xref: /linux/fs/f2fs/checkpoint.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/checkpoint.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/bio.h>
10 #include <linux/mpage.h>
11 #include <linux/writeback.h>
12 #include <linux/blkdev.h>
13 #include <linux/f2fs_fs.h>
14 #include <linux/pagevec.h>
15 #include <linux/swap.h>
16 #include <linux/kthread.h>
17 
18 #include "f2fs.h"
19 #include "node.h"
20 #include "segment.h"
21 #include "iostat.h"
22 #include <trace/events/f2fs.h>
23 
24 #define DEFAULT_CHECKPOINT_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
25 
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *f2fs_inode_entry_slab;
28 
29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
30 						unsigned char reason)
31 {
32 	f2fs_build_fault_attr(sbi, 0, 0);
33 	if (!end_io)
34 		f2fs_flush_merged_writes(sbi);
35 	f2fs_handle_critical_error(sbi, reason);
36 }
37 
38 /*
39  * We guarantee no failure on the returned page.
40  */
41 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
42 {
43 	struct address_space *mapping = META_MAPPING(sbi);
44 	struct page *page;
45 repeat:
46 	page = f2fs_grab_cache_page(mapping, index, false);
47 	if (!page) {
48 		cond_resched();
49 		goto repeat;
50 	}
51 	f2fs_wait_on_page_writeback(page, META, true, true);
52 	if (!PageUptodate(page))
53 		SetPageUptodate(page);
54 	return page;
55 }
56 
57 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
58 							bool is_meta)
59 {
60 	struct address_space *mapping = META_MAPPING(sbi);
61 	struct page *page;
62 	struct f2fs_io_info fio = {
63 		.sbi = sbi,
64 		.type = META,
65 		.op = REQ_OP_READ,
66 		.op_flags = REQ_META | REQ_PRIO,
67 		.old_blkaddr = index,
68 		.new_blkaddr = index,
69 		.encrypted_page = NULL,
70 		.is_por = !is_meta ? 1 : 0,
71 	};
72 	int err;
73 
74 	if (unlikely(!is_meta))
75 		fio.op_flags &= ~REQ_META;
76 repeat:
77 	page = f2fs_grab_cache_page(mapping, index, false);
78 	if (!page) {
79 		cond_resched();
80 		goto repeat;
81 	}
82 	if (PageUptodate(page))
83 		goto out;
84 
85 	fio.page = page;
86 
87 	err = f2fs_submit_page_bio(&fio);
88 	if (err) {
89 		f2fs_put_page(page, 1);
90 		return ERR_PTR(err);
91 	}
92 
93 	f2fs_update_iostat(sbi, NULL, FS_META_READ_IO, F2FS_BLKSIZE);
94 
95 	lock_page(page);
96 	if (unlikely(page->mapping != mapping)) {
97 		f2fs_put_page(page, 1);
98 		goto repeat;
99 	}
100 
101 	if (unlikely(!PageUptodate(page))) {
102 		f2fs_handle_page_eio(sbi, page_folio(page), META);
103 		f2fs_put_page(page, 1);
104 		return ERR_PTR(-EIO);
105 	}
106 out:
107 	return page;
108 }
109 
110 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
111 {
112 	return __get_meta_page(sbi, index, true);
113 }
114 
115 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index)
116 {
117 	struct page *page;
118 	int count = 0;
119 
120 retry:
121 	page = __get_meta_page(sbi, index, true);
122 	if (IS_ERR(page)) {
123 		if (PTR_ERR(page) == -EIO &&
124 				++count <= DEFAULT_RETRY_IO_COUNT)
125 			goto retry;
126 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_META_PAGE);
127 	}
128 	return page;
129 }
130 
131 /* for POR only */
132 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
133 {
134 	return __get_meta_page(sbi, index, false);
135 }
136 
137 static bool __is_bitmap_valid(struct f2fs_sb_info *sbi, block_t blkaddr,
138 							int type)
139 {
140 	struct seg_entry *se;
141 	unsigned int segno, offset;
142 	bool exist;
143 
144 	if (type == DATA_GENERIC)
145 		return true;
146 
147 	segno = GET_SEGNO(sbi, blkaddr);
148 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
149 	se = get_seg_entry(sbi, segno);
150 
151 	exist = f2fs_test_bit(offset, se->cur_valid_map);
152 
153 	/* skip data, if we already have an error in checkpoint. */
154 	if (unlikely(f2fs_cp_error(sbi)))
155 		return exist;
156 
157 	if ((exist && type == DATA_GENERIC_ENHANCE_UPDATE) ||
158 		(!exist && type == DATA_GENERIC_ENHANCE))
159 		goto out_err;
160 	if (!exist && type != DATA_GENERIC_ENHANCE_UPDATE)
161 		goto out_handle;
162 	return exist;
163 
164 out_err:
165 	f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d",
166 		 blkaddr, exist);
167 	set_sbi_flag(sbi, SBI_NEED_FSCK);
168 	dump_stack();
169 out_handle:
170 	f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
171 	return exist;
172 }
173 
174 static bool __f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
175 					block_t blkaddr, int type)
176 {
177 	switch (type) {
178 	case META_NAT:
179 		break;
180 	case META_SIT:
181 		if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
182 			goto check_only;
183 		break;
184 	case META_SSA:
185 		if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
186 			blkaddr < SM_I(sbi)->ssa_blkaddr))
187 			goto check_only;
188 		break;
189 	case META_CP:
190 		if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
191 			blkaddr < __start_cp_addr(sbi)))
192 			goto check_only;
193 		break;
194 	case META_POR:
195 		if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
196 			blkaddr < MAIN_BLKADDR(sbi)))
197 			goto check_only;
198 		break;
199 	case DATA_GENERIC:
200 	case DATA_GENERIC_ENHANCE:
201 	case DATA_GENERIC_ENHANCE_READ:
202 	case DATA_GENERIC_ENHANCE_UPDATE:
203 		if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
204 				blkaddr < MAIN_BLKADDR(sbi))) {
205 
206 			/* Skip to emit an error message. */
207 			if (unlikely(f2fs_cp_error(sbi)))
208 				return false;
209 
210 			f2fs_warn(sbi, "access invalid blkaddr:%u",
211 				  blkaddr);
212 			set_sbi_flag(sbi, SBI_NEED_FSCK);
213 			dump_stack();
214 			goto err;
215 		} else {
216 			return __is_bitmap_valid(sbi, blkaddr, type);
217 		}
218 		break;
219 	case META_GENERIC:
220 		if (unlikely(blkaddr < SEG0_BLKADDR(sbi) ||
221 			blkaddr >= MAIN_BLKADDR(sbi)))
222 			goto err;
223 		break;
224 	default:
225 		BUG();
226 	}
227 
228 	return true;
229 err:
230 	f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
231 check_only:
232 	return false;
233 }
234 
235 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
236 					block_t blkaddr, int type)
237 {
238 	if (time_to_inject(sbi, FAULT_BLKADDR_VALIDITY))
239 		return false;
240 	return __f2fs_is_valid_blkaddr(sbi, blkaddr, type);
241 }
242 
243 bool f2fs_is_valid_blkaddr_raw(struct f2fs_sb_info *sbi,
244 					block_t blkaddr, int type)
245 {
246 	return __f2fs_is_valid_blkaddr(sbi, blkaddr, type);
247 }
248 
249 /*
250  * Readahead CP/NAT/SIT/SSA/POR pages
251  */
252 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
253 							int type, bool sync)
254 {
255 	struct page *page;
256 	block_t blkno = start;
257 	struct f2fs_io_info fio = {
258 		.sbi = sbi,
259 		.type = META,
260 		.op = REQ_OP_READ,
261 		.op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
262 		.encrypted_page = NULL,
263 		.in_list = 0,
264 		.is_por = (type == META_POR) ? 1 : 0,
265 	};
266 	struct blk_plug plug;
267 	int err;
268 
269 	if (unlikely(type == META_POR))
270 		fio.op_flags &= ~REQ_META;
271 
272 	blk_start_plug(&plug);
273 	for (; nrpages-- > 0; blkno++) {
274 
275 		if (!f2fs_is_valid_blkaddr(sbi, blkno, type))
276 			goto out;
277 
278 		switch (type) {
279 		case META_NAT:
280 			if (unlikely(blkno >=
