1 /* 2 * fs/f2fs/checkpoint.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/bio.h> 13 #include <linux/mpage.h> 14 #include <linux/writeback.h> 15 #include <linux/blkdev.h> 16 #include <linux/f2fs_fs.h> 17 #include <linux/pagevec.h> 18 #include <linux/swap.h> 19 20 #include "f2fs.h" 21 #include "node.h" 22 #include "segment.h" 23 #include "trace.h" 24 #include <trace/events/f2fs.h> 25 26 static struct kmem_cache *ino_entry_slab; 27 struct kmem_cache *inode_entry_slab; 28 29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io) 30 { 31 set_ckpt_flags(sbi, CP_ERROR_FLAG); 32 if (!end_io) 33 f2fs_flush_merged_writes(sbi); 34 } 35 36 /* 37 * We guarantee no failure on the returned page. 38 */ 39 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 40 { 41 struct address_space *mapping = META_MAPPING(sbi); 42 struct page *page = NULL; 43 repeat: 44 page = f2fs_grab_cache_page(mapping, index, false); 45 if (!page) { 46 cond_resched(); 47 goto repeat; 48 } 49 f2fs_wait_on_page_writeback(page, META, true); 50 if (!PageUptodate(page)) 51 SetPageUptodate(page); 52 return page; 53 } 54 55 /* 56 * We guarantee no failure on the returned page. 57 */ 58 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index, 59 bool is_meta) 60 { 61 struct address_space *mapping = META_MAPPING(sbi); 62 struct page *page; 63 struct f2fs_io_info fio = { 64 .sbi = sbi, 65 .type = META, 66 .op = REQ_OP_READ, 67 .op_flags = REQ_META | REQ_PRIO, 68 .old_blkaddr = index, 69 .new_blkaddr = index, 70 .encrypted_page = NULL, 71 .is_meta = is_meta, 72 }; 73 74 if (unlikely(!is_meta)) 75 fio.op_flags &= ~REQ_META; 76 repeat: 77 page = f2fs_grab_cache_page(mapping, index, false); 78 if (!page) { 79 cond_resched(); 80 goto repeat; 81 } 82 if (PageUptodate(page)) 83 goto out; 84 85 fio.page = page; 86 87 if (f2fs_submit_page_bio(&fio)) { 88 f2fs_put_page(page, 1); 89 goto repeat; 90 } 91 92 lock_page(page); 93 if (unlikely(page->mapping != mapping)) { 94 f2fs_put_page(page, 1); 95 goto repeat; 96 } 97 98 /* 99 * if there is any IO error when accessing device, make our filesystem 100 * readonly and make sure do not write checkpoint with non-uptodate 101 * meta page. 102 */ 103 if (unlikely(!PageUptodate(page))) 104 f2fs_stop_checkpoint(sbi, false); 105 out: 106 return page; 107 } 108 109 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 110 { 111 return __get_meta_page(sbi, index, true); 112 } 113 114 /* for POR only */ 115 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index) 116 { 117 return __get_meta_page(sbi, index, false); 118 } 119 120 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type) 121 { 122 switch (type) { 123 case META_NAT: 124 break; 125 case META_SIT: 126 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi))) 127 return false; 128 break; 129 case META_SSA: 130 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) || 131 blkaddr < SM_I(sbi)->ssa_blkaddr)) 132 return false; 133 break; 134 case META_CP: 135 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr || 136 blkaddr < __start_cp_addr(sbi))) 137 return false; 138 break; 139 case META_POR: 140 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || 141 blkaddr < MAIN_BLKADDR(sbi))) 142 return false; 143 break; 144 default: 145 BUG(); 146 } 147 148 return true; 149 } 150 151 /* 152 * Readahead CP/NAT/SIT/SSA pages 153 */ 154 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 155 int type, bool sync) 156 { 157 struct page *page; 158 block_t blkno = start; 159 struct f2fs_io_info fio = { 160 .sbi = sbi, 161 .type = META, 162 .op = REQ_OP_READ, 163 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD, 164 .encrypted_page = NULL, 165 .in_list = false, 166 .is_meta = (type != META_POR), 167 }; 168 struct blk_plug plug; 169 170 if (unlikely(type == META_POR)) 171 fio.op_flags &= ~REQ_META; 172 173 blk_start_plug(&plug); 174 for (; nrpages-- > 0; blkno++) { 175 176 if (!is_valid_blkaddr(sbi, blkno, type)) 177 goto out; 178 179 switch (type) { 180 case META_NAT: 181 if (unlikely(blkno >= 182 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid))) 183 blkno = 0; 184 /* get nat block addr */ 185 fio.new_blkaddr = current_nat_addr(sbi, 186 blkno * NAT_ENTRY_PER_BLOCK); 187 break; 188 case META_SIT: 189 /* get sit block addr */ 190 fio.new_blkaddr = current_sit_addr(sbi, 191 blkno * SIT_ENTRY_PER_BLOCK); 192 break; 193 case META_SSA: 194 case META_CP: 195 case META_POR: 196 fio.new_blkaddr = blkno; 197 break; 198 default: 199 BUG(); 200 } 201 202 page = f2fs_grab_cache_page(META_MAPPING(sbi), 203 fio.new_blkaddr, false); 204 if (!page) 205 continue; 206 if (PageUptodate(page)) { 207 f2fs_put_page(page, 1); 208 continue; 209 } 210 211 fio.page = page; 212 f2fs_submit_page_bio(&fio); 213 f2fs_put_page(page, 0); 214 } 215 out: 216 blk_finish_plug(&plug); 217 return blkno - start; 218 } 219 220 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index) 221 { 222 struct page *page; 223 bool readahead = false; 224 225 page = find_get_page(META_MAPPING(sbi), index); 226 if (!page || !PageUptodate(page)) 227 readahead = true; 228 f2fs_put_page(page, 0); 229 230 if (readahead) 231 ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true); 