1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/checkpoint.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/bio.h> 10 #include <linux/mpage.h> 11 #include <linux/writeback.h> 12 #include <linux/blkdev.h> 13 #include <linux/f2fs_fs.h> 14 #include <linux/pagevec.h> 15 #include <linux/swap.h> 16 #include <linux/kthread.h> 17 18 #include "f2fs.h" 19 #include "node.h" 20 #include "segment.h" 21 #include "iostat.h" 22 #include <trace/events/f2fs.h> 23 24 #define DEFAULT_CHECKPOINT_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_RT, 3)) 25 26 static struct kmem_cache *ino_entry_slab; 27 struct kmem_cache *f2fs_inode_entry_slab; 28 29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io, 30 unsigned char reason) 31 { 32 f2fs_build_fault_attr(sbi, 0, 0); 33 if (!end_io) 34 f2fs_flush_merged_writes(sbi); 35 f2fs_handle_critical_error(sbi, reason); 36 } 37 38 /* 39 * We guarantee no failure on the returned page. 40 */ 41 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 42 { 43 struct address_space *mapping = META_MAPPING(sbi); 44 struct page *page; 45 repeat: 46 page = f2fs_grab_cache_page(mapping, index, false); 47 if (!page) { 48 cond_resched(); 49 goto repeat; 50 } 51 f2fs_wait_on_page_writeback(page, META, true, true); 52 if (!PageUptodate(page)) 53 SetPageUptodate(page); 54 return page; 55 } 56 57 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index, 58 bool is_meta) 59 { 60 struct address_space *mapping = META_MAPPING(sbi); 61 struct folio *folio; 62 struct f2fs_io_info fio = { 63 .sbi = sbi, 64 .type = META, 65 .op = REQ_OP_READ, 66 .op_flags = REQ_META | REQ_PRIO, 67 .old_blkaddr = index, 68 .new_blkaddr = index, 69 .encrypted_page = NULL, 70 .is_por = !is_meta ? 1 : 0, 71 }; 72 int err; 73 74 if (unlikely(!is_meta)) 75 fio.op_flags &= ~REQ_META; 76 repeat: 77 folio = f2fs_grab_cache_folio(mapping, index, false); 78 if (IS_ERR(folio)) { 79 cond_resched(); 80 goto repeat; 81 } 82 if (folio_test_uptodate(folio)) 83 goto out; 84 85 fio.page = &folio->page; 86 87 err = f2fs_submit_page_bio(&fio); 88 if (err) { 89 f2fs_folio_put(folio, true); 90 return ERR_PTR(err); 91 } 92 93 f2fs_update_iostat(sbi, NULL, FS_META_READ_IO, F2FS_BLKSIZE); 94 95 folio_lock(folio); 96 if (unlikely(folio->mapping != mapping)) { 97 f2fs_folio_put(folio, true); 98 goto repeat; 99 } 100 101 if (unlikely(!folio_test_uptodate(folio))) { 102 f2fs_handle_page_eio(sbi, folio, META); 103 f2fs_folio_put(folio, true); 104 return ERR_PTR(-EIO); 105 } 106 out: 107 return &folio->page; 108 } 109 110 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 111 { 112 return __get_meta_page(sbi, index, true); 113 } 114 115 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index) 116 { 117 struct page *page; 118 int count = 0; 119 120 retry: 121 page = __get_meta_page(sbi, index, true); 122 if (IS_ERR(page)) { 123 if (PTR_ERR(page) == -EIO && 124 ++count <= DEFAULT_RETRY_IO_COUNT) 125 goto retry; 126 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_META_PAGE); 127 } 128 return page; 129 } 130 131 /* for POR only */ 132 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index) 133 { 134 return __get_meta_page(sbi, index, false); 135 } 136 137 static bool __is_bitmap_valid(struct f2fs_sb_info *sbi, block_t blkaddr, 138 int type) 139 { 140 struct seg_entry *se; 141 unsigned int segno, offset; 142 bool exist; 143 144 if (type == DATA_GENERIC) 145 return true; 146 147 segno = GET_SEGNO(sbi, blkaddr); 148 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 149 se = get_seg_entry(sbi, segno); 150 151 exist = f2fs_test_bit(offset, se->cur_valid_map); 152 153 /* skip data, if we already have an error in checkpoint. */ 154 if (unlikely(f2fs_cp_error(sbi))) 155 return exist; 156 157 if ((exist && type == DATA_GENERIC_ENHANCE_UPDATE) || 158 (!exist && type == DATA_GENERIC_ENHANCE)) 159 goto out_err; 160 if (!exist && type != DATA_GENERIC_ENHANCE_UPDATE) 161 goto out_handle; 162 return exist; 163 164 out_err: 165 f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d", 166 blkaddr, exist); 167 set_sbi_flag(sbi, SBI_NEED_FSCK); 168 dump_stack(); 169 out_handle: 170 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 171 return exist; 172 } 173 174 static bool __f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 175 block_t blkaddr, int type) 176 { 177 switch (type) { 178 case META_NAT: 179 break; 180 case META_SIT: 181 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi))) 182 goto check_only; 183 break; 184 case META_SSA: 185 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) || 186 blkaddr < SM_I(sbi)->ssa_blkaddr)) 187 goto check_only; 188 break; 189 case META_CP: 190 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr || 191 blkaddr < __start_cp_addr(sbi))) 192 goto check_only; 193 break; 194 case META_POR: 195 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || 196 blkaddr < MAIN_BLKADDR(sbi))) 197 goto check_only; 198 break; 199 case DATA_GENERIC: 200 case DATA_GENERIC_ENHANCE: 201 case DATA_GENERIC_ENHANCE_READ: 202 case DATA_GENERIC_ENHANCE_UPDATE: 203 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || 204 blkaddr < MAIN_BLKADDR(sbi))) { 205 206 /* Skip to emit an error message. */ 207 if (unlikely(f2fs_cp_error(sbi))) 208 return false; 209 210 f2fs_warn(sbi, "access invalid blkaddr:%u", 211 blkaddr); 212 set_sbi_flag(sbi, SBI_NEED_FSCK); 213 dump_stack(); 214 goto err; 215 } else { 216 return __is_bitmap_valid(sbi, blkaddr, type); 217 } 218 break; 219 case META_GENERIC: 220 if (unlikely(blkaddr < SEG0_BLKADDR(sbi) || 221 blkaddr >= MAIN_BLKADDR(sbi))) 222 goto err; 223 break; 224 default: 225 BUG(); 226 } 227 228 return true; 229 err: 230 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 231 check_only: 232 return false; 233 } 234 235 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 236 block_t blkaddr, int type) 237 { 238 if (time_to_inject(sbi, FAULT_BLKADDR_VALIDITY)) 239 return false; 240 return __f2fs_is_valid_blkaddr(sbi, blkaddr, type); 241 } 242 243 bool f2fs_is_valid_blkaddr_raw(struct f2fs_sb_info *sbi, 244 block_t blkaddr, int type) 245 { 246 return __f2fs_is_valid_blkaddr(sbi, blkaddr, type); 247 } 248 249 /* 250 * Readahead CP/NAT/SIT/SSA/POR pages 251 */ 252 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 253 int type, bool sync) 254 { 255 struct page *page; 256 block_t blkno = start; 257 struct f2fs_io_info fio = { 258 .sbi = sbi, 259 .type = META, 260 .op = REQ_OP_READ, 261 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD, 262 .encrypted_page = NULL, 263 .in_list = 0, 264 .is_por = (type == META_POR) ? 