xref: /linux/fs/f2fs/checkpoint.c (revision a8b70ccf10e38775785d9cb12ead916474549f99)
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19 
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25 
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *inode_entry_slab;
28 
29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
30 {
31 	set_ckpt_flags(sbi, CP_ERROR_FLAG);
32 	if (!end_io)
33 		f2fs_flush_merged_writes(sbi);
34 }
35 
36 /*
37  * We guarantee no failure on the returned page.
38  */
39 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
40 {
41 	struct address_space *mapping = META_MAPPING(sbi);
42 	struct page *page = NULL;
43 repeat:
44 	page = f2fs_grab_cache_page(mapping, index, false);
45 	if (!page) {
46 		cond_resched();
47 		goto repeat;
48 	}
49 	f2fs_wait_on_page_writeback(page, META, true);
50 	if (!PageUptodate(page))
51 		SetPageUptodate(page);
52 	return page;
53 }
54 
55 /*
56  * We guarantee no failure on the returned page.
57  */
58 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
59 							bool is_meta)
60 {
61 	struct address_space *mapping = META_MAPPING(sbi);
62 	struct page *page;
63 	struct f2fs_io_info fio = {
64 		.sbi = sbi,
65 		.type = META,
66 		.op = REQ_OP_READ,
67 		.op_flags = REQ_META | REQ_PRIO,
68 		.old_blkaddr = index,
69 		.new_blkaddr = index,
70 		.encrypted_page = NULL,
71 		.is_meta = is_meta,
72 	};
73 
74 	if (unlikely(!is_meta))
75 		fio.op_flags &= ~REQ_META;
76 repeat:
77 	page = f2fs_grab_cache_page(mapping, index, false);
78 	if (!page) {
79 		cond_resched();
80 		goto repeat;
81 	}
82 	if (PageUptodate(page))
83 		goto out;
84 
85 	fio.page = page;
86 
87 	if (f2fs_submit_page_bio(&fio)) {
88 		f2fs_put_page(page, 1);
89 		goto repeat;
90 	}
91 
92 	lock_page(page);
93 	if (unlikely(page->mapping != mapping)) {
94 		f2fs_put_page(page, 1);
95 		goto repeat;
96 	}
97 
98 	/*
99 	 * if there is any IO error when accessing device, make our filesystem
100 	 * readonly and make sure do not write checkpoint with non-uptodate
101 	 * meta page.
102 	 */
103 	if (unlikely(!PageUptodate(page)))
104 		f2fs_stop_checkpoint(sbi, false);
105 out:
106 	return page;
107 }
108 
109 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
110 {
111 	return __get_meta_page(sbi, index, true);
112 }
113 
114 /* for POR only */
115 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
116 {
117 	return __get_meta_page(sbi, index, false);
118 }
119 
120 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
121 {
122 	switch (type) {
123 	case META_NAT:
124 		break;
125 	case META_SIT:
126 		if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
127 			return false;
128 		break;
129 	case META_SSA:
130 		if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
131 			blkaddr < SM_I(sbi)->ssa_blkaddr))
132 			return false;
133 		break;
134 	case META_CP:
135 		if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
136 			blkaddr < __start_cp_addr(sbi)))
137 			return false;
138 		break;
139 	case META_POR:
140 		if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
141 			blkaddr < MAIN_BLKADDR(sbi)))
142 			return false;
143 		break;
144 	default:
145 		BUG();
146 	}
147 
148 	return true;
149 }
150 
151 /*
152  * Readahead CP/NAT/SIT/SSA pages
153  */
154 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
155 							int type, bool sync)
156 {
157 	struct page *page;
158 	block_t blkno = start;
159 	struct f2fs_io_info fio = {
160 		.sbi = sbi,
161 		.type = META,
162 		.op = REQ_OP_READ,
163 		.op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
164 		.encrypted_page = NULL,
165 		.in_list = false,
166 		.is_meta = (type != META_POR),
167 	};
168 	struct blk_plug plug;
169 
170 	if (unlikely(type == META_POR))
171 		fio.op_flags &= ~REQ_META;
172 
173 	blk_start_plug(&plug);
174 	for (; nrpages-- > 0; blkno++) {
175 
176 		if (!is_valid_blkaddr(sbi, blkno, type))
177 			goto out;
178 
179 		switch (type) {
180 		case META_NAT:
181 			if (unlikely(blkno >=
182 					NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
183 				blkno = 0;
184 			/* get nat block addr */
185 			fio.new_blkaddr = current_nat_addr(sbi,
186 					blkno * NAT_ENTRY_PER_BLOCK);
187 			break;
188 		case META_SIT:
189 			/* get sit block addr */
190 			fio.new_blkaddr = current_sit_addr(sbi,
191 					blkno * SIT_ENTRY_PER_BLOCK);
192 			break;
193 		case META_SSA:
194 		case META_CP:
195 		case META_POR:
196 			fio.new_blkaddr = blkno;
197 			break;
198 		default:
199 			BUG();
200 		}
201 
202 		page = f2fs_grab_cache_page(META_MAPPING(sbi),
203 						fio.new_blkaddr, false);
204 		if (!page)
205 			continue;
206 		if (PageUptodate(page)) {
207 			f2fs_put_page(page, 1);
208 			continue;
209 		}
210 
211 		fio.page = page;
212 		f2fs_submit_page_bio(&fio);
213 		f2fs_put_page(page, 0);
214 	}
215 out:
216 	blk_finish_plug(&plug);
217 	return blkno - start;
218 }
219 
220 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