232 } 233 234 static int __f2fs_write_meta_page(struct page *page, 235 struct writeback_control *wbc, 236 enum iostat_type io_type) 237 { 238 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 239 240 trace_f2fs_writepage(page, META); 241 242 if (unlikely(f2fs_cp_error(sbi))) { 243 dec_page_count(sbi, F2FS_DIRTY_META); 244 unlock_page(page); 245 return 0; 246 } 247 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 248 goto redirty_out; 249 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0)) 250 goto redirty_out; 251 252 write_meta_page(sbi, page, io_type); 253 dec_page_count(sbi, F2FS_DIRTY_META); 254 255 if (wbc->for_reclaim) 256 f2fs_submit_merged_write_cond(sbi, page->mapping->host, 257 0, page->index, META); 258 259 unlock_page(page); 260 261 if (unlikely(f2fs_cp_error(sbi))) 262 f2fs_submit_merged_write(sbi, META); 263 264 return 0; 265 266 redirty_out: 267 redirty_page_for_writepage(wbc, page); 268 return AOP_WRITEPAGE_ACTIVATE; 269 } 270 271 static int f2fs_write_meta_page(struct page *page, 272 struct writeback_control *wbc) 273 { 274 return __f2fs_write_meta_page(page, wbc, FS_META_IO); 275 } 276 277 static int f2fs_write_meta_pages(struct address_space *mapping, 278 struct writeback_control *wbc) 279 { 280 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 281 long diff, written; 282 283 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 284 goto skip_write; 285 286 /* collect a number of dirty meta pages and write together */ 287 if (wbc->for_kupdate || 288 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META)) 289 goto skip_write; 290 291 /* if locked failed, cp will flush dirty pages instead */ 292 if (!mutex_trylock(&sbi->cp_mutex)) 293 goto skip_write; 294 295 trace_f2fs_writepages(mapping->host, wbc, META); 296 diff = nr_pages_to_write(sbi, META, wbc); 297 written = sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO); 298 mutex_unlock(&sbi->cp_mutex); 299 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff); 300 return 0; 301 302 skip_write: 303 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META); 304 trace_f2fs_writepages(mapping->host, wbc, META); 305 return 0; 306 } 307 308 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 309 long nr_to_write, enum iostat_type io_type) 310 { 311 struct address_space *mapping = META_MAPPING(sbi); 312 pgoff_t index = 0, prev = ULONG_MAX; 313 struct pagevec pvec; 314 long nwritten = 0; 315 int nr_pages; 316 struct writeback_control wbc = { 317 .for_reclaim = 0, 318 }; 319 struct blk_plug plug; 320 321 pagevec_init(&pvec); 322 323 blk_start_plug(&plug); 324 325 while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 326 PAGECACHE_TAG_DIRTY))) { 327 int i; 328 329 for (i = 0; i < nr_pages; i++) { 330 struct page *page = pvec.pages[i]; 331 332 if (prev == ULONG_MAX) 333 prev = page->index - 1; 334 if (nr_to_write != LONG_MAX && page->index != prev + 1) { 335 pagevec_release(&pvec); 336 goto stop; 337 } 338 339 lock_page(page); 340 341 if (unlikely(page->mapping != mapping)) { 342 continue_unlock: 343 unlock_page(page); 344 continue; 345 } 346 if (!PageDirty(page)) { 347 /* someone wrote it for us */ 348 goto continue_unlock; 349 } 350 351 f2fs_wait_on_page_writeback(page, META, true); 352 353 BUG_ON(PageWriteback(page)); 354 if (!clear_page_dirty_for_io(page)) 355 goto continue_unlock; 356 357 if (__f2fs_write_meta_page(page, &wbc, io_type)) { 358 unlock_page(page); 359 break; 360 } 361 nwritten++; 362 prev = page->index; 363 if (unlikely(nwritten >= nr_to_write)) 364 break; 365 } 366 pagevec_release(&pvec); 367 cond_resched(); 368 } 369 stop: 370 if (nwritten) 371 f2fs_submit_merged_write(sbi, type); 372 373 blk_finish_plug(&plug); 374 375 return nwritten; 376 } 377 378 static int f2fs_set_meta_page_dirty(struct page *page) 379 { 380 trace_f2fs_set_page_dirty(page, META); 381 382 if (!PageUptodate(page)) 383 SetPageUptodate(page); 384 if (!PageDirty(page)) { 385 f2fs_set_page_dirty_nobuffers(page); 386 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META); 387 SetPagePrivate(page); 388 f2fs_trace_pid(page); 389 return 1; 390 } 391 return 0; 392 } 393 394 const struct address_space_operations f2fs_meta_aops = { 395 .writepage = f2fs_write_meta_page, 396 .writepages = f2fs_write_meta_pages, 397 .set_page_dirty = f2fs_set_meta_page_dirty, 398 .invalidatepage = f2fs_invalidate_page, 399 .releasepage = f2fs_release_page, 400 #ifdef CONFIG_MIGRATION 401 .migratepage = f2fs_migrate_page, 402 #endif 403 }; 404 405 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, 406 unsigned int devidx, int type) 407 { 408 struct inode_management *im = &sbi->im[type]; 409 struct ino_entry *e, *tmp; 410 411 tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS); 412 413 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL); 414 415 spin_lock(&im->ino_lock); 416 e = radix_tree_lookup(&im->ino_root, ino); 417 if (!e) { 418 e = tmp; 419 if (unlikely(radix_tree_insert(&im->ino_root, ino, e))) 420 f2fs_bug_on(sbi, 1); 421 422 memset(e, 0, sizeof(struct ino_entry)); 423 e->ino = ino; 424 425 list_add_tail(&e->list, &im->ino_list); 426 if (type != ORPHAN_INO) 427 im->ino_num++; 