1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/checkpoint.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/bio.h> 10 #include <linux/mpage.h> 11 #include <linux/writeback.h> 12 #include <linux/blkdev.h> 13 #include <linux/f2fs_fs.h> 14 #include <linux/pagevec.h> 15 #include <linux/swap.h> 16 #include <linux/kthread.h> 17 18 #include "f2fs.h" 19 #include "node.h" 20 #include "segment.h" 21 #include "iostat.h" 22 #include <trace/events/f2fs.h> 23 24 #define DEFAULT_CHECKPOINT_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 25 26 static struct kmem_cache *ino_entry_slab; 27 struct kmem_cache *f2fs_inode_entry_slab; 28 29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io, 30 unsigned char reason) 31 { 32 f2fs_build_fault_attr(sbi, 0, 0); 33 set_ckpt_flags(sbi, CP_ERROR_FLAG); 34 if (!end_io) { 35 f2fs_flush_merged_writes(sbi); 36 37 f2fs_handle_stop(sbi, reason); 38 } 39 } 40 41 /* 42 * We guarantee no failure on the returned page. 43 */ 44 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 45 { 46 struct address_space *mapping = META_MAPPING(sbi); 47 struct page *page; 48 repeat: 49 page = f2fs_grab_cache_page(mapping, index, false); 50 if (!page) { 51 cond_resched(); 52 goto repeat; 53 } 54 f2fs_wait_on_page_writeback(page, META, true, true); 55 if (!PageUptodate(page)) 56 SetPageUptodate(page); 57 return page; 58 } 59 60 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index, 61 bool is_meta) 62 { 63 struct address_space *mapping = META_MAPPING(sbi); 64 struct page *page; 65 struct f2fs_io_info fio = { 66 .sbi = sbi, 67 .type = META, 68 .op = REQ_OP_READ, 69 .op_flags = REQ_META | REQ_PRIO, 70 .old_blkaddr = index, 71 .new_blkaddr = index, 72 .encrypted_page = NULL, 73 .is_por = !is_meta ? 1 : 0, 74 }; 75 int err; 76 77 if (unlikely(!is_meta)) 78 fio.op_flags &= ~REQ_META; 79 repeat: 80 page = f2fs_grab_cache_page(mapping, index, false); 81 if (!page) { 82 cond_resched(); 83 goto repeat; 84 } 85 if (PageUptodate(page)) 86 goto out; 87 88 fio.page = page; 89 90 err = f2fs_submit_page_bio(&fio); 91 if (err) { 92 f2fs_put_page(page, 1); 93 return ERR_PTR(err); 94 } 95 96 f2fs_update_iostat(sbi, NULL, FS_META_READ_IO, F2FS_BLKSIZE); 97 98 lock_page(page); 99 if (unlikely(page->mapping != mapping)) { 100 f2fs_put_page(page, 1); 101 goto repeat; 102 } 103 104 if (unlikely(!PageUptodate(page))) { 105 f2fs_handle_page_eio(sbi, page->index, META); 106 f2fs_put_page(page, 1); 107 return ERR_PTR(-EIO); 108 } 109 out: 110 return page; 111 } 112 113 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 114 { 115 return __get_meta_page(sbi, index, true); 116 } 117 118 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index) 119 { 120 struct page *page; 121 int count = 0; 122 123 retry: 124 page = __get_meta_page(sbi, index, true); 125 if (IS_ERR(page)) { 126 if (PTR_ERR(page) == -EIO && 127 ++count <= DEFAULT_RETRY_IO_COUNT) 128 goto retry; 129 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_META_PAGE); 130 } 131 return page; 132 } 133 134 /* for POR only */ 135 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index) 136 { 137 return __get_meta_page(sbi, index, false); 138 } 139 140 static bool __is_bitmap_valid(struct f2fs_sb_info *sbi, block_t blkaddr, 141 int type) 142 { 143 struct seg_entry *se; 144 unsigned int segno, offset; 145 bool exist; 146 147 if (type == DATA_GENERIC) 148 return true; 149 150 segno = GET_SEGNO(sbi, blkaddr); 151 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 152 se = get_seg_entry(sbi, segno); 153 154 exist = f2fs_test_bit(offset, se->cur_valid_map); 155 if (exist && type == DATA_GENERIC_ENHANCE_UPDATE) { 156 f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d", 157 blkaddr, exist); 158 set_sbi_flag(sbi, SBI_NEED_FSCK); 159 return exist; 160 } 161 162 if (!exist && type == DATA_GENERIC_ENHANCE) { 163 f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d", 164 blkaddr, exist); 165 set_sbi_flag(sbi, SBI_NEED_FSCK); 166 dump_stack(); 167 } 168 return exist; 169 } 170 171 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 172 block_t blkaddr, int type) 173 { 174 if (time_to_inject(sbi, FAULT_BLKADDR)) 175 return false; 176 177 switch (type) { 178 case META_NAT: 179 break; 180 case META_SIT: 181 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi))) 182 return false; 183 break; 184 case META_SSA: 185 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) || 186 blkaddr < SM_I(sbi)->ssa_blkaddr)) 187 return false; 188 break; 189 case META_CP: 190 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr || 191 blkaddr < __start_cp_addr(sbi))) 192 return false; 193 break; 194 case META_POR: 195 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || 196 blkaddr < MAIN_BLKADDR(sbi))) 197 return false; 198 break; 199 case DATA_GENERIC: 200 case DATA_GENERIC_ENHANCE: 201 case DATA_GENERIC_ENHANCE_READ: 202 case DATA_GENERIC_ENHANCE_UPDATE: 203 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || 204 blkaddr < MAIN_BLKADDR(sbi))) { 205 f2fs_warn(sbi, "access invalid blkaddr:%u", 206 blkaddr); 207 set_sbi_flag(sbi, SBI_NEED_FSCK); 208 dump_stack(); 209 return false; 210 } else { 211 return __is_bitmap_valid(sbi, blkaddr, type); 212 } 213 break; 214 case META_GENERIC: 215 if (unlikely(blkaddr < SEG0_BLKADDR(sbi) || 216 blkaddr >= MAIN_BLKADDR(sbi))) 217 return false; 218 break; 219 default: 220 BUG(); 221 } 222 223 return true; 224 } 225 226 /* 227 * Readahead CP/NAT/SIT/SSA/POR pages 228 */ 229 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 230 int type, bool sync) 231 { 232 struct page *page; 233 block_t blkno = start; 234 struct f2fs_io_info fio = { 235 .sbi = sbi, 236 .type = META, 237 .op = REQ_OP_READ, 238 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD, 239 .encrypted_page = NULL, 240 .in_list = 0, 241 .is_por = (type == META_POR) ? 1 : 0, 242 }; 243 struct blk_plug plug; 244 int err; 245 246 if (unlikely(type == META_POR)) 247 fio.op_flags &= ~REQ_META; 248 249 blk_start_plug(&plug); 250 for (; nrpages-- > 0; blkno++) { 251 252 if (!f2fs_is_valid_blkaddr(sbi, blkno, type)) 253 goto out; 254 255 switch (type) { 256 case META_NAT: 257 if (unlikely(blkno >= 258 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid))) 259 blkno = 0; 260 /* get nat block addr */ 261 fio.new_blkaddr = current_nat_addr(sbi, 262 blkno * NAT_ENTRY_PER_BLOCK); 263 break; 264 case META_SIT: 265 if (unlikely(blkno >= TOTAL_SEGS(sbi))) 266 goto out; 267 /* get sit block addr */ 268 fio.new_blkaddr = current_sit_addr(sbi, 269 blkno * SIT_ENTRY_PER_BLOCK); 270 break; 271 case META_SSA: 272 case META_CP: 273 case META_POR: 274 fio.new_blkaddr = blkno; 275 break; 276 default: 277 BUG(); 278 } 279 280 page = f2fs_grab_cache_page(META_MAPPING(sbi), 281 fio.new_blkaddr, false); 282 if (!page) 283 continue; 284 if (PageUptodate(page)) { 285 f2fs_put_page(page, 1); 286 continue; 287 } 288 289 fio.page = page; 290 err = f2fs_submit_page_bio(&fio); 291 f2fs_put_page(page, err ? 