221 {
222 	struct page *page;
223 	bool readahead = false;
224 
225 	page = find_get_page(META_MAPPING(sbi), index);
226 	if (!page || !PageUptodate(page))
227 		readahead = true;
228 	f2fs_put_page(page, 0);
229 
230 	if (readahead)
231 		ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true);
232 }
233 
234 static int __f2fs_write_meta_page(struct page *page,
235 				struct writeback_control *wbc,
236 				enum iostat_type io_type)
237 {
238 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
239 
240 	trace_f2fs_writepage(page, META);
241 
242 	if (unlikely(f2fs_cp_error(sbi))) {
243 		dec_page_count(sbi, F2FS_DIRTY_META);
244 		unlock_page(page);
245 		return 0;
246 	}
247 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
248 		goto redirty_out;
249 	if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
250 		goto redirty_out;
251 
252 	write_meta_page(sbi, page, io_type);
253 	dec_page_count(sbi, F2FS_DIRTY_META);
254 
255 	if (wbc->for_reclaim)
256 		f2fs_submit_merged_write_cond(sbi, page->mapping->host,
257 						0, page->index, META);
258 
259 	unlock_page(page);
260 
261 	if (unlikely(f2fs_cp_error(sbi)))
262 		f2fs_submit_merged_write(sbi, META);
263 
264 	return 0;
265 
266 redirty_out:
267 	redirty_page_for_writepage(wbc, page);
268 	return AOP_WRITEPAGE_ACTIVATE;
269 }
270 
271 static int f2fs_write_meta_page(struct page *page,
272 				struct writeback_control *wbc)
273 {
274 	return __f2fs_write_meta_page(page, wbc, FS_META_IO);
275 }
276 
277 static int f2fs_write_meta_pages(struct address_space *mapping,
278 				struct writeback_control *wbc)
279 {
280 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
281 	long diff, written;
282 
283 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
284 		goto skip_write;
285 
286 	/* collect a number of dirty meta pages and write together */
287 	if (wbc->for_kupdate ||
288 		get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
289 		goto skip_write;
290 
291 	/* if locked failed, cp will flush dirty pages instead */
292 	if (!mutex_trylock(&sbi->cp_mutex))
293 		goto skip_write;
294 
295 	trace_f2fs_writepages(mapping->host, wbc, META);
296 	diff = nr_pages_to_write(sbi, META, wbc);
297 	written = sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO);
298 	mutex_unlock(&sbi->cp_mutex);
299 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
300 	return 0;
301 
302 skip_write:
303 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
304 	trace_f2fs_writepages(mapping->host, wbc, META);
305 	return 0;
306 }
307 
308 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
309 				long nr_to_write, enum iostat_type io_type)
310 {
311 	struct address_space *mapping = META_MAPPING(sbi);
312 	pgoff_t index = 0, prev = ULONG_MAX;
313 	struct pagevec pvec;
314 	long nwritten = 0;
315 	int nr_pages;
316 	struct writeback_control wbc = {
317 		.for_reclaim = 0,
318 	};
319 	struct blk_plug plug;
320 
321 	pagevec_init(&pvec);
322 
323 	blk_start_plug(&plug);
324 
325 	while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
326 				PAGECACHE_TAG_DIRTY))) {
327 		int i;
328 
329 		for (i = 0; i < nr_pages; i++) {
330 			struct page *page = pvec.pages[i];
331 
332 			if (prev == ULONG_MAX)
333 				prev = page->index - 1;
334 			if (nr_to_write != LONG_MAX && page->index != prev + 1) {
335 				pagevec_release(&pvec);
336 				goto stop;
337 			}
338 
339 			lock_page(page);
340 
341 			if (unlikely(page->mapping != mapping)) {
342 continue_unlock:
343 				unlock_page(page);
344 				continue;
345 			}
346 			if (!PageDirty(page)) {
347 				/* someone wrote it for us */
348 				goto continue_unlock;
349 			}
350 
351 			f2fs_wait_on_page_writeback(page, META, true);
352 
353 			BUG_ON(PageWriteback(page));
354 			if (!clear_page_dirty_for_io(page))
355 				goto continue_unlock;
356 
357 			if (__f2fs_write_meta_page(page, &wbc, io_type)) {
358 				unlock_page(page);
359 				break;
360 			}
361 			nwritten++;
362 			prev = page->index;
363 			if (unlikely(nwritten >= nr_to_write))
364 				break;
365 		}
366 		pagevec_release(&pvec);
367 		cond_resched();
368 	}
369 stop:
370 	if (nwritten)
371 		f2fs_submit_merged_write(sbi, type);
372 
373 	blk_finish_plug(&plug);
374 
375 	return nwritten;
376 }
377 
378 static int f2fs_set_meta_page_dirty(struct page *page)
379 {
380 	trace_f2fs_set_page_dirty(page, META);
381 
382 	if (!PageUptodate(page))
383 		SetPageUptodate(page);
384 	if (!PageDirty(page)) {
385 		f2fs_set_page_dirty_nobuffers(page);
386 		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
387 		SetPagePrivate(page);
388 		f2fs_trace_pid(page);
389 		return 1;
390 	}
391 	return 0;
392 }
393 
394 const struct address_space_operations f2fs_meta_aops = {
395 	.writepage	= f2fs_write_meta_page,
396 	.writepages	= f2fs_write_meta_pages,
397 	.set_page_dirty	= f2fs_set_meta_page_dirty,
398 	.invalidatepage = f2fs_invalidate_page,
399 	.releasepage	= f2fs_release_page,
