1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/checkpoint.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/bio.h> 10 #include <linux/mpage.h> 11 #include <linux/writeback.h> 12 #include <linux/blkdev.h> 13 #include <linux/f2fs_fs.h> 14 #include <linux/pagevec.h> 15 #include <linux/swap.h> 16 #include <linux/kthread.h> 17 18 #include "f2fs.h" 19 #include "node.h" 20 #include "segment.h" 21 #include "iostat.h" 22 #include <trace/events/f2fs.h> 23 24 #define DEFAULT_CHECKPOINT_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 25 26 static struct kmem_cache *ino_entry_slab; 27 struct kmem_cache *f2fs_inode_entry_slab; 28 29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io, 30 unsigned char reason) 31 { 32 f2fs_build_fault_attr(sbi, 0, 0); 33 if (!end_io) 34 f2fs_flush_merged_writes(sbi); 35 f2fs_handle_critical_error(sbi, reason); 36 } 37 38 /* 39 * We guarantee no failure on the returned page. 40 */ 41 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 42 { 43 struct address_space *mapping = META_MAPPING(sbi); 44 struct page *page; 45 repeat: 46 page = f2fs_grab_cache_page(mapping, index, false); 47 if (!page) { 48 cond_resched(); 49 goto repeat; 50 } 51 f2fs_wait_on_page_writeback(page, META, true, true); 52 if (!PageUptodate(page)) 53 SetPageUptodate(page); 54 return page; 55 } 56 57 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index, 58 bool is_meta) 59 { 60 struct address_space *mapping = META_MAPPING(sbi); 61 struct page *page; 62 struct f2fs_io_info fio = { 63 .sbi = sbi, 64 .type = META, 65 .op = REQ_OP_READ, 66 .op_flags = REQ_META | REQ_PRIO, 67 .old_blkaddr = index, 68 .new_blkaddr = index, 69 .encrypted_page = NULL, 70 .is_por = !is_meta ? 1 : 0, 71 }; 72 int err; 73 74 if (unlikely(!is_meta)) 75 fio.op_flags &= ~REQ_META; 76 repeat: 77 page = f2fs_grab_cache_page(mapping, index, false); 78 if (!page) { 79 cond_resched(); 80 goto repeat; 81 } 82 if (PageUptodate(page)) 83 goto out; 84 85 fio.page = page; 86 87 err = f2fs_submit_page_bio(&fio); 88 if (err) { 89 f2fs_put_page(page, 1); 90 return ERR_PTR(err); 91 } 92 93 f2fs_update_iostat(sbi, NULL, FS_META_READ_IO, F2FS_BLKSIZE); 94 95 lock_page(page); 96 if (unlikely(page->mapping != mapping)) { 97 f2fs_put_page(page, 1); 98 goto repeat; 99 } 100 101 if (unlikely(!PageUptodate(page))) { 102 f2fs_handle_page_eio(sbi, page_folio(page), META); 103 f2fs_put_page(page, 1); 104 return ERR_PTR(-EIO); 105 } 106 out: 107 return page; 108 } 109 110 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 111 { 112 return __get_meta_page(sbi, index, true); 113 } 114 115 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index) 116 { 117 struct page *page; 118 int count = 0; 119 120 retry: 121 page = __get_meta_page(sbi, index, true); 122 if (IS_ERR(page)) { 123 if (PTR_ERR(page) == -EIO && 124 ++count <= DEFAULT_RETRY_IO_COUNT) 125 goto retry; 126 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_META_PAGE); 127 } 128 return page; 129 } 130 131 /* for POR only */ 132 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index) 133 { 134 return __get_meta_page(sbi, index, false); 135 } 136 137 static bool __is_bitmap_valid(struct f2fs_sb_info *sbi, block_t blkaddr, 138 int type) 139 { 140 struct seg_entry *se; 141 unsigned int segno, offset; 142 bool exist; 143 144 if (type == DATA_GENERIC) 145 return true; 146 147 segno = GET_SEGNO(sbi, blkaddr); 148 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 149 se = get_seg_entry(sbi, segno); 150 151 exist = f2fs_test_bit(offset, se->cur_valid_map); 152 153 /* skip data, if we already have an error in checkpoint. */ 154 if (unlikely(f2fs_cp_error(sbi))) 155 return exist; 156 157 if ((exist && type == DATA_GENERIC_ENHANCE_UPDATE) || 158 (!exist && type == DATA_GENERIC_ENHANCE)) 159 goto out_err; 160 if (!exist && type != DATA_GENERIC_ENHANCE_UPDATE) 161 goto out_handle; 162 return exist; 163 164 out_err: 165 f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d", 166 blkaddr, exist); 167 set_sbi_flag(sbi, SBI_NEED_FSCK); 168 dump_stack(); 169 out_handle: 170 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 171 return exist; 172 } 173 174 static bool __f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 175 block_t blkaddr, int type) 176 { 177 switch (type) { 178 case META_NAT: 179 break; 180 case META_SIT: 181 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi))) 182 goto check_only; 183 break; 184 case META_SSA: 185 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) || 186 blkaddr < SM_I(sbi)->ssa_blkaddr)) 187 goto check_only; 188 break; 189 case META_CP: 190 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr || 191 blkaddr < __start_cp_addr(sbi))) 192 goto check_only; 193 break; 194 case META_POR: 195 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || 196 blkaddr < MAIN_BLKADDR(sbi))) 197 goto check_only; 198 break; 199 case DATA_GENERIC: 200 case DATA_GENERIC_ENHANCE: 201 case DATA_GENERIC_ENHANCE_READ: 202 case DATA_GENERIC_ENHANCE_UPDATE: 203 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || 204 blkaddr < MAIN_BLKADDR(sbi))) { 205 206 /* Skip to emit an error message. */ 207 if (unlikely(f2fs_cp_error(sbi))) 208 return false; 209 210 f2fs_warn(sbi, "access invalid blkaddr:%u", 211 blkaddr); 212 set_sbi_flag(sbi, SBI_NEED_FSCK); 213 dump_stack(); 214 goto err; 215 } else { 216 return __is_bitmap_valid(sbi, blkaddr, type); 217 } 218 break; 219 case META_GENERIC: 220 if (unlikely(blkaddr < SEG0_BLKADDR(sbi) || 221 blkaddr >= MAIN_BLKADDR(sbi))) 222 goto err; 223 break; 224 default: 225 BUG(); 226 } 227 228 return true; 229 err: 230 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 231 check_only: 232 return false; 233 } 234 235 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 236 block_t blkaddr, int type) 237 { 238 if (time_to_inject(sbi, FAULT_BLKADDR_VALIDITY)) 239 return false; 240 return __f2fs_is_valid_blkaddr(sbi, blkaddr, type); 241 } 242 243 bool f2fs_is_valid_blkaddr_raw(struct f2fs_sb_info *sbi, 244 block_t blkaddr, int type) 245 { 246 return __f2fs_is_valid_blkaddr(sbi, blkaddr, type); 247 } 248 249 /* 250 * Readahead CP/NAT/SIT/SSA/POR pages 251 */ 252 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 253 int type, bool sync) 254 { 255 struct page *page; 256 block_t blkno = start; 257 struct f2fs_io_info fio = { 258 .sbi = sbi, 259 .type = META, 260 .op = REQ_OP_READ, 261 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD, 262 .encrypted_page = NULL, 263 .in_list = 0, 264 .is_por = (type == META_POR) ? 