1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * f2fs compress support 4 * 5 * Copyright (c) 2019 Chao Yu <chao@kernel.org> 6 */ 7 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/moduleparam.h> 11 #include <linux/writeback.h> 12 #include <linux/backing-dev.h> 13 #include <linux/lzo.h> 14 #include <linux/lz4.h> 15 #include <linux/zstd.h> 16 #include <linux/pagevec.h> 17 18 #include "f2fs.h" 19 #include "node.h" 20 #include "segment.h" 21 #include <trace/events/f2fs.h> 22 23 static struct kmem_cache *cic_entry_slab; 24 static struct kmem_cache *dic_entry_slab; 25 26 static void *page_array_alloc(struct inode *inode, int nr) 27 { 28 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 29 unsigned int size = sizeof(struct page *) * nr; 30 31 if (likely(size <= sbi->page_array_slab_size)) 32 return f2fs_kmem_cache_alloc(sbi->page_array_slab, 33 GFP_F2FS_ZERO, false, F2FS_I_SB(inode)); 34 return f2fs_kzalloc(sbi, size, GFP_NOFS); 35 } 36 37 static void page_array_free(struct inode *inode, void *pages, int nr) 38 { 39 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 40 unsigned int size = sizeof(struct page *) * nr; 41 42 if (!pages) 43 return; 44 45 if (likely(size <= sbi->page_array_slab_size)) 46 kmem_cache_free(sbi->page_array_slab, pages); 47 else 48 kfree(pages); 49 } 50 51 struct f2fs_compress_ops { 52 int (*init_compress_ctx)(struct compress_ctx *cc); 53 void (*destroy_compress_ctx)(struct compress_ctx *cc); 54 int (*compress_pages)(struct compress_ctx *cc); 55 int (*init_decompress_ctx)(struct decompress_io_ctx *dic); 56 void (*destroy_decompress_ctx)(struct decompress_io_ctx *dic); 57 int (*decompress_pages)(struct decompress_io_ctx *dic); 58 }; 59 60 static unsigned int offset_in_cluster(struct compress_ctx *cc, pgoff_t index) 61 { 62 return index & (cc->cluster_size - 1); 63 } 64 65 static pgoff_t cluster_idx(struct compress_ctx *cc, pgoff_t index) 66 { 67 return index >> cc->log_cluster_size; 68 } 69 70 static pgoff_t start_idx_of_cluster(struct compress_ctx *cc) 71 { 72 return cc->cluster_idx << cc->log_cluster_size; 73 } 74 75 bool f2fs_is_compressed_page(struct page *page) 76 { 77 if (!PagePrivate(page)) 78 return false; 79 if (!page_private(page)) 80 return false; 81 if (page_private_nonpointer(page)) 82 return false; 83 84 f2fs_bug_on(F2FS_M_SB(page->mapping), 85 *((u32 *)page_private(page)) != F2FS_COMPRESSED_PAGE_MAGIC); 86 return true; 87 } 88 89 static void f2fs_set_compressed_page(struct page *page, 90 struct inode *inode, pgoff_t index, void *data) 91 { 92 attach_page_private(page, (void *)data); 93 94 /* i_crypto_info and iv index */ 95 page->index = index; 96 page->mapping = inode->i_mapping; 97 } 98 99 static void f2fs_drop_rpages(struct compress_ctx *cc, int len, bool unlock) 100 { 101 int i; 102 103 for (i = 0; i < len; i++) { 104 if (!cc->rpages[i]) 105 continue; 106 if (unlock) 107 unlock_page(cc->rpages[i]); 108 else 109 put_page(cc->rpages[i]); 110 } 111 } 112 113 static void f2fs_put_rpages(struct compress_ctx *cc) 114 { 115 f2fs_drop_rpages(cc, cc->cluster_size, false); 116 } 117 118 static void f2fs_unlock_rpages(struct compress_ctx *cc, int len) 119 { 120 f2fs_drop_rpages(cc, len, true); 121 } 122 123 static void f2fs_put_rpages_wbc(struct compress_ctx *cc, 124 struct writeback_control *wbc, bool redirty, int unlock) 125 { 126 unsigned int i; 127 128 for (i = 0; i < cc->cluster_size; i++) { 129 if (!cc->rpages[i]) 130 continue; 131 if (redirty) 132 redirty_page_for_writepage(wbc, cc->rpages[i]); 133 f2fs_put_page(cc->rpages[i], unlock); 134 } 135 } 136 137 struct page *f2fs_compress_control_page(struct page *page) 138 { 139 return ((struct compress_io_ctx *)page_private(page))->rpages[0]; 140 } 141 142 int f2fs_init_compress_ctx(struct compress_ctx *cc) 143 { 144 if (cc->rpages) 145 return 0; 146 147 cc->rpages = page_array_alloc(cc->inode, cc->cluster_size); 148 return cc->rpages ? 0 : -ENOMEM; 149 } 150 151 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse) 152 { 153 page_array_free(cc->inode, cc->rpages, cc->cluster_size); 154 cc->rpages = NULL; 155 cc->nr_rpages = 0; 156 cc->nr_cpages = 0; 157 cc->valid_nr_cpages = 0; 158 if (!reuse) 159 cc->cluster_idx = NULL_CLUSTER; 160 } 161 162 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page) 163 { 164 unsigned int cluster_ofs; 165 166 if (!f2fs_cluster_can_merge_page(cc, page->index)) 167 f2fs_bug_on(F2FS_I_SB(cc->inode), 1); 168 169 cluster_ofs = offset_in_cluster(cc, page->index); 170 cc->rpages[cluster_ofs] = page; 171 cc->nr_rpages++; 172 cc->cluster_idx = cluster_idx(cc, page->index); 173 } 174 175 #ifdef CONFIG_F2FS_FS_LZO 176 static int lzo_init_compress_ctx(struct compress_ctx *cc) 177 { 178 cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), 179 LZO1X_MEM_COMPRESS, GFP_NOFS); 180 if (!cc->private) 181 return -ENOMEM; 182 183 cc->clen = lzo1x_worst_compress(PAGE_SIZE << cc->log_cluster_size); 184 return 0; 185 } 186 187 static void lzo_destroy_compress_ctx(struct compress_ctx *cc) 188 { 189 kvfree(cc->private); 190 cc->private = NULL; 191 } 192 193 static int lzo_compress_pages(struct compress_ctx *cc) 194 { 195 int ret; 196 197 ret = lzo1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata, 198 &cc->clen, cc->private); 199 if (ret != LZO_E_OK) { 200 printk_ratelimited("%sF2FS-fs (%s): lzo compress failed, ret:%d\n", 201 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret); 202 return -EIO; 203 } 204 return 0; 205 } 206 207 static int lzo_decompress_pages(struct decompress_io_ctx *dic) 208 { 209 int ret; 210 211 ret = lzo1x_decompress_safe(dic->cbuf->cdata, dic->clen, 212 dic->rbuf, &dic->rlen); 213 if (ret != LZO_E_OK) { 214 printk_ratelimited("%sF2FS-fs (%s): lzo decompress failed, ret:%d\n", 215 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret); 216 return -EIO; 217 } 218 219 if (dic->rlen != PAGE_SIZE << dic->log_cluster_size) { 220 printk_ratelimited("%sF2FS-fs (%s): lzo invalid rlen:%zu, " 221 "expected:%lu\n", KERN_ERR, 222 F2FS_I_SB(dic->inode)->sb->s_id, 223 dic->rlen, 224 PAGE_SIZE << dic->log_cluster_size); 225 return -EIO; 226 } 227 return 0; 228 } 229 230 static const struct f2fs_compress_ops f2fs_lzo_ops = { 231 .init_compress_ctx = lzo_init_compress_ctx, 232 .destroy_compress_ctx = lzo_destroy_compress_ctx, 233 .compress_pages = lzo_compress_pages, 234 .decompress_pages = lzo_decompress_pages, 235 }; 236 #endif 237 238 #ifdef CONFIG_F2FS_FS_LZ4 239 static int lz4_init_compress_ctx(struct compress_ctx *cc) 240 { 241 unsigned int size = LZ4_MEM_COMPRESS; 242 243 #ifdef CONFIG_F2FS_FS_LZ4HC 244 if (F2FS_I(cc->inode)->i_compress_flag >> COMPRESS_LEVEL_OFFSET) 245 size = LZ4HC_MEM_COMPRESS; 246 #endif 247 248 cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), size, GFP_NOFS); 249 if (!cc->private) 250 return -ENOMEM; 251 252 /* 253 * we do not change cc->clen to LZ4_compressBound(inputsize) to 254 * adapt worst compress case, because lz4 compressor can handle 255 * output budget properly. 