400 #ifdef CONFIG_MIGRATION
401 	.migratepage    = f2fs_migrate_page,
402 #endif
403 };
404 
405 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino,
406 						unsigned int devidx, int type)
407 {
408 	struct inode_management *im = &sbi->im[type];
409 	struct ino_entry *e, *tmp;
410 
411 	tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
412 
413 	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
414 
415 	spin_lock(&im->ino_lock);
416 	e = radix_tree_lookup(&im->ino_root, ino);
417 	if (!e) {
418 		e = tmp;
419 		if (unlikely(radix_tree_insert(&im->ino_root, ino, e)))
420 			f2fs_bug_on(sbi, 1);
421 
422 		memset(e, 0, sizeof(struct ino_entry));
423 		e->ino = ino;
424 
425 		list_add_tail(&e->list, &im->ino_list);
426 		if (type != ORPHAN_INO)
427 			im->ino_num++;
428 	}
429 
430 	if (type == FLUSH_INO)
431 		f2fs_set_bit(devidx, (char *)&e->dirty_device);
432 
433 	spin_unlock(&im->ino_lock);
434 	radix_tree_preload_end();
435 
436 	if (e != tmp)
437 		kmem_cache_free(ino_entry_slab, tmp);
438 }
439 
440 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
441 {
442 	struct inode_management *im = &sbi->im[type];
443 	struct ino_entry *e;
444 
445 	spin_lock(&im->ino_lock);
446 	e = radix_tree_lookup(&im->ino_root, ino);
447 	if (e) {
448 		list_del(&e->list);
449 		radix_tree_delete(&im->ino_root, ino);
450 		im->ino_num--;
451 		spin_unlock(&im->ino_lock);
452 		kmem_cache_free(ino_entry_slab, e);
453 		return;
454 	}
455 	spin_unlock(&im->ino_lock);
456 }
457 
458 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
459 {
460 	/* add new dirty ino entry into list */
461 	__add_ino_entry(sbi, ino, 0, type);
462 }
463 
464 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
465 {
466 	/* remove dirty ino entry from list */
467 	__remove_ino_entry(sbi, ino, type);
468 }
469 
470 /* mode should be APPEND_INO or UPDATE_INO */
471 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
472 {
473 	struct inode_management *im = &sbi->im[mode];
474 	struct ino_entry *e;
475 
476 	spin_lock(&im->ino_lock);
477 	e = radix_tree_lookup(&im->ino_root, ino);
478 	spin_unlock(&im->ino_lock);
479 	return e ? true : false;
480 }
481 
482 void release_ino_entry(struct f2fs_sb_info *sbi, bool all)
483 {
484 	struct ino_entry *e, *tmp;
485 	int i;
486 
487 	for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) {
488 		struct inode_management *im = &sbi->im[i];
489 
490 		spin_lock(&im->ino_lock);
491 		list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
492 			list_del(&e->list);
493 			radix_tree_delete(&im->ino_root, e->ino);
494 			kmem_cache_free(ino_entry_slab, e);
495 			im->ino_num--;
496 		}
497 		spin_unlock(&im->ino_lock);
498 	}
499 }
500 
501 void set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
502 					unsigned int devidx, int type)
503 {
504 	__add_ino_entry(sbi, ino, devidx, type);
505 }
506 
507 bool is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
508 					unsigned int devidx, int type)
509 {
510 	struct inode_management *im = &sbi->im[type];
511 	struct ino_entry *e;
512 	bool is_dirty = false;
513 
514 	spin_lock(&im->ino_lock);
515 	e = radix_tree_lookup(&im->ino_root, ino);
516 	if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device))
517 		is_dirty = true;
518 	spin_unlock(&im->ino_lock);
519 	return is_dirty;
520 }
521 
522 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
523 {
524 	struct inode_management *im = &sbi->im[ORPHAN_INO];
525 	int err = 0;
526 
527 	spin_lock(&im->ino_lock);
528 
529 #ifdef CONFIG_F2FS_FAULT_INJECTION
530 	if (time_to_inject(sbi, FAULT_ORPHAN)) {
531 		spin_unlock(&im->ino_lock);
532 		f2fs_show_injection_info(FAULT_ORPHAN);
533 		return -ENOSPC;
534 	}
535 #endif
536 	if (unlikely(im->ino_num >= sbi->max_orphans))
537 		err = -ENOSPC;
538 	else
539 		im->ino_num++;
540 	spin_unlock(&im->ino_lock);
541 
542 	return err;
543 }
544 
545 void release_orphan_inode(struct f2fs_sb_info *sbi)
546 {
547 	struct inode_management *im = &sbi->im[ORPHAN_INO];
548 
549 	spin_lock(&im->ino_lock);
550 	f2fs_bug_on(sbi, im->ino_num == 0);
551 	im->ino_num--;
552 	spin_unlock(&im->ino_lock);
553 }
554 
555 void add_orphan_inode(struct inode *inode)
556 {
557 	/* add new orphan ino entry into list */
558 	__add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO);
559 	update_inode_page(inode);
560 }
561 
562 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
563 {
564 	/* remove orphan entry from orphan list */
565 	__remove_ino_entry(sbi, ino, ORPHAN_INO);
566 }
567 
568 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
569 {
570 	struct inode *inode;
571 	struct node_info ni;
572 	int err = acquire_orphan_inode(sbi);
573 
574 	if (err)
575 		goto err_out;
576 
577 	__add_ino_entry(sbi, ino, 0, ORPHAN_INO);
578 
579 	inode = f2fs_iget_retry(sbi->sb, ino);
580 	if (IS_ERR(inode)) {
581 		/*
582 		 * there should be a bug that we can't find the entry
583 		 * to orphan inode.