1 : 0, 265 }; 266 struct blk_plug plug; 267 int err; 268 269 if (unlikely(type == META_POR)) 270 fio.op_flags &= ~REQ_META; 271 272 blk_start_plug(&plug); 273 for (; nrpages-- > 0; blkno++) { 274 275 if (!f2fs_is_valid_blkaddr(sbi, blkno, type)) 276 goto out; 277 278 switch (type) { 279 case META_NAT: 280 if (unlikely(blkno >= 281 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid))) 282 blkno = 0; 283 /* get nat block addr */ 284 fio.new_blkaddr = current_nat_addr(sbi, 285 blkno * NAT_ENTRY_PER_BLOCK); 286 break; 287 case META_SIT: 288 if (unlikely(blkno >= TOTAL_SEGS(sbi))) 289 goto out; 290 /* get sit block addr */ 291 fio.new_blkaddr = current_sit_addr(sbi, 292 blkno * SIT_ENTRY_PER_BLOCK); 293 break; 294 case META_SSA: 295 case META_CP: 296 case META_POR: 297 fio.new_blkaddr = blkno; 298 break; 299 default: 300 BUG(); 301 } 302 303 page = f2fs_grab_cache_page(META_MAPPING(sbi), 304 fio.new_blkaddr, false); 305 if (!page) 306 continue; 307 if (PageUptodate(page)) { 308 f2fs_put_page(page, 1); 309 continue; 310 } 311 312 fio.page = page; 313 err = f2fs_submit_page_bio(&fio); 314 f2fs_put_page(page, err ? 1 : 0); 315 316 if (!err) 317 f2fs_update_iostat(sbi, NULL, FS_META_READ_IO, 318 F2FS_BLKSIZE); 319 } 320 out: 321 blk_finish_plug(&plug); 322 return blkno - start; 323 } 324 325 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index, 326 unsigned int ra_blocks) 327 { 328 struct page *page; 329 bool readahead = false; 330 331 if (ra_blocks == RECOVERY_MIN_RA_BLOCKS) 332 return; 333 334 page = find_get_page(META_MAPPING(sbi), index); 335 if (!page || !PageUptodate(page)) 336 readahead = true; 337 f2fs_put_page(page, 0); 338 339 if (readahead) 340 f2fs_ra_meta_pages(sbi, index, ra_blocks, META_POR, true); 341 } 342 343 static int __f2fs_write_meta_page(struct page *page, 344 struct writeback_control *wbc, 345 enum iostat_type io_type) 346 { 347 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 348 struct folio *folio = page_folio(page); 349 350 trace_f2fs_writepage(folio, META); 351 352 if (unlikely(f2fs_cp_error(sbi))) { 353 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) { 354 folio_clear_uptodate(folio); 355 dec_page_count(sbi, F2FS_DIRTY_META); 356 folio_unlock(folio); 357 return 0; 358 } 359 goto redirty_out; 360 } 361 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 362 goto redirty_out; 363 if (wbc->for_reclaim && folio->index < GET_SUM_BLOCK(sbi, 0)) 364 goto redirty_out; 365 366 f2fs_do_write_meta_page(sbi, folio, io_type); 367 dec_page_count(sbi, F2FS_DIRTY_META); 368 369 if (wbc->for_reclaim) 370 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, META); 371 372 folio_unlock(folio); 373 374 if (unlikely(f2fs_cp_error(sbi))) 375 f2fs_submit_merged_write(sbi, META); 376 377 return 0; 378 379 redirty_out: 380 redirty_page_for_writepage(wbc, page); 381 return AOP_WRITEPAGE_ACTIVATE; 382 } 383 384 static int f2fs_write_meta_page(struct page *page, 385 struct writeback_control *wbc) 386 { 387 return __f2fs_write_meta_page(page, wbc, FS_META_IO); 388 } 389 390 static int f2fs_write_meta_pages(struct address_space *mapping, 391 struct writeback_control *wbc) 392 { 393 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 394 long diff, written; 395 396 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 397 goto skip_write; 398 399 /* collect a number of dirty meta pages and write together */ 400 if (wbc->sync_mode != WB_SYNC_ALL && 401 get_pages(sbi, F2FS_DIRTY_META) < 402 nr_pages_to_skip(sbi, META)) 403 goto skip_write; 404 405 /* if locked failed, cp will flush dirty pages instead */ 406 if (!f2fs_down_write_trylock(&sbi->cp_global_sem)) 407 goto skip_write; 408 409 trace_f2fs_writepages(mapping->host, wbc, META); 410 diff = nr_pages_to_write(sbi, META, wbc); 411 written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO); 412 f2fs_up_write(&sbi->cp_global_sem); 413 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff); 414 return 0; 415 416 skip_write: 417 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META); 418 trace_f2fs_writepages(mapping->host, wbc, META); 419 return 0; 420 } 421 422 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 423 long nr_to_write, enum iostat_type io_type) 424 { 425 struct address_space *mapping = META_MAPPING(sbi); 426 pgoff_t index = 0, prev = ULONG_MAX; 427 struct folio_batch fbatch; 428 long nwritten = 0; 429 int nr_folios; 430 struct writeback_control wbc = { 431 .for_reclaim = 0, 432 }; 433 struct blk_plug plug; 434 435 folio_batch_init(&fbatch); 436 437 blk_start_plug(&plug); 438 439 while ((nr_folios = filemap_get_folios_tag(mapping, &index, 440 (pgoff_t)-1, 441 PAGECACHE_TAG_DIRTY, &fbatch))) { 442 int i; 443 444 for (i = 0; i < nr_folios; i++) { 445 struct folio *folio = fbatch.folios[i]; 446 447 if (nr_to_write != LONG_MAX && i != 0 && 448 folio->index != prev + 449 folio_nr_pages(fbatch.folios[i-1])) { 450 folio_batch_release(&fbatch); 451 goto stop; 452 } 453 454 folio_lock(folio); 455 456 if (unlikely(folio->mapping != mapping)) { 457 continue_unlock: 458 folio_unlock(folio); 459 continue; 460 } 461 if (!folio_test_dirty(folio)) { 462 /* someone wrote it for us */ 463 goto continue_unlock; 464 } 465 466 f2fs_wait_on_page_writeback(&folio->page, META, 467 true, true); 468 469 if (!folio_clear_dirty_for_io(folio)) 470 goto continue_unlock; 471 472 if (__f2fs_write_meta_page(&folio->page, &wbc, 473 io_type)) { 474 folio_unlock(folio); 475 break; 476 } 477 nwritten += folio_nr_pages(folio); 478 prev = folio->index; 479 if (unlikely(nwritten >= nr_to_write)) 480 break; 481 } 482 folio_batch_release(&fbatch); 483 cond_resched(); 484 } 485 stop: 486 if (nwritten) 487 f2fs_submit_merged_write(sbi, type); 488 489 blk_finish_plug(&plug); 490 491 return nwritten; 492 } 493 494 static bool f2fs_dirty_meta_folio(struct address_space *mapping, 495 struct folio *folio) 496 { 497 trace_f2fs_set_page_dirty(folio, META); 498 499 if (!folio_test_uptodate(folio)) 500 folio_mark_uptodate(folio); 501 if (filemap_dirty_folio(mapping, folio)) { 502 inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_META); 503 set_page_private_reference(&folio->page); 504 return true; 505 } 506 return false; 507 } 508 509 const struct address_space_operations f2fs_meta_aops = { 510 .writepage = f2fs_write_meta_page, 511 .writepages = f2fs_write_meta_pages, 512 .dirty_folio = f2fs_dirty_meta_folio, 513 .invalidate_folio = f2fs_invalidate_folio, 514 .release_folio = f2fs_release_folio, 515 .migrate_folio = filemap_migrate_folio, 516 }; 517 518 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, 519 unsigned int devidx, int type) 520 { 521 struct inode_management *im = &sbi->im[type]; 522 struct ino_entry *e = NULL, *new = NULL; 523 524 if (type == FLUSH_INO) { 525 rcu_read_lock(); 526 e = radix_tree_lookup(&im->ino_root, ino); 527 rcu_read_unlock(); 528 } 529 530 retry: 531 if (!e) 532 new = f2fs_kmem_cache_alloc(ino_entry_slab, 533 GFP_NOFS, true, NULL); 534 535 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL); 536 537 spin_lock(&im->ino_lock); 538 e = radix_tree_lookup(&im->ino_root, ino); 539 if (!e) { 540 if (!new) { 541 spin_unlock(&im->ino_lock); 542 radix_tree_preload_end(); 543 goto retry; 544 } 545 e = new; 546 if (unlikely(radix_tree_insert(&im->ino_root, ino, e))) 547 f2fs_bug_on(sbi, 1); 548 549 memset(e, 0, sizeof(struct ino_entry)); 550 e->ino = ino; 551 552 