256 */ 257 cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE; 258 return 0; 259 } 260 261 static void lz4_destroy_compress_ctx(struct compress_ctx *cc) 262 { 263 kvfree(cc->private); 264 cc->private = NULL; 265 } 266 267 #ifdef CONFIG_F2FS_FS_LZ4HC 268 static int lz4hc_compress_pages(struct compress_ctx *cc) 269 { 270 unsigned char level = F2FS_I(cc->inode)->i_compress_flag >> 271 COMPRESS_LEVEL_OFFSET; 272 int len; 273 274 if (level) 275 len = LZ4_compress_HC(cc->rbuf, cc->cbuf->cdata, cc->rlen, 276 cc->clen, level, cc->private); 277 else 278 len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen, 279 cc->clen, cc->private); 280 if (!len) 281 return -EAGAIN; 282 283 cc->clen = len; 284 return 0; 285 } 286 #endif 287 288 static int lz4_compress_pages(struct compress_ctx *cc) 289 { 290 int len; 291 292 #ifdef CONFIG_F2FS_FS_LZ4HC 293 return lz4hc_compress_pages(cc); 294 #endif 295 len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen, 296 cc->clen, cc->private); 297 if (!len) 298 return -EAGAIN; 299 300 cc->clen = len; 301 return 0; 302 } 303 304 static int lz4_decompress_pages(struct decompress_io_ctx *dic) 305 { 306 int ret; 307 308 ret = LZ4_decompress_safe(dic->cbuf->cdata, dic->rbuf, 309 dic->clen, dic->rlen); 310 if (ret < 0) { 311 printk_ratelimited("%sF2FS-fs (%s): lz4 decompress failed, ret:%d\n", 312 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret); 313 return -EIO; 314 } 315 316 if (ret != PAGE_SIZE << dic->log_cluster_size) { 317 printk_ratelimited("%sF2FS-fs (%s): lz4 invalid ret:%d, " 318 "expected:%lu\n", KERN_ERR, 319 F2FS_I_SB(dic->inode)->sb->s_id, ret, 320 PAGE_SIZE << dic->log_cluster_size); 321 return -EIO; 322 } 323 return 0; 324 } 325 326 static const struct f2fs_compress_ops f2fs_lz4_ops = { 327 .init_compress_ctx = lz4_init_compress_ctx, 328 .destroy_compress_ctx = lz4_destroy_compress_ctx, 329 .compress_pages = lz4_compress_pages, 330 .decompress_pages = lz4_decompress_pages, 331 }; 332 #endif 333 334 #ifdef CONFIG_F2FS_FS_ZSTD 335 #define F2FS_ZSTD_DEFAULT_CLEVEL 1 336 337 static int zstd_init_compress_ctx(struct compress_ctx *cc) 338 { 339 zstd_parameters params; 340 zstd_cstream *stream; 341 void *workspace; 342 unsigned int workspace_size; 343 unsigned char level = F2FS_I(cc->inode)->i_compress_flag >> 344 COMPRESS_LEVEL_OFFSET; 345 346 if (!level) 347 level = F2FS_ZSTD_DEFAULT_CLEVEL; 348 349 params = zstd_get_params(F2FS_ZSTD_DEFAULT_CLEVEL, cc->rlen); 350 workspace_size = zstd_cstream_workspace_bound(¶ms.cParams); 351 352 workspace = f2fs_kvmalloc(F2FS_I_SB(cc->inode), 353 workspace_size, GFP_NOFS); 354 if (!workspace) 355 return -ENOMEM; 356 357 stream = zstd_init_cstream(¶ms, 0, workspace, workspace_size); 358 if (!stream) { 359 printk_ratelimited("%sF2FS-fs (%s): %s zstd_init_cstream failed\n", 360 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, 361 __func__); 362 kvfree(workspace); 363 return -EIO; 364 } 365 366 cc->private = workspace; 367 cc->private2 = stream; 368 369 cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE; 370 return 0; 371 } 372 373 static void zstd_destroy_compress_ctx(struct compress_ctx *cc) 374 { 375 kvfree(cc->private); 376 cc->private = NULL; 377 cc->private2 = NULL; 378 } 379 380 static int zstd_compress_pages(struct compress_ctx *cc) 381 { 382 zstd_cstream *stream = cc->private2; 383 zstd_in_buffer inbuf; 384 zstd_out_buffer outbuf; 385 int src_size = cc->rlen; 386 int dst_size = src_size - PAGE_SIZE - COMPRESS_HEADER_SIZE; 387 int ret; 388 389 inbuf.pos = 0; 390 inbuf.src = cc->rbuf; 391 inbuf.size = src_size; 392 393 outbuf.pos = 0; 394 outbuf.dst = cc->cbuf->cdata; 395 outbuf.size = dst_size; 396 397 ret = zstd_compress_stream(stream, &outbuf, &inbuf); 398 if (zstd_is_error(ret)) { 399 printk_ratelimited("%sF2FS-fs (%s): %s zstd_compress_stream failed, ret: %d\n", 400 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, 401 __func__, zstd_get_error_code(ret)); 402 return -EIO; 403 } 404 405 ret = zstd_end_stream(stream, &outbuf); 406 if (zstd_is_error(ret)) { 407 printk_ratelimited("%sF2FS-fs (%s): %s zstd_end_stream returned %d\n", 408 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, 409 __func__, zstd_get_error_code(ret)); 410 return -EIO; 411 } 412 413 /* 414 * there is compressed data remained in intermediate buffer due to 415 * no more space in cbuf.cdata 416 */ 417 if (ret) 418 return -EAGAIN; 419 420 cc->clen = outbuf.pos; 421 return 0; 422 } 423 424 static int zstd_init_decompress_ctx(struct decompress_io_ctx *dic) 425 { 426 zstd_dstream *stream; 427 void *workspace; 428 unsigned int workspace_size; 429 unsigned int max_window_size = 430 MAX_COMPRESS_WINDOW_SIZE(dic->log_cluster_size); 431 432 workspace_size = zstd_dstream_workspace_bound(max_window_size); 433 434 workspace = f2fs_kvmalloc(F2FS_I_SB(dic->inode), 435 workspace_size, GFP_NOFS); 436 if (!workspace) 437 return -ENOMEM; 438 439 stream = zstd_init_dstream(max_window_size, workspace, workspace_size); 440 if (!stream) { 441 printk_ratelimited("%sF2FS-fs (%s): %s zstd_init_dstream failed\n", 442 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, 443 __func__); 444 kvfree(workspace); 445 return -EIO; 446 } 447 448 dic->private = workspace; 449 dic->private2 = stream; 450 451 return 0; 452 } 453 454 static void zstd_destroy_decompress_ctx(struct decompress_io_ctx *dic) 455 { 456 kvfree(dic->private); 457 dic->private = NULL; 458 dic->private2 = NULL; 459 } 460 461 static int zstd_decompress_pages(struct decompress_io_ctx *dic) 462 { 463 zstd_dstream *stream = dic->private2; 464 zstd_in_buffer inbuf; 465 zstd_out_buffer outbuf; 466 int ret; 467 468 inbuf.pos = 0; 469 inbuf.src = dic->cbuf->cdata; 470 inbuf.size = dic->clen; 471 472 outbuf.pos = 0; 473 outbuf.dst = dic->rbuf; 474 outbuf.size = dic->rlen; 475 476 ret = zstd_decompress_stream(stream, &outbuf, &inbuf); 477 if (zstd_is_error(ret)) { 478 printk_ratelimited("%sF2FS-fs (%s): %s zstd_decompress_stream failed, ret: %d\n", 479 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, 480 __func__, zstd_get_error_code(ret)); 481 return -EIO; 482 } 483 484 if (dic->rlen != outbuf.pos) { 485 printk_ratelimited("%sF2FS-fs (%s): %s ZSTD invalid rlen:%zu, " 486 "expected:%lu\n", KERN_ERR, 487 F2FS_I_SB(dic->inode)->sb->s_id, 488 __func__, dic->rlen, 489 PAGE_SIZE << dic->log_cluster_size); 490 return -EIO; 491 } 492 493 return 0; 494 } 495 496 static const struct f2fs_compress_ops f2fs_zstd_ops = { 497 .init_compress_ctx = zstd_init_compress_ctx, 498 .destroy_compress_ctx = zstd_destroy_compress_ctx, 499 .compress_pages = zstd_compress_pages, 500 .init_decompress_ctx = zstd_init_decompress_ctx, 501 .destroy_decompress_ctx = zstd_destroy_decompress_ctx, 502 .decompress_pages = zstd_decompress_pages, 503 }; 504 #endif 505 506 #ifdef CONFIG_F2FS_FS_LZO 