1 : 0, 265 }; 266 struct blk_plug plug; 267 int err; 268 269 if (unlikely(type == META_POR)) 270 fio.op_flags &= ~REQ_META; 271 272 blk_start_plug(&plug); 273 for (; nrpages-- > 0; blkno++) { 274 275 if (!f2fs_is_valid_blkaddr(sbi, blkno, type)) 276 goto out; 277 278 switch (type) { 279 case META_NAT: 280 if (unlikely(blkno >= 281 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid))) 282 blkno = 0; 283 /* get nat block addr */ 284 fio.new_blkaddr = current_nat_addr(sbi, 285 blkno * NAT_ENTRY_PER_BLOCK); 286 break; 287 case META_SIT: 288 if (unlikely(blkno >= TOTAL_SEGS(sbi))) 289 goto out; 290 /* get sit block addr */ 291 fio.new_blkaddr = current_sit_addr(sbi, 292 blkno * SIT_ENTRY_PER_BLOCK); 293 break; 294 case META_SSA: 295 case META_CP: 296 case META_POR: 297 fio.new_blkaddr = blkno; 298 break; 299 default: 300 BUG(); 301 } 302 303 page = f2fs_grab_cache_page(META_MAPPING(sbi), 304 fio.new_blkaddr, false); 305 if (!page) 306 continue; 307 if (PageUptodate(page)) { 308 f2fs_put_page(page, 1); 309 continue; 310 } 311 312 fio.page = page; 313 err = f2fs_submit_page_bio(&fio); 314 f2fs_put_page(page, err ? 1 : 0); 315 316 if (!err) 317 f2fs_update_iostat(sbi, NULL, FS_META_READ_IO, 318 F2FS_BLKSIZE); 319 } 320 out: 321 blk_finish_plug(&plug); 322 return blkno - start; 323 } 324 325 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index, 326 unsigned int ra_blocks) 327 { 328 struct page *page; 329 bool readahead = false; 330 331 if (ra_blocks == RECOVERY_MIN_RA_BLOCKS) 332 return; 333 334 page = find_get_page(META_MAPPING(sbi), index); 335 if (!page || !PageUptodate(page)) 336 readahead = true; 337 f2fs_put_page(page, 0); 338 339 if (readahead) 340 f2fs_ra_meta_pages(sbi, index, ra_blocks, META_POR, true); 341 } 342 343 static int __f2fs_write_meta_page(struct page *page, 344 struct writeback_control *wbc, 345 enum iostat_type io_type) 346 { 347 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 348 struct folio *folio = page_folio(page); 349 350 trace_f2fs_writepage(folio, META); 351 352 if (unlikely(f2fs_cp_error(sbi))) { 353 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) { 354 folio_clear_uptodate(folio); 355 dec_page_count(sbi, F2FS_DIRTY_META); 356 folio_unlock(folio); 357 return 0; 358 } 359 goto redirty_out; 360 } 361 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 362 goto redirty_out; 363 if (wbc->for_reclaim && folio->index < GET_SUM_BLOCK(sbi, 0)) 364 goto redirty_out; 365 366 f2fs_do_write_meta_page(sbi, folio, io_type); 367 dec_page_count(sbi, F2FS_DIRTY_META); 368 369 if (wbc->for_reclaim) 370 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, META); 371 372 folio_unlock(folio); 373 374 if (unlikely(f2fs_cp_error(sbi))) 375 f2fs_submit_merged_write(sbi, META); 376 377 return 0; 378 379 redirty_out: 380 redirty_page_for_writepage(wbc, page); 381 return AOP_WRITEPAGE_ACTIVATE; 382 } 383 384 static int f2fs_write_meta_pages(struct address_space *mapping, 385 struct writeback_control *wbc) 386 { 387 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 388 long diff, written; 389 390 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 391 goto skip_write; 392 393 /* collect a number of dirty meta pages and write together */ 394 if (wbc->sync_mode != WB_SYNC_ALL && 395 get_pages(sbi, F2FS_DIRTY_META) < 396 nr_pages_to_skip(sbi, META)) 397 goto skip_write; 398 399 /* if locked failed, cp will flush dirty pages instead */ 400 if (!f2fs_down_write_trylock(&sbi->cp_global_sem)) 401 goto skip_write; 402 403 trace_f2fs_writepages(mapping->host, wbc, META); 404 diff = nr_pages_to_write(sbi, META, wbc); 405 written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO); 406 f2fs_up_write(&sbi->cp_global_sem); 407 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff); 408 return 0; 409 410 skip_write: 411 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META); 412 trace_f2fs_writepages(mapping->host, wbc, META); 413 return 0; 414 } 415 416 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 417 long nr_to_write, enum iostat_type io_type) 418 { 419 struct address_space *mapping = META_MAPPING(sbi); 420 pgoff_t index = 0, prev = ULONG_MAX; 421 struct folio_batch fbatch; 422 long nwritten = 0; 423 int nr_folios; 424 struct writeback_control wbc = { 425 .for_reclaim = 0, 426 }; 427 struct blk_plug plug; 428 429 folio_batch_init(&fbatch); 430 431 blk_start_plug(&plug); 432 433 while ((nr_folios = filemap_get_folios_tag(mapping, &index, 434 (pgoff_t)-1, 435 PAGECACHE_TAG_DIRTY, &fbatch))) { 436 int i; 437 438 for (i = 0; i < nr_folios; i++) { 439 struct folio *folio = fbatch.folios[i]; 440 441 if (nr_to_write != LONG_MAX && i != 0 && 442 folio->index != prev + 443 folio_nr_pages(fbatch.folios[i-1])) { 444 folio_batch_release(&fbatch); 445 goto stop; 446 } 447 448 folio_lock(folio); 449 450 if (unlikely(folio->mapping != mapping)) { 451 continue_unlock: 452 folio_unlock(folio); 453 continue; 454 } 455 if (!folio_test_dirty(folio)) { 456 /* someone wrote it for us */ 457 goto continue_unlock; 458 } 459 460 f2fs_wait_on_page_writeback(&folio->page, META, 461 true, true); 462 463 if (!folio_clear_dirty_for_io(folio)) 464 goto continue_unlock; 465 466 if (__f2fs_write_meta_page(&folio->page, &wbc, 467 io_type)) { 468 folio_unlock(folio); 469 break; 470 } 471 nwritten += folio_nr_pages(folio); 472 prev = folio->index; 473 if (unlikely(nwritten >= nr_to_write)) 474 break; 475 } 476 folio_batch_release(&fbatch); 477 cond_resched(); 478 } 479 stop: 480 if (nwritten) 481 f2fs_submit_merged_write(sbi, type); 482 483 blk_finish_plug(&plug); 484 485 return nwritten; 486 } 487 488 static bool f2fs_dirty_meta_folio(struct address_space *mapping, 489 struct folio *folio) 490 { 491 trace_f2fs_set_page_dirty(folio, META); 492 493 if (!folio_test_uptodate(folio)) 494 folio_mark_uptodate(folio); 495 if (filemap_dirty_folio(mapping, folio)) { 496 inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_META); 497 set_page_private_reference(&folio->page); 498 return true; 499 } 500 return false; 501 } 502 503 const struct address_space_operations f2fs_meta_aops = { 504 .writepages = f2fs_write_meta_pages, 505 .dirty_folio = f2fs_dirty_meta_folio, 506 .invalidate_folio = f2fs_invalidate_folio, 507 .release_folio = f2fs_release_folio, 508 .migrate_folio = filemap_migrate_folio, 509 }; 510 511 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, 512 unsigned int devidx, int type) 513 { 514 struct inode_management *im = &sbi->im[type]; 515 struct ino_entry *e = NULL, *new = NULL; 516 517 if (type == FLUSH_INO) { 518 rcu_read_lock(); 519 e = radix_tree_lookup(&im->ino_root, ino); 520 rcu_read_unlock(); 521 } 522 523 retry: 524 if (!e) 525 new = f2fs_kmem_cache_alloc(ino_entry_slab, 526 GFP_NOFS, true, NULL); 527 528 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL); 529 530 spin_lock(&im->ino_lock); 531 e = radix_tree_lookup(&im->ino_root, ino); 532 if (!e) { 533 if (!new) { 534 spin_unlock(&im->ino_lock); 535 radix_tree_preload_end(); 536 goto retry; 537 } 538 e = new; 539 if (unlikely(radix_tree_insert(&im->ino_root, ino, e))) 540 f2fs_bug_on(sbi, 1); 541 542 memset(e, 0, sizeof(struct ino_entry)); 543 e->ino = ino; 544 545 list_add_tail(&e->list, &im->ino_list); 546 if (type != ORPHAN_INO) 