1 : 0); 292 293 if (!err) 294 f2fs_update_iostat(sbi, NULL, FS_META_READ_IO, 295 F2FS_BLKSIZE); 296 } 297 out: 298 blk_finish_plug(&plug); 299 return blkno - start; 300 } 301 302 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index, 303 unsigned int ra_blocks) 304 { 305 struct page *page; 306 bool readahead = false; 307 308 if (ra_blocks == RECOVERY_MIN_RA_BLOCKS) 309 return; 310 311 page = find_get_page(META_MAPPING(sbi), index); 312 if (!page || !PageUptodate(page)) 313 readahead = true; 314 f2fs_put_page(page, 0); 315 316 if (readahead) 317 f2fs_ra_meta_pages(sbi, index, ra_blocks, META_POR, true); 318 } 319 320 static int __f2fs_write_meta_page(struct page *page, 321 struct writeback_control *wbc, 322 enum iostat_type io_type) 323 { 324 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 325 326 trace_f2fs_writepage(page, META); 327 328 if (unlikely(f2fs_cp_error(sbi))) 329 goto redirty_out; 330 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 331 goto redirty_out; 332 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0)) 333 goto redirty_out; 334 335 f2fs_do_write_meta_page(sbi, page, io_type); 336 dec_page_count(sbi, F2FS_DIRTY_META); 337 338 if (wbc->for_reclaim) 339 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, META); 340 341 unlock_page(page); 342 343 if (unlikely(f2fs_cp_error(sbi))) 344 f2fs_submit_merged_write(sbi, META); 345 346 return 0; 347 348 redirty_out: 349 redirty_page_for_writepage(wbc, page); 350 return AOP_WRITEPAGE_ACTIVATE; 351 } 352 353 static int f2fs_write_meta_page(struct page *page, 354 struct writeback_control *wbc) 355 { 356 return __f2fs_write_meta_page(page, wbc, FS_META_IO); 357 } 358 359 static int f2fs_write_meta_pages(struct address_space *mapping, 360 struct writeback_control *wbc) 361 { 362 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 363 long diff, written; 364 365 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 366 goto skip_write; 367 368 /* collect a number of dirty meta pages and write together */ 369 if (wbc->sync_mode != WB_SYNC_ALL && 370 get_pages(sbi, F2FS_DIRTY_META) < 371 nr_pages_to_skip(sbi, META)) 372 goto skip_write; 373 374 /* if locked failed, cp will flush dirty pages instead */ 375 if (!f2fs_down_write_trylock(&sbi->cp_global_sem)) 376 goto skip_write; 377 378 trace_f2fs_writepages(mapping->host, wbc, META); 379 diff = nr_pages_to_write(sbi, META, wbc); 380 written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO); 381 f2fs_up_write(&sbi->cp_global_sem); 382 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff); 383 return 0; 384 385 skip_write: 386 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META); 387 trace_f2fs_writepages(mapping->host, wbc, META); 388 return 0; 389 } 390 391 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 392 long nr_to_write, enum iostat_type io_type) 393 { 394 struct address_space *mapping = META_MAPPING(sbi); 395 pgoff_t index = 0, prev = ULONG_MAX; 396 struct folio_batch fbatch; 397 long nwritten = 0; 398 int nr_folios; 399 struct writeback_control wbc = { 400 .for_reclaim = 0, 401 }; 402 struct blk_plug plug; 403 404 folio_batch_init(&fbatch); 405 406 blk_start_plug(&plug); 407 408 while ((nr_folios = filemap_get_folios_tag(mapping, &index, 409 (pgoff_t)-1, 410 PAGECACHE_TAG_DIRTY, &fbatch))) { 411 int i; 412 413 for (i = 0; i < nr_folios; i++) { 414 struct folio *folio = fbatch.folios[i]; 415 416 if (nr_to_write != LONG_MAX && i != 0 && 417 folio->index != prev + 418 folio_nr_pages(fbatch.folios[i-1])) { 419 folio_batch_release(&fbatch); 420 goto stop; 421 } 422 423 folio_lock(folio); 424 425 if (unlikely(folio->mapping != mapping)) { 426 continue_unlock: 427 folio_unlock(folio); 428 continue; 429 } 430 if (!folio_test_dirty(folio)) { 431 /* someone wrote it for us */ 432 goto continue_unlock; 433 } 434 435 f2fs_wait_on_page_writeback(&folio->page, META, 436 true, true); 437 438 if (!folio_clear_dirty_for_io(folio)) 439 goto continue_unlock; 440 441 if (__f2fs_write_meta_page(&folio->page, &wbc, 442 io_type)) { 443 folio_unlock(folio); 444 break; 445 } 446 nwritten += folio_nr_pages(folio); 447 prev = folio->index; 448 if (unlikely(nwritten >= nr_to_write)) 449 break; 450 } 451 folio_batch_release(&fbatch); 452 cond_resched(); 453 } 454 stop: 455 if (nwritten) 456 f2fs_submit_merged_write(sbi, type); 457 458 blk_finish_plug(&plug); 459 460 return nwritten; 461 } 462 463 static bool f2fs_dirty_meta_folio(struct address_space *mapping, 464 struct folio *folio) 465 { 466 trace_f2fs_set_page_dirty(&folio->page, META); 467 468 if (!folio_test_uptodate(folio)) 469 folio_mark_uptodate(folio); 470 if (filemap_dirty_folio(mapping, folio)) { 471 inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_META); 472 set_page_private_reference(&folio->page); 473 return true; 474 } 475 return false; 476 } 477 478 const struct address_space_operations f2fs_meta_aops = { 479 .writepage = f2fs_write_meta_page, 480 .writepages = f2fs_write_meta_pages, 481 .dirty_folio = f2fs_dirty_meta_folio, 482 .invalidate_folio = f2fs_invalidate_folio, 483 .release_folio = f2fs_release_folio, 484 .migrate_folio = filemap_migrate_folio, 485 }; 486 487 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, 488 unsigned int devidx, int type) 489 { 490 struct inode_management *im = &sbi->im[type]; 491 struct ino_entry *e = NULL, *new = NULL; 492 493 if (type == FLUSH_INO) { 494 rcu_read_lock(); 495 e = radix_tree_lookup(&im->ino_root, ino); 496 rcu_read_unlock(); 497 } 498 499 retry: 500 if (!e) 501 new = f2fs_kmem_cache_alloc(ino_entry_slab, 502 GFP_NOFS, true, NULL); 503 504 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL); 505 506 spin_lock(&im->ino_lock); 507 e = radix_tree_lookup(&im->ino_root, ino); 508 if (!e) { 509 if (!new) { 510 spin_unlock(&im->ino_lock); 511 goto retry; 512 } 513 e = new; 514 if (unlikely(radix_tree_insert(&im->ino_root, ino, e))) 515 f2fs_bug_on(sbi, 1); 516 517 memset(e, 0, sizeof(struct ino_entry)); 518 e->ino = ino; 519 520 list_add_tail(&e->list, &im->ino_list); 521 if (type != ORPHAN_INO) 522 im->ino_num++; 523 } 524 525 if (type == FLUSH_INO) 526 f2fs_set_bit(devidx, (char *)&e->dirty_device); 527 528 spin_unlock(&im->ino_lock); 529 radix_tree_preload_end(); 530 531 if (new && e != new) 532 kmem_cache_free(ino_entry_slab, new); 533 } 534 535 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 536 { 537 struct inode_management *im = &sbi->im[type]; 538 struct ino_entry *e; 539 540 spin_lock(&im->ino_lock); 541 e = radix_tree_lookup(&im->ino_root, ino); 542 if (e) { 543 list_del(&e->list); 544 radix_tree_delete(&im->ino_root, ino); 545 im->ino_num--; 546 spin_unlock(&im->ino_lock); 547 kmem_cache_free(ino_entry_slab, e); 548 return; 549 } 550 spin_unlock(&im->ino_lock); 551 } 552 553 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 554 { 555 /* add