free(sbi->page_array_slab, pages);
47 	else
48 		kfree(pages);
49 }
50 
51 struct f2fs_compress_ops {
52 	int (*init_compress_ctx)(struct compress_ctx *cc);
53 	void (*destroy_compress_ctx)(struct compress_ctx *cc);
54 	int (*compress_pages)(struct compress_ctx *cc);
55 	int (*init_decompress_ctx)(struct decompress_io_ctx *dic);
56 	void (*destroy_decompress_ctx)(struct decompress_io_ctx *dic);
57 	int (*decompress_pages)(struct decompress_io_ctx *dic);
58 };
59 
60 static unsigned int offset_in_cluster(struct compress_ctx *cc, pgoff_t index)
61 {
62 	return index & (cc->cluster_size - 1);
63 }
64 
65 static pgoff_t cluster_idx(struct compress_ctx *cc, pgoff_t index)
66 {
67 	return index >> cc->log_cluster_size;
68 }
69 
70 static pgoff_t start_idx_of_cluster(struct compress_ctx *cc)
71 {
72 	return cc->cluster_idx << cc->log_cluster_size;
73 }
74 
75 bool f2fs_is_compressed_page(struct page *page)
76 {
77 	if (!PagePrivate(page))
78 		return false;
79 	if (!page_private(page))
80 		return false;
81 	if (page_private_nonpointer(page))
82 		return false;
83 
84 	f2fs_bug_on(F2FS_M_SB(page->mapping),
85 		*((u32 *)page_private(page)) != F2FS_COMPRESSED_PAGE_MAGIC);
86 	return true;
87 }
88 
89 static void f2fs_set_compressed_page(struct page *page,
90 		struct inode *inode, pgoff_t index, void *data)
91 {
92 	attach_page_private(page, (void *)data);
93 
94 	/* i_crypto_info and iv index */
95 	page->index = index;
96 	page->mapping = inode->i_mapping;
97 }
98 
99 static void f2fs_drop_rpages(struct compress_ctx *cc, int len, bool unlock)
100 {
101 	int i;
102 
103 	for (i = 0; i < len; i++) {
104 		if (!cc->rpages[i])
105 			continue;
106 		if (unlock)
107 			unlock_page(cc->rpages[i]);
108 		else
109 			put_page(cc->rpages[i]);
110 	}
111 }
112 
113 static void f2fs_put_rpages(struct compress_ctx *cc)
114 {
115 	f2fs_drop_rpages(cc, cc->cluster_size, false);
116 }
117 
118 static void f2fs_unlock_rpages(struct compress_ctx *cc, int len)
119 {
120 	f2fs_drop_rpages(cc, len, true);
121 }
122 
123 static void f2fs_put_rpages_wbc(struct compress_ctx *cc,
124 		struct writeback_control *wbc, bool redirty, int unlock)
125 {
126 	unsigned int i;
127 
128 	for (i = 0; i < cc->cluster_size; i++) {
129 		if (!cc->rpages[i])
130 			continue;
131 		if (redirty)
132 			redirty_page_for_writepage(wbc, cc->rpages[i]);
133 		f2fs_put_page(cc->rpages[i], unlock);
134 	}
135 }
136 
137 struct page *f2fs_compress_control_page(struct page *page)
138 {
139 	return ((struct compress_io_ctx *)page_private(page))->rpages[0];
140 }
141 
142 int f2fs_init_compress_ctx(struct compress_ctx *cc)
143 {
144 	if (cc->rpages)
145 		return 0;
146 
147 	cc->rpages = page_array_alloc(cc->inode, cc->cluster_size);
148 	return cc->rpages ? 0 : -ENOMEM;
149 }
150 
151 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse)
152 {
153 	page_array_free(cc->inode, cc->rpages, cc->cluster_size);
154 	cc->rpages = NULL;
155 	cc->nr_rpages = 0;
156 	cc->nr_cpages = 0;
157 	cc->valid_nr_cpages = 0;
158 	if (!reuse)
159 		cc->cluster_idx = NULL_CLUSTER;
160 }
161 
162 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page)
163 {
164 	unsigned int cluster_ofs;
165 
166 	if (!f2fs_cluster_can_merge_page(cc, page->index))
167 		f2fs_bug_on(F2FS_I_SB(cc->inode), 1);
168 
169 	cluster_ofs = offset_in_cluster(cc, page->index);
170 	cc->rpages[cluster_ofs] = page;
171 	cc->nr_rpages++;
172 	cc->cluster_idx = cluster_idx(cc, page->index);
173 }
174 
175 #ifdef CONFIG_F2FS_FS_LZO
176 static int lzo_init_compress_ctx(struct compress_ctx *cc)
177 {
178 	cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
179 				LZO1X_MEM_COMPRESS, GFP_NOFS);
180 	if (!cc->private)
181 		return -ENOMEM;
182 
183 	cc->clen = lzo1x_worst_compress(PAGE_SIZE << cc->log_cluster_size);
184 	return 0;
185 }
186 
187 static void lzo_destroy_compress_ctx(struct compress_ctx *cc)
188 {
189 	kvfree(cc->private);
190 	cc->private = NULL;
191 }
192 
193 static int lzo_compress_pages(struct compress_ctx *cc)
194 {
195 	int ret;
196 
197 	ret = lzo1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
198 					&cc->clen, cc->private);
199 	if (ret != LZO_E_OK) {
200 		printk_ratelimited("%sF2FS-fs (%s): lzo compress failed, ret:%d\n",
201 				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret);
202 		return -EIO;
203 	}
204 	return 0;
205 }
206 
207 static int lzo_decompress_pages(struct decompress_io_ctx *dic)
208 {
209 	int ret;
210 
211 	ret = lzo1x_decompress_safe(dic->cbuf->cdata, dic->clen,
212 						dic->rbuf, &dic->rlen);
213 	if (ret != LZO_E_OK) {
214 		printk_ratelimited("%sF2FS-fs (%s): lzo decompress failed, ret:%d\n",
215 				KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret);
216 		return -EIO;
217 	}
218 
219 	if (dic->rlen != PAGE_SIZE << dic->log_cluster_size) {
220 		printk_ratelimited("%sF2FS-fs (%s): lzo invalid rlen:%zu, "
221 					"expected:%lu\n", KERN_ERR,
222 					F2FS_I_SB(dic->inode)->sb->s_id,
223 					dic->rlen,
224 					PAGE_SIZE << dic->log_cluster_size);
225 		return -EIO;
226 	}
227 	return 0;
228 }
229 
230 static const struct f2fs_compress_ops f2fs_lzo_ops = {
231 	.init_compress_ctx	= lzo_init_compress_ctx,
232 	.destroy_compress_ctx	= lzo_destroy_compress_ctx,
233 	.compress_pages		= lzo_compress_pages,
234 	.decompress_pages	= lzo_decompress_pages,
235 };
236 #endif
237 
238 #ifdef CONFIG_F2FS_FS_LZ4
239 static int lz4_init_compress_ctx(struct compress_ctx *cc)
240 {
241 	unsigned int size = LZ4_MEM_COMPRESS;
242 
243 #ifdef CONFIG_F2FS_FS_LZ4HC
244 	if (F2FS_I(cc->inode)->i_compress_flag >> COMPRESS_LEVEL_OFFSET)
245 		size = LZ4HC_MEM_COMPRESS;
246 #endif
247 
248 	cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), size, GFP_NOFS);
249 	if (!cc->private)
250 		return -ENOMEM;
251 
252 	/*
253 	 * we do not change cc->clen to LZ4_compressBound(inputsize) to
254 	 * adapt worst compress case, because lz4 compressor can handle
255 	 * output budget properly.
