xref: /linux/fs/f2fs/checkpoint.c (revision 4d5e3b06e1fc1428be14cd4ebe3b37c1bb34f95d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/checkpoint.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/bio.h>
10 #include <linux/mpage.h>
11 #include <linux/writeback.h>
12 #include <linux/blkdev.h>
13 #include <linux/f2fs_fs.h>
14 #include <linux/pagevec.h>
15 #include <linux/swap.h>
16 #include <linux/kthread.h>
17 
18 #include "f2fs.h"
19 #include "node.h"
20 #include "segment.h"
21 #include "iostat.h"
22 #include <trace/events/f2fs.h>
23 
24 #define DEFAULT_CHECKPOINT_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
25 
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *f2fs_inode_entry_slab;
28 
29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
30 {
31 	f2fs_build_fault_attr(sbi, 0, 0);
32 	set_ckpt_flags(sbi, CP_ERROR_FLAG);
33 	if (!end_io)
34 		f2fs_flush_merged_writes(sbi);
35 }
36 
37 /*
38  * We guarantee no failure on the returned page.
39  */
40 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
41 {
42 	struct address_space *mapping = META_MAPPING(sbi);
43 	struct page *page;
44 repeat:
45 	page = f2fs_grab_cache_page(mapping, index, false);
46 	if (!page) {
47 		cond_resched();
48 		goto repeat;
49 	}
50 	f2fs_wait_on_page_writeback(page, META, true, true);
51 	if (!PageUptodate(page))
52 		SetPageUptodate(page);
53 	return page;
54 }
55 
56 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
57 							bool is_meta)
58 {
59 	struct address_space *mapping = META_MAPPING(sbi);
60 	struct page *page;
61 	struct f2fs_io_info fio = {
62 		.sbi = sbi,
63 		.type = META,
64 		.op = REQ_OP_READ,
65 		.op_flags = REQ_META | REQ_PRIO,
66 		.old_blkaddr = index,
67 		.new_blkaddr = index,
68 		.encrypted_page = NULL,
69 		.is_por = !is_meta,
70 	};
71 	int err;
72 
73 	if (unlikely(!is_meta))
74 		fio.op_flags &= ~REQ_META;
75 repeat:
76 	page = f2fs_grab_cache_page(mapping, index, false);
77 	if (!page) {
78 		cond_resched();
79 		goto repeat;
80 	}
81 	if (PageUptodate(page))
82 		goto out;
83 
84 	fio.page = page;
85 
86 	err = f2fs_submit_page_bio(&fio);
87 	if (err) {
88 		f2fs_put_page(page, 1);
89 		return ERR_PTR(err);
90 	}
91 
92 	f2fs_update_iostat(sbi, FS_META_READ_IO, F2FS_BLKSIZE);
93 
94 	lock_page(page);
95 	if (unlikely(page->mapping != mapping)) {
96 		f2fs_put_page(page, 1);
97 		goto repeat;
98 	}
99 
100 	if (unlikely(!PageUptodate(page))) {
101 		f2fs_handle_page_eio(sbi, page->index, META);
102 		f2fs_put_page(page, 1);
103 		return ERR_PTR(-EIO);
104 	}
105 out:
106 	return page;
107 }
108 
109 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
110 {
111 	return __get_meta_page(sbi, index, true);
112 }
113 
114 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index)
115 {
116 	struct page *page;
117 	int count = 0;
118 
119 retry:
120 	page = __get_meta_page(sbi, index, true);
121 	if (IS_ERR(page)) {
122 		if (PTR_ERR(page) == -EIO &&
123 				++count <= DEFAULT_RETRY_IO_COUNT)
124 			goto retry;
125 		f2fs_stop_checkpoint(sbi, false);
126 	}
127 	return page;
128 }
129 
130 /* for POR only */
131 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
132 {
133 	return __get_meta_page(sbi, index, false);
134 }
135 
136 static bool __is_bitmap_valid(struct f2fs_sb_info *sbi, block_t blkaddr,
137 							int type)
138 {
139 	struct seg_entry *se;
140 	unsigned int segno, offset;
141 	bool exist;
142 
143 	if (type != DATA_GENERIC_ENHANCE && type != DATA_GENERIC_ENHANCE_READ)
144 		return true;
145 
146 	segno = GET_SEGNO(sbi, blkaddr);
147 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
148 	se = get_seg_entry(sbi, segno);
149 
150 	exist = f2fs_test_bit(offset, se->cur_valid_map);
151 	if (!exist && type == DATA_GENERIC_ENHANCE) {
152 		f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d",
153 			 blkaddr, exist);
154 		set_sbi_flag(sbi, SBI_NEED_FSCK);
155 		dump_stack();
156 	}
157 	return exist;
158 }
159 
160 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
161 					block_t blkaddr, int type)
162 {
163 	switch (type) {
164 	case META_NAT:
165 		break;
166 	case META_SIT:
167 		if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
168 			return false;
169 		break;
170 	case META_SSA:
171 		if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
172 			blkaddr < SM_I(sbi)->ssa_blkaddr))
173 			return false;
174 		break;
175 	case META_CP:
176 		if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
177 			blkaddr < __start_cp_addr(sbi)))
178 			return false;
179 		break;
180 	case META_POR:
181 		if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
182 			blkaddr < MAIN_BLKADDR(sbi)))
183 			return false;
184 		break;
185 	case DATA_GENERIC:
186 	case DATA_GENERIC_ENHANCE:
187 	case DATA_GENERIC_ENHANCE_READ:
188 		if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
189 				blkaddr < MAIN_BLKADDR(sbi))) {
190 			f2fs_warn(sbi, "access invalid blkaddr:%u",
191 				  blkaddr);
192 			set_sbi_flag(sbi, SBI_NEED_FSCK);
193 			dump_stack();
194 			return false;
195 		} else {
196 			return __is_bitmap_valid(sbi, blkaddr, type);
197 		}
198 		break;
199 	case META_GENERIC:
200 		if (unlikely(blkaddr < SEG0_BLKADDR(sbi) ||
201 			blkaddr >= MAIN_BLKADDR(sbi)))
202 			return false;
203 		break;
204 	default:
205 		BUG();
206 	}
207 
208 	return true;
209 }
210 
211 /*
212  * Readahead CP/NAT/SIT/SSA/POR pages
213  */
214 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
215 							int type, bool sync)
216 {
217 	struct page *page;
218 	block_t blkno = start;
219 	struct f2fs_io_info fio = {
220 		.sbi = sbi,
221 		.type = META,
222 		.op = REQ_OP_READ,
223 		.op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
224 		.encrypted_page = NULL,
225 		.in_list = false,
226 		.is_por = (type == META_POR),
227 	};
228 	struct blk_plug plug;
229 	int err;
230 
231 	if (unlikely(type == META_POR))
232 		fio.op_flags &= ~REQ_META;
233 
234 	blk_start_plug(&plug);
235 	for (; nrpages-- > 0; blkno++) {
236 
237 		if (!f2fs_is_valid_blkaddr(sbi, blkno, type))
238 			goto out;
239 
240 		switch (type) {
241 		case META_NAT:
242 			if (unlikely(blkno >=
243 					NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
244 				blkno = 0;
245 			/* get nat block addr */
246 			fio.new_blkaddr = current_nat_addr(sbi,
247 					blkno * NAT_ENTRY_PER_BLOCK);
248 			break;
249 		case META_SIT:
250 			if (unlikely(blkno >= TOTAL_SEGS(sbi)))
251 				goto out;
252 			/* get sit block addr */
253 			fio.new_blkaddr = current_sit_addr(sbi,
254 					blkno * SIT_ENTRY_PER_BLOCK);
255 			break;
256 		case META_SSA:
257 		case META_CP:
258 		case META_POR:
259 			fio.new_blkaddr = blkno;
260 			break;
261 		default:
262 			BUG();
263 		}
264 
265 		page = f2fs_grab_cache_page(META_MAPPING(sbi),
266 						fio.new_blkaddr, false);
267 		if (!page)
268 			continue;
269 		if (PageUptodate(page)) {
270 			f2fs_put_page(page, 1);
271 			continue;
272 		}
273 
274 		fio.page = page;
