1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/checkpoint.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/bio.h> 10 #include <linux/mpage.h> 11 #include <linux/writeback.h> 12 #include <linux/blkdev.h> 13 #include <linux/f2fs_fs.h> 14 #include <linux/pagevec.h> 15 #include <linux/swap.h> 16 #include <linux/kthread.h> 17 18 #include "f2fs.h" 19 #include "node.h" 20 #include "segment.h" 21 #include "iostat.h" 22 #include <trace/events/f2fs.h> 23 24 #define DEFAULT_CHECKPOINT_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 25 26 static struct kmem_cache *ino_entry_slab; 27 struct kmem_cache *f2fs_inode_entry_slab; 28 29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io, 30 unsigned char reason) 31 { 32 f2fs_build_fault_attr(sbi, 0, 0); 33 if (!end_io) 34 f2fs_flush_merged_writes(sbi); 35 f2fs_handle_critical_error(sbi, reason, end_io); 36 } 37 38 /* 39 * We guarantee no failure on the returned page. 40 */ 41 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 42 { 43 struct address_space *mapping = META_MAPPING(sbi); 44 struct page *page; 45 repeat: 46 page = f2fs_grab_cache_page(mapping, index, false); 47 if (!page) { 48 cond_resched(); 49 goto repeat; 50 } 51 f2fs_wait_on_page_writeback(page, META, true, true); 52 if (!PageUptodate(page)) 53 SetPageUptodate(page); 54 return page; 55 } 56 57 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index, 58 bool is_meta) 59 { 60 struct address_space *mapping = META_MAPPING(sbi); 61 struct page *page; 62 struct f2fs_io_info fio = { 63 .sbi = sbi, 64 .type = META, 65 .op = REQ_OP_READ, 66 .op_flags = REQ_META | REQ_PRIO, 67 .old_blkaddr = index, 68 .new_blkaddr = index, 69 .encrypted_page = NULL, 70 .is_por = !is_meta ? 1 : 0, 71 }; 72 int err; 73 74 if (unlikely(!is_meta)) 75 fio.op_flags &= ~REQ_META; 76 repeat: 77 page = f2fs_grab_cache_page(mapping, index, false); 78 if (!page) { 79 cond_resched(); 80 goto repeat; 81 } 82 if (PageUptodate(page)) 83 goto out; 84 85 fio.page = page; 86 87 err = f2fs_submit_page_bio(&fio); 88 if (err) { 89 f2fs_put_page(page, 1); 90 return ERR_PTR(err); 91 } 92 93 f2fs_update_iostat(sbi, NULL, FS_META_READ_IO, F2FS_BLKSIZE); 94 95 lock_page(page); 96 if (unlikely(page->mapping != mapping)) { 97 f2fs_put_page(page, 1); 98 goto repeat; 99 } 100 101 if (unlikely(!PageUptodate(page))) { 102 f2fs_handle_page_eio(sbi, page->index, META); 103 f2fs_put_page(page, 1); 104 return ERR_PTR(-EIO); 105 } 106 out: 107 return page; 108 } 109 110 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 111 { 112 return __get_meta_page(sbi, index, true); 113 } 114 115 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index) 116 { 117 struct page *page; 118 int count = 0; 119 120 retry: 121 page = __get_meta_page(sbi, index, true); 122 if (IS_ERR(page)) { 123 if (PTR_ERR(page) == -EIO && 124 ++count <= DEFAULT_RETRY_IO_COUNT) 125 goto retry; 126 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_META_PAGE); 127 } 128 return page; 129 } 130 131 /* for POR only */ 132 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index) 133 { 134 return __get_meta_page(sbi, index, false); 135 } 136 137 static bool __is_bitmap_valid(struct f2fs_sb_info *sbi, block_t blkaddr, 138 int type) 139 { 140 struct seg_entry *se; 141 unsigned int segno, offset; 142 bool exist; 143 144 if (type == DATA_GENERIC) 145 return true; 146 147 segno = GET_SEGNO(sbi, blkaddr); 148 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 149 se = get_seg_entry(sbi, segno); 150 151 exist = f2fs_test_bit(offset, se->cur_valid_map); 152 153 /* skip data, if we already have an error in checkpoint. */ 154 if (unlikely(f2fs_cp_error(sbi))) 155 return exist; 156 157 if (exist && type == DATA_GENERIC_ENHANCE_UPDATE) { 158 f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d", 159 blkaddr, exist); 160 set_sbi_flag(sbi, SBI_NEED_FSCK); 161 return exist; 162 } 163 164 if (!exist && type == DATA_GENERIC_ENHANCE) { 165 f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d", 166 blkaddr, exist); 167 set_sbi_flag(sbi, SBI_NEED_FSCK); 168 dump_stack(); 169 } 170 return exist; 171 } 172 173 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 174 block_t blkaddr, int type) 175 { 176 if (time_to_inject(sbi, FAULT_BLKADDR)) 177 return false; 178 179 switch (type) { 180 case META_NAT: 181 break; 182 case META_SIT: 183 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi))) 184 return false; 185 break; 186 case META_SSA: 187 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) || 188 blkaddr < SM_I(sbi)->ssa_blkaddr)) 189 return false; 190 break; 191 case META_CP: 192 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr || 193 blkaddr < __start_cp_addr(sbi))) 194 return false; 195 break; 196 case META_POR: 197 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || 198 blkaddr < MAIN_BLKADDR(sbi))) 199 return false; 200 break; 201 case DATA_GENERIC: 202 case DATA_GENERIC_ENHANCE: 203 case DATA_GENERIC_ENHANCE_READ: 204 case DATA_GENERIC_ENHANCE_UPDATE: 205 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || 206 blkaddr < MAIN_BLKADDR(sbi))) { 207 208 /* Skip to emit an error message. */ 209 if (unlikely(f2fs_cp_error(sbi))) 210 return false; 211 212 f2fs_warn(sbi, "access invalid blkaddr:%u", 213 blkaddr); 214 set_sbi_flag(sbi, SBI_NEED_FSCK); 215 dump_stack(); 216 return false; 217 } else { 218 return __is_bitmap_valid(sbi, blkaddr, type); 219 } 220 break; 221 case META_GENERIC: 222 if (unlikely(blkaddr < SEG0_BLKADDR(sbi) || 223 blkaddr >= MAIN_BLKADDR(sbi))) 224 return false; 225 break; 226 default: 227 BUG(); 228 } 229 230 return true; 231 } 232 233 /* 234 * Readahead CP/NAT/SIT/SSA/POR pages 235 */ 236 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 237 int type, bool sync) 238 { 239 struct page *page; 240 block_t blkno = start; 241 struct f2fs_io_info fio = { 242 .sbi = sbi, 243 .type = META, 244 .op = REQ_OP_READ, 245 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD, 246 .encrypted_page = NULL, 247 .in_list = 0, 248 .is_por = (type == META_POR) ? 1 : 0, 249 }; 250 struct blk_plug plug; 251 int err; 252 253 if (unlikely(type == META_POR)) 254 fio.op_flags &= ~REQ_META; 255 256 blk_start_plug(&plug); 257 for (; nrpages-- > 0; blkno++) { 258 259 if (!f2fs_is_valid_blkaddr(sbi, blkno, type)) 260 goto out; 261 262 switch (type) { 263 case META_NAT: 264 if (unlikely(blkno >= 265 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid))) 266 blkno = 0; 267 /* get nat block addr */ 268 fio.new_blkaddr = current_nat_addr(sbi, 269 blkno * NAT_ENTRY_PER_BLOCK); 270 break; 271 case META_SIT: 272 if (unlikely(blkno >= TOTAL_SEGS(sbi))) 273 goto out; 274 /* get sit block addr */ 275 fio.new_blkaddr = current_sit_addr(sbi, 276 blkno * SIT_ENTRY_PER_BLOCK); 277 break; 278 case META_SSA: 279 case META_CP: 280 case META_POR: 281 fio.new_blkaddr = blkno; 282 break; 283 default: 284 BUG(); 285 } 286 287 page = f2fs_grab_cache_page(META_MAPPING(sbi), 288 fio.new_blkaddr, false); 289 if (!page) 290 continue; 291 if (PageUptodate(page)) { 292 f2fs_put_page(page, 1); 293 continue; 294 } 295 296 fio.page = page; 297 err = f2fs_submit_page_bio(&fio); 298 f2fs_put_page(page, err ? 