428 } 429 430 if (type == FLUSH_INO) 431 f2fs_set_bit(devidx, (char *)&e->dirty_device); 432 433 spin_unlock(&im->ino_lock); 434 radix_tree_preload_end(); 435 436 if (e != tmp) 437 kmem_cache_free(ino_entry_slab, tmp); 438 } 439 440 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 441 { 442 struct inode_management *im = &sbi->im[type]; 443 struct ino_entry *e; 444 445 spin_lock(&im->ino_lock); 446 e = radix_tree_lookup(&im->ino_root, ino); 447 if (e) { 448 list_del(&e->list); 449 radix_tree_delete(&im->ino_root, ino); 450 im->ino_num--; 451 spin_unlock(&im->ino_lock); 452 kmem_cache_free(ino_entry_slab, e); 453 return; 454 } 455 spin_unlock(&im->ino_lock); 456 } 457 458 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 459 { 460 /* add new dirty ino entry into list */ 461 __add_ino_entry(sbi, ino, 0, type); 462 } 463 464 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 465 { 466 /* remove dirty ino entry from list */ 467 __remove_ino_entry(sbi, ino, type); 468 } 469 470 /* mode should be APPEND_INO or UPDATE_INO */ 471 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode) 472 { 473 struct inode_management *im = &sbi->im[mode]; 474 struct ino_entry *e; 475 476 spin_lock(&im->ino_lock); 477 e = radix_tree_lookup(&im->ino_root, ino); 478 spin_unlock(&im->ino_lock); 479 return e ? true : false; 480 } 481 482 void release_ino_entry(struct f2fs_sb_info *sbi, bool all) 483 { 484 struct ino_entry *e, *tmp; 485 int i; 486 487 for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) { 488 struct inode_management *im = &sbi->im[i]; 489 490 spin_lock(&im->ino_lock); 491 list_for_each_entry_safe(e, tmp, &im->ino_list, list) { 492 list_del(&e->list); 493 radix_tree_delete(&im->ino_root, e->ino); 494 kmem_cache_free(ino_entry_slab, e); 495 im->ino_num--; 496 } 497 spin_unlock(&im->ino_lock); 498 } 499 } 500 501 void set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 502 unsigned int devidx, int type) 503 { 504 __add_ino_entry(sbi, ino, devidx, type); 505 } 506 507 bool is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 508 unsigned int devidx, int type) 509 { 510 struct inode_management *im = &sbi->im[type]; 511 struct ino_entry *e; 512 bool is_dirty = false; 513 514 spin_lock(&im->ino_lock); 515 e = radix_tree_lookup(&im->ino_root, ino); 516 if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device)) 517 is_dirty = true; 518 spin_unlock(&im->ino_lock); 519 return is_dirty; 520 } 521 522 int acquire_orphan_inode(struct f2fs_sb_info *sbi) 523 { 524 struct inode_management *im = &sbi->im[ORPHAN_INO]; 525 int err = 0; 526 527 spin_lock(&im->ino_lock); 528 529 #ifdef CONFIG_F2FS_FAULT_INJECTION 530 if (time_to_inject(sbi, FAULT_ORPHAN)) { 531 spin_unlock(&im->ino_lock); 532 f2fs_show_injection_info(FAULT_ORPHAN); 533 return -ENOSPC; 534 } 535 #endif 536 if (unlikely(im->ino_num >= sbi->max_orphans)) 537 err = -ENOSPC; 538 else 539 im->ino_num++; 540 spin_unlock(&im->ino_lock); 541 542 return err; 543 } 544 545 void release_orphan_inode(struct f2fs_sb_info *sbi) 546 { 547 struct inode_management *im = &sbi->im[ORPHAN_INO]; 548 549 spin_lock(&im->ino_lock); 550 f2fs_bug_on(sbi, im->ino_num == 0); 551 im->ino_num--; 552 spin_unlock(&im->ino_lock); 553 } 554 555 void add_orphan_inode(struct inode *inode) 556 { 557 /* add new orphan ino entry into list */ 558 __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO); 559 update_inode_page(inode); 560 } 561 562 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 563 { 564 /* remove orphan entry from orphan list */ 565 __remove_ino_entry(sbi, ino, ORPHAN_INO); 566 } 567 568 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 569 { 570 struct inode *inode; 571 struct node_info ni; 572 int err = acquire_orphan_inode(sbi); 573 574 if (err) 575 goto err_out; 576 577 __add_ino_entry(sbi, ino, 0, ORPHAN_INO); 578 579 inode = f2fs_iget_retry(sbi->sb, ino); 580 if (IS_ERR(inode)) { 581 /* 582 * there should be a bug that we can't find the entry 583 * to orphan inode. 584 */ 585 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT); 586 return PTR_ERR(inode); 587 } 588 589 err = dquot_initialize(inode); 590 if (err) 591 goto err_out; 592 593 dquot_initialize(inode); 594 clear_nlink(inode); 595 596 /* truncate all the data during iput */ 597 iput(inode); 598 599 get_node_info(sbi, ino, &ni); 600 601 /* ENOMEM was fully retried in f2fs_evict_inode. */ 602 if (ni.blk_addr != NULL_ADDR) { 603 err = -EIO; 604 goto err_out; 605 } 606 __remove_ino_entry(sbi, ino, ORPHAN_INO); 607 return 0; 608 609 err_out: 610 set_sbi_flag(sbi, SBI_NEED_FSCK); 611 f2fs_msg(sbi->sb, KERN_WARNING, 612 "%s: orphan failed (ino=%x), run fsck to fix.", 613 __func__, ino); 614 return err; 615 } 616 617 int recover_orphan_inodes(struct f2fs_sb_info *sbi) 618 { 619 block_t start_blk, orphan_blocks, i, j; 620 unsigned int s_flags = sbi->sb->s_flags; 621 int err = 0; 622 #ifdef CONFIG_QUOTA 623 int quota_enabled; 624 #endif 625 626 if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG)) 627 return 0; 628 629 if (s_flags & SB_RDONLY) { 630 f2fs_msg(sbi->sb, KERN_INFO, "orphan cleanup on readonly fs"); 631 sbi->sb->s_flags &= ~SB_RDONLY; 