list_add_tail(&e->list, &im->ino_list); 553 if (type != ORPHAN_INO) 554 im->ino_num++; 555 } 556 557 if (type == FLUSH_INO) 558 f2fs_set_bit(devidx, (char *)&e->dirty_device); 559 560 spin_unlock(&im->ino_lock); 561 radix_tree_preload_end(); 562 563 if (new && e != new) 564 kmem_cache_free(ino_entry_slab, new); 565 } 566 567 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 568 { 569 struct inode_management *im = &sbi->im[type]; 570 struct ino_entry *e; 571 572 spin_lock(&im->ino_lock); 573 e = radix_tree_lookup(&im->ino_root, ino); 574 if (e) { 575 list_del(&e->list); 576 radix_tree_delete(&im->ino_root, ino); 577 im->ino_num--; 578 spin_unlock(&im->ino_lock); 579 kmem_cache_free(ino_entry_slab, e); 580 return; 581 } 582 spin_unlock(&im->ino_lock); 583 } 584 585 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 586 { 587 /* add new dirty ino entry into list */ 588 __add_ino_entry(sbi, ino, 0, type); 589 } 590 591 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 592 { 593 /* remove dirty ino entry from list */ 594 __remove_ino_entry(sbi, ino, type); 595 } 596 597 /* mode should be APPEND_INO, UPDATE_INO or TRANS_DIR_INO */ 598 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode) 599 { 600 struct inode_management *im = &sbi->im[mode]; 601 struct ino_entry *e; 602 603 spin_lock(&im->ino_lock); 604 e = radix_tree_lookup(&im->ino_root, ino); 605 spin_unlock(&im->ino_lock); 606 return e ? true : false; 607 } 608 609 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all) 610 { 611 struct ino_entry *e, *tmp; 612 int i; 613 614 for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) { 615 struct inode_management *im = &sbi->im[i]; 616 617 spin_lock(&im->ino_lock); 618 list_for_each_entry_safe(e, tmp, &im->ino_list, list) { 619 list_del(&e->list); 620 radix_tree_delete(&im->ino_root, e->ino); 621 kmem_cache_free(ino_entry_slab, e); 622 im->ino_num--; 623 } 624 spin_unlock(&im->ino_lock); 625 } 626 } 627 628 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 629 unsigned int devidx, int type) 630 { 631 __add_ino_entry(sbi, ino, devidx, type); 632 } 633 634 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 635 unsigned int devidx, int type) 636 { 637 struct inode_management *im = &sbi->im[type]; 638 struct ino_entry *e; 639 bool is_dirty = false; 640 641 spin_lock(&im->ino_lock); 642 e = radix_tree_lookup(&im->ino_root, ino); 643 if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device)) 644 is_dirty = true; 645 spin_unlock(&im->ino_lock); 646 return is_dirty; 647 } 648 649 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi) 650 { 651 struct inode_management *im = &sbi->im[ORPHAN_INO]; 652 int err = 0; 653 654 spin_lock(&im->ino_lock); 655 656 if (time_to_inject(sbi, FAULT_ORPHAN)) { 657 spin_unlock(&im->ino_lock); 658 return -ENOSPC; 659 } 660 661 if (unlikely(im->ino_num >= sbi->max_orphans)) 662 err = -ENOSPC; 663 else 664 im->ino_num++; 665 spin_unlock(&im->ino_lock); 666 667 return err; 668 } 669 670 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi) 671 { 672 struct inode_management *im = &sbi->im[ORPHAN_INO]; 673 674 spin_lock(&im->ino_lock); 675 f2fs_bug_on(sbi, im->ino_num == 0); 676 im->ino_num--; 677 spin_unlock(&im->ino_lock); 678 } 679 680 void f2fs_add_orphan_inode(struct inode *inode) 681 { 682 /* add new orphan ino entry into list */ 683 __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO); 684 f2fs_update_inode_page(inode); 685 } 686 687 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 688 { 689 /* remove orphan entry from orphan list */ 690 __remove_ino_entry(sbi, ino, ORPHAN_INO); 691 } 692 693 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 694 { 695 struct inode *inode; 696 struct node_info ni; 697 int err; 698 699 inode = f2fs_iget_retry(sbi->sb, ino); 700 if (IS_ERR(inode)) { 701 /* 702 * there should be a bug that we can't find the entry 703 * to orphan inode. 704 */ 705 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT); 706 return PTR_ERR(inode); 707 } 708 709 err = f2fs_dquot_initialize(inode); 710 if (err) { 711 iput(inode); 712 goto err_out; 713 } 714 715 clear_nlink(inode); 716 717 /* truncate all the data during iput */ 718 iput(inode); 719 720 err = f2fs_get_node_info(sbi, ino, &ni, false); 721 if (err) 722 goto err_out; 723 724 /* ENOMEM was fully retried in f2fs_evict_inode. */ 725 if (ni.blk_addr != NULL_ADDR) { 726 err = -EIO; 727 goto err_out; 728 } 729 return 0; 730 731 err_out: 732 set_sbi_flag(sbi, SBI_NEED_FSCK); 733 f2fs_warn(sbi, "%s: orphan failed (ino=%x), run fsck to fix.", 734 __func__, ino); 735 return err; 736 } 737 738 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi) 739 { 740 block_t start_blk, orphan_blocks, i, j; 741 int err = 0; 742 743 if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG)) 744 return 0; 745 746 if (f2fs_hw_is_readonly(sbi)) { 747 f2fs_info(sbi, "write access unavailable, skipping orphan cleanup"); 748 return 0; 749 } 750 751 if (is_sbi_flag_set(sbi, SBI_IS_WRITABLE)) 752 f2fs_info(sbi, "orphan cleanup on readonly fs"); 753 754 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi); 755 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi); 756 757 f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true); 758 759 for (i = 0; i < orphan_blocks; i++) { 760 struct page *page; 761 struct f2fs_orphan_block *orphan_blk; 762 763 page = f2fs_get_meta_page(sbi, start_blk + i); 764 if (IS_ERR(page)) { 765 err = PTR_ERR(page); 766 goto out; 767 } 768 769 orphan_blk = (struct f2fs_orphan_block *)page_address(page); 770 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) { 771 nid_t ino = le32_to_cpu(orphan_blk->ino[j]); 772 773 err = recover_orphan_inode(sbi, ino); 774 if (err) { 775 f2fs_put_page(page, 1); 776 goto out; 777 } 778 } 779 f2fs_put_page(page, 1); 780 } 781 /* clear Orphan Flag */ 782 clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG); 783 out: 784 set_sbi_flag(sbi, SBI_IS_RECOVERED); 785 786 return err; 787 } 788 789 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk) 790 { 791 struct list_head *head; 792 struct f2fs_orphan_block *orphan_blk = NULL; 793 unsigned int nentries = 0; 794 unsigned short index = 1; 795 unsigned short orphan_blocks; 796 struct page *page = NULL; 797 struct ino_entry *orphan = NULL; 798 struct inode_management *im = &sbi->im[ORPHAN_INO]; 799 800 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num); 801 802 /* 803 * we don't need to do spin_lock(&im->ino_lock) here, since all the 804 * orphan inode operations are covered under f2fs_lock_op(). 805 * And, spin_lock should be avoided due to page operations below. 