1 : 0); 299 300 if (!err) 301 f2fs_update_iostat(sbi, NULL, FS_META_READ_IO, 302 F2FS_BLKSIZE); 303 } 304 out: 305 blk_finish_plug(&plug); 306 return blkno - start; 307 } 308 309 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index, 310 unsigned int ra_blocks) 311 { 312 struct page *page; 313 bool readahead = false; 314 315 if (ra_blocks == RECOVERY_MIN_RA_BLOCKS) 316 return; 317 318 page = find_get_page(META_MAPPING(sbi), index); 319 if (!page || !PageUptodate(page)) 320 readahead = true; 321 f2fs_put_page(page, 0); 322 323 if (readahead) 324 f2fs_ra_meta_pages(sbi, index, ra_blocks, META_POR, true); 325 } 326 327 static int __f2fs_write_meta_page(struct page *page, 328 struct writeback_control *wbc, 329 enum iostat_type io_type) 330 { 331 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 332 333 trace_f2fs_writepage(page, META); 334 335 if (unlikely(f2fs_cp_error(sbi))) { 336 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) { 337 ClearPageUptodate(page); 338 dec_page_count(sbi, F2FS_DIRTY_META); 339 unlock_page(page); 340 return 0; 341 } 342 goto redirty_out; 343 } 344 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 345 goto redirty_out; 346 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0)) 347 goto redirty_out; 348 349 f2fs_do_write_meta_page(sbi, page, io_type); 350 dec_page_count(sbi, F2FS_DIRTY_META); 351 352 if (wbc->for_reclaim) 353 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, META); 354 355 unlock_page(page); 356 357 if (unlikely(f2fs_cp_error(sbi))) 358 f2fs_submit_merged_write(sbi, META); 359 360 return 0; 361 362 redirty_out: 363 redirty_page_for_writepage(wbc, page); 364 return AOP_WRITEPAGE_ACTIVATE; 365 } 366 367 static int f2fs_write_meta_page(struct page *page, 368 struct writeback_control *wbc) 369 { 370 return __f2fs_write_meta_page(page, wbc, FS_META_IO); 371 } 372 373 static int f2fs_write_meta_pages(struct address_space *mapping, 374 struct writeback_control *wbc) 375 { 376 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 377 long diff, written; 378 379 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 380 goto skip_write; 381 382 /* collect a number of dirty meta pages and write together */ 383 if (wbc->sync_mode != WB_SYNC_ALL && 384 get_pages(sbi, F2FS_DIRTY_META) < 385 nr_pages_to_skip(sbi, META)) 386 goto skip_write; 387 388 /* if locked failed, cp will flush dirty pages instead */ 389 if (!f2fs_down_write_trylock(&sbi->cp_global_sem)) 390 goto skip_write; 391 392 trace_f2fs_writepages(mapping->host, wbc, META); 393 diff = nr_pages_to_write(sbi, META, wbc); 394 written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO); 395 f2fs_up_write(&sbi->cp_global_sem); 396 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff); 397 return 0; 398 399 skip_write: 400 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META); 401 trace_f2fs_writepages(mapping->host, wbc, META); 402 return 0; 403 } 404 405 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 406 long nr_to_write, enum iostat_type io_type) 407 { 408 struct address_space *mapping = META_MAPPING(sbi); 409 pgoff_t index = 0, prev = ULONG_MAX; 410 struct folio_batch fbatch; 411 long nwritten = 0; 412 int nr_folios; 413 struct writeback_control wbc = { 414 .for_reclaim = 0, 415 }; 416 struct blk_plug plug; 417 418 folio_batch_init(&fbatch); 419 420 blk_start_plug(&plug); 421 422 while ((nr_folios = filemap_get_folios_tag(mapping, &index, 423 (pgoff_t)-1, 424 PAGECACHE_TAG_DIRTY, &fbatch))) { 425 int i; 426 427 for (i = 0; i < nr_folios; i++) { 428 struct folio *folio = fbatch.folios[i]; 429 430 if (nr_to_write != LONG_MAX && i != 0 && 431 folio->index != prev + 432 folio_nr_pages(fbatch.folios[i-1])) { 433 folio_batch_release(&fbatch); 434 goto stop; 435 } 436 437 folio_lock(folio); 438 439 if (unlikely(folio->mapping != mapping)) { 440 continue_unlock: 441 folio_unlock(folio); 442 continue; 443 } 444 if (!folio_test_dirty(folio)) { 445 /* someone wrote it for us */ 446 goto continue_unlock; 447 } 448 449 f2fs_wait_on_page_writeback(&folio->page, META, 450 true, true); 451 452 if (!folio_clear_dirty_for_io(folio)) 453 goto continue_unlock; 454 455 if (__f2fs_write_meta_page(&folio->page, &wbc, 456 io_type)) { 457 folio_unlock(folio); 458 break; 459 } 460 nwritten += folio_nr_pages(folio); 461 prev = folio->index; 462 if (unlikely(nwritten >= nr_to_write)) 463 break; 464 } 465 folio_batch_release(&fbatch); 466 cond_resched(); 467 } 468 stop: 469 if (nwritten) 470 f2fs_submit_merged_write(sbi, type); 471 472 blk_finish_plug(&plug); 473 474 return nwritten; 475 } 476 477 static bool f2fs_dirty_meta_folio(struct address_space *mapping, 478 struct folio *folio) 479 { 480 trace_f2fs_set_page_dirty(&folio->page, META); 481 482 if (!folio_test_uptodate(folio)) 483 folio_mark_uptodate(folio); 484 if (filemap_dirty_folio(mapping, folio)) { 485 inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_META); 486 set_page_private_reference(&folio->page); 487 return true; 488 } 489 return false; 490 } 491 492 const struct address_space_operations f2fs_meta_aops = { 493 .writepage = f2fs_write_meta_page, 494 .writepages = f2fs_write_meta_pages, 495 .dirty_folio = f2fs_dirty_meta_folio, 496 .invalidate_folio = f2fs_invalidate_folio, 497 .release_folio = f2fs_release_folio, 498 .migrate_folio = filemap_migrate_folio, 499 }; 500 501 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, 502 unsigned int devidx, int type) 503 { 504 struct inode_management *im = &sbi->im[type]; 505 struct ino_entry *e = NULL, *new = NULL; 506 507 if (type == FLUSH_INO) { 508 rcu_read_lock(); 509 e = radix_tree_lookup(&im->ino_root, ino); 510 rcu_read_unlock(); 511 } 512 513 retry: 514 if (!e) 515 new = f2fs_kmem_cache_alloc(ino_entry_slab, 516 GFP_NOFS, true, NULL); 517 518 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL); 519 520 spin_lock(&im->ino_lock); 521 e = radix_tree_lookup(&im->ino_root, ino); 522 if (!e) { 523 if (!new) { 524 spin_unlock(&im->ino_lock); 525 radix_tree_preload_end(); 526 goto retry; 527 } 528 e = new; 529 if (unlikely(radix_tree_insert(&im->ino_root, ino, e))) 530 f2fs_bug_on(sbi, 1); 531 532 memset(e, 0, sizeof(struct ino_entry)); 533 e->ino = ino; 534 535 list_add_tail(&e->list, &im->ino_list); 536 if (type != ORPHAN_INO) 537 im->ino_num++; 538 } 539 540 if (type == FLUSH_INO) 541 f2fs_set_bit(devidx, (char *)&e->dirty_device); 542 543 spin_unlock(&im->ino_lock); 544 radix_tree_preload_end(); 545 546 if (new && e != new) 547 kmem_cache_free(ino_entry_slab, new); 548 } 549 550 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 551 { 552 struct