xref: /linux/fs/f2fs/checkpoint.c (revision 4c62e9764ab403d42f9b8871b1241fe7812f19d4)
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19 
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 
24 static struct kmem_cache *orphan_entry_slab;
25 static struct kmem_cache *inode_entry_slab;
26 
27 /*
28  * We guarantee no failure on the returned page.
29  */
30 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
31 {
32 	struct address_space *mapping = sbi->meta_inode->i_mapping;
33 	struct page *page = NULL;
34 repeat:
35 	page = grab_cache_page(mapping, index);
36 	if (!page) {
37 		cond_resched();
38 		goto repeat;
39 	}
40 
41 	/* We wait writeback only inside grab_meta_page() */
42 	wait_on_page_writeback(page);
43 	SetPageUptodate(page);
44 	return page;
45 }
46 
47 /*
48  * We guarantee no failure on the returned page.
49  */
50 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
51 {
52 	struct address_space *mapping = sbi->meta_inode->i_mapping;
53 	struct page *page;
54 repeat:
55 	page = grab_cache_page(mapping, index);
56 	if (!page) {
57 		cond_resched();
58 		goto repeat;
59 	}
60 	if (f2fs_readpage(sbi, page, index, READ_SYNC)) {
61 		f2fs_put_page(page, 1);
62 		goto repeat;
63 	}
64 	mark_page_accessed(page);
65 
66 	/* We do not allow returning an errorneous page */
67 	return page;
68 }
69 
70 static int f2fs_write_meta_page(struct page *page,
71 				struct writeback_control *wbc)
72 {
73 	struct inode *inode = page->mapping->host;
74 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
75 	int err;
76 
77 	wait_on_page_writeback(page);
78 
79 	err = write_meta_page(sbi, page, wbc);
80 	if (err) {
81 		wbc->pages_skipped++;
82 		set_page_dirty(page);
83 	}
84 
85 	dec_page_count(sbi, F2FS_DIRTY_META);
86 
87 	/* In this case, we should not unlock this page */
88 	if (err != AOP_WRITEPAGE_ACTIVATE)
89 		unlock_page(page);
90 	return err;
91 }
92 
93 static int f2fs_write_meta_pages(struct address_space *mapping,
94 				struct writeback_control *wbc)
95 {
96 	struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
97 	struct block_device *bdev = sbi->sb->s_bdev;
98 	long written;
99 
100 	if (wbc->for_kupdate)
101 		return 0;
102 
103 	if (get_pages(sbi, F2FS_DIRTY_META) == 0)
104 		return 0;
105 
106 	/* if mounting is failed, skip writing node pages */
107 	mutex_lock(&sbi->cp_mutex);
108 	written = sync_meta_pages(sbi, META, bio_get_nr_vecs(bdev));
109 	mutex_unlock(&sbi->cp_mutex);
110 	wbc->nr_to_write -= written;
111 	return 0;
112 }
113 
114 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
115 						long nr_to_write)
116 {
117 	struct address_space *mapping = sbi->meta_inode->i_mapping;
118 	pgoff_t index = 0, end = LONG_MAX;
119 	struct pagevec pvec;
120 	long nwritten = 0;
121 	struct writeback_control wbc = {
122 		.for_reclaim = 0,
123 	};
124 
125 	pagevec_init(&pvec, 0);
126 
127 	while (index <= end) {
128 		int i, nr_pages;
129 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
130 				PAGECACHE_TAG_DIRTY,
131 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
132 		if (nr_pages == 0)
133 			break;
134 
135 		for (i = 0; i < nr_pages; i++) {
136 			struct page *page = pvec.pages[i];
137 			lock_page(page);
138 			BUG_ON(page->mapping != mapping);
139 			BUG_ON(!PageDirty(page));
140 			clear_page_dirty_for_io(page);
141 			f2fs_write_meta_page(page, &wbc);
142 			if (nwritten++ >= nr_to_write)
143 				break;
144 		}
145 		pagevec_release(&pvec);
146 		cond_resched();
147 	}
148 
149 	if (nwritten)
150 		f2fs_submit_bio(sbi, type, nr_to_write == LONG_MAX);
151 
152 	return nwritten;
153 }
154 
155 static int f2fs_set_meta_page_dirty(struct page *page)
156 {
157 	struct address_space *mapping = page->mapping;
158 	struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
159 
160 	SetPageUptodate(page);
161 	if (!PageDirty(page)) {
162 		__set_page_dirty_nobuffers(page);