281 					NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
282 				blkno = 0;
283 			/* get nat block addr */
284 			fio.new_blkaddr = current_nat_addr(sbi,
285 					blkno * NAT_ENTRY_PER_BLOCK);
286 			break;
287 		case META_SIT:
288 			if (unlikely(blkno >= TOTAL_SEGS(sbi)))
289 				goto out;
290 			/* get sit block addr */
291 			fio.new_blkaddr = current_sit_addr(sbi,
292 					blkno * SIT_ENTRY_PER_BLOCK);
293 			break;
294 		case META_SSA:
295 		case META_CP:
296 		case META_POR:
297 			fio.new_blkaddr = blkno;
298 			break;
299 		default:
300 			BUG();
301 		}
302 
303 		page = f2fs_grab_cache_page(META_MAPPING(sbi),
304 						fio.new_blkaddr, false);
305 		if (!page)
306 			continue;
307 		if (PageUptodate(page)) {
308 			f2fs_put_page(page, 1);
309 			continue;
310 		}
311 
312 		fio.page = page;
313 		err = f2fs_submit_page_bio(&fio);
314 		f2fs_put_page(page, err ? 1 : 0);
315 
316 		if (!err)
317 			f2fs_update_iostat(sbi, NULL, FS_META_READ_IO,
318 							F2FS_BLKSIZE);
319 	}
320 out:
321 	blk_finish_plug(&plug);
322 	return blkno - start;
323 }
324 
325 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
326 							unsigned int ra_blocks)
327 {
328 	struct page *page;
329 	bool readahead = false;
330 
331 	if (ra_blocks == RECOVERY_MIN_RA_BLOCKS)
332 		return;
333 
334 	page = find_get_page(META_MAPPING(sbi), index);
335 	if (!page || !PageUptodate(page))
336 		readahead = true;
337 	f2fs_put_page(page, 0);
338 
339 	if (readahead)
340 		f2fs_ra_meta_pages(sbi, index, ra_blocks, META_POR, true);
341 }
342 
343 static int __f2fs_write_meta_page(struct page *page,
344 				struct writeback_control *wbc,
345 				enum iostat_type io_type)
346 {
347 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
348 	struct folio *folio = page_folio(page);
349 
350 	trace_f2fs_writepage(folio, META);
351 
352 	if (unlikely(f2fs_cp_error(sbi))) {
353 		if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) {
354 			folio_clear_uptodate(folio);
355 			dec_page_count(sbi, F2FS_DIRTY_META);
356 			folio_unlock(folio);
357 			return 0;
358 		}
359 		goto redirty_out;
360 	}
361 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
362 		goto redirty_out;
363 	if (wbc->for_reclaim && folio->index < GET_SUM_BLOCK(sbi, 0))
364 		goto redirty_out;
365 
366 	f2fs_do_write_meta_page(sbi, folio, io_type);
367 	dec_page_count(sbi, F2FS_DIRTY_META);
368 
369 	if (wbc->for_reclaim)
370 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, META);
371 
372 	folio_unlock(folio);
373 
374 	if (unlikely(f2fs_cp_error(sbi)))
375 		f2fs_submit_merged_write(sbi, META);
376 
377 	return 0;
378 
379 redirty_out:
380 	redirty_page_for_writepage(wbc, page);
381 	return AOP_WRITEPAGE_ACTIVATE;
382 }
383 
384 static int f2fs_write_meta_page(struct page *page,
385 				struct writeback_control *wbc)
386 {
387 	return __f2fs_write_meta_page(page, wbc, FS_META_IO);
388 }
389 
390 static int f2fs_write_meta_pages(struct address_space *mapping,
391 				struct writeback_control *wbc)
392 {
393 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
394 	long diff, written;
395 
396 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
397 		goto skip_write;
398 
399 	/* collect a number of dirty meta pages and write together */
400 	if (wbc->sync_mode != WB_SYNC_ALL &&
401 			get_pages(sbi, F2FS_DIRTY_META) <
402 					nr_pages_to_skip(sbi, META))
403 		goto skip_write;
404 
405 	/* if locked failed, cp will flush dirty pages instead */
406 	if (!f2fs_down_write_trylock(&sbi->cp_global_sem))
407 		goto skip_write;
408 
409 	trace_f2fs_writepages(mapping->host, wbc, META);
410 	diff = nr_pages_to_write(sbi, META, wbc);
411 	written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO);
412 	f2fs_up_write(&sbi->cp_global_sem);
413 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
414 	return 0;
415 
416 skip_write:
417 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
418 	trace_f2fs_writepages(mapping->host, wbc, META);
419 	return 0;
420 }
421 
422 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
423 				long nr_to_write, enum iostat_type io_type)
424 {
425 	struct address_space *mapping = META_MAPPING(sbi);
426 	pgoff_t index = 0, prev = ULONG_MAX;
427 	struct folio_batch fbatch;
428 	long nwritten = 0;
429 	int nr_folios;
430 	struct writeback_control wbc = {
431 		.for_reclaim = 0,
432 	};
433 	struct blk_plug plug;
434 
435 	folio_batch_init(&fbatch);
436 
437 	blk_start_plug(&plug);
438 
439 	while ((nr_folios = filemap_get_folios_tag(mapping, &index,
440 					(pgoff_t)-1,
441 					PAGECACHE_TAG_DIRTY, &fbatch))) {
442 		int i;
443 
444 		for (i = 0; i < nr_folios; i++) {
445 			struct folio *folio = fbatch.folios[i];
446 
447 			if (nr_to_write != LONG_MAX && i != 0 &&
448 					folio->index != prev +
449 					folio_nr_pages(fbatch.folios[i-1])) {
450 				folio_batch_release(&fbatch);
451 				goto stop;
452 			}
453 
454 			folio_lock(folio);
455 
456 			if (unlikely(folio->mapping != mapping)) {
457 continue_unlock:
458 				folio_unlock(folio);
459 				continue;
460 			}
461 			if (!folio_test_dirty(folio)) {
462 				/* someone wrote it for us */
463 				goto continue_unlock;
464 			}
465 
466 			f2fs_wait_on_page_writeback(&folio->page, META,
467 					true, true);
468 
469 			if (!folio_clear_dirty_for_io(folio))
470 				goto continue_unlock;
471 
472 			if (__f2fs_write_meta_page(&folio->page, &wbc,
473 						io_type)) {
474 				folio_unlock(folio);
475 				break;
476 			}
477 			nwritten += folio_nr_pages(folio);
478 			prev = folio->index;
479 			if (unlikely(nwritten >= nr_to_write))
480 				break;
481 		}
482 		folio_batch_release(&fbatch);
483 		cond_resched();
484 	}
485 stop:
486 	if (nwritten)
487 		f2fs_submit_merged_write(sbi, type);
488 
489 	blk_finish_plug(&plug);
490 
491 	return nwritten;
492 }
493 
494 static bool f2fs_dirty_meta_folio(struct address_space *mapping,
495 		struct folio *folio)
496 {
497 	trace_f2fs_set_page_dirty(folio, META);
498 
499 	if (!folio_test_uptodate(folio))
500 		folio_mark_uptodate(folio);
501 	if (filemap_dirty_folio(mapping, folio)) {
502 		inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_META);
503 		set_page_private_reference(&folio->page);
504 		return true;
505 	}
506 	return false;
507 }
508 
509 const struct address_space_operations f2fs_meta_aops = {
510 	.writepage	= f2fs_write_meta_page,
511 	.writepages	= f2fs_write_meta_pages,
512 	.dirty_folio	= f2fs_dirty_meta_folio,
513 	.invalidate_folio = f2fs_invalidate_folio,
514 	.release_folio	= f2fs_release_folio,
515 	.migrate_folio	= filemap_migrate_folio,
516 };
517 
518 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino,
519 						unsigned int devidx, int type)
520 {
521 	struct inode_management *im = &sbi->im[type];
522 	struct ino_entry *e = NULL, *new = NULL;
523 
524 	if (type == FLUSH_INO) {
525 		rcu_read_lock();
526 		e = radix_tree_lookup(&im->ino_root, ino);
527 		rcu_read_unlock();
528 	}
529 
530 retry:
531 	if (!e)
532 		new = f2fs_kmem_cache_alloc(ino_entry_slab,
533 						GFP_NOFS, true, NULL);
534 
535 	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
536 
537 	spin_lock(&im->ino_lock);
538 	e = radix_tree_lookup(&im->ino_root, ino);
539 	if (!e) {