inode_management *im = &sbi->im[type]; 553 struct ino_entry *e; 554 555 spin_lock(&im->ino_lock); 556 e = radix_tree_lookup(&im->ino_root, ino); 557 if (e) { 558 list_del(&e->list); 559 radix_tree_delete(&im->ino_root, ino); 560 im->ino_num--; 561 spin_unlock(&im->ino_lock); 562 kmem_cache_free(ino_entry_slab, e); 563 return; 564 } 565 spin_unlock(&im->ino_lock); 566 } 567 568 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 569 { 570 /* add new dirty ino entry into list */ 571 __add_ino_entry(sbi, ino, 0, type); 572 } 573 574 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 575 { 576 /* remove dirty ino entry from list */ 577 __remove_ino_entry(sbi, ino, type); 578 } 579 580 /* mode should be APPEND_INO, UPDATE_INO or TRANS_DIR_INO */ 581 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode) 582 { 583 struct inode_management *im = &sbi->im[mode]; 584 struct ino_entry *e; 585 586 spin_lock(&im->ino_lock); 587 e = radix_tree_lookup(&im->ino_root, ino); 588 spin_unlock(&im->ino_lock); 589 return e ? true : false; 590 } 591 592 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all) 593 { 594 struct ino_entry *e, *tmp; 595 int i; 596 597 for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) { 598 struct inode_management *im = &sbi->im[i]; 599 600 spin_lock(&im->ino_lock); 601 list_for_each_entry_safe(e, tmp, &im->ino_list, list) { 602 list_del(&e->list); 603 radix_tree_delete(&im->ino_root, e->ino); 604 kmem_cache_free(ino_entry_slab, e); 605 im->ino_num--; 606 } 607 spin_unlock(&im->ino_lock); 608 } 609 } 610 611 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 612 unsigned int devidx, int type) 613 { 614 __add_ino_entry(sbi, ino, devidx, type); 615 } 616 617 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 618 unsigned int devidx, int type) 619 { 620 struct inode_management *im = &sbi->im[type]; 621 struct ino_entry *e; 622 bool is_dirty = false; 623 624 spin_lock(&im->ino_lock); 625 e = radix_tree_lookup(&im->ino_root, ino); 626 if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device)) 627 is_dirty = true; 628 spin_unlock(&im->ino_lock); 629 return is_dirty; 630 } 631 632 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi) 633 { 634 struct inode_management *im = &sbi->im[ORPHAN_INO]; 635 int err = 0; 636 637 spin_lock(&im->ino_lock); 638 639 if (time_to_inject(sbi, FAULT_ORPHAN)) { 640 spin_unlock(&im->ino_lock); 641 return -ENOSPC; 642 } 643 644 if (unlikely(im->ino_num >= sbi->max_orphans)) 645 err = -ENOSPC; 646 else 647 im->ino_num++; 648 spin_unlock(&im->ino_lock); 649 650 return err; 651 } 652 653 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi) 654 { 655 struct inode_management *im = &sbi->im[ORPHAN_INO]; 656 657 spin_lock(&im->ino_lock); 658 f2fs_bug_on(sbi, im->ino_num == 0); 659 im->ino_num--; 660 spin_unlock(&im->ino_lock); 661 } 662 663 void f2fs_add_orphan_inode(struct inode *inode) 664 { 665 /* add new orphan ino entry into list */ 666 __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO); 667 f2fs_update_inode_page(inode); 668 } 669 670 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 671 { 672 /* remove orphan entry from orphan list */ 673 __remove_ino_entry(sbi, ino, ORPHAN_INO); 674 } 675 676 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 677 { 678 struct inode *inode; 679 struct node_info ni; 680 int err; 681 682 inode = f2fs_iget_retry(sbi->sb, ino); 683 if (IS_ERR(inode)) { 684 /* 685 * there should be a bug that we can't find the entry 686 * to orphan inode. 687 */ 688 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT); 689 return PTR_ERR(inode); 690 } 691 692 err = f2fs_dquot_initialize(inode); 693 if (err) { 694 iput(inode); 695 goto err_out; 696 } 697 698 clear_nlink(inode); 699 700 /* truncate all the data during iput */ 701 iput(inode); 702 703 err = f2fs_get_node_info(sbi, ino, &ni, false); 704 if (err) 705 goto err_out; 706 707 /* ENOMEM was fully retried in f2fs_evict_inode. */ 708 if (ni.blk_addr != NULL_ADDR) { 709 err = -EIO; 710 goto err_out; 711 } 712 return 0; 713 714 err_out: 715 set_sbi_flag(sbi, SBI_NEED_FSCK); 716 f2fs_warn(sbi, "%s: orphan failed (ino=%x), run fsck to fix.", 717 __func__, ino); 718 return err; 719 } 720 721 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi) 722 { 723 block_t start_blk, orphan_blocks, i, j; 724 int err = 0; 725 726 if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG)) 727 return 0; 728 729 if (f2fs_hw_is_readonly(sbi)) { 730 f2fs_info(sbi, "write access unavailable, skipping orphan cleanup"); 731 return 0; 732 } 733 734 if (is_sbi_flag_set(sbi, SBI_IS_WRITABLE)) 735 f2fs_info(sbi, "orphan cleanup on readonly fs"); 736 737 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi); 738 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi); 739 740 f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true); 741 742 for (i = 0; i < orphan_blocks; i++) { 743 struct page *page; 744 struct f2fs_orphan_block *orphan_blk; 745 746 page = f2fs_get_meta_page(sbi, start_blk + i); 747 if (IS_ERR(page)) { 748 err = PTR_ERR(page); 749 goto out; 750 } 751 752 orphan_blk = (struct f2fs_orphan_block *)page_address(page); 753 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) { 754 nid_t ino = le32_to_cpu(orphan_blk->ino[j]); 755 756 err = recover_orphan_inode(sbi, ino); 757 if (err) { 758 f2fs_put_page(page, 1); 759 goto out; 760 } 761 } 762 f2fs_put_page(page, 1); 763 } 764 /* clear Orphan Flag */ 765 clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG); 766 out: 767 set_sbi_flag(sbi, SBI_IS_RECOVERED); 768 769 return err; 770 } 771 772 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk) 773 { 774 struct list_head *head; 775 struct f2fs_orphan_block *orphan_blk = NULL; 776 unsigned int nentries = 0; 777 unsigned short index = 1; 778 unsigned short orphan_blocks; 779 struct page *page = NULL; 780 struct ino_entry *orphan = NULL; 781 struct inode_management *im = &sbi->im[ORPHAN_INO]; 782 783 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num); 784 785 /* 786 * we don't need to do spin_lock(&im->ino_lock) here, since all the 787 * orphan inode operations are covered under f2fs_lock_op(). 788 * And, spin_lock should be avoided due to page operations below. 