1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/checkpoint.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/bio.h> 10 #include <linux/mpage.h> 11 #include <linux/writeback.h> 12 #include <linux/blkdev.h> 13 #include <linux/f2fs_fs.h> 14 #include <linux/pagevec.h> 15 #include <linux/swap.h> 16 #include <linux/kthread.h> 17 18 #include "f2fs.h" 19 #include "node.h" 20 #include "segment.h" 21 #include <trace/events/f2fs.h> 22 23 #define DEFAULT_CHECKPOINT_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 24 25 static struct kmem_cache *ino_entry_slab; 26 struct kmem_cache *f2fs_inode_entry_slab; 27 28 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io) 29 { 30 f2fs_build_fault_attr(sbi, 0, 0); 31 set_ckpt_flags(sbi, CP_ERROR_FLAG); 32 if (!end_io) 33 f2fs_flush_merged_writes(sbi); 34 } 35 36 /* 37 * We guarantee no failure on the returned page. 38 */ 39 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 40 { 41 struct address_space *mapping = META_MAPPING(sbi); 42 struct page *page; 43 repeat: 44 page = f2fs_grab_cache_page(mapping, index, false); 45 if (!page) { 46 cond_resched(); 47 goto repeat; 48 } 49 f2fs_wait_on_page_writeback(page, META, true, true); 50 if (!PageUptodate(page)) 51 SetPageUptodate(page); 52 return page; 53 } 54 55 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index, 56 bool is_meta) 57 { 58 struct address_space *mapping = META_MAPPING(sbi); 59 struct page *page; 60 struct f2fs_io_info fio = { 61 .sbi = sbi, 62 .type = META, 63 .op = REQ_OP_READ, 64 .op_flags = REQ_META | REQ_PRIO, 65 .old_blkaddr = index, 66 .new_blkaddr = index, 67 .encrypted_page = NULL, 68 .is_por = !is_meta, 69 }; 70 int err; 71 72 if (unlikely(!is_meta)) 73 fio.op_flags &= ~REQ_META; 74 repeat: 75 page = f2fs_grab_cache_page(mapping, index, false); 76 if (!page) { 77 cond_resched(); 78 goto repeat; 79 } 80 if (PageUptodate(page)) 81 goto out; 82 83 fio.page = page; 84 85 err = f2fs_submit_page_bio(&fio); 86 if (err) { 87 f2fs_put_page(page, 1); 88 return ERR_PTR(err); 89 } 90 91 f2fs_update_iostat(sbi, FS_META_READ_IO, F2FS_BLKSIZE); 92 93 lock_page(page); 94 if (unlikely(page->mapping != mapping)) { 95 f2fs_put_page(page, 1); 96 goto repeat; 97 } 98 99 if (unlikely(!PageUptodate(page))) { 100 f2fs_put_page(page, 1); 101 return ERR_PTR(-EIO); 102 } 103 out: 104 return page; 105 } 106 107 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 108 { 109 return __get_meta_page(sbi, index, true); 110 } 111 112 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index) 113 { 114 struct page *page; 115 int count = 0; 116 117 retry: 118 page = __get_meta_page(sbi, index, true); 119 if (IS_ERR(page)) { 120 if (PTR_ERR(page) == -EIO && 121 ++count <= DEFAULT_RETRY_IO_COUNT) 122 goto retry; 123 f2fs_stop_checkpoint(sbi, false); 124 } 125 return page; 126 } 127 128 /* for POR only */ 129 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index) 130 { 131 return __get_meta_page(sbi, index, false); 132 } 133 134 static bool __is_bitmap_valid(struct f2fs_sb_info *sbi, block_t blkaddr, 135 int type) 136 { 137 struct seg_entry *se; 138 unsigned int segno, offset; 139 bool exist; 140 141 if (type != DATA_GENERIC_ENHANCE && type != DATA_GENERIC_ENHANCE_READ) 142 return true; 143 144 segno = GET_SEGNO(sbi, blkaddr); 145 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 146 se = get_seg_entry(sbi, segno); 147 148 exist = f2fs_test_bit(offset, se->cur_valid_map); 149 if (!exist && type == DATA_GENERIC_ENHANCE) { 150 f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d", 151 blkaddr, exist); 152 set_sbi_flag(sbi, SBI_NEED_FSCK); 153 WARN_ON(1); 154 } 155 return exist; 156 } 157 158 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 159 block_t blkaddr, int type) 160 { 161 switch (type) { 162 case META_NAT: 163 break; 164 case META_SIT: 165 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi))) 166 return false; 167 break; 168 case META_SSA: 169 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) || 170 blkaddr < SM_I(sbi)->ssa_blkaddr)) 171 return false; 172 break; 173 case META_CP: 174 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr || 175 blkaddr < __start_cp_addr(sbi))) 176 return false; 177 break; 178 case META_POR: 179 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || 180 blkaddr < MAIN_BLKADDR(sbi))) 181 return false; 182 break; 183 case DATA_GENERIC: 184 case DATA_GENERIC_ENHANCE: 185 case DATA_GENERIC_ENHANCE_READ: 186 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || 187 blkaddr < MAIN_BLKADDR(sbi))) { 188 f2fs_warn(sbi, "access invalid blkaddr:%u", 189 blkaddr); 190 set_sbi_flag(sbi, SBI_NEED_FSCK); 191 WARN_ON(1); 192 return false; 193 } else { 194 return __is_bitmap_valid(sbi, blkaddr, type); 195 } 196 break; 197 case META_GENERIC: 198 if (unlikely(blkaddr < SEG0_BLKADDR(sbi) || 199 blkaddr >= MAIN_BLKADDR(sbi))) 200 return false; 201 break; 202 default: 203 BUG(); 204 } 205 206 return true; 207 } 208 209 /* 210 * Readahead CP/NAT/SIT/SSA/POR pages 211 */ 212 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 213 int type, bool sync) 214 { 215 struct page *page; 216 block_t blkno = start; 217 struct f2fs_io_info fio = { 218 .sbi = sbi, 219 .type = META, 220 .op = REQ_OP_READ, 221 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD, 222 .encrypted_page = NULL, 223 .in_list = false, 224 .is_por = (type == META_POR), 225 }; 226 struct blk_plug plug; 227 int err; 228 229 if (unlikely(type == META_POR)) 230 fio.op_flags &= ~REQ_META; 231 232 blk_start_plug(&plug); 233 for (; nrpages-- > 0; blkno++) { 234 235 if (!f2fs_is_valid_blkaddr(sbi, blkno, type)) 236 goto out; 237 238 switch (type) { 239 case META_NAT: 240 if (unlikely(blkno >= 241 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid))) 242 blkno = 0; 243 /* get nat block addr */ 244 fio.new_blkaddr = current_nat_addr(sbi, 245 blkno * NAT_ENTRY_PER_BLOCK); 246 break; 247 case META_SIT: 248 if (unlikely(blkno >= TOTAL_SEGS(sbi))) 249 goto out; 250 /* get sit block addr */ 251 fio.new_blkaddr = current_sit_addr(sbi, 252 blkno * SIT_ENTRY_PER_BLOCK); 253 break; 254 case META_SSA: 255 case META_CP: 256 case META_POR: 257 fio.new_blkaddr = blkno; 258 break; 259 default: 260 BUG(); 261 } 262 263 page = f2fs_grab_cache_page(META_MAPPING(sbi), 264 fio.new_blkaddr, false); 265 if (!page) 266 continue; 267 if (PageUptodate(page)) { 268 f2fs_put_page(page, 1); 269 continue; 270 } 271 272 fio.page = page; 273 err = f2fs_submit_page_bio(&fio); 274 f2fs_put_page(page, err ? 