507 #ifdef CONFIG_F2FS_FS_LZORLE 508 static int lzorle_compress_pages(struct compress_ctx *cc) 509 { 510 int ret; 511 512 ret = lzorle1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata, 513 &cc->clen, cc->private); 514 if (ret != LZO_E_OK) { 515 printk_ratelimited("%sF2FS-fs (%s): lzo-rle compress failed, ret:%d\n", 516 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret); 517 return -EIO; 518 } 519 return 0; 520 } 521 522 static const struct f2fs_compress_ops f2fs_lzorle_ops = { 523 .init_compress_ctx = lzo_init_compress_ctx, 524 .destroy_compress_ctx = lzo_destroy_compress_ctx, 525 .compress_pages = lzorle_compress_pages, 526 .decompress_pages = lzo_decompress_pages, 527 }; 528 #endif 529 #endif 530 531 static const struct f2fs_compress_ops *f2fs_cops[COMPRESS_MAX] = { 532 #ifdef CONFIG_F2FS_FS_LZO 533 &f2fs_lzo_ops, 534 #else 535 NULL, 536 #endif 537 #ifdef CONFIG_F2FS_FS_LZ4 538 &f2fs_lz4_ops, 539 #else 540 NULL, 541 #endif 542 #ifdef CONFIG_F2FS_FS_ZSTD 543 &f2fs_zstd_ops, 544 #else 545 NULL, 546 #endif 547 #if defined(CONFIG_F2FS_FS_LZO) && defined(CONFIG_F2FS_FS_LZORLE) 548 &f2fs_lzorle_ops, 549 #else 550 NULL, 551 #endif 552 }; 553 554 bool f2fs_is_compress_backend_ready(struct inode *inode) 555 { 556 if (!f2fs_compressed_file(inode)) 557 return true; 558 return f2fs_cops[F2FS_I(inode)->i_compress_algorithm]; 559 } 560 561 static mempool_t *compress_page_pool; 562 static int num_compress_pages = 512; 563 module_param(num_compress_pages, uint, 0444); 564 MODULE_PARM_DESC(num_compress_pages, 565 "Number of intermediate compress pages to preallocate"); 566 567 int f2fs_init_compress_mempool(void) 568 { 569 compress_page_pool = mempool_create_page_pool(num_compress_pages, 0); 570 if (!compress_page_pool) 571 return -ENOMEM; 572 573 return 0; 574 } 575 576 void f2fs_destroy_compress_mempool(void) 577 { 578 mempool_destroy(compress_page_pool); 579 } 580 581 static struct page *f2fs_compress_alloc_page(void) 582 { 583 struct page *page; 584 585 page = mempool_alloc(compress_page_pool, GFP_NOFS); 586 lock_page(page); 587 588 return page; 589 } 590 591 static void f2fs_compress_free_page(struct page *page) 592 { 593 if (!page) 594 return; 595 detach_page_private(page); 596 page->mapping = NULL; 597 unlock_page(page); 598 mempool_free(page, compress_page_pool); 599 } 600 601 #define MAX_VMAP_RETRIES 3 602 603 static void *f2fs_vmap(struct page **pages, unsigned int count) 604 { 605 int i; 606 void *buf = NULL; 607 608 for (i = 0; i < MAX_VMAP_RETRIES; i++) { 609 buf = vm_map_ram(pages, count, -1); 610 if (buf) 611 break; 612 vm_unmap_aliases(); 613 } 614 return buf; 615 } 616 617 static int f2fs_compress_pages(struct compress_ctx *cc) 618 { 619 struct f2fs_inode_info *fi = F2FS_I(cc->inode); 620 const struct f2fs_compress_ops *cops = 621 f2fs_cops[fi->i_compress_algorithm]; 622 unsigned int max_len, new_nr_cpages; 623 u32 chksum = 0; 624 int i, ret; 625 626 trace_f2fs_compress_pages_start(cc->inode, cc->cluster_idx, 627 cc->cluster_size, fi->i_compress_algorithm); 628 629 if (cops->init_compress_ctx) { 630 ret = cops->init_compress_ctx(cc); 631 if (ret) 632 goto out; 633 } 634 635 max_len = COMPRESS_HEADER_SIZE + cc->clen; 636 cc->nr_cpages = DIV_ROUND_UP(max_len, PAGE_SIZE); 637 cc->valid_nr_cpages = cc->nr_cpages; 638 639 cc->cpages = page_array_alloc(cc->inode, cc->nr_cpages); 640 if (!cc->cpages) { 641 ret = -ENOMEM; 642 goto destroy_compress_ctx; 643 } 644 645 for (i = 0; i < cc->nr_cpages; i++) { 646 cc->cpages[i] = f2fs_compress_alloc_page(); 647 if (!cc->cpages[i]) { 648 ret = -ENOMEM; 649 goto out_free_cpages; 650 } 651 } 652 653 cc->rbuf = f2fs_vmap(cc->rpages, cc->cluster_size); 654 if (!cc->rbuf) { 655 ret = -ENOMEM; 656 goto out_free_cpages; 657 } 658 659 cc->cbuf = f2fs_vmap(cc->cpages, cc->nr_cpages); 660 if (!cc->cbuf) { 661 ret = -ENOMEM; 662 goto out_vunmap_rbuf; 663 } 664 665 ret = cops->compress_pages(cc); 666 if (ret) 667 goto out_vunmap_cbuf; 668 669 max_len = PAGE_SIZE * (cc->cluster_size - 1) - COMPRESS_HEADER_SIZE; 670 671 if (cc->clen > max_len) { 672 ret = -EAGAIN; 673 goto out_vunmap_cbuf; 674 } 675 676 cc->cbuf->clen = cpu_to_le32(cc->clen); 677 678 if (fi->i_compress_flag & 1 << COMPRESS_CHKSUM) 679 chksum = f2fs_crc32(F2FS_I_SB(cc->inode), 680 cc->cbuf->cdata, cc->clen); 681 cc->cbuf->chksum = cpu_to_le32(chksum); 682 683 for (i = 0; i < COMPRESS_DATA_RESERVED_SIZE; i++) 684 cc->cbuf->reserved[i] = cpu_to_le32(0); 685 686 new_nr_cpages = DIV_ROUND_UP(cc->clen + COMPRESS_HEADER_SIZE, PAGE_SIZE); 687 688 /* zero out any unused part of the last page */ 689 memset(&cc->cbuf->cdata[cc->clen], 0, 690 (new_nr_cpages * PAGE_SIZE) - 691 (cc->clen + COMPRESS_HEADER_SIZE)); 692 693 vm_unmap_ram(cc->cbuf, cc->nr_cpages); 694 vm_unmap_ram(cc->rbuf, cc->cluster_size); 695 696 for (i = 0; i < cc->nr_cpages; i++) { 697 if (i < new_nr_cpages) 698 continue; 699 f2fs_compress_free_page(cc->cpages[i]); 700 cc->cpages[i] = NULL; 701 } 702 703 if (cops->destroy_compress_ctx) 704 cops->destroy_compress_ctx(cc); 705 706 cc->valid_nr_cpages = new_nr_cpages; 707 708 trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx, 709 cc->clen, ret); 710 return 0; 711 712 out_vunmap_cbuf: 713 vm_unmap_ram(cc->cbuf, cc->nr_cpages); 714 out_vunmap_rbuf: 715 vm_unmap_ram(cc->rbuf, cc->cluster_size); 716 out_free_cpages: 717 for (i = 0; i < cc->nr_cpages; i++) { 718 if (cc->cpages[i]) 719 f2fs_compress_free_page(cc->cpages[i]); 720 } 721 page_array_free(cc->inode, cc->cpages, cc->nr_cpages); 722 cc->cpages = NULL; 723 destroy_compress_ctx: 724 if (cops->destroy_compress_ctx) 725 cops->destroy_compress_ctx(cc); 726 out: 727 trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx, 728 cc->clen, ret); 729 return ret; 730 } 731 732 static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic, 733 bool pre_alloc); 734 static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic, 735 bool bypass_destroy_callback, bool pre_alloc); 736 737 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task) 738 { 739 struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode); 740 struct f2fs_inode_info *fi = F2FS_I(dic->inode); 741 const struct f2fs_compress_ops *cops = 742 f2fs_cops[fi->i_compress_algorithm]; 743 bool bypass_callback = false; 744 int ret; 745 746 trace_f2fs_decompress_pages_start(dic->inode, dic->cluster_idx, 747 dic->cluster_size, fi->i_compress_algorithm); 748 749 if (dic->failed) { 750 ret = -EIO; 751 goto out_end_io; 752 } 753 754 ret = f2fs_prepare_decomp_mem(dic, false); 755 if (ret) { 756 bypass_callback = true; 757 goto out_release; 758 } 759 760 dic->clen = le32_to_cpu(dic->cbuf->clen); 761 dic->rlen = PAGE_SIZE << dic->log_cluster_size; 762 763 if (dic->clen > PAGE_SIZE * dic->nr_cpages - COMPRESS_HEADER_SIZE) { 764 ret = -EFSCORRUPTED; 765 goto out_release; 766 } 767 768 ret = cops->decompress_pages(dic); 769 770 if (!ret && (fi->i_compress_flag & 1 << COMPRESS_CHKSUM)) { 771 u32 provided = le32_to_cpu(dic->cbuf->chksum); 772 u32 calculated = f2fs_crc32(sbi, dic->cbuf->cdata, dic->clen); 773 774 if (provided != calculated) { 775 if (!is_inode_flag_set(dic->inode, FI_COMPRESS_CORRUPT)) { 776 set_inode_flag(dic->inode, FI_COMPRESS_CORRUPT); 777 printk_ratelimited( 778 "%sF2FS-fs (%s): checksum invalid, nid = %lu, %x vs %x", 779 KERN_INFO, sbi->sb->s_id, dic->inode->i_ino, 780 provided, calculated); 781 } 782 set_sbi_flag(sbi, SBI_NEED_FSCK); 783 } 784 } 785 786 out_release: 787 f2fs_release_decomp_mem(dic, bypass_callback, false); 788 789 out_end_io: 790 trace_f2fs_decompress_pages_end(dic->inode, dic->cluster_idx, 791 dic->clen, ret); 792 f2fs_decompress_end_io(dic, ret, in_task); 793 } 794 795 /* 796 * This is called when a page of a compressed cluster has been read from disk 797 * (or failed to be read from disk). It checks whether this page was the last 798 * page being waited on in the cluster, and if so, it decompresses the cluster 799 * (or in the case of a failure, cleans up without actually decompressing). 800 */ 801 void f2fs_end_read_compressed_page(struct page *page, bool failed, 802 block_t blkaddr, bool in_task) 803 { 804 struct decompress_io_ctx *dic = 805 (struct decompress_io_ctx *)page_private(page); 806 struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode); 807 808 dec_page_count(sbi, F2FS_RD_DATA); 809 810 if (failed) 811 WRITE_ONCE(dic->failed, true); 812 else if (blkaddr && in_task) 813 f2fs_cache_compressed_page(sbi, page, 814 dic->inode->i_ino, blkaddr); 815 816 if (atomic_dec_and_test(&dic->remaining_pages)) 817 f2fs_decompress_cluster(dic, in_task); 818 } 819 820 static bool is_page_in_cluster(struct compress_ctx *cc, pgoff_t index) 821 { 822 if (cc->cluster_idx == NULL_CLUSTER) 823 return true; 824 return cc->cluster_idx == cluster_idx(cc, index); 825 } 826 827 bool f2fs_cluster_is_empty(struct compress_ctx *cc) 828 { 829 return cc->nr_rpages == 0; 830 } 831 832 static bool f2fs_cluster_is_full(struct compress_ctx *cc) 833 { 834 return cc->cluster_size == cc->nr_rpages; 835 } 836 837 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index) 838 { 839 if (f2fs_cluster_is_empty(cc)) 840 return true; 841 return is_page_in_cluster(cc, index); 842 } 843 844 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages, 845 int index, int nr_pages, bool uptodate) 846 { 847 unsigned long pgidx = pages[index]->index; 848 int i = uptodate ? 0 : 1; 849 850 /* 851 * when uptodate set to true, try to check all pages in cluster is 852 * uptodate or not. 853 */ 854 if (uptodate && (pgidx % cc->cluster_size)) 855 return false; 856 857 if (nr_pages - index < cc->cluster_size) 858 return false; 859 860 for (; i < cc->cluster_size; i++) { 861 if (pages[index + i]->index != pgidx + i) 862 return false; 863 if (uptodate && !PageUptodate(pages[index + i])) 864 return false; 865 } 866 867 return true; 868 } 869 870 static bool cluster_has_invalid_data(struct compress_ctx *cc) 871 { 872 loff_t i_size = i_size_read(cc->inode); 873 unsigned nr_pages = DIV_ROUND_UP(i_size, PAGE_SIZE); 874 int i; 875 876 for (i = 0; i < cc->cluster_size; i++) { 877 struct page *page = cc->rpages[i]; 878 879 f2fs_bug_on(F2FS_I_SB(cc->inode), !page); 880 881 /* beyond EOF */ 882 if (page->index >= nr_pages) 883 return true; 884 } 885 return false; 886 } 887 888 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) 889 { 890 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 891 unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 892 bool compressed = dn->data_blkaddr == COMPRESS_ADDR; 893 int cluster_end = 0; 894 int i; 895 char *reason = ""; 896 897 if (!compressed) 898 return false; 899 900 /* [..., COMPR_ADDR, ...] */ 901 if (dn->ofs_in_node % cluster_size) { 902 reason = "[*|C|*|*]"; 903 goto out; 904 } 905 906 for (i = 1; i < cluster_size; i++) { 907 block_t blkaddr = data_blkaddr(dn->inode, dn->node_page, 908 dn->ofs_in_node + i); 909 910 /* [COMPR_ADDR, ..., COMPR_ADDR] */ 911 if (blkaddr == COMPRESS_ADDR) { 912 reason = "[C|*|C|*]"; 913 goto out; 914 } 915 if (compressed) { 916 if (!__is_valid_data_blkaddr(blkaddr)) { 917 if (!cluster_end) 918 cluster_end = i; 919 continue; 920 } 921 /* [COMPR_ADDR, NULL_ADDR or NEW_ADDR, valid_blkaddr] */ 922 if (cluster_end) { 923 reason = "[C|N|N|V]"; 924 goto out; 925 } 926 } 927 } 928 return false; 929 out: 930 f2fs_warn(sbi, "access invalid cluster, ino:%lu, nid:%u, ofs_in_node:%u, reason:%s", 931 dn->inode->i_ino, dn->nid, dn->ofs_in_node, reason); 932 set_sbi_flag(sbi, SBI_NEED_FSCK); 933 return true; 934 } 935 936 static int __f2fs_cluster_blocks(struct inode *inode, 937 unsigned int cluster_idx, bool compr) 938 { 939 struct dnode_of_data dn; 940 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size; 941 unsigned int start_idx = cluster_idx << 942 F2FS_I(inode)->i_log_cluster_size; 943 int ret; 944 945 set_new_dnode(&dn, inode, NULL, NULL, 0); 946 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 947 if (ret) { 948 if (ret == -ENOENT) 949 ret = 0; 950 goto fail; 951 } 952 953 if (f2fs_sanity_check_cluster(&dn)) { 954 ret = -EFSCORRUPTED; 955 goto fail; 956 } 957 958 if (dn.data_blkaddr == COMPRESS_ADDR) { 959 int i; 960 961 ret = 1; 962 for (i = 1; i < cluster_size; i++) { 963 block_t blkaddr; 964 965 blkaddr = data_blkaddr(dn.inode, 966 dn.node_page, dn.ofs_in_node + i); 967 if (compr) { 968 if (__is_valid_data_blkaddr(blkaddr)) 969 ret++; 970 } else { 971 if (blkaddr != NULL_ADDR) 972 ret++; 973 } 974 } 975 976 f2fs_bug_on(F2FS_I_SB(inode), 977 !compr && ret != cluster_size && 978 !is_inode_flag_set(inode, FI_COMPRESS_RELEASED)); 979 } 980 fail: 981 f2fs_put_dnode(&dn); 982 return ret; 983 } 984 985 /* return # of compressed blocks in compressed cluster */ 986 static int f2fs_compressed_blocks(struct compress_ctx *cc) 987 { 988 return __f2fs_cluster_blocks(cc->inode, cc->cluster_idx, true); 989 } 990 991 /* return # of valid blocks in compressed cluster */ 992 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index) 993 { 994 return __f2fs_cluster_blocks(inode, 995 index >> F2FS_I(inode)->i_log_cluster_size, 996 false); 997 } 998 999 static bool cluster_may_compress(struct compress_ctx *cc) 1000 { 1001 if (!f2fs_need_compress_data(cc->inode)) 1002 return false; 1003 if (f2fs_is_atomic_file(cc->inode)) 1004 return false; 1005 if (!f2fs_cluster_is_full(cc)) 1006 return false; 1007 if (unlikely(f2fs_cp_error(F2FS_I_SB(cc->inode)))) 1008 return false; 1009 return !cluster_has_invalid_data(cc); 1010 } 1011 1012 static void set_cluster_writeback(struct compress_ctx *cc) 1013 { 1014 int i; 1015 1016 for (i = 0; i < cc->cluster_size; i++) { 1017 if (cc->rpages[i]) 1018 set_page_writeback(cc->rpages[i]); 1019 } 1020 } 1021 1022 static void set_cluster_dirty(struct compress_ctx *cc) 1023 { 1024 int i; 1025 1026 for (i = 0; i < cc->cluster_size; i++) 1027 if (cc->rpages[i]) 1028 set_page_dirty(cc->rpages[i]); 1029 } 1030 1031 static int prepare_compress_overwrite(struct compress_ctx *cc, 1032 struct page **pagep, pgoff_t index, void **fsdata) 1033 { 1034 struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode); 1035 struct address_space *mapping = cc->inode->i_mapping; 1036 struct page *page; 1037 sector_t last_block_in_bio; 1038 unsigned fgp_flag = FGP_LOCK | FGP_WRITE | FGP_CREAT; 1039 pgoff_t start_idx = start_idx_of_cluster(cc); 1040 int i, ret; 1041 1042 retry: 1043 ret = f2fs_is_compressed_cluster(cc->inode, start_idx); 1044 if (ret <= 0) 1045 return ret; 1046 1047 ret = f2fs_init_compress_ctx(cc); 1048 if (ret) 1049 return ret; 1050 1051 /* keep page reference to avoid page reclaim */ 1052 for (i = 0; i < cc->cluster_size; i++) { 1053 page = f2fs_pagecache_get_page(mapping, start_idx + i, 1054 fgp_flag, GFP_NOFS); 1055 if (!page) { 1056 ret = -ENOMEM; 1057 goto unlock_pages; 1058 } 1059 1060 if (PageUptodate(page)) 1061 f2fs_put_page(page, 1); 1062 else 1063 f2fs_compress_ctx_add_page(cc, page); 1064 } 1065 1066 if (!f2fs_cluster_is_empty(cc)) { 1067 struct bio *bio = NULL; 1068 1069 ret = f2fs_read_multi_pages(cc, &bio, cc->cluster_size, 1070 &last_block_in_bio, false, true); 1071 f2fs_put_rpages(cc); 1072 f2fs_destroy_compress_ctx(cc, true); 1073 if (ret) 1074 goto out; 1075 if (bio) 1076 f2fs_submit_bio(sbi, bio, DATA); 1077 1078 ret = f2fs_init_compress_ctx(cc); 1079 if (ret) 1080 goto out; 1081 } 1082 1083 for (i = 0; i < cc->cluster_size; i++) { 1084 f2fs_bug_on(sbi, cc->rpages[i]); 1085 1086 page = find_lock_page(mapping, start_idx + i); 1087 if (!page) { 1088 /* page can be truncated */ 1089 goto release_and_retry; 1090 } 1091 1092 f2fs_wait_on_page_writeback(page, DATA, true, true); 1093 f2fs_compress_ctx_add_page(cc, page); 1094 1095 if (!PageUptodate(page)) { 1096 release_and_retry: 1097 f2fs_put_rpages(cc); 1098 f2fs_unlock_rpages(cc, i + 1); 1099 f2fs_destroy_compress_ctx(cc, true); 1100 goto retry; 1101 } 1102 } 1103 1104 if (likely(!ret)) { 1105 *fsdata = cc->rpages; 1106 *pagep = cc->rpages[offset_in_cluster(cc, index)]; 1107 return cc->cluster_size; 1108 } 1109 1110 unlock_pages: 1111 f2fs_put_rpages(cc); 1112 f2fs_unlock_rpages(cc, i); 1113 f2fs_destroy_compress_ctx(cc, true); 1114 out: 1115 return ret; 1116 } 1117 1118 int f2fs_prepare_compress_overwrite(struct inode *inode, 1119 struct page **pagep, pgoff_t index, void **fsdata) 1120 { 1121 struct compress_ctx cc = { 1122 .inode = inode, 1123 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 1124 .cluster_size = F2FS_I(inode)->i_cluster_size, 1125 .cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size, 1126 .rpages = NULL, 1127 .nr_rpages = 0, 1128 }; 1129 1130 return prepare_compress_overwrite(&cc, pagep, index, fsdata); 1131 } 1132 1133 bool f2fs_compress_write_end(struct inode *inode, void *fsdata, 1134 pgoff_t index, unsigned copied) 1135 1136 { 1137 struct compress_ctx cc = { 1138 .inode = inode, 1139 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 1140 .cluster_size = F2FS_I(inode)->i_cluster_size, 1141 .rpages = fsdata, 1142 }; 1143 bool first_index = (index == cc.rpages[0]->index); 1144 1145 if (copied) 1146 set_cluster_dirty(&cc); 1147 1148 f2fs_put_rpages_wbc(&cc, NULL, false, 1); 1149 f2fs_destroy_compress_ctx(&cc, false); 1150 1151 return first_index; 1152 } 1153 1154 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock) 1155 { 1156 void *fsdata = NULL; 1157 struct page *pagep; 1158 int log_cluster_size = F2FS_I(inode)->i_log_cluster_size; 1159 pgoff_t start_idx = from >> (PAGE_SHIFT + log_cluster_size) << 1160 log_cluster_size; 1161 int err; 1162 1163 err = f2fs_is_compressed_cluster(inode, start_idx); 1164 if (err < 0) 1165 return err; 1166 1167 /* truncate normal cluster */ 1168 if (!err) 1169 return f2fs_do_truncate_blocks(inode, from, lock); 1170 1171 /* truncate compressed cluster */ 1172 err = f2fs_prepare_compress_overwrite(inode, &pagep, 1173 start_idx, &fsdata); 1174 1175 /* should not be a normal cluster */ 1176 f2fs_bug_on(F2FS_I_SB(inode), err == 0); 1177 1178 if (err <= 0) 1179 return err; 1180 1181 if (err > 0) { 1182 struct page **rpages = fsdata; 1183 int cluster_size = F2FS_I(inode)->i_cluster_size; 1184 int i; 1185 1186 for (i = cluster_size - 1; i >= 0; i--) { 1187 loff_t start = rpages[i]->index << PAGE_SHIFT; 1188 1189 if (from <= start) { 1190 zero_user_segment(rpages[i], 0, PAGE_SIZE); 1191 } else { 1192 zero_user_segment(rpages[i], from - start, 1193 PAGE_SIZE); 1194 break; 1195 } 1196 } 1197 1198 f2fs_compress_write_end(inode, fsdata, start_idx, true); 1199 } 1200 return 0; 1201 } 1202 1203 static int f2fs_write_compressed_pages(struct compress_ctx *cc, 1204 int *submitted, 1205 struct writeback_control *wbc, 1206 enum iostat_type io_type) 1207 { 1208 struct inode *inode = cc->inode; 1209 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1210 struct f2fs_inode_info *fi = F2FS_I(inode); 1211 struct f2fs_io_info fio = { 1212 .sbi = sbi, 1213 .ino = cc->inode->i_ino, 1214 .type = DATA, 1215 .op = REQ_OP_WRITE, 1216 .op_flags = wbc_to_write_flags(wbc), 1217 .old_blkaddr = NEW_ADDR, 1218 .page = NULL, 1219 .encrypted_page = NULL, 1220 .compressed_page = NULL, 1221 .submitted = false, 1222 .io_type = io_type, 1223 .io_wbc = wbc, 1224 .encrypted = fscrypt_inode_uses_fs_layer_crypto(cc->inode), 1225 }; 1226 struct dnode_of_data dn; 1227 struct node_info ni; 1228 struct compress_io_ctx *cic; 1229 pgoff_t start_idx = start_idx_of_cluster(cc); 1230 unsigned int last_index = cc->cluster_size - 1; 1231 loff_t psize; 1232 int i, err; 1233 1234 /* we should bypass data pages to proceed the kworkder jobs */ 1235 if (unlikely(f2fs_cp_error(sbi))) { 1236 mapping_set_error(cc->rpages[0]->mapping, -EIO); 1237 goto out_free; 1238 } 1239 1240 if (IS_NOQUOTA(inode)) { 1241 /* 1242 * We need to wait for node_write to avoid block allocation during 1243 * checkpoint. This can only happen to quota writes which can cause 1244 * the below discard race condition. 