806 */ 807 head = &im->ino_list; 808 809 /* loop for each orphan inode entry and write them in journal block */ 810 list_for_each_entry(orphan, head, list) { 811 if (!page) { 812 page = f2fs_grab_meta_page(sbi, start_blk++); 813 orphan_blk = 814 (struct f2fs_orphan_block *)page_address(page); 815 memset(orphan_blk, 0, sizeof(*orphan_blk)); 816 } 817 818 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino); 819 820 if (nentries == F2FS_ORPHANS_PER_BLOCK) { 821 /* 822 * an orphan block is full of 1020 entries, 823 * then we need to flush current orphan blocks 824 * and bring another one in memory 825 */ 826 orphan_blk->blk_addr = cpu_to_le16(index); 827 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 828 orphan_blk->entry_count = cpu_to_le32(nentries); 829 set_page_dirty(page); 830 f2fs_put_page(page, 1); 831 index++; 832 nentries = 0; 833 page = NULL; 834 } 835 } 836 837 if (page) { 838 orphan_blk->blk_addr = cpu_to_le16(index); 839 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 840 orphan_blk->entry_count = cpu_to_le32(nentries); 841 set_page_dirty(page); 842 f2fs_put_page(page, 1); 843 } 844 } 845 846 static __u32 f2fs_checkpoint_chksum(struct f2fs_sb_info *sbi, 847 struct f2fs_checkpoint *ckpt) 848 { 849 unsigned int chksum_ofs = le32_to_cpu(ckpt->checksum_offset); 850 __u32 chksum; 851 852 chksum = f2fs_crc32(sbi, ckpt, chksum_ofs); 853 if (chksum_ofs < CP_CHKSUM_OFFSET) { 854 chksum_ofs += sizeof(chksum); 855 chksum = f2fs_chksum(sbi, chksum, (__u8 *)ckpt + chksum_ofs, 856 F2FS_BLKSIZE - chksum_ofs); 857 } 858 return chksum; 859 } 860 861 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr, 862 struct f2fs_checkpoint **cp_block, struct page **cp_page, 863 unsigned long long *version) 864 { 865 size_t crc_offset = 0; 866 __u32 crc; 867 868 *cp_page = f2fs_get_meta_page(sbi, cp_addr); 869 if (IS_ERR(*cp_page)) 870 return PTR_ERR(*cp_page); 871 872 *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page); 873 874 crc_offset = le32_to_cpu((*cp_block)->checksum_offset); 875 if (crc_offset < CP_MIN_CHKSUM_OFFSET || 876 crc_offset > CP_CHKSUM_OFFSET) { 877 f2fs_put_page(*cp_page, 1); 878 f2fs_warn(sbi, "invalid crc_offset: %zu", crc_offset); 879 return -EINVAL; 880 } 881 882 crc = f2fs_checkpoint_chksum(sbi, *cp_block); 883 if (crc != cur_cp_crc(*cp_block)) { 884 f2fs_put_page(*cp_page, 1); 885 f2fs_warn(sbi, "invalid crc value"); 886 return -EINVAL; 887 } 888 889 *version = cur_cp_version(*cp_block); 890 return 0; 891 } 892 893 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi, 894 block_t cp_addr, unsigned long long *version) 895 { 896 struct page *cp_page_1 = NULL, *cp_page_2 = NULL; 897 struct f2fs_checkpoint *cp_block = NULL; 898 unsigned long long cur_version = 0, pre_version = 0; 899 unsigned int cp_blocks; 900 int err; 901 902 err = get_checkpoint_version(sbi, cp_addr, &cp_block, 903 &cp_page_1, version); 904 if (err) 905 return NULL; 906 907 cp_blocks = le32_to_cpu(cp_block->cp_pack_total_block_count); 908 909 if (cp_blocks > BLKS_PER_SEG(sbi) || cp_blocks <= F2FS_CP_PACKS) { 910 f2fs_warn(sbi, "invalid cp_pack_total_block_count:%u", 911 le32_to_cpu(cp_block->cp_pack_total_block_count)); 912 goto invalid_cp; 913 } 914 pre_version = *version; 915 916 cp_addr += cp_blocks - 1; 917 err = get_checkpoint_version(sbi, cp_addr, &cp_block, 918 &cp_page_2, version); 919 if (err) 920 goto invalid_cp; 921 cur_version = *version; 922 923 if (cur_version == pre_version) { 924 *version = cur_version; 925 f2fs_put_page(cp_page_2, 1); 926 return cp_page_1; 927 } 928 f2fs_put_page(cp_page_2, 1); 929 invalid_cp: 930 f2fs_put_page(cp_page_1, 1); 931 return NULL; 932 } 933 934 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi) 935 { 936 struct f2fs_checkpoint *cp_block; 937 struct f2fs_super_block *fsb = sbi->raw_super; 938 struct page *cp1, *cp2, *cur_page; 939 unsigned long blk_size = sbi->blocksize; 940 unsigned long long cp1_version = 0, cp2_version = 0; 941 unsigned long long cp_start_blk_no; 942 unsigned int cp_blks = 1 + __cp_payload(sbi); 943 block_t cp_blk_no; 944 int i; 945 int err; 946 947 sbi->ckpt = f2fs_kvzalloc(sbi, array_size(blk_size, cp_blks), 948 GFP_KERNEL); 949 if (!sbi->ckpt) 950 return -ENOMEM; 951 /* 952 * Finding out valid cp block involves read both 953 * sets( cp pack 1 and cp pack 2) 954 */ 955 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr); 956 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); 957 958 /* The second checkpoint pack should start at the next segment */ 959 cp_start_blk_no += ((unsigned long long)1) << 960 le32_to_cpu(fsb->log_blocks_per_seg); 961 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); 962 963 if (cp1 && cp2) { 964 if (ver_after(cp2_version, cp1_version)) 965 cur_page = cp2; 966 else 967 cur_page = cp1; 968 } else if (cp1) { 969 cur_page = cp1; 970 } else if (cp2) { 971 cur_page = cp2; 972 } else { 973 err = -EFSCORRUPTED; 974 goto fail_no_cp; 975 } 976 977 cp_block = (struct f2fs_checkpoint *)page_address(cur_page); 978 memcpy(sbi->ckpt, cp_block, blk_size); 979 980 if (cur_page == cp1) 981 sbi->cur_cp_pack = 1; 982 else 983 sbi->cur_cp_pack = 2; 984 985 /* Sanity checking of checkpoint */ 986 if (f2fs_sanity_check_ckpt(sbi)) { 987 err = -EFSCORRUPTED; 988 goto free_fail_no_cp; 989 } 990 991 if (cp_blks <= 1) 992 goto done; 993 994 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr); 995 if (cur_page == cp2) 996 cp_blk_no += BIT(le32_to_cpu(fsb->log_blocks_per_seg)); 997 998 for (i = 1; i < cp_blks; i++) { 999 void *sit_bitmap_ptr; 1000 unsigned char *ckpt = (unsigned char *)sbi->ckpt; 1001 1002 cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i); 1003 if (IS_ERR(cur_page)) { 1004 err = PTR_ERR(cur_page); 1005 goto free_fail_no_cp; 1006 } 1007 sit_bitmap_ptr = page_address(cur_page); 1008 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size); 1009 f2fs_put_page(cur_page, 1); 1010 } 1011 done: 1012 f2fs_put_page(cp1, 1); 1013 f2fs_put_page(cp2, 1); 1014 return 0; 1015 1016 free_fail_no_cp: 1017 f2fs_put_page(cp1, 1); 1018 f2fs_put_page(cp2, 1); 1019 fail_no_cp: 1020 kvfree(sbi->ckpt); 1021 return err; 1022 } 1023 1024 static void __add_dirty_inode(struct inode *inode, enum inode_type type) 1025 { 1026 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1027 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 1028 1029 if (is_inode_flag_set(inode, flag)) 1030 return; 1031 1032 set_inode_flag(inode, flag); 1033 list_add_tail(&F2FS_I(inode)->dirty_list, &sbi->inode_list[type]); 1034 stat_inc_dirty_inode(sbi, type); 1035 } 1036 1037 static void __remove_dirty_inode(struct inode *inode, enum inode_type type) 1038 { 1039 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 1040 1041 if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag)) 1042 return; 1043 1044 list_del_init(&F2FS_I(inode)->dirty_list); 1045 clear_inode_flag(inode, flag); 1046 stat_dec_dirty_inode(F2FS_I_SB(inode), type); 1047 } 1048 1049 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio) 1050 { 1051 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1052 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 1053 1054 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1055 !S_ISLNK(inode->i_mode)) 1056 return; 1057 1058 spin_lock(&sbi->inode_lock[type]); 1059 