789 */ 790 head = &im->ino_list; 791 792 /* loop for each orphan inode entry and write them in journal block */ 793 list_for_each_entry(orphan, head, list) { 794 if (!page) { 795 page = f2fs_grab_meta_page(sbi, start_blk++); 796 orphan_blk = 797 (struct f2fs_orphan_block *)page_address(page); 798 memset(orphan_blk, 0, sizeof(*orphan_blk)); 799 } 800 801 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino); 802 803 if (nentries == F2FS_ORPHANS_PER_BLOCK) { 804 /* 805 * an orphan block is full of 1020 entries, 806 * then we need to flush current orphan blocks 807 * and bring another one in memory 808 */ 809 orphan_blk->blk_addr = cpu_to_le16(index); 810 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 811 orphan_blk->entry_count = cpu_to_le32(nentries); 812 set_page_dirty(page); 813 f2fs_put_page(page, 1); 814 index++; 815 nentries = 0; 816 page = NULL; 817 } 818 } 819 820 if (page) { 821 orphan_blk->blk_addr = cpu_to_le16(index); 822 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 823 orphan_blk->entry_count = cpu_to_le32(nentries); 824 set_page_dirty(page); 825 f2fs_put_page(page, 1); 826 } 827 } 828 829 static __u32 f2fs_checkpoint_chksum(struct f2fs_sb_info *sbi, 830 struct f2fs_checkpoint *ckpt) 831 { 832 unsigned int chksum_ofs = le32_to_cpu(ckpt->checksum_offset); 833 __u32 chksum; 834 835 chksum = f2fs_crc32(sbi, ckpt, chksum_ofs); 836 if (chksum_ofs < CP_CHKSUM_OFFSET) { 837 chksum_ofs += sizeof(chksum); 838 chksum = f2fs_chksum(sbi, chksum, (__u8 *)ckpt + chksum_ofs, 839 F2FS_BLKSIZE - chksum_ofs); 840 } 841 return chksum; 842 } 843 844 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr, 845 struct f2fs_checkpoint **cp_block, struct page **cp_page, 846 unsigned long long *version) 847 { 848 size_t crc_offset = 0; 849 __u32 crc; 850 851 *cp_page = f2fs_get_meta_page(sbi, cp_addr); 852 if (IS_ERR(*cp_page)) 853 return PTR_ERR(*cp_page); 854 855 *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page); 856 857 crc_offset = le32_to_cpu((*cp_block)->checksum_offset); 858 if (crc_offset < CP_MIN_CHKSUM_OFFSET || 859 crc_offset > CP_CHKSUM_OFFSET) { 860 f2fs_put_page(*cp_page, 1); 861 f2fs_warn(sbi, "invalid crc_offset: %zu", crc_offset); 862 return -EINVAL; 863 } 864 865 crc = f2fs_checkpoint_chksum(sbi, *cp_block); 866 if (crc != cur_cp_crc(*cp_block)) { 867 f2fs_put_page(*cp_page, 1); 868 f2fs_warn(sbi, "invalid crc value"); 869 return -EINVAL; 870 } 871 872 *version = cur_cp_version(*cp_block); 873 return 0; 874 } 875 876 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi, 877 block_t cp_addr, unsigned long long *version) 878 { 879 struct page *cp_page_1 = NULL, *cp_page_2 = NULL; 880 struct f2fs_checkpoint *cp_block = NULL; 881 unsigned long long cur_version = 0, pre_version = 0; 882 unsigned int cp_blocks; 883 int err; 884 885 err = get_checkpoint_version(sbi, cp_addr, &cp_block, 886 &cp_page_1, version); 887 if (err) 888 return NULL; 889 890 cp_blocks = le32_to_cpu(cp_block->cp_pack_total_block_count); 891 892 if (cp_blocks > sbi->blocks_per_seg || cp_blocks <= F2FS_CP_PACKS) { 893 f2fs_warn(sbi, "invalid cp_pack_total_block_count:%u", 894 le32_to_cpu(cp_block->cp_pack_total_block_count)); 895 goto invalid_cp; 896 } 897 pre_version = *version; 898 899 cp_addr += cp_blocks - 1; 900 err = get_checkpoint_version(sbi, cp_addr, &cp_block, 901 &cp_page_2, version); 902 if (err) 903 goto invalid_cp; 904 cur_version = *version; 905 906 if (cur_version == pre_version) { 907 *version = cur_version; 908 f2fs_put_page(cp_page_2, 1); 909 return cp_page_1; 910 } 911 f2fs_put_page(cp_page_2, 1); 912 invalid_cp: 913 f2fs_put_page(cp_page_1, 1); 914 return NULL; 915 } 916 917 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi) 918 { 919 struct f2fs_checkpoint *cp_block; 920 struct f2fs_super_block *fsb = sbi->raw_super; 921 struct page *cp1, *cp2, *cur_page; 922 unsigned long blk_size = sbi->blocksize; 923 unsigned long long cp1_version = 0, cp2_version = 0; 924 unsigned long long cp_start_blk_no; 925 unsigned int cp_blks = 1 + __cp_payload(sbi); 926 block_t cp_blk_no; 927 int i; 928 int err; 929 930 sbi->ckpt = f2fs_kvzalloc(sbi, array_size(blk_size, cp_blks), 931 GFP_KERNEL); 932 if (!sbi->ckpt) 933 return -ENOMEM; 934 /* 935 * Finding out valid cp block involves read both 936 * sets( cp pack 1 and cp pack 2) 937 */ 938 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr); 939 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); 940 941 /* The second checkpoint pack should start at the next segment */ 942 cp_start_blk_no += ((unsigned long long)1) << 943 le32_to_cpu(fsb->log_blocks_per_seg); 944 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); 945 946 if (cp1 && cp2) { 947 if (ver_after(cp2_version, cp1_version)) 948 cur_page = cp2; 949 else 950 cur_page = cp1; 951 } else if (cp1) { 952 cur_page = cp1; 953 } else if (cp2) { 954 cur_page = cp2; 955 } else { 956 err = -EFSCORRUPTED; 957 goto fail_no_cp; 958 } 959 960 cp_block = (struct f2fs_checkpoint *)page_address(cur_page); 961 memcpy(sbi->ckpt, cp_block, blk_size); 962 963 if (cur_page == cp1) 964 sbi->cur_cp_pack = 1; 965 else 966 sbi->cur_cp_pack = 2; 967 968 /* Sanity checking of checkpoint */ 969 if (f2fs_sanity_check_ckpt(sbi)) { 970 err = -EFSCORRUPTED; 971 goto free_fail_no_cp; 972 } 973 974 if (cp_blks <= 1) 975 goto done; 976 977 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr); 978 if (cur_page == cp2) 979 cp_blk_no += BIT(le32_to_cpu(fsb->log_blocks_per_seg)); 980 981 for (i = 1; i < cp_blks; i++) { 982 void *sit_bitmap_ptr; 983 unsigned char *ckpt = (unsigned char *)sbi->ckpt; 984 985 cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i); 986 if (IS_ERR(cur_page)) { 987 err = PTR_ERR(cur_page); 988 goto free_fail_no_cp; 989 } 990 sit_bitmap_ptr = page_address(cur_page); 991 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size); 992 f2fs_put_page(cur_page, 1); 993 } 994 done: 995 f2fs_put_page(cp1, 1); 996 f2fs_put_page(cp2, 1); 997 return 0; 998 999 free_fail_no_cp: 1000 f2fs_put_page(cp1, 1); 1001 f2fs_put_page(cp2, 1); 1002 fail_no_cp: 1003 kvfree(sbi->ckpt); 1004 return err; 1005 } 1006 1007 static void __add_dirty_inode(struct inode *inode, enum inode_type type) 1008 { 1009 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1010 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 1011 1012 if (is_inode_flag_set(inode, flag)) 1013 return; 1014 1015 set_inode_flag(inode, flag); 1016 list_add_tail(&F2FS_I(inode)->dirty_list, &sbi->inode_list[type]); 1017 stat_inc_dirty_inode(sbi, type); 1018 } 1019 1020 static void __remove_dirty_inode(struct inode *inode, enum inode_type type) 1021 { 1022 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 1023 1024 if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag)) 1025 return; 1026 1027 list_del_init(&F2FS_I(inode)->dirty_list); 1028 clear_inode_flag(inode, flag); 1029 stat_dec_dirty_inode(F2FS_I_SB(inode), type); 1030 } 1031 1032 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio) 1033 { 1034 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1035 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 1036 1037 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1038 !S_ISLNK(inode->i_mode)) 1039 return; 1040 1041 spin_lock(&sbi->inode_lock[type]); 1042 if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH)) 1043 __add_dirty_inode(inode, type); 1044 inode_inc_dirty_pages(inode); 1045 spin_unlock(&sbi->inode_lock[type]); 1046 1047 set_page_private_reference(&folio->page); 1048 } 1049 1050 void f2fs_remove_dirty_inode(struct inode *inode) 1051 { 1052 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1053 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 1054 1055 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1056 !S_ISLNK(inode->i_mode)) 1057 return; 1058 1059 if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH)) 1060 return; 1061 1062 spin_lock(&sbi->inode_lock[type]); 1063 __remove_dirty_inode(inode, type); 1064 spin_unlock(&sbi->inode_lock[type]); 1065 } 1066 1067 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type, 1068 bool from_cp) 1069 { 1070 struct list_head *head; 1071 struct inode *inode; 1072 struct f2fs_inode_info *fi; 1073 bool is_dir = (type == DIR_INODE); 1074 unsigned long ino = 0; 1075 1076 trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir, 1077 get_pages(sbi, is_dir ? 