1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * f2fs compress support 4 * 5 * Copyright (c) 2019 Chao Yu <chao@kernel.org> 6 */ 7 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/moduleparam.h> 11 #include <linux/writeback.h> 12 #include <linux/backing-dev.h> 13 #include <linux/lzo.h> 14 #include <linux/lz4.h> 15 #include <linux/zstd.h> 16 #include <linux/pagevec.h> 17 18 #include "f2fs.h" 19 #include "node.h" 20 #include "segment.h" 21 #include <trace/events/f2fs.h> 22 23 static struct kmem_cache *cic_entry_slab; 24 static struct kmem_cache *dic_entry_slab; 25 26 static void *page_array_alloc(struct inode *inode, int nr) 27 { 28 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 29 unsigned int size = sizeof(struct page *) * nr; 30 31 if (likely(size <= sbi->page_array_slab_size)) 32 return f2fs_kmem_cache_alloc(sbi->page_array_slab, 33 GFP_F2FS_ZERO, false, F2FS_I_SB(inode)); 34 return f2fs_kzalloc(sbi, size, GFP_NOFS); 35 } 36 37 static void page_array_free(struct inode *inode, void *pages, int nr) 38 { 39 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 40 unsigned int size = sizeof(struct page *) * nr; 41 42 if (!pages) 43 return; 44 45 if (likely(size <= sbi->page_array_slab_size)) 46 kmem_cache_free(sbi->page_array_slab, pages); 47 else 48 kfree(pages); 49 } 50 51 struct f2fs_compress_ops { 52 int (*init_compress_ctx)(struct compress_ctx *cc); 53 void (*destroy_compress_ctx)(struct compress_ctx *cc); 54 int (*compress_pages)(struct compress_ctx *cc); 55 int (*init_decompress_ctx)(struct decompress_io_ctx *dic); 56 void (*destroy_decompress_ctx)(struct decompress_io_ctx *dic); 57 int (*decompress_pages)(struct decompress_io_ctx *dic); 58 }; 59 60 static unsigned int offset_in_cluster(struct compress_ctx *cc, pgoff_t index) 61 { 62 return index & (cc->cluster_size - 1); 63 } 64 65 static pgoff_t cluster_idx(struct compress_ctx *cc, pgoff_t index) 66 { 67 return index >> cc->log_cluster_size; 68 } 69 70 static pgoff_t start_idx_of_cluster(struct compress_ctx *cc) 71 { 72 return cc->cluster_idx << cc->log_cluster_size; 73 } 74 75 bool f2fs_is_compressed_page(struct page *page) 76 { 77 if (!PagePrivate(page)) 78 return false; 79 if (!page_private(page)) 80 return false; 81 if (page_private_nonpointer(page)) 82 return false; 83 84 f2fs_bug_on(F2FS_M_SB(page->mapping), 85 *((u32 *)page_private(page)) != F2FS_COMPRESSED_PAGE_MAGIC); 86 return true; 87 } 88 89 static void f2fs_set_compressed_page(struct page *page, 90 struct inode *inode, pgoff_t index, void *data) 91 { 92 attach_page_private(page, (void *)data); 93 94 /* i_crypto_info and iv index */ 95 page->index = index; 96 page->mapping = inode->i_mapping; 97 } 98 99 static void f2fs_drop_rpages(struct compress_ctx *cc, int len, bool unlock) 100 { 101 int i; 102 103 for (i = 0; i < len; i++) { 104 if (!cc->rpages[i]) 105 continue; 106 if (unlock) 107 unlock_page(cc->rpages[i]); 108 else 109 put_page(cc->rpages[i]); 110 } 111 } 112 113 static void f2fs_put_rpages(struct compress_ctx *cc) 114 { 115 f2fs_drop_rpages(cc, cc->cluster_size, false); 116 } 117 118 static void f2fs_unlock_rpages(struct compress_ctx *cc, int len) 119 { 120 f2fs_drop_rpages(cc, len, true); 121 } 122 123 static void f2fs_put_rpages_wbc(struct compress_ctx *cc, 124 struct writeback_control *wbc, bool redirty, int unlock) 125 { 126 unsigned int i; 127 128 for (i = 0; i < cc->cluster_size; i++) { 129 if (!cc->rpages[i]) 130 continue; 131 if (redirty) 132 redirty_page_for_writepage(wbc, cc->rpages[i]); 133 f2fs_put_page(cc->rpages[i], unlock); 134 } 135 } 136 137 struct page *f2fs_compress_control_page(struct page *page) 138 { 139 return ((struct compress_io_ctx *)page_private(page))->rpages[0]; 140 } 141 142 int f2fs_init_compress_ctx(struct compress_ctx *cc) 143 { 144 if (cc->rpages) 145 return 0; 146 147 cc->rpages = page_array_alloc(cc->inode, cc->cluster_size); 148 return cc->rpages ? 0 : -ENOMEM; 149 } 150 151 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse) 152 { 153 page_array_free(cc->inode, cc->rpages, cc->cluster_size); 154 cc->rpages = NULL; 155 cc->nr_rpages = 0; 156 cc->nr_cpages = 0; 157 cc->valid_nr_cpages = 0; 158 if (!reuse) 159 cc->cluster_idx = NULL_CLUSTER; 160 } 161 162 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page) 163 { 164 unsigned int cluster_ofs; 165 166 if (!f2fs_cluster_can_merge_page(cc, page->index)) 167 f2fs_bug_on(F2FS_I_SB(cc->inode), 1); 168 169 cluster_ofs = offset_in_cluster(cc, page->index); 170 cc->rpages[cluster_ofs] = page; 171 cc->nr_rpages++; 172 cc->cluster_idx = cluster_idx(cc, page->index); 173 } 174 175 #ifdef CONFIG_F2FS_FS_LZO 176 static int lzo_init_compress_ctx(struct compress_ctx *cc) 177 { 178 cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), 179 LZO1X_MEM_COMPRESS, GFP_NOFS); 180 if (!cc->private) 181 return -ENOMEM; 182 183 cc->clen = lzo1x_worst_compress(PAGE_SIZE << cc->log_cluster_size); 184 return 0; 185 } 186 187 static void lzo_destroy_compress_ctx(struct compress_ctx *cc) 188 { 189 kvfree(cc->private); 190 cc->private = NULL; 191 } 192 193 static int lzo_compress_pages(struct compress_ctx *cc) 194 { 195 int ret; 196 197 ret = lzo1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata, 198 &cc->clen, cc->private); 199 if (ret != LZO_E_OK) { 200 printk_ratelimited("%sF2FS-fs (%s): lzo compress failed, ret:%d\n", 201 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret); 202 return -EIO; 203 } 204 return 0; 205 } 206 207 static int lzo_decompress_pages(struct decompress_io_ctx *dic) 208 { 209 int ret; 210 211 ret = lzo1x_decompress_safe(dic->cbuf->cdata, dic->clen, 212 dic->rbuf, &dic->rlen); 213 if (ret != LZO_E_OK) { 214 printk_ratelimited("%sF2FS-fs (%s): lzo decompress failed, ret:%d\n", 215 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret); 216 return -EIO; 217 } 218 219 if (dic->rlen != PAGE_SIZE << dic->log_cluster_size) { 220 printk_ratelimited("%sF2FS-fs (%s): lzo invalid rlen:%zu, " 221 "expected:%lu\n", KERN_ERR, 222 F2FS_I_SB(dic->inode)->sb->s_id, 223 dic->rlen, 224 PAGE_SIZE << dic->log_cluster_size); 225 return -EIO; 226 } 227 return 0; 228 } 229 230 static const struct f2fs_compress_ops f2fs_lzo_ops = { 231 .init_compress_ctx = lzo_init_compress_ctx, 232 .destroy_compress_ctx = lzo_destroy_compress_ctx, 233 .compress_pages = lzo_compress_pages, 234 .decompress_pages = lzo_decompress_pages, 235 }; 236 #endif 237 238 #ifdef CONFIG_F2FS_FS_LZ4 239 static int lz4_init_compress_ctx(struct compress_ctx *cc) 240 { 241 unsigned int size = LZ4_MEM_COMPRESS; 242 243 #ifdef CONFIG_F2FS_FS_LZ4HC 244 if (F2FS_I(cc->inode)->i_compress_level) 245 size = LZ4HC_MEM_COMPRESS; 246 #endif 247 248 cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), size, GFP_NOFS); 249 if (!cc->private) 250 return -ENOMEM; 251 252 /* 253 * we do not change cc->clen to LZ4_compressBound(inputsize) to 254 * adapt worst compress case, because lz4 compressor can handle 255 * output budget properly. 