584 		 */
585 		f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
586 		return PTR_ERR(inode);
587 	}
588 
589 	err = dquot_initialize(inode);
590 	if (err)
591 		goto err_out;
592 
593 	dquot_initialize(inode);
594 	clear_nlink(inode);
595 
596 	/* truncate all the data during iput */
597 	iput(inode);
598 
599 	get_node_info(sbi, ino, &ni);
600 
601 	/* ENOMEM was fully retried in f2fs_evict_inode. */
602 	if (ni.blk_addr != NULL_ADDR) {
603 		err = -EIO;
604 		goto err_out;
605 	}
606 	__remove_ino_entry(sbi, ino, ORPHAN_INO);
607 	return 0;
608 
609 err_out:
610 	set_sbi_flag(sbi, SBI_NEED_FSCK);
611 	f2fs_msg(sbi->sb, KERN_WARNING,
612 			"%s: orphan failed (ino=%x), run fsck to fix.",
613 			__func__, ino);
614 	return err;
615 }
616 
617 int recover_orphan_inodes(struct f2fs_sb_info *sbi)
618 {
619 	block_t start_blk, orphan_blocks, i, j;
620 	unsigned int s_flags = sbi->sb->s_flags;
621 	int err = 0;
622 #ifdef CONFIG_QUOTA
623 	int quota_enabled;
624 #endif
625 
626 	if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
627 		return 0;
628 
629 	if (s_flags & SB_RDONLY) {
630 		f2fs_msg(sbi->sb, KERN_INFO, "orphan cleanup on readonly fs");
631 		sbi->sb->s_flags &= ~SB_RDONLY;
632 	}
633 
634 #ifdef CONFIG_QUOTA
635 	/* Needed for iput() to work correctly and not trash data */
636 	sbi->sb->s_flags |= SB_ACTIVE;
637 
638 	/* Turn on quotas so that they are updated correctly */
639 	quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY);
640 #endif
641 
642 	start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
643 	orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
644 
645 	ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
646 
647 	for (i = 0; i < orphan_blocks; i++) {
648 		struct page *page = get_meta_page(sbi, start_blk + i);
649 		struct f2fs_orphan_block *orphan_blk;
650 
651 		orphan_blk = (struct f2fs_orphan_block *)page_address(page);
652 		for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
653 			nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
654 			err = recover_orphan_inode(sbi, ino);
655 			if (err) {
656 				f2fs_put_page(page, 1);
657 				goto out;
658 			}
659 		}
660 		f2fs_put_page(page, 1);
661 	}
662 	/* clear Orphan Flag */
663 	clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
664 out:
665 #ifdef CONFIG_QUOTA
666 	/* Turn quotas off */
667 	if (quota_enabled)
668 		f2fs_quota_off_umount(sbi->sb);
669 #endif
670 	sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */
671 
672 	return err;
673 }
674 
675 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
676 {
677 	struct list_head *head;
678 	struct f2fs_orphan_block *orphan_blk = NULL;
679 	unsigned int nentries = 0;
680 	unsigned short index = 1;
681 	unsigned short orphan_blocks;
682 	struct page *page = NULL;
683 	struct ino_entry *orphan = NULL;
684 	struct inode_management *im = &sbi->im[ORPHAN_INO];
685 
686 	orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
687 
688 	/*
689 	 * we don't need to do spin_lock(&im->ino_lock) here, since all the
690 	 * orphan inode operations are covered under f2fs_lock_op().
691 	 * And, spin_lock should be avoided due to page operations below.
692 	 */
693 	head = &im->ino_list;
694 
695 	/* loop for each orphan inode entry and write them in Jornal block */
696 	list_for_each_entry(orphan, head, list) {
697 		if (!page) {
698 			page = grab_meta_page(sbi, start_blk++);
699 			orphan_blk =
700 				(struct f2fs_orphan_block *)page_address(page);
701 			memset(orphan_blk, 0, sizeof(*orphan_blk));
702 		}
703 
704 		orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
705 
706 		if (nentries == F2FS_ORPHANS_PER_BLOCK) {
707 			/*
708 			 * an orphan block is full of 1020 entries,
709 			 * then we need to flush current orphan blocks
710 			 * and bring another one in memory
711 			 */
712 			orphan_blk->blk_addr = cpu_to_le16(index);
713 			orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
714 			orphan_blk->entry_count = cpu_to_le32(nentries);
715 			set_page_dirty(page);
716 			f2fs_put_page(page, 1);
717 			index++;
718 			nentries = 0;
719 			page = NULL;
720 		}
721 	}
722 
723 	if (page) {
724 		orphan_blk->blk_addr = cpu_to_le16(index);
725 		orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
726 		orphan_blk->entry_count = cpu_to_le32(nentries);
727 		set_page_dirty(page);
728 		f2fs_put_page(page, 1);
729 	}
730 }
731 
732 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
733 		struct f2fs_checkpoint **cp_block, struct page **cp_page,
734 		unsigned long long *version)
735 {
736 	unsigned long blk_size = sbi->blocksize;
737 	size_t crc_offset = 0;
738 	__u32 crc = 0;
739 
740 	*cp_page = get_meta_page(sbi, cp_addr);
741 	*cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
742 
743 	crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
744 	if (crc_offset > (blk_size - sizeof(__le32))) {
745 		f2fs_msg(sbi->sb, KERN_WARNING,
746 			"invalid crc_offset: %zu", crc_offset);
747 		return -EINVAL;
748 	}
749 
750 	crc = cur_cp_crc(*cp_block);
751 	if (!f2fs_crc_valid(sbi, crc, *cp_block, crc_offset)) {
752 		f2fs_msg(sbi->sb, KERN_WARNING, "invalid crc value");
753 		return -EINVAL;
754 	}
755 
756 	*version = cur_cp_version(*cp_block);
757 	return 0;
758 }
759 
760 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
761 				block_t cp_addr, unsigned long long *version)
762 {
763 	struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
764 	struct f2fs_checkpoint *cp_block = NULL;
765 	unsigned long long cur_version = 0, pre_version = 0;
766 	int err;
767 