256 	 */
257 	cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
258 	return 0;
259 }
260 
261 static void lz4_destroy_compress_ctx(struct compress_ctx *cc)
262 {
263 	kvfree(cc->private);
264 	cc->private = NULL;
265 }
266 
267 #ifdef CONFIG_F2FS_FS_LZ4HC
268 static int lz4hc_compress_pages(struct compress_ctx *cc)
269 {
270 	unsigned char level = F2FS_I(cc->inode)->i_compress_flag >>
271 						COMPRESS_LEVEL_OFFSET;
272 	int len;
273 
274 	if (level)
275 		len = LZ4_compress_HC(cc->rbuf, cc->cbuf->cdata, cc->rlen,
276 					cc->clen, level, cc->private);
277 	else
278 		len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen,
279 						cc->clen, cc->private);
280 	if (!len)
281 		return -EAGAIN;
282 
283 	cc->clen = len;
284 	return 0;
285 }
286 #endif
287 
288 static int lz4_compress_pages(struct compress_ctx *cc)
289 {
290 	int len;
291 
292 #ifdef CONFIG_F2FS_FS_LZ4HC
293 	return lz4hc_compress_pages(cc);
294 #endif
295 	len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen,
296 						cc->clen, cc->private);
297 	if (!len)
298 		return -EAGAIN;
299 
300 	cc->clen = len;
301 	return 0;
302 }
303 
304 static int lz4_decompress_pages(struct decompress_io_ctx *dic)
305 {
306 	int ret;
307 
308 	ret = LZ4_decompress_safe(dic->cbuf->cdata, dic->rbuf,
309 						dic->clen, dic->rlen);
310 	if (ret < 0) {
311 		printk_ratelimited("%sF2FS-fs (%s): lz4 decompress failed, ret:%d\n",
312 				KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret);
313 		return -EIO;
314 	}
315 
316 	if (ret != PAGE_SIZE << dic->log_cluster_size) {
317 		printk_ratelimited("%sF2FS-fs (%s): lz4 invalid ret:%d, "
318 					"expected:%lu\n", KERN_ERR,
319 					F2FS_I_SB(dic->inode)->sb->s_id, ret,
320 					PAGE_SIZE << dic->log_cluster_size);
321 		return -EIO;
322 	}
323 	return 0;
324 }
325 
326 static const struct f2fs_compress_ops f2fs_lz4_ops = {
327 	.init_compress_ctx	= lz4_init_compress_ctx,
328 	.destroy_compress_ctx	= lz4_destroy_compress_ctx,
329 	.compress_pages		= lz4_compress_pages,
330 	.decompress_pages	= lz4_decompress_pages,
331 };
332 #endif
333 
334 #ifdef CONFIG_F2FS_FS_ZSTD
335 #define F2FS_ZSTD_DEFAULT_CLEVEL	1
336 
337 static int zstd_init_compress_ctx(struct compress_ctx *cc)
338 {
339 	zstd_parameters params;
340 	zstd_cstream *stream;
341 	void *workspace;
342 	unsigned int workspace_size;
343 	unsigned char level = F2FS_I(cc->inode)->i_compress_flag >>
344 						COMPRESS_LEVEL_OFFSET;
345 
346 	if (!level)
347 		level = F2FS_ZSTD_DEFAULT_CLEVEL;
348 
349 	params = zstd_get_params(F2FS_ZSTD_DEFAULT_CLEVEL, cc->rlen);
350 	workspace_size = zstd_cstream_workspace_bound(&params.cParams);
351 
352 	workspace = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
353 					workspace_size, GFP_NOFS);
354 	if (!workspace)
355 		return -ENOMEM;
356 
357 	stream = zstd_init_cstream(&params, 0, workspace, workspace_size);
358 	if (!stream) {
359 		printk_ratelimited("%sF2FS-fs (%s): %s zstd_init_cstream failed\n",
360 				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
361 				__func__);
362 		kvfree(workspace);
363 		return -EIO;
364 	}
365 
366 	cc->private = workspace;
367 	cc->private2 = stream;
368 
369 	cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
370 	return 0;
371 }
372 
373 static void zstd_destroy_compress_ctx(struct compress_ctx *cc)
374 {
375 	kvfree(cc->private);
376 	cc->private = NULL;
377 	cc->private2 = NULL;
378 }
379 
380 static int zstd_compress_pages(struct compress_ctx *cc)
381 {
382 	zstd_cstream *stream = cc->private2;
383 	zstd_in_buffer inbuf;
384 	zstd_out_buffer outbuf;
385 	int src_size = cc->rlen;
386 	int dst_size = src_size - PAGE_SIZE - COMPRESS_HEADER_SIZE;
387 	int ret;
388 
389 	inbuf.pos = 0;
390 	inbuf.src = cc->rbuf;
391 	inbuf.size = src_size;
392 
393 	outbuf.pos = 0;
394 	outbuf.dst = cc->cbuf->cdata;
395 	outbuf.size = dst_size;
396 
397 	ret = zstd_compress_stream(stream, &outbuf, &inbuf);
398 	if (zstd_is_error(ret)) {
399 		printk_ratelimited("%sF2FS-fs (%s): %s zstd_compress_stream failed, ret: %d\n",
400 				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
401 				__func__, zstd_get_error_code(ret));
402 		return -EIO;
403 	}
404 
405 	ret = zstd_end_stream(stream, &outbuf);
406 	if (zstd_is_error(ret)) {
407 		printk_ratelimited("%sF2FS-fs (%s): %s zstd_end_stream returned %d\n",
408 				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
409 				__func__, zstd_get_error_code(ret));
410 		return -EIO;
411 	}
412 
413 	/*
414 	 * there is compressed data remained in intermediate buffer due to
415 	 * no more space in cbuf.cdata
416 	 */
417 	if (ret)
418 		return -EAGAIN;
419 
420 	cc->clen = outbuf.pos;
421 	return 0;
422 }
423 
424 static int zstd_init_decompress_ctx(struct decompress_io_ctx *dic)
425 {
426 	zstd_dstream *stream;
427 	void *workspace;
428 	unsigned int workspace_size;
429 	unsigned int max_window_size =
430 			MAX_COMPRESS_WINDOW_SIZE(dic->log_cluster_size);
431 
432 	workspace_size = zstd_dstream_workspace_bound(max_window_size);
433 
434 	workspace = f2fs_kvmalloc(F2FS_I_SB(dic->inode),
435 					workspace_size, GFP_NOFS);
436 	if (!workspace)
437 		return -ENOMEM;
438 
439 	stream = zstd_init_dstream(max_window_size, workspace, workspace_size);
440 	if (!stream) {
441 		printk_ratelimited("%sF2FS-fs (%s): %s zstd_init_dstream failed\n",
442 				KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id,
443 				__func__);
444 		kvfree(workspace);
445 		return -EIO;
446 	}
447 
448 	dic->private = workspace;
449 	dic->private2 = stream;
450 
451 	return 0;
452 }
453 
454 static void zstd_destroy_decompress_ctx(struct decompress_io_ctx *dic)
455 {
456 	kvfree(dic->private);
457 	dic->private = NULL;
458 	dic->private2 = NULL;
459 }
460 
461 static int zstd_decompress_pages(struct decompress_io_ctx *dic)
462 {
463 	zstd_dstream *stream = dic->private2;
464 	zstd_in_buffer inbuf;
465 	zstd_out_buffer outbuf;
466 	int ret;
467 
468 	inbuf.pos = 0;
469 	inbuf.src = dic->cbuf->cdata;
470 	inbuf.size = dic->clen;
471 
472 	outbuf.pos = 0;
473 	outbuf.dst = dic->rbuf;
474 	outbuf.size = dic->rlen;
475 
476 	ret = zstd_decompress_stream(stream, &outbuf, &inbuf);
477 	if (zstd_is_error(ret)) {
478 		printk_ratelimited("%sF2FS-fs (%s): %s zstd_decompress_stream failed, ret: %d\n",
479 				KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id,
480 				__func__, zstd_get_error_code(ret));
481 		return -EIO;
482 	}
483 
484 	if (dic->rlen != outbuf.pos) {
485 		printk_ratelimited("%sF2FS-fs (%s): %s ZSTD invalid rlen:%zu, "
486 				"expected:%lu\n", KERN_ERR,
487 				F2FS_I_SB(dic->inode)->sb->s_id,
488 				__func__, dic->rlen,
489 				PAGE_SIZE << dic->log_cluster_size);
490 		return -EIO;
491 	}
492 
493 	return 0;
494 }
495 
496 static const struct f2fs_compress_ops f2fs_zstd_ops = {
497 	.init_compress_ctx	= zstd_init_compress_ctx,
498 	.destroy_compress_ctx	= zstd_destroy_compress_ctx,
499 	.compress_pages		= zstd_compress_pages,
500 	.init_decompress_ctx	= zstd_init_decompress_ctx,
501 	.destroy_decompress_ctx	= zstd_destroy_decompress_ctx,
502 	.decompress_pages	= zstd_decompress_pages,
503 };
504 #endif
505 
506 #ifdef CONFIG_F2FS_FS_LZO
507 #ifdef CONFIG_F2FS_FS_LZORLE
508 static int lzorle_compress_pages(struct compress_ctx *cc)
509 {
510 	int ret;
511 
512 	ret = lzorle1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
513 					&cc->clen, cc->private);
514 	if (ret != LZO_E_OK) {
515 		printk_ratelimited("%sF2FS-fs (%s): lzo-rle compress failed, ret:%d\n",
516 				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret);
517 		return -EIO;
518 	}
519 	return 0;
520 }
521 
522 static const struct f2fs_compress_ops f2fs_lzorle_ops = {
523 	.init_compress_ctx	= lzo_init_compress_ctx,