632 } 633 634 #ifdef CONFIG_QUOTA 635 /* Needed for iput() to work correctly and not trash data */ 636 sbi->sb->s_flags |= SB_ACTIVE; 637 638 /* Turn on quotas so that they are updated correctly */ 639 quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY); 640 #endif 641 642 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi); 643 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi); 644 645 ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true); 646 647 for (i = 0; i < orphan_blocks; i++) { 648 struct page *page = get_meta_page(sbi, start_blk + i); 649 struct f2fs_orphan_block *orphan_blk; 650 651 orphan_blk = (struct f2fs_orphan_block *)page_address(page); 652 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) { 653 nid_t ino = le32_to_cpu(orphan_blk->ino[j]); 654 err = recover_orphan_inode(sbi, ino); 655 if (err) { 656 f2fs_put_page(page, 1); 657 goto out; 658 } 659 } 660 f2fs_put_page(page, 1); 661 } 662 /* clear Orphan Flag */ 663 clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG); 664 out: 665 #ifdef CONFIG_QUOTA 666 /* Turn quotas off */ 667 if (quota_enabled) 668 f2fs_quota_off_umount(sbi->sb); 669 #endif 670 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 671 672 return err; 673 } 674 675 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk) 676 { 677 struct list_head *head; 678 struct f2fs_orphan_block *orphan_blk = NULL; 679 unsigned int nentries = 0; 680 unsigned short index = 1; 681 unsigned short orphan_blocks; 682 struct page *page = NULL; 683 struct ino_entry *orphan = NULL; 684 struct inode_management *im = &sbi->im[ORPHAN_INO]; 685 686 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num); 687 688 /* 689 * we don't need to do spin_lock(&im->ino_lock) here, since all the 690 * orphan inode operations are covered under f2fs_lock_op(). 691 * And, spin_lock should be avoided due to page operations below. 692 */ 693 head = &im->ino_list; 694 695 /* loop for each orphan inode entry and write them in Jornal block */ 696 list_for_each_entry(orphan, head, list) { 697 if (!page) { 698 page = grab_meta_page(sbi, start_blk++); 699 orphan_blk = 700 (struct f2fs_orphan_block *)page_address(page); 701 memset(orphan_blk, 0, sizeof(*orphan_blk)); 702 } 703 704 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino); 705 706 if (nentries == F2FS_ORPHANS_PER_BLOCK) { 707 /* 708 * an orphan block is full of 1020 entries, 709 * then we need to flush current orphan blocks 710 * and bring another one in memory 711 */ 712 orphan_blk->blk_addr = cpu_to_le16(index); 713 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 714 orphan_blk->entry_count = cpu_to_le32(nentries); 715 set_page_dirty(page); 716 f2fs_put_page(page, 1); 717 index++; 718 nentries = 0; 719 page = NULL; 720 } 721 } 722 723 if (page) { 724 orphan_blk->blk_addr = cpu_to_le16(index); 725 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 726 orphan_blk->entry_count = cpu_to_le32(nentries); 727 set_page_dirty(page); 728 f2fs_put_page(page, 1); 729 } 730 } 731 732 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr, 733 struct f2fs_checkpoint **cp_block, struct page **cp_page, 734 unsigned long long *version) 735 { 736 unsigned long blk_size = sbi->blocksize; 737 size_t crc_offset = 0; 738 __u32 crc = 0; 739 740 *cp_page = get_meta_page(sbi, cp_addr); 741 *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page); 742 743 crc_offset = le32_to_cpu((*cp_block)->checksum_offset); 744 if (crc_offset > (blk_size - sizeof(__le32))) { 745 f2fs_msg(sbi->sb, KERN_WARNING, 746 "invalid crc_offset: %zu", crc_offset); 747 return -EINVAL; 748 } 749 750 crc = cur_cp_crc(*cp_block); 751 if (!f2fs_crc_valid(sbi, crc, *cp_block, crc_offset)) { 752 f2fs_msg(sbi->sb, KERN_WARNING, "invalid crc value"); 753 return -EINVAL; 754 } 755 756 *version = cur_cp_version(*cp_block); 757 return 0; 758 } 759 760 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi, 761 block_t cp_addr, unsigned long long *version) 762 { 763 struct page *cp_page_1 = NULL, *cp_page_2 = NULL; 764 struct f2fs_checkpoint *cp_block = NULL; 765 unsigned long long cur_version = 0, pre_version = 0; 766 int err; 767 768 err = get_checkpoint_version(sbi, cp_addr, &cp_block, 769 &cp_page_1, version); 770 if (err) 771 goto invalid_cp1; 772 pre_version = *version; 773 774 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1; 775 err = get_checkpoint_version(sbi, cp_addr, &cp_block, 776 &cp_page_2, version); 777 if (err) 778 goto invalid_cp2; 779 cur_version = *version; 780 781 if (cur_version == pre_version) { 782 *version = cur_version; 783 f2fs_put_page(cp_page_2, 1); 784 return cp_page_1; 785 } 786 invalid_cp2: 787 f2fs_put_page(cp_page_2, 1); 788 invalid_cp1: 789 f2fs_put_page(cp_page_1, 1); 790 return NULL; 791 } 792 793 int get_valid_checkpoint(struct f2fs_sb_info *sbi) 794 { 795 struct f2fs_checkpoint *cp_block; 796 struct f2fs_super_block *fsb = sbi->raw_super; 797 struct page *cp1, *cp2, *cur_page; 798 unsigned long blk_size = sbi->blocksize; 799 unsigned long long cp1_version = 0, cp2_version = 0; 800 unsigned long long cp_start_blk_no; 801 unsigned int cp_blks = 1 + __cp_payload(sbi); 802 block_t cp_blk_no; 