768 	err = get_checkpoint_version(sbi, cp_addr, &cp_block,
769 					&cp_page_1, version);
770 	if (err)
771 		goto invalid_cp1;
772 	pre_version = *version;
773 
774 	cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
775 	err = get_checkpoint_version(sbi, cp_addr, &cp_block,
776 					&cp_page_2, version);
777 	if (err)
778 		goto invalid_cp2;
779 	cur_version = *version;
780 
781 	if (cur_version == pre_version) {
782 		*version = cur_version;
783 		f2fs_put_page(cp_page_2, 1);
784 		return cp_page_1;
785 	}
786 invalid_cp2:
787 	f2fs_put_page(cp_page_2, 1);
788 invalid_cp1:
789 	f2fs_put_page(cp_page_1, 1);
790 	return NULL;
791 }
792 
793 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
794 {
795 	struct f2fs_checkpoint *cp_block;
796 	struct f2fs_super_block *fsb = sbi->raw_super;
797 	struct page *cp1, *cp2, *cur_page;
798 	unsigned long blk_size = sbi->blocksize;
799 	unsigned long long cp1_version = 0, cp2_version = 0;
800 	unsigned long long cp_start_blk_no;
801 	unsigned int cp_blks = 1 + __cp_payload(sbi);
802 	block_t cp_blk_no;
803 	int i;
804 
805 	sbi->ckpt = f2fs_kzalloc(sbi, cp_blks * blk_size, GFP_KERNEL);
806 	if (!sbi->ckpt)
807 		return -ENOMEM;
808 	/*
809 	 * Finding out valid cp block involves read both
810 	 * sets( cp pack1 and cp pack 2)
811 	 */
812 	cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
813 	cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
814 
815 	/* The second checkpoint pack should start at the next segment */
816 	cp_start_blk_no += ((unsigned long long)1) <<
817 				le32_to_cpu(fsb->log_blocks_per_seg);
818 	cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
819 
820 	if (cp1 && cp2) {
821 		if (ver_after(cp2_version, cp1_version))
822 			cur_page = cp2;
823 		else
824 			cur_page = cp1;
825 	} else if (cp1) {
826 		cur_page = cp1;
827 	} else if (cp2) {
828 		cur_page = cp2;
829 	} else {
830 		goto fail_no_cp;
831 	}
832 
833 	cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
834 	memcpy(sbi->ckpt, cp_block, blk_size);
835 
836 	/* Sanity checking of checkpoint */
837 	if (sanity_check_ckpt(sbi))
838 		goto free_fail_no_cp;
839 
840 	if (cur_page == cp1)
841 		sbi->cur_cp_pack = 1;
842 	else
843 		sbi->cur_cp_pack = 2;
844 
845 	if (cp_blks <= 1)
846 		goto done;
847 
848 	cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
849 	if (cur_page == cp2)
850 		cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
851 
852 	for (i = 1; i < cp_blks; i++) {
853 		void *sit_bitmap_ptr;
854 		unsigned char *ckpt = (unsigned char *)sbi->ckpt;
855 
856 		cur_page = get_meta_page(sbi, cp_blk_no + i);
857 		sit_bitmap_ptr = page_address(cur_page);
858 		memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
859 		f2fs_put_page(cur_page, 1);
860 	}
861 done:
862 	f2fs_put_page(cp1, 1);
863 	f2fs_put_page(cp2, 1);
864 	return 0;
865 
866 free_fail_no_cp:
867 	f2fs_put_page(cp1, 1);
868 	f2fs_put_page(cp2, 1);
869 fail_no_cp:
870 	kfree(sbi->ckpt);
871 	return -EINVAL;
872 }
873 
874 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
875 {
876 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
877 	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
878 
879 	if (is_inode_flag_set(inode, flag))
880 		return;
881 
882 	set_inode_flag(inode, flag);
883 	if (!f2fs_is_volatile_file(inode))
884 		list_add_tail(&F2FS_I(inode)->dirty_list,
885 						&sbi->inode_list[type]);
886 	stat_inc_dirty_inode(sbi, type);
887 }
888 
889 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
890 {
891 	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
892 
893 	if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
894 		return;
895 
896 	list_del_init(&F2FS_I(inode)->dirty_list);
897 	clear_inode_flag(inode, flag);
898 	stat_dec_dirty_inode(F2FS_I_SB(inode), type);
899 }
900 
901 void update_dirty_page(struct inode *inode, struct page *page)
902 {
903 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
904 	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
905 
906 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
907 			!S_ISLNK(inode->i_mode))
908 		return;
909 
910 	spin_lock(&sbi->inode_lock[type]);
911 	if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
912 		__add_dirty_inode(inode, type);
913 	inode_inc_dirty_pages(inode);
914 	spin_unlock(&sbi->inode_lock[type]);
915 
916 	SetPagePrivate(page);
917 	f2fs_trace_pid(page);
918 }
919 
920 void remove_dirty_inode(struct inode *inode)
921 {
922 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
923 	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
924 
925 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
926 			!S_ISLNK(inode->i_mode))
927 		return;
928 
929 	if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
930 		return;
931 
932 	spin_lock(&sbi->inode_lock[type]);
933 	__remove_dirty_inode(inode, type);
934 	spin_unlock(&sbi->inode_lock[type]);
935 }
936 
937 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
938 {
939 	struct list_head *head;
940 	struct inode *inode;
941 	struct f2fs_inode_info *fi;
942 	bool is_dir = (type == DIR_INODE);
943 	unsigned long ino = 0;
944 
945 	trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
946 				get_pages(sbi, is_dir ?
947 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
948 retry:
949 	if (unlikely(f2fs_cp_error(sbi)))
950 		return -EIO;
951 
952 	spin_lock(&sbi->inode_lock[type]);
953 
954 	head = &sbi->inode_list[type];
955 	if (list_empty(head)) {
956 		spin_unlock(&sbi->inode_lock[type]);
957 		trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
958 				get_pages(sbi, is_dir ?