1 : 0); 275 276 if (!err) 277 f2fs_update_iostat(sbi, FS_META_READ_IO, F2FS_BLKSIZE); 278 } 279 out: 280 blk_finish_plug(&plug); 281 return blkno - start; 282 } 283 284 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index) 285 { 286 struct page *page; 287 bool readahead = false; 288 289 page = find_get_page(META_MAPPING(sbi), index); 290 if (!page || !PageUptodate(page)) 291 readahead = true; 292 f2fs_put_page(page, 0); 293 294 if (readahead) 295 f2fs_ra_meta_pages(sbi, index, BIO_MAX_VECS, META_POR, true); 296 } 297 298 static int __f2fs_write_meta_page(struct page *page, 299 struct writeback_control *wbc, 300 enum iostat_type io_type) 301 { 302 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 303 304 trace_f2fs_writepage(page, META); 305 306 if (unlikely(f2fs_cp_error(sbi))) 307 goto redirty_out; 308 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 309 goto redirty_out; 310 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0)) 311 goto redirty_out; 312 313 f2fs_do_write_meta_page(sbi, page, io_type); 314 dec_page_count(sbi, F2FS_DIRTY_META); 315 316 if (wbc->for_reclaim) 317 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, META); 318 319 unlock_page(page); 320 321 if (unlikely(f2fs_cp_error(sbi))) 322 f2fs_submit_merged_write(sbi, META); 323 324 return 0; 325 326 redirty_out: 327 redirty_page_for_writepage(wbc, page); 328 return AOP_WRITEPAGE_ACTIVATE; 329 } 330 331 static int f2fs_write_meta_page(struct page *page, 332 struct writeback_control *wbc) 333 { 334 return __f2fs_write_meta_page(page, wbc, FS_META_IO); 335 } 336 337 static int f2fs_write_meta_pages(struct address_space *mapping, 338 struct writeback_control *wbc) 339 { 340 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 341 long diff, written; 342 343 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 344 goto skip_write; 345 346 /* collect a number of dirty meta pages and write together */ 347 if (wbc->sync_mode != WB_SYNC_ALL && 348 get_pages(sbi, F2FS_DIRTY_META) < 349 nr_pages_to_skip(sbi, META)) 350 goto skip_write; 351 352 /* if locked failed, cp will flush dirty pages instead */ 353 if (!down_write_trylock(&sbi->cp_global_sem)) 354 goto skip_write; 355 356 trace_f2fs_writepages(mapping->host, wbc, META); 357 diff = nr_pages_to_write(sbi, META, wbc); 358 written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO); 359 up_write(&sbi->cp_global_sem); 360 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff); 361 return 0; 362 363 skip_write: 364 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META); 365 trace_f2fs_writepages(mapping->host, wbc, META); 366 return 0; 367 } 368 369 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 370 long nr_to_write, enum iostat_type io_type) 371 { 372 struct address_space *mapping = META_MAPPING(sbi); 373 pgoff_t index = 0, prev = ULONG_MAX; 374 struct pagevec pvec; 375 long nwritten = 0; 376 int nr_pages; 377 struct writeback_control wbc = { 378 .for_reclaim = 0, 379 }; 380 struct blk_plug plug; 381 382 pagevec_init(&pvec); 383 384 blk_start_plug(&plug); 385 386 while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 387 PAGECACHE_TAG_DIRTY))) { 388 int i; 389 390 for (i = 0; i < nr_pages; i++) { 391 struct page *page = pvec.pages[i]; 392 393 if (prev == ULONG_MAX) 394 prev = page->index - 1; 395 if (nr_to_write != LONG_MAX && page->index != prev + 1) { 396 pagevec_release(&pvec); 397 goto stop; 398 } 399 400 lock_page(page); 401 402 if (unlikely(page->mapping != mapping)) { 403 continue_unlock: 404 unlock_page(page); 405 continue; 406 } 407 if (!PageDirty(page)) { 408 /* someone wrote it for us */ 409 goto continue_unlock; 410 } 411 412 f2fs_wait_on_page_writeback(page, META, true, true); 413 414 if (!clear_page_dirty_for_io(page)) 415 goto continue_unlock; 416 417 if (__f2fs_write_meta_page(page, &wbc, io_type)) { 418 unlock_page(page); 419 break; 420 } 421 nwritten++; 422 prev = page->index; 423 if (unlikely(nwritten >= nr_to_write)) 424 break; 425 } 426 pagevec_release(&pvec); 427 cond_resched(); 428 } 429 stop: 430 if (nwritten) 431 f2fs_submit_merged_write(sbi, type); 432 433 blk_finish_plug(&plug); 434 435 return nwritten; 436 } 437 438 static int f2fs_set_meta_page_dirty(struct page *page) 439 { 440 trace_f2fs_set_page_dirty(page, META); 441 442 if (!PageUptodate(page)) 443 SetPageUptodate(page); 444 if (!PageDirty(page)) { 445 __set_page_dirty_nobuffers(page); 446 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META); 447 f2fs_set_page_private(page, 0); 448 return 1; 449 } 450 return 0; 451 } 452 453 const struct address_space_operations f2fs_meta_aops = { 454 .writepage = f2fs_write_meta_page, 455 .writepages = f2fs_write_meta_pages, 456 .set_page_dirty = f2fs_set_meta_page_dirty, 457 .invalidatepage = f2fs_invalidate_page, 458 .releasepage = f2fs_release_page, 459 #ifdef CONFIG_MIGRATION 460 .migratepage = f2fs_migrate_page, 461 #endif 462 }; 463 464 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, 465 unsigned int devidx, int type) 466 { 467 struct inode_management *im = &sbi->im[type]; 468 struct ino_entry *e, *tmp; 469 470 tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS); 471 472 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL); 473 474 spin_lock(&im->ino_lock); 475 e = radix_tree_lookup(&im->ino_root, ino); 476 if (!e) { 477 e = tmp; 478 if (unlikely(radix_tree_insert(&im->ino_root, ino, e))) 479 f2fs_bug_on(sbi, 1); 480 481 memset(e, 0, sizeof(struct ino_entry)); 482 e->ino = ino; 483 484 list_add_tail(&e->list, &im->ino_list); 485 if (type != ORPHAN_INO) 486 im->ino_num++; 487 } 488 489 if (type == FLUSH_INO) 490 f2fs_set_bit(devidx, (char *)&e->dirty_device); 491 492 spin_unlock(&im->ino_lock); 493 radix_tree_preload_end(); 494 495 if (e != tmp) 496 kmem_cache_free(ino_entry_slab, tmp); 497 } 498 499 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 500 { 501 struct inode_management *im = &sbi->im[type]; 502 struct ino_entry *e; 503 504 spin_lock(&im->ino_lock); 505 e = radix_tree_lookup(&im->ino_root, ino); 506 if (e) { 507 list_del(&e->list); 508 radix_tree_delete(&im->ino_root, ino); 509 im->ino_num--; 510 spin_unlock(&im->ino_lock); 511 kmem_cache_free(ino_entry_slab, e); 512 return; 513 } 514 spin_unlock(&im->ino_lock); 515 } 516 517 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 518 { 519 /* add new dirty ino entry into list */ 520 __add_ino_entry(sbi, ino, 0, type); 521 } 522 523 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 524 { 525 /* remove dirty ino entry from list */ 526 __remove_ino_entry(sbi, ino, type); 527 } 528 529 /* mode should be APPEND_INO, UPDATE_INO or TRANS_DIR_INO */ 530 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode) 531 { 532 struct inode_management *im = &sbi->im[mode]; 