256 */ 257 cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE; 258 return 0; 259 } 260 261 static void lz4_destroy_compress_ctx(struct compress_ctx *cc) 262 { 263 kvfree(cc->private); 264 cc->private = NULL; 265 } 266 267 static int lz4_compress_pages(struct compress_ctx *cc) 268 { 269 int len = -EINVAL; 270 unsigned char level = F2FS_I(cc->inode)->i_compress_level; 271 272 if (!level) 273 len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen, 274 cc->clen, cc->private); 275 #ifdef CONFIG_F2FS_FS_LZ4HC 276 else 277 len = LZ4_compress_HC(cc->rbuf, cc->cbuf->cdata, cc->rlen, 278 cc->clen, level, cc->private); 279 #endif 280 if (len < 0) 281 return len; 282 if (!len) 283 return -EAGAIN; 284 285 cc->clen = len; 286 return 0; 287 } 288 289 static int lz4_decompress_pages(struct decompress_io_ctx *dic) 290 { 291 int ret; 292 293 ret = LZ4_decompress_safe(dic->cbuf->cdata, dic->rbuf, 294 dic->clen, dic->rlen); 295 if (ret < 0) { 296 printk_ratelimited("%sF2FS-fs (%s): lz4 decompress failed, ret:%d\n", 297 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret); 298 return -EIO; 299 } 300 301 if (ret != PAGE_SIZE << dic->log_cluster_size) { 302 printk_ratelimited("%sF2FS-fs (%s): lz4 invalid ret:%d, " 303 "expected:%lu\n", KERN_ERR, 304 F2FS_I_SB(dic->inode)->sb->s_id, ret, 305 PAGE_SIZE << dic->log_cluster_size); 306 return -EIO; 307 } 308 return 0; 309 } 310 311 static const struct f2fs_compress_ops f2fs_lz4_ops = { 312 .init_compress_ctx = lz4_init_compress_ctx, 313 .destroy_compress_ctx = lz4_destroy_compress_ctx, 314 .compress_pages = lz4_compress_pages, 315 .decompress_pages = lz4_decompress_pages, 316 }; 317 #endif 318 319 #ifdef CONFIG_F2FS_FS_ZSTD 320 #define F2FS_ZSTD_DEFAULT_CLEVEL 1 321 322 static int zstd_init_compress_ctx(struct compress_ctx *cc) 323 { 324 zstd_parameters params; 325 zstd_cstream *stream; 326 void *workspace; 327 unsigned int workspace_size; 328 unsigned char level = F2FS_I(cc->inode)->i_compress_level; 329 330 if (!level) 331 level = F2FS_ZSTD_DEFAULT_CLEVEL; 332 333 params = zstd_get_params(level, cc->rlen); 334 workspace_size = zstd_cstream_workspace_bound(¶ms.cParams); 335 336 workspace = f2fs_kvmalloc(F2FS_I_SB(cc->inode), 337 workspace_size, GFP_NOFS); 338 if (!workspace) 339 return -ENOMEM; 340 341 stream = zstd_init_cstream(¶ms, 0, workspace, workspace_size); 342 if (!stream) { 343 printk_ratelimited("%sF2FS-fs (%s): %s zstd_init_cstream failed\n", 344 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, 345 __func__); 346 kvfree(workspace); 347 return -EIO; 348 } 349 350 cc->private = workspace; 351 cc->private2 = stream; 352 353 cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE; 354 return 0; 355 } 356 357 static void zstd_destroy_compress_ctx(struct compress_ctx *cc) 358 { 359 kvfree(cc->private); 360 cc->private = NULL; 361 cc->private2 = NULL; 362 } 363 364 static int zstd_compress_pages(struct compress_ctx *cc) 365 { 366 zstd_cstream *stream = cc->private2; 367 zstd_in_buffer inbuf; 368 zstd_out_buffer outbuf; 369 int src_size = cc->rlen; 370 int dst_size = src_size - PAGE_SIZE - COMPRESS_HEADER_SIZE; 371 int ret; 372 373 inbuf.pos = 0; 374 inbuf.src = cc->rbuf; 375 inbuf.size = src_size; 376 377 outbuf.pos = 0; 378 outbuf.dst = cc->cbuf->cdata; 379 outbuf.size = dst_size; 380 381 ret = zstd_compress_stream(stream, &outbuf, &inbuf); 382 if (zstd_is_error(ret)) { 383 printk_ratelimited("%sF2FS-fs (%s): %s zstd_compress_stream failed, ret: %d\n", 384 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, 385 __func__, zstd_get_error_code(ret)); 386 return -EIO; 387 } 388 389 ret = zstd_end_stream(stream, &outbuf); 390 if (zstd_is_error(ret)) { 391 printk_ratelimited("%sF2FS-fs (%s): %s zstd_end_stream returned %d\n", 392 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, 393 __func__, zstd_get_error_code(ret)); 394 return -EIO; 395 } 396 397 /* 398 * there is compressed data remained in intermediate buffer due to 399 * no more space in cbuf.cdata 400 */ 401 if (ret) 402 return -EAGAIN; 403 404 cc->clen = outbuf.pos; 405 return 0; 406 } 407 408 static int zstd_init_decompress_ctx(struct decompress_io_ctx *dic) 409 { 410 zstd_dstream *stream; 411 void *workspace; 412 unsigned int workspace_size; 413 unsigned int max_window_size = 414 MAX_COMPRESS_WINDOW_SIZE(dic->log_cluster_size); 415 416 workspace_size = zstd_dstream_workspace_bound(max_window_size); 417 418 workspace = f2fs_kvmalloc(F2FS_I_SB(dic->inode), 419 workspace_size, GFP_NOFS); 420 if (!workspace) 421 return -ENOMEM; 422 423 stream = zstd_init_dstream(max_window_size, workspace, workspace_size); 424 if (!stream) { 425 printk_ratelimited("%sF2FS-fs (%s): %s zstd_init_dstream failed\n", 426 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, 427 __func__); 428 kvfree(workspace); 429 return -EIO; 430 } 431 432 dic->private = workspace; 433 dic->private2 = stream; 434 435 return 0; 436 } 437 438 static void zstd_destroy_decompress_ctx(struct decompress_io_ctx *dic) 439 { 440 kvfree(dic->private); 441 dic->private = NULL; 442 dic->private2 = NULL; 443 } 444 445 static int zstd_decompress_pages(struct decompress_io_ctx *dic) 446 { 447 zstd_dstream *stream = dic->private2; 448 zstd_in_buffer inbuf; 449 zstd_out_buffer outbuf; 450 int ret; 451 452 inbuf.pos = 0; 453 inbuf.src = dic->cbuf->cdata; 454 inbuf.size = dic->clen; 455 456 outbuf.pos = 0; 457 outbuf.dst = dic->rbuf; 458 outbuf.size = dic->rlen; 459 460 ret = zstd_decompress_stream(stream, &outbuf, &inbuf); 461 if (zstd_is_error(ret)) { 462 printk_ratelimited("%sF2FS-fs (%s): %s zstd_decompress_stream failed, ret: %d\n", 463 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, 464 __func__, zstd_get_error_code(ret)); 465 return -EIO; 466 } 467 468 if (dic->rlen != outbuf.pos) { 469 printk_ratelimited("%sF2FS-fs (%s): %s ZSTD invalid rlen:%zu, " 470 "expected:%lu\n", KERN_ERR, 471 F2FS_I_SB(dic->inode)->sb->s_id, 472 __func__, dic->rlen, 473 PAGE_SIZE << dic->log_cluster_size); 474 return -EIO; 475 } 476 477 return 0; 478 } 479 480 static const struct f2fs_compress_ops f2fs_zstd_ops = { 481 .init_compress_ctx = zstd_init_compress_ctx, 482 .destroy_compress_ctx = zstd_destroy_compress_ctx, 483 .compress_pages = zstd_compress_pages, 484 .init_decompress_ctx = zstd_init_decompress_ctx, 485 .destroy_decompress_ctx = zstd_destroy_decompress_ctx, 486 .decompress_pages = zstd_decompress_pages, 487 }; 488 #endif 489 490 #ifdef CONFIG_F2FS_FS_LZO 491 #ifdef CONFIG_F2FS_FS_LZORLE 492 static int lzorle_compress_pages(struct compress_ctx *cc) 493 { 494 int ret; 495 496 ret = lzorle1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata, 