if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH)) 1060 __add_dirty_inode(inode, type); 1061 inode_inc_dirty_pages(inode); 1062 spin_unlock(&sbi->inode_lock[type]); 1063 1064 set_page_private_reference(&folio->page); 1065 } 1066 1067 void f2fs_remove_dirty_inode(struct inode *inode) 1068 { 1069 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1070 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 1071 1072 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1073 !S_ISLNK(inode->i_mode)) 1074 return; 1075 1076 if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH)) 1077 return; 1078 1079 spin_lock(&sbi->inode_lock[type]); 1080 __remove_dirty_inode(inode, type); 1081 spin_unlock(&sbi->inode_lock[type]); 1082 } 1083 1084 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type, 1085 bool from_cp) 1086 { 1087 struct list_head *head; 1088 struct inode *inode; 1089 struct f2fs_inode_info *fi; 1090 bool is_dir = (type == DIR_INODE); 1091 unsigned long ino = 0; 1092 1093 trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir, 1094 get_pages(sbi, is_dir ? 1095 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 1096 retry: 1097 if (unlikely(f2fs_cp_error(sbi))) { 1098 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir, 1099 get_pages(sbi, is_dir ? 1100 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 1101 return -EIO; 1102 } 1103 1104 spin_lock(&sbi->inode_lock[type]); 1105 1106 head = &sbi->inode_list[type]; 1107 if (list_empty(head)) { 1108 spin_unlock(&sbi->inode_lock[type]); 1109 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir, 1110 get_pages(sbi, is_dir ? 1111 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 1112 return 0; 1113 } 1114 fi = list_first_entry(head, struct f2fs_inode_info, dirty_list); 1115 inode = igrab(&fi->vfs_inode); 1116 spin_unlock(&sbi->inode_lock[type]); 1117 if (inode) { 1118 unsigned long cur_ino = inode->i_ino; 1119 1120 if (from_cp) 1121 F2FS_I(inode)->cp_task = current; 1122 F2FS_I(inode)->wb_task = current; 1123 1124 filemap_fdatawrite(inode->i_mapping); 1125 1126 F2FS_I(inode)->wb_task = NULL; 1127 if (from_cp) 1128 F2FS_I(inode)->cp_task = NULL; 1129 1130 iput(inode); 1131 /* We need to give cpu to another writers. */ 1132 if (ino == cur_ino) 1133 cond_resched(); 1134 else 1135 ino = cur_ino; 1136 } else { 1137 /* 1138 * We should submit bio, since it exists several 1139 * writebacking dentry pages in the freeing inode. 1140 */ 1141 f2fs_submit_merged_write(sbi, DATA); 1142 cond_resched(); 1143 } 1144 goto retry; 1145 } 1146 1147 static int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi) 1148 { 1149 struct list_head *head = &sbi->inode_list[DIRTY_META]; 1150 struct inode *inode; 1151 struct f2fs_inode_info *fi; 1152 s64 total = get_pages(sbi, F2FS_DIRTY_IMETA); 1153 1154 while (total--) { 1155 if (unlikely(f2fs_cp_error(sbi))) 1156 return -EIO; 1157 1158 spin_lock(&sbi->inode_lock[DIRTY_META]); 1159 if (list_empty(head)) { 1160 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1161 return 0; 1162 } 1163 fi = list_first_entry(head, struct f2fs_inode_info, 1164 gdirty_list); 1165 inode = igrab(&fi->vfs_inode); 1166 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1167 if (inode) { 1168 sync_inode_metadata(inode, 0); 1169 1170 /* it's on eviction */ 1171 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) 1172 f2fs_update_inode_page(inode); 1173 iput(inode); 1174 } 1175 } 1176 return 0; 1177 } 1178 1179 static void __prepare_cp_block(struct f2fs_sb_info *sbi) 1180 { 1181 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1182 struct f2fs_nm_info *nm_i = NM_I(sbi); 1183 nid_t last_nid = nm_i->next_scan_nid; 1184 1185 next_free_nid(sbi, &last_nid); 1186 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi)); 1187 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi)); 1188 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi)); 1189 ckpt->next_free_nid = cpu_to_le32(last_nid); 1190 1191 /* update user_block_counts */ 1192 sbi->last_valid_block_count = sbi->total_valid_block_count; 1193 percpu_counter_set(&sbi->alloc_valid_block_count, 0); 1194 percpu_counter_set(&sbi->rf_node_block_count, 0); 1195 } 1196 1197 static bool __need_flush_quota(struct f2fs_sb_info *sbi) 1198 { 1199 bool ret = false; 1200 1201 if (!is_journalled_quota(sbi)) 1202 return false; 1203 1204 if (!f2fs_down_write_trylock(&sbi->quota_sem)) 1205 return true; 1206 if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) { 1207 ret = false; 1208 } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) { 1209 ret = false; 1210 } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_FLUSH)) { 1211 clear_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 1212 ret = true; 1213 } else if (get_pages(sbi, F2FS_DIRTY_QDATA)) { 1214 ret = true; 1215 } 1216 f2fs_up_write(&sbi->quota_sem); 1217 return ret; 1218 } 1219 1220 /* 1221 * Freeze all the FS-operations for checkpoint. 1222 */ 1223 static int block_operations(struct f2fs_sb_info *sbi) 1224 { 1225 struct writeback_control wbc = { 1226 .sync_mode = WB_SYNC_ALL, 1227 .nr_to_write = LONG_MAX, 1228 .for_reclaim = 0, 1229 }; 1230 int err = 0, cnt = 0; 1231 1232 /* 1233 * Let's flush inline_data in dirty node pages. 1234 */ 1235 f2fs_flush_inline_data(sbi); 1236 1237 retry_flush_quotas: 1238 f2fs_lock_all(sbi); 1239 if (__need_flush_quota(sbi)) { 1240 int locked; 1241 1242 if (++cnt > DEFAULT_RETRY_QUOTA_FLUSH_COUNT) { 1243 set_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH); 1244 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 1245 goto retry_flush_dents; 1246 } 1247 f2fs_unlock_all(sbi); 1248 1249 /* only failed during mount/umount/freeze/quotactl */ 1250 locked = down_read_trylock(&sbi->sb->s_umount); 1251 f2fs_quota_sync(sbi->sb, -1); 1252 if (locked) 1253 up_read(&sbi->sb->s_umount); 1254 cond_resched(); 1255 goto retry_flush_quotas; 1256 } 1257 1258 retry_flush_dents: 1259 /* write all the dirty dentry pages */ 1260 if (get_pages(sbi, F2FS_DIRTY_DENTS)) { 1261 f2fs_unlock_all(sbi); 1262 err = f2fs_sync_dirty_inodes(sbi, DIR_INODE, true); 1263 if (err) 1264 return err; 1265 cond_resched(); 1266 goto retry_flush_quotas; 1267 } 1268 1269 /* 1270 * POR: we should ensure that there are no dirty node pages 1271 * until finishing nat/sit flush. inode->i_blocks can be updated. 1272 */ 1273 f2fs_down_write(&sbi->node_change); 1274 1275 if (get_pages(sbi, F2FS_DIRTY_IMETA)) { 1276 f2fs_up_write(&sbi->node_change); 1277 f2fs_unlock_all(sbi); 1278 err = f2fs_sync_inode_meta(sbi); 1279 if (err) 1280 return err; 1281 cond_resched(); 1282 goto retry_flush_quotas; 1283 } 1284 1285 retry_flush_nodes: 1286 f2fs_down_write(&sbi->node_write); 1287 1288 if (get_pages(sbi, F2FS_DIRTY_NODES)) { 1289 f2fs_up_write(&sbi->node_write); 1290 atomic_inc(&sbi->wb_sync_req[NODE]); 1291 err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO); 1292 atomic_dec(&sbi->wb_sync_req[NODE]); 1293 if (err) { 1294 f2fs_up_write(&sbi->node_change); 1295 f2fs_unlock_all(sbi); 1296 return err; 1297 } 1298 cond_resched(); 1299 goto retry_flush_nodes; 1300 } 1301 1302 /* 1303 * sbi->node_change is used only for AIO write_begin path which produces 1304 * dirty node blocks and some checkpoint values by block allocation. 