533 struct ino_entry *e; 534 535 spin_lock(&im->ino_lock); 536 e = radix_tree_lookup(&im->ino_root, ino); 537 spin_unlock(&im->ino_lock); 538 return e ? true : false; 539 } 540 541 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all) 542 { 543 struct ino_entry *e, *tmp; 544 int i; 545 546 for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) { 547 struct inode_management *im = &sbi->im[i]; 548 549 spin_lock(&im->ino_lock); 550 list_for_each_entry_safe(e, tmp, &im->ino_list, list) { 551 list_del(&e->list); 552 radix_tree_delete(&im->ino_root, e->ino); 553 kmem_cache_free(ino_entry_slab, e); 554 im->ino_num--; 555 } 556 spin_unlock(&im->ino_lock); 557 } 558 } 559 560 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 561 unsigned int devidx, int type) 562 { 563 __add_ino_entry(sbi, ino, devidx, type); 564 } 565 566 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 567 unsigned int devidx, int type) 568 { 569 struct inode_management *im = &sbi->im[type]; 570 struct ino_entry *e; 571 bool is_dirty = false; 572 573 spin_lock(&im->ino_lock); 574 e = radix_tree_lookup(&im->ino_root, ino); 575 if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device)) 576 is_dirty = true; 577 spin_unlock(&im->ino_lock); 578 return is_dirty; 579 } 580 581 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi) 582 { 583 struct inode_management *im = &sbi->im[ORPHAN_INO]; 584 int err = 0; 585 586 spin_lock(&im->ino_lock); 587 588 if (time_to_inject(sbi, FAULT_ORPHAN)) { 589 spin_unlock(&im->ino_lock); 590 f2fs_show_injection_info(sbi, FAULT_ORPHAN); 591 return -ENOSPC; 592 } 593 594 if (unlikely(im->ino_num >= sbi->max_orphans)) 595 err = -ENOSPC; 596 else 597 im->ino_num++; 598 spin_unlock(&im->ino_lock); 599 600 return err; 601 } 602 603 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi) 604 { 605 struct inode_management *im = &sbi->im[ORPHAN_INO]; 606 607 spin_lock(&im->ino_lock); 608 f2fs_bug_on(sbi, im->ino_num == 0); 609 im->ino_num--; 610 spin_unlock(&im->ino_lock); 611 } 612 613 void f2fs_add_orphan_inode(struct inode *inode) 614 { 615 /* add new orphan ino entry into list */ 616 __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO); 617 f2fs_update_inode_page(inode); 618 } 619 620 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 621 { 622 /* remove orphan entry from orphan list */ 623 __remove_ino_entry(sbi, ino, ORPHAN_INO); 624 } 625 626 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 627 { 628 struct inode *inode; 629 struct node_info ni; 630 int err; 631 632 inode = f2fs_iget_retry(sbi->sb, ino); 633 if (IS_ERR(inode)) { 634 /* 635 * there should be a bug that we can't find the entry 636 * to orphan inode. 637 */ 638 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT); 639 return PTR_ERR(inode); 640 } 641 642 err = dquot_initialize(inode); 643 if (err) { 644 iput(inode); 645 goto err_out; 646 } 647 648 clear_nlink(inode); 649 650 /* truncate all the data during iput */ 651 iput(inode); 652 653 err = f2fs_get_node_info(sbi, ino, &ni); 654 if (err) 655 goto err_out; 656 657 /* ENOMEM was fully retried in f2fs_evict_inode. */ 658 if (ni.blk_addr != NULL_ADDR) { 659 err = -EIO; 660 goto err_out; 661 } 662 return 0; 663 664 err_out: 665 set_sbi_flag(sbi, SBI_NEED_FSCK); 666 f2fs_warn(sbi, "%s: orphan failed (ino=%x), run fsck to fix.", 667 __func__, ino); 668 return err; 669 } 670 671 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi) 672 { 673 block_t start_blk, orphan_blocks, i, j; 674 unsigned int s_flags = sbi->sb->s_flags; 675 int err = 0; 676 #ifdef CONFIG_QUOTA 677 int quota_enabled; 678 #endif 679 680 if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG)) 681 return 0; 682 683 if (bdev_read_only(sbi->sb->s_bdev)) { 684 f2fs_info(sbi, "write access unavailable, skipping orphan cleanup"); 685 return 0; 686 } 687 688 if (s_flags & SB_RDONLY) { 689 f2fs_info(sbi, "orphan cleanup on readonly fs"); 690 sbi->sb->s_flags &= ~SB_RDONLY; 691 } 692 693 #ifdef CONFIG_QUOTA 694 /* Needed for iput() to work correctly and not trash data */ 695 sbi->sb->s_flags |= SB_ACTIVE; 696 697 /* 698 * Turn on quotas which were not enabled for read-only mounts if 699 * filesystem has quota feature, so that they are updated correctly. 700 */ 701 quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY); 702 #endif 703 704 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi); 705 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi); 706 707 f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true); 708 709 for (i = 0; i < orphan_blocks; i++) { 710 struct page *page; 711 struct f2fs_orphan_block *orphan_blk; 712 713 page = f2fs_get_meta_page(sbi, start_blk + i); 714 if (IS_ERR(page)) { 715 err = PTR_ERR(page); 716 goto out; 717 } 718 719 orphan_blk = (struct f2fs_orphan_block *)page_address(page); 720 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) { 721 nid_t ino = le32_to_cpu(orphan_blk->ino[j]); 722 723 err = recover_orphan_inode(sbi, ino); 724 if (err) { 725 f2fs_put_page(page, 1); 726 goto out; 727 } 728 } 729 f2fs_put_page(page, 1); 730 } 731 /* clear Orphan Flag */ 732 clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG); 733 out: 734 set_sbi_flag(sbi, SBI_IS_RECOVERED); 735 736 #ifdef CONFIG_QUOTA 737 /* Turn quotas off */ 738 if (quota_enabled) 739 f2fs_quota_off_umount(sbi->sb); 740 #endif 741 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 742 743 return err; 744 } 745 746 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk) 747 { 748 struct list_head *head; 749 struct f2fs_orphan_block *orphan_blk = NULL; 750 unsigned int nentries = 0; 751 unsigned short index = 1; 752 unsigned short orphan_blocks; 753 struct page *page = NULL; 754 struct ino_entry *orphan = NULL; 755 struct inode_management *im = &sbi->im[ORPHAN_INO]; 756 757 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num); 758 759 /* 760 * we don't need to do spin_lock(&im->ino_lock) here, since all the 761 * orphan inode operations are covered under f2fs_lock_op(). 762 * And, spin_lock should be avoided due to page operations below. 