497 &cc->clen, cc->private); 498 if (ret != LZO_E_OK) { 499 printk_ratelimited("%sF2FS-fs (%s): lzo-rle compress failed, ret:%d\n", 500 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret); 501 return -EIO; 502 } 503 return 0; 504 } 505 506 static const struct f2fs_compress_ops f2fs_lzorle_ops = { 507 .init_compress_ctx = lzo_init_compress_ctx, 508 .destroy_compress_ctx = lzo_destroy_compress_ctx, 509 .compress_pages = lzorle_compress_pages, 510 .decompress_pages = lzo_decompress_pages, 511 }; 512 #endif 513 #endif 514 515 static const struct f2fs_compress_ops *f2fs_cops[COMPRESS_MAX] = { 516 #ifdef CONFIG_F2FS_FS_LZO 517 &f2fs_lzo_ops, 518 #else 519 NULL, 520 #endif 521 #ifdef CONFIG_F2FS_FS_LZ4 522 &f2fs_lz4_ops, 523 #else 524 NULL, 525 #endif 526 #ifdef CONFIG_F2FS_FS_ZSTD 527 &f2fs_zstd_ops, 528 #else 529 NULL, 530 #endif 531 #if defined(CONFIG_F2FS_FS_LZO) && defined(CONFIG_F2FS_FS_LZORLE) 532 &f2fs_lzorle_ops, 533 #else 534 NULL, 535 #endif 536 }; 537 538 bool f2fs_is_compress_backend_ready(struct inode *inode) 539 { 540 if (!f2fs_compressed_file(inode)) 541 return true; 542 return f2fs_cops[F2FS_I(inode)->i_compress_algorithm]; 543 } 544 545 static mempool_t *compress_page_pool; 546 static int num_compress_pages = 512; 547 module_param(num_compress_pages, uint, 0444); 548 MODULE_PARM_DESC(num_compress_pages, 549 "Number of intermediate compress pages to preallocate"); 550 551 int __init f2fs_init_compress_mempool(void) 552 { 553 compress_page_pool = mempool_create_page_pool(num_compress_pages, 0); 554 return compress_page_pool ? 0 : -ENOMEM; 555 } 556 557 void f2fs_destroy_compress_mempool(void) 558 { 559 mempool_destroy(compress_page_pool); 560 } 561 562 static struct page *f2fs_compress_alloc_page(void) 563 { 564 struct page *page; 565 566 page = mempool_alloc(compress_page_pool, GFP_NOFS); 567 lock_page(page); 568 569 return page; 570 } 571 572 static void f2fs_compress_free_page(struct page *page) 573 { 574 if (!page) 575 return; 576 detach_page_private(page); 577 page->mapping = NULL; 578 unlock_page(page); 579 mempool_free(page, compress_page_pool); 580 } 581 582 #define MAX_VMAP_RETRIES 3 583 584 static void *f2fs_vmap(struct page **pages, unsigned int count) 585 { 586 int i; 587 void *buf = NULL; 588 589 for (i = 0; i < MAX_VMAP_RETRIES; i++) { 590 buf = vm_map_ram(pages, count, -1); 591 if (buf) 592 break; 593 vm_unmap_aliases(); 594 } 595 return buf; 596 } 597 598 static int f2fs_compress_pages(struct compress_ctx *cc) 599 { 600 struct f2fs_inode_info *fi = F2FS_I(cc->inode); 601 const struct f2fs_compress_ops *cops = 602 f2fs_cops[fi->i_compress_algorithm]; 603 unsigned int max_len, new_nr_cpages; 604 u32 chksum = 0; 605 int i, ret; 606 607 trace_f2fs_compress_pages_start(cc->inode, cc->cluster_idx, 608 cc->cluster_size, fi->i_compress_algorithm); 609 610 if (cops->init_compress_ctx) { 611 ret = cops->init_compress_ctx(cc); 612 if (ret) 613 goto out; 614 } 615 616 max_len = COMPRESS_HEADER_SIZE + cc->clen; 617 cc->nr_cpages = DIV_ROUND_UP(max_len, PAGE_SIZE); 618 cc->valid_nr_cpages = cc->nr_cpages; 619 620 cc->cpages = page_array_alloc(cc->inode, cc->nr_cpages); 621 if (!cc->cpages) { 622 ret = -ENOMEM; 623 goto destroy_compress_ctx; 624 } 625 626 for (i = 0; i < cc->nr_cpages; i++) { 627 cc->cpages[i] = f2fs_compress_alloc_page(); 628 if (!cc->cpages[i]) { 629 ret = -ENOMEM; 630 goto out_free_cpages; 631 } 632 } 633 634 cc->rbuf = f2fs_vmap(cc->rpages, cc->cluster_size); 635 if (!cc->rbuf) { 636 ret = -ENOMEM; 637 goto out_free_cpages; 638 } 639 640 cc->cbuf = f2fs_vmap(cc->cpages, cc->nr_cpages); 641 if (!cc->cbuf) { 642 ret = -ENOMEM; 643 goto out_vunmap_rbuf; 644 } 645 646 ret = cops->compress_pages(cc); 647 if (ret) 648 goto out_vunmap_cbuf; 649 650 max_len = PAGE_SIZE * (cc->cluster_size - 1) - COMPRESS_HEADER_SIZE; 651 652 if (cc->clen > max_len) { 653 ret = -EAGAIN; 654 goto out_vunmap_cbuf; 655 } 656 657 cc->cbuf->clen = cpu_to_le32(cc->clen); 658 659 if (fi->i_compress_flag & BIT(COMPRESS_CHKSUM)) 660 chksum = f2fs_crc32(F2FS_I_SB(cc->inode), 661 cc->cbuf->cdata, cc->clen); 662 cc->cbuf->chksum = cpu_to_le32(chksum); 663 664 for (i = 0; i < COMPRESS_DATA_RESERVED_SIZE; i++) 665 cc->cbuf->reserved[i] = cpu_to_le32(0); 666 667 new_nr_cpages = DIV_ROUND_UP(cc->clen + COMPRESS_HEADER_SIZE, PAGE_SIZE); 668 669 /* zero out any unused part of the last page */ 670 memset(&cc->cbuf->cdata[cc->clen], 0, 671 (new_nr_cpages * PAGE_SIZE) - 672 (cc->clen + COMPRESS_HEADER_SIZE)); 673 674 vm_unmap_ram(cc->cbuf, cc->nr_cpages); 675 vm_unmap_ram(cc->rbuf, cc->cluster_size); 676 677 for (i = new_nr_cpages; i < cc->nr_cpages; i++) { 678 f2fs_compress_free_page(cc->cpages[i]); 679 cc->cpages[i] = NULL; 680 } 681 682 if (cops->destroy_compress_ctx) 683 cops->destroy_compress_ctx(cc); 684 685 cc->valid_nr_cpages = new_nr_cpages; 686 687 trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx, 688 cc->clen, ret); 689 return 0; 690 691 out_vunmap_cbuf: 692 vm_unmap_ram(cc->cbuf, cc->nr_cpages); 693 out_vunmap_rbuf: 694 vm_unmap_ram(cc->rbuf, cc->cluster_size); 695 out_free_cpages: 696 for (i = 0; i < cc->nr_cpages; i++) { 697 if (cc->cpages[i]) 698 f2fs_compress_free_page(cc->cpages[i]); 699 } 700 page_array_free(cc->inode, cc->cpages, cc->nr_cpages); 701 cc->cpages = NULL; 702 destroy_compress_ctx: 703 if (cops->destroy_compress_ctx) 704 cops->destroy_compress_ctx(cc); 705 out: 706 trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx, 707 cc->clen, ret); 708 return ret; 709 } 710 711 static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic, 712 bool pre_alloc); 713 static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic, 714 bool bypass_destroy_callback, bool pre_alloc); 715 716 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task) 717 { 718 struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode); 719 struct f2fs_inode_info *fi = F2FS_I(dic->inode); 720 const struct f2fs_compress_ops *cops = 721 f2fs_cops[fi->i_compress_algorithm]; 722 bool bypass_callback = false; 723 int ret; 724 725 trace_f2fs_decompress_pages_start(dic->inode, dic->cluster_idx, 726 dic->cluster_size, fi->i_compress_algorithm); 727 728 if (dic->failed) { 729 ret = -EIO; 730 goto out_end_io; 731 } 732 733 ret = f2fs_prepare_decomp_mem(dic, false); 734 if (ret) { 735 bypass_callback = true; 736 goto out_release; 737 } 738 739 dic->clen = le32_to_cpu(dic->cbuf->clen); 740 dic->rlen = PAGE_SIZE << dic->log_cluster_size; 741 742 if (dic->clen > PAGE_SIZE * dic->nr_cpages - COMPRESS_HEADER_SIZE) { 743 ret = -EFSCORRUPTED; 744 745 /* Avoid f2fs_commit_super in irq context */ 746 if (in_task) 747 f2fs_save_errors(sbi, ERROR_FAIL_DECOMPRESSION); 748 else 749 f2fs_handle_error(sbi, ERROR_FAIL_DECOMPRESSION); 750 goto out_release; 751 } 752 753 ret = cops->decompress_pages(dic); 754 755 if (!ret && (fi->i_compress_flag & BIT(COMPRESS_CHKSUM))) { 756 u32 provided = le32_to_cpu(dic->cbuf->chksum); 757 u32 calculated = f2fs_crc32(sbi, dic->cbuf->cdata, dic->clen); 758 759 if (provided != calculated) { 760 if (!is_inode_flag_set(dic->inode, FI_COMPRESS_CORRUPT)) { 761 set_inode_flag(dic->inode, FI_COMPRESS_CORRUPT); 762 printk_ratelimited( 763 "%sF2FS-fs (%s): checksum invalid, nid = %lu, %x vs %x", 764 KERN_INFO, sbi->sb->s_id, dic->inode->i_ino, 765 provided, calculated); 766 } 767 set_sbi_flag(sbi, SBI_NEED_FSCK); 768 } 769 } 770 771 out_release: 772 f2fs_release_decomp_mem(dic, bypass_callback, false); 773 774 out_end_io: 775 trace_f2fs_decompress_pages_end(dic->inode, dic->cluster_idx, 776 dic->clen, ret); 777 f2fs_decompress_end_io(dic, ret, in_task); 778 } 779 780 /* 781 * This is called when a page of a compressed cluster has been read from disk 782 * (or failed to be read from disk). It checks whether this page was the last 783 * page being waited on in the cluster, and if so, it decompresses the cluster 784 * (or in the case of a failure, cleans up without actually decompressing). 785 */ 786 void f2fs_end_read_compressed_page(struct page *page, bool failed, 787 block_t blkaddr, bool in_task) 788 { 789 struct decompress_io_ctx *dic = 790 (struct decompress_io_ctx *)page_private(page); 791 struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode); 792 793 dec_page_count(sbi, F2FS_RD_DATA); 794 795 if (failed) 796 WRITE_ONCE(dic->failed, true); 797 else if (blkaddr && in_task) 798 f2fs_cache_compressed_page(sbi, page, 799 dic->inode->i_ino, blkaddr); 800 801 if (atomic_dec_and_test(&dic->remaining_pages)) 802 f2fs_decompress_cluster(dic, in_task); 803 } 804 805 static bool is_page_in_cluster(struct compress_ctx *cc, pgoff_t index) 806 { 807 if (cc->cluster_idx == NULL_CLUSTER) 808 return true; 809 return cc->cluster_idx == cluster_idx(cc, index); 810 } 811 812 bool f2fs_cluster_is_empty(struct compress_ctx *cc) 813 { 814 return cc->nr_rpages == 0; 815 } 816 817 static bool f2fs_cluster_is_full(struct compress_ctx *cc) 818 { 819 return cc->cluster_size == cc->nr_rpages; 820 } 821 822 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index) 823 { 824 if (f2fs_cluster_is_empty(cc)) 825 return true; 826 return is_page_in_cluster(cc, index); 827 } 828 829 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages, 830 int index, int nr_pages, bool uptodate) 831 { 832 unsigned long pgidx = pages[index]->index; 833 int i = uptodate ? 0 : 1; 834 835 /* 836 * when uptodate set to true, try to check all pages in cluster is 837 * uptodate or not. 838 */ 839 if (uptodate && (pgidx % cc->cluster_size)) 840 return false; 841 842 if (nr_pages - index < cc->cluster_size) 843 return false; 844 845 for (; i < cc->cluster_size; i++) { 846 if (pages[index + i]->index != pgidx + i) 847 return false; 848 if (uptodate && !PageUptodate(pages[index + i])) 849 return false; 850 } 851 852 return true; 853 } 854 855 static bool cluster_has_invalid_data(struct compress_ctx *cc) 856 { 857 loff_t i_size = i_size_read(cc->inode); 858 unsigned nr_pages = DIV_ROUND_UP(i_size, PAGE_SIZE); 859 int i; 860 861 for (i = 0; i < cc->cluster_size; i++) { 862 struct page *page = cc->rpages[i]; 863 864 f2fs_bug_on(F2FS_I_SB(cc->inode), !page); 865 866 /* beyond EOF */ 867 if (page->index >= nr_pages) 868 return true; 869 } 870 return false; 871 } 872 873 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) 874 { 875 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 876 unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 877 bool compressed = dn->data_blkaddr == COMPRESS_ADDR; 878 int cluster_end = 0; 879 int i; 880 char *reason = ""; 881 882 if (!compressed) 883 return false; 884 885 /* [..., COMPR_ADDR, ...] */ 886 if (dn->ofs_in_node % cluster_size) { 887 reason = "[*|C|*|*]"; 888 goto out; 889 } 890 891 for (i = 1; i < cluster_size; i++) { 892 block_t blkaddr = data_blkaddr(dn->inode, dn->node_page, 893 dn->ofs_in_node + i); 894 895 /* [COMPR_ADDR, ..., COMPR_ADDR] */ 896 if (blkaddr == COMPRESS_ADDR) { 897 reason = "[C|*|C|*]"; 898 goto out; 899 } 900 if (!__is_valid_data_blkaddr(blkaddr)) { 901 if (!cluster_end) 902 cluster_end = i; 903 continue; 904 } 905 /* [COMPR_ADDR, NULL_ADDR or NEW_ADDR, valid_blkaddr] */ 906 if (cluster_end) { 907 reason = "[C|N|N|V]"; 908 goto out; 909 } 910 } 911 return false; 912 out: 913 f2fs_warn(sbi, "access invalid cluster, ino:%lu, nid:%u, ofs_in_node:%u, reason:%s", 914 dn->inode->i_ino, dn->nid, dn->ofs_in_node, reason); 915 set_sbi_flag(sbi, SBI_NEED_FSCK); 916 return true; 917 } 918 919 static int __f2fs_cluster_blocks(struct inode *inode, 920 unsigned int cluster_idx, bool compr) 921 { 922 struct dnode_of_data dn; 923 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size; 924 unsigned int start_idx = cluster_idx << 925 F2FS_I(inode)->i_log_cluster_size; 926 int ret; 927 928 set_new_dnode(&dn, inode, NULL, NULL, 0); 929 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 930 if (ret) { 931 if (ret == -ENOENT) 932 ret = 0; 933 goto fail; 934 } 935 936 if (f2fs_sanity_check_cluster(&dn)) { 937 ret = -EFSCORRUPTED; 938 f2fs_handle_error(F2FS_I_SB(inode), ERROR_CORRUPTED_CLUSTER); 939 goto fail; 940 } 941 942 if (dn.data_blkaddr == COMPRESS_ADDR) { 943 int i; 944 945 ret = 1; 946 for (i = 1; i < cluster_size; i++) { 947 block_t blkaddr; 948 949 blkaddr = data_blkaddr(dn.inode, 950 dn.node_page, dn.ofs_in_node + i); 951 if (compr) { 952 if (__is_valid_data_blkaddr(blkaddr)) 953 ret++; 954 } else { 955 if (blkaddr != NULL_ADDR) 956 ret++; 957 } 958 } 959 960 f2fs_bug_on(F2FS_I_SB(inode), 961 !compr && ret != cluster_size && 962 !is_inode_flag_set(inode, FI_COMPRESS_RELEASED)); 963 } 964 fail: 965 f2fs_put_dnode(&dn); 966 return ret; 967 } 968 969 /* return # of compressed blocks in compressed cluster */ 970 static int f2fs_compressed_blocks(struct compress_ctx *cc) 971 { 972 return __f2fs_cluster_blocks(cc->inode, cc->cluster_idx, true); 973 } 974 975 /* return # of valid blocks in compressed cluster */ 976 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index) 977 { 978 return __f2fs_cluster_blocks(inode, 979 index >> F2FS_I(inode)->i_log_cluster_size, 980 false); 981 } 982 983 static bool cluster_may_compress(struct compress_ctx *cc) 984 { 985 if (!f2fs_need_compress_data(cc->inode)) 986 return false; 987 if (f2fs_is_atomic_file(cc->inode)) 988 return false; 989 if (!f2fs_cluster_is_full(cc)) 990 return false; 991 if (unlikely(f2fs_cp_error(F2FS_I_SB(cc->inode)))) 992 return false; 993 return !cluster_has_invalid_data(cc); 994 } 995 996 static void set_cluster_writeback(struct compress_ctx *cc) 997 { 998 int i; 999 1000 for (i = 0; i < cc->cluster_size; i++) { 1001 if (cc->rpages[i]) 