547 im->ino_num++; 548 } 549 550 if (type == FLUSH_INO) 551 f2fs_set_bit(devidx, (char *)&e->dirty_device); 552 553 spin_unlock(&im->ino_lock); 554 radix_tree_preload_end(); 555 556 if (new && e != new) 557 kmem_cache_free(ino_entry_slab, new); 558 } 559 560 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 561 { 562 struct inode_management *im = &sbi->im[type]; 563 struct ino_entry *e; 564 565 spin_lock(&im->ino_lock); 566 e = radix_tree_lookup(&im->ino_root, ino); 567 if (e) { 568 list_del(&e->list); 569 radix_tree_delete(&im->ino_root, ino); 570 im->ino_num--; 571 spin_unlock(&im->ino_lock); 572 kmem_cache_free(ino_entry_slab, e); 573 return; 574 } 575 spin_unlock(&im->ino_lock); 576 } 577 578 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 579 { 580 /* add new dirty ino entry into list */ 581 __add_ino_entry(sbi, ino, 0, type); 582 } 583 584 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 585 { 586 /* remove dirty ino entry from list */ 587 __remove_ino_entry(sbi, ino, type); 588 } 589 590 /* mode should be APPEND_INO, UPDATE_INO or TRANS_DIR_INO */ 591 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode) 592 { 593 struct inode_management *im = &sbi->im[mode]; 594 struct ino_entry *e; 595 596 spin_lock(&im->ino_lock); 597 e = radix_tree_lookup(&im->ino_root, ino); 598 spin_unlock(&im->ino_lock); 599 return e ? true : false; 600 } 601 602 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all) 603 { 604 struct ino_entry *e, *tmp; 605 int i; 606 607 for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) { 608 struct inode_management *im = &sbi->im[i]; 609 610 spin_lock(&im->ino_lock); 611 list_for_each_entry_safe(e, tmp, &im->ino_list, list) { 612 list_del(&e->list); 613 radix_tree_delete(&im->ino_root, e->ino); 614 kmem_cache_free(ino_entry_slab, e); 615 im->ino_num--; 616 } 617 spin_unlock(&im->ino_lock); 618 } 619 } 620 621 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 622 unsigned int devidx, int type) 623 { 624 __add_ino_entry(sbi, ino, devidx, type); 625 } 626 627 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 628 unsigned int devidx, int type) 629 { 630 struct inode_management *im = &sbi->im[type]; 631 struct ino_entry *e; 632 bool is_dirty = false; 633 634 spin_lock(&im->ino_lock); 635 e = radix_tree_lookup(&im->ino_root, ino); 636 if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device)) 637 is_dirty = true; 638 spin_unlock(&im->ino_lock); 639 return is_dirty; 640 } 641 642 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi) 643 { 644 struct inode_management *im = &sbi->im[ORPHAN_INO]; 645 int err = 0; 646 647 spin_lock(&im->ino_lock); 648 649 if (time_to_inject(sbi, FAULT_ORPHAN)) { 650 spin_unlock(&im->ino_lock); 651 return -ENOSPC; 652 } 653 654 if (unlikely(im->ino_num >= sbi->max_orphans)) 655 err = -ENOSPC; 656 else 657 im->ino_num++; 658 spin_unlock(&im->ino_lock); 659 660 return err; 661 } 662 663 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi) 664 { 665 struct inode_management *im = &sbi->im[ORPHAN_INO]; 666 667 spin_lock(&im->ino_lock); 668 f2fs_bug_on(sbi, im->ino_num == 0); 669 im->ino_num--; 670 spin_unlock(&im->ino_lock); 671 } 672 673 void f2fs_add_orphan_inode(struct inode *inode) 674 { 675 /* add new orphan ino entry into list */ 676 __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO); 677 f2fs_update_inode_page(inode); 678 } 679 680 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 681 { 682 /* remove orphan entry from orphan list */ 683 __remove_ino_entry(sbi, ino, ORPHAN_INO); 684 } 685 686 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 687 { 688 struct inode *inode; 689 struct node_info ni; 690 int err; 691 692 inode = f2fs_iget_retry(sbi->sb, ino); 693 if (IS_ERR(inode)) { 694 /* 695 * there should be a bug that we can't find the entry 696 * to orphan inode. 697 */ 698 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT); 699 return PTR_ERR(inode); 700 } 701 702 err = f2fs_dquot_initialize(inode); 703 if (err) { 704 iput(inode); 705 goto err_out; 706 } 707 708 clear_nlink(inode); 709 710 /* truncate all the data during iput */ 711 iput(inode); 712 713 err = f2fs_get_node_info(sbi, ino, &ni, false); 714 if (err) 715 goto err_out; 716 717 /* ENOMEM was fully retried in f2fs_evict_inode. */ 718 if (ni.blk_addr != NULL_ADDR) { 719 err = -EIO; 720 goto err_out; 721 } 722 return 0; 723 724 err_out: 725 set_sbi_flag(sbi, SBI_NEED_FSCK); 726 f2fs_warn(sbi, "%s: orphan failed (ino=%x), run fsck to fix.", 727 __func__, ino); 728 return err; 729 } 730 731 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi) 732 { 733 block_t start_blk, orphan_blocks, i, j; 734 int err = 0; 735 736 if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG)) 737 return 0; 738 739 if (f2fs_hw_is_readonly(sbi)) { 740 f2fs_info(sbi, "write access unavailable, skipping orphan cleanup"); 741 return 0; 742 } 743 744 if (is_sbi_flag_set(sbi, SBI_IS_WRITABLE)) 745 f2fs_info(sbi, "orphan cleanup on readonly fs"); 746 747 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi); 748 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi); 749 750 f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true); 751 752 for (i = 0; i < orphan_blocks; i++) { 753 struct page *page; 754 struct f2fs_orphan_block *orphan_blk; 755 756 page = f2fs_get_meta_page(sbi, start_blk + i); 757 if (IS_ERR(page)) { 758 err = PTR_ERR(page); 759 goto out; 760 } 761 762 orphan_blk = (struct f2fs_orphan_block *)page_address(page); 763 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) { 764 nid_t ino = le32_to_cpu(orphan_blk->ino[j]); 765 766 err = recover_orphan_inode(sbi, ino); 767 if (err) { 768 f2fs_put_page(page, 1); 769 goto out; 770 } 771 } 772 f2fs_put_page(page, 1); 773 } 774 /* clear Orphan Flag */ 775 clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG); 776 out: 777 set_sbi_flag(sbi, SBI_IS_RECOVERED); 778 779 return err; 780 } 781 782 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk) 783 { 784 struct list_head *head; 785 struct f2fs_orphan_block *orphan_blk = NULL; 786 unsigned int nentries = 0; 787 unsigned short index = 1; 788 unsigned short orphan_blocks; 789 struct page *page = NULL; 790 struct ino_entry *orphan = NULL; 791 struct inode_management *im = &sbi->im[ORPHAN_INO]; 792 793 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num); 794 795 /* 796 * we don't need to do spin_lock(&im->ino_lock) here, since all the 797 * orphan inode operations are covered under f2fs_lock_op(). 798 * And, spin_lock should be avoided due to page operations below. 