524 	.destroy_compress_ctx	= lzo_destroy_compress_ctx,
525 	.compress_pages		= lzorle_compress_pages,
526 	.decompress_pages	= lzo_decompress_pages,
527 };
528 #endif
529 #endif
530 
531 static const struct f2fs_compress_ops *f2fs_cops[COMPRESS_MAX] = {
532 #ifdef CONFIG_F2FS_FS_LZO
533 	&f2fs_lzo_ops,
534 #else
535 	NULL,
536 #endif
537 #ifdef CONFIG_F2FS_FS_LZ4
538 	&f2fs_lz4_ops,
539 #else
540 	NULL,
541 #endif
542 #ifdef CONFIG_F2FS_FS_ZSTD
543 	&f2fs_zstd_ops,
544 #else
545 	NULL,
546 #endif
547 #if defined(CONFIG_F2FS_FS_LZO) && defined(CONFIG_F2FS_FS_LZORLE)
548 	&f2fs_lzorle_ops,
549 #else
550 	NULL,
551 #endif
552 };
553 
554 bool f2fs_is_compress_backend_ready(struct inode *inode)
555 {
556 	if (!f2fs_compressed_file(inode))
557 		return true;
558 	return f2fs_cops[F2FS_I(inode)->i_compress_algorithm];
559 }
560 
561 static mempool_t *compress_page_pool;
562 static int num_compress_pages = 512;
563 module_param(num_compress_pages, uint, 0444);
564 MODULE_PARM_DESC(num_compress_pages,
565 		"Number of intermediate compress pages to preallocate");
566 
567 int f2fs_init_compress_mempool(void)
568 {
569 	compress_page_pool = mempool_create_page_pool(num_compress_pages, 0);
570 	if (!compress_page_pool)
571 		return -ENOMEM;
572 
573 	return 0;
574 }
575 
576 void f2fs_destroy_compress_mempool(void)
577 {
578 	mempool_destroy(compress_page_pool);
579 }
580 
581 static struct page *f2fs_compress_alloc_page(void)
582 {
583 	struct page *page;
584 
585 	page = mempool_alloc(compress_page_pool, GFP_NOFS);
586 	lock_page(page);
587 
588 	return page;
589 }
590 
591 static void f2fs_compress_free_page(struct page *page)
592 {
593 	if (!page)
594 		return;
595 	detach_page_private(page);
596 	page->mapping = NULL;
597 	unlock_page(page);
598 	mempool_free(page, compress_page_pool);
599 }
600 
601 #define MAX_VMAP_RETRIES	3
602 
603 static void *f2fs_vmap(struct page **pages, unsigned int count)
604 {
605 	int i;
606 	void *buf = NULL;
607 
608 	for (i = 0; i < MAX_VMAP_RETRIES; i++) {
609 		buf = vm_map_ram(pages, count, -1);
610 		if (buf)
611 			break;
612 		vm_unmap_aliases();
613 	}
614 	return buf;
615 }
616 
617 static int f2fs_compress_pages(struct compress_ctx *cc)
618 {
619 	struct f2fs_inode_info *fi = F2FS_I(cc->inode);
620 	const struct f2fs_compress_ops *cops =
621 				f2fs_cops[fi->i_compress_algorithm];
622 	unsigned int max_len, new_nr_cpages;
623 	u32 chksum = 0;
624 	int i, ret;
625 
626 	trace_f2fs_compress_pages_start(cc->inode, cc->cluster_idx,
627 				cc->cluster_size, fi->i_compress_algorithm);
628 
629 	if (cops->init_compress_ctx) {
630 		ret = cops->init_compress_ctx(cc);
631 		if (ret)
632 			goto out;
633 	}
634 
635 	max_len = COMPRESS_HEADER_SIZE + cc->clen;
636 	cc->nr_cpages = DIV_ROUND_UP(max_len, PAGE_SIZE);
637 	cc->valid_nr_cpages = cc->nr_cpages;
638 
639 	cc->cpages = page_array_alloc(cc->inode, cc->nr_cpages);
640 	if (!cc->cpages) {
641 		ret = -ENOMEM;
642 		goto destroy_compress_ctx;
643 	}
644 
645 	for (i = 0; i < cc->nr_cpages; i++) {
646 		cc->cpages[i] = f2fs_compress_alloc_page();
647 		if (!cc->cpages[i]) {
648 			ret = -ENOMEM;
649 			goto out_free_cpages;
650 		}
651 	}
652 
653 	cc->rbuf = f2fs_vmap(cc->rpages, cc->cluster_size);
654 	if (!cc->rbuf) {
655 		ret = -ENOMEM;
656 		goto out_free_cpages;
657 	}
658 
659 	cc->cbuf = f2fs_vmap(cc->cpages, cc->nr_cpages);
660 	if (!cc->cbuf) {
661 		ret = -ENOMEM;
662 		goto out_vunmap_rbuf;
663 	}
664 
665 	ret = cops->compress_pages(cc);
666 	if (ret)
667 		goto out_vunmap_cbuf;
668 
669 	max_len = PAGE_SIZE * (cc->cluster_size - 1) - COMPRESS_HEADER_SIZE;
670 
671 	if (cc->clen > max_len) {
672 		ret = -EAGAIN;
673 		goto out_vunmap_cbuf;
674 	}
675 
676 	cc->cbuf->clen = cpu_to_le32(cc->clen);
677 
678 	if (fi->i_compress_flag & 1 << COMPRESS_CHKSUM)
679 		chksum = f2fs_crc32(F2FS_I_SB(cc->inode),
680 					cc->cbuf->cdata, cc->clen);
681 	cc->cbuf->chksum = cpu_to_le32(chksum);
682 
683 	for (i = 0; i < COMPRESS_DATA_RESERVED_SIZE; i++)
684 		cc->cbuf->reserved[i] = cpu_to_le32(0);
685 
686 	new_nr_cpages = DIV_ROUND_UP(cc->clen + COMPRESS_HEADER_SIZE, PAGE_SIZE);
687 
688 	/* zero out any unused part of the last page */
689 	memset(&cc->cbuf->cdata[cc->clen], 0,
690 			(new_nr_cpages * PAGE_SIZE) -
691 			(cc->clen + COMPRESS_HEADER_SIZE));
692 
693 	vm_unmap_ram(cc->cbuf, cc->nr_cpages);
694 	vm_unmap_ram(cc->rbuf, cc->cluster_size);
695 
696 	for (i = 0; i < cc->nr_cpages; i++) {
697 		if (i < new_nr_cpages)
698 			continue;
699 		f2fs_compress_free_page(cc->cpages[i]);
700 		cc->cpages[i] = NULL;
701 	}
702 
703 	if (cops->destroy_compress_ctx)
704 		cops->destroy_compress_ctx(cc);
705 
706 	cc->valid_nr_cpages = new_nr_cpages;
707 
708 	trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
709 							cc->clen, ret);
710 	return 0;
711 
712 out_vunmap_cbuf:
713 	vm_unmap_ram(cc->cbuf, cc->nr_cpages);
714 out_vunmap_rbuf:
715 	vm_unmap_ram(cc->rbuf, cc->cluster_size);
716 out_free_cpages:
717 	for (i = 0; i < cc->nr_cpages; i++) {
718 		if (cc->cpages[i])
719 			f2fs_compress_free_page(cc->cpages[i]);
720 	}
721 	page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
722 	cc->cpages = NULL;
723 destroy_compress_ctx:
724 	if (cops->destroy_compress_ctx)
725 		cops->destroy_compress_ctx(cc);
726 out:
727 	trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
728 							cc->clen, ret);
729 	return ret;
730 }
731 
732 static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic,
733 		bool pre_alloc);
734 static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic,
735 		bool bypass_destroy_callback, bool pre_alloc);
736 
737 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task)
738 {
739 	struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
740 	struct f2fs_inode_info *fi = F2FS_I(dic->inode);
741 	const struct f2fs_compress_ops *cops =
742 			f2fs_cops[fi->i_compress_algorithm];
743 	bool bypass_callback = false;
744 	int ret;
745 
746 	trace_f2fs_decompress_pages_start(dic->inode, dic->cluster_idx,
747 				dic->cluster_size, fi->i_compress_algorithm);
748 
749 	if (dic->failed) {
750 		ret = -EIO;
751 		goto out_end_io;
752 	}
753 
754 	ret = f2fs_prepare_decomp_mem(dic, false);
755 	if (ret) {
756 		bypass_callback = true;
757 		goto out_release;
758 	}
759 
760 	dic->clen = le32_to_cpu(dic->cbuf->clen);
761 	dic->rlen = PAGE_SIZE << dic->log_cluster_size;
762 
763 	if (dic->clen > PAGE_SIZE * dic->nr_cpages - COMPRESS_HEADER_SIZE) {
764 		ret = -EFSCORRUPTED;
765 		goto out_release;
766 	}
767 
768 	ret = cops->decompress_pages(dic);
769 
770 	if (!ret && (fi->i_compress_flag & 1 << COMPRESS_CHKSUM)) {
771 		u32 provided = le32_to_cpu(dic->cbuf->chksum);
772 		u32 calculated = f2fs_crc32(sbi, dic->cbuf->cdata, dic->clen);
773 
774 		if (provided != calculated) {
775 			if (!is_inode_flag_set(dic->inode, FI_COMPRESS_CORRUPT)) {
776 				set_inode_flag(dic->inode, FI_COMPRESS_CORRUPT);
777 				printk_ratelimited(
778 					"%sF2FS-fs (%s): checksum invalid, nid = %lu, %x vs %x",
779 					KERN_INFO, sbi->sb->s_id, dic->inode->i_ino,
780 					provided, calculated);
781 			}
782 			set_sbi_flag(sbi, SBI_NEED_FSCK);
783 		}
784 	}
785 
786 out_release:
787 	f2fs_release_decomp_mem(dic, bypass_callback, false);
788 
789 out_end_io:
790 	trace_f2fs_decompress_pages_end(dic->inode, dic->cluster_idx,
791 							dic->clen, ret);
792 	f2fs_decompress_end_io(dic, ret, in_task);
793 }
794 
795 /*
796  * This is called when a page of a compressed cluster has been read from disk
797  * (or failed to be read from disk).  It checks whether this page was the last
798  * page being waited on in the cluster, and if so, it decompresses the cluster
799  * (or in the case of a failure, cleans up without actually decompressing).