763 */ 764 head = &im->ino_list; 765 766 /* loop for each orphan inode entry and write them in Jornal block */ 767 list_for_each_entry(orphan, head, list) { 768 if (!page) { 769 page = f2fs_grab_meta_page(sbi, start_blk++); 770 orphan_blk = 771 (struct f2fs_orphan_block *)page_address(page); 772 memset(orphan_blk, 0, sizeof(*orphan_blk)); 773 } 774 775 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino); 776 777 if (nentries == F2FS_ORPHANS_PER_BLOCK) { 778 /* 779 * an orphan block is full of 1020 entries, 780 * then we need to flush current orphan blocks 781 * and bring another one in memory 782 */ 783 orphan_blk->blk_addr = cpu_to_le16(index); 784 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 785 orphan_blk->entry_count = cpu_to_le32(nentries); 786 set_page_dirty(page); 787 f2fs_put_page(page, 1); 788 index++; 789 nentries = 0; 790 page = NULL; 791 } 792 } 793 794 if (page) { 795 orphan_blk->blk_addr = cpu_to_le16(index); 796 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 797 orphan_blk->entry_count = cpu_to_le32(nentries); 798 set_page_dirty(page); 799 f2fs_put_page(page, 1); 800 } 801 } 802 803 static __u32 f2fs_checkpoint_chksum(struct f2fs_sb_info *sbi, 804 struct f2fs_checkpoint *ckpt) 805 { 806 unsigned int chksum_ofs = le32_to_cpu(ckpt->checksum_offset); 807 __u32 chksum; 808 809 chksum = f2fs_crc32(sbi, ckpt, chksum_ofs); 810 if (chksum_ofs < CP_CHKSUM_OFFSET) { 811 chksum_ofs += sizeof(chksum); 812 chksum = f2fs_chksum(sbi, chksum, (__u8 *)ckpt + chksum_ofs, 813 F2FS_BLKSIZE - chksum_ofs); 814 } 815 return chksum; 816 } 817 818 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr, 819 struct f2fs_checkpoint **cp_block, struct page **cp_page, 820 unsigned long long *version) 821 { 822 size_t crc_offset = 0; 823 __u32 crc; 824 825 *cp_page = f2fs_get_meta_page(sbi, cp_addr); 826 if (IS_ERR(*cp_page)) 827 return PTR_ERR(*cp_page); 828 829 *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page); 830 831 crc_offset = le32_to_cpu((*cp_block)->checksum_offset); 832 if (crc_offset < CP_MIN_CHKSUM_OFFSET || 833 crc_offset > CP_CHKSUM_OFFSET) { 834 f2fs_put_page(*cp_page, 1); 835 f2fs_warn(sbi, "invalid crc_offset: %zu", crc_offset); 836 return -EINVAL; 837 } 838 839 crc = f2fs_checkpoint_chksum(sbi, *cp_block); 840 if (crc != cur_cp_crc(*cp_block)) { 841 f2fs_put_page(*cp_page, 1); 842 f2fs_warn(sbi, "invalid crc value"); 843 return -EINVAL; 844 } 845 846 *version = cur_cp_version(*cp_block); 847 return 0; 848 } 849 850 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi, 851 block_t cp_addr, unsigned long long *version) 852 { 853 struct page *cp_page_1 = NULL, *cp_page_2 = NULL; 854 struct f2fs_checkpoint *cp_block = NULL; 855 unsigned long long cur_version = 0, pre_version = 0; 856 int err; 857 858 err = get_checkpoint_version(sbi, cp_addr, &cp_block, 859 &cp_page_1, version); 860 if (err) 861 return NULL; 862 863 if (le32_to_cpu(cp_block->cp_pack_total_block_count) > 864 sbi->blocks_per_seg) { 865 f2fs_warn(sbi, "invalid cp_pack_total_block_count:%u", 866 le32_to_cpu(cp_block->cp_pack_total_block_count)); 867 goto invalid_cp; 868 } 869 pre_version = *version; 870 871 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1; 872 err = get_checkpoint_version(sbi, cp_addr, &cp_block, 873 &cp_page_2, version); 874 if (err) 875 goto invalid_cp; 876 cur_version = *version; 877 878 if (cur_version == pre_version) { 879 *version = cur_version; 880 f2fs_put_page(cp_page_2, 1); 881 return cp_page_1; 882 } 883 f2fs_put_page(cp_page_2, 1); 884 invalid_cp: 885 f2fs_put_page(cp_page_1, 1); 886 return NULL; 887 } 888 889 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi) 890 { 891 struct f2fs_checkpoint *cp_block; 892 struct f2fs_super_block *fsb = sbi->raw_super; 893 struct page *cp1, *cp2, *cur_page; 894 unsigned long blk_size = sbi->blocksize; 895 unsigned long long cp1_version = 0, cp2_version = 0; 896 unsigned long long cp_start_blk_no; 897 unsigned int cp_blks = 1 + __cp_payload(sbi); 898 block_t cp_blk_no; 899 int i; 900 int err; 901 902 sbi->ckpt = f2fs_kvzalloc(sbi, array_size(blk_size, cp_blks), 903 GFP_KERNEL); 904 if (!sbi->ckpt) 905 return -ENOMEM; 906 /* 907 * Finding out valid cp block involves read both 908 * sets( cp pack 1 and cp pack 2) 909 */ 910 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr); 911 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); 912 913 /* The second checkpoint pack should start at the next segment */ 914 cp_start_blk_no += ((unsigned long long)1) << 915 le32_to_cpu(fsb->log_blocks_per_seg); 916 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); 917 918 if (cp1 && cp2) { 919 if (ver_after(cp2_version, cp1_version)) 920 cur_page = cp2; 921 else 922 cur_page = cp1; 923 } else if (cp1) { 924 cur_page = cp1; 925 } else if (cp2) { 926 cur_page = cp2; 927 } else { 928 err = -EFSCORRUPTED; 929 goto fail_no_cp; 930 } 931 932 cp_block = (struct f2fs_checkpoint *)page_address(cur_page); 933 memcpy(sbi->ckpt, cp_block, blk_size); 934 935 if (cur_page == cp1) 936 sbi->cur_cp_pack = 1; 937 else 938 sbi->cur_cp_pack = 2; 939 940 /* Sanity checking of checkpoint */ 941 if (f2fs_sanity_check_ckpt(sbi)) { 942 err = -EFSCORRUPTED; 943 goto free_fail_no_cp; 944 } 945 946 if (cp_blks <= 1) 947 goto done; 948 949 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr); 950 if (cur_page == cp2) 951 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg); 952 953 for (i = 1; i < cp_blks; i++) { 954 void *sit_bitmap_ptr; 955 unsigned char *ckpt = (unsigned char *)sbi->ckpt; 956 957 cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i); 958 if (IS_ERR(cur_page)) { 959 err = PTR_ERR(cur_page); 960 goto free_fail_no_cp; 961 } 962 sit_bitmap_ptr = page_address(cur_page); 963 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size); 964 f2fs_put_page(cur_page, 1); 965 } 966 done: 967 f2fs_put_page(cp1, 1); 968 f2fs_put_page(cp2, 1); 969 return 0; 970 971 free_fail_no_cp: 972 f2fs_put_page(cp1, 1); 973 f2fs_put_page(cp2, 1); 974 fail_no_cp: 975 kvfree(sbi->ckpt); 976 return err; 977 } 978 979 static void __add_dirty_inode(struct inode *inode, enum inode_type type) 980 { 981 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 982 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 983 984 if (is_inode_flag_set(inode, flag)) 985 return; 986 987 set_inode_flag(inode, flag); 988 if (!f2fs_is_volatile_file(inode)) 989 list_add_tail(&F2FS_I(inode)->dirty_list, 990 &sbi->inode_list[type]); 991 stat_inc_dirty_inode(sbi, type); 992 } 993 994 static void __remove_dirty_inode(struct inode *inode, enum inode_type type) 995 { 996 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 997 998 if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag)) 999 return; 1000 1001 list_del_init(&F2FS_I(inode)->dirty_list); 1002 clear_inode_flag(inode, flag); 1003 stat_dec_dirty_inode(F2FS_I_SB(inode), type); 1004 } 1005 1006 void f2fs_update_dirty_page(struct inode *inode, struct page *page) 1007 { 1008 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1009 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 1010 1011 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1012 !S_ISLNK(inode->i_mode)) 1013 