799 */ 800 head = &im->ino_list; 801 802 /* loop for each orphan inode entry and write them in journal block */ 803 list_for_each_entry(orphan, head, list) { 804 if (!page) { 805 page = f2fs_grab_meta_page(sbi, start_blk++); 806 orphan_blk = 807 (struct f2fs_orphan_block *)page_address(page); 808 memset(orphan_blk, 0, sizeof(*orphan_blk)); 809 } 810 811 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino); 812 813 if (nentries == F2FS_ORPHANS_PER_BLOCK) { 814 /* 815 * an orphan block is full of 1020 entries, 816 * then we need to flush current orphan blocks 817 * and bring another one in memory 818 */ 819 orphan_blk->blk_addr = cpu_to_le16(index); 820 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 821 orphan_blk->entry_count = cpu_to_le32(nentries); 822 set_page_dirty(page); 823 f2fs_put_page(page, 1); 824 index++; 825 nentries = 0; 826 page = NULL; 827 } 828 } 829 830 if (page) { 831 orphan_blk->blk_addr = cpu_to_le16(index); 832 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 833 orphan_blk->entry_count = cpu_to_le32(nentries); 834 set_page_dirty(page); 835 f2fs_put_page(page, 1); 836 } 837 } 838 839 static __u32 f2fs_checkpoint_chksum(struct f2fs_sb_info *sbi, 840 struct f2fs_checkpoint *ckpt) 841 { 842 unsigned int chksum_ofs = le32_to_cpu(ckpt->checksum_offset); 843 __u32 chksum; 844 845 chksum = f2fs_crc32(sbi, ckpt, chksum_ofs); 846 if (chksum_ofs < CP_CHKSUM_OFFSET) { 847 chksum_ofs += sizeof(chksum); 848 chksum = f2fs_chksum(sbi, chksum, (__u8 *)ckpt + chksum_ofs, 849 F2FS_BLKSIZE - chksum_ofs); 850 } 851 return chksum; 852 } 853 854 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr, 855 struct f2fs_checkpoint **cp_block, struct page **cp_page, 856 unsigned long long *version) 857 { 858 size_t crc_offset = 0; 859 __u32 crc; 860 861 *cp_page = f2fs_get_meta_page(sbi, cp_addr); 862 if (IS_ERR(*cp_page)) 863 return PTR_ERR(*cp_page); 864 865 *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page); 866 867 crc_offset = le32_to_cpu((*cp_block)->checksum_offset); 868 if (crc_offset < CP_MIN_CHKSUM_OFFSET || 869 crc_offset > CP_CHKSUM_OFFSET) { 870 f2fs_put_page(*cp_page, 1); 871 f2fs_warn(sbi, "invalid crc_offset: %zu", crc_offset); 872 return -EINVAL; 873 } 874 875 crc = f2fs_checkpoint_chksum(sbi, *cp_block); 876 if (crc != cur_cp_crc(*cp_block)) { 877 f2fs_put_page(*cp_page, 1); 878 f2fs_warn(sbi, "invalid crc value"); 879 return -EINVAL; 880 } 881 882 *version = cur_cp_version(*cp_block); 883 return 0; 884 } 885 886 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi, 887 block_t cp_addr, unsigned long long *version) 888 { 889 struct page *cp_page_1 = NULL, *cp_page_2 = NULL; 890 struct f2fs_checkpoint *cp_block = NULL; 891 unsigned long long cur_version = 0, pre_version = 0; 892 unsigned int cp_blocks; 893 int err; 894 895 err = get_checkpoint_version(sbi, cp_addr, &cp_block, 896 &cp_page_1, version); 897 if (err) 898 return NULL; 899 900 cp_blocks = le32_to_cpu(cp_block->cp_pack_total_block_count); 901 902 if (cp_blocks > BLKS_PER_SEG(sbi) || cp_blocks <= F2FS_CP_PACKS) { 903 f2fs_warn(sbi, "invalid cp_pack_total_block_count:%u", 904 le32_to_cpu(cp_block->cp_pack_total_block_count)); 905 goto invalid_cp; 906 } 907 pre_version = *version; 908 909 cp_addr += cp_blocks - 1; 910 err = get_checkpoint_version(sbi, cp_addr, &cp_block, 911 &cp_page_2, version); 912 if (err) 913 goto invalid_cp; 914 cur_version = *version; 915 916 if (cur_version == pre_version) { 917 *version = cur_version; 918 f2fs_put_page(cp_page_2, 1); 919 return cp_page_1; 920 } 921 f2fs_put_page(cp_page_2, 1); 922 invalid_cp: 923 f2fs_put_page(cp_page_1, 1); 924 return NULL; 925 } 926 927 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi) 928 { 929 struct f2fs_checkpoint *cp_block; 930 struct f2fs_super_block *fsb = sbi->raw_super; 931 struct page *cp1, *cp2, *cur_page; 932 unsigned long blk_size = sbi->blocksize; 933 unsigned long long cp1_version = 0, cp2_version = 0; 934 unsigned long long cp_start_blk_no; 935 unsigned int cp_blks = 1 + __cp_payload(sbi); 936 block_t cp_blk_no; 937 int i; 938 int err; 939 940 sbi->ckpt = f2fs_kvzalloc(sbi, array_size(blk_size, cp_blks), 941 GFP_KERNEL); 942 if (!sbi->ckpt) 943 return -ENOMEM; 944 /* 945 * Finding out valid cp block involves read both 946 * sets( cp pack 1 and cp pack 2) 947 */ 948 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr); 949 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); 950 951 /* The second checkpoint pack should start at the next segment */ 952 cp_start_blk_no += ((unsigned long long)1) << 953 le32_to_cpu(fsb->log_blocks_per_seg); 954 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); 955 956 if (cp1 && cp2) { 957 if (ver_after(cp2_version, cp1_version)) 958 cur_page = cp2; 959 else 960 cur_page = cp1; 961 } else if (cp1) { 962 cur_page = cp1; 963 } else if (cp2) { 964 cur_page = cp2; 965 } else { 966 err = -EFSCORRUPTED; 967 goto fail_no_cp; 968 } 969 970 cp_block = (struct f2fs_checkpoint *)page_address(cur_page); 971 memcpy(sbi->ckpt, cp_block, blk_size); 972 973 if (cur_page == cp1) 974 sbi->cur_cp_pack = 1; 975 else 976 sbi->cur_cp_pack = 2; 977 978 /* Sanity checking of checkpoint */ 979 if (f2fs_sanity_check_ckpt(sbi)) { 980 err = -EFSCORRUPTED; 981 goto free_fail_no_cp; 982 } 983 984 if (cp_blks <= 1) 985 goto done; 986 987 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr); 988 if (cur_page == cp2) 989 cp_blk_no += BIT(le32_to_cpu(fsb->log_blocks_per_seg)); 990 991 for (i = 1; i < cp_blks; i++) { 992 void *sit_bitmap_ptr; 993 unsigned char *ckpt = (unsigned char *)sbi->ckpt; 994 995 cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i); 996 if (IS_ERR(cur_page)) { 997 err = PTR_ERR(cur_page); 998 goto free_fail_no_cp; 999 } 1000 sit_bitmap_ptr = page_address(cur_page); 1001 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size); 1002 f2fs_put_page(cur_page, 1); 1003 } 1004 done: 1005 f2fs_put_page(cp1, 1); 1006 f2fs_put_page(cp2, 1); 1007 return 0; 1008 1009 free_fail_no_cp: 1010 f2fs_put_page(cp1, 1); 1011 f2fs_put_page(cp2, 1); 1012 fail_no_cp: 1013 kvfree(sbi->ckpt); 1014 return err; 1015 } 1016 1017 static void __add_dirty_inode(struct inode *inode, enum inode_type type) 1018 { 1019 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1020 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 1021 1022 if (is_inode_flag_set(inode, flag)) 1023 return; 1024 1025 set_inode_flag(inode, flag); 1026 list_add_tail(&F2FS_I(inode)->dirty_list, &sbi->inode_list[type]); 1027 stat_inc_dirty_inode(sbi, type); 1028 } 1029 1030 static void __remove_dirty_inode(struct inode *inode, enum inode_type type) 1031 { 1032 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 1033 1034 if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag)) 1035 return; 1036 1037 list_del_init(&F2FS_I(inode)->dirty_list); 1038 clear_inode_flag(inode, flag); 1039 stat_dec_dirty_inode(F2FS_I_SB(inode), type); 1040 } 1041 1042 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio) 1043 { 1044 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1045 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 1046 1047 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1048 !S_ISLNK(inode->i_mode)) 1049 return; 1050 1051 spin_lock(&sbi->inode_lock[type]); 