959 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
960 		return 0;
961 	}
962 	fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
963 	inode = igrab(&fi->vfs_inode);
964 	spin_unlock(&sbi->inode_lock[type]);
965 	if (inode) {
966 		unsigned long cur_ino = inode->i_ino;
967 
968 		if (is_dir)
969 			F2FS_I(inode)->cp_task = current;
970 
971 		filemap_fdatawrite(inode->i_mapping);
972 
973 		if (is_dir)
974 			F2FS_I(inode)->cp_task = NULL;
975 
976 		iput(inode);
977 		/* We need to give cpu to another writers. */
978 		if (ino == cur_ino) {
979 			congestion_wait(BLK_RW_ASYNC, HZ/50);
980 			cond_resched();
981 		} else {
982 			ino = cur_ino;
983 		}
984 	} else {
985 		/*
986 		 * We should submit bio, since it exists several
987 		 * wribacking dentry pages in the freeing inode.
988 		 */
989 		f2fs_submit_merged_write(sbi, DATA);
990 		cond_resched();
991 	}
992 	goto retry;
993 }
994 
995 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
996 {
997 	struct list_head *head = &sbi->inode_list[DIRTY_META];
998 	struct inode *inode;
999 	struct f2fs_inode_info *fi;
1000 	s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
1001 
1002 	while (total--) {
1003 		if (unlikely(f2fs_cp_error(sbi)))
1004 			return -EIO;
1005 
1006 		spin_lock(&sbi->inode_lock[DIRTY_META]);
1007 		if (list_empty(head)) {
1008 			spin_unlock(&sbi->inode_lock[DIRTY_META]);
1009 			return 0;
1010 		}
1011 		fi = list_first_entry(head, struct f2fs_inode_info,
1012 							gdirty_list);
1013 		inode = igrab(&fi->vfs_inode);
1014 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
1015 		if (inode) {
1016 			sync_inode_metadata(inode, 0);
1017 
1018 			/* it's on eviction */
1019 			if (is_inode_flag_set(inode, FI_DIRTY_INODE))
1020 				update_inode_page(inode);
1021 			iput(inode);
1022 		}
1023 	}
1024 	return 0;
1025 }
1026 
1027 static void __prepare_cp_block(struct f2fs_sb_info *sbi)
1028 {
1029 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1030 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1031 	nid_t last_nid = nm_i->next_scan_nid;
1032 
1033 	next_free_nid(sbi, &last_nid);
1034 	ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1035 	ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1036 	ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1037 	ckpt->next_free_nid = cpu_to_le32(last_nid);
1038 }
1039 
1040 /*
1041  * Freeze all the FS-operations for checkpoint.
1042  */
1043 static int block_operations(struct f2fs_sb_info *sbi)
1044 {
1045 	struct writeback_control wbc = {
1046 		.sync_mode = WB_SYNC_ALL,
1047 		.nr_to_write = LONG_MAX,
1048 		.for_reclaim = 0,
1049 	};
1050 	struct blk_plug plug;
1051 	int err = 0;
1052 
1053 	blk_start_plug(&plug);
1054 
1055 retry_flush_dents:
1056 	f2fs_lock_all(sbi);
1057 	/* write all the dirty dentry pages */
1058 	if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
1059 		f2fs_unlock_all(sbi);
1060 		err = sync_dirty_inodes(sbi, DIR_INODE);
1061 		if (err)
1062 			goto out;
1063 		cond_resched();
1064 		goto retry_flush_dents;
1065 	}
1066 
1067 	/*
1068 	 * POR: we should ensure that there are no dirty node pages
1069 	 * until finishing nat/sit flush. inode->i_blocks can be updated.
1070 	 */
1071 	down_write(&sbi->node_change);
1072 
1073 	if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
1074 		up_write(&sbi->node_change);
1075 		f2fs_unlock_all(sbi);
1076 		err = f2fs_sync_inode_meta(sbi);
1077 		if (err)
1078 			goto out;
1079 		cond_resched();
1080 		goto retry_flush_dents;
1081 	}
1082 
1083 retry_flush_nodes:
1084 	down_write(&sbi->node_write);
1085 
1086 	if (get_pages(sbi, F2FS_DIRTY_NODES)) {
1087 		up_write(&sbi->node_write);
1088 		err = sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO);
1089 		if (err) {
1090 			up_write(&sbi->node_change);
1091 			f2fs_unlock_all(sbi);
1092 			goto out;
1093 		}
1094 		cond_resched();
1095 		goto retry_flush_nodes;
1096 	}
1097 
1098 	/*
1099 	 * sbi->node_change is used only for AIO write_begin path which produces
1100 	 * dirty node blocks and some checkpoint values by block allocation.
1101 	 */
1102 	__prepare_cp_block(sbi);
1103 	up_write(&sbi->node_change);
1104 out:
1105 	blk_finish_plug(&plug);
1106 	return err;
1107 }
1108 
1109 static void unblock_operations(struct f2fs_sb_info *sbi)
1110 {
1111 	up_write(&sbi->node_write);
1112 	f2fs_unlock_all(sbi);
1113 }
1114 
1115 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
1116 {
1117 	DEFINE_WAIT(wait);
1118 
1119 	for (;;) {
1120 		prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1121 
1122 		if (!get_pages(sbi, F2FS_WB_CP_DATA))
1123 			break;
1124 
1125 		io_schedule_timeout(5*HZ);
1126 	}
1127 	finish_wait(&sbi->cp_wait, &wait);
1128 }
1129 
1130 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1131 {
1132 	unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1133 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1134 	unsigned long flags;
1135 
1136 	spin_lock_irqsave(&sbi->cp_lock, flags);
1137 
1138 	if ((cpc->reason & CP_UMOUNT) &&
1139 			le32_to_cpu(ckpt->cp_pack_total_block_count) >
1140 			sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks)
1141 		disable_nat_bits(sbi, false);
1142 
1143 	if (cpc->reason & CP_TRIMMED)
1144 		__set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1145 	else
1146 		__clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1147 
1148 	if (cpc->reason & CP_UMOUNT)
1149 		__set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1150 	else
1151 		__clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1152 
1153 	if (cpc->reason & CP_FASTBOOT)
1154 		__set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1155 	else
1156 		__clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1157 
1158 	if (orphan_num)
1159 		__set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1160 	else
1161 		__clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1162 
1163 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1164 		__set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1165 
1166 	/* set this flag to activate crc|cp_ver for recovery */
1167 	__set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1168 	__clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG);
1169 
1170 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1171 }
1172 
1173 static void commit_checkpoint(struct f2fs_sb_info *sbi,
1174 	void *src, block_t blk_addr)
1175 {
1176 	struct writeback_control wbc = {
1177 		.for_reclaim = 0,
1178 	};
1179 
1180 	/*
1181 	 * pagevec_lookup_tag and lock_page again will take
1182 	 * some extra time. Therefore, update_meta_pages and
1183 	 * sync_meta_pages are combined in this function.