800  */
801 void f2fs_end_read_compressed_page(struct page *page, bool failed,
802 		block_t blkaddr, bool in_task)
803 {
804 	struct decompress_io_ctx *dic =
805 			(struct decompress_io_ctx *)page_private(page);
806 	struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
807 
808 	dec_page_count(sbi, F2FS_RD_DATA);
809 
810 	if (failed)
811 		WRITE_ONCE(dic->failed, true);
812 	else if (blkaddr && in_task)
813 		f2fs_cache_compressed_page(sbi, page,
814 					dic->inode->i_ino, blkaddr);
815 
816 	if (atomic_dec_and_test(&dic->remaining_pages))
817 		f2fs_decompress_cluster(dic, in_task);
818 }
819 
820 static bool is_page_in_cluster(struct compress_ctx *cc, pgoff_t index)
821 {
822 	if (cc->cluster_idx == NULL_CLUSTER)
823 		return true;
824 	return cc->cluster_idx == cluster_idx(cc, index);
825 }
826 
827 bool f2fs_cluster_is_empty(struct compress_ctx *cc)
828 {
829 	return cc->nr_rpages == 0;
830 }
831 
832 static bool f2fs_cluster_is_full(struct compress_ctx *cc)
833 {
834 	return cc->cluster_size == cc->nr_rpages;
835 }
836 
837 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index)
838 {
839 	if (f2fs_cluster_is_empty(cc))
840 		return true;
841 	return is_page_in_cluster(cc, index);
842 }
843 
844 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
845 				int index, int nr_pages, bool uptodate)
846 {
847 	unsigned long pgidx = pages[index]->index;
848 	int i = uptodate ? 0 : 1;
849 
850 	/*
851 	 * when uptodate set to true, try to check all pages in cluster is
852 	 * uptodate or not.
853 	 */
854 	if (uptodate && (pgidx % cc->cluster_size))
855 		return false;
856 
857 	if (nr_pages - index < cc->cluster_size)
858 		return false;
859 
860 	for (; i < cc->cluster_size; i++) {
861 		if (pages[index + i]->index != pgidx + i)
862 			return false;
863 		if (uptodate && !PageUptodate(pages[index + i]))
864 			return false;
865 	}
866 
867 	return true;
868 }
869 
870 static bool cluster_has_invalid_data(struct compress_ctx *cc)
871 {
872 	loff_t i_size = i_size_read(cc->inode);
873 	unsigned nr_pages = DIV_ROUND_UP(i_size, PAGE_SIZE);
874 	int i;
875 
876 	for (i = 0; i < cc->cluster_size; i++) {
877 		struct page *page = cc->rpages[i];
878 
879 		f2fs_bug_on(F2FS_I_SB(cc->inode), !page);
880 
881 		/* beyond EOF */
882 		if (page->index >= nr_pages)
883 			return true;
884 	}
885 	return false;
886 }
887 
888 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn)
889 {
890 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
891 	unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
892 	bool compressed = dn->data_blkaddr == COMPRESS_ADDR;
893 	int cluster_end = 0;
894 	int i;
895 	char *reason = "";
896 
897 	if (!compressed)
898 		return false;
899 
900 	/* [..., COMPR_ADDR, ...] */
901 	if (dn->ofs_in_node % cluster_size) {
902 		reason = "[*|C|*|*]";
903 		goto out;
904 	}
905 
906 	for (i = 1; i < cluster_size; i++) {
907 		block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
908 							dn->ofs_in_node + i);
909 
910 		/* [COMPR_ADDR, ..., COMPR_ADDR] */
911 		if (blkaddr == COMPRESS_ADDR) {
912 			reason = "[C|*|C|*]";
913 			goto out;
914 		}
915 		if (compressed) {
916 			if (!__is_valid_data_blkaddr(blkaddr)) {
917 				if (!cluster_end)
918 					cluster_end = i;
919 				continue;
920 			}
921 			/* [COMPR_ADDR, NULL_ADDR or NEW_ADDR, valid_blkaddr] */
922 			if (cluster_end) {
923 				reason = "[C|N|N|V]";
924 				goto out;
925 			}
926 		}
927 	}
928 	return false;
929 out:
930 	f2fs_warn(sbi, "access invalid cluster, ino:%lu, nid:%u, ofs_in_node:%u, reason:%s",
931 			dn->inode->i_ino, dn->nid, dn->ofs_in_node, reason);
932 	set_sbi_flag(sbi, SBI_NEED_FSCK);
933 	return true;
934 }
935 
936 static int __f2fs_cluster_blocks(struct inode *inode,
937 				unsigned int cluster_idx, bool compr)
938 {
939 	struct dnode_of_data dn;
940 	unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
941 	unsigned int start_idx = cluster_idx <<
942 				F2FS_I(inode)->i_log_cluster_size;
943 	int ret;
944 
945 	set_new_dnode(&dn, inode, NULL, NULL, 0);
946 	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
947 	if (ret) {
948 		if (ret == -ENOENT)
949 			ret = 0;
950 		goto fail;
951 	}
952 
953 	if (f2fs_sanity_check_cluster(&dn)) {
954 		ret = -EFSCORRUPTED;
955 		goto fail;
956 	}
957 
958 	if (dn.data_blkaddr == COMPRESS_ADDR) {
959 		int i;
960 
961 		ret = 1;
962 		for (i = 1; i < cluster_size; i++) {
963 			block_t blkaddr;
964 
965 			blkaddr = data_blkaddr(dn.inode,
966 					dn.node_page, dn.ofs_in_node + i);
967 			if (compr) {
968 				if (__is_valid_data_blkaddr(blkaddr))
969 					ret++;
970 			} else {
971 				if (blkaddr != NULL_ADDR)
972 					ret++;
973 			}
974 		}
975 
976 		f2fs_bug_on(F2FS_I_SB(inode),
977 			!compr && ret != cluster_size &&
978 			!is_inode_flag_set(inode, FI_COMPRESS_RELEASED));
979 	}
980 fail:
981 	f2fs_put_dnode(&dn);
982 	return ret;
983 }
984 
985 /* return # of compressed blocks in compressed cluster */
986 static int f2fs_compressed_blocks(struct compress_ctx *cc)
987 {
988 	return __f2fs_cluster_blocks(cc->inode, cc->cluster_idx, true);
989 }
990 
991 /* return # of valid blocks in compressed cluster */
992 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index)
993 {
994 	return __f2fs_cluster_blocks(inode,
995 		index >> F2FS_I(inode)->i_log_cluster_size,
996 		false);
997 }
998 
999 static bool cluster_may_compress(struct compress_ctx *cc)
1000 {
1001 	if (!f2fs_need_compress_data(cc->inode))
1002 		return false;
1003 	if (f2fs_is_atomic_file(cc->inode))
1004 		return false;
1005 	if (!f2fs_cluster_is_full(cc))
1006 		return false;
1007 	if (unlikely(f2fs_cp_error(F2FS_I_SB(cc->inode))))
1008 		return false;
1009 	return !cluster_has_invalid_data(cc);
1010 }
1011 
1012 static void set_cluster_writeback(struct compress_ctx *cc)
1013 {
1014 	int i;
1015 
1016 	for (i = 0; i < cc->cluster_size; i++) {
1017 		if (cc->rpages[i])
1018 			set_page_writeback(cc->rpages[i]);
1019 	}
1020 }
1021 
1022 static void set_cluster_dirty(struct compress_ctx *cc)
1023 {
1024 	int i;
1025 
1026 	for (i = 0; i < cc->cluster_size; i++)
1027 		if (cc->rpages[i])
1028 			set_page_dirty(cc->rpages[i]);
1029 }
1030 
1031 static int prepare_compress_overwrite(struct compress_ctx *cc,