return; 1014 1015 spin_lock(&sbi->inode_lock[type]); 1016 if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH)) 1017 __add_dirty_inode(inode, type); 1018 inode_inc_dirty_pages(inode); 1019 spin_unlock(&sbi->inode_lock[type]); 1020 1021 f2fs_set_page_private(page, 0); 1022 } 1023 1024 void f2fs_remove_dirty_inode(struct inode *inode) 1025 { 1026 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1027 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 1028 1029 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1030 !S_ISLNK(inode->i_mode)) 1031 return; 1032 1033 if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH)) 1034 return; 1035 1036 spin_lock(&sbi->inode_lock[type]); 1037 __remove_dirty_inode(inode, type); 1038 spin_unlock(&sbi->inode_lock[type]); 1039 } 1040 1041 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type) 1042 { 1043 struct list_head *head; 1044 struct inode *inode; 1045 struct f2fs_inode_info *fi; 1046 bool is_dir = (type == DIR_INODE); 1047 unsigned long ino = 0; 1048 1049 trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir, 1050 get_pages(sbi, is_dir ? 1051 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 1052 retry: 1053 if (unlikely(f2fs_cp_error(sbi))) { 1054 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir, 1055 get_pages(sbi, is_dir ? 1056 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 1057 return -EIO; 1058 } 1059 1060 spin_lock(&sbi->inode_lock[type]); 1061 1062 head = &sbi->inode_list[type]; 1063 if (list_empty(head)) { 1064 spin_unlock(&sbi->inode_lock[type]); 1065 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir, 1066 get_pages(sbi, is_dir ? 1067 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 1068 return 0; 1069 } 1070 fi = list_first_entry(head, struct f2fs_inode_info, dirty_list); 1071 inode = igrab(&fi->vfs_inode); 1072 spin_unlock(&sbi->inode_lock[type]); 1073 if (inode) { 1074 unsigned long cur_ino = inode->i_ino; 1075 1076 F2FS_I(inode)->cp_task = current; 1077 1078 filemap_fdatawrite(inode->i_mapping); 1079 1080 F2FS_I(inode)->cp_task = NULL; 1081 1082 iput(inode); 1083 /* We need to give cpu to another writers. */ 1084 if (ino == cur_ino) 1085 cond_resched(); 1086 else 1087 ino = cur_ino; 1088 } else { 1089 /* 1090 * We should submit bio, since it exists several 1091 * wribacking dentry pages in the freeing inode. 1092 */ 1093 f2fs_submit_merged_write(sbi, DATA); 1094 cond_resched(); 1095 } 1096 goto retry; 1097 } 1098 1099 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi) 1100 { 1101 struct list_head *head = &sbi->inode_list[DIRTY_META]; 1102 struct inode *inode; 1103 struct f2fs_inode_info *fi; 1104 s64 total = get_pages(sbi, F2FS_DIRTY_IMETA); 1105 1106 while (total--) { 1107 if (unlikely(f2fs_cp_error(sbi))) 1108 return -EIO; 1109 1110 spin_lock(&sbi->inode_lock[DIRTY_META]); 1111 if (list_empty(head)) { 1112 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1113 return 0; 1114 } 1115 fi = list_first_entry(head, struct f2fs_inode_info, 1116 gdirty_list); 1117 inode = igrab(&fi->vfs_inode); 1118 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1119 if (inode) { 1120 sync_inode_metadata(inode, 0); 1121 1122 /* it's on eviction */ 1123 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) 1124 f2fs_update_inode_page(inode); 1125 iput(inode); 1126 } 1127 } 1128 return 0; 1129 } 1130 1131 static void __prepare_cp_block(struct f2fs_sb_info *sbi) 1132 { 1133 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1134 struct f2fs_nm_info *nm_i = NM_I(sbi); 1135 nid_t last_nid = nm_i->next_scan_nid; 1136 1137 next_free_nid(sbi, &last_nid); 1138 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi)); 1139 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi)); 1140 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi)); 1141 ckpt->next_free_nid = cpu_to_le32(last_nid); 1142 } 1143 1144 static bool __need_flush_quota(struct f2fs_sb_info *sbi) 1145 { 1146 bool ret = false; 1147 1148 if (!is_journalled_quota(sbi)) 1149 return false; 1150 1151 down_write(&sbi->quota_sem); 1152 if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) { 1153 ret = false; 1154 } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) { 1155 ret = false; 1156 } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_FLUSH)) { 1157 clear_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 1158 ret = true; 1159 } else if (get_pages(sbi, F2FS_DIRTY_QDATA)) { 1160 ret = true; 1161 } 1162 up_write(&sbi->quota_sem); 1163 return ret; 1164 } 1165 1166 /* 1167 * Freeze all the FS-operations for checkpoint. 1168 */ 1169 static int block_operations(struct f2fs_sb_info *sbi) 1170 { 1171 struct writeback_control wbc = { 1172 .sync_mode = WB_SYNC_ALL, 1173 .nr_to_write = LONG_MAX, 1174 .for_reclaim = 0, 1175 }; 1176 int err = 0, cnt = 0; 1177 1178 /* 1179 * Let's flush inline_data in dirty node pages. 1180 */ 1181 f2fs_flush_inline_data(sbi); 1182 1183 retry_flush_quotas: 1184 f2fs_lock_all(sbi); 1185 if (__need_flush_quota(sbi)) { 1186 int locked; 1187 1188 if (++cnt > DEFAULT_RETRY_QUOTA_FLUSH_COUNT) { 1189 set_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH); 1190 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 1191 goto retry_flush_dents; 1192 } 1193 f2fs_unlock_all(sbi); 1194 1195 /* only failed during mount/umount/freeze/quotactl */ 1196 locked = down_read_trylock(&sbi->sb->s_umount); 1197 f2fs_quota_sync(sbi->sb, -1); 1198 if (locked) 1199 up_read(&sbi->sb->s_umount); 1200 cond_resched(); 1201 goto retry_flush_quotas; 1202 } 1203 1204 retry_flush_dents: 1205 /* write all the dirty dentry pages */ 1206 if (get_pages(sbi, F2FS_DIRTY_DENTS)) { 1207 f2fs_unlock_all(sbi); 1208 err = f2fs_sync_dirty_inodes(sbi, DIR_INODE); 1209 if (err) 1210 return err; 1211 cond_resched(); 1212 goto retry_flush_quotas; 1213 } 1214 1215 /* 1216 * POR: we should ensure that there are no dirty node pages 1217 * until finishing nat/sit flush. inode->i_blocks can be updated. 1218 */ 1219 down_write(&sbi->node_change); 1220 1221 if (get_pages(sbi, F2FS_DIRTY_IMETA)) { 1222 up_write(&sbi->node_change); 1223 f2fs_unlock_all(sbi); 1224 err = f2fs_sync_inode_meta(sbi); 1225 if (err) 1226 return err; 1227 cond_resched(); 1228 goto retry_flush_quotas; 1229 } 1230 1231 retry_flush_nodes: 1232 down_write(&sbi->node_write); 1233 1234 if (get_pages(sbi, F2FS_DIRTY_NODES)) { 1235 up_write(&sbi->node_write); 1236 atomic_inc(&sbi->wb_sync_req[NODE]); 1237 err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO); 1238 atomic_dec(&sbi->wb_sync_req[NODE]); 1239 if (err) { 1240 up_write(&sbi->node_change); 1241 f2fs_unlock_all(sbi); 1242 return err; 1243 } 1244 cond_resched(); 1245 goto retry_flush_nodes; 1246 } 1247 1248 /* 1249 * sbi->node_change is used only for AIO write_begin path which produces 1250 * dirty node blocks and some checkpoint values by block allocation. 