1078 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 1079 retry: 1080 if (unlikely(f2fs_cp_error(sbi))) { 1081 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir, 1082 get_pages(sbi, is_dir ? 1083 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 1084 return -EIO; 1085 } 1086 1087 spin_lock(&sbi->inode_lock[type]); 1088 1089 head = &sbi->inode_list[type]; 1090 if (list_empty(head)) { 1091 spin_unlock(&sbi->inode_lock[type]); 1092 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir, 1093 get_pages(sbi, is_dir ? 1094 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 1095 return 0; 1096 } 1097 fi = list_first_entry(head, struct f2fs_inode_info, dirty_list); 1098 inode = igrab(&fi->vfs_inode); 1099 spin_unlock(&sbi->inode_lock[type]); 1100 if (inode) { 1101 unsigned long cur_ino = inode->i_ino; 1102 1103 if (from_cp) 1104 F2FS_I(inode)->cp_task = current; 1105 F2FS_I(inode)->wb_task = current; 1106 1107 filemap_fdatawrite(inode->i_mapping); 1108 1109 F2FS_I(inode)->wb_task = NULL; 1110 if (from_cp) 1111 F2FS_I(inode)->cp_task = NULL; 1112 1113 iput(inode); 1114 /* We need to give cpu to another writers. */ 1115 if (ino == cur_ino) 1116 cond_resched(); 1117 else 1118 ino = cur_ino; 1119 } else { 1120 /* 1121 * We should submit bio, since it exists several 1122 * writebacking dentry pages in the freeing inode. 1123 */ 1124 f2fs_submit_merged_write(sbi, DATA); 1125 cond_resched(); 1126 } 1127 goto retry; 1128 } 1129 1130 static int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi) 1131 { 1132 struct list_head *head = &sbi->inode_list[DIRTY_META]; 1133 struct inode *inode; 1134 struct f2fs_inode_info *fi; 1135 s64 total = get_pages(sbi, F2FS_DIRTY_IMETA); 1136 1137 while (total--) { 1138 if (unlikely(f2fs_cp_error(sbi))) 1139 return -EIO; 1140 1141 spin_lock(&sbi->inode_lock[DIRTY_META]); 1142 if (list_empty(head)) { 1143 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1144 return 0; 1145 } 1146 fi = list_first_entry(head, struct f2fs_inode_info, 1147 gdirty_list); 1148 inode = igrab(&fi->vfs_inode); 1149 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1150 if (inode) { 1151 sync_inode_metadata(inode, 0); 1152 1153 /* it's on eviction */ 1154 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) 1155 f2fs_update_inode_page(inode); 1156 iput(inode); 1157 } 1158 } 1159 return 0; 1160 } 1161 1162 static void __prepare_cp_block(struct f2fs_sb_info *sbi) 1163 { 1164 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1165 struct f2fs_nm_info *nm_i = NM_I(sbi); 1166 nid_t last_nid = nm_i->next_scan_nid; 1167 1168 next_free_nid(sbi, &last_nid); 1169 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi)); 1170 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi)); 1171 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi)); 1172 ckpt->next_free_nid = cpu_to_le32(last_nid); 1173 } 1174 1175 static bool __need_flush_quota(struct f2fs_sb_info *sbi) 1176 { 1177 bool ret = false; 1178 1179 if (!is_journalled_quota(sbi)) 1180 return false; 1181 1182 if (!f2fs_down_write_trylock(&sbi->quota_sem)) 1183 return true; 1184 if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) { 1185 ret = false; 1186 } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) { 1187 ret = false; 1188 } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_FLUSH)) { 1189 clear_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 1190 ret = true; 1191 } else if (get_pages(sbi, F2FS_DIRTY_QDATA)) { 1192 ret = true; 1193 } 1194 f2fs_up_write(&sbi->quota_sem); 1195 return ret; 1196 } 1197 1198 /* 1199 * Freeze all the FS-operations for checkpoint. 1200 */ 1201 static int block_operations(struct f2fs_sb_info *sbi) 1202 { 1203 struct writeback_control wbc = { 1204 .sync_mode = WB_SYNC_ALL, 1205 .nr_to_write = LONG_MAX, 1206 .for_reclaim = 0, 1207 }; 1208 int err = 0, cnt = 0; 1209 1210 /* 1211 * Let's flush inline_data in dirty node pages. 1212 */ 1213 f2fs_flush_inline_data(sbi); 1214 1215 retry_flush_quotas: 1216 f2fs_lock_all(sbi); 1217 if (__need_flush_quota(sbi)) { 1218 int locked; 1219 1220 if (++cnt > DEFAULT_RETRY_QUOTA_FLUSH_COUNT) { 1221 set_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH); 1222 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 1223 goto retry_flush_dents; 1224 } 1225 f2fs_unlock_all(sbi); 1226 1227 /* only failed during mount/umount/freeze/quotactl */ 1228 locked = down_read_trylock(&sbi->sb->s_umount); 1229 f2fs_quota_sync(sbi->sb, -1); 1230 if (locked) 1231 up_read(&sbi->sb->s_umount); 1232 cond_resched(); 1233 goto retry_flush_quotas; 1234 } 1235 1236 retry_flush_dents: 1237 /* write all the dirty dentry pages */ 1238 if (get_pages(sbi, F2FS_DIRTY_DENTS)) { 1239 f2fs_unlock_all(sbi); 1240 err = f2fs_sync_dirty_inodes(sbi, DIR_INODE, true); 1241 if (err) 1242 return err; 1243 cond_resched(); 1244 goto retry_flush_quotas; 1245 } 1246 1247 /* 1248 * POR: we should ensure that there are no dirty node pages 1249 * until finishing nat/sit flush. inode->i_blocks can be updated. 1250 */ 1251 f2fs_down_write(&sbi->node_change); 1252 1253 if (get_pages(sbi, F2FS_DIRTY_IMETA)) { 1254 f2fs_up_write(&sbi->node_change); 1255 f2fs_unlock_all(sbi); 1256 err = f2fs_sync_inode_meta(sbi); 1257 if (err) 1258 return err; 1259 cond_resched(); 1260 goto retry_flush_quotas; 1261 } 1262 1263 retry_flush_nodes: 1264 f2fs_down_write(&sbi->node_write); 1265 1266 if (get_pages(sbi, F2FS_DIRTY_NODES)) { 1267 f2fs_up_write(&sbi->node_write); 1268 atomic_inc(&sbi->wb_sync_req[NODE]); 1269 err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO); 1270 atomic_dec(&sbi->wb_sync_req[NODE]); 1271 if (err) { 1272 f2fs_up_write(&sbi->node_change); 1273 f2fs_unlock_all(sbi); 1274 return err; 1275 } 1276 cond_resched(); 1277 goto retry_flush_nodes; 1278 } 1279 1280 /* 1281 * sbi->node_change is used only for AIO write_begin path which produces 1282 * dirty node blocks and some checkpoint values by block allocation. 