275 		err = f2fs_submit_page_bio(&fio);
276 		f2fs_put_page(page, err ? 1 : 0);
277 
278 		if (!err)
279 			f2fs_update_iostat(sbi, FS_META_READ_IO, F2FS_BLKSIZE);
280 	}
281 out:
282 	blk_finish_plug(&plug);
283 	return blkno - start;
284 }
285 
286 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
287 							unsigned int ra_blocks)
288 {
289 	struct page *page;
290 	bool readahead = false;
291 
292 	if (ra_blocks == RECOVERY_MIN_RA_BLOCKS)
293 		return;
294 
295 	page = find_get_page(META_MAPPING(sbi), index);
296 	if (!page || !PageUptodate(page))
297 		readahead = true;
298 	f2fs_put_page(page, 0);
299 
300 	if (readahead)
301 		f2fs_ra_meta_pages(sbi, index, ra_blocks, META_POR, true);
302 }
303 
304 static int __f2fs_write_meta_page(struct page *page,
305 				struct writeback_control *wbc,
306 				enum iostat_type io_type)
307 {
308 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
309 
310 	trace_f2fs_writepage(page, META);
311 
312 	if (unlikely(f2fs_cp_error(sbi)))
313 		goto redirty_out;
314 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
315 		goto redirty_out;
316 	if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
317 		goto redirty_out;
318 
319 	f2fs_do_write_meta_page(sbi, page, io_type);
320 	dec_page_count(sbi, F2FS_DIRTY_META);
321 
322 	if (wbc->for_reclaim)
323 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, META);
324 
325 	unlock_page(page);
326 
327 	if (unlikely(f2fs_cp_error(sbi)))
328 		f2fs_submit_merged_write(sbi, META);
329 
330 	return 0;
331 
332 redirty_out:
333 	redirty_page_for_writepage(wbc, page);
334 	return AOP_WRITEPAGE_ACTIVATE;
335 }
336 
337 static int f2fs_write_meta_page(struct page *page,
338 				struct writeback_control *wbc)
339 {
340 	return __f2fs_write_meta_page(page, wbc, FS_META_IO);
341 }
342 
343 static int f2fs_write_meta_pages(struct address_space *mapping,
344 				struct writeback_control *wbc)
345 {
346 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
347 	long diff, written;
348 
349 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
350 		goto skip_write;
351 
352 	/* collect a number of dirty meta pages and write together */
353 	if (wbc->sync_mode != WB_SYNC_ALL &&
354 			get_pages(sbi, F2FS_DIRTY_META) <
355 					nr_pages_to_skip(sbi, META))
356 		goto skip_write;
357 
358 	/* if locked failed, cp will flush dirty pages instead */
359 	if (!f2fs_down_write_trylock(&sbi->cp_global_sem))
360 		goto skip_write;
361 
362 	trace_f2fs_writepages(mapping->host, wbc, META);
363 	diff = nr_pages_to_write(sbi, META, wbc);
364 	written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO);
365 	f2fs_up_write(&sbi->cp_global_sem);
366 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
367 	return 0;
368 
369 skip_write:
370 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
371 	trace_f2fs_writepages(mapping->host, wbc, META);
372 	return 0;
373 }
374 
375 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
376 				long nr_to_write, enum iostat_type io_type)
377 {
378 	struct address_space *mapping = META_MAPPING(sbi);
379 	pgoff_t index = 0, prev = ULONG_MAX;
380 	struct pagevec pvec;
381 	long nwritten = 0;
382 	int nr_pages;
383 	struct writeback_control wbc = {
384 		.for_reclaim = 0,
385 	};
386 	struct blk_plug plug;
387 
388 	pagevec_init(&pvec);
389 
390 	blk_start_plug(&plug);
391 
392 	while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
393 				PAGECACHE_TAG_DIRTY))) {
394 		int i;
395 
396 		for (i = 0; i < nr_pages; i++) {
397 			struct page *page = pvec.pages[i];
398 
399 			if (prev == ULONG_MAX)
400 				prev = page->index - 1;
401 			if (nr_to_write != LONG_MAX && page->index != prev + 1) {
402 				pagevec_release(&pvec);
403 				goto stop;
404 			}
405 
406 			lock_page(page);
407 
408 			if (unlikely(page->mapping != mapping)) {
409 continue_unlock:
410 				unlock_page(page);
411 				continue;
412 			}
413 			if (!PageDirty(page)) {
414 				/* someone wrote it for us */
415 				goto continue_unlock;
416 			}
417 
418 			f2fs_wait_on_page_writeback(page, META, true, true);
419 
420 			if (!clear_page_dirty_for_io(page))
421 				goto continue_unlock;
422 
423 			if (__f2fs_write_meta_page(page, &wbc, io_type)) {
424 				unlock_page(page);
425 				break;
426 			}
427 			nwritten++;
428 			prev = page->index;
429 			if (unlikely(nwritten >= nr_to_write))
430 				break;
431 		}
432 		pagevec_release(&pvec);
433 		cond_resched();
434 	}
435 stop:
436 	if (nwritten)
437 		f2fs_submit_merged_write(sbi, type);
438 
439 	blk_finish_plug(&plug);
440 
441 	return nwritten;
442 }
443 
444 static bool f2fs_dirty_meta_folio(struct address_space *mapping,
445 		struct folio *folio)
446 {
447 	trace_f2fs_set_page_dirty(&folio->page, META);
448 
449 	if (!folio_test_uptodate(folio))
450 		folio_mark_uptodate(folio);
451 	if (!folio_test_dirty(folio)) {
452 		filemap_dirty_folio(mapping, folio);
453 		inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_META);
454 		set_page_private_reference(&folio->page);
455 		return true;
456 	}
457 	return false;
458 }
459 
460 const struct address_space_operations f2fs_meta_aops = {
461 	.writepage	= f2fs_write_meta_page,
462 	.writepages	= f2fs_write_meta_pages,
463 	.dirty_folio	= f2fs_dirty_meta_folio,
464 	.invalidate_folio = f2fs_invalidate_folio,
465 	.release_folio	= f2fs_release_folio,
466 #ifdef CONFIG_MIGRATION
467 	.migratepage    = f2fs_migrate_page,
468 #endif
469 };
470 
471 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino,
472 						unsigned int devidx, int type)
473 {
474 	struct inode_management *im = &sbi->im[type];
475 	struct ino_entry *e = NULL, *new = NULL;
476 
477 	if (type == FLUSH_INO) {
478 		rcu_read_lock();
479 		e = radix_tree_lookup(&im->ino_root, ino);
480 		rcu_read_unlock();
481 	}
482 
483 retry:
484 	if (!e)
485 		new = f2fs_kmem_cache_alloc(ino_entry_slab,
486 						GFP_NOFS, true, NULL);
487 
488 	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
489 
490 	spin_lock(&im->ino_lock);
491 	e = radix_tree_lookup(&im->ino_root, ino);
492 	if (!e) {
493 		if (!new) {
494 			spin_unlock(&im->ino_lock);
495 			goto retry;
496 		}
497 		e = new;
498 		if (unlikely(radix_tree_insert(&im->ino_root, ino, e)))
499 			f2fs_bug_on(sbi, 1);
500 
501 		memset(e, 0, sizeof(struct ino_entry));
502 		e->ino = ino;
503 
504 		list_add_tail(&e->list, &im->ino_list);
505 		if (type != ORPHAN_INO)
506 			im->ino_num++;
507 	}
508 
509 	if (type == FLUSH_INO)
510 		f2fs_set_bit(devidx, (char *)&e->dirty_device);
511 
512 	spin_unlock(&im->ino_lock);
513 	radix_tree_preload_end();
514 
515 	if (new && e != new)
516 		kmem_cache_free(ino_entry_slab, new);
517 }
518 
519 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
520 {
521 	struct inode_management *im = &sbi->im[type];
522 	struct ino_entry *e;
523 
524 	spin_lock(&im->ino_lock);
525 	e = radix_tree_lookup(&im->ino_root, ino);
526 	if (e) {
527 		list_del(&e->list);