1251 */ 1252 __prepare_cp_block(sbi); 1253 up_write(&sbi->node_change); 1254 return err; 1255 } 1256 1257 static void unblock_operations(struct f2fs_sb_info *sbi) 1258 { 1259 up_write(&sbi->node_write); 1260 f2fs_unlock_all(sbi); 1261 } 1262 1263 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type) 1264 { 1265 DEFINE_WAIT(wait); 1266 1267 for (;;) { 1268 if (!get_pages(sbi, type)) 1269 break; 1270 1271 if (unlikely(f2fs_cp_error(sbi))) 1272 break; 1273 1274 if (type == F2FS_DIRTY_META) 1275 f2fs_sync_meta_pages(sbi, META, LONG_MAX, 1276 FS_CP_META_IO); 1277 else if (type == F2FS_WB_CP_DATA) 1278 f2fs_submit_merged_write(sbi, DATA); 1279 1280 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE); 1281 io_schedule_timeout(DEFAULT_IO_TIMEOUT); 1282 } 1283 finish_wait(&sbi->cp_wait, &wait); 1284 } 1285 1286 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1287 { 1288 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num; 1289 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1290 unsigned long flags; 1291 1292 spin_lock_irqsave(&sbi->cp_lock, flags); 1293 1294 if ((cpc->reason & CP_UMOUNT) && 1295 le32_to_cpu(ckpt->cp_pack_total_block_count) > 1296 sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks) 1297 disable_nat_bits(sbi, false); 1298 1299 if (cpc->reason & CP_TRIMMED) 1300 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG); 1301 else 1302 __clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG); 1303 1304 if (cpc->reason & CP_UMOUNT) 1305 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1306 else 1307 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1308 1309 if (cpc->reason & CP_FASTBOOT) 1310 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1311 else 1312 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1313 1314 if (orphan_num) 1315 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1316 else 1317 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1318 1319 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1320 __set_ckpt_flags(ckpt, CP_FSCK_FLAG); 1321 1322 if (is_sbi_flag_set(sbi, SBI_IS_RESIZEFS)) 1323 __set_ckpt_flags(ckpt, CP_RESIZEFS_FLAG); 1324 else 1325 __clear_ckpt_flags(ckpt, CP_RESIZEFS_FLAG); 1326 1327 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED)) 1328 __set_ckpt_flags(ckpt, CP_DISABLED_FLAG); 1329 else 1330 __clear_ckpt_flags(ckpt, CP_DISABLED_FLAG); 1331 1332 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK)) 1333 __set_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG); 1334 else 1335 __clear_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG); 1336 1337 if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) 1338 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); 1339 else 1340 __clear_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); 1341 1342 if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) 1343 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); 1344 1345 /* set this flag to activate crc|cp_ver for recovery */ 1346 __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG); 1347 __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG); 1348 1349 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1350 } 1351 1352 static void commit_checkpoint(struct f2fs_sb_info *sbi, 1353 void *src, block_t blk_addr) 1354 { 1355 struct writeback_control wbc = { 1356 .for_reclaim = 0, 1357 }; 1358 1359 /* 1360 * pagevec_lookup_tag and lock_page again will take 1361 * some extra time. Therefore, f2fs_update_meta_pages and 1362 * f2fs_sync_meta_pages are combined in this function. 1363 */ 1364 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 1365 int err; 1366 1367 f2fs_wait_on_page_writeback(page, META, true, true); 1368 1369 memcpy(page_address(page), src, PAGE_SIZE); 1370 1371 set_page_dirty(page); 1372 if (unlikely(!clear_page_dirty_for_io(page))) 1373 f2fs_bug_on(sbi, 1); 1374 1375 /* writeout cp pack 2 page */ 1376 err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO); 1377 if (unlikely(err && f2fs_cp_error(sbi))) { 1378 f2fs_put_page(page, 1); 1379 return; 1380 } 1381 1382 f2fs_bug_on(sbi, err); 1383 f2fs_put_page(page, 0); 1384 1385 /* submit checkpoint (with barrier if NOBARRIER is not set) */ 1386 f2fs_submit_merged_write(sbi, META_FLUSH); 1387 } 1388 1389 static inline u64 get_sectors_written(struct block_device *bdev) 1390 { 1391 return (u64)part_stat_read(bdev, sectors[STAT_WRITE]); 1392 } 1393 1394 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi) 1395 { 1396 if (f2fs_is_multi_device(sbi)) { 1397 u64 sectors = 0; 1398 int i; 1399 1400 for (i = 0; i < sbi->s_ndevs; i++) 1401 sectors += get_sectors_written(FDEV(i).bdev); 1402 1403 return sectors; 1404 } 1405 1406 return get_sectors_written(sbi->sb->s_bdev); 1407 } 1408 1409 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1410 { 1411 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1412 struct f2fs_nm_info *nm_i = NM_I(sbi); 1413 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags; 1414 block_t start_blk; 1415 unsigned int data_sum_blocks, orphan_blocks; 1416 __u32 crc32 = 0; 1417 int i; 1418 int cp_payload_blks = __cp_payload(sbi); 1419 struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 1420 u64 kbytes_written; 1421 int err; 1422 1423 /* Flush all the NAT/SIT pages */ 1424 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO); 1425 1426 /* start to update checkpoint, cp ver is already updated previously */ 1427 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true)); 1428 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi)); 1429 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 1430 ckpt->cur_node_segno[i] = 1431 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE)); 1432 ckpt->cur_node_blkoff[i] = 1433 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE)); 1434 ckpt->alloc_type[i + CURSEG_HOT_NODE] = 1435 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE); 1436 } 1437 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 1438 ckpt->cur_data_segno[i] = 1439 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA)); 1440 ckpt->cur_data_blkoff[i] = 1441 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA)); 1442 ckpt->alloc_type[i + CURSEG_HOT_DATA] = 1443 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA); 1444 } 1445 1446 /* 2 cp + n data seg summary + orphan inode blocks */ 1447 data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false); 