1 /* 2 * fs/f2fs/checkpoint.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/bio.h> 13 #include <linux/mpage.h> 14 #include <linux/writeback.h> 15 #include <linux/blkdev.h> 16 #include <linux/f2fs_fs.h> 17 #include <linux/pagevec.h> 18 #include <linux/swap.h> 19 20 #include "f2fs.h" 21 #include "node.h" 22 #include "segment.h" 23 #include "trace.h" 24 #include <trace/events/f2fs.h> 25 26 static struct kmem_cache *ino_entry_slab; 27 struct kmem_cache *inode_entry_slab; 28 29 /* 30 * We guarantee no failure on the returned page. 31 */ 32 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 33 { 34 struct address_space *mapping = META_MAPPING(sbi); 35 struct page *page = NULL; 36 repeat: 37 page = grab_cache_page(mapping, index); 38 if (!page) { 39 cond_resched(); 40 goto repeat; 41 } 42 f2fs_wait_on_page_writeback(page, META); 43 SetPageUptodate(page); 44 return page; 45 } 46 47 /* 48 * We guarantee no failure on the returned page. 49 */ 50 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 51 { 52 struct address_space *mapping = META_MAPPING(sbi); 53 struct page *page; 54 struct f2fs_io_info fio = { 55 .sbi = sbi, 56 .type = META, 57 .rw = READ_SYNC | REQ_META | REQ_PRIO, 58 .blk_addr = index, 59 .encrypted_page = NULL, 60 }; 61 repeat: 62 page = grab_cache_page(mapping, index); 63 if (!page) { 64 cond_resched(); 65 goto repeat; 66 } 67 if (PageUptodate(page)) 68 goto out; 69 70 fio.page = page; 71 72 if (f2fs_submit_page_bio(&fio)) { 73 f2fs_put_page(page, 1); 74 goto repeat; 75 } 76 77 lock_page(page); 78 if (unlikely(page->mapping != mapping)) { 79 f2fs_put_page(page, 1); 80 goto repeat; 81 } 82 83 /* 84 * if there is any IO error when accessing device, make our filesystem 85 * readonly and make sure do not write checkpoint with non-uptodate 86 * meta page. 87 */ 88 if (unlikely(!PageUptodate(page))) 89 f2fs_stop_checkpoint(sbi); 90 out: 91 return page; 92 } 93 94 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type) 95 { 96 switch (type) { 97 case META_NAT: 98 break; 99 case META_SIT: 100 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi))) 101 return false; 102 break; 103 case META_SSA: 104 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) || 105 blkaddr < SM_I(sbi)->ssa_blkaddr)) 106 return false; 107 break; 108 case META_CP: 109 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr || 110 blkaddr < __start_cp_addr(sbi))) 111 return false; 112 break; 113 case META_POR: 114 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || 115 blkaddr < MAIN_BLKADDR(sbi))) 116 return false; 117 break; 118 default: 119 BUG(); 120 } 121 122 return true; 123 } 124 125 /* 126 * Readahead CP/NAT/SIT/SSA pages 127 */ 128 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, int type) 129 { 130 block_t prev_blk_addr = 0; 131 struct page *page; 132 block_t blkno = start; 133 struct f2fs_io_info fio = { 134 .sbi = sbi, 135 .type = META, 136 .rw = READ_SYNC | REQ_META | REQ_PRIO, 137 .encrypted_page = NULL, 138 }; 139 140 for (; nrpages-- > 0; blkno++) { 141 142 if (!is_valid_blkaddr(sbi, blkno, type)) 143 goto out; 144 145 switch (type) { 146 case META_NAT: 147 if (unlikely(blkno >= 148 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid))) 149 blkno = 0; 150 /* get nat block addr */ 151 fio.blk_addr = current_nat_addr(sbi, 152 blkno * NAT_ENTRY_PER_BLOCK); 153 break; 154 case META_SIT: 155 /* get sit block addr */ 156 fio.blk_addr = current_sit_addr(sbi, 157 blkno * SIT_ENTRY_PER_BLOCK); 158 if (blkno != start && prev_blk_addr + 1 != fio.blk_addr) 159 goto out; 160 prev_blk_addr = fio.blk_addr; 161 break; 162 case META_SSA: 163 case META_CP: 164 case META_POR: 165 fio.blk_addr = blkno; 166 break; 167 default: 168 BUG(); 169 } 170 171 page = grab_cache_page(META_MAPPING(sbi), fio.blk_addr); 172 if (!page) 173 continue; 174 if (PageUptodate(page)) { 175 f2fs_put_page(page, 1); 176 continue; 177 } 178 179 fio.page = page; 180 f2fs_submit_page_mbio(&fio); 