1052 if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH)) 1053 __add_dirty_inode(inode, type); 1054 inode_inc_dirty_pages(inode); 1055 spin_unlock(&sbi->inode_lock[type]); 1056 1057 set_page_private_reference(&folio->page); 1058 } 1059 1060 void f2fs_remove_dirty_inode(struct inode *inode) 1061 { 1062 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1063 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 1064 1065 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1066 !S_ISLNK(inode->i_mode)) 1067 return; 1068 1069 if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH)) 1070 return; 1071 1072 spin_lock(&sbi->inode_lock[type]); 1073 __remove_dirty_inode(inode, type); 1074 spin_unlock(&sbi->inode_lock[type]); 1075 } 1076 1077 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type, 1078 bool from_cp) 1079 { 1080 struct list_head *head; 1081 struct inode *inode; 1082 struct f2fs_inode_info *fi; 1083 bool is_dir = (type == DIR_INODE); 1084 unsigned long ino = 0; 1085 1086 trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir, 1087 get_pages(sbi, is_dir ? 1088 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 1089 retry: 1090 if (unlikely(f2fs_cp_error(sbi))) { 1091 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir, 1092 get_pages(sbi, is_dir ? 1093 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 1094 return -EIO; 1095 } 1096 1097 spin_lock(&sbi->inode_lock[type]); 1098 1099 head = &sbi->inode_list[type]; 1100 if (list_empty(head)) { 1101 spin_unlock(&sbi->inode_lock[type]); 1102 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir, 1103 get_pages(sbi, is_dir ? 1104 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 1105 return 0; 1106 } 1107 fi = list_first_entry(head, struct f2fs_inode_info, dirty_list); 1108 inode = igrab(&fi->vfs_inode); 1109 spin_unlock(&sbi->inode_lock[type]); 1110 if (inode) { 1111 unsigned long cur_ino = inode->i_ino; 1112 1113 if (from_cp) 1114 F2FS_I(inode)->cp_task = current; 1115 F2FS_I(inode)->wb_task = current; 1116 1117 filemap_fdatawrite(inode->i_mapping); 1118 1119 F2FS_I(inode)->wb_task = NULL; 1120 if (from_cp) 1121 F2FS_I(inode)->cp_task = NULL; 1122 1123 iput(inode); 1124 /* We need to give cpu to another writers. */ 1125 if (ino == cur_ino) 1126 cond_resched(); 1127 else 1128 ino = cur_ino; 1129 } else { 1130 /* 1131 * We should submit bio, since it exists several 1132 * writebacking dentry pages in the freeing inode. 1133 */ 1134 f2fs_submit_merged_write(sbi, DATA); 1135 cond_resched(); 1136 } 1137 goto retry; 1138 } 1139 1140 static int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi) 1141 { 1142 struct list_head *head = &sbi->inode_list[DIRTY_META]; 1143 struct inode *inode; 1144 struct f2fs_inode_info *fi; 1145 s64 total = get_pages(sbi, F2FS_DIRTY_IMETA); 1146 1147 while (total--) { 1148 if (unlikely(f2fs_cp_error(sbi))) 1149 return -EIO; 1150 1151 spin_lock(&sbi->inode_lock[DIRTY_META]); 1152 if (list_empty(head)) { 1153 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1154 return 0; 1155 } 1156 fi = list_first_entry(head, struct f2fs_inode_info, 1157 gdirty_list); 1158 inode = igrab(&fi->vfs_inode); 1159 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1160 if (inode) { 1161 sync_inode_metadata(inode, 0); 1162 1163 /* it's on eviction */ 1164 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) 1165 f2fs_update_inode_page(inode); 1166 iput(inode); 1167 } 1168 } 1169 return 0; 1170 } 1171 1172 static void __prepare_cp_block(struct f2fs_sb_info *sbi) 1173 { 1174 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1175 struct f2fs_nm_info *nm_i = NM_I(sbi); 1176 nid_t last_nid = nm_i->next_scan_nid; 1177 1178 next_free_nid(sbi, &last_nid); 1179 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi)); 1180 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi)); 1181 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi)); 1182 ckpt->next_free_nid = cpu_to_le32(last_nid); 1183 1184 /* update user_block_counts */ 1185 sbi->last_valid_block_count = sbi->total_valid_block_count; 1186 percpu_counter_set(&sbi->alloc_valid_block_count, 0); 1187 percpu_counter_set(&sbi->rf_node_block_count, 0); 1188 } 1189 1190 static bool __need_flush_quota(struct f2fs_sb_info *sbi) 1191 { 1192 bool ret = false; 1193 1194 if (!is_journalled_quota(sbi)) 1195 return false; 1196 1197 if (!f2fs_down_write_trylock(&sbi->quota_sem)) 1198 return true; 1199 if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) { 1200 ret = false; 1201 } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) { 1202 ret = false; 1203 } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_FLUSH)) { 1204 clear_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 1205 ret = true; 1206 } else if (get_pages(sbi, F2FS_DIRTY_QDATA)) { 1207 ret = true; 1208 } 1209 f2fs_up_write(&sbi->quota_sem); 1210 return ret; 1211 } 1212 1213 /* 1214 * Freeze all the FS-operations for checkpoint. 1215 */ 1216 static int block_operations(struct f2fs_sb_info *sbi) 1217 { 1218 struct writeback_control wbc = { 1219 .sync_mode = WB_SYNC_ALL, 1220 .nr_to_write = LONG_MAX, 1221 .for_reclaim = 0, 1222 }; 1223 int err = 0, cnt = 0; 1224 1225 /* 1226 * Let's flush inline_data in dirty node pages. 1227 */ 1228 f2fs_flush_inline_data(sbi); 1229 1230 retry_flush_quotas: 1231 f2fs_lock_all(sbi); 1232 if (__need_flush_quota(sbi)) { 1233 bool need_lock = sbi->umount_lock_holder != current; 1234 1235 if (++cnt > DEFAULT_RETRY_QUOTA_FLUSH_COUNT) { 1236 set_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH); 1237 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 1238 goto retry_flush_dents; 1239 } 1240 f2fs_unlock_all(sbi); 1241 1242 /* don't grab s_umount lock during mount/umount/remount/freeze/quotactl */ 1243 if (!need_lock) { 1244 f2fs_do_quota_sync(sbi->sb, -1); 1245 } else if (down_read_trylock(&sbi->sb->s_umount)) { 1246 f2fs_do_quota_sync(sbi->sb, -1); 1247 up_read(&sbi->sb->s_umount); 1248 } 1249 cond_resched(); 1250 goto retry_flush_quotas; 1251 } 1252 1253 retry_flush_dents: 1254 /* write all the dirty dentry pages */ 1255 if (get_pages(sbi, F2FS_DIRTY_DENTS)) { 1256 f2fs_unlock_all(sbi); 1257 err = f2fs_sync_dirty_inodes(sbi, DIR_INODE, true); 1258 if (err) 1259 return err; 1260 cond_resched(); 1261 goto retry_flush_quotas; 1262 } 1263 1264 /* 1265 * POR: we should ensure that there are no dirty node pages 1266 * until finishing nat/sit flush. inode->i_blocks can be updated. 