new dirty ino entry into list */ 556 __add_ino_entry(sbi, ino, 0, type); 557 } 558 559 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 560 { 561 /* remove dirty ino entry from list */ 562 __remove_ino_entry(sbi, ino, type); 563 } 564 565 /* mode should be APPEND_INO, UPDATE_INO or TRANS_DIR_INO */ 566 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode) 567 { 568 struct inode_management *im = &sbi->im[mode]; 569 struct ino_entry *e; 570 571 spin_lock(&im->ino_lock); 572 e = radix_tree_lookup(&im->ino_root, ino); 573 spin_unlock(&im->ino_lock); 574 return e ? true : false; 575 } 576 577 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all) 578 { 579 struct ino_entry *e, *tmp; 580 int i; 581 582 for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) { 583 struct inode_management *im = &sbi->im[i]; 584 585 spin_lock(&im->ino_lock); 586 list_for_each_entry_safe(e, tmp, &im->ino_list, list) { 587 list_del(&e->list); 588 radix_tree_delete(&im->ino_root, e->ino); 589 kmem_cache_free(ino_entry_slab, e); 590 im->ino_num--; 591 } 592 spin_unlock(&im->ino_lock); 593 } 594 } 595 596 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 597 unsigned int devidx, int type) 598 { 599 __add_ino_entry(sbi, ino, devidx, type); 600 } 601 602 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 603 unsigned int devidx, int type) 604 { 605 struct inode_management *im = &sbi->im[type]; 606 struct ino_entry *e; 607 bool is_dirty = false; 608 609 spin_lock(&im->ino_lock); 610 e = radix_tree_lookup(&im->ino_root, ino); 611 if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device)) 612 is_dirty = true; 613 spin_unlock(&im->ino_lock); 614 return is_dirty; 615 } 616 617 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi) 618 { 619 struct inode_management *im = &sbi->im[ORPHAN_INO]; 620 int err = 0; 621 622 spin_lock(&im->ino_lock); 623 624 if (time_to_inject(sbi, FAULT_ORPHAN)) { 625 spin_unlock(&im->ino_lock); 626 return -ENOSPC; 627 } 628 629 if (unlikely(im->ino_num >= sbi->max_orphans)) 630 err = -ENOSPC; 631 else 632 im->ino_num++; 633 spin_unlock(&im->ino_lock); 634 635 return err; 636 } 637 638 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi) 639 { 640 struct inode_management *im = &sbi->im[ORPHAN_INO]; 641 642 spin_lock(&im->ino_lock); 643 f2fs_bug_on(sbi, im->ino_num == 0); 644 im->ino_num--; 645 spin_unlock(&im->ino_lock); 646 } 647 648 void f2fs_add_orphan_inode(struct inode *inode) 649 { 650 /* add new orphan ino entry into list */ 651 __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO); 652 f2fs_update_inode_page(inode); 653 } 654 655 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 656 { 657 /* remove orphan entry from orphan list */ 658 __remove_ino_entry(sbi, ino, ORPHAN_INO); 659 } 660 661 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 662 { 663 struct inode *inode; 664 struct node_info ni; 665 int err; 666 667 inode = f2fs_iget_retry(sbi->sb, ino); 668 if (IS_ERR(inode)) { 669 /* 670 * there should be a bug that we can't find the entry 671 * to orphan inode. 672 */ 673 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT); 674 return PTR_ERR(inode); 675 } 676 677 err = f2fs_dquot_initialize(inode); 678 if (err) { 679 iput(inode); 680 goto err_out; 681 } 682 683 clear_nlink(inode); 684 685 /* truncate all the data during iput */ 686 iput(inode); 687 688 err = f2fs_get_node_info(sbi, ino, &ni, false); 689 if (err) 690 goto err_out; 691 692 /* ENOMEM was fully retried in f2fs_evict_inode. */ 693 if (ni.blk_addr != NULL_ADDR) { 694 err = -EIO; 695 goto err_out; 696 } 697 return 0; 698 699 err_out: 700 set_sbi_flag(sbi, SBI_NEED_FSCK); 701 f2fs_warn(sbi, "%s: orphan failed (ino=%x), run fsck to fix.", 702 __func__, ino); 703 return err; 704 } 705 706 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi) 707 { 708 block_t start_blk, orphan_blocks, i, j; 709 unsigned int s_flags = sbi->sb->s_flags; 710 int err = 0; 711 #ifdef CONFIG_QUOTA 712 int quota_enabled; 713 #endif 714 715 if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG)) 716 return 0; 717 718 if (bdev_read_only(sbi->sb->s_bdev)) { 719 f2fs_info(sbi, "write access unavailable, skipping orphan cleanup"); 720 return 0; 721 } 722 723 if (s_flags & SB_RDONLY) { 724 f2fs_info(sbi, "orphan cleanup on readonly fs"); 725 sbi->sb->s_flags &= ~SB_RDONLY; 726 } 727 728 #ifdef CONFIG_QUOTA 729 /* 730 * Turn on quotas which were not enabled for read-only mounts if 731 * filesystem has quota feature, so that they are updated correctly. 732 */ 733 quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY); 734 #endif 735 736 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi); 737 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi); 738 739 f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true); 740 741 for (i = 0; i < orphan_blocks; i++) { 742 struct page *page; 743 struct f2fs_orphan_block *orphan_blk; 744 745 page = f2fs_get_meta_page(sbi, start_blk + i); 746 if (IS_ERR(page)) { 747 err = PTR_ERR(page); 748 goto out; 749 } 750 751 orphan_blk = (struct f2fs_orphan_block *)page_address(page); 752 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) { 753 nid_t ino = le32_to_cpu(orphan_blk->ino[j]); 754 755 err = recover_orphan_inode(sbi, ino); 756 if (err) { 757 f2fs_put_page(page, 1); 758 goto out; 759 } 760 } 761 f2fs_put_page(page, 1); 762 } 763 /* clear Orphan Flag */ 764 clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG); 765 out: 766 set_sbi_flag(sbi, SBI_IS_RECOVERED); 767 768 #ifdef CONFIG_QUOTA 769 /* Turn quotas off */ 770 if (quota_enabled) 771 f2fs_quota_off_umount(sbi->sb); 772 #endif 773 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 774 775 return err; 776 } 777 778 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk) 779 { 780 struct list_head *head; 781 struct f2fs_orphan_block *orphan_blk = NULL; 782 unsigned int nentries = 0; 783 unsigned short index = 1; 784 unsigned short orphan_blocks; 785 struct page *page = NULL; 786 struct ino_entry *orphan = NULL; 787 struct inode_management *im = &sbi->im[ORPHAN_INO]; 788 789 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num); 790 791 /* 792 * we don't need to do spin_lock(&im->ino_lock) here, since all the 793 * orphan inode operations are covered under f2fs_lock_op(). 794 * And, spin_lock should be avoided due to page operations below. 