181 f2fs_put_page(page, 0); 182 } 183 out: 184 f2fs_submit_merged_bio(sbi, META, READ); 185 return blkno - start; 186 } 187 188 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index) 189 { 190 struct page *page; 191 bool readahead = false; 192 193 page = find_get_page(META_MAPPING(sbi), index); 194 if (!page || (page && !PageUptodate(page))) 195 readahead = true; 196 f2fs_put_page(page, 0); 197 198 if (readahead) 199 ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR); 200 } 201 202 static int f2fs_write_meta_page(struct page *page, 203 struct writeback_control *wbc) 204 { 205 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 206 207 trace_f2fs_writepage(page, META); 208 209 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 210 goto redirty_out; 211 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0)) 212 goto redirty_out; 213 if (unlikely(f2fs_cp_error(sbi))) 214 goto redirty_out; 215 216 f2fs_wait_on_page_writeback(page, META); 217 write_meta_page(sbi, page); 218 dec_page_count(sbi, F2FS_DIRTY_META); 219 unlock_page(page); 220 221 if (wbc->for_reclaim) 222 f2fs_submit_merged_bio(sbi, META, WRITE); 223 return 0; 224 225 redirty_out: 226 redirty_page_for_writepage(wbc, page); 227 return AOP_WRITEPAGE_ACTIVATE; 228 } 229 230 static int f2fs_write_meta_pages(struct address_space *mapping, 231 struct writeback_control *wbc) 232 { 233 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 234 long diff, written; 235 236 trace_f2fs_writepages(mapping->host, wbc, META); 237 238 /* collect a number of dirty meta pages and write together */ 239 if (wbc->for_kupdate || 240 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META)) 241 goto skip_write; 242 243 /* if mounting is failed, skip writing node pages */ 244 mutex_lock(&sbi->cp_mutex); 245 diff = nr_pages_to_write(sbi, META, wbc); 246 written = sync_meta_pages(sbi, META, wbc->nr_to_write); 247 mutex_unlock(&sbi->cp_mutex); 248 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff); 249 return 0; 250 251 skip_write: 252 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META); 253 return 0; 254 } 255 256 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 257 long nr_to_write) 258 { 259 struct address_space *mapping = META_MAPPING(sbi); 260 pgoff_t index = 0, end = LONG_MAX; 261 struct pagevec pvec; 262 long nwritten = 0; 263 struct writeback_control wbc = { 264 .for_reclaim = 0, 265 }; 266 267 pagevec_init(&pvec, 0); 268 269 while (index <= end) { 270 int i, nr_pages; 271 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 272 PAGECACHE_TAG_DIRTY, 273 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 274 if (unlikely(nr_pages == 0)) 275 break; 276 277 for (i = 0; i < nr_pages; i++) { 278 struct page *page = pvec.pages[i]; 279 280 lock_page(page); 281 282 if (unlikely(page->mapping != mapping)) { 283 continue_unlock: 284 unlock_page(page); 285 continue; 286 } 287 if (!PageDirty(page)) { 288 /* someone wrote it for us */ 289 goto continue_unlock; 290 } 291 292 if (!clear_page_dirty_for_io(page)) 293 goto continue_unlock; 294 295 if (mapping->a_ops->writepage(page, &wbc)) { 296 unlock_page(page); 297 break; 298 } 299 nwritten++; 300 if (unlikely(nwritten >= nr_to_write)) 301 break; 302 } 303 pagevec_release(&pvec); 304 cond_resched(); 305 } 306 307 if (nwritten) 308 f2fs_submit_merged_bio(sbi, type, WRITE); 309 310 return nwritten; 311 } 312 313 static int f2fs_set_meta_page_dirty(struct page *page) 314 { 315 trace_f2fs_set_page_dirty(page, META); 316 317 SetPageUptodate(page); 318 if (!PageDirty(page)) { 319 __set_page_dirty_nobuffers(page); 320 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META); 321 SetPagePrivate(page); 322 f2fs_trace_pid(page); 323 return 1; 324 } 325 return 0; 326 } 327 328 const struct address_space_operations f2fs_meta_aops = { 329 .writepage = f2fs_write_meta_page, 330 .writepages = f2fs_write_meta_pages, 331 .set_page_dirty = f2fs_set_meta_page_dirty, 332 .invalidatepage = f2fs_invalidate_page, 333 .releasepage = f2fs_release_page, 334 }; 335 336 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 337 { 338 struct inode_management *im = &sbi->im[type]; 339 struct ino_entry *e, *tmp; 340 341 tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS); 342 retry: 343 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL); 344 345 spin_lock(&im->ino_lock); 346 e = radix_tree_lookup(&im->ino_root, ino); 347 if (!e) { 348 e = tmp; 349 if (radix_tree_insert(&im->ino_root, ino, e)) { 350 spin_unlock(&im->ino_lock); 351 radix_tree_preload_end(); 352 goto retry; 353 } 354 memset(e, 0, sizeof(struct ino_entry)); 355 e->ino = ino; 356 357 list_add_tail(&e->list, &im->ino_list); 358 if (type != ORPHAN_INO) 359 im->ino_num++; 360 } 361 spin_unlock(&im->ino_lock); 362 radix_tree_preload_end(); 363 364 if (e != tmp) 365 kmem_cache_free(ino_entry_slab, tmp); 366 } 367 368 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 369 { 370 struct inode_management *im = &sbi->im[type]; 371 struct ino_entry *e; 372 373 spin_lock(&im->ino_lock); 374 e = radix_tree_lookup(&im->ino_root, ino); 375 if (e) { 376 list_del(&e->list); 377 radix_tree_delete(&im->ino_root, ino); 378 im->ino_num--; 379 spin_unlock(&im->ino_lock); 380 kmem_cache_free(ino_entry_slab, e); 381 return; 382 } 383 spin_unlock(&im->ino_lock); 384 } 385 386 void add_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type) 387 { 388 /* add new dirty ino entry into list */ 389 __add_ino_entry(sbi, ino, type); 390 } 391 392 void remove_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type) 393 { 394 /* remove dirty ino entry from list */ 395 __remove_ino_entry(sbi, ino, type); 396 } 397 398 /* mode should be APPEND_INO or UPDATE_INO */ 399 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode) 400 { 401 struct inode_management *im = &sbi->im[mode]; 402 struct ino_entry *e; 403 404 spin_lock(&im->ino_lock); 405 e = radix_tree_lookup(&im->ino_root, ino); 406 spin_unlock(&im->ino_lock); 407 return e ? true : false; 408 } 409 410 void release_dirty_inode(struct f2fs_sb_info *sbi) 411 { 412 struct ino_entry *e, *tmp; 413 int i; 414 415 for (i = APPEND_INO; i <= UPDATE_INO; i++) { 416 struct inode_management *im = &sbi->im[i]; 417 418 spin_lock(&im->ino_lock); 419 list_for_each_entry_safe(e, tmp, &im->ino_list, list) { 420 list_del(&e->list); 421 radix_tree_delete(&im->ino_root, e->ino); 422 kmem_cache_free(ino_entry_slab, e); 423 im->ino_num--; 424 } 425 spin_unlock(&im->ino_lock); 426 } 427 } 428 429 int acquire_orphan_inode(struct f2fs_sb_info *sbi) 430 { 431 struct inode_management *im = &sbi->im[ORPHAN_INO]; 432 int err = 0; 433 434 spin_lock(&im->ino_lock); 435 if (unlikely(im->ino_num >= sbi->max_orphans)) 436 err = -ENOSPC; 437 else 438 im->ino_num++; 439 spin_unlock(&im->ino_lock); 440 441 return err; 442 } 443 444 void release_orphan_inode(struct f2fs_sb_info *sbi) 445 { 446 struct inode_management *im = &sbi->im[ORPHAN_INO]; 447 448 spin_lock(&im->ino_lock); 449 f2fs_bug_on(sbi, im->ino_num == 0); 450 im->ino_num--; 451 spin_unlock(&im->ino_lock); 452 } 453 454 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 455 { 456 /* add new orphan ino entry into list */ 457 __add_ino_entry(sbi, ino, ORPHAN_INO); 458 } 459 460 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 461 { 462 /* remove orphan entry from orphan list */ 463 __remove_ino_entry(sbi, ino, ORPHAN_INO); 464 } 465 466 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 467 { 468 struct inode *inode; 469 470 inode = f2fs_iget(sbi->sb, ino); 471 if (IS_ERR(inode)) { 472 /* 473 * there should be a bug that we can't find the entry 474 * to orphan inode. 