1267 */ 1268 f2fs_down_write(&sbi->node_change); 1269 1270 if (get_pages(sbi, F2FS_DIRTY_IMETA)) { 1271 f2fs_up_write(&sbi->node_change); 1272 f2fs_unlock_all(sbi); 1273 err = f2fs_sync_inode_meta(sbi); 1274 if (err) 1275 return err; 1276 cond_resched(); 1277 goto retry_flush_quotas; 1278 } 1279 1280 retry_flush_nodes: 1281 f2fs_down_write(&sbi->node_write); 1282 1283 if (get_pages(sbi, F2FS_DIRTY_NODES)) { 1284 f2fs_up_write(&sbi->node_write); 1285 atomic_inc(&sbi->wb_sync_req[NODE]); 1286 err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO); 1287 atomic_dec(&sbi->wb_sync_req[NODE]); 1288 if (err) { 1289 f2fs_up_write(&sbi->node_change); 1290 f2fs_unlock_all(sbi); 1291 return err; 1292 } 1293 cond_resched(); 1294 goto retry_flush_nodes; 1295 } 1296 1297 /* 1298 * sbi->node_change is used only for AIO write_begin path which produces 1299 * dirty node blocks and some checkpoint values by block allocation. 1300 */ 1301 __prepare_cp_block(sbi); 1302 f2fs_up_write(&sbi->node_change); 1303 return err; 1304 } 1305 1306 static void unblock_operations(struct f2fs_sb_info *sbi) 1307 { 1308 f2fs_up_write(&sbi->node_write); 1309 f2fs_unlock_all(sbi); 1310 } 1311 1312 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type) 1313 { 1314 DEFINE_WAIT(wait); 1315 1316 for (;;) { 1317 if (!get_pages(sbi, type)) 1318 break; 1319 1320 if (unlikely(f2fs_cp_error(sbi) && 1321 !is_sbi_flag_set(sbi, SBI_IS_CLOSE))) 1322 break; 1323 1324 if (type == F2FS_DIRTY_META) 1325 f2fs_sync_meta_pages(sbi, META, LONG_MAX, 1326 FS_CP_META_IO); 1327 else if (type == F2FS_WB_CP_DATA) 1328 f2fs_submit_merged_write(sbi, DATA); 1329 1330 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE); 1331 io_schedule_timeout(DEFAULT_IO_TIMEOUT); 1332 } 1333 finish_wait(&sbi->cp_wait, &wait); 1334 } 1335 1336 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1337 { 1338 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num; 1339 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1340 unsigned long flags; 1341 1342 spin_lock_irqsave(&sbi->cp_lock, flags); 1343 1344 if ((cpc->reason & CP_UMOUNT) && 1345 le32_to_cpu(ckpt->cp_pack_total_block_count) > 1346 sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks) 1347 disable_nat_bits(sbi, false); 1348 1349 if (cpc->reason & CP_TRIMMED) 1350 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG); 1351 else 1352 __clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG); 1353 1354 if (cpc->reason & CP_UMOUNT) 1355 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1356 else 1357 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1358 1359 if (cpc->reason & CP_FASTBOOT) 1360 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1361 else 1362 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1363 1364 if (orphan_num) 1365 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1366 else 1367 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1368 1369 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1370 __set_ckpt_flags(ckpt, CP_FSCK_FLAG); 1371 1372 if (is_sbi_flag_set(sbi, SBI_IS_RESIZEFS)) 1373 __set_ckpt_flags(ckpt, CP_RESIZEFS_FLAG); 1374 else 1375 __clear_ckpt_flags(ckpt, CP_RESIZEFS_FLAG); 1376 1377 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED)) 1378 __set_ckpt_flags(ckpt, CP_DISABLED_FLAG); 1379 else 1380 __clear_ckpt_flags(ckpt, CP_DISABLED_FLAG); 1381 1382 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK)) 1383 __set_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG); 1384 else 1385 __clear_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG); 1386 1387 if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) 1388 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); 1389 else 1390 __clear_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); 1391 1392 if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) 1393 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); 1394 1395 /* set this flag to activate crc|cp_ver for recovery */ 1396 __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG); 1397 __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG); 1398 1399 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1400 } 1401 1402 static void commit_checkpoint(struct f2fs_sb_info *sbi, 1403 void *src, block_t blk_addr) 1404 { 1405 struct writeback_control wbc = { 1406 .for_reclaim = 0, 1407 }; 1408 1409 /* 1410 * filemap_get_folios_tag and lock_page again will take 1411 * some extra time. Therefore, f2fs_update_meta_pages and 1412 * f2fs_sync_meta_pages are combined in this function. 1413 */ 1414 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 1415 int err; 1416 1417 f2fs_wait_on_page_writeback(page, META, true, true); 1418 1419 memcpy(page_address(page), src, PAGE_SIZE); 1420 1421 set_page_dirty(page); 1422 if (unlikely(!clear_page_dirty_for_io(page))) 1423 f2fs_bug_on(sbi, 1); 1424 1425 /* writeout cp pack 2 page */ 1426 err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO); 1427 if (unlikely(err && f2fs_cp_error(sbi))) { 1428 f2fs_put_page(page, 1); 1429 return; 1430 } 1431 1432 f2fs_bug_on(sbi, err); 1433 f2fs_put_page(page, 0); 1434 1435 /* submit checkpoint (with barrier if NOBARRIER is not set) */ 1436 f2fs_submit_merged_write(sbi, META_FLUSH); 1437 } 1438 1439 static inline u64 get_sectors_written(struct block_device *bdev) 1440 { 1441 return (u64)part_stat_read(bdev, sectors[STAT_WRITE]); 1442 } 1443 1444 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi) 1445 { 1446 if (f2fs_is_multi_device(sbi)) { 1447 u64 sectors = 0; 1448 int i; 1449 1450 for (i = 0; i < sbi->s_ndevs; i++) 1451 sectors += get_sectors_written(FDEV(i).bdev); 1452 1453 return sectors; 1454 } 1455 1456 return get_sectors_written(sbi->sb->s_bdev); 1457 } 1458 1459 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1460 { 1461 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1462 struct f2fs_nm_info *nm_i = NM_I(sbi); 1463 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags; 1464 block_t start_blk; 1465 unsigned int data_sum_blocks, orphan_blocks; 1466 __u32 crc32 = 0; 1467 int i; 1468 int cp_payload_blks = __cp_payload(sbi); 1469 struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 1470 u64 kbytes_written; 1471 int err; 1472 1473 /* Flush all the NAT/SIT pages */ 1474 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO); 1475 1476 /* start to update checkpoint, cp ver is already updated previously */ 1477 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true)); 1478 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi)); 1479 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 1480 struct curseg_info *curseg = CURSEG_I(sbi, i + CURSEG_HOT_NODE); 1481 1482 ckpt->cur_node_segno[i] = cpu_to_le32(curseg->segno); 1483 ckpt->cur_node_blkoff[i] = cpu_to_le16(curseg->next_blkoff); 1484 ckpt->alloc_type[i + CURSEG_HOT_NODE] = curseg->alloc_type; 1485 } 1486 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 1487 struct curseg_info *curseg = CURSEG_I(sbi, i + CURSEG_HOT_DATA); 1488 1489 ckpt->cur_data_segno[i] = cpu_to_le32(curseg->segno); 1490 ckpt->cur_data_blkoff[i] = cpu_to_le16(curseg->next_blkoff); 1491 ckpt->alloc_type[i + CURSEG_HOT_DATA] = curseg->alloc_type; 1492 } 1493 1494 /* 2 cp + n data seg summary + orphan inode blocks */ 1495 data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false); 1496 spin_lock_irqsave(&sbi->cp_lock, flags); 