1002 set_page_writeback(cc->rpages[i]); 1003 } 1004 } 1005 1006 static void set_cluster_dirty(struct compress_ctx *cc) 1007 { 1008 int i; 1009 1010 for (i = 0; i < cc->cluster_size; i++) 1011 if (cc->rpages[i]) 1012 set_page_dirty(cc->rpages[i]); 1013 } 1014 1015 static int prepare_compress_overwrite(struct compress_ctx *cc, 1016 struct page **pagep, pgoff_t index, void **fsdata) 1017 { 1018 struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode); 1019 struct address_space *mapping = cc->inode->i_mapping; 1020 struct page *page; 1021 sector_t last_block_in_bio; 1022 unsigned fgp_flag = FGP_LOCK | FGP_WRITE | FGP_CREAT; 1023 pgoff_t start_idx = start_idx_of_cluster(cc); 1024 int i, ret; 1025 1026 retry: 1027 ret = f2fs_is_compressed_cluster(cc->inode, start_idx); 1028 if (ret <= 0) 1029 return ret; 1030 1031 ret = f2fs_init_compress_ctx(cc); 1032 if (ret) 1033 return ret; 1034 1035 /* keep page reference to avoid page reclaim */ 1036 for (i = 0; i < cc->cluster_size; i++) { 1037 page = f2fs_pagecache_get_page(mapping, start_idx + i, 1038 fgp_flag, GFP_NOFS); 1039 if (!page) { 1040 ret = -ENOMEM; 1041 goto unlock_pages; 1042 } 1043 1044 if (PageUptodate(page)) 1045 f2fs_put_page(page, 1); 1046 else 1047 f2fs_compress_ctx_add_page(cc, page); 1048 } 1049 1050 if (!f2fs_cluster_is_empty(cc)) { 1051 struct bio *bio = NULL; 1052 1053 ret = f2fs_read_multi_pages(cc, &bio, cc->cluster_size, 1054 &last_block_in_bio, false, true); 1055 f2fs_put_rpages(cc); 1056 f2fs_destroy_compress_ctx(cc, true); 1057 if (ret) 1058 goto out; 1059 if (bio) 1060 f2fs_submit_read_bio(sbi, bio, DATA); 1061 1062 ret = f2fs_init_compress_ctx(cc); 1063 if (ret) 1064 goto out; 1065 } 1066 1067 for (i = 0; i < cc->cluster_size; i++) { 1068 f2fs_bug_on(sbi, cc->rpages[i]); 1069 1070 page = find_lock_page(mapping, start_idx + i); 1071 if (!page) { 1072 /* page can be truncated */ 1073 goto release_and_retry; 1074 } 1075 1076 f2fs_wait_on_page_writeback(page, DATA, true, true); 1077 f2fs_compress_ctx_add_page(cc, page); 1078 1079 if (!PageUptodate(page)) { 1080 release_and_retry: 1081 f2fs_put_rpages(cc); 1082 f2fs_unlock_rpages(cc, i + 1); 1083 f2fs_destroy_compress_ctx(cc, true); 1084 goto retry; 1085 } 1086 } 1087 1088 if (likely(!ret)) { 1089 *fsdata = cc->rpages; 1090 *pagep = cc->rpages[offset_in_cluster(cc, index)]; 1091 return cc->cluster_size; 1092 } 1093 1094 unlock_pages: 1095 f2fs_put_rpages(cc); 1096 f2fs_unlock_rpages(cc, i); 1097 f2fs_destroy_compress_ctx(cc, true); 1098 out: 1099 return ret; 1100 } 1101 1102 int f2fs_prepare_compress_overwrite(struct inode *inode, 1103 struct page **pagep, pgoff_t index, void **fsdata) 1104 { 1105 struct compress_ctx cc = { 1106 .inode = inode, 1107 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 1108 .cluster_size = F2FS_I(inode)->i_cluster_size, 1109 .cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size, 1110 .rpages = NULL, 1111 .nr_rpages = 0, 1112 }; 1113 1114 return prepare_compress_overwrite(&cc, pagep, index, fsdata); 1115 } 1116 1117 bool f2fs_compress_write_end(struct inode *inode, void *fsdata, 1118 pgoff_t index, unsigned copied) 1119 1120 { 1121 struct compress_ctx cc = { 1122 .inode = inode, 1123 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 1124 .cluster_size = F2FS_I(inode)->i_cluster_size, 1125 .rpages = fsdata, 1126 }; 1127 bool first_index = (index == cc.rpages[0]->index); 1128 1129 if (copied) 1130 set_cluster_dirty(&cc); 1131 1132 f2fs_put_rpages_wbc(&cc, NULL, false, 1); 1133 f2fs_destroy_compress_ctx(&cc, false); 1134 1135 return first_index; 1136 } 1137 1138 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock) 1139 { 1140 void *fsdata = NULL; 1141 struct page *pagep; 1142 int log_cluster_size = F2FS_I(inode)->i_log_cluster_size; 1143 pgoff_t start_idx = from >> (PAGE_SHIFT + log_cluster_size) << 1144 log_cluster_size; 1145 int err; 1146 1147 err = f2fs_is_compressed_cluster(inode, start_idx); 1148 if (err < 0) 1149 return err; 1150 1151 /* truncate normal cluster */ 1152 if (!err) 1153 return f2fs_do_truncate_blocks(inode, from, lock); 1154 1155 /* truncate compressed cluster */ 1156 err = f2fs_prepare_compress_overwrite(inode, &pagep, 1157 start_idx, &fsdata); 1158 1159 /* should not be a normal cluster */ 1160 f2fs_bug_on(F2FS_I_SB(inode), err == 0); 1161 1162 if (err <= 0) 1163 return err; 1164 1165 if (err > 0) { 1166 struct page **rpages = fsdata; 1167 int cluster_size = F2FS_I(inode)->i_cluster_size; 1168 int i; 1169 1170 for (i = cluster_size - 1; i >= 0; i--) { 1171 loff_t start = rpages[i]->index << PAGE_SHIFT; 1172 1173 if (from <= start) { 1174 zero_user_segment(rpages[i], 0, PAGE_SIZE); 1175 } else { 1176 zero_user_segment(rpages[i], from - start, 1177 PAGE_SIZE); 1178 break; 1179 } 1180 } 1181 1182 f2fs_compress_write_end(inode, fsdata, start_idx, true); 1183 } 1184 return 0; 1185 } 1186 1187 static int f2fs_write_compressed_pages(struct compress_ctx *cc, 1188 int *submitted, 1189 struct writeback_control *wbc, 1190 enum iostat_type io_type) 1191 { 1192 struct inode *inode = cc->inode; 1193 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1194 struct f2fs_inode_info *fi = F2FS_I(inode); 1195 struct f2fs_io_info fio = { 1196 .sbi = sbi, 1197 .ino = cc->inode->i_ino, 1198 .type = DATA, 1199 .op = REQ_OP_WRITE, 1200 .op_flags = wbc_to_write_flags(wbc), 1201 .old_blkaddr = NEW_ADDR, 1202 .page = NULL, 1203 .encrypted_page = NULL, 1204 .compressed_page = NULL, 1205 .submitted = 0, 1206 .io_type = io_type, 1207 .io_wbc = wbc, 1208 .encrypted = fscrypt_inode_uses_fs_layer_crypto(cc->inode) ? 1209 1 : 0, 1210 }; 1211 struct dnode_of_data dn; 1212 struct node_info ni; 1213 struct compress_io_ctx *cic; 1214 pgoff_t start_idx = start_idx_of_cluster(cc); 1215 unsigned int last_index = cc->cluster_size - 1; 1216 loff_t psize; 1217 int i, err; 1218 1219 /* we should bypass data pages to proceed the kworker jobs */ 1220 if (unlikely(f2fs_cp_error(sbi))) { 1221 mapping_set_error(cc->rpages[0]->mapping, -EIO); 1222 goto out_free; 1223 } 1224 1225 if (IS_NOQUOTA(inode)) { 1226 /* 1227 * We need to wait for node_write to avoid block allocation during 1228 * checkpoint. This can only happen to quota writes which can cause 1229 * the below discard race condition. 