528 		radix_tree_delete(&im->ino_root, ino);
529 		im->ino_num--;
530 		spin_unlock(&im->ino_lock);
531 		kmem_cache_free(ino_entry_slab, e);
532 		return;
533 	}
534 	spin_unlock(&im->ino_lock);
535 }
536 
537 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
538 {
539 	/* add new dirty ino entry into list */
540 	__add_ino_entry(sbi, ino, 0, type);
541 }
542 
543 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
544 {
545 	/* remove dirty ino entry from list */
546 	__remove_ino_entry(sbi, ino, type);
547 }
548 
549 /* mode should be APPEND_INO, UPDATE_INO or TRANS_DIR_INO */
550 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
551 {
552 	struct inode_management *im = &sbi->im[mode];
553 	struct ino_entry *e;
554 
555 	spin_lock(&im->ino_lock);
556 	e = radix_tree_lookup(&im->ino_root, ino);
557 	spin_unlock(&im->ino_lock);
558 	return e ? true : false;
559 }
560 
561 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all)
562 {
563 	struct ino_entry *e, *tmp;
564 	int i;
565 
566 	for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) {
567 		struct inode_management *im = &sbi->im[i];
568 
569 		spin_lock(&im->ino_lock);
570 		list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
571 			list_del(&e->list);
572 			radix_tree_delete(&im->ino_root, e->ino);
573 			kmem_cache_free(ino_entry_slab, e);
574 			im->ino_num--;
575 		}
576 		spin_unlock(&im->ino_lock);
577 	}
578 }
579 
580 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
581 					unsigned int devidx, int type)
582 {
583 	__add_ino_entry(sbi, ino, devidx, type);
584 }
585 
586 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
587 					unsigned int devidx, int type)
588 {
589 	struct inode_management *im = &sbi->im[type];
590 	struct ino_entry *e;
591 	bool is_dirty = false;
592 
593 	spin_lock(&im->ino_lock);
594 	e = radix_tree_lookup(&im->ino_root, ino);
595 	if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device))
596 		is_dirty = true;
597 	spin_unlock(&im->ino_lock);
598 	return is_dirty;
599 }
600 
601 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi)
602 {
603 	struct inode_management *im = &sbi->im[ORPHAN_INO];
604 	int err = 0;
605 
606 	spin_lock(&im->ino_lock);
607 
608 	if (time_to_inject(sbi, FAULT_ORPHAN)) {
609 		spin_unlock(&im->ino_lock);
610 		f2fs_show_injection_info(sbi, FAULT_ORPHAN);
611 		return -ENOSPC;
612 	}
613 
614 	if (unlikely(im->ino_num >= sbi->max_orphans))
615 		err = -ENOSPC;
616 	else
617 		im->ino_num++;
618 	spin_unlock(&im->ino_lock);
619 
620 	return err;
621 }
622 
623 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi)
624 {
625 	struct inode_management *im = &sbi->im[ORPHAN_INO];
626 
627 	spin_lock(&im->ino_lock);
628 	f2fs_bug_on(sbi, im->ino_num == 0);
629 	im->ino_num--;
630 	spin_unlock(&im->ino_lock);
631 }
632 
633 void f2fs_add_orphan_inode(struct inode *inode)
634 {
635 	/* add new orphan ino entry into list */
636 	__add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO);
637 	f2fs_update_inode_page(inode);
638 }
639 
640 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
641 {
642 	/* remove orphan entry from orphan list */
643 	__remove_ino_entry(sbi, ino, ORPHAN_INO);
644 }
645 
646 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
647 {
648 	struct inode *inode;
649 	struct node_info ni;
650 	int err;
651 
652 	inode = f2fs_iget_retry(sbi->sb, ino);
653 	if (IS_ERR(inode)) {
654 		/*
655 		 * there should be a bug that we can't find the entry
656 		 * to orphan inode.
657 		 */
658 		f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
659 		return PTR_ERR(inode);
660 	}
661 
662 	err = f2fs_dquot_initialize(inode);
663 	if (err) {
664 		iput(inode);
665 		goto err_out;
666 	}
667 
668 	clear_nlink(inode);
669 
670 	/* truncate all the data during iput */
671 	iput(inode);
672 
673 	err = f2fs_get_node_info(sbi, ino, &ni, false);
674 	if (err)
675 		goto err_out;
676 
677 	/* ENOMEM was fully retried in f2fs_evict_inode. */
678 	if (ni.blk_addr != NULL_ADDR) {
679 		err = -EIO;
680 		goto err_out;
681 	}
682 	return 0;
683 
684 err_out:
685 	set_sbi_flag(sbi, SBI_NEED_FSCK);
686 	f2fs_warn(sbi, "%s: orphan failed (ino=%x), run fsck to fix.",
687 		  __func__, ino);
688 	return err;
689 }
690 
691 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi)
692 {
693 	block_t start_blk, orphan_blocks, i, j;
694 	unsigned int s_flags = sbi->sb->s_flags;
695 	int err = 0;
696 #ifdef CONFIG_QUOTA
697 	int quota_enabled;
698 #endif
699 
700 	if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
701 		return 0;
702 
703 	if (bdev_read_only(sbi->sb->s_bdev)) {
704 		f2fs_info(sbi, "write access unavailable, skipping orphan cleanup");
705 		return 0;
706 	}
707 
708 	if (s_flags & SB_RDONLY) {
709 		f2fs_info(sbi, "orphan cleanup on readonly fs");
710 		sbi->sb->s_flags &= ~SB_RDONLY;
711 	}
712 
713 #ifdef CONFIG_QUOTA
714 	/*
715 	 * Turn on quotas which were not enabled for read-only mounts if
716 	 * filesystem has quota feature, so that they are updated correctly.
717 	 */
718 	quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY);
719 #endif
720 
721 	start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
722 	orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
723 
724 	f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
725 
726 	for (i = 0; i < orphan_blocks; i++) {
727 		struct page *page;
728 		struct f2fs_orphan_block *orphan_blk;
729 
730 		page = f2fs_get_meta_page(sbi, start_blk + i);
731 		if (IS_ERR(page)) {
732 			err = PTR_ERR(page);
733 			goto out;
734 		}
735 
736 		orphan_blk = (struct f2fs_orphan_block *)page_address(page);
737 		for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
738 			nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
739 
740 			err = recover_orphan_inode(sbi, ino);
741 			if (err) {
742 				f2fs_put_page(page, 1);
743 				goto out;
744 			}
745 		}
746 		f2fs_put_page(page, 1);
747 	}
748 	/* clear Orphan Flag */
749 	clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
750 out:
751 	set_sbi_flag(sbi, SBI_IS_RECOVERED);
752 
753 #ifdef CONFIG_QUOTA
754 	/* Turn quotas off */
755 	if (quota_enabled)
756 		f2fs_quota_off_umount(sbi->sb);
757 #endif
758 	sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */
759 
760 	return err;
761 }
762 
763 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
764 {
765 	struct list_head *head;
766 	struct f2fs_orphan_block *orphan_blk = NULL;
767 	unsigned int nentries = 0;
768 	unsigned short index = 1;
769 	unsigned short orphan_blocks;
770 	struct page *page = NULL;
771 	struct ino_entry *orphan = NULL;
772 	struct inode_management *im = &sbi->im[ORPHAN_INO];
773 
774 	orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
775 
776 	/*
777 	 * we don't need to do spin_lock(&im->ino_lock) here, since all the
778 	 * orphan inode operations are covered under f2fs_lock_op().
779 	 * And, spin_lock should be avoided due to page operations below.