1032 		struct page **pagep, pgoff_t index, void **fsdata)
1033 {
1034 	struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode);
1035 	struct address_space *mapping = cc->inode->i_mapping;
1036 	struct page *page;
1037 	sector_t last_block_in_bio;
1038 	unsigned fgp_flag = FGP_LOCK | FGP_WRITE | FGP_CREAT;
1039 	pgoff_t start_idx = start_idx_of_cluster(cc);
1040 	int i, ret;
1041 
1042 retry:
1043 	ret = f2fs_is_compressed_cluster(cc->inode, start_idx);
1044 	if (ret <= 0)
1045 		return ret;
1046 
1047 	ret = f2fs_init_compress_ctx(cc);
1048 	if (ret)
1049 		return ret;
1050 
1051 	/* keep page reference to avoid page reclaim */
1052 	for (i = 0; i < cc->cluster_size; i++) {
1053 		page = f2fs_pagecache_get_page(mapping, start_idx + i,
1054 							fgp_flag, GFP_NOFS);
1055 		if (!page) {
1056 			ret = -ENOMEM;
1057 			goto unlock_pages;
1058 		}
1059 
1060 		if (PageUptodate(page))
1061 			f2fs_put_page(page, 1);
1062 		else
1063 			f2fs_compress_ctx_add_page(cc, page);
1064 	}
1065 
1066 	if (!f2fs_cluster_is_empty(cc)) {
1067 		struct bio *bio = NULL;
1068 
1069 		ret = f2fs_read_multi_pages(cc, &bio, cc->cluster_size,
1070 					&last_block_in_bio, false, true);
1071 		f2fs_put_rpages(cc);
1072 		f2fs_destroy_compress_ctx(cc, true);
1073 		if (ret)
1074 			goto out;
1075 		if (bio)
1076 			f2fs_submit_bio(sbi, bio, DATA);
1077 
1078 		ret = f2fs_init_compress_ctx(cc);
1079 		if (ret)
1080 			goto out;
1081 	}
1082 
1083 	for (i = 0; i < cc->cluster_size; i++) {
1084 		f2fs_bug_on(sbi, cc->rpages[i]);
1085 
1086 		page = find_lock_page(mapping, start_idx + i);
1087 		if (!page) {
1088 			/* page can be truncated */
1089 			goto release_and_retry;
1090 		}
1091 
1092 		f2fs_wait_on_page_writeback(page, DATA, true, true);
1093 		f2fs_compress_ctx_add_page(cc, page);
1094 
1095 		if (!PageUptodate(page)) {
1096 release_and_retry:
1097 			f2fs_put_rpages(cc);
1098 			f2fs_unlock_rpages(cc, i + 1);
1099 			f2fs_destroy_compress_ctx(cc, true);
1100 			goto retry;
1101 		}
1102 	}
1103 
1104 	if (likely(!ret)) {
1105 		*fsdata = cc->rpages;
1106 		*pagep = cc->rpages[offset_in_cluster(cc, index)];
1107 		return cc->cluster_size;
1108 	}
1109 
1110 unlock_pages:
1111 	f2fs_put_rpages(cc);
1112 	f2fs_unlock_rpages(cc, i);
1113 	f2fs_destroy_compress_ctx(cc, true);
1114 out:
1115 	return ret;
1116 }
1117 
1118 int f2fs_prepare_compress_overwrite(struct inode *inode,
1119 		struct page **pagep, pgoff_t index, void **fsdata)
1120 {
1121 	struct compress_ctx cc = {
1122 		.inode = inode,
1123 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1124 		.cluster_size = F2FS_I(inode)->i_cluster_size,
1125 		.cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size,
1126 		.rpages = NULL,
1127 		.nr_rpages = 0,
1128 	};
1129 
1130 	return prepare_compress_overwrite(&cc, pagep, index, fsdata);
1131 }
1132 
1133 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
1134 					pgoff_t index, unsigned copied)
1135 
1136 {
1137 	struct compress_ctx cc = {
1138 		.inode = inode,
1139 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1140 		.cluster_size = F2FS_I(inode)->i_cluster_size,
1141 		.rpages = fsdata,
1142 	};
1143 	bool first_index = (index == cc.rpages[0]->index);
1144 
1145 	if (copied)
1146 		set_cluster_dirty(&cc);
1147 
1148 	f2fs_put_rpages_wbc(&cc, NULL, false, 1);
1149 	f2fs_destroy_compress_ctx(&cc, false);
1150 
1151 	return first_index;
1152 }
1153 
1154 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock)
1155 {
1156 	void *fsdata = NULL;
1157 	struct page *pagep;
1158 	int log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
1159 	pgoff_t start_idx = from >> (PAGE_SHIFT + log_cluster_size) <<
1160 							log_cluster_size;
1161 	int err;
1162 
1163 	err = f2fs_is_compressed_cluster(inode, start_idx);
1164 	if (err < 0)
1165 		return err;
1166 
1167 	/* truncate normal cluster */
1168 	if (!err)
1169 		return f2fs_do_truncate_blocks(inode, from, lock);
1170 
1171 	/* truncate compressed cluster */
1172 	err = f2fs_prepare_compress_overwrite(inode, &pagep,
1173 						start_idx, &fsdata);
1174 
1175 	/* should not be a normal cluster */
1176 	f2fs_bug_on(F2FS_I_SB(inode), err == 0);
1177 
1178 	if (err <= 0)
1179 		return err;
1180 
1181 	if (err > 0) {
1182 		struct page **rpages = fsdata;
1183 		int cluster_size = F2FS_I(inode)->i_cluster_size;
1184 		int i;
1185 
1186 		for (i = cluster_size - 1; i >= 0; i--) {
1187 			loff_t start = rpages[i]->index << PAGE_SHIFT;
1188 
1189 			if (from <= start) {
1190 				zero_user_segment(rpages[i], 0, PAGE_SIZE);
1191 			} else {
1192 				zero_user_segment(rpages[i], from - start,
1193 								PAGE_SIZE);
1194 				break;
1195 			}
1196 		}
1197 
1198 		f2fs_compress_write_end(inode, fsdata, start_idx, true);
1199 	}
1200 	return 0;
1201 }
1202 
1203 static int f2fs_write_compressed_pages(struct compress_ctx *cc,
1204 					int *submitted,
1205 					struct writeback_control *wbc,
1206 					enum iostat_type io_type)
1207 {
1208 	struct inode *inode = cc->inode;
1209 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1210 	struct f2fs_inode_info *fi = F2FS_I(inode);
1211 	struct f2fs_io_info fio = {
1212 		.sbi = sbi,
1213 		.ino = cc->inode->i_ino,
1214 		.type = DATA,
1215 		.op = REQ_OP_WRITE,
1216 		.op_flags = wbc_to_write_flags(wbc),
1217 		.old_blkaddr = NEW_ADDR,
1218 		.page = NULL,
1219 		.encrypted_page = NULL,
1220 		.compressed_page = NULL,
1221 		.submitted = false,
1222 		.io_type = io_type,
1223 		.io_wbc = wbc,
1224 		.encrypted = fscrypt_inode_uses_fs_layer_crypto(cc->inode),
1225 	};
1226 	struct dnode_of_data dn;
1227 	struct node_info ni;
1228 	struct compress_io_ctx *cic;
1229 	pgoff_t start_idx = start_idx_of_cluster(cc);
1230 	unsigned int last_index = cc->cluster_size - 1;
1231 	loff_t psize;
1232 	int i, err;
1233 
1234 	/* we should bypass data pages to proceed the kworkder jobs */
1235 	if (unlikely(f2fs_cp_error(sbi))) {
1236 		mapping_set_error(cc->rpages[0]->mapping, -EIO);
1237 		goto out_free;
1238 	}
1239 
1240 	if (IS_NOQUOTA(inode)) {
1241 		/*
1242 		 * We need to wait for node_write to avoid block allocation during
1243 		 * checkpoint. This can only happen to quota writes which can cause
1244 		 * the below discard race condition.