795 */ 796 head = &im->ino_list; 797 798 /* loop for each orphan inode entry and write them in journal block */ 799 list_for_each_entry(orphan, head, list) { 800 if (!page) { 801 page = f2fs_grab_meta_page(sbi, start_blk++); 802 orphan_blk = 803 (struct f2fs_orphan_block *)page_address(page); 804 memset(orphan_blk, 0, sizeof(*orphan_blk)); 805 } 806 807 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino); 808 809 if (nentries == F2FS_ORPHANS_PER_BLOCK) { 810 /* 811 * an orphan block is full of 1020 entries, 812 * then we need to flush current orphan blocks 813 * and bring another one in memory 814 */ 815 orphan_blk->blk_addr = cpu_to_le16(index); 816 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 817 orphan_blk->entry_count = cpu_to_le32(nentries); 818 set_page_dirty(page); 819 f2fs_put_page(page, 1); 820 index++; 821 nentries = 0; 822 page = NULL; 823 } 824 } 825 826 if (page) { 827 orphan_blk->blk_addr = cpu_to_le16(index); 828 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 829 orphan_blk->entry_count = cpu_to_le32(nentries); 830 set_page_dirty(page); 831 f2fs_put_page(page, 1); 832 } 833 } 834 835 static __u32 f2fs_checkpoint_chksum(struct f2fs_sb_info *sbi, 836 struct f2fs_checkpoint *ckpt) 837 { 838 unsigned int chksum_ofs = le32_to_cpu(ckpt->checksum_offset); 839 __u32 chksum; 840 841 chksum = f2fs_crc32(sbi, ckpt, chksum_ofs); 842 if (chksum_ofs < CP_CHKSUM_OFFSET) { 843 chksum_ofs += sizeof(chksum); 844 chksum = f2fs_chksum(sbi, chksum, (__u8 *)ckpt + chksum_ofs, 845 F2FS_BLKSIZE - chksum_ofs); 846 } 847 return chksum; 848 } 849 850 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr, 851 struct f2fs_checkpoint **cp_block, struct page **cp_page, 852 unsigned long long *version) 853 { 854 size_t crc_offset = 0; 855 __u32 crc; 856 857 *cp_page = f2fs_get_meta_page(sbi, cp_addr); 858 if (IS_ERR(*cp_page)) 859 return PTR_ERR(*cp_page); 860 861 *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page); 862 863 crc_offset = le32_to_cpu((*cp_block)->checksum_offset); 864 if (crc_offset < CP_MIN_CHKSUM_OFFSET || 865 crc_offset > CP_CHKSUM_OFFSET) { 866 f2fs_put_page(*cp_page, 1); 867 f2fs_warn(sbi, "invalid crc_offset: %zu", crc_offset); 868 return -EINVAL; 869 } 870 871 crc = f2fs_checkpoint_chksum(sbi, *cp_block); 872 if (crc != cur_cp_crc(*cp_block)) { 873 f2fs_put_page(*cp_page, 1); 874 f2fs_warn(sbi, "invalid crc value"); 875 return -EINVAL; 876 } 877 878 *version = cur_cp_version(*cp_block); 879 return 0; 880 } 881 882 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi, 883 block_t cp_addr, unsigned long long *version) 884 { 885 struct page *cp_page_1 = NULL, *cp_page_2 = NULL; 886 struct f2fs_checkpoint *cp_block = NULL; 887 unsigned long long cur_version = 0, pre_version = 0; 888 unsigned int cp_blocks; 889 int err; 890 891 err = get_checkpoint_version(sbi, cp_addr, &cp_block, 892 &cp_page_1, version); 893 if (err) 894 return NULL; 895 896 cp_blocks = le32_to_cpu(cp_block->cp_pack_total_block_count); 897 898 if (cp_blocks > sbi->blocks_per_seg || cp_blocks <= F2FS_CP_PACKS) { 899 f2fs_warn(sbi, "invalid cp_pack_total_block_count:%u", 900 le32_to_cpu(cp_block->cp_pack_total_block_count)); 901 goto invalid_cp; 902 } 903 pre_version = *version; 904 905 cp_addr += cp_blocks - 1; 906 err = get_checkpoint_version(sbi, cp_addr, &cp_block, 907 &cp_page_2, version); 908 if (err) 909 goto invalid_cp; 910 cur_version = *version; 911 912 if (cur_version == pre_version) { 913 *version = cur_version; 914 f2fs_put_page(cp_page_2, 1); 915 return cp_page_1; 916 } 917 f2fs_put_page(cp_page_2, 1); 918 invalid_cp: 919 f2fs_put_page(cp_page_1, 1); 920 return NULL; 921 } 922 923 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi) 924 { 925 struct f2fs_checkpoint *cp_block; 926 struct f2fs_super_block *fsb = sbi->raw_super; 927 struct page *cp1, *cp2, *cur_page; 928 unsigned long blk_size = sbi->blocksize; 929 unsigned long long cp1_version = 0, cp2_version = 0; 930 unsigned long long cp_start_blk_no; 931 unsigned int cp_blks = 1 + __cp_payload(sbi); 932 block_t cp_blk_no; 933 int i; 934 int err; 935 936 sbi->ckpt = f2fs_kvzalloc(sbi, array_size(blk_size, cp_blks), 937 GFP_KERNEL); 938 if (!sbi->ckpt) 939 return -ENOMEM; 940 /* 941 * Finding out valid cp block involves read both 942 * sets( cp pack 1 and cp pack 2) 943 */ 944 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr); 945 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); 946 947 /* The second checkpoint pack should start at the next segment */ 948 cp_start_blk_no += ((unsigned long long)1) << 949 le32_to_cpu(fsb->log_blocks_per_seg); 950 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); 951 952 if (cp1 && cp2) { 953 if (ver_after(cp2_version, cp1_version)) 954 cur_page = cp2; 955 else 956 cur_page = cp1; 957 } else if (cp1) { 958 cur_page = cp1; 959 } else if (cp2) { 960 cur_page = cp2; 961 } else { 962 err = -EFSCORRUPTED; 963 goto fail_no_cp; 964 } 965 966 cp_block = (struct f2fs_checkpoint *)page_address(cur_page); 967 memcpy(sbi->ckpt, cp_block, blk_size); 968 969 if (cur_page == cp1) 970 sbi->cur_cp_pack = 1; 971 else 972 sbi->cur_cp_pack = 2; 973 974 /* Sanity checking of checkpoint */ 975 if (f2fs_sanity_check_ckpt(sbi)) { 976 err = -EFSCORRUPTED; 977 goto free_fail_no_cp; 978 } 979 980 if (cp_blks <= 1) 981 goto done; 982 983 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr); 984 if (cur_page == cp2) 985 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg); 986 987 for (i = 1; i < cp_blks; i++) { 988 void *sit_bitmap_ptr; 989 unsigned char *ckpt = (unsigned char *)sbi->ckpt; 990 991 cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i); 992 if (IS_ERR(cur_page)) { 993 err = PTR_ERR(cur_page); 994 goto free_fail_no_cp; 995 } 996 sit_bitmap_ptr = page_address(cur_page); 997 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size); 998 f2fs_put_page(cur_page, 1); 999 } 1000 done: 1001 f2fs_put_page(cp1, 1); 1002 f2fs_put_page(cp2, 1); 1003 return 0; 1004 1005 free_fail_no_cp: 1006 f2fs_put_page(cp1, 1); 1007 f2fs_put_page(cp2, 1); 1008 fail_no_cp: 1009 kvfree(sbi->ckpt); 1010 return err; 1011 } 1012 1013 static void __add_dirty_inode(struct inode *inode, enum inode_type type) 1014 { 1015 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1016 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 1017 1018 if (is_inode_flag_set(inode, flag)) 1019 return; 1020 1021 set_inode_flag(inode, flag); 1022 list_add_tail(&F2FS_I(inode)->dirty_list, &sbi->inode_list[type]); 1023 stat_inc_dirty_inode(sbi, type); 1024 } 1025 1026 static void __remove_dirty_inode(struct inode *inode, enum inode_type type) 1027 { 1028 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 1029 1030 if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag)) 1031 return; 1032 1033 list_del_init(&F2FS_I(inode)->dirty_list); 1034 clear_inode_flag(inode, flag); 1035 stat_dec_dirty_inode(F2FS_I_SB(inode), type); 1036 } 1037 1038 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio) 1039 { 1040 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1041 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 1042 1043 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1044 !S_ISLNK(inode->i_mode)) 1045 return; 1046 1047 spin_lock(&sbi->inode_lock[type]); 1048 if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH)) 1049 __add_dirty_inode(inode, type); 1050 inode_inc_dirty_pages(inode); 1051 spin_unlock(&sbi->inode_lock[type]); 1052 1053 set_page_private_reference(&folio->page); 1054 } 1055 1056 void f2fs_remove_dirty_inode(struct inode *inode) 1057 { 1058 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1059 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 1060 1061 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1062 !S_ISLNK(inode->i_mode)) 1063 return; 1064 1065 if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH)) 1066 return; 1067 1068 spin_lock(&sbi->inode_lock[type]); 1069 __remove_dirty_inode(inode, type); 1070 spin_unlock(&sbi->inode_lock[type]); 1071 } 1072 1073 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type, 1074 bool from_cp) 1075 { 1076 struct list_head *head; 1077 struct inode *inode; 1078 struct f2fs_inode_info *fi; 1079 bool is_dir = (type == DIR_INODE); 1080 unsigned long ino = 0; 1081 1082 trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir, 1083 get_pages(sbi, is_dir ? 