780 	 */
781 	head = &im->ino_list;
782 
783 	/* loop for each orphan inode entry and write them in Jornal block */
784 	list_for_each_entry(orphan, head, list) {
785 		if (!page) {
786 			page = f2fs_grab_meta_page(sbi, start_blk++);
787 			orphan_blk =
788 				(struct f2fs_orphan_block *)page_address(page);
789 			memset(orphan_blk, 0, sizeof(*orphan_blk));
790 		}
791 
792 		orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
793 
794 		if (nentries == F2FS_ORPHANS_PER_BLOCK) {
795 			/*
796 			 * an orphan block is full of 1020 entries,
797 			 * then we need to flush current orphan blocks
798 			 * and bring another one in memory
799 			 */
800 			orphan_blk->blk_addr = cpu_to_le16(index);
801 			orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
802 			orphan_blk->entry_count = cpu_to_le32(nentries);
803 			set_page_dirty(page);
804 			f2fs_put_page(page, 1);
805 			index++;
806 			nentries = 0;
807 			page = NULL;
808 		}
809 	}
810 
811 	if (page) {
812 		orphan_blk->blk_addr = cpu_to_le16(index);
813 		orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
814 		orphan_blk->entry_count = cpu_to_le32(nentries);
815 		set_page_dirty(page);
816 		f2fs_put_page(page, 1);
817 	}
818 }
819 
820 static __u32 f2fs_checkpoint_chksum(struct f2fs_sb_info *sbi,
821 						struct f2fs_checkpoint *ckpt)
822 {
823 	unsigned int chksum_ofs = le32_to_cpu(ckpt->checksum_offset);
824 	__u32 chksum;
825 
826 	chksum = f2fs_crc32(sbi, ckpt, chksum_ofs);
827 	if (chksum_ofs < CP_CHKSUM_OFFSET) {
828 		chksum_ofs += sizeof(chksum);
829 		chksum = f2fs_chksum(sbi, chksum, (__u8 *)ckpt + chksum_ofs,
830 						F2FS_BLKSIZE - chksum_ofs);
831 	}
832 	return chksum;
833 }
834 
835 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
836 		struct f2fs_checkpoint **cp_block, struct page **cp_page,
837 		unsigned long long *version)
838 {
839 	size_t crc_offset = 0;
840 	__u32 crc;
841 
842 	*cp_page = f2fs_get_meta_page(sbi, cp_addr);
843 	if (IS_ERR(*cp_page))
844 		return PTR_ERR(*cp_page);
845 
846 	*cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
847 
848 	crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
849 	if (crc_offset < CP_MIN_CHKSUM_OFFSET ||
850 			crc_offset > CP_CHKSUM_OFFSET) {
851 		f2fs_put_page(*cp_page, 1);
852 		f2fs_warn(sbi, "invalid crc_offset: %zu", crc_offset);
853 		return -EINVAL;
854 	}
855 
856 	crc = f2fs_checkpoint_chksum(sbi, *cp_block);
857 	if (crc != cur_cp_crc(*cp_block)) {
858 		f2fs_put_page(*cp_page, 1);
859 		f2fs_warn(sbi, "invalid crc value");
860 		return -EINVAL;
861 	}
862 
863 	*version = cur_cp_version(*cp_block);
864 	return 0;
865 }
866 
867 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
868 				block_t cp_addr, unsigned long long *version)
869 {
870 	struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
871 	struct f2fs_checkpoint *cp_block = NULL;
872 	unsigned long long cur_version = 0, pre_version = 0;
873 	unsigned int cp_blocks;
874 	int err;
875 
876 	err = get_checkpoint_version(sbi, cp_addr, &cp_block,
877 					&cp_page_1, version);
878 	if (err)
879 		return NULL;
880 
881 	cp_blocks = le32_to_cpu(cp_block->cp_pack_total_block_count);
882 
883 	if (cp_blocks > sbi->blocks_per_seg || cp_blocks <= F2FS_CP_PACKS) {
884 		f2fs_warn(sbi, "invalid cp_pack_total_block_count:%u",
885 			  le32_to_cpu(cp_block->cp_pack_total_block_count));
886 		goto invalid_cp;
887 	}
888 	pre_version = *version;
889 
890 	cp_addr += cp_blocks - 1;
891 	err = get_checkpoint_version(sbi, cp_addr, &cp_block,
892 					&cp_page_2, version);
893 	if (err)
894 		goto invalid_cp;
895 	cur_version = *version;
896 
897 	if (cur_version == pre_version) {
898 		*version = cur_version;
899 		f2fs_put_page(cp_page_2, 1);
900 		return cp_page_1;
901 	}
902 	f2fs_put_page(cp_page_2, 1);
903 invalid_cp:
904 	f2fs_put_page(cp_page_1, 1);
905 	return NULL;
906 }
907 
908 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi)
909 {
910 	struct f2fs_checkpoint *cp_block;
911 	struct f2fs_super_block *fsb = sbi->raw_super;
912 	struct page *cp1, *cp2, *cur_page;
913 	unsigned long blk_size = sbi->blocksize;
914 	unsigned long long cp1_version = 0, cp2_version = 0;
915 	unsigned long long cp_start_blk_no;
916 	unsigned int cp_blks = 1 + __cp_payload(sbi);
917 	block_t cp_blk_no;
918 	int i;
919 	int err;
920 
921 	sbi->ckpt = f2fs_kvzalloc(sbi, array_size(blk_size, cp_blks),
922 				  GFP_KERNEL);
923 	if (!sbi->ckpt)
924 		return -ENOMEM;
925 	/*
926 	 * Finding out valid cp block involves read both
927 	 * sets( cp pack 1 and cp pack 2)
928 	 */
929 	cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
930 	cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
931 
932 	/* The second checkpoint pack should start at the next segment */
933 	cp_start_blk_no += ((unsigned long long)1) <<
934 				le32_to_cpu(fsb->log_blocks_per_seg);
935 	cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
936 
937 	if (cp1 && cp2) {
938 		if (ver_after(cp2_version, cp1_version))
939 			cur_page = cp2;
940 		else
941 			cur_page = cp1;
942 	} else if (cp1) {
943 		cur_page = cp1;
944 	} else if (cp2) {
945 		cur_page = cp2;
946 	} else {
947 		err = -EFSCORRUPTED;
948 		goto fail_no_cp;
949 	}
950 
951 	cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
952 	memcpy(sbi->ckpt, cp_block, blk_size);
953 
954 	if (cur_page == cp1)
955 		sbi->cur_cp_pack = 1;
956 	else
957 		sbi->cur_cp_pack = 2;
958 
959 	/* Sanity checking of checkpoint */
960 	if (f2fs_sanity_check_ckpt(sbi)) {
961 		err = -EFSCORRUPTED;
962 		goto free_fail_no_cp;
963 	}
964 
965 	if (cp_blks <= 1)
966 		goto done;
967 
968 	cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
969 	if (cur_page == cp2)
970 		cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
971 
972 	for (i = 1; i < cp_blks; i++) {
973 		void *sit_bitmap_ptr;
974 		unsigned char *ckpt = (unsigned char *)sbi->ckpt;
975 
976 		cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i);
977 		if (IS_ERR(cur_page)) {
978 			err = PTR_ERR(cur_page);
979 			goto free_fail_no_cp;
980 		}
981 		sit_bitmap_ptr = page_address(cur_page);
982 		memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
983 		f2fs_put_page(cur_page, 1);
984 	}
985 done:
986 	f2fs_put_page(cp1, 1);
987 	f2fs_put_page(cp2, 1);
988 	return 0;
989 
990 free_fail_no_cp:
991 	f2fs_put_page(cp1, 1);
992 	f2fs_put_page(cp2, 1);
993 fail_no_cp:
994 	kvfree(sbi->ckpt);
995 	return err;
996 }
997 
998 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
999 {
1000 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1001 	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
1002 
1003 	if (is_inode_flag_set(inode, flag))
1004 		return;
1005 
1006 	set_inode_flag(inode, flag);
1007 	list_add_tail(&F2FS_I(inode)->dirty_list, &sbi->inode_list[type]);
1008 	stat_inc_dirty_inode(sbi, type);
1009 }
1010 
1011 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
1012 {
1013 	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
1014 
1015 	if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
1016 		return;
1017 
1018 	list_del_init(&F2FS_I(inode)->dirty_list);
1019 	clear_inode_flag(inode, flag);
1020 	stat_dec_dirty_inode(F2FS_I_SB(inode), type);
1021 }
1022 
1023 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio)
1024 {
1025 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1026 	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1027 
1028 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1029 			!S_ISLNK(inode->i_mode))
1030 		return;
1031 
1032 	spin_lock(&sbi->inode_lock[type]);
1033 	if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
1034 		__add_dirty_inode(inode, type);
1035 	inode_inc_dirty_pages(inode);
1036 	spin_unlock(&sbi->inode_lock[type]);
1037 
1038 	set_page_private_reference(&folio->page);
1039 }
1040 
1041 void f2fs_remove_dirty_inode(struct inode *inode)
1042 {
1043 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1044 	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1045 
1046 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1047 			!S_ISLNK(inode->i_mode))
1048 		return;
1049 
1050 	if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
1051 		return;
1052 
1053 	spin_lock(&sbi->inode_lock[type]);
1054 	__remove_dirty_inode(inode, type);
1055 	spin_unlock(&sbi->inode_lock[type]);
1056 }
1057 
1058 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
1059 {
1060 	struct list_head *head;
1061 	struct inode *inode;
1062 	struct f2fs_inode_info *fi;
1063 	bool is_dir = (type == DIR_INODE);
1064 	unsigned long ino = 0;
1065 
1066 	trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
1067 				get_pages(sbi, is_dir ?