475 */ 476 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT); 477 return PTR_ERR(inode); 478 } 479 480 clear_nlink(inode); 481 482 /* truncate all the data during iput */ 483 iput(inode); 484 return 0; 485 } 486 487 int recover_orphan_inodes(struct f2fs_sb_info *sbi) 488 { 489 block_t start_blk, orphan_blocks, i, j; 490 int err; 491 492 if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG)) 493 return 0; 494 495 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi); 496 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi); 497 498 ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP); 499 500 for (i = 0; i < orphan_blocks; i++) { 501 struct page *page = get_meta_page(sbi, start_blk + i); 502 struct f2fs_orphan_block *orphan_blk; 503 504 orphan_blk = (struct f2fs_orphan_block *)page_address(page); 505 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) { 506 nid_t ino = le32_to_cpu(orphan_blk->ino[j]); 507 err = recover_orphan_inode(sbi, ino); 508 if (err) { 509 f2fs_put_page(page, 1); 510 return err; 511 } 512 } 513 f2fs_put_page(page, 1); 514 } 515 /* clear Orphan Flag */ 516 clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG); 517 return 0; 518 } 519 520 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk) 521 { 522 struct list_head *head; 523 struct f2fs_orphan_block *orphan_blk = NULL; 524 unsigned int nentries = 0; 525 unsigned short index = 1; 526 unsigned short orphan_blocks; 527 struct page *page = NULL; 528 struct ino_entry *orphan = NULL; 529 struct inode_management *im = &sbi->im[ORPHAN_INO]; 530 531 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num); 532 533 /* 534 * we don't need to do spin_lock(&im->ino_lock) here, since all the 535 * orphan inode operations are covered under f2fs_lock_op(). 536 * And, spin_lock should be avoided due to page operations below. 537 */ 538 head = &im->ino_list; 539 540 /* loop for each orphan inode entry and write them in Jornal block */ 541 list_for_each_entry(orphan, head, list) { 542 if (!page) { 543 page = grab_meta_page(sbi, start_blk++); 544 orphan_blk = 545 (struct f2fs_orphan_block *)page_address(page); 546 memset(orphan_blk, 0, sizeof(*orphan_blk)); 547 } 548 549 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino); 550 551 if (nentries == F2FS_ORPHANS_PER_BLOCK) { 552 /* 553 * an orphan block is full of 1020 entries, 554 * then we need to flush current orphan blocks 555 * and bring another one in memory 556 */ 557 orphan_blk->blk_addr = cpu_to_le16(index); 558 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 559 orphan_blk->entry_count = cpu_to_le32(nentries); 560 set_page_dirty(page); 561 f2fs_put_page(page, 1); 562 index++; 563 nentries = 0; 564 page = NULL; 565 } 566 } 567 568 if (page) { 569 orphan_blk->blk_addr = cpu_to_le16(index); 570 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 571 orphan_blk->entry_count = cpu_to_le32(nentries); 572 set_page_dirty(page); 573 f2fs_put_page(page, 1); 574 } 575 } 576 577 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi, 578 block_t cp_addr, unsigned long long *version) 579 { 580 struct page *cp_page_1, *cp_page_2 = NULL; 581 unsigned long blk_size = sbi->blocksize; 582 struct f2fs_checkpoint *cp_block; 583 unsigned long long cur_version = 0, pre_version = 0; 584 size_t crc_offset; 585 __u32 crc = 0; 586 587 /* Read the 1st cp block in this CP pack */ 588 cp_page_1 = get_meta_page(sbi, cp_addr); 589 590 /* get the version number */ 591 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1); 592 crc_offset = le32_to_cpu(cp_block->checksum_offset); 593 if (crc_offset >= blk_size) 594 goto invalid_cp1; 595 596 crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset))); 597 if (!f2fs_crc_valid(crc, cp_block, crc_offset)) 598 goto invalid_cp1; 599 600 pre_version = cur_cp_version(cp_block); 601 602 /* Read the 2nd cp block in this CP pack */ 603 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1; 604 cp_page_2 = get_meta_page(sbi, cp_addr); 605 606 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2); 607 crc_offset = le32_to_cpu(cp_block->checksum_offset); 608 if (crc_offset >= blk_size) 609 goto invalid_cp2; 610 611 crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset))); 