1084 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 1085 retry: 1086 if (unlikely(f2fs_cp_error(sbi))) { 1087 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir, 1088 get_pages(sbi, is_dir ? 1089 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 1090 return -EIO; 1091 } 1092 1093 spin_lock(&sbi->inode_lock[type]); 1094 1095 head = &sbi->inode_list[type]; 1096 if (list_empty(head)) { 1097 spin_unlock(&sbi->inode_lock[type]); 1098 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir, 1099 get_pages(sbi, is_dir ? 1100 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 1101 return 0; 1102 } 1103 fi = list_first_entry(head, struct f2fs_inode_info, dirty_list); 1104 inode = igrab(&fi->vfs_inode); 1105 spin_unlock(&sbi->inode_lock[type]); 1106 if (inode) { 1107 unsigned long cur_ino = inode->i_ino; 1108 1109 if (from_cp) 1110 F2FS_I(inode)->cp_task = current; 1111 F2FS_I(inode)->wb_task = current; 1112 1113 filemap_fdatawrite(inode->i_mapping); 1114 1115 F2FS_I(inode)->wb_task = NULL; 1116 if (from_cp) 1117 F2FS_I(inode)->cp_task = NULL; 1118 1119 iput(inode); 1120 /* We need to give cpu to another writers. */ 1121 if (ino == cur_ino) 1122 cond_resched(); 1123 else 1124 ino = cur_ino; 1125 } else { 1126 /* 1127 * We should submit bio, since it exists several 1128 * writebacking dentry pages in the freeing inode. 1129 */ 1130 f2fs_submit_merged_write(sbi, DATA); 1131 cond_resched(); 1132 } 1133 goto retry; 1134 } 1135 1136 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi) 1137 { 1138 struct list_head *head = &sbi->inode_list[DIRTY_META]; 1139 struct inode *inode; 1140 struct f2fs_inode_info *fi; 1141 s64 total = get_pages(sbi, F2FS_DIRTY_IMETA); 1142 1143 while (total--) { 1144 if (unlikely(f2fs_cp_error(sbi))) 1145 return -EIO; 1146 1147 spin_lock(&sbi->inode_lock[DIRTY_META]); 1148 if (list_empty(head)) { 1149 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1150 return 0; 1151 } 1152 fi = list_first_entry(head, struct f2fs_inode_info, 1153 gdirty_list); 1154 inode = igrab(&fi->vfs_inode); 1155 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1156 if (inode) { 1157 sync_inode_metadata(inode, 0); 1158 1159 /* it's on eviction */ 1160 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) 1161 f2fs_update_inode_page(inode); 1162 iput(inode); 1163 } 1164 } 1165 return 0; 1166 } 1167 1168 static void __prepare_cp_block(struct f2fs_sb_info *sbi) 1169 { 1170 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1171 struct f2fs_nm_info *nm_i = NM_I(sbi); 1172 nid_t last_nid = nm_i->next_scan_nid; 1173 1174 next_free_nid(sbi, &last_nid); 1175 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi)); 1176 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi)); 1177 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi)); 1178 ckpt->next_free_nid = cpu_to_le32(last_nid); 1179 } 1180 1181 static bool __need_flush_quota(struct f2fs_sb_info *sbi) 1182 { 1183 bool ret = false; 1184 1185 if (!is_journalled_quota(sbi)) 1186 return false; 1187 1188 if (!f2fs_down_write_trylock(&sbi->quota_sem)) 1189 return true; 1190 if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) { 1191 ret = false; 1192 } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) { 1193 ret = false; 1194 } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_FLUSH)) { 1195 clear_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 1196 ret = true; 1197 } else if (get_pages(sbi, F2FS_DIRTY_QDATA)) { 1198 ret = true; 1199 } 1200 f2fs_up_write(&sbi->quota_sem); 1201 return ret; 1202 } 1203 1204 /* 1205 * Freeze all the FS-operations for checkpoint. 1206 */ 1207 static int block_operations(struct f2fs_sb_info *sbi) 1208 { 1209 struct writeback_control wbc = { 1210 .sync_mode = WB_SYNC_ALL, 1211 .nr_to_write = LONG_MAX, 1212 .for_reclaim = 0, 1213 }; 1214 int err = 0, cnt = 0; 1215 1216 /* 1217 * Let's flush inline_data in dirty node pages. 1218 */ 1219 f2fs_flush_inline_data(sbi); 1220 1221 retry_flush_quotas: 1222 f2fs_lock_all(sbi); 1223 if (__need_flush_quota(sbi)) { 1224 int locked; 1225 1226 if (++cnt > DEFAULT_RETRY_QUOTA_FLUSH_COUNT) { 1227 set_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH); 1228 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 1229 goto retry_flush_dents; 1230 } 1231 f2fs_unlock_all(sbi); 1232 1233 /* only failed during mount/umount/freeze/quotactl */ 1234 locked = down_read_trylock(&sbi->sb->s_umount); 1235 f2fs_quota_sync(sbi->sb, -1); 1236 if (locked) 1237 up_read(&sbi->sb->s_umount); 1238 cond_resched(); 1239 goto retry_flush_quotas; 1240 } 1241 1242 retry_flush_dents: 1243 /* write all the dirty dentry pages */ 1244 if (get_pages(sbi, F2FS_DIRTY_DENTS)) { 1245 f2fs_unlock_all(sbi); 1246 err = f2fs_sync_dirty_inodes(sbi, DIR_INODE, true); 1247 if (err) 1248 return err; 1249 cond_resched(); 1250 goto retry_flush_quotas; 1251 } 1252 1253 /* 1254 * POR: we should ensure that there are no dirty node pages 1255 * until finishing nat/sit flush. inode->i_blocks can be updated. 1256 */ 1257 f2fs_down_write(&sbi->node_change); 1258 1259 if (get_pages(sbi, F2FS_DIRTY_IMETA)) { 1260 f2fs_up_write(&sbi->node_change); 1261 f2fs_unlock_all(sbi); 1262 err = f2fs_sync_inode_meta(sbi); 1263 if (err) 1264 return err; 1265 cond_resched(); 1266 goto retry_flush_quotas; 1267 } 1268 1269 retry_flush_nodes: 1270 f2fs_down_write(&sbi->node_write); 1271 1272 if (get_pages(sbi, F2FS_DIRTY_NODES)) { 1273 f2fs_up_write(&sbi->node_write); 1274 atomic_inc(&sbi->wb_sync_req[NODE]); 1275 err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO); 1276 atomic_dec(&sbi->wb_sync_req[NODE]); 1277 if (err) { 1278 f2fs_up_write(&sbi->node_change); 1279 f2fs_unlock_all(sbi); 1280 return err; 1281 } 1282 cond_resched(); 1283 goto retry_flush_nodes; 1284 } 1285 1286 /* 1287 * sbi->node_change is used only for AIO write_begin path which produces 1288 * dirty node blocks and some checkpoint values by block allocation. 