1068 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1069 retry:
1070 	if (unlikely(f2fs_cp_error(sbi))) {
1071 		trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1072 				get_pages(sbi, is_dir ?
1073 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1074 		return -EIO;
1075 	}
1076 
1077 	spin_lock(&sbi->inode_lock[type]);
1078 
1079 	head = &sbi->inode_list[type];
1080 	if (list_empty(head)) {
1081 		spin_unlock(&sbi->inode_lock[type]);
1082 		trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1083 				get_pages(sbi, is_dir ?
1084 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1085 		return 0;
1086 	}
1087 	fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
1088 	inode = igrab(&fi->vfs_inode);
1089 	spin_unlock(&sbi->inode_lock[type]);
1090 	if (inode) {
1091 		unsigned long cur_ino = inode->i_ino;
1092 
1093 		F2FS_I(inode)->cp_task = current;
1094 
1095 		filemap_fdatawrite(inode->i_mapping);
1096 
1097 		F2FS_I(inode)->cp_task = NULL;
1098 
1099 		iput(inode);
1100 		/* We need to give cpu to another writers. */
1101 		if (ino == cur_ino)
1102 			cond_resched();
1103 		else
1104 			ino = cur_ino;
1105 	} else {
1106 		/*
1107 		 * We should submit bio, since it exists several
1108 		 * wribacking dentry pages in the freeing inode.
1109 		 */
1110 		f2fs_submit_merged_write(sbi, DATA);
1111 		cond_resched();
1112 	}
1113 	goto retry;
1114 }
1115 
1116 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
1117 {
1118 	struct list_head *head = &sbi->inode_list[DIRTY_META];
1119 	struct inode *inode;
1120 	struct f2fs_inode_info *fi;
1121 	s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
1122 
1123 	while (total--) {
1124 		if (unlikely(f2fs_cp_error(sbi)))
1125 			return -EIO;
1126 
1127 		spin_lock(&sbi->inode_lock[DIRTY_META]);
1128 		if (list_empty(head)) {
1129 			spin_unlock(&sbi->inode_lock[DIRTY_META]);
1130 			return 0;
1131 		}
1132 		fi = list_first_entry(head, struct f2fs_inode_info,
1133 							gdirty_list);
1134 		inode = igrab(&fi->vfs_inode);
1135 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
1136 		if (inode) {
1137 			sync_inode_metadata(inode, 0);
1138 
1139 			/* it's on eviction */
1140 			if (is_inode_flag_set(inode, FI_DIRTY_INODE))
1141 				f2fs_update_inode_page(inode);
1142 			iput(inode);
1143 		}
1144 	}
1145 	return 0;
1146 }
1147 
1148 static void __prepare_cp_block(struct f2fs_sb_info *sbi)
1149 {
1150 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1151 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1152 	nid_t last_nid = nm_i->next_scan_nid;
1153 
1154 	next_free_nid(sbi, &last_nid);
1155 	ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1156 	ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1157 	ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1158 	ckpt->next_free_nid = cpu_to_le32(last_nid);
1159 }
1160 
1161 static bool __need_flush_quota(struct f2fs_sb_info *sbi)
1162 {
1163 	bool ret = false;
1164 
1165 	if (!is_journalled_quota(sbi))
1166 		return false;
1167 
1168 	if (!f2fs_down_write_trylock(&sbi->quota_sem))
1169 		return true;
1170 	if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) {
1171 		ret = false;
1172 	} else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) {
1173 		ret = false;
1174 	} else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_FLUSH)) {
1175 		clear_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1176 		ret = true;
1177 	} else if (get_pages(sbi, F2FS_DIRTY_QDATA)) {
1178 		ret = true;
1179 	}
1180 	f2fs_up_write(&sbi->quota_sem);
1181 	return ret;
1182 }
1183 
1184 /*
1185  * Freeze all the FS-operations for checkpoint.
1186  */
1187 static int block_operations(struct f2fs_sb_info *sbi)
1188 {
1189 	struct writeback_control wbc = {
1190 		.sync_mode = WB_SYNC_ALL,
1191 		.nr_to_write = LONG_MAX,
1192 		.for_reclaim = 0,
1193 	};
1194 	int err = 0, cnt = 0;
1195 
1196 	/*
1197 	 * Let's flush inline_data in dirty node pages.
1198 	 */
1199 	f2fs_flush_inline_data(sbi);
1200 
1201 retry_flush_quotas:
1202 	f2fs_lock_all(sbi);
1203 	if (__need_flush_quota(sbi)) {
1204 		int locked;
1205 
1206 		if (++cnt > DEFAULT_RETRY_QUOTA_FLUSH_COUNT) {
1207 			set_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1208 			set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1209 			goto retry_flush_dents;
1210 		}
1211 		f2fs_unlock_all(sbi);
1212 
1213 		/* only failed during mount/umount/freeze/quotactl */
1214 		locked = down_read_trylock(&sbi->sb->s_umount);
1215 		f2fs_quota_sync(sbi->sb, -1);
1216 		if (locked)
1217 			up_read(&sbi->sb->s_umount);
1218 		cond_resched();
1219 		goto retry_flush_quotas;
1220 	}
1221 
1222 retry_flush_dents:
1223 	/* write all the dirty dentry pages */
1224 	if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
1225 		f2fs_unlock_all(sbi);
1226 		err = f2fs_sync_dirty_inodes(sbi, DIR_INODE);
1227 		if (err)
1228 			return err;
1229 		cond_resched();
1230 		goto retry_flush_quotas;
1231 	}
1232 
1233 	/*
1234 	 * POR: we should ensure that there are no dirty node pages
1235 	 * until finishing nat/sit flush. inode->i_blocks can be updated.
1236 	 */
1237 	f2fs_down_write(&sbi->node_change);
1238 
1239 	if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
1240 		f2fs_up_write(&sbi->node_change);
1241 		f2fs_unlock_all(sbi);
1242 		err = f2fs_sync_inode_meta(sbi);
1243 		if (err)
1244 			return err;
1245 		cond_resched();
1246 		goto retry_flush_quotas;
1247 	}
1248 
1249 retry_flush_nodes:
1250 	f2fs_down_write(&sbi->node_write);
1251 
1252 	if (get_pages(sbi, F2FS_DIRTY_NODES)) {
1253 		f2fs_up_write(&sbi->node_write);
1254 		atomic_inc(&sbi->wb_sync_req[NODE]);
1255 		err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO);
1256 		atomic_dec(&sbi->wb_sync_req[NODE]);
1257 		if (err) {
1258 			f2fs_up_write(&sbi->node_change);
1259 			f2fs_unlock_all(sbi);
1260 			return err;
1261 		}
1262 		cond_resched();
1263 		goto retry_flush_nodes;
1264 	}
1265 
1266 	/*
1267 	 * sbi->node_change is used only for AIO write_begin path which produces
1268 	 * dirty node blocks and some checkpoint values by block allocation.