1230 */ 1231 f2fs_down_read(&sbi->node_write); 1232 } else if (!f2fs_trylock_op(sbi)) { 1233 goto out_free; 1234 } 1235 1236 set_new_dnode(&dn, cc->inode, NULL, NULL, 0); 1237 1238 err = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 1239 if (err) 1240 goto out_unlock_op; 1241 1242 for (i = 0; i < cc->cluster_size; i++) { 1243 if (data_blkaddr(dn.inode, dn.node_page, 1244 dn.ofs_in_node + i) == NULL_ADDR) 1245 goto out_put_dnode; 1246 } 1247 1248 psize = (loff_t)(cc->rpages[last_index]->index + 1) << PAGE_SHIFT; 1249 1250 err = f2fs_get_node_info(fio.sbi, dn.nid, &ni, false); 1251 if (err) 1252 goto out_put_dnode; 1253 1254 fio.version = ni.version; 1255 1256 cic = f2fs_kmem_cache_alloc(cic_entry_slab, GFP_F2FS_ZERO, false, sbi); 1257 if (!cic) 1258 goto out_put_dnode; 1259 1260 cic->magic = F2FS_COMPRESSED_PAGE_MAGIC; 1261 cic->inode = inode; 1262 atomic_set(&cic->pending_pages, cc->valid_nr_cpages); 1263 cic->rpages = page_array_alloc(cc->inode, cc->cluster_size); 1264 if (!cic->rpages) 1265 goto out_put_cic; 1266 1267 cic->nr_rpages = cc->cluster_size; 1268 1269 for (i = 0; i < cc->valid_nr_cpages; i++) { 1270 f2fs_set_compressed_page(cc->cpages[i], inode, 1271 cc->rpages[i + 1]->index, cic); 1272 fio.compressed_page = cc->cpages[i]; 1273 1274 fio.old_blkaddr = data_blkaddr(dn.inode, dn.node_page, 1275 dn.ofs_in_node + i + 1); 1276 1277 /* wait for GCed page writeback via META_MAPPING */ 1278 f2fs_wait_on_block_writeback(inode, fio.old_blkaddr); 1279 1280 if (fio.encrypted) { 1281 fio.page = cc->rpages[i + 1]; 1282 err = f2fs_encrypt_one_page(&fio); 1283 if (err) 1284 goto out_destroy_crypt; 1285 cc->cpages[i] = fio.encrypted_page; 1286 } 1287 } 1288 1289 set_cluster_writeback(cc); 1290 1291 for (i = 0; i < cc->cluster_size; i++) 1292 cic->rpages[i] = cc->rpages[i]; 1293 1294 for (i = 0; i < cc->cluster_size; i++, dn.ofs_in_node++) { 1295 block_t blkaddr; 1296 1297 blkaddr = f2fs_data_blkaddr(&dn); 1298 fio.page = cc->rpages[i]; 1299 fio.old_blkaddr = blkaddr; 1300 1301 /* cluster header */ 1302 if (i == 0) { 1303 if (blkaddr == COMPRESS_ADDR) 1304 fio.compr_blocks++; 1305 if (__is_valid_data_blkaddr(blkaddr)) 1306 f2fs_invalidate_blocks(sbi, blkaddr); 1307 f2fs_update_data_blkaddr(&dn, COMPRESS_ADDR); 1308 goto unlock_continue; 1309 } 1310 1311 if (fio.compr_blocks && __is_valid_data_blkaddr(blkaddr)) 1312 fio.compr_blocks++; 1313 1314 if (i > cc->valid_nr_cpages) { 1315 if (__is_valid_data_blkaddr(blkaddr)) { 1316 f2fs_invalidate_blocks(sbi, blkaddr); 1317 f2fs_update_data_blkaddr(&dn, NEW_ADDR); 1318 } 1319 goto unlock_continue; 1320 } 1321 1322 f2fs_bug_on(fio.sbi, blkaddr == NULL_ADDR); 1323 1324 if (fio.encrypted) 1325 fio.encrypted_page = cc->cpages[i - 1]; 1326 else 1327 fio.compressed_page = cc->cpages[i - 1]; 1328 1329 cc->cpages[i - 1] = NULL; 1330 f2fs_outplace_write_data(&dn, &fio); 1331 (*submitted)++; 1332 unlock_continue: 1333 inode_dec_dirty_pages(cc->inode); 1334 unlock_page(fio.page); 1335 } 1336 1337 if (fio.compr_blocks) 1338 f2fs_i_compr_blocks_update(inode, fio.compr_blocks - 1, false); 1339 f2fs_i_compr_blocks_update(inode, cc->valid_nr_cpages, true); 1340 add_compr_block_stat(inode, cc->valid_nr_cpages); 1341 1342 set_inode_flag(cc->inode, FI_APPEND_WRITE); 1343 if (cc->cluster_idx == 0) 1344 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); 1345 1346 f2fs_put_dnode(&dn); 1347 if (IS_NOQUOTA(inode)) 1348 f2fs_up_read(&sbi->node_write); 1349 else 1350 f2fs_unlock_op(sbi); 1351 1352 spin_lock(&fi->i_size_lock); 1353 if (fi->last_disk_size < psize) 1354 fi->last_disk_size = psize; 1355 spin_unlock(&fi->i_size_lock); 1356 1357 f2fs_put_rpages(cc); 1358 page_array_free(cc->inode, cc->cpages, cc->nr_cpages); 1359 cc->cpages = NULL; 1360 f2fs_destroy_compress_ctx(cc, false); 1361 return 0; 1362 1363 out_destroy_crypt: 1364 page_array_free(cc->inode, cic->rpages, cc->cluster_size); 1365 1366 for (--i; i >= 0; i--) 1367 fscrypt_finalize_bounce_page(&cc->cpages[i]); 1368 out_put_cic: 1369 kmem_cache_free(cic_entry_slab, cic); 1370 out_put_dnode: 1371 f2fs_put_dnode(&dn); 1372 out_unlock_op: 1373 if (IS_NOQUOTA(inode)) 1374 f2fs_up_read(&sbi->node_write); 1375 else 1376 f2fs_unlock_op(sbi); 1377 out_free: 1378 for (i = 0; i < cc->valid_nr_cpages; i++) { 1379 f2fs_compress_free_page(cc->cpages[i]); 1380 cc->cpages[i] = NULL; 1381 } 1382 page_array_free(cc->inode, cc->cpages, cc->nr_cpages); 1383 cc->cpages = NULL; 1384 return -EAGAIN; 1385 } 1386 1387 void f2fs_compress_write_end_io(struct bio *bio, struct page *page) 1388 { 1389 struct f2fs_sb_info *sbi = bio->bi_private; 1390 struct compress_io_ctx *cic = 1391 (struct compress_io_ctx *)page_private(page); 1392 int i; 1393 1394 if (unlikely(bio->bi_status)) 1395 mapping_set_error(cic->inode->i_mapping, -EIO); 1396 1397 f2fs_compress_free_page(page); 1398 1399 dec_page_count(sbi, F2FS_WB_DATA); 1400 1401 if (atomic_dec_return(&cic->pending_pages)) 1402 return; 1403 1404 for (i = 0; i < cic->nr_rpages; i++) { 1405 WARN_ON(!cic->rpages[i]); 1406 clear_page_private_gcing(cic->rpages[i]); 1407 end_page_writeback(cic->rpages[i]); 1408 } 1409 1410 page_array_free(cic->inode, cic->rpages, cic->nr_rpages); 1411 kmem_cache_free(cic_entry_slab, cic); 1412 } 1413 1414 static int f2fs_write_raw_pages(struct compress_ctx *cc, 1415 int *submitted, 1416 struct writeback_control *wbc, 1417 enum iostat_type io_type) 1418 { 1419 struct address_space *mapping = cc->inode->i_mapping; 1420 int _submitted, compr_blocks, ret, i; 1421 1422 compr_blocks = f2fs_compressed_blocks(cc); 1423 1424 for (i = 0; i < cc->cluster_size; i++) { 1425 if (!cc->rpages[i]) 1426 continue; 1427 1428 redirty_page_for_writepage(wbc, cc->rpages[i]); 1429 unlock_page(cc->rpages[i]); 1430 } 1431 1432 if (compr_blocks < 0) 1433 return compr_blocks; 1434 1435 for (i = 0; i < cc->cluster_size; i++) { 1436 if (!cc->rpages[i]) 1437 continue; 1438 retry_write: 1439 lock_page(cc->rpages[i]); 1440 1441 if (cc->rpages[i]->mapping != mapping) { 1442 continue_unlock: 1443 unlock_page(cc->rpages[i]); 1444 continue; 1445 } 1446 1447 if (!PageDirty(cc->rpages[i])) 1448 goto continue_unlock; 1449 1450 if (PageWriteback(cc->rpages[i])) { 1451 if (wbc->sync_mode == WB_SYNC_NONE) 1452 goto continue_unlock; 1453 f2fs_wait_on_page_writeback(cc->rpages[i], DATA, true, true); 1454 } 1455 1456 if (!clear_page_dirty_for_io(cc->rpages[i])) 1457 goto continue_unlock; 1458 1459 ret = f2fs_write_single_data_page(cc->rpages[i], &_submitted, 1460 NULL, NULL, wbc, io_type, 1461 compr_blocks, false); 1462 if (ret) { 1463 if (ret == AOP_WRITEPAGE_ACTIVATE) { 1464 unlock_page(cc->rpages[i]); 1465 ret = 0; 1466 } else if (ret == -EAGAIN) { 1467 /* 1468 * for quota file, just redirty left pages to 1469 * avoid deadlock caused by cluster update race 1470 * from foreground operation. 