1184 	 */
1185 	struct page *page = grab_meta_page(sbi, blk_addr);
1186 	int err;
1187 
1188 	memcpy(page_address(page), src, PAGE_SIZE);
1189 	set_page_dirty(page);
1190 
1191 	f2fs_wait_on_page_writeback(page, META, true);
1192 	f2fs_bug_on(sbi, PageWriteback(page));
1193 	if (unlikely(!clear_page_dirty_for_io(page)))
1194 		f2fs_bug_on(sbi, 1);
1195 
1196 	/* writeout cp pack 2 page */
1197 	err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO);
1198 	f2fs_bug_on(sbi, err);
1199 
1200 	f2fs_put_page(page, 0);
1201 
1202 	/* submit checkpoint (with barrier if NOBARRIER is not set) */
1203 	f2fs_submit_merged_write(sbi, META_FLUSH);
1204 }
1205 
1206 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1207 {
1208 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1209 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1210 	unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
1211 	block_t start_blk;
1212 	unsigned int data_sum_blocks, orphan_blocks;
1213 	__u32 crc32 = 0;
1214 	int i;
1215 	int cp_payload_blks = __cp_payload(sbi);
1216 	struct super_block *sb = sbi->sb;
1217 	struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1218 	u64 kbytes_written;
1219 	int err;
1220 
1221 	/* Flush all the NAT/SIT pages */
1222 	while (get_pages(sbi, F2FS_DIRTY_META)) {
1223 		sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1224 		if (unlikely(f2fs_cp_error(sbi)))
1225 			return -EIO;
1226 	}
1227 
1228 	/*
1229 	 * modify checkpoint
1230 	 * version number is already updated
1231 	 */
1232 	ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
1233 	ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1234 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1235 		ckpt->cur_node_segno[i] =
1236 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
1237 		ckpt->cur_node_blkoff[i] =
1238 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
1239 		ckpt->alloc_type[i + CURSEG_HOT_NODE] =
1240 				curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
1241 	}
1242 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1243 		ckpt->cur_data_segno[i] =
1244 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
1245 		ckpt->cur_data_blkoff[i] =
1246 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
1247 		ckpt->alloc_type[i + CURSEG_HOT_DATA] =
1248 				curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
1249 	}
1250 
1251 	/* 2 cp  + n data seg summary + orphan inode blocks */
1252 	data_sum_blocks = npages_for_summary_flush(sbi, false);
1253 	spin_lock_irqsave(&sbi->cp_lock, flags);
1254 	if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1255 		__set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1256 	else
1257 		__clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1258 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1259 
1260 	orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1261 	ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1262 			orphan_blocks);
1263 
1264 	if (__remain_node_summaries(cpc->reason))
1265 		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
1266 				cp_payload_blks + data_sum_blocks +
1267 				orphan_blocks + NR_CURSEG_NODE_TYPE);
1268 	else
1269 		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1270 				cp_payload_blks + data_sum_blocks +
1271 				orphan_blocks);
1272 
1273 	/* update ckpt flag for checkpoint */
1274 	update_ckpt_flags(sbi, cpc);
1275 
1276 	/* update SIT/NAT bitmap */
1277 	get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1278 	get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1279 
1280 	crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset));
1281 	*((__le32 *)((unsigned char *)ckpt +
1282 				le32_to_cpu(ckpt->checksum_offset)))
1283 				= cpu_to_le32(crc32);
1284 
1285 	start_blk = __start_cp_next_addr(sbi);
1286 
1287 	/* write nat bits */
1288 	if (enabled_nat_bits(sbi, cpc)) {
1289 		__u64 cp_ver = cur_cp_version(ckpt);
1290 		block_t blk;
1291 
1292 		cp_ver |= ((__u64)crc32 << 32);
1293 		*(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1294 
1295 		blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
1296 		for (i = 0; i < nm_i->nat_bits_blocks; i++)
1297 			update_meta_page(sbi, nm_i->nat_bits +
1298 					(i << F2FS_BLKSIZE_BITS), blk + i);
1299 
1300 		/* Flush all the NAT BITS pages */
1301 		while (get_pages(sbi, F2FS_DIRTY_META)) {
1302 			sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1303 			if (unlikely(f2fs_cp_error(sbi)))
1304 				return -EIO;
1305 		}
1306 	}
1307 
1308 	/* write out checkpoint buffer at block 0 */
1309 	update_meta_page(sbi, ckpt, start_blk++);
1310 
1311 	for (i = 1; i < 1 + cp_payload_blks; i++)
1312 		update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1313 							start_blk++);
1314 
1315 	if (orphan_num) {
1316 		write_orphan_inodes(sbi, start_blk);
1317 		start_blk += orphan_blocks;
1318 	}
1319 
1320 	write_data_summaries(sbi, start_blk);
1321 	start_blk += data_sum_blocks;
1322 
1323 	/* Record write statistics in the hot node summary */
1324 	kbytes_written = sbi->kbytes_written;
1325 	if (sb->s_bdev->bd_part)
1326 		kbytes_written += BD_PART_WRITTEN(sbi);
1327 
1328 	seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1329 
1330 	if (__remain_node_summaries(cpc->reason)) {
1331 		write_node_summaries(sbi, start_blk);
1332 		start_blk += NR_CURSEG_NODE_TYPE;
1333 	}
1334 
1335 	/* update user_block_counts */
1336 	sbi->last_valid_block_count = sbi->total_valid_block_count;
1337 	percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1338 
1339 	/* Here, we have one bio having CP pack except cp pack 2 page */
1340 	sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1341 
1342 	/* wait for previous submitted meta pages writeback */
1343 	wait_on_all_pages_writeback(sbi);
1344 
1345 	if (unlikely(f2fs_cp_error(sbi)))
1346 		return -EIO;
1347 
1348 	/* flush all device cache */
1349 	err = f2fs_flush_device_cache(sbi);
1350 	if (err)
1351 		return err;
1352 
1353 	/* barrier and flush checkpoint cp pack 2 page if it can */
1354 	commit_checkpoint(sbi, ckpt, start_blk);
1355 	wait_on_all_pages_writeback(sbi);
1356 
1357 	release_ino_entry(sbi, false);
1358 
1359 	if (unlikely(f2fs_cp_error(sbi)))
1360 		return -EIO;
1361 
1362 	clear_sbi_flag(sbi, SBI_IS_DIRTY);
1363 	clear_sbi_flag(sbi, SBI_NEED_CP);
1364 	__set_cp_next_pack(sbi);
1365 
1366 	/*
1367 	 * redirty superblock if metadata like node page or inode cache is
1368 	 * updated during writing checkpoint.