1283 */ 1284 __prepare_cp_block(sbi); 1285 f2fs_up_write(&sbi->node_change); 1286 return err; 1287 } 1288 1289 static void unblock_operations(struct f2fs_sb_info *sbi) 1290 { 1291 f2fs_up_write(&sbi->node_write); 1292 f2fs_unlock_all(sbi); 1293 } 1294 1295 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type) 1296 { 1297 DEFINE_WAIT(wait); 1298 1299 for (;;) { 1300 if (!get_pages(sbi, type)) 1301 break; 1302 1303 if (unlikely(f2fs_cp_error(sbi) && 1304 !is_sbi_flag_set(sbi, SBI_IS_CLOSE))) 1305 break; 1306 1307 if (type == F2FS_DIRTY_META) 1308 f2fs_sync_meta_pages(sbi, META, LONG_MAX, 1309 FS_CP_META_IO); 1310 else if (type == F2FS_WB_CP_DATA) 1311 f2fs_submit_merged_write(sbi, DATA); 1312 1313 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE); 1314 io_schedule_timeout(DEFAULT_IO_TIMEOUT); 1315 } 1316 finish_wait(&sbi->cp_wait, &wait); 1317 } 1318 1319 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1320 { 1321 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num; 1322 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1323 unsigned long flags; 1324 1325 if (cpc->reason & CP_UMOUNT) { 1326 if (le32_to_cpu(ckpt->cp_pack_total_block_count) + 1327 NM_I(sbi)->nat_bits_blocks > sbi->blocks_per_seg) { 1328 clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG); 1329 f2fs_notice(sbi, "Disable nat_bits due to no space"); 1330 } else if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG) && 1331 f2fs_nat_bitmap_enabled(sbi)) { 1332 f2fs_enable_nat_bits(sbi); 1333 set_ckpt_flags(sbi, CP_NAT_BITS_FLAG); 1334 f2fs_notice(sbi, "Rebuild and enable nat_bits"); 1335 } 1336 } 1337 1338 spin_lock_irqsave(&sbi->cp_lock, flags); 1339 1340 if (cpc->reason & CP_TRIMMED) 1341 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG); 1342 else 1343 __clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG); 1344 1345 if (cpc->reason & CP_UMOUNT) 1346 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1347 else 1348 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1349 1350 if (cpc->reason & CP_FASTBOOT) 1351 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1352 else 1353 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1354 1355 if (orphan_num) 1356 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1357 else 1358 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1359 1360 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1361 __set_ckpt_flags(ckpt, CP_FSCK_FLAG); 1362 1363 if (is_sbi_flag_set(sbi, SBI_IS_RESIZEFS)) 1364 __set_ckpt_flags(ckpt, CP_RESIZEFS_FLAG); 1365 else 1366 __clear_ckpt_flags(ckpt, CP_RESIZEFS_FLAG); 1367 1368 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED)) 1369 __set_ckpt_flags(ckpt, CP_DISABLED_FLAG); 1370 else 1371 __clear_ckpt_flags(ckpt, CP_DISABLED_FLAG); 1372 1373 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK)) 1374 __set_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG); 1375 else 1376 __clear_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG); 1377 1378 if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) 1379 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); 1380 else 1381 __clear_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); 1382 1383 if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) 1384 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); 1385 1386 /* set this flag to activate crc|cp_ver for recovery */ 1387 __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG); 1388 __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG); 1389 1390 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1391 } 1392 1393 static void commit_checkpoint(struct f2fs_sb_info *sbi, 1394 void *src, block_t blk_addr) 1395 { 1396 struct writeback_control wbc = { 1397 .for_reclaim = 0, 1398 }; 1399 1400 /* 1401 * filemap_get_folios_tag and lock_page again will take 1402 * some extra time. Therefore, f2fs_update_meta_pages and 1403 * f2fs_sync_meta_pages are combined in this function. 1404 */ 1405 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 1406 int err; 1407 1408 f2fs_wait_on_page_writeback(page, META, true, true); 1409 1410 memcpy(page_address(page), src, PAGE_SIZE); 1411 1412 set_page_dirty(page); 1413 if (unlikely(!clear_page_dirty_for_io(page))) 1414 f2fs_bug_on(sbi, 1); 1415 1416 /* writeout cp pack 2 page */ 1417 err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO); 1418 if (unlikely(err && f2fs_cp_error(sbi))) { 1419 f2fs_put_page(page, 1); 1420 return; 1421 } 1422 1423 f2fs_bug_on(sbi, err); 1424 f2fs_put_page(page, 0); 1425 1426 /* submit checkpoint (with barrier if NOBARRIER is not set) */ 1427 f2fs_submit_merged_write(sbi, META_FLUSH); 1428 } 1429 1430 static inline u64 get_sectors_written(struct block_device *bdev) 1431 { 1432 return (u64)part_stat_read(bdev, sectors[STAT_WRITE]); 1433 } 1434 1435 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi) 1436 { 1437 if (f2fs_is_multi_device(sbi)) { 1438 u64 sectors = 0; 1439 int i; 1440 1441 for (i = 0; i < sbi->s_ndevs; i++) 1442 sectors += get_sectors_written(FDEV(i).bdev); 1443 1444 return sectors; 1445 } 1446 1447 return get_sectors_written(sbi->sb->s_bdev); 1448 } 1449 1450 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1451 { 1452 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1453 struct f2fs_nm_info *nm_i = NM_I(sbi); 1454 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags; 1455 block_t start_blk; 1456 unsigned int data_sum_blocks, orphan_blocks; 1457 __u32 crc32 = 0; 1458 int i; 1459 int cp_payload_blks = __cp_payload(sbi); 1460 struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 1461 u64 kbytes_written; 1462 int err; 1463 1464 /* Flush all the NAT/SIT pages */ 1465 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO); 1466 1467 /* start to update checkpoint, cp ver is already updated previously */ 1468 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true)); 1469 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi)); 1470 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 1471 struct curseg_info *curseg = CURSEG_I(sbi, i + CURSEG_HOT_NODE); 1472 1473 ckpt->cur_node_segno[i] = cpu_to_le32(curseg->segno); 1474 ckpt->cur_node_blkoff[i] = cpu_to_le16(curseg->next_blkoff); 1475 ckpt->alloc_type[i + CURSEG_HOT_NODE] = curseg->alloc_type; 1476 } 1477 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 1478 struct curseg_info *curseg = CURSEG_I(sbi, i + CURSEG_HOT_DATA); 1479 1480 ckpt->cur_data_segno[i] = cpu_to_le32(curseg->segno); 1481 ckpt->cur_data_blkoff[i] = cpu_to_le16(curseg->next_blkoff); 1482 ckpt->alloc_type[i + CURSEG_HOT_DATA] = curseg->alloc_type; 1483 } 1484 1485 /* 2 cp + n data seg summary + orphan inode blocks */ 1486 data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false); 1487 spin_lock_irqsave(&sbi->cp_lock, flags); 1488 if (data_sum_blocks < NR_CURSEG_DATA_TYPE) 1489 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1490 else 1491 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1492 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1493 