1305 */ 1306 __prepare_cp_block(sbi); 1307 f2fs_up_write(&sbi->node_change); 1308 return err; 1309 } 1310 1311 static void unblock_operations(struct f2fs_sb_info *sbi) 1312 { 1313 f2fs_up_write(&sbi->node_write); 1314 f2fs_unlock_all(sbi); 1315 } 1316 1317 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type) 1318 { 1319 DEFINE_WAIT(wait); 1320 1321 for (;;) { 1322 if (!get_pages(sbi, type)) 1323 break; 1324 1325 if (unlikely(f2fs_cp_error(sbi) && 1326 !is_sbi_flag_set(sbi, SBI_IS_CLOSE))) 1327 break; 1328 1329 if (type == F2FS_DIRTY_META) 1330 f2fs_sync_meta_pages(sbi, META, LONG_MAX, 1331 FS_CP_META_IO); 1332 else if (type == F2FS_WB_CP_DATA) 1333 f2fs_submit_merged_write(sbi, DATA); 1334 1335 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE); 1336 io_schedule_timeout(DEFAULT_IO_TIMEOUT); 1337 } 1338 finish_wait(&sbi->cp_wait, &wait); 1339 } 1340 1341 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1342 { 1343 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num; 1344 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1345 unsigned long flags; 1346 1347 if (cpc->reason & CP_UMOUNT) { 1348 if (le32_to_cpu(ckpt->cp_pack_total_block_count) + 1349 NM_I(sbi)->nat_bits_blocks > BLKS_PER_SEG(sbi)) { 1350 clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG); 1351 f2fs_notice(sbi, "Disable nat_bits due to no space"); 1352 } else if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG) && 1353 f2fs_nat_bitmap_enabled(sbi)) { 1354 f2fs_enable_nat_bits(sbi); 1355 set_ckpt_flags(sbi, CP_NAT_BITS_FLAG); 1356 f2fs_notice(sbi, "Rebuild and enable nat_bits"); 1357 } 1358 } 1359 1360 spin_lock_irqsave(&sbi->cp_lock, flags); 1361 1362 if (cpc->reason & CP_TRIMMED) 1363 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG); 1364 else 1365 __clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG); 1366 1367 if (cpc->reason & CP_UMOUNT) 1368 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1369 else 1370 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1371 1372 if (cpc->reason & CP_FASTBOOT) 1373 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1374 else 1375 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1376 1377 if (orphan_num) 1378 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1379 else 1380 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1381 1382 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1383 __set_ckpt_flags(ckpt, CP_FSCK_FLAG); 1384 1385 if (is_sbi_flag_set(sbi, SBI_IS_RESIZEFS)) 1386 __set_ckpt_flags(ckpt, CP_RESIZEFS_FLAG); 1387 else 1388 __clear_ckpt_flags(ckpt, CP_RESIZEFS_FLAG); 1389 1390 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED)) 1391 __set_ckpt_flags(ckpt, CP_DISABLED_FLAG); 1392 else 1393 __clear_ckpt_flags(ckpt, CP_DISABLED_FLAG); 1394 1395 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK)) 1396 __set_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG); 1397 else 1398 __clear_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG); 1399 1400 if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) 1401 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); 1402 else 1403 __clear_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); 1404 1405 if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) 1406 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); 1407 1408 /* set this flag to activate crc|cp_ver for recovery */ 1409 __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG); 1410 __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG); 1411 1412 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1413 } 1414 1415 static void commit_checkpoint(struct f2fs_sb_info *sbi, 1416 void *src, block_t blk_addr) 1417 { 1418 struct writeback_control wbc = { 1419 .for_reclaim = 0, 1420 }; 1421 1422 /* 1423 * filemap_get_folios_tag and lock_page again will take 1424 * some extra time. Therefore, f2fs_update_meta_pages and 1425 * f2fs_sync_meta_pages are combined in this function. 1426 */ 1427 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 1428 int err; 1429 1430 f2fs_wait_on_page_writeback(page, META, true, true); 1431 1432 memcpy(page_address(page), src, PAGE_SIZE); 1433 1434 set_page_dirty(page); 1435 if (unlikely(!clear_page_dirty_for_io(page))) 1436 f2fs_bug_on(sbi, 1); 1437 1438 /* writeout cp pack 2 page */ 1439 err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO); 1440 if (unlikely(err && f2fs_cp_error(sbi))) { 1441 f2fs_put_page(page, 1); 1442 return; 1443 } 1444 1445 f2fs_bug_on(sbi, err); 1446 f2fs_put_page(page, 0); 1447 1448 /* submit checkpoint (with barrier if NOBARRIER is not set) */ 1449 f2fs_submit_merged_write(sbi, META_FLUSH); 1450 } 1451 1452 static inline u64 get_sectors_written(struct block_device *bdev) 1453 { 1454 return (u64)part_stat_read(bdev, sectors[STAT_WRITE]); 1455 } 1456 1457 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi) 1458 { 1459 if (f2fs_is_multi_device(sbi)) { 1460 u64 sectors = 0; 1461 int i; 1462 1463 for (i = 0; i < sbi->s_ndevs; i++) 1464 sectors += get_sectors_written(FDEV(i).bdev); 1465 1466 return sectors; 1467 } 1468 1469 return get_sectors_written(sbi->sb->s_bdev); 1470 } 1471 1472 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1473 { 1474 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1475 struct f2fs_nm_info *nm_i = NM_I(sbi); 1476 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags; 1477 block_t start_blk; 1478 unsigned int data_sum_blocks, orphan_blocks; 1479 __u32 crc32 = 0; 1480 int i; 1481 int cp_payload_blks = __cp_payload(sbi); 1482 struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 1483 u64 kbytes_written; 1484 int err; 1485 1486 /* Flush all the NAT/SIT pages */ 1487 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO); 1488 1489 /* start to update checkpoint, cp ver is already updated previously */ 1490 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true)); 1491 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi)); 1492 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 1493 struct curseg_info *curseg = CURSEG_I(sbi, i + CURSEG_HOT_NODE); 1494 1495 ckpt->cur_node_segno[i] = cpu_to_le32(curseg->segno); 1496 ckpt->cur_node_blkoff[i] = cpu_to_le16(curseg->next_blkoff); 1497 ckpt->alloc_type[i + CURSEG_HOT_NODE] = curseg->alloc_type; 1498 } 1499 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 1500 struct curseg_info *curseg = CURSEG_I(sbi, i + CURSEG_HOT_DATA); 1501 1502 ckpt->cur_data_segno[i] = cpu_to_le32(curseg->segno); 1503 ckpt->cur_data_blkoff[i] = cpu_to_le16(curseg->next_blkoff); 1504 ckpt->alloc_type[i + CURSEG_HOT_DATA] = curseg->alloc_type; 1505 } 1506 1507 /* 2 cp + n data seg summary + orphan inode blocks */ 1508 data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false); 