1471 */ 1472 if (IS_NOQUOTA(cc->inode)) 1473 return 0; 1474 ret = 0; 1475 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 1476 goto retry_write; 1477 } 1478 return ret; 1479 } 1480 1481 *submitted += _submitted; 1482 } 1483 1484 f2fs_balance_fs(F2FS_M_SB(mapping), true); 1485 1486 return 0; 1487 } 1488 1489 int f2fs_write_multi_pages(struct compress_ctx *cc, 1490 int *submitted, 1491 struct writeback_control *wbc, 1492 enum iostat_type io_type) 1493 { 1494 int err; 1495 1496 *submitted = 0; 1497 if (cluster_may_compress(cc)) { 1498 err = f2fs_compress_pages(cc); 1499 if (err == -EAGAIN) { 1500 add_compr_block_stat(cc->inode, cc->cluster_size); 1501 goto write; 1502 } else if (err) { 1503 f2fs_put_rpages_wbc(cc, wbc, true, 1); 1504 goto destroy_out; 1505 } 1506 1507 err = f2fs_write_compressed_pages(cc, submitted, 1508 wbc, io_type); 1509 if (!err) 1510 return 0; 1511 f2fs_bug_on(F2FS_I_SB(cc->inode), err != -EAGAIN); 1512 } 1513 write: 1514 f2fs_bug_on(F2FS_I_SB(cc->inode), *submitted); 1515 1516 err = f2fs_write_raw_pages(cc, submitted, wbc, io_type); 1517 f2fs_put_rpages_wbc(cc, wbc, false, 0); 1518 destroy_out: 1519 f2fs_destroy_compress_ctx(cc, false); 1520 return err; 1521 } 1522 1523 static inline bool allow_memalloc_for_decomp(struct f2fs_sb_info *sbi, 1524 bool pre_alloc) 1525 { 1526 return pre_alloc ^ f2fs_low_mem_mode(sbi); 1527 } 1528 1529 static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic, 1530 bool pre_alloc) 1531 { 1532 const struct f2fs_compress_ops *cops = 1533 f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm]; 1534 int i; 1535 1536 if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc)) 1537 return 0; 1538 1539 dic->tpages = page_array_alloc(dic->inode, dic->cluster_size); 1540 if (!dic->tpages) 1541 return -ENOMEM; 1542 1543 for (i = 0; i < dic->cluster_size; i++) { 1544 if (dic->rpages[i]) { 1545 dic->tpages[i] = dic->rpages[i]; 1546 continue; 1547 } 1548 1549 dic->tpages[i] = f2fs_compress_alloc_page(); 1550 if (!dic->tpages[i]) 1551 return -ENOMEM; 1552 } 1553 1554 dic->rbuf = f2fs_vmap(dic->tpages, dic->cluster_size); 1555 if (!dic->rbuf) 1556 return -ENOMEM; 1557 1558 dic->cbuf = f2fs_vmap(dic->cpages, dic->nr_cpages); 1559 if (!dic->cbuf) 1560 return -ENOMEM; 1561 1562 if (cops->init_decompress_ctx) 1563 return cops->init_decompress_ctx(dic); 1564 1565 return 0; 1566 } 1567 1568 static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic, 1569 bool bypass_destroy_callback, bool pre_alloc) 1570 { 1571 const struct f2fs_compress_ops *cops = 1572 f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm]; 1573 1574 if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc)) 1575 return; 1576 1577 if (!bypass_destroy_callback && cops->destroy_decompress_ctx) 1578 cops->destroy_decompress_ctx(dic); 1579 1580 if (dic->cbuf) 1581 vm_unmap_ram(dic->cbuf, dic->nr_cpages); 1582 1583 if (dic->rbuf) 1584 vm_unmap_ram(dic->rbuf, dic->cluster_size); 1585 } 1586 1587 static void f2fs_free_dic(struct decompress_io_ctx *dic, 1588 bool bypass_destroy_callback); 1589 1590 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc) 1591 { 1592 struct decompress_io_ctx *dic; 1593 pgoff_t start_idx = start_idx_of_cluster(cc); 1594 struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode); 1595 int i, ret; 1596 1597 dic = f2fs_kmem_cache_alloc(dic_entry_slab, GFP_F2FS_ZERO, false, sbi); 1598 if (!dic) 1599 return ERR_PTR(-ENOMEM); 1600 1601 dic->rpages = page_array_alloc(cc->inode, cc->cluster_size); 1602 if (!dic->rpages) { 1603 kmem_cache_free(dic_entry_slab, dic); 1604 return ERR_PTR(-ENOMEM); 1605 } 1606 1607 dic->magic = F2FS_COMPRESSED_PAGE_MAGIC; 1608 dic->inode = cc->inode; 1609 atomic_set(&dic->remaining_pages, cc->nr_cpages); 1610 dic->cluster_idx = cc->cluster_idx; 1611 dic->cluster_size = cc->cluster_size; 1612 dic->log_cluster_size = cc->log_cluster_size; 1613 dic->nr_cpages = cc->nr_cpages; 1614 refcount_set(&dic->refcnt, 1); 1615 dic->failed = false; 1616 dic->need_verity = f2fs_need_verity(cc->inode, start_idx); 1617 1618 for (i = 0; i < dic->cluster_size; i++) 1619 dic->rpages[i] = cc->rpages[i]; 1620 dic->nr_rpages = cc->cluster_size; 1621 1622 dic->cpages = page_array_alloc(dic->inode, dic->nr_cpages); 1623 if (!dic->cpages) { 1624 ret = -ENOMEM; 1625 goto out_free; 1626 } 1627 1628 for (i = 0; i < dic->nr_cpages; i++) { 1629 struct page *page; 1630 1631 page = f2fs_compress_alloc_page(); 1632 if (!page) { 1633 ret = -ENOMEM; 1634 goto out_free; 1635 } 1636 1637 f2fs_set_compressed_page(page, cc->inode, 1638 start_idx + i + 1, dic); 1639 dic->cpages[i] = page; 1640 } 1641 1642 ret = f2fs_prepare_decomp_mem(dic, true); 1643 if (ret) 1644 goto out_free; 1645 1646 return dic; 1647 1648 out_free: 1649 f2fs_free_dic(dic, true); 1650 return ERR_PTR(ret); 1651 } 1652 1653 static void f2fs_free_dic(struct decompress_io_ctx *dic, 1654 bool bypass_destroy_callback) 1655 { 1656 int i; 1657 1658 f2fs_release_decomp_mem(dic, bypass_destroy_callback, true); 1659 1660 if (dic->tpages) { 1661 for (i = 0; i < dic->cluster_size; i++) { 1662 if (dic->rpages[i]) 1663 continue; 1664 if (!dic->tpages[i]) 1665 continue; 1666 f2fs_compress_free_page(dic->tpages[i]); 1667 } 1668 page_array_free(dic->inode, dic->tpages, dic->cluster_size); 1669 } 1670 1671 if (dic->cpages) { 1672 for (i = 0; i < dic->nr_cpages; i++) { 1673 if (!dic->cpages[i]) 1674 continue; 1675 f2fs_compress_free_page(dic->cpages[i]); 1676 } 1677 page_array_free(dic->inode, dic->cpages, dic->nr_cpages); 1678 } 1679 1680 page_array_free(dic->inode, dic->rpages, dic->nr_rpages); 1681 kmem_cache_free(dic_entry_slab, dic); 1682 } 1683 1684 static void f2fs_late_free_dic(struct work_struct *work) 1685 { 1686 struct decompress_io_ctx *dic = 1687 container_of(work, struct decompress_io_ctx, free_work); 1688 1689 f2fs_free_dic(dic, false); 1690 } 1691 1692 static void f2fs_put_dic(struct decompress_io_ctx *dic, bool in_task) 1693 { 1694 if (refcount_dec_and_test(&dic->refcnt)) { 1695 if (in_task) { 1696 f2fs_free_dic(dic, false); 1697 } else { 1698 INIT_WORK(&dic->free_work, f2fs_late_free_dic); 1699 queue_work(F2FS_I_SB(dic->inode)->post_read_wq, 1700 &dic->free_work); 1701 } 1702 } 1703 } 1704 1705 static void f2fs_verify_cluster(struct work_struct *work) 1706 { 1707 struct decompress_io_ctx *dic = 1708 container_of(work, struct decompress_io_ctx, verity_work); 1709 int i; 1710 1711 /* Verify, update, and unlock the decompressed pages. */ 1712 for (i = 0; i < dic->cluster_size; i++) { 1713 struct page *rpage = dic->rpages[i]; 1714 1715 if (!rpage) 1716 continue; 1717 1718 if (fsverity_verify_page(rpage)) 1719 SetPageUptodate(rpage); 1720 else 1721 ClearPageUptodate(rpage); 1722 unlock_page(rpage); 1723 } 1724 1725 f2fs_put_dic(dic, true); 1726 } 1727 1728 /* 1729 * This is called when a compressed cluster has been decompressed 1730 * (or failed to be read and/or decompressed). 1731 */ 1732 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed, 1733 bool in_task) 1734 { 1735 int i; 1736 1737 if (!failed && dic->need_verity) { 1738 /* 1739 * Note that to avoid deadlocks, the verity work can't be done 1740 * on the decompression workqueue. This is because verifying 1741 * the data pages can involve reading metadata pages from the 1742 * file, and these metadata pages may be compressed. 