1494 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num); 1495 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks + 1496 orphan_blocks); 1497 1498 if (__remain_node_summaries(cpc->reason)) 1499 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + 1500 cp_payload_blks + data_sum_blocks + 1501 orphan_blocks + NR_CURSEG_NODE_TYPE); 1502 else 1503 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + 1504 cp_payload_blks + data_sum_blocks + 1505 orphan_blocks); 1506 1507 /* update ckpt flag for checkpoint */ 1508 update_ckpt_flags(sbi, cpc); 1509 1510 /* update SIT/NAT bitmap */ 1511 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP)); 1512 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP)); 1513 1514 crc32 = f2fs_checkpoint_chksum(sbi, ckpt); 1515 *((__le32 *)((unsigned char *)ckpt + 1516 le32_to_cpu(ckpt->checksum_offset))) 1517 = cpu_to_le32(crc32); 1518 1519 start_blk = __start_cp_next_addr(sbi); 1520 1521 /* write nat bits */ 1522 if ((cpc->reason & CP_UMOUNT) && 1523 is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) { 1524 __u64 cp_ver = cur_cp_version(ckpt); 1525 block_t blk; 1526 1527 cp_ver |= ((__u64)crc32 << 32); 1528 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver); 1529 1530 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks; 1531 for (i = 0; i < nm_i->nat_bits_blocks; i++) 1532 f2fs_update_meta_page(sbi, nm_i->nat_bits + 1533 (i << F2FS_BLKSIZE_BITS), blk + i); 1534 } 1535 1536 /* write out checkpoint buffer at block 0 */ 1537 f2fs_update_meta_page(sbi, ckpt, start_blk++); 1538 1539 for (i = 1; i < 1 + cp_payload_blks; i++) 1540 f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE, 1541 start_blk++); 1542 1543 if (orphan_num) { 1544 write_orphan_inodes(sbi, start_blk); 1545 start_blk += orphan_blocks; 1546 } 1547 1548 f2fs_write_data_summaries(sbi, start_blk); 1549 start_blk += data_sum_blocks; 1550 1551 /* Record write statistics in the hot node summary */ 1552 kbytes_written = sbi->kbytes_written; 1553 kbytes_written += (f2fs_get_sectors_written(sbi) - 1554 sbi->sectors_written_start) >> 1; 1555 seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written); 1556 1557 if (__remain_node_summaries(cpc->reason)) { 1558 f2fs_write_node_summaries(sbi, start_blk); 1559 start_blk += NR_CURSEG_NODE_TYPE; 1560 } 1561 1562 /* update user_block_counts */ 1563 sbi->last_valid_block_count = sbi->total_valid_block_count; 1564 percpu_counter_set(&sbi->alloc_valid_block_count, 0); 1565 percpu_counter_set(&sbi->rf_node_block_count, 0); 1566 1567 /* Here, we have one bio having CP pack except cp pack 2 page */ 1568 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO); 1569 /* Wait for all dirty meta pages to be submitted for IO */ 1570 f2fs_wait_on_all_pages(sbi, F2FS_DIRTY_META); 1571 1572 /* wait for previous submitted meta pages writeback */ 1573 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA); 1574 1575 /* flush all device cache */ 1576 err = f2fs_flush_device_cache(sbi); 1577 if (err) 1578 return err; 1579 1580 /* barrier and flush checkpoint cp pack 2 page if it can */ 1581 commit_checkpoint(sbi, ckpt, start_blk); 1582 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA); 1583 1584 /* 1585 * invalidate intermediate page cache borrowed from meta inode which are 1586 * used for migration of encrypted, verity or compressed inode's blocks. 1587 */ 1588 if (f2fs_sb_has_encrypt(sbi) || f2fs_sb_has_verity(sbi) || 1589 f2fs_sb_has_compression(sbi)) 1590 invalidate_mapping_pages(META_MAPPING(sbi), 1591 MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1); 1592 1593 f2fs_release_ino_entry(sbi, false); 1594 1595 f2fs_reset_fsync_node_info(sbi); 1596 1597 clear_sbi_flag(sbi, SBI_IS_DIRTY); 1598 clear_sbi_flag(sbi, SBI_NEED_CP); 1599 clear_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH); 1600 1601 spin_lock(&sbi->stat_lock); 1602 sbi->unusable_block_count = 0; 1603 spin_unlock(&sbi->stat_lock); 1604 1605 __set_cp_next_pack(sbi); 1606 1607 /* 1608 * redirty superblock if metadata like node page or inode cache is 1609 * updated during writing checkpoint. 1610 */ 1611 if (get_pages(sbi, F2FS_DIRTY_NODES) || 1612 get_pages(sbi, F2FS_DIRTY_IMETA)) 1613 set_sbi_flag(sbi, SBI_IS_DIRTY); 1614 1615 f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS)); 1616 1617 return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0; 1618 } 1619 1620 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1621 { 1622 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1623 unsigned long long ckpt_ver; 1624 int err = 0; 1625 1626 if (f2fs_readonly(sbi->sb) || f2fs_hw_is_readonly(sbi)) 1627 return -EROFS; 1628 1629 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 1630 if (cpc->reason != CP_PAUSE) 1631 return 0; 1632 f2fs_warn(sbi, "Start checkpoint disabled!"); 1633 } 1634 if (cpc->reason != CP_RESIZE) 1635 f2fs_down_write(&sbi->cp_global_sem); 1636 1637 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) && 1638 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) || 1639 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks))) 1640 goto out; 1641 if (unlikely(f2fs_cp_error(sbi))) { 1642 err = -EIO; 1643 goto out; 1644 } 1645 1646 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops"); 1647 1648 err = block_operations(sbi); 1649 if (err) 1650 goto out; 1651 1652 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops"); 1653 1654 f2fs_flush_merged_writes(sbi); 1655 1656 /* this is the case of multiple fstrims without any changes */ 1657 if (cpc->reason & CP_DISCARD) { 1658 if (!f2fs_exist_trim_candidates(sbi, cpc)) { 1659 unblock_operations(sbi); 1660 goto out; 1661 } 1662 1663 if (NM_I(sbi)->nat_cnt[DIRTY_NAT] == 0 && 1664 SIT_I(sbi)->dirty_sentries == 0 && 1665 prefree_segments(sbi) == 0) { 1666 f2fs_flush_sit_entries(sbi, cpc); 1667 f2fs_clear_prefree_segments(sbi, cpc); 1668 unblock_operations(sbi); 1669 goto out; 1670 } 1671 } 1672 1673 /* 1674 * update checkpoint pack index 1675 * Increase the version number so that 1676 * SIT entries and seg summaries are written at correct place 1677 */ 1678 ckpt_ver = cur_cp_version(ckpt); 1679 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver); 1680 1681 /* write cached NAT/SIT entries to NAT/SIT area */ 1682 err = f2fs_flush_nat_entries(sbi, cpc); 1683 if (err) { 1684 f2fs_err(sbi, "f2fs_flush_nat_entries failed err:%d, stop checkpoint", err); 1685 f2fs_bug_on(sbi, !f2fs_cp_error(sbi)); 1686 goto stop; 1687 } 1688 1689 f2fs_flush_sit_entries(sbi, cpc); 1690 1691 /* save inmem log status */ 1692 f2fs_save_inmem_curseg(sbi); 1693 1694 err = do_checkpoint(sbi, cpc); 1695 if (err) { 1696 f2fs_err(sbi, "do_checkpoint failed err:%d, stop checkpoint", err); 1697 f2fs_bug_on(sbi, !f2fs_cp_error(sbi)); 1698 f2fs_release_discard_addrs(sbi); 1699 } else { 1700 f2fs_clear_prefree_segments(sbi, cpc); 1701 } 1702 1703 f2fs_restore_inmem_curseg(sbi); 