1269 	 */
1270 	__prepare_cp_block(sbi);
1271 	f2fs_up_write(&sbi->node_change);
1272 	return err;
1273 }
1274 
1275 static void unblock_operations(struct f2fs_sb_info *sbi)
1276 {
1277 	f2fs_up_write(&sbi->node_write);
1278 	f2fs_unlock_all(sbi);
1279 }
1280 
1281 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type)
1282 {
1283 	DEFINE_WAIT(wait);
1284 
1285 	for (;;) {
1286 		if (!get_pages(sbi, type))
1287 			break;
1288 
1289 		if (unlikely(f2fs_cp_error(sbi)))
1290 			break;
1291 
1292 		if (type == F2FS_DIRTY_META)
1293 			f2fs_sync_meta_pages(sbi, META, LONG_MAX,
1294 							FS_CP_META_IO);
1295 		else if (type == F2FS_WB_CP_DATA)
1296 			f2fs_submit_merged_write(sbi, DATA);
1297 
1298 		prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1299 		io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1300 	}
1301 	finish_wait(&sbi->cp_wait, &wait);
1302 }
1303 
1304 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1305 {
1306 	unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1307 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1308 	unsigned long flags;
1309 
1310 	if (cpc->reason & CP_UMOUNT) {
1311 		if (le32_to_cpu(ckpt->cp_pack_total_block_count) +
1312 			NM_I(sbi)->nat_bits_blocks > sbi->blocks_per_seg) {
1313 			clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1314 			f2fs_notice(sbi, "Disable nat_bits due to no space");
1315 		} else if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG) &&
1316 						f2fs_nat_bitmap_enabled(sbi)) {
1317 			f2fs_enable_nat_bits(sbi);
1318 			set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1319 			f2fs_notice(sbi, "Rebuild and enable nat_bits");
1320 		}
1321 	}
1322 
1323 	spin_lock_irqsave(&sbi->cp_lock, flags);
1324 
1325 	if (cpc->reason & CP_TRIMMED)
1326 		__set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1327 	else
1328 		__clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1329 
1330 	if (cpc->reason & CP_UMOUNT)
1331 		__set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1332 	else
1333 		__clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1334 
1335 	if (cpc->reason & CP_FASTBOOT)
1336 		__set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1337 	else
1338 		__clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1339 
1340 	if (orphan_num)
1341 		__set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1342 	else
1343 		__clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1344 
1345 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1346 		__set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1347 
1348 	if (is_sbi_flag_set(sbi, SBI_IS_RESIZEFS))
1349 		__set_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
1350 	else
1351 		__clear_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
1352 
1353 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
1354 		__set_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1355 	else
1356 		__clear_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1357 
1358 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK))
1359 		__set_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
1360 	else
1361 		__clear_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
1362 
1363 	if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH))
1364 		__set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1365 	else
1366 		__clear_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1367 
1368 	if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR))
1369 		__set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1370 
1371 	/* set this flag to activate crc|cp_ver for recovery */
1372 	__set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1373 	__clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG);
1374 
1375 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1376 }
1377 
1378 static void commit_checkpoint(struct f2fs_sb_info *sbi,
1379 	void *src, block_t blk_addr)
1380 {
1381 	struct writeback_control wbc = {
1382 		.for_reclaim = 0,
1383 	};
1384 
1385 	/*
1386 	 * pagevec_lookup_tag and lock_page again will take
1387 	 * some extra time. Therefore, f2fs_update_meta_pages and
1388 	 * f2fs_sync_meta_pages are combined in this function.
1389 	 */
1390 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
1391 	int err;
1392 
1393 	f2fs_wait_on_page_writeback(page, META, true, true);
1394 
1395 	memcpy(page_address(page), src, PAGE_SIZE);
1396 
1397 	set_page_dirty(page);
1398 	if (unlikely(!clear_page_dirty_for_io(page)))
1399 		f2fs_bug_on(sbi, 1);
1400 
1401 	/* writeout cp pack 2 page */
1402 	err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO);
1403 	if (unlikely(err && f2fs_cp_error(sbi))) {
1404 		f2fs_put_page(page, 1);
1405 		return;
1406 	}
1407 
1408 	f2fs_bug_on(sbi, err);
1409 	f2fs_put_page(page, 0);
1410 
1411 	/* submit checkpoint (with barrier if NOBARRIER is not set) */
1412 	f2fs_submit_merged_write(sbi, META_FLUSH);
1413 }
1414 
1415 static inline u64 get_sectors_written(struct block_device *bdev)
1416 {
1417 	return (u64)part_stat_read(bdev, sectors[STAT_WRITE]);
1418 }
1419 
1420 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi)
1421 {
1422 	if (f2fs_is_multi_device(sbi)) {
1423 		u64 sectors = 0;
1424 		int i;
1425 
1426 		for (i = 0; i < sbi->s_ndevs; i++)
1427 			sectors += get_sectors_written(FDEV(i).bdev);
1428 
1429 		return sectors;
1430 	}
1431 
1432 	return get_sectors_written(sbi->sb->s_bdev);
1433 }
1434 
1435 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1436 {
1437 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1438 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1439 	unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
1440 	block_t start_blk;
1441 	unsigned int data_sum_blocks, orphan_blocks;
1442 	__u32 crc32 = 0;
1443 	int i;
1444 	int cp_payload_blks = __cp_payload(sbi);
1445 	struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1446 	u64 kbytes_written;
1447 	int err;
1448 
1449 	/* Flush all the NAT/SIT pages */
1450 	f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1451 
1452 	/* start to update checkpoint, cp ver is already updated previously */
1453 	ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true));
1454 	ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1455 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1456 		ckpt->cur_node_segno[i] =
1457 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
1458 		ckpt->cur_node_blkoff[i] =
1459 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
1460 		ckpt->alloc_type[i + CURSEG_HOT_NODE] =
1461 				curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
1462 	}
1463 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1464 		ckpt->cur_data_segno[i] =
1465 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
1466 		ckpt->cur_data_blkoff[i] =
1467 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
1468 		ckpt->alloc_type[i + CURSEG_HOT_DATA] =
1469 				curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
1470 	}
1471 
1472 	/* 2 cp + n data seg summary + orphan inode blocks */
1473 	data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false);