1245 		 */
1246 		f2fs_down_read(&sbi->node_write);
1247 	} else if (!f2fs_trylock_op(sbi)) {
1248 		goto out_free;
1249 	}
1250 
1251 	set_new_dnode(&dn, cc->inode, NULL, NULL, 0);
1252 
1253 	err = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
1254 	if (err)
1255 		goto out_unlock_op;
1256 
1257 	for (i = 0; i < cc->cluster_size; i++) {
1258 		if (data_blkaddr(dn.inode, dn.node_page,
1259 					dn.ofs_in_node + i) == NULL_ADDR)
1260 			goto out_put_dnode;
1261 	}
1262 
1263 	psize = (loff_t)(cc->rpages[last_index]->index + 1) << PAGE_SHIFT;
1264 
1265 	err = f2fs_get_node_info(fio.sbi, dn.nid, &ni, false);
1266 	if (err)
1267 		goto out_put_dnode;
1268 
1269 	fio.version = ni.version;
1270 
1271 	cic = f2fs_kmem_cache_alloc(cic_entry_slab, GFP_F2FS_ZERO, false, sbi);
1272 	if (!cic)
1273 		goto out_put_dnode;
1274 
1275 	cic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1276 	cic->inode = inode;
1277 	atomic_set(&cic->pending_pages, cc->valid_nr_cpages);
1278 	cic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
1279 	if (!cic->rpages)
1280 		goto out_put_cic;
1281 
1282 	cic->nr_rpages = cc->cluster_size;
1283 
1284 	for (i = 0; i < cc->valid_nr_cpages; i++) {
1285 		f2fs_set_compressed_page(cc->cpages[i], inode,
1286 					cc->rpages[i + 1]->index, cic);
1287 		fio.compressed_page = cc->cpages[i];
1288 
1289 		fio.old_blkaddr = data_blkaddr(dn.inode, dn.node_page,
1290 						dn.ofs_in_node + i + 1);
1291 
1292 		/* wait for GCed page writeback via META_MAPPING */
1293 		f2fs_wait_on_block_writeback(inode, fio.old_blkaddr);
1294 
1295 		if (fio.encrypted) {
1296 			fio.page = cc->rpages[i + 1];
1297 			err = f2fs_encrypt_one_page(&fio);
1298 			if (err)
1299 				goto out_destroy_crypt;
1300 			cc->cpages[i] = fio.encrypted_page;
1301 		}
1302 	}
1303 
1304 	set_cluster_writeback(cc);
1305 
1306 	for (i = 0; i < cc->cluster_size; i++)
1307 		cic->rpages[i] = cc->rpages[i];
1308 
1309 	for (i = 0; i < cc->cluster_size; i++, dn.ofs_in_node++) {
1310 		block_t blkaddr;
1311 
1312 		blkaddr = f2fs_data_blkaddr(&dn);
1313 		fio.page = cc->rpages[i];
1314 		fio.old_blkaddr = blkaddr;
1315 
1316 		/* cluster header */
1317 		if (i == 0) {
1318 			if (blkaddr == COMPRESS_ADDR)
1319 				fio.compr_blocks++;
1320 			if (__is_valid_data_blkaddr(blkaddr))
1321 				f2fs_invalidate_blocks(sbi, blkaddr);
1322 			f2fs_update_data_blkaddr(&dn, COMPRESS_ADDR);
1323 			goto unlock_continue;
1324 		}
1325 
1326 		if (fio.compr_blocks && __is_valid_data_blkaddr(blkaddr))
1327 			fio.compr_blocks++;
1328 
1329 		if (i > cc->valid_nr_cpages) {
1330 			if (__is_valid_data_blkaddr(blkaddr)) {
1331 				f2fs_invalidate_blocks(sbi, blkaddr);
1332 				f2fs_update_data_blkaddr(&dn, NEW_ADDR);
1333 			}
1334 			goto unlock_continue;
1335 		}
1336 
1337 		f2fs_bug_on(fio.sbi, blkaddr == NULL_ADDR);
1338 
1339 		if (fio.encrypted)
1340 			fio.encrypted_page = cc->cpages[i - 1];
1341 		else
1342 			fio.compressed_page = cc->cpages[i - 1];
1343 
1344 		cc->cpages[i - 1] = NULL;
1345 		f2fs_outplace_write_data(&dn, &fio);
1346 		(*submitted)++;
1347 unlock_continue:
1348 		inode_dec_dirty_pages(cc->inode);
1349 		unlock_page(fio.page);
1350 	}
1351 
1352 	if (fio.compr_blocks)
1353 		f2fs_i_compr_blocks_update(inode, fio.compr_blocks - 1, false);
1354 	f2fs_i_compr_blocks_update(inode, cc->valid_nr_cpages, true);
1355 	add_compr_block_stat(inode, cc->valid_nr_cpages);
1356 
1357 	set_inode_flag(cc->inode, FI_APPEND_WRITE);
1358 	if (cc->cluster_idx == 0)
1359 		set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1360 
1361 	f2fs_put_dnode(&dn);
1362 	if (IS_NOQUOTA(inode))
1363 		f2fs_up_read(&sbi->node_write);
1364 	else
1365 		f2fs_unlock_op(sbi);
1366 
1367 	spin_lock(&fi->i_size_lock);
1368 	if (fi->last_disk_size < psize)
1369 		fi->last_disk_size = psize;
1370 	spin_unlock(&fi->i_size_lock);
1371 
1372 	f2fs_put_rpages(cc);
1373 	page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
1374 	cc->cpages = NULL;
1375 	f2fs_destroy_compress_ctx(cc, false);
1376 	return 0;
1377 
1378 out_destroy_crypt:
1379 	page_array_free(cc->inode, cic->rpages, cc->cluster_size);
1380 
1381 	for (--i; i >= 0; i--)
1382 		fscrypt_finalize_bounce_page(&cc->cpages[i]);
1383 out_put_cic:
1384 	kmem_cache_free(cic_entry_slab, cic);
1385 out_put_dnode:
1386 	f2fs_put_dnode(&dn);
1387 out_unlock_op:
1388 	if (IS_NOQUOTA(inode))
1389 		f2fs_up_read(&sbi->node_write);
1390 	else
1391 		f2fs_unlock_op(sbi);
1392 out_free:
1393 	for (i = 0; i < cc->valid_nr_cpages; i++) {
1394 		f2fs_compress_free_page(cc->cpages[i]);
1395 		cc->cpages[i] = NULL;
1396 	}
1397 	page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
1398 	cc->cpages = NULL;
1399 	return -EAGAIN;
1400 }
1401 
1402 void f2fs_compress_write_end_io(struct bio *bio, struct page *page)
1403 {
1404 	struct f2fs_sb_info *sbi = bio->bi_private;
1405 	struct compress_io_ctx *cic =
1406 			(struct compress_io_ctx *)page_private(page);
1407 	int i;
1408 
1409 	if (unlikely(bio->bi_status))
1410 		mapping_set_error(cic->inode->i_mapping, -EIO);
1411 
1412 	f2fs_compress_free_page(page);
1413 
1414 	dec_page_count(sbi, F2FS_WB_DATA);
1415 
1416 	if (atomic_dec_return(&cic->pending_pages))
1417 		return;
1418 
1419 	for (i = 0; i < cic->nr_rpages; i++) {
1420 		WARN_ON(!cic->rpages[i]);
1421 		clear_page_private_gcing(cic->rpages[i]);
1422 		end_page_writeback(cic->rpages[i]);
1423 	}
1424 
1425 	page_array_free(cic->inode, cic->rpages, cic->nr_rpages);
1426 	kmem_cache_free(cic_entry_slab, cic);
1427 }
1428 
1429 static int f2fs_write_raw_pages(struct compress_ctx *cc,
1430 					int *submitted,
1431 					struct writeback_control *wbc,
1432 					enum iostat_type io_type)
1433 {
1434 	struct address_space *mapping = cc->inode->i_mapping;
1435 	int _submitted, compr_blocks, ret, i;
1436 
1437 	compr_blocks = f2fs_compressed_blocks(cc);
1438 
1439 	for (i = 0; i < cc->cluster_size; i++) {
1440 		if (!cc->rpages[i])
1441 			continue;
1442 
1443 		redirty_page_for_writepage(wbc, cc->rpages[i]);
1444 		unlock_page(cc->rpages[i]);
1445 	}
1446 
1447 	if (compr_blocks < 0)
1448 		return compr_blocks;
1449 
1450 	for (i = 0; i < cc->cluster_size; i++) {
1451 		if (!cc->rpages[i])
1452 			continue;
1453 retry_write:
1454 		lock_page(cc->rpages[i]);
1455 
1456 		if (cc->rpages[i]->mapping != mapping) {
1457 continue_unlock:
1458 			unlock_page(cc->rpages[i]);
1459 			continue;
1460 		}
1461 
1462 		if (!PageDirty(cc->rpages[i]))
1463 			goto continue_unlock;
1464 
1465 		if (!clear_page_dirty_for_io(cc->rpages[i]))
1466 			goto continue_unlock;
1467 
1468 		ret = f2fs_write_single_data_page(cc->rpages[i], &_submitted,
1469 						NULL, NULL, wbc, io_type,
1470 						compr_blocks, false);
1471 		if (ret) {
1472 			if (ret == AOP_WRITEPAGE_ACTIVATE) {
1473 				unlock_page(cc->rpages[i]);
1474 				ret = 0;
1475 			} else if (ret == -EAGAIN) {
1476 				/*
1477 				 * for quota file, just redirty left pages to
1478 				 * avoid deadlock caused by cluster update race
1479 				 * from foreground operation.