1448 spin_lock_irqsave(&sbi->cp_lock, flags); 1449 if (data_sum_blocks < NR_CURSEG_DATA_TYPE) 1450 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1451 else 1452 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1453 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1454 1455 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num); 1456 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks + 1457 orphan_blocks); 1458 1459 if (__remain_node_summaries(cpc->reason)) 1460 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + 1461 cp_payload_blks + data_sum_blocks + 1462 orphan_blocks + NR_CURSEG_NODE_TYPE); 1463 else 1464 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + 1465 cp_payload_blks + data_sum_blocks + 1466 orphan_blocks); 1467 1468 /* update ckpt flag for checkpoint */ 1469 update_ckpt_flags(sbi, cpc); 1470 1471 /* update SIT/NAT bitmap */ 1472 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP)); 1473 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP)); 1474 1475 crc32 = f2fs_checkpoint_chksum(sbi, ckpt); 1476 *((__le32 *)((unsigned char *)ckpt + 1477 le32_to_cpu(ckpt->checksum_offset))) 1478 = cpu_to_le32(crc32); 1479 1480 start_blk = __start_cp_next_addr(sbi); 1481 1482 /* write nat bits */ 1483 if (enabled_nat_bits(sbi, cpc)) { 1484 __u64 cp_ver = cur_cp_version(ckpt); 1485 block_t blk; 1486 1487 cp_ver |= ((__u64)crc32 << 32); 1488 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver); 1489 1490 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks; 1491 for (i = 0; i < nm_i->nat_bits_blocks; i++) 1492 f2fs_update_meta_page(sbi, nm_i->nat_bits + 1493 (i << F2FS_BLKSIZE_BITS), blk + i); 1494 } 1495 1496 /* write out checkpoint buffer at block 0 */ 1497 f2fs_update_meta_page(sbi, ckpt, start_blk++); 1498 1499 for (i = 1; i < 1 + cp_payload_blks; i++) 1500 f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE, 1501 start_blk++); 1502 1503 if (orphan_num) { 1504 write_orphan_inodes(sbi, start_blk); 1505 start_blk += orphan_blocks; 1506 } 1507 1508 f2fs_write_data_summaries(sbi, start_blk); 1509 start_blk += data_sum_blocks; 1510 1511 /* Record write statistics in the hot node summary */ 1512 kbytes_written = sbi->kbytes_written; 1513 kbytes_written += (f2fs_get_sectors_written(sbi) - 1514 sbi->sectors_written_start) >> 1; 1515 seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written); 1516 1517 if (__remain_node_summaries(cpc->reason)) { 1518 f2fs_write_node_summaries(sbi, start_blk); 1519 start_blk += NR_CURSEG_NODE_TYPE; 1520 } 1521 1522 /* update user_block_counts */ 1523 sbi->last_valid_block_count = sbi->total_valid_block_count; 1524 percpu_counter_set(&sbi->alloc_valid_block_count, 0); 1525 1526 /* Here, we have one bio having CP pack except cp pack 2 page */ 1527 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO); 1528 /* Wait for all dirty meta pages to be submitted for IO */ 1529 f2fs_wait_on_all_pages(sbi, F2FS_DIRTY_META); 1530 1531 /* wait for previous submitted meta pages writeback */ 1532 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA); 1533 1534 /* flush all device cache */ 1535 err = f2fs_flush_device_cache(sbi); 1536 if (err) 1537 return err; 1538 1539 /* barrier and flush checkpoint cp pack 2 page if it can */ 1540 commit_checkpoint(sbi, ckpt, start_blk); 1541 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA); 1542 1543 /* 1544 * invalidate intermediate page cache borrowed from meta inode which are 1545 * used for migration of encrypted, verity or compressed inode's blocks. 1546 */ 1547 if (f2fs_sb_has_encrypt(sbi) || f2fs_sb_has_verity(sbi) || 1548 f2fs_sb_has_compression(sbi)) 1549 invalidate_mapping_pages(META_MAPPING(sbi), 1550 MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1); 1551 1552 f2fs_release_ino_entry(sbi, false); 1553 1554 f2fs_reset_fsync_node_info(sbi); 1555 1556 clear_sbi_flag(sbi, SBI_IS_DIRTY); 1557 clear_sbi_flag(sbi, SBI_NEED_CP); 1558 clear_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH); 1559 1560 spin_lock(&sbi->stat_lock); 1561 sbi->unusable_block_count = 0; 1562 spin_unlock(&sbi->stat_lock); 1563 1564 __set_cp_next_pack(sbi); 1565 1566 /* 1567 * redirty superblock if metadata like node page or inode cache is 1568 * updated during writing checkpoint. 1569 */ 1570 if (get_pages(sbi, F2FS_DIRTY_NODES) || 1571 get_pages(sbi, F2FS_DIRTY_IMETA)) 1572 set_sbi_flag(sbi, SBI_IS_DIRTY); 1573 1574 f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS)); 1575 1576 return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0; 1577 } 1578 1579 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1580 { 1581 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1582 unsigned long long ckpt_ver; 1583 int err = 0; 1584 1585 if (f2fs_readonly(sbi->sb) || f2fs_hw_is_readonly(sbi)) 1586 return -EROFS; 1587 1588 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 1589 if (cpc->reason != CP_PAUSE) 1590 return 0; 1591 f2fs_warn(sbi, "Start checkpoint disabled!"); 1592 } 1593 if (cpc->reason != CP_RESIZE) 1594 down_write(&sbi->cp_global_sem); 1595 1596 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) && 1597 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) || 1598 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks))) 1599 goto out; 1600 if (unlikely(f2fs_cp_error(sbi))) { 1601 err = -EIO; 1602 goto out; 1603 } 1604 1605 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops"); 1606 1607 err = block_operations(sbi); 1608 if (err) 1609 goto out; 1610 1611 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops"); 1612 1613 f2fs_flush_merged_writes(sbi); 1614 1615 /* this is the case of multiple fstrims without any changes */ 1616 if (cpc->reason & CP_DISCARD) { 1617 if (!f2fs_exist_trim_candidates(sbi, cpc)) { 1618 unblock_operations(sbi); 1619 goto out; 1620 } 1621 1622 if (NM_I(sbi)->nat_cnt[DIRTY_NAT] == 0 && 1623 SIT_I(sbi)->dirty_sentries == 0 && 1624 prefree_segments(sbi) == 0) { 1625 f2fs_flush_sit_entries(sbi, cpc); 1626 f2fs_clear_prefree_segments(sbi, cpc); 1627 unblock_operations(sbi); 1628 goto out; 1629 } 1630 } 1631 1632 /* 1633 * update checkpoint pack index 1634 * Increase the version number so that 1635 * SIT entries and seg summaries are written at correct place 1636 */ 1637 ckpt_ver = cur_cp_version(ckpt); 1638 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver); 1639 1640 /* write cached NAT/SIT entries to NAT/SIT area */ 1641 err = f2fs_flush_nat_entries(sbi, cpc); 1642 if (err) 1643 goto stop; 1644 1645 f2fs_flush_sit_entries(sbi, cpc); 1646 1647 /* save inmem log status */ 1648 f2fs_save_inmem_curseg(sbi); 1649 1650 err = do_checkpoint(sbi, cpc); 