612 if (!f2fs_crc_valid(crc, cp_block, crc_offset)) 613 goto invalid_cp2; 614 615 cur_version = cur_cp_version(cp_block); 616 617 if (cur_version == pre_version) { 618 *version = cur_version; 619 f2fs_put_page(cp_page_2, 1); 620 return cp_page_1; 621 } 622 invalid_cp2: 623 f2fs_put_page(cp_page_2, 1); 624 invalid_cp1: 625 f2fs_put_page(cp_page_1, 1); 626 return NULL; 627 } 628 629 int get_valid_checkpoint(struct f2fs_sb_info *sbi) 630 { 631 struct f2fs_checkpoint *cp_block; 632 struct f2fs_super_block *fsb = sbi->raw_super; 633 struct page *cp1, *cp2, *cur_page; 634 unsigned long blk_size = sbi->blocksize; 635 unsigned long long cp1_version = 0, cp2_version = 0; 636 unsigned long long cp_start_blk_no; 637 unsigned int cp_blks = 1 + __cp_payload(sbi); 638 block_t cp_blk_no; 639 int i; 640 641 sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL); 642 if (!sbi->ckpt) 643 return -ENOMEM; 644 /* 645 * Finding out valid cp block involves read both 646 * sets( cp pack1 and cp pack 2) 647 */ 648 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr); 649 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); 650 651 /* The second checkpoint pack should start at the next segment */ 652 cp_start_blk_no += ((unsigned long long)1) << 653 le32_to_cpu(fsb->log_blocks_per_seg); 654 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); 655 656 if (cp1 && cp2) { 657 if (ver_after(cp2_version, cp1_version)) 658 cur_page = cp2; 659 else 660 cur_page = cp1; 661 } else if (cp1) { 662 cur_page = cp1; 663 } else if (cp2) { 664 cur_page = cp2; 665 } else { 666 goto fail_no_cp; 667 } 668 669 cp_block = (struct f2fs_checkpoint *)page_address(cur_page); 670 memcpy(sbi->ckpt, cp_block, blk_size); 671 672 if (cp_blks <= 1) 673 goto done; 674 675 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr); 676 if (cur_page == cp2) 677 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg); 678 679 for (i = 1; i < cp_blks; i++) { 680 void *sit_bitmap_ptr; 681 unsigned char *ckpt = (unsigned char *)sbi->ckpt; 682 683 cur_page = get_meta_page(sbi, cp_blk_no + i); 684 sit_bitmap_ptr = page_address(cur_page); 685 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size); 686 f2fs_put_page(cur_page, 1); 687 } 688 done: 689 f2fs_put_page(cp1, 1); 690 f2fs_put_page(cp2, 1); 691 return 0; 692 693 fail_no_cp: 694 kfree(sbi->ckpt); 695 return -EINVAL; 696 } 697 698 static int __add_dirty_inode(struct inode *inode, struct inode_entry *new) 699 { 700 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 701 702 if (is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) 703 return -EEXIST; 704 705 set_inode_flag(F2FS_I(inode), FI_DIRTY_DIR); 706 F2FS_I(inode)->dirty_dir = new; 707 list_add_tail(&new->list, &sbi->dir_inode_list); 708 stat_inc_dirty_dir(sbi); 709 return 0; 710 } 711 712 void update_dirty_page(struct inode *inode, struct page *page) 713 { 714 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 715 struct inode_entry *new; 716 int ret = 0; 717 718 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 719 !S_ISLNK(inode->i_mode)) 720 return; 721 722 if (!S_ISDIR(inode->i_mode)) { 723 inode_inc_dirty_pages(inode); 724 goto out; 725 } 726 727 new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS); 728 new->inode = inode; 729 INIT_LIST_HEAD(&new->list); 730 731 spin_lock(&sbi->dir_inode_lock); 732 ret = __add_dirty_inode(inode, new); 733 inode_inc_dirty_pages(inode); 734 spin_unlock(&sbi->dir_inode_lock); 735 736 if (ret) 737 kmem_cache_free(inode_entry_slab, new); 738 out: 739 SetPagePrivate(page); 740 f2fs_trace_pid(page); 741 } 742 743 void add_dirty_dir_inode(struct inode *inode) 744 { 745 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 746 struct inode_entry *new = 747 f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS); 748 int ret = 0; 749 750 new->inode = inode; 751 INIT_LIST_HEAD(&new->list); 752 753 spin_lock(&sbi->dir_inode_lock); 754 ret = __add_dirty_inode(inode, new); 755 spin_unlock(&sbi->dir_inode_lock); 756 757 if (ret) 758 kmem_cache_free(inode_entry_slab, new); 759 } 760 761 void remove_dirty_dir_inode(struct inode *inode) 762 { 763 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 764 struct inode_entry *entry; 765 766 if (!S_ISDIR(inode->i_mode)) 767 return; 768 769 spin_lock(&sbi->dir_inode_lock); 770 if (get_dirty_pages(inode) || 771 !is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) { 772 spin_unlock(&sbi->dir_inode_lock); 773 return; 774 } 775 776 entry = F2FS_I(inode)->dirty_dir; 777 list_del(&entry->list); 778 F2FS_I(inode)->dirty_dir = NULL; 779 clear_inode_flag(F2FS_I(inode), FI_DIRTY_DIR); 780 stat_dec_dirty_dir(sbi); 781 spin_unlock(&sbi->dir_inode_lock); 782 kmem_cache_free(inode_entry_slab, entry); 783 784 /* Only from the recovery routine */ 785 if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) { 786 clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT); 787 iput(inode); 788 } 789 } 790 791 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi) 792 { 793 struct list_head *head; 794 struct inode_entry *entry; 795 struct inode *inode; 796 retry: 797 if (unlikely(f2fs_cp_error(sbi))) 798 return; 799 800 spin_lock(&sbi->dir_inode_lock); 801 802 head = &sbi->dir_inode_list; 803 if (list_empty(head)) { 804 spin_unlock(&sbi->dir_inode_lock); 805 return; 806 } 807 entry = list_entry(head->next, struct inode_entry, list); 808 inode = igrab(entry->inode); 809 spin_unlock(&sbi->dir_inode_lock); 810 if (inode) { 811 filemap_fdatawrite(inode->i_mapping); 812 iput(inode); 813 } else { 814 /* 815 * We should submit bio, since it exists several 816 * wribacking dentry pages in the freeing inode. 817 */ 818 f2fs_submit_merged_bio(sbi, DATA, WRITE); 819 cond_resched(); 820 } 821 goto retry; 822 } 823 824 /* 825 * Freeze all the FS-operations for checkpoint. 826 */ 827 static int block_operations(struct f2fs_sb_info *sbi) 828 { 829 struct writeback_control wbc = { 830 .sync_mode = WB_SYNC_ALL, 831 .nr_to_write = LONG_MAX, 832 .for_reclaim = 0, 833 }; 834 struct blk_plug plug; 835 int err = 0; 836 837 blk_start_plug(&plug); 838 839 retry_flush_dents: 840 f2fs_lock_all(sbi); 841 /* write all the dirty dentry pages */ 842 if (get_pages(sbi, F2FS_DIRTY_DENTS)) { 843 f2fs_unlock_all(sbi); 844 sync_dirty_dir_inodes(sbi); 845 if (unlikely(f2fs_cp_error(sbi))) { 846 err = -EIO; 847 goto out; 848 } 849 goto retry_flush_dents; 850 } 851 852 /* 853 * POR: we should ensure that there are no dirty node pages 854 * until finishing nat/sit flush. 855 */ 856 retry_flush_nodes: 857 down_write(&sbi->node_write); 858 859 if (get_pages(sbi, F2FS_DIRTY_NODES)) { 860 up_write(&sbi->node_write); 861 sync_node_pages(sbi, 0, &wbc); 862 if (unlikely(f2fs_cp_error(sbi))) { 863 f2fs_unlock_all(sbi); 864 err = -EIO; 865 goto out; 866 } 867 goto retry_flush_nodes; 868 } 869 out: 870 blk_finish_plug(&plug); 871 return err; 872 } 873 874 static void unblock_operations(struct f2fs_sb_info *sbi) 875 { 876 up_write(&sbi->node_write); 877 f2fs_unlock_all(sbi); 878 } 879 880 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi) 881 { 882 DEFINE_WAIT(wait); 883 884 for (;;) { 885 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE); 886 887 if (!get_pages(sbi, F2FS_WRITEBACK)) 888 break; 889 890 io_schedule(); 891 } 892 finish_wait(&sbi->cp_wait, &wait); 893 } 894 895 static void do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 896 { 897 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 898 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE); 899 struct f2fs_nm_info *nm_i = NM_I(sbi); 900 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num; 901 nid_t last_nid = nm_i->next_scan_nid; 902 block_t start_blk; 903 unsigned int data_sum_blocks, orphan_blocks; 904 __u32 crc32 = 0; 905 int i; 906 int cp_payload_blks = __cp_payload(sbi); 907 block_t discard_blk = NEXT_FREE_BLKADDR(sbi, curseg); 908 bool invalidate = false; 909 910 /* 911 * This avoids to conduct wrong roll-forward operations and uses 912 * metapages, so should be called prior to sync_meta_pages below. 