1369 	 */
1370 	if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1371 			get_pages(sbi, F2FS_DIRTY_IMETA))
1372 		set_sbi_flag(sbi, SBI_IS_DIRTY);
1373 
1374 	f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1375 
1376 	return 0;
1377 }
1378 
1379 /*
1380  * We guarantee that this checkpoint procedure will not fail.
1381  */
1382 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1383 {
1384 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1385 	unsigned long long ckpt_ver;
1386 	int err = 0;
1387 
1388 	mutex_lock(&sbi->cp_mutex);
1389 
1390 	if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1391 		((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
1392 		((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
1393 		goto out;
1394 	if (unlikely(f2fs_cp_error(sbi))) {
1395 		err = -EIO;
1396 		goto out;
1397 	}
1398 	if (f2fs_readonly(sbi->sb)) {
1399 		err = -EROFS;
1400 		goto out;
1401 	}
1402 
1403 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1404 
1405 	err = block_operations(sbi);
1406 	if (err)
1407 		goto out;
1408 
1409 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1410 
1411 	f2fs_flush_merged_writes(sbi);
1412 
1413 	/* this is the case of multiple fstrims without any changes */
1414 	if (cpc->reason & CP_DISCARD) {
1415 		if (!exist_trim_candidates(sbi, cpc)) {
1416 			unblock_operations(sbi);
1417 			goto out;
1418 		}
1419 
1420 		if (NM_I(sbi)->dirty_nat_cnt == 0 &&
1421 				SIT_I(sbi)->dirty_sentries == 0 &&
1422 				prefree_segments(sbi) == 0) {
1423 			flush_sit_entries(sbi, cpc);
1424 			clear_prefree_segments(sbi, cpc);
1425 			unblock_operations(sbi);
1426 			goto out;
1427 		}
1428 	}
1429 
1430 	/*
1431 	 * update checkpoint pack index
1432 	 * Increase the version number so that
1433 	 * SIT entries and seg summaries are written at correct place
1434 	 */
1435 	ckpt_ver = cur_cp_version(ckpt);
1436 	ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1437 
1438 	/* write cached NAT/SIT entries to NAT/SIT area */
1439 	flush_nat_entries(sbi, cpc);
1440 	flush_sit_entries(sbi, cpc);
1441 
1442 	/* unlock all the fs_lock[] in do_checkpoint() */
1443 	err = do_checkpoint(sbi, cpc);
1444 	if (err)
1445 		release_discard_addrs(sbi);
1446 	else
1447 		clear_prefree_segments(sbi, cpc);
1448 
1449 	unblock_operations(sbi);
1450 	stat_inc_cp_count(sbi->stat_info);
1451 
1452 	if (cpc->reason & CP_RECOVERY)
1453 		f2fs_msg(sbi->sb, KERN_NOTICE,
1454 			"checkpoint: version = %llx", ckpt_ver);
1455 
1456 	/* do checkpoint periodically */
1457 	f2fs_update_time(sbi, CP_TIME);
1458 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1459 out:
1460 	mutex_unlock(&sbi->cp_mutex);
1461 	return err;
1462 }
1463 
1464 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1465 {
1466 	int i;
1467 
1468 	for (i = 0; i < MAX_INO_ENTRY; i++) {
1469 		struct inode_management *im = &sbi->im[i];
1470 
1471 		INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1472 		spin_lock_init(&im->ino_lock);
1473 		INIT_LIST_HEAD(&im->ino_list);
1474 		im->ino_num = 0;
1475 	}
1476 
1477 	sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1478 			NR_CURSEG_TYPE - __cp_payload(sbi)) *
1479 				F2FS_ORPHANS_PER_BLOCK;
1480 }
1481 
1482 int __init create_checkpoint_caches(void)
1483 {
1484 	ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1485 			sizeof(struct ino_entry));
1486 	if (!ino_entry_slab)
1487 		return -ENOMEM;
1488 	inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1489 			sizeof(struct inode_entry));
1490 	if (!inode_entry_slab) {
1491 		kmem_cache_destroy(ino_entry_slab);
1492 		return -ENOMEM;
1493 	}
1494 	return 0;
1495 }
1496 
1497 void destroy_checkpoint_caches(void)
1498 {
1499 	kmem_cache_destroy(ino_entry_slab);
1500 	kmem_cache_destroy(inode_entry_slab);
1501 }
1502