1480 				 */
1481 				if (IS_NOQUOTA(cc->inode))
1482 					return 0;
1483 				ret = 0;
1484 				f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1485 				goto retry_write;
1486 			}
1487 			return ret;
1488 		}
1489 
1490 		*submitted += _submitted;
1491 	}
1492 
1493 	f2fs_balance_fs(F2FS_M_SB(mapping), true);
1494 
1495 	return 0;
1496 }
1497 
1498 int f2fs_write_multi_pages(struct compress_ctx *cc,
1499 					int *submitted,
1500 					struct writeback_control *wbc,
1501 					enum iostat_type io_type)
1502 {
1503 	int err;
1504 
1505 	*submitted = 0;
1506 	if (cluster_may_compress(cc)) {
1507 		err = f2fs_compress_pages(cc);
1508 		if (err == -EAGAIN) {
1509 			add_compr_block_stat(cc->inode, cc->cluster_size);
1510 			goto write;
1511 		} else if (err) {
1512 			f2fs_put_rpages_wbc(cc, wbc, true, 1);
1513 			goto destroy_out;
1514 		}
1515 
1516 		err = f2fs_write_compressed_pages(cc, submitted,
1517 							wbc, io_type);
1518 		if (!err)
1519 			return 0;
1520 		f2fs_bug_on(F2FS_I_SB(cc->inode), err != -EAGAIN);
1521 	}
1522 write:
1523 	f2fs_bug_on(F2FS_I_SB(cc->inode), *submitted);
1524 
1525 	err = f2fs_write_raw_pages(cc, submitted, wbc, io_type);
1526 	f2fs_put_rpages_wbc(cc, wbc, false, 0);
1527 destroy_out:
1528 	f2fs_destroy_compress_ctx(cc, false);
1529 	return err;
1530 }
1531 
1532 static inline bool allow_memalloc_for_decomp(struct f2fs_sb_info *sbi,
1533 		bool pre_alloc)
1534 {
1535 	return pre_alloc ^ f2fs_low_mem_mode(sbi);
1536 }
1537 
1538 static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic,
1539 		bool pre_alloc)
1540 {
1541 	const struct f2fs_compress_ops *cops =
1542 		f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm];
1543 	int i;
1544 
1545 	if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc))
1546 		return 0;
1547 
1548 	dic->tpages = page_array_alloc(dic->inode, dic->cluster_size);
1549 	if (!dic->tpages)
1550 		return -ENOMEM;
1551 
1552 	for (i = 0; i < dic->cluster_size; i++) {
1553 		if (dic->rpages[i]) {
1554 			dic->tpages[i] = dic->rpages[i];
1555 			continue;
1556 		}
1557 
1558 		dic->tpages[i] = f2fs_compress_alloc_page();
1559 		if (!dic->tpages[i])
1560 			return -ENOMEM;
1561 	}
1562 
1563 	dic->rbuf = f2fs_vmap(dic->tpages, dic->cluster_size);
1564 	if (!dic->rbuf)
1565 		return -ENOMEM;
1566 
1567 	dic->cbuf = f2fs_vmap(dic->cpages, dic->nr_cpages);
1568 	if (!dic->cbuf)
1569 		return -ENOMEM;
1570 
1571 	if (cops->init_decompress_ctx) {
1572 		int ret = cops->init_decompress_ctx(dic);
1573 
1574 		if (ret)
1575 			return ret;
1576 	}
1577 
1578 	return 0;
1579 }
1580 
1581 static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic,
1582 		bool bypass_destroy_callback, bool pre_alloc)
1583 {
1584 	const struct f2fs_compress_ops *cops =
1585 		f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm];
1586 
1587 	if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc))
1588 		return;
1589 
1590 	if (!bypass_destroy_callback && cops->destroy_decompress_ctx)
1591 		cops->destroy_decompress_ctx(dic);
1592 
1593 	if (dic->cbuf)
1594 		vm_unmap_ram(dic->cbuf, dic->nr_cpages);
1595 
1596 	if (dic->rbuf)
1597 		vm_unmap_ram(dic->rbuf, dic->cluster_size);
1598 }
1599 
1600 static void f2fs_free_dic(struct decompress_io_ctx *dic,
1601 		bool bypass_destroy_callback);
1602 
1603 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc)
1604 {
1605 	struct decompress_io_ctx *dic;
1606 	pgoff_t start_idx = start_idx_of_cluster(cc);
1607 	struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode);
1608 	int i, ret;
1609 
1610 	dic = f2fs_kmem_cache_alloc(dic_entry_slab, GFP_F2FS_ZERO, false, sbi);
1611 	if (!dic)
1612 		return ERR_PTR(-ENOMEM);
1613 
1614 	dic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
1615 	if (!dic->rpages) {
1616 		kmem_cache_free(dic_entry_slab, dic);
1617 		return ERR_PTR(-ENOMEM);
1618 	}
1619 
1620 	dic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1621 	dic->inode = cc->inode;
1622 	atomic_set(&dic->remaining_pages, cc->nr_cpages);
1623 	dic->cluster_idx = cc->cluster_idx;
1624 	dic->cluster_size = cc->cluster_size;
1625 	dic->log_cluster_size = cc->log_cluster_size;
1626 	dic->nr_cpages = cc->nr_cpages;
1627 	refcount_set(&dic->refcnt, 1);
1628 	dic->failed = false;
1629 	dic->need_verity = f2fs_need_verity(cc->inode, start_idx);
1630 
1631 	for (i = 0; i < dic->cluster_size; i++)
1632 		dic->rpages[i] = cc->rpages[i];
1633 	dic->nr_rpages = cc->cluster_size;
1634 
1635 	dic->cpages = page_array_alloc(dic->inode, dic->nr_cpages);
1636 	if (!dic->cpages) {
1637 		ret = -ENOMEM;
1638 		goto out_free;
1639 	}
1640 
1641 	for (i = 0; i < dic->nr_cpages; i++) {
1642 		struct page *page;
1643 
1644 		page = f2fs_compress_alloc_page();
1645 		if (!page) {
1646 			ret = -ENOMEM;
1647 			goto out_free;
1648 		}
1649 
1650 		f2fs_set_compressed_page(page, cc->inode,
1651 					start_idx + i + 1, dic);
1652 		dic->cpages[i] = page;
1653 	}
1654 
1655 	ret = f2fs_prepare_decomp_mem(dic, true);
1656 	if (ret)
1657 		goto out_free;
1658 
1659 	return dic;
1660 
1661 out_free:
1662 	f2fs_free_dic(dic, true);
1663 	return ERR_PTR(ret);
1664 }
1665 
1666 static void f2fs_free_dic(struct decompress_io_ctx *dic,
1667 		bool bypass_destroy_callback)
1668 {
1669 	int i;
1670 
1671 	f2fs_release_decomp_mem(dic, bypass_destroy_callback, true);
1672 
1673 	if (dic->tpages) {
1674 		for (i = 0; i < dic->cluster_size; i++) {
1675 			if (dic->rpages[i])
1676 				continue;
1677 			if (!dic->tpages[i])
1678 				continue;
1679 			f2fs_compress_free_page(dic->tpages[i]);
1680 		}
1681 		page_array_free(dic->inode, dic->tpages, dic->cluster_size);
1682 	}
1683 
1684 	if (dic->cpages) {
1685 		for (i = 0; i < dic->nr_cpages; i++) {
1686 			if (!dic->cpages[i])
1687 				continue;
1688 			f2fs_compress_free_page(dic->cpages[i]);
1689 		}
1690 		page_array_free(dic->inode, dic->cpages, dic->nr_cpages);
1691 	}
1692 
1693 	page_array_free(dic->inode, dic->rpages, dic->nr_rpages);
1694 	kmem_cache_free(dic_entry_slab, dic);
1695 }
1696 
1697 static void f2fs_late_free_dic(struct work_struct *work)
1698 {
1699 	struct decompress_io_ctx *dic =
1700 		container_of(work, struct decompress_io_ctx, free_work);
1701 
1702 	f2fs_free_dic(dic, false);
1703 }
1704 
1705 static void f2fs_put_dic(struct decompress_io_ctx *dic, bool in_task)
1706 {
1707 	if (refcount_dec_and_test(&dic->refcnt)) {
1708 		if (in_task) {
1709 			f2fs_free_dic(dic, false);
1710 		} else {
1711 			INIT_WORK(&dic->free_work, f2fs_late_free_dic);
1712 			queue_work(F2FS_I_SB(dic->inode)->post_read_wq,
1713 					&dic->free_work);
1714 		}
1715 	}
1716 }
1717 
1718 /*
1719  * Update and unlock the cluster's pagecache pages, and release the reference to
1720  * the decompress_io_ctx that was being held for I/O completion.
1721  */
1722 static void __f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
1723 				bool in_task)
1724 {
1725 	int i;
1726 
1727 	for (i = 0; i < dic->cluster_size; i++) {
1728 		struct page *rpage = dic->rpages[i];
1729 
1730 		if (!rpage)
1731 			continue;
1732 
1733 		/* PG_error was set if verity failed. */
1734 		if (failed || PageError(rpage)) {
1735 			ClearPageUptodate(rpage);
1736 			/* will re-read again later */
1737 			ClearPageError(rpage);
1738 		} else {
1739 			SetPageUptodate(rpage);
1740 		}
1741 		unlock_page(rpage);
1742 	}
1743 
1744 	f2fs_put_dic(dic, in_task);
1745 }
1746 
1747 static void f2fs_verify_cluster(struct work_struct *work)
1748 {
1749 	struct decompress_io_ctx *dic =
1750 		container_of(work, struct decompress_io_ctx, verity_work);
1751 	int i;
1752 
1753 	/* Verify the cluster's decompressed pages with fs-verity. */
1754 	for (i = 0; i < dic->cluster_size; i++) {
1755 		struct page *rpage = dic->rpages[i];
1756 
1757 		if (rpage && !fsverity_verify_page(rpage))
1758 			SetPageError(rpage);
1759 	}
1760 
1761 	__f2fs_decompress_end_io(dic, false, true);
1762 }
1763 
1764 /*
1765  * This is called when a compressed cluster has been decompressed
1766  * (or failed to be read and/or decompressed).
1767  */
1768 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
1769 				bool in_task)
1770 {
1771 	if (!failed && dic->need_verity) {
1772 		/*
1773 		 * Note that to avoid deadlocks, the verity work can't be done
1774 		 * on the decompression workqueue.  This is because verifying
1775 		 * the data pages can involve reading metadata pages from the
1776 		 * file, and these metadata pages may be compressed.