1704 stat_inc_cp_count(sbi); 1705 stop: 1706 unblock_operations(sbi); 1707 1708 if (cpc->reason & CP_RECOVERY) 1709 f2fs_notice(sbi, "checkpoint: version = %llx", ckpt_ver); 1710 1711 /* update CP_TIME to trigger checkpoint periodically */ 1712 f2fs_update_time(sbi, CP_TIME); 1713 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint"); 1714 out: 1715 if (cpc->reason != CP_RESIZE) 1716 f2fs_up_write(&sbi->cp_global_sem); 1717 return err; 1718 } 1719 1720 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi) 1721 { 1722 int i; 1723 1724 for (i = 0; i < MAX_INO_ENTRY; i++) { 1725 struct inode_management *im = &sbi->im[i]; 1726 1727 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC); 1728 spin_lock_init(&im->ino_lock); 1729 INIT_LIST_HEAD(&im->ino_list); 1730 im->ino_num = 0; 1731 } 1732 1733 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS - 1734 NR_CURSEG_PERSIST_TYPE - __cp_payload(sbi)) * 1735 F2FS_ORPHANS_PER_BLOCK; 1736 } 1737 1738 int __init f2fs_create_checkpoint_caches(void) 1739 { 1740 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry", 1741 sizeof(struct ino_entry)); 1742 if (!ino_entry_slab) 1743 return -ENOMEM; 1744 f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry", 1745 sizeof(struct inode_entry)); 1746 if (!f2fs_inode_entry_slab) { 1747 kmem_cache_destroy(ino_entry_slab); 1748 return -ENOMEM; 1749 } 1750 return 0; 1751 } 1752 1753 void f2fs_destroy_checkpoint_caches(void) 1754 { 1755 kmem_cache_destroy(ino_entry_slab); 1756 kmem_cache_destroy(f2fs_inode_entry_slab); 1757 } 1758 1759 static int __write_checkpoint_sync(struct f2fs_sb_info *sbi) 1760 { 1761 struct cp_control cpc = { .reason = CP_SYNC, }; 1762 int err; 1763 1764 f2fs_down_write(&sbi->gc_lock); 1765 err = f2fs_write_checkpoint(sbi, &cpc); 1766 f2fs_up_write(&sbi->gc_lock); 1767 1768 return err; 1769 } 1770 1771 static void __checkpoint_and_complete_reqs(struct f2fs_sb_info *sbi) 1772 { 1773 struct ckpt_req_control *cprc = &sbi->cprc_info; 1774 struct ckpt_req *req, *next; 1775 struct llist_node *dispatch_list; 1776 u64 sum_diff = 0, diff, count = 0; 1777 int ret; 1778 1779 dispatch_list = llist_del_all(&cprc->issue_list); 1780 if (!dispatch_list) 1781 return; 1782 dispatch_list = llist_reverse_order(dispatch_list); 1783 1784 ret = __write_checkpoint_sync(sbi); 1785 atomic_inc(&cprc->issued_ckpt); 1786 1787 llist_for_each_entry_safe(req, next, dispatch_list, llnode) { 1788 diff = (u64)ktime_ms_delta(ktime_get(), req->queue_time); 1789 req->ret = ret; 1790 complete(&req->wait); 1791 1792 sum_diff += diff; 1793 count++; 1794 } 1795 atomic_sub(count, &cprc->queued_ckpt); 1796 atomic_add(count, &cprc->total_ckpt); 1797 1798 spin_lock(&cprc->stat_lock); 1799 cprc->cur_time = (unsigned int)div64_u64(sum_diff, count); 1800 if (cprc->peak_time < cprc->cur_time) 1801 cprc->peak_time = cprc->cur_time; 1802 spin_unlock(&cprc->stat_lock); 1803 } 1804 1805 static int issue_checkpoint_thread(void *data) 1806 { 1807 struct f2fs_sb_info *sbi = data; 1808 struct ckpt_req_control *cprc = &sbi->cprc_info; 1809 wait_queue_head_t *q = &cprc->ckpt_wait_queue; 1810 repeat: 1811 if (kthread_should_stop()) 1812 return 0; 1813 1814 if (!llist_empty(&cprc->issue_list)) 1815 __checkpoint_and_complete_reqs(sbi); 1816 1817 wait_event_interruptible(*q, 1818 kthread_should_stop() || !llist_empty(&cprc->issue_list)); 1819 goto repeat; 1820 } 1821 1822 static void flush_remained_ckpt_reqs(struct f2fs_sb_info *sbi, 1823 struct ckpt_req *wait_req) 1824 { 1825 struct ckpt_req_control *cprc = &sbi->cprc_info; 1826 1827 if (!llist_empty(&cprc->issue_list)) { 1828 __checkpoint_and_complete_reqs(sbi); 1829 } else { 1830 /* already dispatched by issue_checkpoint_thread */ 1831 if (wait_req) 1832 wait_for_completion(&wait_req->wait); 1833 } 1834 } 1835 1836 static void init_ckpt_req(struct ckpt_req *req) 1837 { 1838 memset(req, 0, sizeof(struct ckpt_req)); 1839 1840 init_completion(&req->wait); 1841 req->queue_time = ktime_get(); 1842 } 1843 1844 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi) 1845 { 1846 struct ckpt_req_control *cprc = &sbi->cprc_info; 1847 struct ckpt_req req; 1848 struct cp_control cpc; 1849 1850 cpc.reason = __get_cp_reason(sbi); 1851 if (!test_opt(sbi, MERGE_CHECKPOINT) || cpc.reason != CP_SYNC) { 1852 int ret; 1853 1854 f2fs_down_write(&sbi->gc_lock); 1855 ret = f2fs_write_checkpoint(sbi, &cpc); 1856 f2fs_up_write(&sbi->gc_lock); 1857 1858 return ret; 1859 } 1860 1861 if (!cprc->f2fs_issue_ckpt) 1862 return __write_checkpoint_sync(sbi); 1863 1864 init_ckpt_req(&req); 1865 1866 llist_add(&req.llnode, &cprc->issue_list); 1867 atomic_inc(&cprc->queued_ckpt); 1868 1869 /* 1870 * update issue_list before we wake up issue_checkpoint thread, 1871 * this smp_mb() pairs with another barrier in ___wait_event(), 1872 * see more details in comments of waitqueue_active(). 1873 */ 1874 smp_mb(); 1875 1876 if (waitqueue_active(&cprc->ckpt_wait_queue)) 1877 wake_up(&cprc->ckpt_wait_queue); 1878 1879 if (cprc->f2fs_issue_ckpt) 1880 wait_for_completion(&req.wait); 1881 else 1882 flush_remained_ckpt_reqs(sbi, &req); 1883 1884 return req.ret; 1885 } 1886 1887 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi) 1888 { 1889 dev_t dev = sbi->sb->s_bdev->bd_dev; 1890 struct ckpt_req_control *cprc = &sbi->cprc_info; 1891 1892 if (cprc->f2fs_issue_ckpt) 1893 return 0; 1894 1895 cprc->f2fs_issue_ckpt = kthread_run(issue_checkpoint_thread, sbi, 1896 "f2fs_ckpt-%u:%u", MAJOR(dev), MINOR(dev)); 1897 if (IS_ERR(cprc->f2fs_issue_ckpt)) { 1898 int err = PTR_ERR(cprc->f2fs_issue_ckpt); 1899 1900 cprc->f2fs_issue_ckpt = NULL; 1901 return err; 1902 } 1903 1904 set_task_ioprio(cprc->f2fs_issue_ckpt, cprc->ckpt_thread_ioprio); 1905 1906 return 0; 1907 } 1908 1909 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi) 1910 { 1911 struct ckpt_req_control *cprc = &sbi->cprc_info; 1912 struct task_struct *ckpt_task; 1913 1914 if (!cprc->f2fs_issue_ckpt) 1915 return; 1916 1917 ckpt_task = cprc->f2fs_issue_ckpt; 1918 cprc->f2fs_issue_ckpt = NULL; 1919 kthread_stop(ckpt_task); 1920 1921 f2fs_flush_ckpt_thread(sbi); 1922 } 1923 1924 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi) 1925 { 1926 struct ckpt_req_control *cprc = &sbi->cprc_info; 1927 1928 flush_remained_ckpt_reqs(sbi, NULL); 1929 1930 /* Let's wait for the previous dispatched checkpoint. */ 1931 while (atomic_read(&cprc->queued_ckpt)) 1932 io_schedule_timeout(DEFAULT_IO_TIMEOUT); 1933 } 1934 1935 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi) 1936 { 1937 struct ckpt_req_control *cprc = &sbi->cprc_info; 1938 1939 atomic_set(&cprc->issued_ckpt, 0); 1940 atomic_set(&cprc->total_ckpt, 0); 1941 atomic_set(&cprc->queued_ckpt, 0); 1942 cprc->ckpt_thread_ioprio = DEFAULT_CHECKPOINT_IOPRIO; 1943 init_waitqueue_head(&cprc->ckpt_wait_queue); 1944 init_llist_head(&cprc->issue_list); 1945 spin_lock_init(&cprc->stat_lock); 1946 } 1947