1743 */ 1744 INIT_WORK(&dic->verity_work, f2fs_verify_cluster); 1745 fsverity_enqueue_verify_work(&dic->verity_work); 1746 return; 1747 } 1748 1749 /* Update and unlock the cluster's pagecache pages. */ 1750 for (i = 0; i < dic->cluster_size; i++) { 1751 struct page *rpage = dic->rpages[i]; 1752 1753 if (!rpage) 1754 continue; 1755 1756 if (failed) 1757 ClearPageUptodate(rpage); 1758 else 1759 SetPageUptodate(rpage); 1760 unlock_page(rpage); 1761 } 1762 1763 /* 1764 * Release the reference to the decompress_io_ctx that was being held 1765 * for I/O completion. 1766 */ 1767 f2fs_put_dic(dic, in_task); 1768 } 1769 1770 /* 1771 * Put a reference to a compressed page's decompress_io_ctx. 1772 * 1773 * This is called when the page is no longer needed and can be freed. 1774 */ 1775 void f2fs_put_page_dic(struct page *page, bool in_task) 1776 { 1777 struct decompress_io_ctx *dic = 1778 (struct decompress_io_ctx *)page_private(page); 1779 1780 f2fs_put_dic(dic, in_task); 1781 } 1782 1783 /* 1784 * check whether cluster blocks are contiguous, and add extent cache entry 1785 * only if cluster blocks are logically and physically contiguous. 1786 */ 1787 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn) 1788 { 1789 bool compressed = f2fs_data_blkaddr(dn) == COMPRESS_ADDR; 1790 int i = compressed ? 1 : 0; 1791 block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_page, 1792 dn->ofs_in_node + i); 1793 1794 for (i += 1; i < F2FS_I(dn->inode)->i_cluster_size; i++) { 1795 block_t blkaddr = data_blkaddr(dn->inode, dn->node_page, 1796 dn->ofs_in_node + i); 1797 1798 if (!__is_valid_data_blkaddr(blkaddr)) 1799 break; 1800 if (first_blkaddr + i - (compressed ? 1 : 0) != blkaddr) 1801 return 0; 1802 } 1803 1804 return compressed ? i - 1 : i; 1805 } 1806 1807 const struct address_space_operations f2fs_compress_aops = { 1808 .release_folio = f2fs_release_folio, 1809 .invalidate_folio = f2fs_invalidate_folio, 1810 .migrate_folio = filemap_migrate_folio, 1811 }; 1812 1813 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi) 1814 { 1815 return sbi->compress_inode->i_mapping; 1816 } 1817 1818 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr) 1819 { 1820 if (!sbi->compress_inode) 1821 return; 1822 invalidate_mapping_pages(COMPRESS_MAPPING(sbi), blkaddr, blkaddr); 1823 } 1824 1825 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page, 1826 nid_t ino, block_t blkaddr) 1827 { 1828 struct page *cpage; 1829 int ret; 1830 1831 if (!test_opt(sbi, COMPRESS_CACHE)) 1832 return; 1833 1834 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ)) 1835 return; 1836 1837 if (!f2fs_available_free_memory(sbi, COMPRESS_PAGE)) 1838 return; 1839 1840 cpage = find_get_page(COMPRESS_MAPPING(sbi), blkaddr); 1841 if (cpage) { 1842 f2fs_put_page(cpage, 0); 1843 return; 1844 } 1845 1846 cpage = alloc_page(__GFP_NOWARN | __GFP_IO); 1847 if (!cpage) 1848 return; 1849 1850 ret = add_to_page_cache_lru(cpage, COMPRESS_MAPPING(sbi), 1851 blkaddr, GFP_NOFS); 1852 if (ret) { 1853 f2fs_put_page(cpage, 0); 1854 return; 1855 } 1856 1857 set_page_private_data(cpage, ino); 1858 1859 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ)) 1860 goto out; 1861 1862 memcpy(page_address(cpage), page_address(page), PAGE_SIZE); 1863 SetPageUptodate(cpage); 1864 out: 1865 f2fs_put_page(cpage, 1); 1866 } 1867 1868 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page, 1869 block_t blkaddr) 1870 { 1871 struct page *cpage; 1872 bool hitted = false; 1873 1874 if (!test_opt(sbi, COMPRESS_CACHE)) 1875 return false; 1876 1877 cpage = f2fs_pagecache_get_page(COMPRESS_MAPPING(sbi), 1878 blkaddr, FGP_LOCK | FGP_NOWAIT, GFP_NOFS); 1879 if (cpage) { 1880 if (PageUptodate(cpage)) { 1881 atomic_inc(&sbi->compress_page_hit); 1882 memcpy(page_address(page), 1883 page_address(cpage), PAGE_SIZE); 1884 hitted = true; 1885 } 1886 f2fs_put_page(cpage, 1); 1887 } 1888 1889 return hitted; 1890 } 1891 1892 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino) 1893 { 1894 struct address_space *mapping = COMPRESS_MAPPING(sbi); 1895 struct folio_batch fbatch; 1896 pgoff_t index = 0; 1897 pgoff_t end = MAX_BLKADDR(sbi); 1898 1899 if (!mapping->nrpages) 1900 return; 1901 1902 folio_batch_init(&fbatch); 1903 1904 do { 1905 unsigned int nr, i; 1906 1907 nr = filemap_get_folios(mapping, &index, end - 1, &fbatch); 1908 if (!nr) 1909 break; 1910 1911 for (i = 0; i < nr; i++) { 1912 struct folio *folio = fbatch.folios[i]; 1913 1914 folio_lock(folio); 1915 if (folio->mapping != mapping) { 1916 folio_unlock(folio); 1917 continue; 1918 } 1919 1920 if (ino != get_page_private_data(&folio->page)) { 1921 folio_unlock(folio); 1922 continue; 1923 } 1924 1925 generic_error_remove_page(mapping, &folio->page); 1926 folio_unlock(folio); 1927 } 1928 folio_batch_release(&fbatch); 1929 cond_resched(); 1930 } while (index < end); 1931 } 1932 1933 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) 1934 { 1935 struct inode *inode; 1936 1937 if (!test_opt(sbi, COMPRESS_CACHE)) 1938 return 0; 1939 1940 inode = f2fs_iget(sbi->sb, F2FS_COMPRESS_INO(sbi)); 1941 if (IS_ERR(inode)) 1942 return PTR_ERR(inode); 1943 sbi->compress_inode = inode; 1944 1945 sbi->compress_percent = COMPRESS_PERCENT; 1946 sbi->compress_watermark = COMPRESS_WATERMARK; 1947 1948 atomic_set(&sbi->compress_page_hit, 0); 1949 1950 return 0; 1951 } 1952 1953 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) 1954 { 1955 if (!sbi->compress_inode) 1956 return; 1957 iput(sbi->compress_inode); 1958 sbi->compress_inode = NULL; 1959 } 1960 1961 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) 1962 { 1963 dev_t dev = sbi->sb->s_bdev->bd_dev; 1964 char slab_name[32]; 1965 1966 if (!f2fs_sb_has_compression(sbi)) 1967 return 0; 1968 1969 sprintf(slab_name, "f2fs_page_array_entry-%u:%u", MAJOR(dev), MINOR(dev)); 1970 1971 sbi->page_array_slab_size = sizeof(struct page *) << 1972 F2FS_OPTION(sbi).compress_log_size; 1973 1974 sbi->page_array_slab = f2fs_kmem_cache_create(slab_name, 1975 sbi->page_array_slab_size); 1976 return sbi->page_array_slab ? 0 : -ENOMEM; 1977 } 1978 1979 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) 1980 { 1981 kmem_cache_destroy(sbi->page_array_slab); 1982 } 1983 1984 int __init f2fs_init_compress_cache(void) 1985 { 1986 cic_entry_slab = f2fs_kmem_cache_create("f2fs_cic_entry", 1987 sizeof(struct compress_io_ctx)); 1988 if (!cic_entry_slab) 1989 return -ENOMEM; 1990 dic_entry_slab = f2fs_kmem_cache_create("f2fs_dic_entry", 1991 sizeof(struct decompress_io_ctx)); 1992 if (!dic_entry_slab) 1993 goto free_cic; 1994 return 0; 1995 free_cic: 1996 kmem_cache_destroy(cic_entry_slab); 1997 return -ENOMEM; 1998 } 1999 2000 void f2fs_destroy_compress_cache(void) 2001 { 2002 kmem_cache_destroy(dic_entry_slab); 2003 kmem_cache_destroy(cic_entry_slab); 2004 } 2005