540 		if (!new) {
541 			spin_unlock(&im->ino_lock);
542 			radix_tree_preload_end();
543 			goto retry;
544 		}
545 		e = new;
546 		if (unlikely(radix_tree_insert(&im->ino_root, ino, e)))
547 			f2fs_bug_on(sbi, 1);
548 
549 		memset(e, 0, sizeof(struct ino_entry));
550 		e->ino = ino;
551 
552 		list_add_tail(&e->list, &im->ino_list);
553 		if (type != ORPHAN_INO)
554 			im->ino_num++;
555 	}
556 
557 	if (type == FLUSH_INO)
558 		f2fs_set_bit(devidx, (char *)&e->dirty_device);
559 
560 	spin_unlock(&im->ino_lock);
561 	radix_tree_preload_end();
562 
563 	if (new && e != new)
564 		kmem_cache_free(ino_entry_slab, new);
565 }
566 
567 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
568 {
569 	struct inode_management *im = &sbi->im[type];
570 	struct ino_entry *e;
571 
572 	spin_lock(&im->ino_lock);
573 	e = radix_tree_lookup(&im->ino_root, ino);
574 	if (e) {
575 		list_del(&e->list);
576 		radix_tree_delete(&im->ino_root, ino);
577 		im->ino_num--;
578 		spin_unlock(&im->ino_lock);
579 		kmem_cache_free(ino_entry_slab, e);
580 		return;
581 	}
582 	spin_unlock(&im->ino_lock);
583 }
584 
585 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
586 {
587 	/* add new dirty ino entry into list */
588 	__add_ino_entry(sbi, ino, 0, type);
589 }
590 
591 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
592 {
593 	/* remove dirty ino entry from list */
594 	__remove_ino_entry(sbi, ino, type);
595 }
596 
597 /* mode should be APPEND_INO, UPDATE_INO or TRANS_DIR_INO */
598 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
599 {
600 	struct inode_management *im = &sbi->im[mode];
601 	struct ino_entry *e;
602 
603 	spin_lock(&im->ino_lock);
604 	e = radix_tree_lookup(&im->ino_root, ino);
605 	spin_unlock(&im->ino_lock);
606 	return e ? true : false;
607 }
608 
609 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all)
610 {
611 	struct ino_entry *e, *tmp;
612 	int i;
613 
614 	for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) {
615 		struct inode_management *im = &sbi->im[i];
616 
617 		spin_lock(&im->ino_lock);
618 		list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
619 			list_del(&e->list);
620 			radix_tree_delete(&im->ino_root, e->ino);
621 			kmem_cache_free(ino_entry_slab, e);
622 			im->ino_num--;
623 		}
624 		spin_unlock(&im->ino_lock);
625 	}
626 }
627 
628 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
629 					unsigned int devidx, int type)
630 {
631 	__add_ino_entry(sbi, ino, devidx, type);
632 }
633 
634 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
635 					unsigned int devidx, int type)
636 {
637 	struct inode_management *im = &sbi->im[type];
638 	struct ino_entry *e;
639 	bool is_dirty = false;
640 
641 	spin_lock(&im->ino_lock);
642 	e = radix_tree_lookup(&im->ino_root, ino);
643 	if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device))
644 		is_dirty = true;
645 	spin_unlock(&im->ino_lock);
646 	return is_dirty;
647 }
648 
649 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi)
650 {
651 	struct inode_management *im = &sbi->im[ORPHAN_INO];
652 	int err = 0;
653 
654 	spin_lock(&im->ino_lock);
655 
656 	if (time_to_inject(sbi, FAULT_ORPHAN)) {
657 		spin_unlock(&im->ino_lock);
658 		return -ENOSPC;
659 	}
660 
661 	if (unlikely(im->ino_num >= sbi->max_orphans))
662 		err = -ENOSPC;
663 	else
664 		im->ino_num++;
665 	spin_unlock(&im->ino_lock);
666 
667 	return err;
668 }
669 
670 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi)
671 {
672 	struct inode_management *im = &sbi->im[ORPHAN_INO];
673 
674 	spin_lock(&im->ino_lock);
675 	f2fs_bug_on(sbi, im->ino_num == 0);
676 	im->ino_num--;
677 	spin_unlock(&im->ino_lock);
678 }
679 
680 void f2fs_add_orphan_inode(struct inode *inode)
681 {
682 	/* add new orphan ino entry into list */
683 	__add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO);
684 	f2fs_update_inode_page(inode);
685 }
686 
687 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
688 {
689 	/* remove orphan entry from orphan list */
690 	__remove_ino_entry(sbi, ino, ORPHAN_INO);
691 }
692 
693 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
694 {
695 	struct inode *inode;
696 	struct node_info ni;
697 	int err;
698 
699 	inode = f2fs_iget_retry(sbi->sb, ino);
700 	if (IS_ERR(inode)) {
701 		/*
702 		 * there should be a bug that we can't find the entry
703 		 * to orphan inode.
704 		 */
705 		f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
706 		return PTR_ERR(inode);
707 	}
708 
709 	err = f2fs_dquot_initialize(inode);
710 	if (err) {
711 		iput(inode);
712 		goto err_out;
713 	}
714 
715 	clear_nlink(inode);
716 
717 	/* truncate all the data during iput */
718 	iput(inode);
719 
720 	err = f2fs_get_node_info(sbi, ino, &ni, false);
721 	if (err)
722 		goto err_out;
723 
724 	/* ENOMEM was fully retried in f2fs_evict_inode. */
725 	if (ni.blk_addr != NULL_ADDR) {
726 		err = -EIO;
727 		goto err_out;
728 	}
729 	return 0;
730 
731 err_out:
732 	set_sbi_flag(sbi, SBI_NEED_FSCK);
733 	f2fs_warn(sbi, "%s: orphan failed (ino=%x), run fsck to fix.",
734 		  __func__, ino);
735 	return err;
736 }
737 
738 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi)
739 {
740 	block_t start_blk, orphan_blocks, i, j;
741 	int err = 0;
742 
743 	if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
744 		return 0;
745 
746 	if (f2fs_hw_is_readonly(sbi)) {
747 		f2fs_info(sbi, "write access unavailable, skipping orphan cleanup");
748 		return 0;
749 	}
750 
751 	if (is_sbi_flag_set(sbi, SBI_IS_WRITABLE))
752 		f2fs_info(sbi, "orphan cleanup on readonly fs");
753 
754 	start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
755 	orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
756 
757 	f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
758 
759 	for (i = 0; i < orphan_blocks; i++) {
760 		struct page *page;
761 		struct f2fs_orphan_block *orphan_blk;
762 
763 		page = f2fs_get_meta_page(sbi, start_blk + i);
764 		if (IS_ERR(page)) {
765 			err = PTR_ERR(page);
766 			goto out;
767 		}
768 
769 		orphan_blk = (struct f2fs_orphan_block *)page_address(page);
770 		for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
771 			nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
772 
773 			err = recover_orphan_inode(sbi, ino);
774 			if (err) {
775 				f2fs_put_page(page, 1);
776 				goto out;
777 			}
778 		}
779 		f2fs_put_page(page, 1);
780 	}
781 	/* clear Orphan Flag */
782 	clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
783 out:
784 	set_sbi_flag(sbi, SBI_IS_RECOVERED);
785 
786 	return err;
787 }
788 
789 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
790 {
791 	struct list_head *head;
792 	struct f2fs_orphan_block *orphan_blk = NULL;
793 	unsigned int nentries = 0;
794 	unsigned short index = 1;
795 	unsigned short orphan_blocks;
796 	struct page *page = NULL;
797 	struct ino_entry *orphan = NULL;
798 	struct inode_management *im = &sbi->im[ORPHAN_INO];
799 
800 	orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
801 
802 	/*
803 	 * we don't need to do spin_lock(&im->ino_lock) here, since all the
804 	 * orphan inode operations are covered under f2fs_lock_op().
805 	 * And, spin_lock should be avoided due to page operations below.