1289 */ 1290 __prepare_cp_block(sbi); 1291 f2fs_up_write(&sbi->node_change); 1292 return err; 1293 } 1294 1295 static void unblock_operations(struct f2fs_sb_info *sbi) 1296 { 1297 f2fs_up_write(&sbi->node_write); 1298 f2fs_unlock_all(sbi); 1299 } 1300 1301 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type) 1302 { 1303 DEFINE_WAIT(wait); 1304 1305 for (;;) { 1306 if (!get_pages(sbi, type)) 1307 break; 1308 1309 if (unlikely(f2fs_cp_error(sbi))) 1310 break; 1311 1312 if (type == F2FS_DIRTY_META) 1313 f2fs_sync_meta_pages(sbi, META, LONG_MAX, 1314 FS_CP_META_IO); 1315 else if (type == F2FS_WB_CP_DATA) 1316 f2fs_submit_merged_write(sbi, DATA); 1317 1318 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE); 1319 io_schedule_timeout(DEFAULT_IO_TIMEOUT); 1320 } 1321 finish_wait(&sbi->cp_wait, &wait); 1322 } 1323 1324 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1325 { 1326 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num; 1327 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1328 unsigned long flags; 1329 1330 if (cpc->reason & CP_UMOUNT) { 1331 if (le32_to_cpu(ckpt->cp_pack_total_block_count) + 1332 NM_I(sbi)->nat_bits_blocks > sbi->blocks_per_seg) { 1333 clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG); 1334 f2fs_notice(sbi, "Disable nat_bits due to no space"); 1335 } else if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG) && 1336 f2fs_nat_bitmap_enabled(sbi)) { 1337 f2fs_enable_nat_bits(sbi); 1338 set_ckpt_flags(sbi, CP_NAT_BITS_FLAG); 1339 f2fs_notice(sbi, "Rebuild and enable nat_bits"); 1340 } 1341 } 1342 1343 spin_lock_irqsave(&sbi->cp_lock, flags); 1344 1345 if (cpc->reason & CP_TRIMMED) 1346 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG); 1347 else 1348 __clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG); 1349 1350 if (cpc->reason & CP_UMOUNT) 1351 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1352 else 1353 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1354 1355 if (cpc->reason & CP_FASTBOOT) 1356 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1357 else 1358 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1359 1360 if (orphan_num) 1361 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1362 else 1363 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1364 1365 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1366 __set_ckpt_flags(ckpt, CP_FSCK_FLAG); 1367 1368 if (is_sbi_flag_set(sbi, SBI_IS_RESIZEFS)) 1369 __set_ckpt_flags(ckpt, CP_RESIZEFS_FLAG); 1370 else 1371 __clear_ckpt_flags(ckpt, CP_RESIZEFS_FLAG); 1372 1373 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED)) 1374 __set_ckpt_flags(ckpt, CP_DISABLED_FLAG); 1375 else 1376 __clear_ckpt_flags(ckpt, CP_DISABLED_FLAG); 1377 1378 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK)) 1379 __set_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG); 1380 else 1381 __clear_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG); 1382 1383 if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) 1384 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); 1385 else 1386 __clear_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); 1387 1388 if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) 1389 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); 1390 1391 /* set this flag to activate crc|cp_ver for recovery */ 1392 __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG); 1393 __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG); 1394 1395 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1396 } 1397 1398 static void commit_checkpoint(struct f2fs_sb_info *sbi, 1399 void *src, block_t blk_addr) 1400 { 1401 struct writeback_control wbc = { 1402 .for_reclaim = 0, 1403 }; 1404 1405 /* 1406 * filemap_get_folios_tag and lock_page again will take 1407 * some extra time. Therefore, f2fs_update_meta_pages and 1408 * f2fs_sync_meta_pages are combined in this function. 1409 */ 1410 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 1411 int err; 1412 1413 f2fs_wait_on_page_writeback(page, META, true, true); 1414 1415 memcpy(page_address(page), src, PAGE_SIZE); 1416 1417 set_page_dirty(page); 1418 if (unlikely(!clear_page_dirty_for_io(page))) 1419 f2fs_bug_on(sbi, 1); 1420 1421 /* writeout cp pack 2 page */ 1422 err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO); 1423 if (unlikely(err && f2fs_cp_error(sbi))) { 1424 f2fs_put_page(page, 1); 1425 return; 1426 } 1427 1428 f2fs_bug_on(sbi, err); 1429 f2fs_put_page(page, 0); 1430 1431 /* submit checkpoint (with barrier if NOBARRIER is not set) */ 1432 f2fs_submit_merged_write(sbi, META_FLUSH); 1433 } 1434 1435 static inline u64 get_sectors_written(struct block_device *bdev) 1436 { 1437 return (u64)part_stat_read(bdev, sectors[STAT_WRITE]); 1438 } 1439 1440 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi) 1441 { 1442 if (f2fs_is_multi_device(sbi)) { 1443 u64 sectors = 0; 1444 int i; 1445 1446 for (i = 0; i < sbi->s_ndevs; i++) 1447 sectors += get_sectors_written(FDEV(i).bdev); 1448 1449 return sectors; 1450 } 1451 1452 return get_sectors_written(sbi->sb->s_bdev); 1453 } 1454 1455 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1456 { 1457 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1458 struct f2fs_nm_info *nm_i = NM_I(sbi); 1459 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags; 1460 block_t start_blk; 1461 unsigned int data_sum_blocks, orphan_blocks; 1462 __u32 crc32 = 0; 1463 int i; 1464 int cp_payload_blks = __cp_payload(sbi); 1465 struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 1466 u64 kbytes_written; 1467 int err; 1468 1469 /* Flush all the NAT/SIT pages */ 1470 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO); 1471 1472 /* start to update checkpoint, cp ver is already updated previously */ 1473 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true)); 1474 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi)); 1475 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 1476 struct curseg_info *curseg = CURSEG_I(sbi, i + CURSEG_HOT_NODE); 1477 1478 ckpt->cur_node_segno[i] = cpu_to_le32(curseg->segno); 1479 ckpt->cur_node_blkoff[i] = cpu_to_le16(curseg->next_blkoff); 1480 ckpt->alloc_type[i + CURSEG_HOT_NODE] = curseg->alloc_type; 1481 } 1482 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 1483 struct curseg_info *curseg = CURSEG_I(sbi, i + CURSEG_HOT_DATA); 1484 1485 ckpt->cur_data_segno[i] = cpu_to_le32(curseg->segno); 1486 ckpt->cur_data_blkoff[i] = cpu_to_le16(curseg->next_blkoff); 1487 ckpt->alloc_type[i + CURSEG_HOT_DATA] = curseg->alloc_type; 1488 } 1489 1490 /* 2 cp + n data seg summary + orphan inode blocks */ 1491 data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false); 1492 spin_lock_irqsave(&sbi->cp_lock, flags); 1493 if (data_sum_blocks < NR_CURSEG_DATA_TYPE) 1494 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1495 else 1496 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1497 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1498 