1497 if (data_sum_blocks < NR_CURSEG_DATA_TYPE) 1498 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1499 else 1500 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1501 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1502 1503 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num); 1504 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks + 1505 orphan_blocks); 1506 1507 if (__remain_node_summaries(cpc->reason)) 1508 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + 1509 cp_payload_blks + data_sum_blocks + 1510 orphan_blocks + NR_CURSEG_NODE_TYPE); 1511 else 1512 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + 1513 cp_payload_blks + data_sum_blocks + 1514 orphan_blocks); 1515 1516 /* update ckpt flag for checkpoint */ 1517 update_ckpt_flags(sbi, cpc); 1518 1519 /* update SIT/NAT bitmap */ 1520 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP)); 1521 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP)); 1522 1523 crc32 = f2fs_checkpoint_chksum(sbi, ckpt); 1524 *((__le32 *)((unsigned char *)ckpt + 1525 le32_to_cpu(ckpt->checksum_offset))) 1526 = cpu_to_le32(crc32); 1527 1528 start_blk = __start_cp_next_addr(sbi); 1529 1530 /* write nat bits */ 1531 if (enabled_nat_bits(sbi, cpc)) { 1532 __u64 cp_ver = cur_cp_version(ckpt); 1533 block_t blk; 1534 1535 cp_ver |= ((__u64)crc32 << 32); 1536 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver); 1537 1538 blk = start_blk + BLKS_PER_SEG(sbi) - nm_i->nat_bits_blocks; 1539 for (i = 0; i < nm_i->nat_bits_blocks; i++) 1540 f2fs_update_meta_page(sbi, nm_i->nat_bits + 1541 F2FS_BLK_TO_BYTES(i), blk + i); 1542 } 1543 1544 /* write out checkpoint buffer at block 0 */ 1545 f2fs_update_meta_page(sbi, ckpt, start_blk++); 1546 1547 for (i = 1; i < 1 + cp_payload_blks; i++) 1548 f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE, 1549 start_blk++); 1550 1551 if (orphan_num) { 1552 write_orphan_inodes(sbi, start_blk); 1553 start_blk += orphan_blocks; 1554 } 1555 1556 f2fs_write_data_summaries(sbi, start_blk); 1557 start_blk += data_sum_blocks; 1558 1559 /* Record write statistics in the hot node summary */ 1560 kbytes_written = sbi->kbytes_written; 1561 kbytes_written += (f2fs_get_sectors_written(sbi) - 1562 sbi->sectors_written_start) >> 1; 1563 seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written); 1564 1565 if (__remain_node_summaries(cpc->reason)) { 1566 f2fs_write_node_summaries(sbi, start_blk); 1567 start_blk += NR_CURSEG_NODE_TYPE; 1568 } 1569 1570 /* Here, we have one bio having CP pack except cp pack 2 page */ 1571 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO); 1572 /* Wait for all dirty meta pages to be submitted for IO */ 1573 f2fs_wait_on_all_pages(sbi, F2FS_DIRTY_META); 1574 1575 /* wait for previous submitted meta pages writeback */ 1576 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA); 1577 1578 /* flush all device cache */ 1579 err = f2fs_flush_device_cache(sbi); 1580 if (err) 1581 return err; 1582 1583 /* barrier and flush checkpoint cp pack 2 page if it can */ 1584 commit_checkpoint(sbi, ckpt, start_blk); 1585 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA); 1586 1587 /* 1588 * invalidate intermediate page cache borrowed from meta inode which are 1589 * used for migration of encrypted, verity or compressed inode's blocks. 1590 */ 1591 if (f2fs_sb_has_encrypt(sbi) || f2fs_sb_has_verity(sbi) || 1592 f2fs_sb_has_compression(sbi)) 1593 f2fs_bug_on(sbi, 1594 invalidate_inode_pages2_range(META_MAPPING(sbi), 1595 MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1)); 1596 1597 f2fs_release_ino_entry(sbi, false); 1598 1599 f2fs_reset_fsync_node_info(sbi); 1600 1601 clear_sbi_flag(sbi, SBI_IS_DIRTY); 1602 clear_sbi_flag(sbi, SBI_NEED_CP); 1603 clear_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH); 1604 1605 spin_lock(&sbi->stat_lock); 1606 sbi->unusable_block_count = 0; 1607 spin_unlock(&sbi->stat_lock); 1608 1609 __set_cp_next_pack(sbi); 1610 1611 /* 1612 * redirty superblock if metadata like node page or inode cache is 1613 * updated during writing checkpoint. 1614 */ 1615 if (get_pages(sbi, F2FS_DIRTY_NODES) || 1616 get_pages(sbi, F2FS_DIRTY_IMETA)) 1617 set_sbi_flag(sbi, SBI_IS_DIRTY); 1618 1619 f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS)); 1620 1621 return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0; 1622 } 1623 1624 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1625 { 1626 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1627 unsigned long long ckpt_ver; 1628 int err = 0; 1629 1630 if (f2fs_readonly(sbi->sb) || f2fs_hw_is_readonly(sbi)) 1631 return -EROFS; 1632 1633 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 1634 if (cpc->reason != CP_PAUSE) 1635 return 0; 1636 f2fs_warn(sbi, "Start checkpoint disabled!"); 1637 } 1638 if (cpc->reason != CP_RESIZE) 1639 f2fs_down_write(&sbi->cp_global_sem); 1640 1641 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) && 1642 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) || 1643 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks))) 1644 goto out; 1645 if (unlikely(f2fs_cp_error(sbi))) { 1646 err = -EIO; 1647 goto out; 1648 } 1649 1650 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops"); 1651 1652 err = block_operations(sbi); 1653 if (err) 1654 goto out; 1655 1656 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops"); 1657 1658 f2fs_flush_merged_writes(sbi); 1659 1660 /* this is the case of multiple fstrims without any changes */ 1661 if (cpc->reason & CP_DISCARD) { 1662 if (!f2fs_exist_trim_candidates(sbi, cpc)) { 1663 unblock_operations(sbi); 1664 goto out; 1665 } 1666 1667 if (NM_I(sbi)->nat_cnt[DIRTY_NAT] == 0 && 1668 SIT_I(sbi)->dirty_sentries == 0 && 1669 prefree_segments(sbi) == 0) { 1670 f2fs_flush_sit_entries(sbi, cpc); 1671 f2fs_clear_prefree_segments(sbi, cpc); 1672 unblock_operations(sbi); 1673 goto out; 1674 } 1675 } 1676 1677 /* 1678 * update checkpoint pack index 1679 * Increase the version number so that 1680 * SIT entries and seg summaries are written at correct place 1681 */ 1682 ckpt_ver = cur_cp_version(ckpt); 1683 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver); 1684 1685 /* write cached NAT/SIT entries to NAT/SIT area */ 1686 err = f2fs_flush_nat_entries(sbi, cpc); 1687 if (err) { 1688 f2fs_err(sbi, "f2fs_flush_nat_entries failed err:%d, stop checkpoint", err); 1689 f2fs_bug_on(sbi, !f2fs_cp_error(sbi)); 1690 goto stop; 1691 } 1692 1693 f2fs_flush_sit_entries(sbi, cpc); 1694 1695 /* save inmem log status */ 1696 f2fs_save_inmem_curseg(sbi); 1697 1698 err = do_checkpoint(sbi, cpc); 1699 if (err) { 1700 f2fs_err(sbi, "do_checkpoint failed err:%d, stop checkpoint", err); 1701 f2fs_bug_on(sbi, !f2fs_cp_error(sbi)); 1702 f2fs_release_discard_addrs(sbi); 1703 } else { 1704 f2fs_clear_prefree_segments(sbi, cpc); 1705 } 1706 1707 f2fs_restore_inmem_curseg(sbi); 1708 f2fs_reinit_atgc_curseg(sbi); 1709 