806 	 */
807 	head = &im->ino_list;
808 
809 	/* loop for each orphan inode entry and write them in journal block */
810 	list_for_each_entry(orphan, head, list) {
811 		if (!page) {
812 			page = f2fs_grab_meta_page(sbi, start_blk++);
813 			orphan_blk =
814 				(struct f2fs_orphan_block *)page_address(page);
815 			memset(orphan_blk, 0, sizeof(*orphan_blk));
816 		}
817 
818 		orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
819 
820 		if (nentries == F2FS_ORPHANS_PER_BLOCK) {
821 			/*
822 			 * an orphan block is full of 1020 entries,
823 			 * then we need to flush current orphan blocks
824 			 * and bring another one in memory
825 			 */
826 			orphan_blk->blk_addr = cpu_to_le16(index);
827 			orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
828 			orphan_blk->entry_count = cpu_to_le32(nentries);
829 			set_page_dirty(page);
830 			f2fs_put_page(page, 1);
831 			index++;
832 			nentries = 0;
833 			page = NULL;
834 		}
835 	}
836 
837 	if (page) {
838 		orphan_blk->blk_addr = cpu_to_le16(index);
839 		orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
840 		orphan_blk->entry_count = cpu_to_le32(nentries);
841 		set_page_dirty(page);
842 		f2fs_put_page(page, 1);
843 	}
844 }
845 
846 static __u32 f2fs_checkpoint_chksum(struct f2fs_sb_info *sbi,
847 						struct f2fs_checkpoint *ckpt)
848 {
849 	unsigned int chksum_ofs = le32_to_cpu(ckpt->checksum_offset);
850 	__u32 chksum;
851 
852 	chksum = f2fs_crc32(sbi, ckpt, chksum_ofs);
853 	if (chksum_ofs < CP_CHKSUM_OFFSET) {
854 		chksum_ofs += sizeof(chksum);
855 		chksum = f2fs_chksum(sbi, chksum, (__u8 *)ckpt + chksum_ofs,
856 						F2FS_BLKSIZE - chksum_ofs);
857 	}
858 	return chksum;
859 }
860 
861 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
862 		struct f2fs_checkpoint **cp_block, struct page **cp_page,
863 		unsigned long long *version)
864 {
865 	size_t crc_offset = 0;
866 	__u32 crc;
867 
868 	*cp_page = f2fs_get_meta_page(sbi, cp_addr);
869 	if (IS_ERR(*cp_page))
870 		return PTR_ERR(*cp_page);
871 
872 	*cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
873 
874 	crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
875 	if (crc_offset < CP_MIN_CHKSUM_OFFSET ||
876 			crc_offset > CP_CHKSUM_OFFSET) {
877 		f2fs_put_page(*cp_page, 1);
878 		f2fs_warn(sbi, "invalid crc_offset: %zu", crc_offset);
879 		return -EINVAL;
880 	}
881 
882 	crc = f2fs_checkpoint_chksum(sbi, *cp_block);
883 	if (crc != cur_cp_crc(*cp_block)) {
884 		f2fs_put_page(*cp_page, 1);
885 		f2fs_warn(sbi, "invalid crc value");
886 		return -EINVAL;
887 	}
888 
889 	*version = cur_cp_version(*cp_block);
890 	return 0;
891 }
892 
893 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
894 				block_t cp_addr, unsigned long long *version)
895 {
896 	struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
897 	struct f2fs_checkpoint *cp_block = NULL;
898 	unsigned long long cur_version = 0, pre_version = 0;
899 	unsigned int cp_blocks;
900 	int err;
901 
902 	err = get_checkpoint_version(sbi, cp_addr, &cp_block,
903 					&cp_page_1, version);
904 	if (err)
905 		return NULL;
906 
907 	cp_blocks = le32_to_cpu(cp_block->cp_pack_total_block_count);
908 
909 	if (cp_blocks > BLKS_PER_SEG(sbi) || cp_blocks <= F2FS_CP_PACKS) {
910 		f2fs_warn(sbi, "invalid cp_pack_total_block_count:%u",
911 			  le32_to_cpu(cp_block->cp_pack_total_block_count));
912 		goto invalid_cp;
913 	}
914 	pre_version = *version;
915 
916 	cp_addr += cp_blocks - 1;
917 	err = get_checkpoint_version(sbi, cp_addr, &cp_block,
918 					&cp_page_2, version);
919 	if (err)
920 		goto invalid_cp;
921 	cur_version = *version;
922 
923 	if (cur_version == pre_version) {
924 		*version = cur_version;
925 		f2fs_put_page(cp_page_2, 1);
926 		return cp_page_1;
927 	}
928 	f2fs_put_page(cp_page_2, 1);
929 invalid_cp:
930 	f2fs_put_page(cp_page_1, 1);
931 	return NULL;
932 }
933 
934 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi)
935 {
936 	struct f2fs_checkpoint *cp_block;
937 	struct f2fs_super_block *fsb = sbi->raw_super;
938 	struct page *cp1, *cp2, *cur_page;
939 	unsigned long blk_size = sbi->blocksize;
940 	unsigned long long cp1_version = 0, cp2_version = 0;
941 	unsigned long long cp_start_blk_no;
942 	unsigned int cp_blks = 1 + __cp_payload(sbi);
943 	block_t cp_blk_no;
944 	int i;
945 	int err;
946 
947 	sbi->ckpt = f2fs_kvzalloc(sbi, array_size(blk_size, cp_blks),
948 				  GFP_KERNEL);
949 	if (!sbi->ckpt)
950 		return -ENOMEM;
951 	/*
952 	 * Finding out valid cp block involves read both
953 	 * sets( cp pack 1 and cp pack 2)
954 	 */
955 	cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
956 	cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
957 
958 	/* The second checkpoint pack should start at the next segment */
959 	cp_start_blk_no += ((unsigned long long)1) <<
960 				le32_to_cpu(fsb->log_blocks_per_seg);
961 	cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
962 
963 	if (cp1 && cp2) {
964 		if (ver_after(cp2_version, cp1_version))
965 			cur_page = cp2;
966 		else
967 			cur_page = cp1;
968 	} else if (cp1) {
969 		cur_page = cp1;
970 	} else if (cp2) {
971 		cur_page = cp2;
972 	} else {
973 		err = -EFSCORRUPTED;
974 		goto fail_no_cp;
975 	}
976 
977 	cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
978 	memcpy(sbi->ckpt, cp_block, blk_size);
979 
980 	if (cur_page == cp1)
981 		sbi->cur_cp_pack = 1;
982 	else
983 		sbi->cur_cp_pack = 2;
984 
985 	/* Sanity checking of checkpoint */
986 	if (f2fs_sanity_check_ckpt(sbi)) {
987 		err = -EFSCORRUPTED;
988 		goto free_fail_no_cp;
989 	}
990 
991 	if (cp_blks <= 1)
992 		goto done;
993 
994 	cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
995 	if (cur_page == cp2)
996 		cp_blk_no += BIT(le32_to_cpu(fsb->log_blocks_per_seg));
997 
998 	for (i = 1; i < cp_blks; i++) {
999 		void *sit_bitmap_ptr;
1000 		unsigned char *ckpt = (unsigned char *)sbi->ckpt;
1001 
1002 		cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i);
1003 		if (IS_ERR(cur_page)) {
1004 			err = PTR_ERR(cur_page);
1005 			goto free_fail_no_cp;
1006 		}
1007 		sit_bitmap_ptr = page_address(cur_page);
1008 		memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
1009 		f2fs_put_page(cur_page, 1);
1010 	}
1011 done:
1012 	f2fs_put_page(cp1, 1);
1013 	f2fs_put_page(cp2, 1);
1014 	return 0;
1015 
1016 free_fail_no_cp:
1017 	f2fs_put_page(cp1, 1);
1018 	f2fs_put_page(cp2, 1);
1019 fail_no_cp:
1020 	kvfree(sbi->ckpt);
1021 	return err;
1022 }
1023 
1024 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
1025 {
1026 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1027 	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
1028 
1029 	if (is_inode_flag_set(inode, flag))
1030 		return;
1031 
1032 	set_inode_flag(inode, flag);
1033 	list_add_tail(&F2FS_I(inode)->dirty_list, &sbi->inode_list[type]);
1034 	stat_inc_dirty_inode(sbi, type);
1035 }
1036 
1037 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
1038 {
1039 	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
1040 
1041 	if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
1042 		return;
1043 
1044 	list_del_init(&F2FS_I(inode)->dirty_list);
1045 	clear_inode_flag(inode, flag);
1046 	stat_dec_dirty_inode(F2FS_I_SB(inode), type);
1047 }
1048 
1049 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio)
1050 {
1051 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1052 	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1053 
1054 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1055 			!S_ISLNK(inode->i_mode))
1056 		return;
1057 
1058 	spin_lock(&sbi->inode_lock[type]);
1059 	if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
1060 		__add_dirty_inode(inode, type);
1061 	inode_inc_dirty_pages(inode);
1062 	spin_unlock(&sbi->inode_lock[type]);
1063 
1064 	set_page_private_reference(&folio->page);
1065 }
1066 
1067 void f2fs_remove_dirty_inode(struct inode *inode)
1068 {
1069 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1070 	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1071 
1072 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1073 			!S_ISLNK(inode->i_mode))
1074 		return;
1075 
1076 	if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
1077 		return;
1078 
1079 	spin_lock(&sbi->inode_lock[type]);
1080 	__remove_dirty_inode(inode, type);
1081 	spin_unlock(&sbi->inode_lock[type]);
1082 }
1083 
1084 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
1085 						bool from_cp)
1086 {
1087 	struct list_head *head;
1088 	struct inode *inode;
1089 	struct f2fs_inode_info *fi;
1090 	bool is_dir = (type == DIR_INODE);
1091 	unsigned long ino = 0;
1092 
1093 	trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
1094 				get_pages(sbi, is_dir ?