1651 if (err) 1652 f2fs_release_discard_addrs(sbi); 1653 else 1654 f2fs_clear_prefree_segments(sbi, cpc); 1655 1656 f2fs_restore_inmem_curseg(sbi); 1657 stop: 1658 unblock_operations(sbi); 1659 stat_inc_cp_count(sbi->stat_info); 1660 1661 if (cpc->reason & CP_RECOVERY) 1662 f2fs_notice(sbi, "checkpoint: version = %llx", ckpt_ver); 1663 1664 /* update CP_TIME to trigger checkpoint periodically */ 1665 f2fs_update_time(sbi, CP_TIME); 1666 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint"); 1667 out: 1668 if (cpc->reason != CP_RESIZE) 1669 up_write(&sbi->cp_global_sem); 1670 return err; 1671 } 1672 1673 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi) 1674 { 1675 int i; 1676 1677 for (i = 0; i < MAX_INO_ENTRY; i++) { 1678 struct inode_management *im = &sbi->im[i]; 1679 1680 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC); 1681 spin_lock_init(&im->ino_lock); 1682 INIT_LIST_HEAD(&im->ino_list); 1683 im->ino_num = 0; 1684 } 1685 1686 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS - 1687 NR_CURSEG_PERSIST_TYPE - __cp_payload(sbi)) * 1688 F2FS_ORPHANS_PER_BLOCK; 1689 } 1690 1691 int __init f2fs_create_checkpoint_caches(void) 1692 { 1693 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry", 1694 sizeof(struct ino_entry)); 1695 if (!ino_entry_slab) 1696 return -ENOMEM; 1697 f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry", 1698 sizeof(struct inode_entry)); 1699 if (!f2fs_inode_entry_slab) { 1700 kmem_cache_destroy(ino_entry_slab); 1701 return -ENOMEM; 1702 } 1703 return 0; 1704 } 1705 1706 void f2fs_destroy_checkpoint_caches(void) 1707 { 1708 kmem_cache_destroy(ino_entry_slab); 1709 kmem_cache_destroy(f2fs_inode_entry_slab); 1710 } 1711 1712 static int __write_checkpoint_sync(struct f2fs_sb_info *sbi) 1713 { 1714 struct cp_control cpc = { .reason = CP_SYNC, }; 1715 int err; 1716 1717 down_write(&sbi->gc_lock); 1718 err = f2fs_write_checkpoint(sbi, &cpc); 1719 up_write(&sbi->gc_lock); 1720 1721 return err; 1722 } 1723 1724 static void __checkpoint_and_complete_reqs(struct f2fs_sb_info *sbi) 1725 { 1726 struct ckpt_req_control *cprc = &sbi->cprc_info; 1727 struct ckpt_req *req, *next; 1728 struct llist_node *dispatch_list; 1729 u64 sum_diff = 0, diff, count = 0; 1730 int ret; 1731 1732 dispatch_list = llist_del_all(&cprc->issue_list); 1733 if (!dispatch_list) 1734 return; 1735 dispatch_list = llist_reverse_order(dispatch_list); 1736 1737 ret = __write_checkpoint_sync(sbi); 1738 atomic_inc(&cprc->issued_ckpt); 1739 1740 llist_for_each_entry_safe(req, next, dispatch_list, llnode) { 1741 diff = (u64)ktime_ms_delta(ktime_get(), req->queue_time); 1742 req->ret = ret; 1743 complete(&req->wait); 1744 1745 sum_diff += diff; 1746 count++; 1747 } 1748 atomic_sub(count, &cprc->queued_ckpt); 1749 atomic_add(count, &cprc->total_ckpt); 1750 1751 spin_lock(&cprc->stat_lock); 1752 cprc->cur_time = (unsigned int)div64_u64(sum_diff, count); 1753 if (cprc->peak_time < cprc->cur_time) 1754 cprc->peak_time = cprc->cur_time; 1755 spin_unlock(&cprc->stat_lock); 1756 } 1757 1758 static int issue_checkpoint_thread(void *data) 1759 { 1760 struct f2fs_sb_info *sbi = data; 1761 struct ckpt_req_control *cprc = &sbi->cprc_info; 1762 wait_queue_head_t *q = &cprc->ckpt_wait_queue; 1763 repeat: 1764 if (kthread_should_stop()) 1765 return 0; 1766 1767 if (!llist_empty(&cprc->issue_list)) 1768 __checkpoint_and_complete_reqs(sbi); 1769 1770 wait_event_interruptible(*q, 1771 kthread_should_stop() || !llist_empty(&cprc->issue_list)); 1772 goto repeat; 1773 } 1774 1775 static void flush_remained_ckpt_reqs(struct f2fs_sb_info *sbi, 1776 struct ckpt_req *wait_req) 1777 { 1778 struct ckpt_req_control *cprc = &sbi->cprc_info; 1779 1780 if (!llist_empty(&cprc->issue_list)) { 1781 __checkpoint_and_complete_reqs(sbi); 1782 } else { 1783 /* already dispatched by issue_checkpoint_thread */ 1784 if (wait_req) 1785 wait_for_completion(&wait_req->wait); 1786 } 1787 } 1788 1789 static void init_ckpt_req(struct ckpt_req *req) 1790 { 1791 memset(req, 0, sizeof(struct ckpt_req)); 1792 1793 init_completion(&req->wait); 1794 req->queue_time = ktime_get(); 1795 } 1796 1797 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi) 1798 { 1799 struct ckpt_req_control *cprc = &sbi->cprc_info; 1800 struct ckpt_req req; 1801 struct cp_control cpc; 1802 1803 cpc.reason = __get_cp_reason(sbi); 1804 if (!test_opt(sbi, MERGE_CHECKPOINT) || cpc.reason != CP_SYNC) { 1805 int ret; 1806 1807 down_write(&sbi->gc_lock); 1808 ret = f2fs_write_checkpoint(sbi, &cpc); 1809 up_write(&sbi->gc_lock); 1810 1811 return ret; 1812 } 1813 1814 if (!cprc->f2fs_issue_ckpt) 1815 return __write_checkpoint_sync(sbi); 1816 1817 init_ckpt_req(&req); 1818 1819 llist_add(&req.llnode, &cprc->issue_list); 1820 atomic_inc(&cprc->queued_ckpt); 1821 1822 /* 1823 * update issue_list before we wake up issue_checkpoint thread, 1824 * this smp_mb() pairs with another barrier in ___wait_event(), 1825 * see more details in comments of waitqueue_active(). 1826 */ 1827 smp_mb(); 1828 1829 if (waitqueue_active(&cprc->ckpt_wait_queue)) 1830 wake_up(&cprc->ckpt_wait_queue); 1831 1832 if (cprc->f2fs_issue_ckpt) 1833 wait_for_completion(&req.wait); 1834 else 1835 flush_remained_ckpt_reqs(sbi, &req); 1836 1837 return req.ret; 1838 } 1839 1840 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi) 1841 { 1842 dev_t dev = sbi->sb->s_bdev->bd_dev; 1843 struct ckpt_req_control *cprc = &sbi->cprc_info; 1844 1845 if (cprc->f2fs_issue_ckpt) 1846 return 0; 1847 1848 cprc->f2fs_issue_ckpt = kthread_run(issue_checkpoint_thread, sbi, 1849 "f2fs_ckpt-%u:%u", MAJOR(dev), MINOR(dev)); 1850 if (IS_ERR(cprc->f2fs_issue_ckpt)) { 1851 cprc->f2fs_issue_ckpt = NULL; 1852 return -ENOMEM; 1853 } 1854 1855 set_task_ioprio(cprc->f2fs_issue_ckpt, cprc->ckpt_thread_ioprio); 1856 1857 return 0; 1858 } 1859 1860 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi) 1861 { 1862 struct ckpt_req_control *cprc = &sbi->cprc_info; 1863 1864 if (cprc->f2fs_issue_ckpt) { 1865 struct task_struct *ckpt_task = cprc->f2fs_issue_ckpt; 1866 1867 cprc->f2fs_issue_ckpt = NULL; 1868 kthread_stop(ckpt_task); 1869 1870 flush_remained_ckpt_reqs(sbi, NULL); 1871 } 1872 } 1873 1874 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi) 1875 { 1876 struct ckpt_req_control *cprc = &sbi->cprc_info; 1877 1878 atomic_set(&cprc->issued_ckpt, 0); 1879 atomic_set(&cprc->total_ckpt, 0); 1880 atomic_set(&cprc->queued_ckpt, 0); 1881 cprc->ckpt_thread_ioprio = DEFAULT_CHECKPOINT_IOPRIO; 1882 init_waitqueue_head(&cprc->ckpt_wait_queue); 1883 init_llist_head(&cprc->issue_list); 1884 spin_lock_init(&cprc->stat_lock); 1885 } 1886