stat_inc_cp_count(sbi); 1710 stop: 1711 unblock_operations(sbi); 1712 1713 if (cpc->reason & CP_RECOVERY) 1714 f2fs_notice(sbi, "checkpoint: version = %llx", ckpt_ver); 1715 1716 /* update CP_TIME to trigger checkpoint periodically */ 1717 f2fs_update_time(sbi, CP_TIME); 1718 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint"); 1719 out: 1720 if (cpc->reason != CP_RESIZE) 1721 f2fs_up_write(&sbi->cp_global_sem); 1722 return err; 1723 } 1724 1725 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi) 1726 { 1727 int i; 1728 1729 for (i = 0; i < MAX_INO_ENTRY; i++) { 1730 struct inode_management *im = &sbi->im[i]; 1731 1732 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC); 1733 spin_lock_init(&im->ino_lock); 1734 INIT_LIST_HEAD(&im->ino_list); 1735 im->ino_num = 0; 1736 } 1737 1738 sbi->max_orphans = (BLKS_PER_SEG(sbi) - F2FS_CP_PACKS - 1739 NR_CURSEG_PERSIST_TYPE - __cp_payload(sbi)) * 1740 F2FS_ORPHANS_PER_BLOCK; 1741 } 1742 1743 int __init f2fs_create_checkpoint_caches(void) 1744 { 1745 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry", 1746 sizeof(struct ino_entry)); 1747 if (!ino_entry_slab) 1748 return -ENOMEM; 1749 f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry", 1750 sizeof(struct inode_entry)); 1751 if (!f2fs_inode_entry_slab) { 1752 kmem_cache_destroy(ino_entry_slab); 1753 return -ENOMEM; 1754 } 1755 return 0; 1756 } 1757 1758 void f2fs_destroy_checkpoint_caches(void) 1759 { 1760 kmem_cache_destroy(ino_entry_slab); 1761 kmem_cache_destroy(f2fs_inode_entry_slab); 1762 } 1763 1764 static int __write_checkpoint_sync(struct f2fs_sb_info *sbi) 1765 { 1766 struct cp_control cpc = { .reason = CP_SYNC, }; 1767 int err; 1768 1769 f2fs_down_write(&sbi->gc_lock); 1770 err = f2fs_write_checkpoint(sbi, &cpc); 1771 f2fs_up_write(&sbi->gc_lock); 1772 1773 return err; 1774 } 1775 1776 static void __checkpoint_and_complete_reqs(struct f2fs_sb_info *sbi) 1777 { 1778 struct ckpt_req_control *cprc = &sbi->cprc_info; 1779 struct ckpt_req *req, *next; 1780 struct llist_node *dispatch_list; 1781 u64 sum_diff = 0, diff, count = 0; 1782 int ret; 1783 1784 dispatch_list = llist_del_all(&cprc->issue_list); 1785 if (!dispatch_list) 1786 return; 1787 dispatch_list = llist_reverse_order(dispatch_list); 1788 1789 ret = __write_checkpoint_sync(sbi); 1790 atomic_inc(&cprc->issued_ckpt); 1791 1792 llist_for_each_entry_safe(req, next, dispatch_list, llnode) { 1793 diff = (u64)ktime_ms_delta(ktime_get(), req->queue_time); 1794 req->ret = ret; 1795 complete(&req->wait); 1796 1797 sum_diff += diff; 1798 count++; 1799 } 1800 atomic_sub(count, &cprc->queued_ckpt); 1801 atomic_add(count, &cprc->total_ckpt); 1802 1803 spin_lock(&cprc->stat_lock); 1804 cprc->cur_time = (unsigned int)div64_u64(sum_diff, count); 1805 if (cprc->peak_time < cprc->cur_time) 1806 cprc->peak_time = cprc->cur_time; 1807 spin_unlock(&cprc->stat_lock); 1808 } 1809 1810 static int issue_checkpoint_thread(void *data) 1811 { 1812 struct f2fs_sb_info *sbi = data; 1813 struct ckpt_req_control *cprc = &sbi->cprc_info; 1814 wait_queue_head_t *q = &cprc->ckpt_wait_queue; 1815 repeat: 1816 if (kthread_should_stop()) 1817 return 0; 1818 1819 if (!llist_empty(&cprc->issue_list)) 1820 __checkpoint_and_complete_reqs(sbi); 1821 1822 wait_event_interruptible(*q, 1823 kthread_should_stop() || !llist_empty(&cprc->issue_list)); 1824 goto repeat; 1825 } 1826 1827 static void flush_remained_ckpt_reqs(struct f2fs_sb_info *sbi, 1828 struct ckpt_req *wait_req) 1829 { 1830 struct ckpt_req_control *cprc = &sbi->cprc_info; 1831 1832 if (!llist_empty(&cprc->issue_list)) { 1833 __checkpoint_and_complete_reqs(sbi); 1834 } else { 1835 /* already dispatched by issue_checkpoint_thread */ 1836 if (wait_req) 1837 wait_for_completion(&wait_req->wait); 1838 } 1839 } 1840 1841 static void init_ckpt_req(struct ckpt_req *req) 1842 { 1843 memset(req, 0, sizeof(struct ckpt_req)); 1844 1845 init_completion(&req->wait); 1846 req->queue_time = ktime_get(); 1847 } 1848 1849 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi) 1850 { 1851 struct ckpt_req_control *cprc = &sbi->cprc_info; 1852 struct ckpt_req req; 1853 struct cp_control cpc; 1854 1855 cpc.reason = __get_cp_reason(sbi); 1856 if (!test_opt(sbi, MERGE_CHECKPOINT) || cpc.reason != CP_SYNC || 1857 sbi->umount_lock_holder == current) { 1858 int ret; 1859 1860 f2fs_down_write(&sbi->gc_lock); 1861 ret = f2fs_write_checkpoint(sbi, &cpc); 1862 f2fs_up_write(&sbi->gc_lock); 1863 1864 return ret; 1865 } 1866 1867 if (!cprc->f2fs_issue_ckpt) 1868 return __write_checkpoint_sync(sbi); 1869 1870 init_ckpt_req(&req); 1871 1872 llist_add(&req.llnode, &cprc->issue_list); 1873 atomic_inc(&cprc->queued_ckpt); 1874 1875 /* 1876 * update issue_list before we wake up issue_checkpoint thread, 1877 * this smp_mb() pairs with another barrier in ___wait_event(), 1878 * see more details in comments of waitqueue_active(). 1879 */ 1880 smp_mb(); 1881 1882 if (waitqueue_active(&cprc->ckpt_wait_queue)) 1883 wake_up(&cprc->ckpt_wait_queue); 1884 1885 if (cprc->f2fs_issue_ckpt) 1886 wait_for_completion(&req.wait); 1887 else 1888 flush_remained_ckpt_reqs(sbi, &req); 1889 1890 return req.ret; 1891 } 1892 1893 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi) 1894 { 1895 dev_t dev = sbi->sb->s_bdev->bd_dev; 1896 struct ckpt_req_control *cprc = &sbi->cprc_info; 1897 1898 if (cprc->f2fs_issue_ckpt) 1899 return 0; 1900 1901 cprc->f2fs_issue_ckpt = kthread_run(issue_checkpoint_thread, sbi, 1902 "f2fs_ckpt-%u:%u", MAJOR(dev), MINOR(dev)); 1903 if (IS_ERR(cprc->f2fs_issue_ckpt)) { 1904 int err = PTR_ERR(cprc->f2fs_issue_ckpt); 1905 1906 cprc->f2fs_issue_ckpt = NULL; 1907 return err; 1908 } 1909 1910 set_task_ioprio(cprc->f2fs_issue_ckpt, cprc->ckpt_thread_ioprio); 1911 1912 return 0; 1913 } 1914 1915 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi) 1916 { 1917 struct ckpt_req_control *cprc = &sbi->cprc_info; 1918 struct task_struct *ckpt_task; 1919 1920 if (!cprc->f2fs_issue_ckpt) 1921 return; 1922 1923 ckpt_task = cprc->f2fs_issue_ckpt; 1924 cprc->f2fs_issue_ckpt = NULL; 1925 kthread_stop(ckpt_task); 1926 1927 f2fs_flush_ckpt_thread(sbi); 1928 } 1929 1930 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi) 1931 { 1932 struct ckpt_req_control *cprc = &sbi->cprc_info; 1933 1934 flush_remained_ckpt_reqs(sbi, NULL); 1935 1936 /* Let's wait for the previous dispatched checkpoint. */ 1937 while (atomic_read(&cprc->queued_ckpt)) 1938 io_schedule_timeout(DEFAULT_IO_TIMEOUT); 1939 } 1940 1941 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi) 1942 { 1943 struct ckpt_req_control *cprc = &sbi->cprc_info; 1944 1945 atomic_set(&cprc->issued_ckpt, 0); 1946 atomic_set(&cprc->total_ckpt, 0); 1947 atomic_set(&cprc->queued_ckpt, 0); 1948 cprc->ckpt_thread_ioprio = DEFAULT_CHECKPOINT_IOPRIO; 1949 init_waitqueue_head(&cprc->ckpt_wait_queue); 1950 init_llist_head(&cprc->issue_list); 1951 spin_lock_init(&cprc->stat_lock); 1952 } 1953