1095 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1096 retry:
1097 	if (unlikely(f2fs_cp_error(sbi))) {
1098 		trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1099 				get_pages(sbi, is_dir ?
1100 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1101 		return -EIO;
1102 	}
1103 
1104 	spin_lock(&sbi->inode_lock[type]);
1105 
1106 	head = &sbi->inode_list[type];
1107 	if (list_empty(head)) {
1108 		spin_unlock(&sbi->inode_lock[type]);
1109 		trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1110 				get_pages(sbi, is_dir ?
1111 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1112 		return 0;
1113 	}
1114 	fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
1115 	inode = igrab(&fi->vfs_inode);
1116 	spin_unlock(&sbi->inode_lock[type]);
1117 	if (inode) {
1118 		unsigned long cur_ino = inode->i_ino;
1119 
1120 		if (from_cp)
1121 			F2FS_I(inode)->cp_task = current;
1122 		F2FS_I(inode)->wb_task = current;
1123 
1124 		filemap_fdatawrite(inode->i_mapping);
1125 
1126 		F2FS_I(inode)->wb_task = NULL;
1127 		if (from_cp)
1128 			F2FS_I(inode)->cp_task = NULL;
1129 
1130 		iput(inode);
1131 		/* We need to give cpu to another writers. */
1132 		if (ino == cur_ino)
1133 			cond_resched();
1134 		else
1135 			ino = cur_ino;
1136 	} else {
1137 		/*
1138 		 * We should submit bio, since it exists several
1139 		 * writebacking dentry pages in the freeing inode.
1140 		 */
1141 		f2fs_submit_merged_write(sbi, DATA);
1142 		cond_resched();
1143 	}
1144 	goto retry;
1145 }
1146 
1147 static int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
1148 {
1149 	struct list_head *head = &sbi->inode_list[DIRTY_META];
1150 	struct inode *inode;
1151 	struct f2fs_inode_info *fi;
1152 	s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
1153 
1154 	while (total--) {
1155 		if (unlikely(f2fs_cp_error(sbi)))
1156 			return -EIO;
1157 
1158 		spin_lock(&sbi->inode_lock[DIRTY_META]);
1159 		if (list_empty(head)) {
1160 			spin_unlock(&sbi->inode_lock[DIRTY_META]);
1161 			return 0;
1162 		}
1163 		fi = list_first_entry(head, struct f2fs_inode_info,
1164 							gdirty_list);
1165 		inode = igrab(&fi->vfs_inode);
1166 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
1167 		if (inode) {
1168 			sync_inode_metadata(inode, 0);
1169 
1170 			/* it's on eviction */
1171 			if (is_inode_flag_set(inode, FI_DIRTY_INODE))
1172 				f2fs_update_inode_page(inode);
1173 			iput(inode);
1174 		}
1175 	}
1176 	return 0;
1177 }
1178 
1179 static void __prepare_cp_block(struct f2fs_sb_info *sbi)
1180 {
1181 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1182 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1183 	nid_t last_nid = nm_i->next_scan_nid;
1184 
1185 	next_free_nid(sbi, &last_nid);
1186 	ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1187 	ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1188 	ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1189 	ckpt->next_free_nid = cpu_to_le32(last_nid);
1190 
1191 	/* update user_block_counts */
1192 	sbi->last_valid_block_count = sbi->total_valid_block_count;
1193 	percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1194 	percpu_counter_set(&sbi->rf_node_block_count, 0);
1195 }
1196 
1197 static bool __need_flush_quota(struct f2fs_sb_info *sbi)
1198 {
1199 	bool ret = false;
1200 
1201 	if (!is_journalled_quota(sbi))
1202 		return false;
1203 
1204 	if (!f2fs_down_write_trylock(&sbi->quota_sem))
1205 		return true;
1206 	if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) {
1207 		ret = false;
1208 	} else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) {
1209 		ret = false;
1210 	} else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_FLUSH)) {
1211 		clear_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1212 		ret = true;
1213 	} else if (get_pages(sbi, F2FS_DIRTY_QDATA)) {
1214 		ret = true;
1215 	}
1216 	f2fs_up_write(&sbi->quota_sem);
1217 	return ret;
1218 }
1219 
1220 /*
1221  * Freeze all the FS-operations for checkpoint.
1222  */
1223 static int block_operations(struct f2fs_sb_info *sbi)
1224 {
1225 	struct writeback_control wbc = {
1226 		.sync_mode = WB_SYNC_ALL,
1227 		.nr_to_write = LONG_MAX,
1228 		.for_reclaim = 0,
1229 	};
1230 	int err = 0, cnt = 0;
1231 
1232 	/*
1233 	 * Let's flush inline_data in dirty node pages.
1234 	 */
1235 	f2fs_flush_inline_data(sbi);
1236 
1237 retry_flush_quotas:
1238 	f2fs_lock_all(sbi);
1239 	if (__need_flush_quota(sbi)) {
1240 		int locked;
1241 
1242 		if (++cnt > DEFAULT_RETRY_QUOTA_FLUSH_COUNT) {
1243 			set_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1244 			set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1245 			goto retry_flush_dents;
1246 		}
1247 		f2fs_unlock_all(sbi);
1248 
1249 		/* only failed during mount/umount/freeze/quotactl */
1250 		locked = down_read_trylock(&sbi->sb->s_umount);
1251 		f2fs_quota_sync(sbi->sb, -1);
1252 		if (locked)
1253 			up_read(&sbi->sb->s_umount);
1254 		cond_resched();
1255 		goto retry_flush_quotas;
1256 	}
1257 
1258 retry_flush_dents:
1259 	/* write all the dirty dentry pages */
1260 	if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
1261 		f2fs_unlock_all(sbi);
1262 		err = f2fs_sync_dirty_inodes(sbi, DIR_INODE, true);
1263 		if (err)
1264 			return err;
1265 		cond_resched();
1266 		goto retry_flush_quotas;
1267 	}
1268 
1269 	/*
1270 	 * POR: we should ensure that there are no dirty node pages
1271 	 * until finishing nat/sit flush. inode->i_blocks can be updated.
1272 	 */
1273 	f2fs_down_write(&sbi->node_change);
1274 
1275 	if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
1276 		f2fs_up_write(&sbi->node_change);
1277 		f2fs_unlock_all(sbi);
1278 		err = f2fs_sync_inode_meta(sbi);
1279 		if (err)
1280 			return err;
1281 		cond_resched();
1282 		goto retry_flush_quotas;
1283 	}
1284 
1285 retry_flush_nodes:
1286 	f2fs_down_write(&sbi->node_write);
1287 
1288 	if (get_pages(sbi, F2FS_DIRTY_NODES)) {
1289 		f2fs_up_write(&sbi->node_write);
1290 		atomic_inc(&sbi->wb_sync_req[NODE]);
1291 		err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO);
1292 		atomic_dec(&sbi->wb_sync_req[NODE]);
1293 		if (err) {
1294 			f2fs_up_write(&sbi->node_change);
1295 			f2fs_unlock_all(sbi);
1296 			return err;
1297 		}
1298 		cond_resched();
1299 		goto retry_flush_nodes;
1300 	}
1301 
1302 	/*
1303 	 * sbi->node_change is used only for AIO write_begin path which produces
1304 	 * dirty node blocks and some checkpoint values by block allocation.