163 		inc_page_count(sbi, F2FS_DIRTY_META);
164 		F2FS_SET_SB_DIRT(sbi);
165 		return 1;
166 	}
167 	return 0;
168 }
169 
170 const struct address_space_operations f2fs_meta_aops = {
171 	.writepage	= f2fs_write_meta_page,
172 	.writepages	= f2fs_write_meta_pages,
173 	.set_page_dirty	= f2fs_set_meta_page_dirty,
174 };
175 
176 int check_orphan_space(struct f2fs_sb_info *sbi)
177 {
178 	unsigned int max_orphans;
179 	int err = 0;
180 
181 	/*
182 	 * considering 512 blocks in a segment 5 blocks are needed for cp
183 	 * and log segment summaries. Remaining blocks are used to keep
184 	 * orphan entries with the limitation one reserved segment
185 	 * for cp pack we can have max 1020*507 orphan entries
186 	 */
187 	max_orphans = (sbi->blocks_per_seg - 5) * F2FS_ORPHANS_PER_BLOCK;
188 	mutex_lock(&sbi->orphan_inode_mutex);
189 	if (sbi->n_orphans >= max_orphans)
190 		err = -ENOSPC;
191 	mutex_unlock(&sbi->orphan_inode_mutex);
192 	return err;
193 }
194 
195 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
196 {
197 	struct list_head *head, *this;
198 	struct orphan_inode_entry *new = NULL, *orphan = NULL;
199 
200 	mutex_lock(&sbi->orphan_inode_mutex);
201 	head = &sbi->orphan_inode_list;
202 	list_for_each(this, head) {
203 		orphan = list_entry(this, struct orphan_inode_entry, list);
204 		if (orphan->ino == ino)
205 			goto out;
206 		if (orphan->ino > ino)
207 			break;
208 		orphan = NULL;
209 	}
210 retry:
211 	new = kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC);
212 	if (!new) {
213 		cond_resched();
214 		goto retry;
215 	}
216 	new->ino = ino;
217 	INIT_LIST_HEAD(&new->list);
218 
219 	/* add new_oentry into list which is sorted by inode number */
220 	if (orphan) {
221 		struct orphan_inode_entry *prev;
222 
223 		/* get previous entry */
224 		prev = list_entry(orphan->list.prev, typeof(*prev), list);
225 		if (&prev->list != head)
226 			/* insert new orphan inode entry */
227 			list_add(&new->list, &prev->list);
228 		else
229 			list_add(&new->list, head);
230 	} else {
231 		list_add_tail(&new->list, head);
232 	}
233 	sbi->n_orphans++;
234 out:
235 	mutex_unlock(&sbi->orphan_inode_mutex);
236 }
237 
238 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
239 {
240 	struct list_head *this, *next, *head;
241 	struct orphan_inode_entry *orphan;
242 
243 	mutex_lock(&sbi->orphan_inode_mutex);
244 	head = &sbi->orphan_inode_list;
245 	list_for_each_safe(this, next, head) {
246 		orphan = list_entry(this, struct orphan_inode_entry, list);
247 		if (orphan->ino == ino) {
248 			list_del(&orphan->list);
249 			kmem_cache_free(orphan_entry_slab, orphan);
250 			sbi->n_orphans--;
251 			break;
252 		}
253 	}
254 	mutex_unlock(&sbi->orphan_inode_mutex);
255 }
256 
257 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
258 {
259 	struct inode *inode = f2fs_iget(sbi->sb, ino);
260 	BUG_ON(IS_ERR(inode));
261 	clear_nlink(inode);
262 
263 	/* truncate all the data during iput */
264 	iput(inode);
265 }
266 
267 int recover_orphan_inodes(struct f2fs_sb_info *sbi)
268 {
269 	block_t start_blk, orphan_blkaddr, i, j;
270 
271 	if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
272 		return 0;
273 
274 	sbi->por_doing = 1;
275 	start_blk = __start_cp_addr(sbi) + 1;
276 	orphan_blkaddr = __start_sum_addr(sbi) - 1;
277 
278 	for (i = 0; i < orphan_blkaddr; i++) {
279 		struct page *page = get_meta_page(sbi, start_blk + i);
280 		struct f2fs_orphan_block *orphan_blk;
281 
282 		orphan_blk = (struct f2fs_orphan_block *)page_address(page);
283 		for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
284 			nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
285 			recover_orphan_inode(sbi, ino);
286 		}
287 		f2fs_put_page(page, 1);
288 	}
289 	/* clear Orphan Flag */
290 	clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
291 	sbi->por_doing = 0;
292 	return 0;
293 }
294 