803 int i; 804 805 sbi->ckpt = f2fs_kzalloc(sbi, cp_blks * blk_size, GFP_KERNEL); 806 if (!sbi->ckpt) 807 return -ENOMEM; 808 /* 809 * Finding out valid cp block involves read both 810 * sets( cp pack1 and cp pack 2) 811 */ 812 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr); 813 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); 814 815 /* The second checkpoint pack should start at the next segment */ 816 cp_start_blk_no += ((unsigned long long)1) << 817 le32_to_cpu(fsb->log_blocks_per_seg); 818 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); 819 820 if (cp1 && cp2) { 821 if (ver_after(cp2_version, cp1_version)) 822 cur_page = cp2; 823 else 824 cur_page = cp1; 825 } else if (cp1) { 826 cur_page = cp1; 827 } else if (cp2) { 828 cur_page = cp2; 829 } else { 830 goto fail_no_cp; 831 } 832 833 cp_block = (struct f2fs_checkpoint *)page_address(cur_page); 834 memcpy(sbi->ckpt, cp_block, blk_size); 835 836 /* Sanity checking of checkpoint */ 837 if (sanity_check_ckpt(sbi)) 838 goto free_fail_no_cp; 839 840 if (cur_page == cp1) 841 sbi->cur_cp_pack = 1; 842 else 843 sbi->cur_cp_pack = 2; 844 845 if (cp_blks <= 1) 846 goto done; 847 848 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr); 849 if (cur_page == cp2) 850 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg); 851 852 for (i = 1; i < cp_blks; i++) { 853 void *sit_bitmap_ptr; 854 unsigned char *ckpt = (unsigned char *)sbi->ckpt; 855 856 cur_page = get_meta_page(sbi, cp_blk_no + i); 857 sit_bitmap_ptr = page_address(cur_page); 858 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size); 859 f2fs_put_page(cur_page, 1); 860 } 861 done: 862 f2fs_put_page(cp1, 1); 863 f2fs_put_page(cp2, 1); 864 return 0; 865 866 free_fail_no_cp: 867 f2fs_put_page(cp1, 1); 868 f2fs_put_page(cp2, 1); 869 fail_no_cp: 870 kfree(sbi->ckpt); 871 return -EINVAL; 872 } 873 874 static void __add_dirty_inode(struct inode *inode, enum inode_type type) 875 { 876 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 877 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 878 879 if (is_inode_flag_set(inode, flag)) 880 return; 881 882 set_inode_flag(inode, flag); 883 if (!f2fs_is_volatile_file(inode)) 884 list_add_tail(&F2FS_I(inode)->dirty_list, 885 &sbi->inode_list[type]); 886 stat_inc_dirty_inode(sbi, type); 887 } 888 889 static void __remove_dirty_inode(struct inode *inode, enum inode_type type) 890 { 891 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 892 893 if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag)) 894 return; 895 896 list_del_init(&F2FS_I(inode)->dirty_list); 897 clear_inode_flag(inode, flag); 898 stat_dec_dirty_inode(F2FS_I_SB(inode), type); 899 } 900 901 void update_dirty_page(struct inode *inode, struct page *page) 902 { 903 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 904 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 905 906 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 907 !S_ISLNK(inode->i_mode)) 908 return; 909 910 spin_lock(&sbi->inode_lock[type]); 911 if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH)) 912 __add_dirty_inode(inode, type); 913 inode_inc_dirty_pages(inode); 914 spin_unlock(&sbi->inode_lock[type]); 915 916 SetPagePrivate(page); 917 f2fs_trace_pid(page); 918 } 919 920 void remove_dirty_inode(struct inode *inode) 921 { 922 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 923 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 924 925 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 926 !S_ISLNK(inode->i_mode)) 927 return; 928 929 if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH)) 930 return; 931 932 spin_lock(&sbi->inode_lock[type]); 933 __remove_dirty_inode(inode, type); 934 spin_unlock(&sbi->inode_lock[type]); 935 } 936 937 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type) 938 { 939 struct list_head *head; 940 struct inode *inode; 941 struct f2fs_inode_info *fi; 942 bool is_dir = (type == DIR_INODE); 943 unsigned long ino = 0; 944 945 trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir, 946 get_pages(sbi, is_dir ? 947 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 948 retry: 949 if (unlikely(f2fs_cp_error(sbi))) 950 return -EIO; 951 952 spin_lock(&sbi->inode_lock[type]); 953 954 head = &sbi->inode_list[type]; 955 if (list_empty(head)) { 956 spin_unlock(&sbi->inode_lock[type]); 957 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir, 958 get_pages(sbi, is_dir ? 959 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 960 return 0; 961 } 962 fi = list_first_entry(head, struct f2fs_inode_info, dirty_list); 963 inode = igrab(&fi->vfs_inode); 964 spin_unlock(&sbi->inode_lock[type]); 965 if (inode) { 966 unsigned long cur_ino = inode->i_ino; 967 968 if (is_dir) 969 F2FS_I(inode)->cp_task = current; 970 971 filemap_fdatawrite(inode->i_mapping); 972 973 if (is_dir) 974 F2FS_I(inode)->cp_task = NULL; 975 976 iput(inode); 977 /* We need to give cpu to another writers. */ 978 if (ino == cur_ino) { 979 congestion_wait(BLK_RW_ASYNC, HZ/50); 980 cond_resched(); 981 } else { 982 ino = cur_ino; 983 } 984 } else { 985 /* 986 * We should submit bio, since it exists several 987 * wribacking dentry pages in the freeing inode. 