1305 	 */
1306 	__prepare_cp_block(sbi);
1307 	f2fs_up_write(&sbi->node_change);
1308 	return err;
1309 }
1310 
1311 static void unblock_operations(struct f2fs_sb_info *sbi)
1312 {
1313 	f2fs_up_write(&sbi->node_write);
1314 	f2fs_unlock_all(sbi);
1315 }
1316 
1317 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type)
1318 {
1319 	DEFINE_WAIT(wait);
1320 
1321 	for (;;) {
1322 		if (!get_pages(sbi, type))
1323 			break;
1324 
1325 		if (unlikely(f2fs_cp_error(sbi) &&
1326 			!is_sbi_flag_set(sbi, SBI_IS_CLOSE)))
1327 			break;
1328 
1329 		if (type == F2FS_DIRTY_META)
1330 			f2fs_sync_meta_pages(sbi, META, LONG_MAX,
1331 							FS_CP_META_IO);
1332 		else if (type == F2FS_WB_CP_DATA)
1333 			f2fs_submit_merged_write(sbi, DATA);
1334 
1335 		prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1336 		io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1337 	}
1338 	finish_wait(&sbi->cp_wait, &wait);
1339 }
1340 
1341 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1342 {
1343 	unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1344 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1345 	unsigned long flags;
1346 
1347 	if (cpc->reason & CP_UMOUNT) {
1348 		if (le32_to_cpu(ckpt->cp_pack_total_block_count) +
1349 			NM_I(sbi)->nat_bits_blocks > BLKS_PER_SEG(sbi)) {
1350 			clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1351 			f2fs_notice(sbi, "Disable nat_bits due to no space");
1352 		} else if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG) &&
1353 						f2fs_nat_bitmap_enabled(sbi)) {
1354 			f2fs_enable_nat_bits(sbi);
1355 			set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1356 			f2fs_notice(sbi, "Rebuild and enable nat_bits");
1357 		}
1358 	}
1359 
1360 	spin_lock_irqsave(&sbi->cp_lock, flags);
1361 
1362 	if (cpc->reason & CP_TRIMMED)
1363 		__set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1364 	else
1365 		__clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1366 
1367 	if (cpc->reason & CP_UMOUNT)
1368 		__set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1369 	else
1370 		__clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1371 
1372 	if (cpc->reason & CP_FASTBOOT)
1373 		__set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1374 	else
1375 		__clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1376 
1377 	if (orphan_num)
1378 		__set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1379 	else
1380 		__clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1381 
1382 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1383 		__set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1384 
1385 	if (is_sbi_flag_set(sbi, SBI_IS_RESIZEFS))
1386 		__set_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
1387 	else
1388 		__clear_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
1389 
1390 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
1391 		__set_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1392 	else
1393 		__clear_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1394 
1395 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK))
1396 		__set_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
1397 	else
1398 		__clear_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
1399 
1400 	if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH))
1401 		__set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1402 	else
1403 		__clear_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1404 
1405 	if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR))
1406 		__set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1407 
1408 	/* set this flag to activate crc|cp_ver for recovery */
1409 	__set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1410 	__clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG);
1411 
1412 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1413 }
1414 
1415 static void commit_checkpoint(struct f2fs_sb_info *sbi,
1416 	void *src, block_t blk_addr)
1417 {
1418 	struct writeback_control wbc = {
1419 		.for_reclaim = 0,
1420 	};
1421 
1422 	/*
1423 	 * filemap_get_folios_tag and lock_page again will take
1424 	 * some extra time. Therefore, f2fs_update_meta_pages and
1425 	 * f2fs_sync_meta_pages are combined in this function.
1426 	 */
1427 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
1428 	int err;
1429 
1430 	f2fs_wait_on_page_writeback(page, META, true, true);
1431 
1432 	memcpy(page_address(page), src, PAGE_SIZE);
1433 
1434 	set_page_dirty(page);
1435 	if (unlikely(!clear_page_dirty_for_io(page)))
1436 		f2fs_bug_on(sbi, 1);
1437 
1438 	/* writeout cp pack 2 page */
1439 	err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO);
1440 	if (unlikely(err && f2fs_cp_error(sbi))) {
1441 		f2fs_put_page(page, 1);
1442 		return;
1443 	}
1444 
1445 	f2fs_bug_on(sbi, err);
1446 	f2fs_put_page(page, 0);
1447 
1448 	/* submit checkpoint (with barrier if NOBARRIER is not set) */
1449 	f2fs_submit_merged_write(sbi, META_FLUSH);
1450 }
1451 
1452 static inline u64 get_sectors_written(struct block_device *bdev)
1453 {
1454 	return (u64)part_stat_read(bdev, sectors[STAT_WRITE]);
1455 }
1456 
1457 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi)
1458 {
1459 	if (f2fs_is_multi_device(sbi)) {
1460 		u64 sectors = 0;
1461 		int i;
1462 
1463 		for (i = 0; i < sbi->s_ndevs; i++)
1464 			sectors += get_sectors_written(FDEV(i).bdev);
1465 
1466 		return sectors;
1467 	}
1468 
1469 	return get_sectors_written(sbi->sb->s_bdev);
1470 }
1471 
1472 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1473 {
1474 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1475 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1476 	unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
1477 	block_t start_blk;
1478 	unsigned int data_sum_blocks, orphan_blocks;
1479 	__u32 crc32 = 0;
1480 	int i;
1481 	int cp_payload_blks = __cp_payload(sbi);
1482 	struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1483 	u64 kbytes_written;
1484 	int err;
1485 
1486 	/* Flush all the NAT/SIT pages */
1487 	f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1488 
1489 	/* start to update checkpoint, cp ver is already updated previously */
1490 	ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true));
1491 	ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1492 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1493 		struct curseg_info *curseg = CURSEG_I(sbi, i + CURSEG_HOT_NODE);
1494 
1495 		ckpt->cur_node_segno[i] = cpu_to_le32(curseg->segno);
1496 		ckpt->cur_node_blkoff[i] = cpu_to_le16(curseg->next_blkoff);
1497 		ckpt->alloc_type[i + CURSEG_HOT_NODE] = curseg->alloc_type;
1498 	}
1499 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1500 		struct curseg_info *curseg = CURSEG_I(sbi, i + CURSEG_HOT_DATA);
1501 
1502 		ckpt->cur_data_segno[i] = cpu_to_le32(curseg->segno);
1503 		ckpt->cur_data_blkoff[i] = cpu_to_le16(curseg->next_blkoff);
1504 		ckpt->alloc_type[i + CURSEG_HOT_DATA] = curseg->alloc_type;
1505 	}
1506 
1507 	/* 2 cp + n data seg summary + orphan inode blocks */
1508 	data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false);
1509 	spin_lock_irqsave(&sbi->cp_lock, flags);