1245 */ 1246 f2fs_down_read(&sbi->node_write); 1247 } else if (!f2fs_trylock_op(sbi)) { 1248 goto out_free; 1249 } 1250 1251 set_new_dnode(&dn, cc->inode, NULL, NULL, 0); 1252 1253 err = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 1254 if (err) 1255 goto out_unlock_op; 1256 1257 for (i = 0; i < cc->cluster_size; i++) { 1258 if (data_blkaddr(dn.inode, dn.node_page, 1259 dn.ofs_in_node + i) == NULL_ADDR) 1260 goto out_put_dnode; 1261 } 1262 1263 psize = (loff_t)(cc->rpages[last_index]->index + 1) << PAGE_SHIFT; 1264 1265 err = f2fs_get_node_info(fio.sbi, dn.nid, &ni, false); 1266 if (err) 1267 goto out_put_dnode; 1268 1269 fio.version = ni.version; 1270 1271 cic = f2fs_kmem_cache_alloc(cic_entry_slab, GFP_F2FS_ZERO, false, sbi); 1272 if (!cic) 1273 goto out_put_dnode; 1274 1275 cic->magic = F2FS_COMPRESSED_PAGE_MAGIC; 1276 cic->inode = inode; 1277 atomic_set(&cic->pending_pages, cc->valid_nr_cpages); 1278 cic->rpages = page_array_alloc(cc->inode, cc->cluster_size); 1279 if (!cic->rpages) 1280 goto out_put_cic; 1281 1282 cic->nr_rpages = cc->cluster_size; 1283 1284 for (i = 0; i < cc->valid_nr_cpages; i++) { 1285 f2fs_set_compressed_page(cc->cpages[i], inode, 1286 cc->rpages[i + 1]->index, cic); 1287 fio.compressed_page = cc->cpages[i]; 1288 1289 fio.old_blkaddr = data_blkaddr(dn.inode, dn.node_page, 1290 dn.ofs_in_node + i + 1); 1291 1292 /* wait for GCed page writeback via META_MAPPING */ 1293 f2fs_wait_on_block_writeback(inode, fio.old_blkaddr); 1294 1295 if (fio.encrypted) { 1296 fio.page = cc->rpages[i + 1]; 1297 err = f2fs_encrypt_one_page(&fio); 1298 if (err) 1299 goto out_destroy_crypt; 1300 cc->cpages[i] = fio.encrypted_page; 1301 } 1302 } 1303 1304 set_cluster_writeback(cc); 1305 1306 for (i = 0; i < cc->cluster_size; i++) 1307 cic->rpages[i] = cc->rpages[i]; 1308 1309 for (i = 0; i < cc->cluster_size; i++, dn.ofs_in_node++) { 1310 block_t blkaddr; 1311 1312 blkaddr = f2fs_data_blkaddr(&dn); 1313 fio.page = cc->rpages[i]; 1314 fio.old_blkaddr = blkaddr; 1315 1316 /* cluster header */ 1317 if (i == 0) { 1318 if (blkaddr == COMPRESS_ADDR) 1319 fio.compr_blocks++; 1320 if (__is_valid_data_blkaddr(blkaddr)) 1321 f2fs_invalidate_blocks(sbi, blkaddr); 1322 f2fs_update_data_blkaddr(&dn, COMPRESS_ADDR); 1323 goto unlock_continue; 1324 } 1325 1326 if (fio.compr_blocks && __is_valid_data_blkaddr(blkaddr)) 1327 fio.compr_blocks++; 1328 1329 if (i > cc->valid_nr_cpages) { 1330 if (__is_valid_data_blkaddr(blkaddr)) { 1331 f2fs_invalidate_blocks(sbi, blkaddr); 1332 f2fs_update_data_blkaddr(&dn, NEW_ADDR); 1333 } 1334 goto unlock_continue; 1335 } 1336 1337 f2fs_bug_on(fio.sbi, blkaddr == NULL_ADDR); 1338 1339 if (fio.encrypted) 1340 fio.encrypted_page = cc->cpages[i - 1]; 1341 else 1342 fio.compressed_page = cc->cpages[i - 1]; 1343 1344 cc->cpages[i - 1] = NULL; 1345 f2fs_outplace_write_data(&dn, &fio); 1346 (*submitted)++; 1347 unlock_continue: 1348 inode_dec_dirty_pages(cc->inode); 1349 unlock_page(fio.page); 1350 } 1351 1352 if (fio.compr_blocks) 1353 f2fs_i_compr_blocks_update(inode, fio.compr_blocks - 1, false); 1354 f2fs_i_compr_blocks_update(inode, cc->valid_nr_cpages, true); 1355 add_compr_block_stat(inode, cc->valid_nr_cpages); 1356 1357 set_inode_flag(cc->inode, FI_APPEND_WRITE); 1358 if (cc->cluster_idx == 0) 1359 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); 1360 1361 f2fs_put_dnode(&dn); 1362 if (IS_NOQUOTA(inode)) 1363 f2fs_up_read(&sbi->node_write); 1364 else 1365 f2fs_unlock_op(sbi); 1366 1367 spin_lock(&fi->i_size_lock); 1368 if (fi->last_disk_size < psize) 1369 fi->last_disk_size = psize; 1370 spin_unlock(&fi->i_size_lock); 1371 1372 f2fs_put_rpages(cc); 1373 page_array_free(cc->inode, cc->cpages, cc->nr_cpages); 1374 cc->cpages = NULL; 1375 f2fs_destroy_compress_ctx(cc, false); 1376 return 0; 1377 1378 out_destroy_crypt: 1379 page_array_free(cc->inode, cic->rpages, cc->cluster_size); 1380 1381 for (--i; i >= 0; i--) 1382 fscrypt_finalize_bounce_page(&cc->cpages[i]); 1383 out_put_cic: 1384 kmem_cache_free(cic_entry_slab, cic); 1385 out_put_dnode: 1386 f2fs_put_dnode(&dn); 1387 out_unlock_op: 1388 if (IS_NOQUOTA(inode)) 1389 f2fs_up_read(&sbi->node_write); 1390 else 1391 f2fs_unlock_op(sbi); 1392 out_free: 1393 for (i = 0; i < cc->valid_nr_cpages; i++) { 1394 f2fs_compress_free_page(cc->cpages[i]); 1395 cc->cpages[i] = NULL; 1396 } 1397 page_array_free(cc->inode, cc->cpages, cc->nr_cpages); 1398 cc->cpages = NULL; 1399 return -EAGAIN; 1400 } 1401 1402 void f2fs_compress_write_end_io(struct bio *bio, struct page *page) 1403 { 1404 struct f2fs_sb_info *sbi = bio->bi_private; 1405 struct compress_io_ctx *cic = 1406 (struct compress_io_ctx *)page_private(page); 1407 int i; 1408 1409 if (unlikely(bio->bi_status)) 1410 mapping_set_error(cic->inode->i_mapping, -EIO); 1411 1412 f2fs_compress_free_page(page); 1413 1414 dec_page_count(sbi, F2FS_WB_DATA); 1415 1416 if (atomic_dec_return(&cic->pending_pages)) 1417 return; 1418 1419 for (i = 0; i < cic->nr_rpages; i++) { 1420 WARN_ON(!cic->rpages[i]); 1421 clear_page_private_gcing(cic->rpages[i]); 1422 end_page_writeback(cic->rpages[i]); 1423 } 1424 1425 page_array_free(cic->inode, cic->rpages, cic->nr_rpages); 1426 kmem_cache_free(cic_entry_slab, cic); 1427 } 1428 1429 static int f2fs_write_raw_pages(struct compress_ctx *cc, 1430 int *submitted, 1431 struct writeback_control *wbc, 1432 enum iostat_type io_type) 1433 { 1434 struct address_space *mapping = cc->inode->i_mapping; 1435 int _submitted, compr_blocks, ret, i; 1436 1437 compr_blocks = f2fs_compressed_blocks(cc); 1438 1439 for (i = 0; i < cc->cluster_size; i++) { 1440 if (!cc->rpages[i]) 1441 continue; 1442 1443 redirty_page_for_writepage(wbc, cc->rpages[i]); 1444 unlock_page(cc->rpages[i]); 1445 } 1446 1447 if (compr_blocks < 0) 1448 return compr_blocks; 1449 1450 for (i = 0; i < cc->cluster_size; i++) { 1451 if (!cc->rpages[i]) 1452 continue; 1453 retry_write: 1454 lock_page(cc->rpages[i]); 1455 1456 if (cc->rpages[i]->mapping != mapping) { 1457 continue_unlock: 1458 unlock_page(cc->rpages[i]); 1459 continue; 1460 } 1461 1462 if (!PageDirty(cc->rpages[i])) 1463 goto continue_unlock; 1464 1465 if (!clear_page_dirty_for_io(cc->rpages[i])) 1466 goto continue_unlock; 1467 1468 ret = f2fs_write_single_data_page(cc->rpages[i], &_submitted, 1469 NULL, NULL, wbc, io_type, 1470 compr_blocks, false); 1471 if (ret) { 1472 if (ret == AOP_WRITEPAGE_ACTIVATE) { 1473 unlock_page(cc->rpages[i]); 1474 ret = 0; 1475 } else if (ret == -EAGAIN) { 1476 /* 1477 * for quota file, just redirty left pages to 1478 * avoid deadlock caused by cluster update race 1479 * from foreground operation. 1480 */ 1481 if (IS_NOQUOTA(cc->inode)) 1482 return 0; 1483 ret = 0; 1484 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 1485 goto retry_write; 1486 } 1487 return ret; 1488 } 1489 1490 *submitted += _submitted; 1491 } 1492 1493 f2fs_balance_fs(F2FS_M_SB(mapping), true); 1494 1495 return 0; 1496 } 1497 1498 int f2fs_write_multi_pages(struct compress_ctx *cc, 1499 int *submitted, 1500 struct writeback_control *wbc, 1501 enum iostat_type io_type) 1502 { 1503 int err; 1504 1505 *submitted = 0; 1506 if (cluster_may_compress(cc)) { 1507 err = f2fs_compress_pages(cc); 1508 if (err == -EAGAIN) { 1509 add_compr_block_stat(cc->inode, cc->cluster_size); 1510 goto write; 1511 } else if (err) { 1512 f2fs_put_rpages_wbc(cc, wbc, true, 1); 1513 goto destroy_out; 1514 } 1515 1516 err = f2fs_write_compressed_pages(cc, submitted, 1517 wbc, io_type); 1518 if (!err) 1519 return 0; 1520 f2fs_bug_on(F2FS_I_SB(cc->inode), err != -EAGAIN); 1521 } 1522 write: 1523 f2fs_bug_on(F2FS_I_SB(cc->inode), *submitted); 1524 1525 err = f2fs_write_raw_pages(cc, submitted, wbc, io_type); 1526 