1499 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num); 1500 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks + 1501 orphan_blocks); 1502 1503 if (__remain_node_summaries(cpc->reason)) 1504 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + 1505 cp_payload_blks + data_sum_blocks + 1506 orphan_blocks + NR_CURSEG_NODE_TYPE); 1507 else 1508 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + 1509 cp_payload_blks + data_sum_blocks + 1510 orphan_blocks); 1511 1512 /* update ckpt flag for checkpoint */ 1513 update_ckpt_flags(sbi, cpc); 1514 1515 /* update SIT/NAT bitmap */ 1516 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP)); 1517 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP)); 1518 1519 crc32 = f2fs_checkpoint_chksum(sbi, ckpt); 1520 *((__le32 *)((unsigned char *)ckpt + 1521 le32_to_cpu(ckpt->checksum_offset))) 1522 = cpu_to_le32(crc32); 1523 1524 start_blk = __start_cp_next_addr(sbi); 1525 1526 /* write nat bits */ 1527 if ((cpc->reason & CP_UMOUNT) && 1528 is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) { 1529 __u64 cp_ver = cur_cp_version(ckpt); 1530 block_t blk; 1531 1532 cp_ver |= ((__u64)crc32 << 32); 1533 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver); 1534 1535 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks; 1536 for (i = 0; i < nm_i->nat_bits_blocks; i++) 1537 f2fs_update_meta_page(sbi, nm_i->nat_bits + 1538 (i << F2FS_BLKSIZE_BITS), blk + i); 1539 } 1540 1541 /* write out checkpoint buffer at block 0 */ 1542 f2fs_update_meta_page(sbi, ckpt, start_blk++); 1543 1544 for (i = 1; i < 1 + cp_payload_blks; i++) 1545 f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE, 1546 start_blk++); 1547 1548 if (orphan_num) { 1549 write_orphan_inodes(sbi, start_blk); 1550 start_blk += orphan_blocks; 1551 } 1552 1553 f2fs_write_data_summaries(sbi, start_blk); 1554 start_blk += data_sum_blocks; 1555 1556 /* Record write statistics in the hot node summary */ 1557 kbytes_written = sbi->kbytes_written; 1558 kbytes_written += (f2fs_get_sectors_written(sbi) - 1559 sbi->sectors_written_start) >> 1; 1560 seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written); 1561 1562 if (__remain_node_summaries(cpc->reason)) { 1563 f2fs_write_node_summaries(sbi, start_blk); 1564 start_blk += NR_CURSEG_NODE_TYPE; 1565 } 1566 1567 /* update user_block_counts */ 1568 sbi->last_valid_block_count = sbi->total_valid_block_count; 1569 percpu_counter_set(&sbi->alloc_valid_block_count, 0); 1570 percpu_counter_set(&sbi->rf_node_block_count, 0); 1571 1572 /* Here, we have one bio having CP pack except cp pack 2 page */ 1573 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO); 1574 /* Wait for all dirty meta pages to be submitted for IO */ 1575 f2fs_wait_on_all_pages(sbi, F2FS_DIRTY_META); 1576 1577 /* wait for previous submitted meta pages writeback */ 1578 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA); 1579 1580 /* flush all device cache */ 1581 err = f2fs_flush_device_cache(sbi); 1582 if (err) 1583 return err; 1584 1585 /* barrier and flush checkpoint cp pack 2 page if it can */ 1586 commit_checkpoint(sbi, ckpt, start_blk); 1587 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA); 1588 1589 /* 1590 * invalidate intermediate page cache borrowed from meta inode which are 1591 * used for migration of encrypted, verity or compressed inode's blocks. 1592 */ 1593 if (f2fs_sb_has_encrypt(sbi) || f2fs_sb_has_verity(sbi) || 1594 f2fs_sb_has_compression(sbi)) 1595 invalidate_mapping_pages(META_MAPPING(sbi), 1596 MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1); 1597 1598 f2fs_release_ino_entry(sbi, false); 1599 1600 f2fs_reset_fsync_node_info(sbi); 1601 1602 clear_sbi_flag(sbi, SBI_IS_DIRTY); 1603 clear_sbi_flag(sbi, SBI_NEED_CP); 1604 clear_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH); 1605 1606 spin_lock(&sbi->stat_lock); 1607 sbi->unusable_block_count = 0; 1608 spin_unlock(&sbi->stat_lock); 1609 1610 __set_cp_next_pack(sbi); 1611 1612 /* 1613 * redirty superblock if metadata like node page or inode cache is 1614 * updated during writing checkpoint. 1615 */ 1616 if (get_pages(sbi, F2FS_DIRTY_NODES) || 1617 get_pages(sbi, F2FS_DIRTY_IMETA)) 1618 set_sbi_flag(sbi, SBI_IS_DIRTY); 1619 1620 f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS)); 1621 1622 return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0; 1623 } 1624 1625 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1626 { 1627 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1628 unsigned long long ckpt_ver; 1629 int err = 0; 1630 1631 if (f2fs_readonly(sbi->sb) || f2fs_hw_is_readonly(sbi)) 1632 return -EROFS; 1633 1634 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 1635 if (cpc->reason != CP_PAUSE) 1636 return 0; 1637 f2fs_warn(sbi, "Start checkpoint disabled!"); 1638 } 1639 if (cpc->reason != CP_RESIZE) 1640 f2fs_down_write(&sbi->cp_global_sem); 1641 1642 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) && 1643 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) || 1644 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks))) 1645 goto out; 1646 if (unlikely(f2fs_cp_error(sbi))) { 1647 err = -EIO; 1648 goto out; 1649 } 1650 1651 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops"); 1652 1653 err = block_operations(sbi); 1654 if (err) 1655 goto out; 1656 1657 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops"); 1658 1659 f2fs_flush_merged_writes(sbi); 1660 1661 /* this is the case of multiple fstrims without any changes */ 1662 if (cpc->reason & CP_DISCARD) { 1663 if (!f2fs_exist_trim_candidates(sbi, cpc)) { 1664 unblock_operations(sbi); 1665 goto out; 1666 } 1667 1668 if (NM_I(sbi)->nat_cnt[DIRTY_NAT] == 0 && 1669 SIT_I(sbi)->dirty_sentries == 0 && 1670 prefree_segments(sbi) == 0) { 1671 f2fs_flush_sit_entries(sbi, cpc); 1672 f2fs_clear_prefree_segments(sbi, cpc); 1673 unblock_operations(sbi); 1674 goto out; 1675 } 1676 } 1677 1678 /* 1679 * update checkpoint pack index 1680 * Increase the version number so that 1681 * SIT entries and seg summaries are written at correct place 1682 */ 1683 ckpt_ver = cur_cp_version(ckpt); 1684 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver); 1685 1686 /* write cached NAT/SIT entries to NAT/SIT area */ 1687 err = f2fs_flush_nat_entries(sbi, cpc); 1688 if (err) { 1689 f2fs_err(sbi, "f2fs_flush_nat_entries failed err:%d, stop checkpoint", err); 1690 f2fs_bug_on(sbi, !f2fs_cp_error(sbi)); 1691 goto stop; 1692 } 1693 1694 f2fs_flush_sit_entries(sbi, cpc); 1695 1696 /* save inmem log status */ 1697 f2fs_save_inmem_curseg(sbi); 1698 1699 err = do_checkpoint(sbi, cpc); 1700 if (err) { 1701 f2fs_err(sbi, "do_checkpoint failed err:%d, stop checkpoint", err); 1702 f2fs_bug_on(sbi, !f2fs_cp_error(sbi)); 1703 f2fs_release_discard_addrs(sbi); 1704 } else { 1705 f2fs_clear_prefree_segments(sbi, cpc); 1706 } 1707 1708 f2fs_restore_inmem_curseg(sbi); 