1510 	if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1511 		__set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1512 	else
1513 		__clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1514 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1515 
1516 	orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1517 	ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1518 			orphan_blocks);
1519 
1520 	if (__remain_node_summaries(cpc->reason))
1521 		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1522 				cp_payload_blks + data_sum_blocks +
1523 				orphan_blocks + NR_CURSEG_NODE_TYPE);
1524 	else
1525 		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1526 				cp_payload_blks + data_sum_blocks +
1527 				orphan_blocks);
1528 
1529 	/* update ckpt flag for checkpoint */
1530 	update_ckpt_flags(sbi, cpc);
1531 
1532 	/* update SIT/NAT bitmap */
1533 	get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1534 	get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1535 
1536 	crc32 = f2fs_checkpoint_chksum(sbi, ckpt);
1537 	*((__le32 *)((unsigned char *)ckpt +
1538 				le32_to_cpu(ckpt->checksum_offset)))
1539 				= cpu_to_le32(crc32);
1540 
1541 	start_blk = __start_cp_next_addr(sbi);
1542 
1543 	/* write nat bits */
1544 	if ((cpc->reason & CP_UMOUNT) &&
1545 			is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) {
1546 		__u64 cp_ver = cur_cp_version(ckpt);
1547 		block_t blk;
1548 
1549 		cp_ver |= ((__u64)crc32 << 32);
1550 		*(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1551 
1552 		blk = start_blk + BLKS_PER_SEG(sbi) - nm_i->nat_bits_blocks;
1553 		for (i = 0; i < nm_i->nat_bits_blocks; i++)
1554 			f2fs_update_meta_page(sbi, nm_i->nat_bits +
1555 					F2FS_BLK_TO_BYTES(i), blk + i);
1556 	}
1557 
1558 	/* write out checkpoint buffer at block 0 */
1559 	f2fs_update_meta_page(sbi, ckpt, start_blk++);
1560 
1561 	for (i = 1; i < 1 + cp_payload_blks; i++)
1562 		f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1563 							start_blk++);
1564 
1565 	if (orphan_num) {
1566 		write_orphan_inodes(sbi, start_blk);
1567 		start_blk += orphan_blocks;
1568 	}
1569 
1570 	f2fs_write_data_summaries(sbi, start_blk);
1571 	start_blk += data_sum_blocks;
1572 
1573 	/* Record write statistics in the hot node summary */
1574 	kbytes_written = sbi->kbytes_written;
1575 	kbytes_written += (f2fs_get_sectors_written(sbi) -
1576 				sbi->sectors_written_start) >> 1;
1577 	seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1578 
1579 	if (__remain_node_summaries(cpc->reason)) {
1580 		f2fs_write_node_summaries(sbi, start_blk);
1581 		start_blk += NR_CURSEG_NODE_TYPE;
1582 	}
1583 
1584 	/* Here, we have one bio having CP pack except cp pack 2 page */
1585 	f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1586 	/* Wait for all dirty meta pages to be submitted for IO */
1587 	f2fs_wait_on_all_pages(sbi, F2FS_DIRTY_META);
1588 
1589 	/* wait for previous submitted meta pages writeback */
1590 	f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1591 
1592 	/* flush all device cache */
1593 	err = f2fs_flush_device_cache(sbi);
1594 	if (err)
1595 		return err;
1596 
1597 	/* barrier and flush checkpoint cp pack 2 page if it can */
1598 	commit_checkpoint(sbi, ckpt, start_blk);
1599 	f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1600 
1601 	/*
1602 	 * invalidate intermediate page cache borrowed from meta inode which are
1603 	 * used for migration of encrypted, verity or compressed inode's blocks.
1604 	 */
1605 	if (f2fs_sb_has_encrypt(sbi) || f2fs_sb_has_verity(sbi) ||
1606 		f2fs_sb_has_compression(sbi))
1607 		f2fs_bug_on(sbi,
1608 			invalidate_inode_pages2_range(META_MAPPING(sbi),
1609 				MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1));
1610 
1611 	f2fs_release_ino_entry(sbi, false);
1612 
1613 	f2fs_reset_fsync_node_info(sbi);
1614 
1615 	clear_sbi_flag(sbi, SBI_IS_DIRTY);
1616 	clear_sbi_flag(sbi, SBI_NEED_CP);
1617 	clear_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1618 
1619 	spin_lock(&sbi->stat_lock);
1620 	sbi->unusable_block_count = 0;
1621 	spin_unlock(&sbi->stat_lock);
1622 
1623 	__set_cp_next_pack(sbi);
1624 
1625 	/*
1626 	 * redirty superblock if metadata like node page or inode cache is
1627 	 * updated during writing checkpoint.
1628 	 */
1629 	if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1630 			get_pages(sbi, F2FS_DIRTY_IMETA))
1631 		set_sbi_flag(sbi, SBI_IS_DIRTY);
1632 
1633 	f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1634 
1635 	return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0;
1636 }
1637 
1638 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1639 {
1640 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1641 	unsigned long long ckpt_ver;
1642 	int err = 0;
1643 
1644 	if (f2fs_readonly(sbi->sb) || f2fs_hw_is_readonly(sbi))
1645 		return -EROFS;
1646 
1647 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1648 		if (cpc->reason != CP_PAUSE)
1649 			return 0;
1650 		f2fs_warn(sbi, "Start checkpoint disabled!");
1651 	}
1652 	if (cpc->reason != CP_RESIZE)
1653 		f2fs_down_write(&sbi->cp_global_sem);
1654 
1655 	if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1656 		((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
1657 		((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
1658 		goto out;
1659 	if (unlikely(f2fs_cp_error(sbi))) {
1660 		err = -EIO;
1661 		goto out;
1662 	}
1663 
1664 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1665 
1666 	err = block_operations(sbi);
1667 	if (err)
1668 		goto out;
1669 
1670 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1671 
1672 	f2fs_flush_merged_writes(sbi);
1673 
1674 	/* this is the case of multiple fstrims without any changes */
1675 	if (cpc->reason & CP_DISCARD) {
1676 		if (!f2fs_exist_trim_candidates(sbi, cpc)) {
1677 			unblock_operations(sbi);
1678 			goto out;
1679 		}
1680 
1681 		if (NM_I(sbi)->nat_cnt[DIRTY_NAT] == 0 &&
1682 				SIT_I(sbi)->dirty_sentries == 0 &&
1683 				prefree_segments(sbi) == 0) {
1684 			f2fs_flush_sit_entries(sbi, cpc);
1685 			f2fs_clear_prefree_segments(sbi, cpc);
1686 			unblock_operations(sbi);
1687 			goto out;
1688 		}
1689 	}
1690 
1691 	/*
1692 	 * update checkpoint pack index
1693 	 * Increase the version number so that
1694 	 * SIT entries and seg summaries are written at correct place
1695 	 */
1696 	ckpt_ver = cur_cp_version(ckpt);
1697 	ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1698 
1699 	/* write cached NAT/SIT entries to NAT/SIT area */
1700 	err = f2fs_flush_nat_entries(sbi, cpc);
1701 	if (err) {
1702 		f2fs_err(sbi, "f2fs_flush_nat_entries failed err:%d, stop checkpoint", err);
1703 		f2fs_bug_on(sbi, !f2fs_cp_error(sbi));
1704 		goto stop;
1705 	}
1706 
1707 	f2fs_flush_sit_entries(sbi, cpc);
1708 
1709 	/* save inmem log status */
1710 	f2fs_save_inmem_curseg(sbi);
1711 
1712 	err = do_checkpoint(sbi, cpc);
1713 	if (err) {
1714 		f2fs_err(sbi, "do_checkpoint failed err:%d, stop checkpoint", err);
1715 		f2fs_bug_on(sbi, !f2fs_cp_error(sbi));
1716 		f2fs_release_discard_addrs(sbi);
1717 	} else {
1718 		f2fs_clear_prefree_segments(sbi, cpc);
1719 	}
1720 
1721 	f2fs_restore_inmem_curseg(sbi);