1474 	spin_lock_irqsave(&sbi->cp_lock, flags);
1475 	if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1476 		__set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1477 	else
1478 		__clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1479 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1480 
1481 	orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1482 	ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1483 			orphan_blocks);
1484 
1485 	if (__remain_node_summaries(cpc->reason))
1486 		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1487 				cp_payload_blks + data_sum_blocks +
1488 				orphan_blocks + NR_CURSEG_NODE_TYPE);
1489 	else
1490 		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1491 				cp_payload_blks + data_sum_blocks +
1492 				orphan_blocks);
1493 
1494 	/* update ckpt flag for checkpoint */
1495 	update_ckpt_flags(sbi, cpc);
1496 
1497 	/* update SIT/NAT bitmap */
1498 	get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1499 	get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1500 
1501 	crc32 = f2fs_checkpoint_chksum(sbi, ckpt);
1502 	*((__le32 *)((unsigned char *)ckpt +
1503 				le32_to_cpu(ckpt->checksum_offset)))
1504 				= cpu_to_le32(crc32);
1505 
1506 	start_blk = __start_cp_next_addr(sbi);
1507 
1508 	/* write nat bits */
1509 	if ((cpc->reason & CP_UMOUNT) &&
1510 			is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) {
1511 		__u64 cp_ver = cur_cp_version(ckpt);
1512 		block_t blk;
1513 
1514 		cp_ver |= ((__u64)crc32 << 32);
1515 		*(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1516 
1517 		blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
1518 		for (i = 0; i < nm_i->nat_bits_blocks; i++)
1519 			f2fs_update_meta_page(sbi, nm_i->nat_bits +
1520 					(i << F2FS_BLKSIZE_BITS), blk + i);
1521 	}
1522 
1523 	/* write out checkpoint buffer at block 0 */
1524 	f2fs_update_meta_page(sbi, ckpt, start_blk++);
1525 
1526 	for (i = 1; i < 1 + cp_payload_blks; i++)
1527 		f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1528 							start_blk++);
1529 
1530 	if (orphan_num) {
1531 		write_orphan_inodes(sbi, start_blk);
1532 		start_blk += orphan_blocks;
1533 	}
1534 
1535 	f2fs_write_data_summaries(sbi, start_blk);
1536 	start_blk += data_sum_blocks;
1537 
1538 	/* Record write statistics in the hot node summary */
1539 	kbytes_written = sbi->kbytes_written;
1540 	kbytes_written += (f2fs_get_sectors_written(sbi) -
1541 				sbi->sectors_written_start) >> 1;
1542 	seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1543 
1544 	if (__remain_node_summaries(cpc->reason)) {
1545 		f2fs_write_node_summaries(sbi, start_blk);
1546 		start_blk += NR_CURSEG_NODE_TYPE;
1547 	}
1548 
1549 	/* update user_block_counts */
1550 	sbi->last_valid_block_count = sbi->total_valid_block_count;
1551 	percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1552 	percpu_counter_set(&sbi->rf_node_block_count, 0);
1553 
1554 	/* Here, we have one bio having CP pack except cp pack 2 page */
1555 	f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1556 	/* Wait for all dirty meta pages to be submitted for IO */
1557 	f2fs_wait_on_all_pages(sbi, F2FS_DIRTY_META);
1558 
1559 	/* wait for previous submitted meta pages writeback */
1560 	f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1561 
1562 	/* flush all device cache */
1563 	err = f2fs_flush_device_cache(sbi);
1564 	if (err)
1565 		return err;
1566 
1567 	/* barrier and flush checkpoint cp pack 2 page if it can */
1568 	commit_checkpoint(sbi, ckpt, start_blk);
1569 	f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1570 
1571 	/*
1572 	 * invalidate intermediate page cache borrowed from meta inode which are
1573 	 * used for migration of encrypted, verity or compressed inode's blocks.
1574 	 */
1575 	if (f2fs_sb_has_encrypt(sbi) || f2fs_sb_has_verity(sbi) ||
1576 		f2fs_sb_has_compression(sbi))
1577 		invalidate_mapping_pages(META_MAPPING(sbi),
1578 				MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1);
1579 
1580 	f2fs_release_ino_entry(sbi, false);
1581 
1582 	f2fs_reset_fsync_node_info(sbi);
1583 
1584 	clear_sbi_flag(sbi, SBI_IS_DIRTY);
1585 	clear_sbi_flag(sbi, SBI_NEED_CP);
1586 	clear_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1587 
1588 	spin_lock(&sbi->stat_lock);
1589 	sbi->unusable_block_count = 0;
1590 	spin_unlock(&sbi->stat_lock);
1591 
1592 	__set_cp_next_pack(sbi);
1593 
1594 	/*
1595 	 * redirty superblock if metadata like node page or inode cache is
1596 	 * updated during writing checkpoint.
1597 	 */
1598 	if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1599 			get_pages(sbi, F2FS_DIRTY_IMETA))
1600 		set_sbi_flag(sbi, SBI_IS_DIRTY);
1601 
1602 	f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1603 
1604 	return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0;
1605 }
1606 
1607 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1608 {
1609 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1610 	unsigned long long ckpt_ver;
1611 	int err = 0;
1612 
1613 	if (f2fs_readonly(sbi->sb) || f2fs_hw_is_readonly(sbi))
1614 		return -EROFS;
1615 
1616 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1617 		if (cpc->reason != CP_PAUSE)
1618 			return 0;
1619 		f2fs_warn(sbi, "Start checkpoint disabled!");
1620 	}
1621 	if (cpc->reason != CP_RESIZE)
1622 		f2fs_down_write(&sbi->cp_global_sem);
1623 
1624 	if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1625 		((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
1626 		((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
1627 		goto out;
1628 	if (unlikely(f2fs_cp_error(sbi))) {
1629 		err = -EIO;
1630 		goto out;
1631 	}
1632 
1633 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1634 
1635 	err = block_operations(sbi);
1636 	if (err)
1637 		goto out;
1638 
1639 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1640 
1641 	f2fs_flush_merged_writes(sbi);
1642 
1643 	/* this is the case of multiple fstrims without any changes */
1644 	if (cpc->reason & CP_DISCARD) {
1645 		if (!f2fs_exist_trim_candidates(sbi, cpc)) {
1646 			unblock_operations(sbi);
1647 			goto out;
1648 		}
1649 
1650 		if (NM_I(sbi)->nat_cnt[DIRTY_NAT] == 0 &&
1651 				SIT_I(sbi)->dirty_sentries == 0 &&
1652 				prefree_segments(sbi) == 0) {
1653 			f2fs_flush_sit_entries(sbi, cpc);
1654 			f2fs_clear_prefree_segments(sbi, cpc);
1655 			unblock_operations(sbi);
1656 			goto out;
1657 		}
1658 	}
1659 
1660 	/*
1661 	 * update checkpoint pack index
1662 	 * Increase the version number so that
1663 	 * SIT entries and seg summaries are written at correct place
1664 	 */
1665 	ckpt_ver = cur_cp_version(ckpt);
1666 	ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1667 
1668 	/* write cached NAT/SIT entries to NAT/SIT area */
1669 	err = f2fs_flush_nat_entries(sbi, cpc);
1670 	if (err) {
1671 		f2fs_err(sbi, "f2fs_flush_nat_entries failed err:%d, stop checkpoint", err);
1672 		f2fs_bug_on(sbi, !f2fs_cp_error(sbi));
1673 		goto stop;
1674 	}
1675 
1676 	f2fs_flush_sit_entries(sbi, cpc);
1677 
1678 	/* save inmem log status */