913 */ 914 if (discard_next_dnode(sbi, discard_blk)) 915 invalidate = true; 916 917 /* Flush all the NAT/SIT pages */ 918 while (get_pages(sbi, F2FS_DIRTY_META)) { 919 sync_meta_pages(sbi, META, LONG_MAX); 920 if (unlikely(f2fs_cp_error(sbi))) 921 return; 922 } 923 924 next_free_nid(sbi, &last_nid); 925 926 /* 927 * modify checkpoint 928 * version number is already updated 929 */ 930 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi)); 931 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi)); 932 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi)); 933 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 934 ckpt->cur_node_segno[i] = 935 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE)); 936 ckpt->cur_node_blkoff[i] = 937 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE)); 938 ckpt->alloc_type[i + CURSEG_HOT_NODE] = 939 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE); 940 } 941 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 942 ckpt->cur_data_segno[i] = 943 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA)); 944 ckpt->cur_data_blkoff[i] = 945 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA)); 946 ckpt->alloc_type[i + CURSEG_HOT_DATA] = 947 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA); 948 } 949 950 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi)); 951 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi)); 952 ckpt->next_free_nid = cpu_to_le32(last_nid); 953 954 /* 2 cp + n data seg summary + orphan inode blocks */ 955 data_sum_blocks = npages_for_summary_flush(sbi, false); 956 if (data_sum_blocks < NR_CURSEG_DATA_TYPE) 957 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 958 else 959 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 960 961 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num); 962 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks + 963 orphan_blocks); 964 965 if (__remain_node_summaries(cpc->reason)) 966 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+ 967 cp_payload_blks + data_sum_blocks + 968 orphan_blocks + NR_CURSEG_NODE_TYPE); 969 else 970 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + 971 cp_payload_blks + data_sum_blocks + 972 orphan_blocks); 973 974 if (cpc->reason == CP_UMOUNT) 975 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 976 else 977 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 978 979 if (cpc->reason == CP_FASTBOOT) 980 set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 981 else 982 clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 983 984 if (orphan_num) 985 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 986 else 987 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 988 989 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 990 set_ckpt_flags(ckpt, CP_FSCK_FLAG); 991 992 /* update SIT/NAT bitmap */ 993 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP)); 994 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP)); 995 996 crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset)); 997 *((__le32 *)((unsigned char *)ckpt + 998 le32_to_cpu(ckpt->checksum_offset))) 999 = cpu_to_le32(crc32); 1000 1001 start_blk = __start_cp_addr(sbi); 1002 1003 /* write out checkpoint buffer at block 0 */ 1004 update_meta_page(sbi, ckpt, start_blk++); 1005 1006 for (i = 1; i < 1 + cp_payload_blks; i++) 1007 update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE, 1008 start_blk++); 1009 1010 if (orphan_num) { 1011 write_orphan_inodes(sbi, start_blk); 1012 start_blk += orphan_blocks; 1013 } 1014 1015 write_data_summaries(sbi, start_blk); 1016 start_blk += data_sum_blocks; 1017 if (__remain_node_summaries(cpc->reason)) { 1018 write_node_summaries(sbi, start_blk); 1019 start_blk += NR_CURSEG_NODE_TYPE; 1020 } 1021 1022 /* writeout