1722 	f2fs_reinit_atgc_curseg(sbi);
1723 	stat_inc_cp_count(sbi);
1724 stop:
1725 	unblock_operations(sbi);
1726 
1727 	if (cpc->reason & CP_RECOVERY)
1728 		f2fs_notice(sbi, "checkpoint: version = %llx", ckpt_ver);
1729 
1730 	/* update CP_TIME to trigger checkpoint periodically */
1731 	f2fs_update_time(sbi, CP_TIME);
1732 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1733 out:
1734 	if (cpc->reason != CP_RESIZE)
1735 		f2fs_up_write(&sbi->cp_global_sem);
1736 	return err;
1737 }
1738 
1739 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi)
1740 {
1741 	int i;
1742 
1743 	for (i = 0; i < MAX_INO_ENTRY; i++) {
1744 		struct inode_management *im = &sbi->im[i];
1745 
1746 		INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1747 		spin_lock_init(&im->ino_lock);
1748 		INIT_LIST_HEAD(&im->ino_list);
1749 		im->ino_num = 0;
1750 	}
1751 
1752 	sbi->max_orphans = (BLKS_PER_SEG(sbi) - F2FS_CP_PACKS -
1753 			NR_CURSEG_PERSIST_TYPE - __cp_payload(sbi)) *
1754 			F2FS_ORPHANS_PER_BLOCK;
1755 }
1756 
1757 int __init f2fs_create_checkpoint_caches(void)
1758 {
1759 	ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1760 			sizeof(struct ino_entry));
1761 	if (!ino_entry_slab)
1762 		return -ENOMEM;
1763 	f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1764 			sizeof(struct inode_entry));
1765 	if (!f2fs_inode_entry_slab) {
1766 		kmem_cache_destroy(ino_entry_slab);
1767 		return -ENOMEM;
1768 	}
1769 	return 0;
1770 }
1771 
1772 void f2fs_destroy_checkpoint_caches(void)
1773 {
1774 	kmem_cache_destroy(ino_entry_slab);
1775 	kmem_cache_destroy(f2fs_inode_entry_slab);
1776 }
1777 
1778 static int __write_checkpoint_sync(struct f2fs_sb_info *sbi)
1779 {
1780 	struct cp_control cpc = { .reason = CP_SYNC, };
1781 	int err;
1782 
1783 	f2fs_down_write(&sbi->gc_lock);
1784 	err = f2fs_write_checkpoint(sbi, &cpc);
1785 	f2fs_up_write(&sbi->gc_lock);
1786 
1787 	return err;
1788 }
1789 
1790 static void __checkpoint_and_complete_reqs(struct f2fs_sb_info *sbi)
1791 {
1792 	struct ckpt_req_control *cprc = &sbi->cprc_info;
1793 	struct ckpt_req *req, *next;
1794 	struct llist_node *dispatch_list;
1795 	u64 sum_diff = 0, diff, count = 0;
1796 	int ret;
1797 
1798 	dispatch_list = llist_del_all(&cprc->issue_list);
1799 	if (!dispatch_list)
1800 		return;
1801 	dispatch_list = llist_reverse_order(dispatch_list);
1802 
1803 	ret = __write_checkpoint_sync(sbi);
1804 	atomic_inc(&cprc->issued_ckpt);
1805 
1806 	llist_for_each_entry_safe(req, next, dispatch_list, llnode) {
1807 		diff = (u64)ktime_ms_delta(ktime_get(), req->queue_time);
1808 		req->ret = ret;
1809 		complete(&req->wait);
1810 
1811 		sum_diff += diff;
1812 		count++;
1813 	}
1814 	atomic_sub(count, &cprc->queued_ckpt);
1815 	atomic_add(count, &cprc->total_ckpt);
1816 
1817 	spin_lock(&cprc->stat_lock);
1818 	cprc->cur_time = (unsigned int)div64_u64(sum_diff, count);
1819 	if (cprc->peak_time < cprc->cur_time)
1820 		cprc->peak_time = cprc->cur_time;
1821 	spin_unlock(&cprc->stat_lock);
1822 }
1823 
1824 static int issue_checkpoint_thread(void *data)
1825 {
1826 	struct f2fs_sb_info *sbi = data;
1827 	struct ckpt_req_control *cprc = &sbi->cprc_info;
1828 	wait_queue_head_t *q = &cprc->ckpt_wait_queue;
1829 repeat:
1830 	if (kthread_should_stop())
1831 		return 0;
1832 
1833 	if (!llist_empty(&cprc->issue_list))
1834 		__checkpoint_and_complete_reqs(sbi);
1835 
1836 	wait_event_interruptible(*q,
1837 		kthread_should_stop() || !llist_empty(&cprc->issue_list));
1838 	goto repeat;
1839 }
1840 
1841 static void flush_remained_ckpt_reqs(struct f2fs_sb_info *sbi,
1842 		struct ckpt_req *wait_req)
1843 {
1844 	struct ckpt_req_control *cprc = &sbi->cprc_info;
1845 
1846 	if (!llist_empty(&cprc->issue_list)) {
1847 		__checkpoint_and_complete_reqs(sbi);
1848 	} else {
1849 		/* already dispatched by issue_checkpoint_thread */
1850 		if (wait_req)
1851 			wait_for_completion(&wait_req->wait);
1852 	}
1853 }
1854 
1855 static void init_ckpt_req(struct ckpt_req *req)
1856 {
1857 	memset(req, 0, sizeof(struct ckpt_req));
1858 
1859 	init_completion(&req->wait);
1860 	req->queue_time = ktime_get();
1861 }
1862 
1863 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi)
1864 {
1865 	struct ckpt_req_control *cprc = &sbi->cprc_info;
1866 	struct ckpt_req req;
1867 	struct cp_control cpc;
1868 
1869 	cpc.reason = __get_cp_reason(sbi);
1870 	if (!test_opt(sbi, MERGE_CHECKPOINT) || cpc.reason != CP_SYNC) {
1871 		int ret;
1872 
1873 		f2fs_down_write(&sbi->gc_lock);
1874 		ret = f2fs_write_checkpoint(sbi, &cpc);
1875 		f2fs_up_write(&sbi->gc_lock);
1876 
1877 		return ret;
1878 	}
1879 
1880 	if (!cprc->f2fs_issue_ckpt)
1881 		return __write_checkpoint_sync(sbi);
1882 
1883 	init_ckpt_req(&req);
1884 
1885 	llist_add(&req.llnode, &cprc->issue_list);
1886 	atomic_inc(&cprc->queued_ckpt);
1887 
1888 	/*
1889 	 * update issue_list before we wake up issue_checkpoint thread,
1890 	 * this smp_mb() pairs with another barrier in ___wait_event(),
1891 	 * see more details in comments of waitqueue_active().
1892 	 */
1893 	smp_mb();
1894 
1895 	if (waitqueue_active(&cprc->ckpt_wait_queue))
1896 		wake_up(&cprc->ckpt_wait_queue);
1897 
1898 	if (cprc->f2fs_issue_ckpt)
1899 		wait_for_completion(&req.wait);
1900 	else
1901 		flush_remained_ckpt_reqs(sbi, &req);
1902 
1903 	return req.ret;
1904 }
1905 
1906 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi)
1907 {
1908 	dev_t dev = sbi->sb->s_bdev->bd_dev;
1909 	struct ckpt_req_control *cprc = &sbi->cprc_info;
1910 
1911 	if (cprc->f2fs_issue_ckpt)
1912 		return 0;
1913 
1914 	cprc->f2fs_issue_ckpt = kthread_run(issue_checkpoint_thread, sbi,
1915 			"f2fs_ckpt-%u:%u", MAJOR(dev), MINOR(dev));
1916 	if (IS_ERR(cprc->f2fs_issue_ckpt)) {
1917 		int err = PTR_ERR(cprc->f2fs_issue_ckpt);
1918 
1919 		cprc->f2fs_issue_ckpt = NULL;
1920 		return err;
1921 	}
1922 
1923 	set_task_ioprio(cprc->f2fs_issue_ckpt, cprc->ckpt_thread_ioprio);
1924 
1925 	return 0;
1926 }
1927 
1928 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi)
1929 {
1930 	struct ckpt_req_control *cprc = &sbi->cprc_info;
1931 	struct task_struct *ckpt_task;
1932 
1933 	if (!cprc->f2fs_issue_ckpt)
1934 		return;
1935 
1936 	ckpt_task = cprc->f2fs_issue_ckpt;
1937 	cprc->f2fs_issue_ckpt = NULL;
1938 	kthread_stop(ckpt_task);
1939 
1940 	f2fs_flush_ckpt_thread(sbi);
1941 }
1942 
1943 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi)
1944 {
1945 	struct ckpt_req_control *cprc = &sbi->cprc_info;
1946 
1947 	flush_remained_ckpt_reqs(sbi, NULL);
1948 
1949 	/* Let's wait for the previous dispatched checkpoint. */
1950 	while (atomic_read(&cprc->queued_ckpt))
1951 		io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1952 }
1953 
1954 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi)
1955 {
1956 	struct ckpt_req_control *cprc = &sbi->cprc_info;
1957 
1958 	atomic_set(&cprc->issued_ckpt, 0);
1959 	atomic_set(&cprc->total_ckpt, 0);
1960 	atomic_set(&cprc->queued_ckpt, 0);
1961 	cprc->ckpt_thread_ioprio = DEFAULT_CHECKPOINT_IOPRIO;
1962 	init_waitqueue_head(&cprc->ckpt_wait_queue);
1963 	init_llist_head(&cprc->issue_list);
1964 	spin_lock_init(&cprc->stat_lock);
1965 }
1966