1509 spin_lock_irqsave(&sbi->cp_lock, flags); 1510 if (data_sum_blocks < NR_CURSEG_DATA_TYPE) 1511 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1512 else 1513 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1514 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1515 1516 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num); 1517 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks + 1518 orphan_blocks); 1519 1520 if (__remain_node_summaries(cpc->reason)) 1521 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + 1522 cp_payload_blks + data_sum_blocks + 1523 orphan_blocks + NR_CURSEG_NODE_TYPE); 1524 else 1525 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + 1526 cp_payload_blks + data_sum_blocks + 1527 orphan_blocks); 1528 1529 /* update ckpt flag for checkpoint */ 1530 update_ckpt_flags(sbi, cpc); 1531 1532 /* update SIT/NAT bitmap */ 1533 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP)); 1534 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP)); 1535 1536 crc32 = f2fs_checkpoint_chksum(sbi, ckpt); 1537 *((__le32 *)((unsigned char *)ckpt + 1538 le32_to_cpu(ckpt->checksum_offset))) 1539 = cpu_to_le32(crc32); 1540 1541 start_blk = __start_cp_next_addr(sbi); 1542 1543 /* write nat bits */ 1544 if ((cpc->reason & CP_UMOUNT) && 1545 is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) { 1546 __u64 cp_ver = cur_cp_version(ckpt); 1547 block_t blk; 1548 1549 cp_ver |= ((__u64)crc32 << 32); 1550 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver); 1551 1552 blk = start_blk + BLKS_PER_SEG(sbi) - nm_i->nat_bits_blocks; 1553 for (i = 0; i < nm_i->nat_bits_blocks; i++) 1554 f2fs_update_meta_page(sbi, nm_i->nat_bits + 1555 F2FS_BLK_TO_BYTES(i), blk + i); 1556 } 1557 1558 /* write out checkpoint buffer at block 0 */ 1559 f2fs_update_meta_page(sbi, ckpt, start_blk++); 1560 1561 for (i = 1; i < 1 + cp_payload_blks; i++) 1562 f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE, 1563 start_blk++); 1564 1565 if (orphan_num) { 1566 write_orphan_inodes(sbi, start_blk); 1567 start_blk += orphan_blocks; 1568 } 1569 1570 f2fs_write_data_summaries(sbi, start_blk); 1571 start_blk += data_sum_blocks; 1572 1573 /* Record write statistics in the hot node summary */ 1574 kbytes_written = sbi->kbytes_written; 1575 kbytes_written += (f2fs_get_sectors_written(sbi) - 1576 sbi->sectors_written_start) >> 1; 1577 seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written); 1578 1579 if (__remain_node_summaries(cpc->reason)) { 1580 f2fs_write_node_summaries(sbi, start_blk); 1581 start_blk += NR_CURSEG_NODE_TYPE; 1582 } 1583 1584 /* Here, we have one bio having CP pack except cp pack 2 page */ 1585 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO); 1586 /* Wait for all dirty meta pages to be submitted for IO */ 1587 f2fs_wait_on_all_pages(sbi, F2FS_DIRTY_META); 1588 1589 /* wait for previous submitted meta pages writeback */ 1590 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA); 1591 1592 /* flush all device cache */ 1593 err = f2fs_flush_device_cache(sbi); 1594 if (err) 1595 return err; 1596 1597 /* barrier and flush checkpoint cp pack 2 page if it can */ 1598 commit_checkpoint(sbi, ckpt, start_blk); 1599 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA); 1600 1601 /* 1602 * invalidate intermediate page cache borrowed from meta inode which are 1603 * used for migration of encrypted, verity or compressed inode's blocks. 1604 */ 1605 if (f2fs_sb_has_encrypt(sbi) || f2fs_sb_has_verity(sbi) || 1606 f2fs_sb_has_compression(sbi)) 1607 f2fs_bug_on(sbi, 1608 invalidate_inode_pages2_range(META_MAPPING(sbi), 1609 MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1)); 1610 1611 f2fs_release_ino_entry(sbi, false); 1612 1613 f2fs_reset_fsync_node_info(sbi); 1614 1615 clear_sbi_flag(sbi, SBI_IS_DIRTY); 1616 clear_sbi_flag(sbi, SBI_NEED_CP); 1617 clear_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH); 1618 1619 spin_lock(&sbi->stat_lock); 1620 sbi->unusable_block_count = 0; 1621 spin_unlock(&sbi->stat_lock); 1622 1623 __set_cp_next_pack(sbi); 1624 1625 /* 1626 * redirty superblock if metadata like node page or inode cache is 1627 * updated during writing checkpoint. 1628 */ 1629 if (get_pages(sbi, F2FS_DIRTY_NODES) || 1630 get_pages(sbi, F2FS_DIRTY_IMETA)) 1631 set_sbi_flag(sbi, SBI_IS_DIRTY); 1632 1633 f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS)); 1634 1635 return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0; 1636 } 1637 1638 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1639 { 1640 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1641 unsigned long long ckpt_ver; 1642 int err = 0; 1643 1644 if (f2fs_readonly(sbi->sb) || f2fs_hw_is_readonly(sbi)) 1645 return -EROFS; 1646 1647 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 1648 if (cpc->reason != CP_PAUSE) 1649 return 0; 1650 f2fs_warn(sbi, "Start checkpoint disabled!"); 1651 } 1652 if (cpc->reason != CP_RESIZE) 1653 f2fs_down_write(&sbi->cp_global_sem); 1654 1655 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) && 1656 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) || 1657 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks))) 1658 goto out; 1659 if (unlikely(f2fs_cp_error(sbi))) { 1660 err = -EIO; 1661 goto out; 1662 } 1663 1664 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops"); 1665 1666 err = block_operations(sbi); 1667 if (err) 1668 goto out; 1669 1670 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops"); 1671 1672 f2fs_flush_merged_writes(sbi); 1673 1674 /* this is the case of multiple fstrims without any changes */ 1675 if (cpc->reason & CP_DISCARD) { 1676 if (!f2fs_exist_trim_candidates(sbi, cpc)) { 1677 unblock_operations(sbi); 1678 goto out; 1679 } 1680 1681 if (NM_I(sbi)->nat_cnt[DIRTY_NAT] == 0 && 1682 SIT_I(sbi)->dirty_sentries == 0 && 1683 prefree_segments(sbi) == 0) { 1684 f2fs_flush_sit_entries(sbi, cpc); 1685 f2fs_clear_prefree_segments(sbi, cpc); 1686 unblock_operations(sbi); 1687 goto out; 1688 } 1689 } 1690 1691 /* 1692 * update checkpoint pack index 1693 * Increase the version number so that 1694 * SIT entries and seg summaries are written at correct place 1695 */ 1696 ckpt_ver = cur_cp_version(ckpt); 1697 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver); 1698 1699 /* write cached NAT/SIT entries to NAT/SIT area */ 1700 err = f2fs_flush_nat_entries(sbi, cpc); 1701 if (err) { 1702 f2fs_err(sbi, "f2fs_flush_nat_entries failed err:%d, stop checkpoint", err); 1703 f2fs_bug_on(sbi, !f2fs_cp_error(sbi)); 1704 goto stop; 1705 } 1706 1707 f2fs_flush_sit_entries(sbi, cpc); 1708 1709 /* save inmem log status */ 1710 f2fs_save_inmem_curseg(sbi); 1711 1712 err = do_checkpoint(sbi, cpc); 1713 if (err) { 1714 f2fs_err(sbi, "do_checkpoint failed err:%d, stop checkpoint", err); 1715 f2fs_bug_on(sbi, !f2fs_cp_error(sbi)); 1716 f2fs_release_discard_addrs(sbi); 1717 } else { 1718 f2fs_clear_prefree_segments(sbi, cpc); 1719 } 1720 1721 f2fs_restore_inmem_curseg(sbi); 1722 f2fs_reinit_atgc_curseg(sbi); 1723 stat_inc_cp_count(sbi); 1724 stop: 1725 unblock_operations(sbi); 1726 1727 if (cpc->reason & CP_RECOVERY) 1728 f2fs_notice(sbi, "checkpoint: version = %llx", ckpt_ver); 1729 1730 /* update CP_TIME to trigger checkpoint periodically */ 1731 f2fs_update_time(sbi, CP_TIME); 1732 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint"); 1733 out: 1734 if (cpc->reason != CP_RESIZE) 1735 f2fs_up_write(&sbi->cp_global_sem); 1736 return err; 1737 } 1738 1739 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi) 1740 { 1741 int i; 1742 1743 for (i = 0; i < MAX_INO_ENTRY; i++) { 1744 struct inode_management *im = &sbi->im[i]; 1745 1746 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC); 1747 spin_lock_init(&im->ino_lock); 1748 INIT_LIST_HEAD(&im->ino_list); 1749 im->ino_num = 0; 1750 } 1751 1752 sbi->max_orphans = (BLKS_PER_SEG(sbi) - F2FS_CP_PACKS - 1753 NR_CURSEG_PERSIST_TYPE - __cp_payload(sbi)) * 1754 F2FS_ORPHANS_PER_BLOCK; 1755 } 1756 1757 int __init f2fs_create_checkpoint_caches(void) 1758 { 1759 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry", 1760 sizeof(struct ino_entry)); 1761 if (!ino_entry_slab) 1762 return -ENOMEM; 1763 f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry", 1764 sizeof(struct inode_entry)); 1765 if (!f2fs_inode_entry_slab) { 1766 kmem_cache_destroy(ino_entry_slab); 1767 return -ENOMEM; 1768 } 1769 return 0; 1770 } 1771 1772 void f2fs_destroy_checkpoint_caches(void) 1773 { 1774 kmem_cache_destroy(ino_entry_slab); 1775 kmem_cache_destroy(f2fs_inode_entry_slab); 1776 } 1777 1778 static int __write_checkpoint_sync(struct f2fs_sb_info *sbi) 1779 { 1780 struct cp_control cpc = { .reason = CP_SYNC, }; 1781 int err; 1782 1783 f2fs_down_write(&sbi->gc_lock); 1784 err = f2fs_write_checkpoint(sbi, &cpc); 1785 f2fs_up_write(&sbi->gc_lock); 1786 1787 return err; 1788 } 1789 1790 static void __checkpoint_and_complete_reqs(struct f2fs_sb_info *sbi) 1791 { 1792 struct ckpt_req_control *cprc = &sbi->cprc_info; 1793 struct ckpt_req *req, *next; 1794 struct llist_node *dispatch_list; 1795 u64 sum_diff = 0, diff, count = 0; 1796 int ret; 1797 1798 dispatch_list = llist_del_all(&cprc->issue_list); 1799 if (!dispatch_list) 1800 return; 1801 dispatch_list = llist_reverse_order(dispatch_list); 1802 1803 ret = __write_checkpoint_sync(sbi); 1804 atomic_inc(&cprc->issued_ckpt); 1805 1806 llist_for_each_entry_safe(req, next, dispatch_list, llnode) { 1807 diff = (u64)ktime_ms_delta(ktime_get(), req->queue_time); 1808 req->ret = ret; 1809 complete(&req->wait); 1810 1811 sum_diff += diff; 1812 count++; 1813 } 1814 atomic_sub(count, &cprc->queued_ckpt); 1815 atomic_add(count, &cprc->total_ckpt); 1816 1817 spin_lock(&cprc->stat_lock); 1818 cprc->cur_time = (unsigned int)div64_u64(sum_diff, count); 1819 if (cprc->peak_time < cprc->cur_time) 1820 cprc->peak_time = cprc->cur_time; 1821 spin_unlock(&cprc->stat_lock); 1822 } 1823 1824 static int issue_checkpoint_thread(void *data) 1825 { 1826 struct f2fs_sb_info *sbi = data; 1827 struct ckpt_req_control *cprc = &sbi->cprc_info; 1828 wait_queue_head_t *q = &cprc->ckpt_wait_queue; 1829 repeat: 1830 if (kthread_should_stop()) 1831 return 0; 1832 1833 if (!llist_empty(&cprc->issue_list)) 1834 __checkpoint_and_complete_reqs(sbi); 1835 1836 wait_event_interruptible(*q, 1837 kthread_should_stop() || !llist_empty(&cprc->issue_list)); 1838 goto repeat; 1839 } 1840 1841 static void flush_remained_ckpt_reqs(struct f2fs_sb_info *sbi, 1842 struct ckpt_req *wait_req) 1843 { 1844 struct ckpt_req_control *cprc = &sbi->cprc_info; 1845 1846 if (!llist_empty(&cprc->issue_list)) { 1847 __checkpoint_and_complete_reqs(sbi); 1848 } else { 1849 /* already dispatched by issue_checkpoint_thread */ 1850 if (wait_req) 1851 wait_for_completion(&wait_req->wait); 1852 } 1853 } 1854 1855 static void init_ckpt_req(struct ckpt_req *req) 1856 { 1857 memset(req, 0, sizeof(struct ckpt_req)); 1858 1859 init_completion(&req->wait); 1860 req->queue_time = ktime_get(); 1861 } 1862 1863 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi) 1864 { 1865 struct ckpt_req_control *cprc = &sbi->cprc_info; 1866 struct ckpt_req req; 1867 struct cp_control cpc; 1868 1869 cpc.reason = __get_cp_reason(sbi); 1870 if (!test_opt(sbi, MERGE_CHECKPOINT) || cpc.reason != CP_SYNC) { 1871 int ret; 1872 1873 f2fs_down_write(&sbi->gc_lock); 1874 ret = f2fs_write_checkpoint(sbi, &cpc); 1875 f2fs_up_write(&sbi->gc_lock); 1876 1877 return ret; 1878 } 1879 1880 if (!cprc->f2fs_issue_ckpt) 1881 return __write_checkpoint_sync(sbi); 1882 1883 init_ckpt_req(&req); 1884 1885 llist_add(&req.llnode, &cprc->issue_list); 1886 atomic_inc(&cprc->queued_ckpt); 1887 1888 /* 1889 * update issue_list before we wake up issue_checkpoint thread, 1890 * this smp_mb() pairs with another barrier in ___wait_event(), 1891 * see more details in comments of waitqueue_active(). 1892 */ 1893 smp_mb(); 1894 1895 if (waitqueue_active(&cprc->ckpt_wait_queue)) 1896 wake_up(&cprc->ckpt_wait_queue); 1897 1898 if (cprc->f2fs_issue_ckpt) 1899 wait_for_completion(&req.wait); 1900 else 1901 flush_remained_ckpt_reqs(sbi, &req); 1902 1903 return req.ret; 1904 } 1905 1906 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi) 1907 { 1908 dev_t dev = sbi->sb->s_bdev->bd_dev; 1909 struct ckpt_req_control *cprc = &sbi->cprc_info; 1910 1911 if (cprc->f2fs_issue_ckpt) 1912 return 0; 1913 1914 cprc->f2fs_issue_ckpt = kthread_run(issue_checkpoint_thread, sbi, 1915 "f2fs_ckpt-%u:%u", MAJOR(dev), MINOR(dev)); 1916 if (IS_ERR(cprc->f2fs_issue_ckpt)) { 1917 int err = PTR_ERR(cprc->f2fs_issue_ckpt); 1918 1919 cprc->f2fs_issue_ckpt = NULL; 1920 return err; 1921 } 1922 1923 set_task_ioprio(cprc->f2fs_issue_ckpt, cprc->ckpt_thread_ioprio); 1924 1925 return 0; 1926 } 1927 1928 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi) 1929 { 1930 struct ckpt_req_control *cprc = &sbi->cprc_info; 1931 struct task_struct *ckpt_task; 1932 1933 if (!cprc->f2fs_issue_ckpt) 1934 return; 1935 1936 ckpt_task = cprc->f2fs_issue_ckpt; 1937 cprc->f2fs_issue_ckpt = NULL; 1938 kthread_stop(ckpt_task); 1939 1940 f2fs_flush_ckpt_thread(sbi); 1941 } 1942 1943 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi) 1944 { 1945 struct ckpt_req_control *cprc = &sbi->cprc_info; 1946 1947 flush_remained_ckpt_reqs(sbi, NULL); 1948 1949 /* Let's wait for the previous dispatched checkpoint. */ 1950 while (atomic_read(&cprc->queued_ckpt)) 1951 io_schedule_timeout(DEFAULT_IO_TIMEOUT); 1952 } 1953 1954 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi) 1955 { 1956 struct ckpt_req_control *cprc = &sbi->cprc_info; 1957 1958 atomic_set(&cprc->issued_ckpt, 0); 1959 atomic_set(&cprc->total_ckpt, 0); 1960 atomic_set(&cprc->queued_ckpt, 0); 1961 cprc->ckpt_thread_ioprio = DEFAULT_CHECKPOINT_IOPRIO; 1962 init_waitqueue_head(&cprc->ckpt_wait_queue); 1963 init_llist_head(&cprc->issue_list); 1964 spin_lock_init(&cprc->stat_lock); 1965 } 1966