1679 	f2fs_save_inmem_curseg(sbi);
1680 
1681 	err = do_checkpoint(sbi, cpc);
1682 	if (err) {
1683 		f2fs_err(sbi, "do_checkpoint failed err:%d, stop checkpoint", err);
1684 		f2fs_bug_on(sbi, !f2fs_cp_error(sbi));
1685 		f2fs_release_discard_addrs(sbi);
1686 	} else {
1687 		f2fs_clear_prefree_segments(sbi, cpc);
1688 	}
1689 
1690 	f2fs_restore_inmem_curseg(sbi);
1691 stop:
1692 	unblock_operations(sbi);
1693 	stat_inc_cp_count(sbi->stat_info);
1694 
1695 	if (cpc->reason & CP_RECOVERY)
1696 		f2fs_notice(sbi, "checkpoint: version = %llx", ckpt_ver);
1697 
1698 	/* update CP_TIME to trigger checkpoint periodically */
1699 	f2fs_update_time(sbi, CP_TIME);
1700 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1701 out:
1702 	if (cpc->reason != CP_RESIZE)
1703 		f2fs_up_write(&sbi->cp_global_sem);
1704 	return err;
1705 }
1706 
1707 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi)
1708 {
1709 	int i;
1710 
1711 	for (i = 0; i < MAX_INO_ENTRY; i++) {
1712 		struct inode_management *im = &sbi->im[i];
1713 
1714 		INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1715 		spin_lock_init(&im->ino_lock);
1716 		INIT_LIST_HEAD(&im->ino_list);
1717 		im->ino_num = 0;
1718 	}
1719 
1720 	sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1721 			NR_CURSEG_PERSIST_TYPE - __cp_payload(sbi)) *
1722 				F2FS_ORPHANS_PER_BLOCK;
1723 }
1724 
1725 int __init f2fs_create_checkpoint_caches(void)
1726 {
1727 	ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1728 			sizeof(struct ino_entry));
1729 	if (!ino_entry_slab)
1730 		return -ENOMEM;
1731 	f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1732 			sizeof(struct inode_entry));
1733 	if (!f2fs_inode_entry_slab) {
1734 		kmem_cache_destroy(ino_entry_slab);
1735 		return -ENOMEM;
1736 	}
1737 	return 0;
1738 }
1739 
1740 void f2fs_destroy_checkpoint_caches(void)
1741 {
1742 	kmem_cache_destroy(ino_entry_slab);
1743 	kmem_cache_destroy(f2fs_inode_entry_slab);
1744 }
1745 
1746 static int __write_checkpoint_sync(struct f2fs_sb_info *sbi)
1747 {
1748 	struct cp_control cpc = { .reason = CP_SYNC, };
1749 	int err;
1750 
1751 	f2fs_down_write(&sbi->gc_lock);
1752 	err = f2fs_write_checkpoint(sbi, &cpc);
1753 	f2fs_up_write(&sbi->gc_lock);
1754 
1755 	return err;
1756 }
1757 
1758 static void __checkpoint_and_complete_reqs(struct f2fs_sb_info *sbi)
1759 {
1760 	struct ckpt_req_control *cprc = &sbi->cprc_info;
1761 	struct ckpt_req *req, *next;
1762 	struct llist_node *dispatch_list;
1763 	u64 sum_diff = 0, diff, count = 0;
1764 	int ret;
1765 
1766 	dispatch_list = llist_del_all(&cprc->issue_list);
1767 	if (!dispatch_list)
1768 		return;
1769 	dispatch_list = llist_reverse_order(dispatch_list);
1770 
1771 	ret = __write_checkpoint_sync(sbi);
1772 	atomic_inc(&cprc->issued_ckpt);
1773 
1774 	llist_for_each_entry_safe(req, next, dispatch_list, llnode) {
1775 		diff = (u64)ktime_ms_delta(ktime_get(), req->queue_time);
1776 		req->ret = ret;
1777 		complete(&req->wait);
1778 
1779 		sum_diff += diff;
1780 		count++;
1781 	}
1782 	atomic_sub(count, &cprc->queued_ckpt);
1783 	atomic_add(count, &cprc->total_ckpt);
1784 
1785 	spin_lock(&cprc->stat_lock);
1786 	cprc->cur_time = (unsigned int)div64_u64(sum_diff, count);
1787 	if (cprc->peak_time < cprc->cur_time)
1788 		cprc->peak_time = cprc->cur_time;
1789 	spin_unlock(&cprc->stat_lock);
1790 }
1791 
1792 static int issue_checkpoint_thread(void *data)
1793 {
1794 	struct f2fs_sb_info *sbi = data;
1795 	struct ckpt_req_control *cprc = &sbi->cprc_info;
1796 	wait_queue_head_t *q = &cprc->ckpt_wait_queue;
1797 repeat:
1798 	if (kthread_should_stop())
1799 		return 0;
1800 
1801 	if (!llist_empty(&cprc->issue_list))
1802 		__checkpoint_and_complete_reqs(sbi);
1803 
1804 	wait_event_interruptible(*q,
1805 		kthread_should_stop() || !llist_empty(&cprc->issue_list));
1806 	goto repeat;
1807 }
1808 
1809 static void flush_remained_ckpt_reqs(struct f2fs_sb_info *sbi,
1810 		struct ckpt_req *wait_req)
1811 {
1812 	struct ckpt_req_control *cprc = &sbi->cprc_info;
1813 
1814 	if (!llist_empty(&cprc->issue_list)) {
1815 		__checkpoint_and_complete_reqs(sbi);
1816 	} else {
1817 		/* already dispatched by issue_checkpoint_thread */
1818 		if (wait_req)
1819 			wait_for_completion(&wait_req->wait);
1820 	}
1821 }
1822 
1823 static void init_ckpt_req(struct ckpt_req *req)
1824 {
1825 	memset(req, 0, sizeof(struct ckpt_req));
1826 
1827 	init_completion(&req->wait);
1828 	req->queue_time = ktime_get();
1829 }
1830 
1831 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi)
1832 {
1833 	struct ckpt_req_control *cprc = &sbi->cprc_info;
1834 	struct ckpt_req req;
1835 	struct cp_control cpc;
1836 
1837 	cpc.reason = __get_cp_reason(sbi);
1838 	if (!test_opt(sbi, MERGE_CHECKPOINT) || cpc.reason != CP_SYNC) {
1839 		int ret;
1840 
1841 		f2fs_down_write(&sbi->gc_lock);
1842 		ret = f2fs_write_checkpoint(sbi, &cpc);
1843 		f2fs_up_write(&sbi->gc_lock);
1844 
1845 		return ret;
1846 	}
1847 
1848 	if (!cprc->f2fs_issue_ckpt)
1849 		return __write_checkpoint_sync(sbi);
1850 
1851 	init_ckpt_req(&req);
1852 
1853 	llist_add(&req.llnode, &cprc->issue_list);
1854 	atomic_inc(&cprc->queued_ckpt);
1855 
1856 	/*
1857 	 * update issue_list before we wake up issue_checkpoint thread,
1858 	 * this smp_mb() pairs with another barrier in ___wait_event(),
1859 	 * see more details in comments of waitqueue_active().
1860 	 */
1861 	smp_mb();
1862 
1863 	if (waitqueue_active(&cprc->ckpt_wait_queue))
1864 		wake_up(&cprc->ckpt_wait_queue);
1865 
1866 	if (cprc->f2fs_issue_ckpt)
1867 		wait_for_completion(&req.wait);
1868 	else
1869 		flush_remained_ckpt_reqs(sbi, &req);
1870 
1871 	return req.ret;
1872 }
1873 
1874 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi)
1875 {
1876 	dev_t dev = sbi->sb->s_bdev->bd_dev;
1877 	struct ckpt_req_control *cprc = &sbi->cprc_info;
1878 
1879 	if (cprc->f2fs_issue_ckpt)
1880 		return 0;
1881 
1882 	cprc->f2fs_issue_ckpt = kthread_run(issue_checkpoint_thread, sbi,
1883 			"f2fs_ckpt-%u:%u", MAJOR(dev), MINOR(dev));
1884 	if (IS_ERR(cprc->f2fs_issue_ckpt)) {
1885 		cprc->f2fs_issue_ckpt = NULL;
1886 		return -ENOMEM;
1887 	}
1888 
1889 	set_task_ioprio(cprc->f2fs_issue_ckpt, cprc->ckpt_thread_ioprio);
1890 
1891 	return 0;
1892 }
1893 
1894 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi)
1895 {
1896 	struct ckpt_req_control *cprc = &sbi->cprc_info;
1897 
1898 	if (cprc->f2fs_issue_ckpt) {
1899 		struct task_struct *ckpt_task = cprc->f2fs_issue_ckpt;
1900 
1901 		cprc->f2fs_issue_ckpt = NULL;
1902 		kthread_stop(ckpt_task);
1903 
1904 		flush_remained_ckpt_reqs(sbi, NULL);
1905 	}
1906 }
1907 
1908 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi)
1909 {
1910 	struct ckpt_req_control *cprc = &sbi->cprc_info;
1911 
1912 	atomic_set(&cprc->issued_ckpt, 0);
1913 	atomic_set(&cprc->total_ckpt, 0);
1914 	atomic_set(&cprc->queued_ckpt, 0);
1915 	cprc->ckpt_thread_ioprio = DEFAULT_CHECKPOINT_IOPRIO;
1916 	init_waitqueue_head(&cprc->ckpt_wait_queue);
1917 	init_llist_head(&cprc->issue_list);
1918 	spin_lock_init(&cprc->stat_lock);
1919 }
1920