1777 		 */
1778 		INIT_WORK(&dic->verity_work, f2fs_verify_cluster);
1779 		fsverity_enqueue_verify_work(&dic->verity_work);
1780 	} else {
1781 		__f2fs_decompress_end_io(dic, failed, in_task);
1782 	}
1783 }
1784 
1785 /*
1786  * Put a reference to a compressed page's decompress_io_ctx.
1787  *
1788  * This is called when the page is no longer needed and can be freed.
1789  */
1790 void f2fs_put_page_dic(struct page *page, bool in_task)
1791 {
1792 	struct decompress_io_ctx *dic =
1793 			(struct decompress_io_ctx *)page_private(page);
1794 
1795 	f2fs_put_dic(dic, in_task);
1796 }
1797 
1798 /*
1799  * check whether cluster blocks are contiguous, and add extent cache entry
1800  * only if cluster blocks are logically and physically contiguous.
1801  */
1802 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn)
1803 {
1804 	bool compressed = f2fs_data_blkaddr(dn) == COMPRESS_ADDR;
1805 	int i = compressed ? 1 : 0;
1806 	block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_page,
1807 						dn->ofs_in_node + i);
1808 
1809 	for (i += 1; i < F2FS_I(dn->inode)->i_cluster_size; i++) {
1810 		block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
1811 						dn->ofs_in_node + i);
1812 
1813 		if (!__is_valid_data_blkaddr(blkaddr))
1814 			break;
1815 		if (first_blkaddr + i - (compressed ? 1 : 0) != blkaddr)
1816 			return 0;
1817 	}
1818 
1819 	return compressed ? i - 1 : i;
1820 }
1821 
1822 const struct address_space_operations f2fs_compress_aops = {
1823 	.release_folio = f2fs_release_folio,
1824 	.invalidate_folio = f2fs_invalidate_folio,
1825 };
1826 
1827 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi)
1828 {
1829 	return sbi->compress_inode->i_mapping;
1830 }
1831 
1832 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr)
1833 {
1834 	if (!sbi->compress_inode)
1835 		return;
1836 	invalidate_mapping_pages(COMPRESS_MAPPING(sbi), blkaddr, blkaddr);
1837 }
1838 
1839 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
1840 						nid_t ino, block_t blkaddr)
1841 {
1842 	struct page *cpage;
1843 	int ret;
1844 
1845 	if (!test_opt(sbi, COMPRESS_CACHE))
1846 		return;
1847 
1848 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ))
1849 		return;
1850 
1851 	if (!f2fs_available_free_memory(sbi, COMPRESS_PAGE))
1852 		return;
1853 
1854 	cpage = find_get_page(COMPRESS_MAPPING(sbi), blkaddr);
1855 	if (cpage) {
1856 		f2fs_put_page(cpage, 0);
1857 		return;
1858 	}
1859 
1860 	cpage = alloc_page(__GFP_NOWARN | __GFP_IO);
1861 	if (!cpage)
1862 		return;
1863 
1864 	ret = add_to_page_cache_lru(cpage, COMPRESS_MAPPING(sbi),
1865 						blkaddr, GFP_NOFS);
1866 	if (ret) {
1867 		f2fs_put_page(cpage, 0);
1868 		return;
1869 	}
1870 
1871 	set_page_private_data(cpage, ino);
1872 
1873 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ))
1874 		goto out;
1875 
1876 	memcpy(page_address(cpage), page_address(page), PAGE_SIZE);
1877 	SetPageUptodate(cpage);
1878 out:
1879 	f2fs_put_page(cpage, 1);
1880 }
1881 
1882 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
1883 								block_t blkaddr)
1884 {
1885 	struct page *cpage;
1886 	bool hitted = false;
1887 
1888 	if (!test_opt(sbi, COMPRESS_CACHE))
1889 		return false;
1890 
1891 	cpage = f2fs_pagecache_get_page(COMPRESS_MAPPING(sbi),
1892 				blkaddr, FGP_LOCK | FGP_NOWAIT, GFP_NOFS);
1893 	if (cpage) {
1894 		if (PageUptodate(cpage)) {
1895 			atomic_inc(&sbi->compress_page_hit);
1896 			memcpy(page_address(page),
1897 				page_address(cpage), PAGE_SIZE);
1898 			hitted = true;
1899 		}
1900 		f2fs_put_page(cpage, 1);
1901 	}
1902 
1903 	return hitted;
1904 }
1905 
1906 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino)
1907 {
1908 	struct address_space *mapping = sbi->compress_inode->i_mapping;
1909 	struct folio_batch fbatch;
1910 	pgoff_t index = 0;
1911 	pgoff_t end = MAX_BLKADDR(sbi);
1912 
1913 	if (!mapping->nrpages)
1914 		return;
1915 
1916 	folio_batch_init(&fbatch);
1917 
1918 	do {
1919 		unsigned int nr, i;
1920 
1921 		nr = filemap_get_folios(mapping, &index, end - 1, &fbatch);
1922 		if (!nr)
1923 			break;
1924 
1925 		for (i = 0; i < nr; i++) {
1926 			struct folio *folio = fbatch.folios[i];
1927 
1928 			folio_lock(folio);
1929 			if (folio->mapping != mapping) {
1930 				folio_unlock(folio);
1931 				continue;
1932 			}
1933 
1934 			if (ino != get_page_private_data(&folio->page)) {
1935 				folio_unlock(folio);
1936 				continue;
1937 			}
1938 
1939 			generic_error_remove_page(mapping, &folio->page);
1940 			folio_unlock(folio);
1941 		}
1942 		folio_batch_release(&fbatch);
1943 		cond_resched();
1944 	} while (index < end);
1945 }
1946 
1947 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi)
1948 {
1949 	struct inode *inode;
1950 
1951 	if (!test_opt(sbi, COMPRESS_CACHE))
1952 		return 0;
1953 
1954 	inode = f2fs_iget(sbi->sb, F2FS_COMPRESS_INO(sbi));
1955 	if (IS_ERR(inode))
1956 		return PTR_ERR(inode);
1957 	sbi->compress_inode = inode;
1958 
1959 	sbi->compress_percent = COMPRESS_PERCENT;
1960 	sbi->compress_watermark = COMPRESS_WATERMARK;
1961 
1962 	atomic_set(&sbi->compress_page_hit, 0);
1963 
1964 	return 0;
1965 }
1966 
1967 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi)
1968 {
1969 	if (!sbi->compress_inode)
1970 		return;
1971 	iput(sbi->compress_inode);
1972 	sbi->compress_inode = NULL;
1973 }
1974 
1975 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi)
1976 {
1977 	dev_t dev = sbi->sb->s_bdev->bd_dev;
1978 	char slab_name[32];
1979 
1980 	if (!f2fs_sb_has_compression(sbi))
1981 		return 0;
1982 
1983 	sprintf(slab_name, "f2fs_page_array_entry-%u:%u", MAJOR(dev), MINOR(dev));
1984 
1985 	sbi->page_array_slab_size = sizeof(struct page *) <<
1986 					F2FS_OPTION(sbi).compress_log_size;
1987 
1988 	sbi->page_array_slab = f2fs_kmem_cache_create(slab_name,
1989 					sbi->page_array_slab_size);
1990 	if (!sbi->page_array_slab)
1991 		return -ENOMEM;
1992 	return 0;
1993 }
1994 
1995 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi)
1996 {
1997 	kmem_cache_destroy(sbi->page_array_slab);
1998 }
1999 
2000 static int __init f2fs_init_cic_cache(void)
2001 {
2002 	cic_entry_slab = f2fs_kmem_cache_create("f2fs_cic_entry",
2003 					sizeof(struct compress_io_ctx));
2004 	if (!cic_entry_slab)
2005 		return -ENOMEM;
2006 	return 0;
2007 }
2008 
2009 static void f2fs_destroy_cic_cache(void)
2010 {
2011 	kmem_cache_destroy(cic_entry_slab);
2012 }
2013 
2014 static int __init f2fs_init_dic_cache(void)
2015 {
2016 	dic_entry_slab = f2fs_kmem_cache_create("f2fs_dic_entry",
2017 					sizeof(struct decompress_io_ctx));
2018 	if (!dic_entry_slab)
2019 		return -ENOMEM;
2020 	return 0;
2021 }
2022 
2023 static void f2fs_destroy_dic_cache(void)
2024 {
2025 	kmem_cache_destroy(dic_entry_slab);
2026 }
2027 
2028 int __init f2fs_init_compress_cache(void)
2029 {
2030 	int err;
2031 
2032 	err = f2fs_init_cic_cache();
2033 	if (err)
2034 		goto out;
2035 	err = f2fs_init_dic_cache();
2036 	if (err)
2037 		goto free_cic;
2038 	return 0;
2039 free_cic:
2040 	f2fs_destroy_cic_cache();
2041 out:
2042 	return -ENOMEM;
2043 }
2044 
2045 void f2fs_destroy_compress_cache(void)
2046 {
2047 	f2fs_destroy_dic_cache();
2048 	f2fs_destroy_cic_cache();
2049 }
2050