f2fs_put_rpages_wbc(cc, wbc, false, 0); 1527 destroy_out: 1528 f2fs_destroy_compress_ctx(cc, false); 1529 return err; 1530 } 1531 1532 static inline bool allow_memalloc_for_decomp(struct f2fs_sb_info *sbi, 1533 bool pre_alloc) 1534 { 1535 return pre_alloc ^ f2fs_low_mem_mode(sbi); 1536 } 1537 1538 static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic, 1539 bool pre_alloc) 1540 { 1541 const struct f2fs_compress_ops *cops = 1542 f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm]; 1543 int i; 1544 1545 if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc)) 1546 return 0; 1547 1548 dic->tpages = page_array_alloc(dic->inode, dic->cluster_size); 1549 if (!dic->tpages) 1550 return -ENOMEM; 1551 1552 for (i = 0; i < dic->cluster_size; i++) { 1553 if (dic->rpages[i]) { 1554 dic->tpages[i] = dic->rpages[i]; 1555 continue; 1556 } 1557 1558 dic->tpages[i] = f2fs_compress_alloc_page(); 1559 if (!dic->tpages[i]) 1560 return -ENOMEM; 1561 } 1562 1563 dic->rbuf = f2fs_vmap(dic->tpages, dic->cluster_size); 1564 if (!dic->rbuf) 1565 return -ENOMEM; 1566 1567 dic->cbuf = f2fs_vmap(dic->cpages, dic->nr_cpages); 1568 if (!dic->cbuf) 1569 return -ENOMEM; 1570 1571 if (cops->init_decompress_ctx) { 1572 int ret = cops->init_decompress_ctx(dic); 1573 1574 if (ret) 1575 return ret; 1576 } 1577 1578 return 0; 1579 } 1580 1581 static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic, 1582 bool bypass_destroy_callback, bool pre_alloc) 1583 { 1584 const struct f2fs_compress_ops *cops = 1585 f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm]; 1586 1587 if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc)) 1588 return; 1589 1590 if (!bypass_destroy_callback && cops->destroy_decompress_ctx) 1591 cops->destroy_decompress_ctx(dic); 1592 1593 if (dic->cbuf) 1594 vm_unmap_ram(dic->cbuf, dic->nr_cpages); 1595 1596 if (dic->rbuf) 1597 vm_unmap_ram(dic->rbuf, dic->cluster_size); 1598 } 1599 1600 static void f2fs_free_dic(struct decompress_io_ctx *dic, 1601 bool bypass_destroy_callback); 1602 1603 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc) 1604 { 1605 struct decompress_io_ctx *dic; 1606 pgoff_t start_idx = start_idx_of_cluster(cc); 1607 struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode); 1608 int i, ret; 1609 1610 dic = f2fs_kmem_cache_alloc(dic_entry_slab, GFP_F2FS_ZERO, false, sbi); 1611 if (!dic) 1612 return ERR_PTR(-ENOMEM); 1613 1614 dic->rpages = page_array_alloc(cc->inode, cc->cluster_size); 1615 if (!dic->rpages) { 1616 kmem_cache_free(dic_entry_slab, dic); 1617 return ERR_PTR(-ENOMEM); 1618 } 1619 1620 dic->magic = F2FS_COMPRESSED_PAGE_MAGIC; 1621 dic->inode = cc->inode; 1622 atomic_set(&dic->remaining_pages, cc->nr_cpages); 1623 dic->cluster_idx = cc->cluster_idx; 1624 dic->cluster_size = cc->cluster_size; 1625 dic->log_cluster_size = cc->log_cluster_size; 1626 dic->nr_cpages = cc->nr_cpages; 1627 refcount_set(&dic->refcnt, 1); 1628 dic->failed = false; 1629 dic->need_verity = f2fs_need_verity(cc->inode, start_idx); 1630 1631 for (i = 0; i < dic->cluster_size; i++) 1632 dic->rpages[i] = cc->rpages[i]; 1633 dic->nr_rpages = cc->cluster_size; 1634 1635 dic->cpages = page_array_alloc(dic->inode, dic->nr_cpages); 1636 if (!dic->cpages) { 1637 ret = -ENOMEM; 1638 goto out_free; 1639 } 1640 1641 for (i = 0; i < dic->nr_cpages; i++) { 1642 struct page *page; 1643 1644 page = f2fs_compress_alloc_page(); 1645 if (!page) { 1646 ret = -ENOMEM; 1647 goto out_free; 1648 } 1649 1650 f2fs_set_compressed_page(page, cc->inode, 1651 start_idx + i + 1, dic); 1652 dic->cpages[i] = page; 1653 } 1654 1655 ret = f2fs_prepare_decomp_mem(dic, true); 1656 if (ret) 1657 goto out_free; 1658 1659 return dic; 1660 1661 out_free: 1662 f2fs_free_dic(dic, true); 1663 return ERR_PTR(ret); 1664 } 1665 1666 static void f2fs_free_dic(struct decompress_io_ctx *dic, 1667 bool bypass_destroy_callback) 1668 { 1669 int i; 1670 1671 f2fs_release_decomp_mem(dic, bypass_destroy_callback, true); 1672 1673 if (dic->tpages) { 1674 for (i = 0; i < dic->cluster_size; i++) { 1675 if (dic->rpages[i]) 1676 continue; 1677 if (!dic->tpages[i]) 1678 continue; 1679 f2fs_compress_free_page(dic->tpages[i]); 1680 } 1681 page_array_free(dic->inode, dic->tpages, dic->cluster_size); 1682 } 1683 1684 if (dic->cpages) { 1685 for (i = 0; i < dic->nr_cpages; i++) { 1686 if (!dic->cpages[i]) 1687 continue; 1688 f2fs_compress_free_page(dic->cpages[i]); 1689 } 1690 page_array_free(dic->inode, dic->cpages, dic->nr_cpages); 1691 } 1692 1693 page_array_free(dic->inode, dic->rpages, dic->nr_rpages); 1694 kmem_cache_free(dic_entry_slab, dic); 1695 } 1696 1697 static void f2fs_late_free_dic(struct work_struct *work) 1698 { 1699 struct decompress_io_ctx *dic = 1700 container_of(work, struct decompress_io_ctx, free_work); 1701 1702 f2fs_free_dic(dic, false); 1703 } 1704 1705 static void f2fs_put_dic(struct decompress_io_ctx *dic, bool in_task) 1706 { 1707 if (refcount_dec_and_test(&dic->refcnt)) { 1708 if (in_task) { 1709 f2fs_free_dic(dic, false); 1710 } else { 1711 INIT_WORK(&dic->free_work, f2fs_late_free_dic); 1712 queue_work(F2FS_I_SB(dic->inode)->post_read_wq, 1713 &dic->free_work); 1714 } 1715 } 1716 } 1717 1718 /* 1719 * Update and unlock the cluster's pagecache pages, and release the reference to 1720 * the decompress_io_ctx that was being held for I/O completion. 1721 */ 1722 static void __f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed, 1723 bool in_task) 1724 { 1725 int i; 1726 1727 for (i = 0; i < dic->cluster_size; i++) { 1728 struct page *rpage = dic->rpages[i]; 1729 1730 if (!rpage) 1731 continue; 1732 1733 /* PG_error was set if verity failed. */ 1734 if (failed || PageError(rpage)) { 1735 ClearPageUptodate(rpage); 1736 /* will re-read again later */ 1737 ClearPageError(rpage); 1738 } else { 1739 SetPageUptodate(rpage); 1740 } 1741 unlock_page(rpage); 1742 } 1743 1744 f2fs_put_dic(dic, in_task); 1745 } 1746 1747 static void f2fs_verify_cluster(struct work_struct *work) 1748 { 1749 struct decompress_io_ctx *dic = 1750 container_of(work, struct decompress_io_ctx, verity_work); 1751 int i; 1752 1753 /* Verify the cluster's decompressed pages with fs-verity. */ 1754 for (i = 0; i < dic->cluster_size; i++) { 1755 struct page *rpage = dic->rpages[i]; 1756 1757 if (rpage && !fsverity_verify_page(rpage)) 1758 SetPageError(rpage); 1759 } 1760 1761 __f2fs_decompress_end_io(dic, false, true); 1762 } 1763 1764 /* 1765 * This is called when a compressed cluster has been decompressed 1766 * (or failed to be read and/or decompressed). 1767 */ 1768 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed, 1769 bool in_task) 1770 { 1771 if (!failed && dic->need_verity) { 1772 /* 1773 * Note that to avoid deadlocks, the verity work can't be done 1774 * on the decompression workqueue. This is because verifying 1775 * the data pages can involve reading metadata pages from the 1776 * file, and these metadata pages may be compressed. 