988 */ 989 f2fs_submit_merged_write(sbi, DATA); 990 cond_resched(); 991 } 992 goto retry; 993 } 994 995 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi) 996 { 997 struct list_head *head = &sbi->inode_list[DIRTY_META]; 998 struct inode *inode; 999 struct f2fs_inode_info *fi; 1000 s64 total = get_pages(sbi, F2FS_DIRTY_IMETA); 1001 1002 while (total--) { 1003 if (unlikely(f2fs_cp_error(sbi))) 1004 return -EIO; 1005 1006 spin_lock(&sbi->inode_lock[DIRTY_META]); 1007 if (list_empty(head)) { 1008 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1009 return 0; 1010 } 1011 fi = list_first_entry(head, struct f2fs_inode_info, 1012 gdirty_list); 1013 inode = igrab(&fi->vfs_inode); 1014 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1015 if (inode) { 1016 sync_inode_metadata(inode, 0); 1017 1018 /* it's on eviction */ 1019 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) 1020 update_inode_page(inode); 1021 iput(inode); 1022 } 1023 } 1024 return 0; 1025 } 1026 1027 static void __prepare_cp_block(struct f2fs_sb_info *sbi) 1028 { 1029 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1030 struct f2fs_nm_info *nm_i = NM_I(sbi); 1031 nid_t last_nid = nm_i->next_scan_nid; 1032 1033 next_free_nid(sbi, &last_nid); 1034 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi)); 1035 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi)); 1036 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi)); 1037 ckpt->next_free_nid = cpu_to_le32(last_nid); 1038 } 1039 1040 /* 1041 * Freeze all the FS-operations for checkpoint. 1042 */ 1043 static int block_operations(struct f2fs_sb_info *sbi) 1044 { 1045 struct writeback_control wbc = { 1046 .sync_mode = WB_SYNC_ALL, 1047 .nr_to_write = LONG_MAX, 1048 .for_reclaim = 0, 1049 }; 1050 struct blk_plug plug; 1051 int err = 0; 1052 1053 blk_start_plug(&plug); 1054 1055 retry_flush_dents: 1056 f2fs_lock_all(sbi); 1057 /* write all the dirty dentry pages */ 1058 if (get_pages(sbi, F2FS_DIRTY_DENTS)) { 1059 f2fs_unlock_all(sbi); 1060 err = sync_dirty_inodes(sbi, DIR_INODE); 1061 if (err) 1062 goto out; 1063 cond_resched(); 1064 goto retry_flush_dents; 1065 } 1066 1067 /* 1068 * POR: we should ensure that there are no dirty node pages 1069 * until finishing nat/sit flush. inode->i_blocks can be updated. 1070 */ 1071 down_write(&sbi->node_change); 1072 1073 if (get_pages(sbi, F2FS_DIRTY_IMETA)) { 1074 up_write(&sbi->node_change); 1075 f2fs_unlock_all(sbi); 1076 err = f2fs_sync_inode_meta(sbi); 1077 if (err) 1078 goto out; 1079 cond_resched(); 1080 goto retry_flush_dents; 1081 } 1082 1083 retry_flush_nodes: 1084 down_write(&sbi->node_write); 1085 1086 if (get_pages(sbi, F2FS_DIRTY_NODES)) { 1087 up_write(&sbi->node_write); 1088 err = sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO); 1089 if (err) { 1090 up_write(&sbi->node_change); 1091 f2fs_unlock_all(sbi); 1092 goto out; 1093 } 1094 cond_resched(); 1095 goto retry_flush_nodes; 1096 } 1097 1098 /* 1099 * sbi->node_change is used only for AIO write_begin path which produces 1100 * dirty node blocks and some checkpoint values by block allocation. 1101 */ 1102 __prepare_cp_block(sbi); 1103 up_write(&sbi->node_change); 1104 out: 1105 blk_finish_plug(&plug); 1106 return err; 1107 } 1108 1109 static void unblock_operations(struct f2fs_sb_info *sbi) 1110 { 1111 up_write(&sbi->node_write); 1112 f2fs_unlock_all(sbi); 1113 } 1114 1115 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi) 1116 { 1117 DEFINE_WAIT(wait); 1118 1119 for (;;) { 1120 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE); 1121 1122 if (!get_pages(sbi, F2FS_WB_CP_DATA)) 1123 break; 1124 1125 io_schedule_timeout(5*HZ); 1126 } 1127 finish_wait(&sbi->cp_wait, &wait); 1128 } 1129 1130 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1131 { 1132 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num; 1133 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1134 unsigned long flags; 1135 1136 spin_lock_irqsave(&sbi->cp_lock, flags); 1137 1138 if ((cpc->reason & CP_UMOUNT) && 1139 le32_to_cpu(ckpt->cp_pack_total_block_count) > 1140 sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks) 1141 disable_nat_bits(sbi, false); 1142 1143 if (cpc->reason & CP_TRIMMED) 1144 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG); 1145 else 1146 __clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG); 1147 1148 if (cpc->reason & CP_UMOUNT) 1149 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1150 else 1151 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1152 1153 if (cpc->reason & CP_FASTBOOT) 1154 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1155 else 1156 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1157 1158 if (orphan_num) 1159 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1160 else 1161 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1162 1163 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1164 __set_ckpt_flags(ckpt, CP_FSCK_FLAG); 1165 1166 /* set this flag to activate crc|cp_ver for recovery */ 1167 __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG); 1168 __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG); 1169 1170 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1171 } 1172 1173 static void commit_checkpoint(struct f2fs_sb_info *sbi, 1174 void *src, block_t blk_addr) 1175 { 1176 struct writeback_control wbc = { 1177 .for_reclaim = 0, 1178 }; 1179 1180 /* 1181 * pagevec_lookup_tag and lock_page again will take 1182 * some extra time. Therefore, update_meta_pages and 1183 * sync_meta_pages are combined in this function. 