checkpoint block */ 1023 update_meta_page(sbi, ckpt, start_blk); 1024 1025 /* wait for previous submitted node/meta pages writeback */ 1026 wait_on_all_pages_writeback(sbi); 1027 1028 if (unlikely(f2fs_cp_error(sbi))) 1029 return; 1030 1031 filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX); 1032 filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX); 1033 1034 /* update user_block_counts */ 1035 sbi->last_valid_block_count = sbi->total_valid_block_count; 1036 sbi->alloc_valid_block_count = 0; 1037 1038 /* Here, we only have one bio having CP pack */ 1039 sync_meta_pages(sbi, META_FLUSH, LONG_MAX); 1040 1041 /* wait for previous submitted meta pages writeback */ 1042 wait_on_all_pages_writeback(sbi); 1043 1044 /* 1045 * invalidate meta page which is used temporarily for zeroing out 1046 * block at the end of warm node chain. 1047 */ 1048 if (invalidate) 1049 invalidate_mapping_pages(META_MAPPING(sbi), discard_blk, 1050 discard_blk); 1051 1052 release_dirty_inode(sbi); 1053 1054 if (unlikely(f2fs_cp_error(sbi))) 1055 return; 1056 1057 clear_prefree_segments(sbi, cpc); 1058 clear_sbi_flag(sbi, SBI_IS_DIRTY); 1059 } 1060 1061 /* 1062 * We guarantee that this checkpoint procedure will not fail. 1063 */ 1064 void write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1065 { 1066 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1067 unsigned long long ckpt_ver; 1068 1069 mutex_lock(&sbi->cp_mutex); 1070 1071 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) && 1072 (cpc->reason == CP_FASTBOOT || cpc->reason == CP_SYNC || 1073 (cpc->reason == CP_DISCARD && !sbi->discard_blks))) 1074 goto out; 1075 if (unlikely(f2fs_cp_error(sbi))) 1076 goto out; 1077 if (f2fs_readonly(sbi->sb)) 1078 goto out; 1079 1080 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops"); 1081 1082 if (block_operations(sbi)) 1083 goto out; 1084 1085 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops"); 1086 1087 f2fs_submit_merged_bio(sbi, DATA, WRITE); 1088 f2fs_submit_merged_bio(sbi, NODE, WRITE); 1089 f2fs_submit_merged_bio(sbi, META, WRITE); 1090 1091 /* 1092 * update checkpoint pack index 1093 * Increase the version number so that 1094 * SIT entries and seg summaries are written at correct place 1095 */ 1096 ckpt_ver = cur_cp_version(ckpt); 1097 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver); 1098 1099 /* write cached NAT/SIT entries to NAT/SIT area */ 1100 flush_nat_entries(sbi); 1101 flush_sit_entries(sbi, cpc); 1102 1103 /* unlock all the fs_lock[] in do_checkpoint() */ 1104 do_checkpoint(sbi, cpc); 1105 1106 unblock_operations(sbi); 1107 stat_inc_cp_count(sbi->stat_info); 1108 1109 if (cpc->reason == CP_RECOVERY) 1110 f2fs_msg(sbi->sb, KERN_NOTICE, 1111 "checkpoint: version = %llx", ckpt_ver); 1112 out: 1113 mutex_unlock(&sbi->cp_mutex); 1114 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint"); 1115 } 1116 1117 void init_ino_entry_info(struct f2fs_sb_info *sbi) 1118 { 1119 int i; 1120 1121 for (i = 0; i < MAX_INO_ENTRY; i++) { 1122 struct inode_management *im = &sbi->im[i]; 1123 1124 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC); 1125 spin_lock_init(&im->ino_lock); 1126 INIT_LIST_HEAD(&im->ino_list); 1127 im->ino_num = 0; 1128 } 1129 1130 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS - 1131 NR_CURSEG_TYPE - __cp_payload(sbi)) * 1132 F2FS_ORPHANS_PER_BLOCK; 1133 } 1134 1135 int __init create_checkpoint_caches(void) 1136 { 1137 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry", 1138 sizeof(struct ino_entry)); 1139 if (!ino_entry_slab) 1140 return -ENOMEM; 1141 inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry", 1142 sizeof(struct inode_entry)); 1143 if (!inode_entry_slab) { 1144 kmem_cache_destroy(ino_entry_slab); 1145 return -ENOMEM; 1146 } 1147 return 0; 1148 } 1149 1150 void destroy_checkpoint_caches(void) 1151 { 1152 kmem_cache_destroy(ino_entry_slab); 1153 kmem_cache_destroy(inode_entry_slab); 1154 } 1155