1709 stop: 1710 unblock_operations(sbi); 1711 stat_inc_cp_count(sbi->stat_info); 1712 1713 if (cpc->reason & CP_RECOVERY) 1714 f2fs_notice(sbi, "checkpoint: version = %llx", ckpt_ver); 1715 1716 /* update CP_TIME to trigger checkpoint periodically */ 1717 f2fs_update_time(sbi, CP_TIME); 1718 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint"); 1719 out: 1720 if (cpc->reason != CP_RESIZE) 1721 f2fs_up_write(&sbi->cp_global_sem); 1722 return err; 1723 } 1724 1725 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi) 1726 { 1727 int i; 1728 1729 for (i = 0; i < MAX_INO_ENTRY; i++) { 1730 struct inode_management *im = &sbi->im[i]; 1731 1732 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC); 1733 spin_lock_init(&im->ino_lock); 1734 INIT_LIST_HEAD(&im->ino_list); 1735 im->ino_num = 0; 1736 } 1737 1738 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS - 1739 NR_CURSEG_PERSIST_TYPE - __cp_payload(sbi)) * 1740 F2FS_ORPHANS_PER_BLOCK; 1741 } 1742 1743 int __init f2fs_create_checkpoint_caches(void) 1744 { 1745 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry", 1746 sizeof(struct ino_entry)); 1747 if (!ino_entry_slab) 1748 return -ENOMEM; 1749 f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry", 1750 sizeof(struct inode_entry)); 1751 if (!f2fs_inode_entry_slab) { 1752 kmem_cache_destroy(ino_entry_slab); 1753 return -ENOMEM; 1754 } 1755 return 0; 1756 } 1757 1758 void f2fs_destroy_checkpoint_caches(void) 1759 { 1760 kmem_cache_destroy(ino_entry_slab); 1761 kmem_cache_destroy(f2fs_inode_entry_slab); 1762 } 1763 1764 static int __write_checkpoint_sync(struct f2fs_sb_info *sbi) 1765 { 1766 struct cp_control cpc = { .reason = CP_SYNC, }; 1767 int err; 1768 1769 f2fs_down_write(&sbi->gc_lock); 1770 err = f2fs_write_checkpoint(sbi, &cpc); 1771 f2fs_up_write(&sbi->gc_lock); 1772 1773 return err; 1774 } 1775 1776 static void __checkpoint_and_complete_reqs(struct f2fs_sb_info *sbi) 1777 { 1778 struct ckpt_req_control *cprc = &sbi->cprc_info; 1779 struct ckpt_req *req, *next; 1780 struct llist_node *dispatch_list; 1781 u64 sum_diff = 0, diff, count = 0; 1782 int ret; 1783 1784 dispatch_list = llist_del_all(&cprc->issue_list); 1785 if (!dispatch_list) 1786 return; 1787 dispatch_list = llist_reverse_order(dispatch_list); 1788 1789 ret = __write_checkpoint_sync(sbi); 1790 atomic_inc(&cprc->issued_ckpt); 1791 1792 llist_for_each_entry_safe(req, next, dispatch_list, llnode) { 1793 diff = (u64)ktime_ms_delta(ktime_get(), req->queue_time); 1794 req->ret = ret; 1795 complete(&req->wait); 1796 1797 sum_diff += diff; 1798 count++; 1799 } 1800 atomic_sub(count, &cprc->queued_ckpt); 1801 atomic_add(count, &cprc->total_ckpt); 1802 1803 spin_lock(&cprc->stat_lock); 1804 cprc->cur_time = (unsigned int)div64_u64(sum_diff, count); 1805 if (cprc->peak_time < cprc->cur_time) 1806 cprc->peak_time = cprc->cur_time; 1807 spin_unlock(&cprc->stat_lock); 1808 } 1809 1810 static int issue_checkpoint_thread(void *data) 1811 { 1812 struct f2fs_sb_info *sbi = data; 1813 struct ckpt_req_control *cprc = &sbi->cprc_info; 1814 wait_queue_head_t *q = &cprc->ckpt_wait_queue; 1815 repeat: 1816 if (kthread_should_stop()) 1817 return 0; 1818 1819 if (!llist_empty(&cprc->issue_list)) 1820 __checkpoint_and_complete_reqs(sbi); 1821 1822 wait_event_interruptible(*q, 1823 kthread_should_stop() || !llist_empty(&cprc->issue_list)); 1824 goto repeat; 1825 } 1826 1827 static void flush_remained_ckpt_reqs(struct f2fs_sb_info *sbi, 1828 struct ckpt_req *wait_req) 1829 { 1830 struct ckpt_req_control *cprc = &sbi->cprc_info; 1831 1832 if (!llist_empty(&cprc->issue_list)) { 1833 __checkpoint_and_complete_reqs(sbi); 1834 } else { 1835 /* already dispatched by issue_checkpoint_thread */ 1836 if (wait_req) 1837 wait_for_completion(&wait_req->wait); 1838 } 1839 } 1840 1841 static void init_ckpt_req(struct ckpt_req *req) 1842 { 1843 memset(req, 0, sizeof(struct ckpt_req)); 1844 1845 init_completion(&req->wait); 1846 req->queue_time = ktime_get(); 1847 } 1848 1849 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi) 1850 { 1851 struct ckpt_req_control *cprc = &sbi->cprc_info; 1852 struct ckpt_req req; 1853 struct cp_control cpc; 1854 1855 cpc.reason = __get_cp_reason(sbi); 1856 if (!test_opt(sbi, MERGE_CHECKPOINT) || cpc.reason != CP_SYNC) { 1857 int ret; 1858 1859 f2fs_down_write(&sbi->gc_lock); 1860 ret = f2fs_write_checkpoint(sbi, &cpc); 1861 f2fs_up_write(&sbi->gc_lock); 1862 1863 return ret; 1864 } 1865 1866 if (!cprc->f2fs_issue_ckpt) 1867 return __write_checkpoint_sync(sbi); 1868 1869 init_ckpt_req(&req); 1870 1871 llist_add(&req.llnode, &cprc->issue_list); 1872 atomic_inc(&cprc->queued_ckpt); 1873 1874 /* 1875 * update issue_list before we wake up issue_checkpoint thread, 1876 * this smp_mb() pairs with another barrier in ___wait_event(), 1877 * see more details in comments of waitqueue_active(). 1878 */ 1879 smp_mb(); 1880 1881 if (waitqueue_active(&cprc->ckpt_wait_queue)) 1882 wake_up(&cprc->ckpt_wait_queue); 1883 1884 if (cprc->f2fs_issue_ckpt) 1885 wait_for_completion(&req.wait); 1886 else 1887 flush_remained_ckpt_reqs(sbi, &req); 1888 1889 return req.ret; 1890 } 1891 1892 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi) 1893 { 1894 dev_t dev = sbi->sb->s_bdev->bd_dev; 1895 struct ckpt_req_control *cprc = &sbi->cprc_info; 1896 1897 if (cprc->f2fs_issue_ckpt) 1898 return 0; 1899 1900 cprc->f2fs_issue_ckpt = kthread_run(issue_checkpoint_thread, sbi, 1901 "f2fs_ckpt-%u:%u", MAJOR(dev), MINOR(dev)); 1902 if (IS_ERR(cprc->f2fs_issue_ckpt)) { 1903 int err = PTR_ERR(cprc->f2fs_issue_ckpt); 1904 1905 cprc->f2fs_issue_ckpt = NULL; 1906 return err; 1907 } 1908 1909 set_task_ioprio(cprc->f2fs_issue_ckpt, cprc->ckpt_thread_ioprio); 1910 1911 return 0; 1912 } 1913 1914 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi) 1915 { 1916 struct ckpt_req_control *cprc = &sbi->cprc_info; 1917 struct task_struct *ckpt_task; 1918 1919 if (!cprc->f2fs_issue_ckpt) 1920 return; 1921 1922 ckpt_task = cprc->f2fs_issue_ckpt; 1923 cprc->f2fs_issue_ckpt = NULL; 1924 kthread_stop(ckpt_task); 1925 1926 f2fs_flush_ckpt_thread(sbi); 1927 } 1928 1929 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi) 1930 { 1931 struct ckpt_req_control *cprc = &sbi->cprc_info; 1932 1933 flush_remained_ckpt_reqs(sbi, NULL); 1934 1935 /* Let's wait for the previous dispatched checkpoint. */ 1936 while (atomic_read(&cprc->queued_ckpt)) 1937 io_schedule_timeout(DEFAULT_IO_TIMEOUT); 1938 } 1939 1940 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi) 1941 { 1942 struct ckpt_req_control *cprc = &sbi->cprc_info; 1943 1944 atomic_set(&cprc->issued_ckpt, 0); 1945 atomic_set(&cprc->total_ckpt, 0); 1946 atomic_set(&cprc->queued_ckpt, 0); 1947 cprc->ckpt_thread_ioprio = DEFAULT_CHECKPOINT_IOPRIO; 1948 init_waitqueue_head(&cprc->ckpt_wait_queue); 1949 init_llist_head(&cprc->issue_list); 1950 spin_lock_init(&cprc->stat_lock); 1951 } 1952