1184 */ 1185 struct page *page = grab_meta_page(sbi, blk_addr); 1186 int err; 1187 1188 memcpy(page_address(page), src, PAGE_SIZE); 1189 set_page_dirty(page); 1190 1191 f2fs_wait_on_page_writeback(page, META, true); 1192 f2fs_bug_on(sbi, PageWriteback(page)); 1193 if (unlikely(!clear_page_dirty_for_io(page))) 1194 f2fs_bug_on(sbi, 1); 1195 1196 /* writeout cp pack 2 page */ 1197 err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO); 1198 f2fs_bug_on(sbi, err); 1199 1200 f2fs_put_page(page, 0); 1201 1202 /* submit checkpoint (with barrier if NOBARRIER is not set) */ 1203 f2fs_submit_merged_write(sbi, META_FLUSH); 1204 } 1205 1206 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1207 { 1208 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1209 struct f2fs_nm_info *nm_i = NM_I(sbi); 1210 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags; 1211 block_t start_blk; 1212 unsigned int data_sum_blocks, orphan_blocks; 1213 __u32 crc32 = 0; 1214 int i; 1215 int cp_payload_blks = __cp_payload(sbi); 1216 struct super_block *sb = sbi->sb; 1217 struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 1218 u64 kbytes_written; 1219 int err; 1220 1221 /* Flush all the NAT/SIT pages */ 1222 while (get_pages(sbi, F2FS_DIRTY_META)) { 1223 sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO); 1224 if (unlikely(f2fs_cp_error(sbi))) 1225 return -EIO; 1226 } 1227 1228 /* 1229 * modify checkpoint 1230 * version number is already updated 1231 */ 1232 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi)); 1233 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi)); 1234 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 1235 ckpt->cur_node_segno[i] = 1236 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE)); 1237 ckpt->cur_node_blkoff[i] = 1238 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE)); 1239 ckpt->alloc_type[i + CURSEG_HOT_NODE] = 1240 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE); 1241 } 1242 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 1243 ckpt->cur_data_segno[i] = 1244 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA)); 1245 ckpt->cur_data_blkoff[i] = 1246 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA)); 1247 ckpt->alloc_type[i + CURSEG_HOT_DATA] = 1248 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA); 1249 } 1250 1251 /* 2 cp + n data seg summary + orphan inode blocks */ 1252 data_sum_blocks = npages_for_summary_flush(sbi, false); 1253 spin_lock_irqsave(&sbi->cp_lock, flags); 1254 if (data_sum_blocks < NR_CURSEG_DATA_TYPE) 1255 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1256 else 1257 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1258 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1259 1260 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num); 1261 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks + 1262 orphan_blocks); 1263 1264 if (__remain_node_summaries(cpc->reason)) 1265 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+ 1266 cp_payload_blks + data_sum_blocks + 1267 orphan_blocks + NR_CURSEG_NODE_TYPE); 1268 else 1269 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + 1270 cp_payload_blks + data_sum_blocks + 1271 orphan_blocks); 1272 1273 /* update ckpt flag for checkpoint */ 1274 update_ckpt_flags(sbi, cpc); 1275 1276 /* update SIT/NAT bitmap */ 1277 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP)); 1278 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP)); 1279 1280 crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset)); 1281 *((__le32 *)((unsigned char *)ckpt + 1282 le32_to_cpu(ckpt->checksum_offset))) 1283 = cpu_to_le32(crc32); 1284 1285 start_blk = __start_cp_next_addr(sbi); 1286 1287 /* write nat bits */ 1288 if (enabled_nat_bits(sbi, cpc)) { 1289 __u64 cp_ver = cur_cp_version(ckpt); 1290 block_t blk; 1291 1292 cp_ver |= ((__u64)crc32 << 32); 1293 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver); 1294 1295 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks; 1296 for (i = 0; i < nm_i->nat_bits_blocks; i++) 1297 update_meta_page(sbi, nm_i->nat_bits + 1298 (i << F2FS_BLKSIZE_BITS), blk + i); 1299 1300 /* Flush all the NAT BITS pages */ 1301 while (get_pages(sbi, F2FS_DIRTY_META)) { 1302 sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO); 1303 if (unlikely(f2fs_cp_error(sbi))) 1304 return -EIO; 1305 } 1306 } 1307 1308 /* write out checkpoint buffer at block 0 */ 1309 update_meta_page(sbi, ckpt, start_blk++); 1310 1311 for (i = 1; i < 1 + cp_payload_blks; i++) 1312 update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE, 1313 start_blk++); 1314 1315 if (orphan_num) { 1316 write_orphan_inodes(sbi, start_blk); 1317 start_blk += orphan_blocks; 1318 } 1319 1320 write_data_summaries(sbi, start_blk); 1321 start_blk += data_sum_blocks; 1322 1323 /* Record write statistics in the hot node summary */ 1324 kbytes_written = sbi->kbytes_written; 1325 if (sb->s_bdev->bd_part) 1326 kbytes_written += BD_PART_WRITTEN(sbi); 1327 1328 seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written); 1329 1330 if (__remain_node_summaries(cpc->reason)) { 1331 write_node_summaries(sbi, start_blk); 1332 start_blk += NR_CURSEG_NODE_TYPE; 1333 } 1334 1335 /* update user_block_counts */ 1336 sbi->last_valid_block_count = sbi->total_valid_block_count; 1337 percpu_counter_set(&sbi->alloc_valid_block_count, 0); 1338 1339 /* Here, we have one bio having CP pack except cp pack 2 page */ 1340 sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO); 1341 1342 /* wait for previous submitted meta pages writeback */ 1343 wait_on_all_pages_writeback(sbi); 1344 1345 if (unlikely(f2fs_cp_error(sbi))) 1346 return -EIO; 1347 1348 /* flush all device cache */ 1349 err = f2fs_flush_device_cache(sbi); 1350 if (err) 1351 return err; 1352 1353 /* barrier and flush checkpoint cp pack 2 page if it can */ 1354 commit_checkpoint(sbi, ckpt, start_blk); 1355 wait_on_all_pages_writeback(sbi); 1356 1357 release_ino_entry(sbi, false); 1358 1359 if (unlikely(f2fs_cp_error(sbi))) 1360 return -EIO; 1361 1362 clear_sbi_flag(sbi, SBI_IS_DIRTY); 1363 clear_sbi_flag(sbi, SBI_NEED_CP); 1364 __set_cp_next_pack(sbi); 1365 1366 /* 1367 * redirty superblock if metadata like node page or inode cache is 1368 * updated during writing checkpoint. 1369 */ 1370 if (get_pages(sbi, F2FS_DIRTY_NODES) || 1371 get_pages(sbi, F2FS_DIRTY_IMETA)) 1372 set_sbi_flag(sbi, SBI_IS_DIRTY); 1373 1374 f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS)); 1375 1376 return 0; 1377 } 1378 1379 /* 1380 * We guarantee that this checkpoint procedure will not fail. 1381 */ 1382 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1383 { 1384 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1385 unsigned long long ckpt_ver; 1386 int err = 0; 1387 1388 mutex_lock(&sbi->cp_mutex); 1389 1390 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) && 1391 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) || 1392 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks))) 1393 goto out; 1394 if (unlikely(f2fs_cp_error(sbi))) { 1395 err = -EIO; 1396 goto out; 1397 } 1398 if (f2fs_readonly(sbi->sb)) { 1399 err = -EROFS; 1400 goto out; 1401 } 1402 1403 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops"); 1404 1405 err = block_operations(sbi); 1406 if (err) 1407 goto out; 1408 1409 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops"); 1410 1411 f2fs_flush_merged_writes(sbi); 1412 1413 /* this is the case of multiple fstrims without any changes */ 1414 if (cpc->reason & CP_DISCARD) { 1415 if (!exist_trim_candidates(sbi, cpc)) { 1416 unblock_operations(sbi); 1417 goto out; 1418 } 1419 1420 if (NM_I(sbi)->dirty_nat_cnt == 0 && 1421 SIT_I(sbi)->dirty_sentries == 0 && 1422 prefree_segments(sbi) == 0) { 1423 flush_sit_entries(sbi, cpc); 1424 clear_prefree_segments(sbi, cpc); 1425 unblock_operations(sbi); 1426 goto out; 1427 } 1428 } 1429 1430 /* 1431 * update checkpoint pack index 1432 * Increase the version number so that 1433 * SIT entries and seg summaries are written at correct place 1434 */ 1435 ckpt_ver = cur_cp_version(ckpt); 1436 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver); 1437 1438 /* write cached NAT/SIT entries to NAT/SIT area */ 1439 flush_nat_entries(sbi, cpc); 1440 flush_sit_entries(sbi, cpc); 1441 1442 /* unlock all the fs_lock[] in do_checkpoint() */ 1443 err = do_checkpoint(sbi, cpc); 1444 if (err) 1445 release_discard_addrs(sbi); 1446 else 1447 clear_prefree_segments(sbi, cpc); 1448 1449 unblock_operations(sbi); 1450 stat_inc_cp_count(sbi->stat_info); 1451 1452 if (cpc->reason & CP_RECOVERY) 1453 f2fs_msg(sbi->sb, KERN_NOTICE, 1454 "checkpoint: version = %llx", ckpt_ver); 1455 1456 /* do checkpoint periodically */ 1457 f2fs_update_time(sbi, CP_TIME); 1458 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint"); 1459 out: 1460 mutex_unlock(&sbi->cp_mutex); 1461 return err; 1462 } 1463 1464 void init_ino_entry_info(struct f2fs_sb_info *sbi) 1465 { 1466 int i; 1467 1468 for (i = 0; i < MAX_INO_ENTRY; i++) { 1469 struct inode_management *im = &sbi->im[i]; 1470 1471 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC); 1472 spin_lock_init(&im->ino_lock); 1473 INIT_LIST_HEAD(&im->ino_list); 1474 im->ino_num = 0; 1475 } 1476 1477 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS - 1478 NR_CURSEG_TYPE - __cp_payload(sbi)) * 1479 F2FS_ORPHANS_PER_BLOCK; 1480 } 1481 1482 int __init create_checkpoint_caches(void) 1483 { 1484 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry", 1485 sizeof(struct ino_entry)); 1486 if (!ino_entry_slab) 1487 return -ENOMEM; 1488 inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry", 1489 sizeof(struct inode_entry)); 1490 if (!inode_entry_slab) { 1491 kmem_cache_destroy(ino_entry_slab); 1492 return -ENOMEM; 1493 } 1494 return 0; 1495 } 1496 1497 void destroy_checkpoint_caches(void) 1498 { 1499 kmem_cache_destroy(ino_entry_slab); 1500 kmem_cache_destroy(inode_entry_slab); 1501 } 1502