1777 */ 1778 INIT_WORK(&dic->verity_work, f2fs_verify_cluster); 1779 fsverity_enqueue_verify_work(&dic->verity_work); 1780 } else { 1781 __f2fs_decompress_end_io(dic, failed, in_task); 1782 } 1783 } 1784 1785 /* 1786 * Put a reference to a compressed page's decompress_io_ctx. 1787 * 1788 * This is called when the page is no longer needed and can be freed. 1789 */ 1790 void f2fs_put_page_dic(struct page *page, bool in_task) 1791 { 1792 struct decompress_io_ctx *dic = 1793 (struct decompress_io_ctx *)page_private(page); 1794 1795 f2fs_put_dic(dic, in_task); 1796 } 1797 1798 /* 1799 * check whether cluster blocks are contiguous, and add extent cache entry 1800 * only if cluster blocks are logically and physically contiguous. 1801 */ 1802 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn) 1803 { 1804 bool compressed = f2fs_data_blkaddr(dn) == COMPRESS_ADDR; 1805 int i = compressed ? 1 : 0; 1806 block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_page, 1807 dn->ofs_in_node + i); 1808 1809 for (i += 1; i < F2FS_I(dn->inode)->i_cluster_size; i++) { 1810 block_t blkaddr = data_blkaddr(dn->inode, dn->node_page, 1811 dn->ofs_in_node + i); 1812 1813 if (!__is_valid_data_blkaddr(blkaddr)) 1814 break; 1815 if (first_blkaddr + i - (compressed ? 1 : 0) != blkaddr) 1816 return 0; 1817 } 1818 1819 return compressed ? i - 1 : i; 1820 } 1821 1822 const struct address_space_operations f2fs_compress_aops = { 1823 .release_folio = f2fs_release_folio, 1824 .invalidate_folio = f2fs_invalidate_folio, 1825 }; 1826 1827 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi) 1828 { 1829 return sbi->compress_inode->i_mapping; 1830 } 1831 1832 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr) 1833 { 1834 if (!sbi->compress_inode) 1835 return; 1836 invalidate_mapping_pages(COMPRESS_MAPPING(sbi), blkaddr, blkaddr); 1837 } 1838 1839 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page, 1840 nid_t ino, block_t blkaddr) 1841 { 1842 struct page *cpage; 1843 int ret; 1844 1845 if (!test_opt(sbi, COMPRESS_CACHE)) 1846 return; 1847 1848 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ)) 1849 return; 1850 1851 if (!f2fs_available_free_memory(sbi, COMPRESS_PAGE)) 1852 return; 1853 1854 cpage = find_get_page(COMPRESS_MAPPING(sbi), blkaddr); 1855 if (cpage) { 1856 f2fs_put_page(cpage, 0); 1857 return; 1858 } 1859 1860 cpage = alloc_page(__GFP_NOWARN | __GFP_IO); 1861 if (!cpage) 1862 return; 1863 1864 ret = add_to_page_cache_lru(cpage, COMPRESS_MAPPING(sbi), 1865 blkaddr, GFP_NOFS); 1866 if (ret) { 1867 f2fs_put_page(cpage, 0); 1868 return; 1869 } 1870 1871 set_page_private_data(cpage, ino); 1872 1873 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ)) 1874 goto out; 1875 1876 memcpy(page_address(cpage), page_address(page), PAGE_SIZE); 1877 SetPageUptodate(cpage); 1878 out: 1879 f2fs_put_page(cpage, 1); 1880 } 1881 1882 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page, 1883 block_t blkaddr) 1884 { 1885 struct page *cpage; 1886 bool hitted = false; 1887 1888 if (!test_opt(sbi, COMPRESS_CACHE)) 1889 return false; 1890 1891 cpage = f2fs_pagecache_get_page(COMPRESS_MAPPING(sbi), 1892 blkaddr, FGP_LOCK | FGP_NOWAIT, GFP_NOFS); 1893 if (cpage) { 1894 if (PageUptodate(cpage)) { 1895 atomic_inc(&sbi->compress_page_hit); 1896 memcpy(page_address(page), 1897 page_address(cpage), PAGE_SIZE); 1898 hitted = true; 1899 } 1900 f2fs_put_page(cpage, 1); 1901 } 1902 1903 return hitted; 1904 } 1905 1906 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino) 1907 { 1908 struct address_space *mapping = sbi->compress_inode->i_mapping; 1909 struct folio_batch fbatch; 1910 pgoff_t index = 0; 1911 pgoff_t end = MAX_BLKADDR(sbi); 1912 1913 if (!mapping->nrpages) 1914 return; 1915 1916 folio_batch_init(&fbatch); 1917 1918 do { 1919 unsigned int nr, i; 1920 1921 nr = filemap_get_folios(mapping, &index, end - 1, &fbatch); 1922 if (!nr) 1923 break; 1924 1925 for (i = 0; i < nr; i++) { 1926 struct folio *folio = fbatch.folios[i]; 1927 1928 folio_lock(folio); 1929 if (folio->mapping != mapping) { 1930 folio_unlock(folio); 1931 continue; 1932 } 1933 1934 if (ino != get_page_private_data(&folio->page)) { 1935 folio_unlock(folio); 1936 continue; 1937 } 1938 1939 generic_error_remove_page(mapping, &folio->page); 1940 folio_unlock(folio); 1941 } 1942 folio_batch_release(&fbatch); 1943 cond_resched(); 1944 } while (index < end); 1945 } 1946 1947 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) 1948 { 1949 struct inode *inode; 1950 1951 if (!test_opt(sbi, COMPRESS_CACHE)) 1952 return 0; 1953 1954 inode = f2fs_iget(sbi->sb, F2FS_COMPRESS_INO(sbi)); 1955 if (IS_ERR(inode)) 1956 return PTR_ERR(inode); 1957 sbi->compress_inode = inode; 1958 1959 sbi->compress_percent = COMPRESS_PERCENT; 1960 sbi->compress_watermark = COMPRESS_WATERMARK; 1961 1962 atomic_set(&sbi->compress_page_hit, 0); 1963 1964 return 0; 1965 } 1966 1967 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) 1968 { 1969 if (!sbi->compress_inode) 1970 return; 1971 iput(sbi->compress_inode); 1972 sbi->compress_inode = NULL; 1973 } 1974 1975 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) 1976 { 1977 dev_t dev = sbi->sb->s_bdev->bd_dev; 1978 char slab_name[32]; 1979 1980 if (!f2fs_sb_has_compression(sbi)) 1981 return 0; 1982 1983 sprintf(slab_name, "f2fs_page_array_entry-%u:%u", MAJOR(dev), MINOR(dev)); 1984 1985 sbi->page_array_slab_size = sizeof(struct page *) << 1986 F2FS_OPTION(sbi).compress_log_size; 1987 1988 sbi->page_array_slab = f2fs_kmem_cache_create(slab_name, 1989 sbi->page_array_slab_size); 1990 if (!sbi->page_array_slab) 1991 return -ENOMEM; 1992 return 0; 1993 } 1994 1995 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) 1996 { 1997 kmem_cache_destroy(sbi->page_array_slab); 1998 } 1999 2000 static int __init f2fs_init_cic_cache(void) 2001 { 2002 cic_entry_slab = f2fs_kmem_cache_create("f2fs_cic_entry", 2003 sizeof(struct compress_io_ctx)); 2004 if (!cic_entry_slab) 2005 return -ENOMEM; 2006 return 0; 2007 } 2008 2009 static void f2fs_destroy_cic_cache(void) 2010 { 2011 kmem_cache_destroy(cic_entry_slab); 2012 } 2013 2014 static int __init f2fs_init_dic_cache(void) 2015 { 2016 dic_entry_slab = f2fs_kmem_cache_create("f2fs_dic_entry", 2017 sizeof(struct decompress_io_ctx)); 2018 if (!dic_entry_slab) 2019 return -ENOMEM; 2020 return 0; 2021 } 2022 2023 static void f2fs_destroy_dic_cache(void) 2024 { 2025 kmem_cache_destroy(dic_entry_slab); 2026 } 2027 2028 int __init f2fs_init_compress_cache(void) 2029 { 2030 int err; 2031 2032 err = f2fs_init_cic_cache(); 2033 if (err) 2034 goto out; 2035 err = f2fs_init_dic_cache(); 2036 if (err) 2037 goto free_cic; 2038 return 0; 2039 free_cic: 2040 f2fs_destroy_cic_cache(); 2041 out: 2042 return -ENOMEM; 2043 } 2044 2045 void f2fs_destroy_compress_cache(void) 2046 { 2047 f2fs_destroy_dic_cache(); 2048 f2fs_destroy_cic_cache(); 2049 } 2050