295 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
296 {
297 	struct list_head *head, *this, *next;
298 	struct f2fs_orphan_block *orphan_blk = NULL;
299 	struct page *page = NULL;
300 	unsigned int nentries = 0;
301 	unsigned short index = 1;
302 	unsigned short orphan_blocks;
303 
304 	orphan_blocks = (unsigned short)((sbi->n_orphans +
305 		(F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK);
306 
307 	mutex_lock(&sbi->orphan_inode_mutex);
308 	head = &sbi->orphan_inode_list;
309 
310 	/* loop for each orphan inode entry and write them in Jornal block */
311 	list_for_each_safe(this, next, head) {
312 		struct orphan_inode_entry *orphan;
313 
314 		orphan = list_entry(this, struct orphan_inode_entry, list);
315 
316 		if (nentries == F2FS_ORPHANS_PER_BLOCK) {
317 			/*
318 			 * an orphan block is full of 1020 entries,
319 			 * then we need to flush current orphan blocks
320 			 * and bring another one in memory
321 			 */
322 			orphan_blk->blk_addr = cpu_to_le16(index);
323 			orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
324 			orphan_blk->entry_count = cpu_to_le32(nentries);
325 			set_page_dirty(page);
326 			f2fs_put_page(page, 1);
327 			index++;
328 			start_blk++;
329 			nentries = 0;
330 			page = NULL;
331 		}
332 		if (page)
333 			goto page_exist;
334 
335 		page = grab_meta_page(sbi, start_blk);
336 		orphan_blk = (struct f2fs_orphan_block *)page_address(page);
337 		memset(orphan_blk, 0, sizeof(*orphan_blk));
338 page_exist:
339 		orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
340 	}
341 	if (!page)
342 		goto end;
343 
344 	orphan_blk->blk_addr = cpu_to_le16(index);
345 	orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
346 	orphan_blk->entry_count = cpu_to_le32(nentries);
347 	set_page_dirty(page);
348 	f2fs_put_page(page, 1);
349 end:
350 	mutex_unlock(&sbi->orphan_inode_mutex);
351 }
352 
353 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
354 				block_t cp_addr, unsigned long long *version)
355 {
356 	struct page *cp_page_1, *cp_page_2 = NULL;
357 	unsigned long blk_size = sbi->blocksize;
358 	struct f2fs_checkpoint *cp_block;
359 	unsigned long long cur_version = 0, pre_version = 0;
360 	unsigned int crc = 0;
361 	size_t crc_offset;
362 
363 	/* Read the 1st cp block in this CP pack */
364 	cp_page_1 = get_meta_page(sbi, cp_addr);
365 
366 	/* get the version number */
367 	cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
368 	crc_offset = le32_to_cpu(cp_block->checksum_offset);
369 	if (crc_offset >= blk_size)
370 		goto invalid_cp1;
371 
372 	crc = *(unsigned int *)((unsigned char *)cp_block + crc_offset);
373 	if (!f2fs_crc_valid(crc, cp_block, crc_offset))
374 		goto invalid_cp1;
375 
376 	pre_version = le64_to_cpu(cp_block->checkpoint_ver);
377 
378 	/* Read the 2nd cp block in this CP pack */
379 	cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
380 	cp_page_2 = get_meta_page(sbi, cp_addr);
381 
382 	cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
383 	crc_offset = le32_to_cpu(cp_block->checksum_offset);
384 	if (crc_offset >= blk_size)
385 		goto invalid_cp2;
386 
387 	crc = *(unsigned int *)((unsigned char *)cp_block + crc_offset);
388 	if (!f2fs_crc_valid(crc, cp_block, crc_offset))
389 		goto invalid_cp2;
390 
391 	cur_version = le64_to_cpu(cp_block->checkpoint_ver);
392 
393 	if (cur_version == pre_version) {
394 		*version = cur_version;
395 		f2fs_put_page(cp_page_2, 1);
396 		return cp_page_1;
397 	}
398 invalid_cp2:
399 	f2fs_put_page(cp_page_2, 1);
400 invalid_cp1:
401 	f2fs_put_page(cp_page_1, 1);
402 	return NULL;
403 }
404 
405 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
406 {
407 	struct f2fs_checkpoint *cp_block;
408 	struct f2fs_super_block *fsb = sbi->raw_super;
409 	struct page *cp1, *cp2, *cur_page;
410 	unsigned long blk_size = sbi->blocksize;
411 	unsigned long long cp1_version = 0, cp2_version = 0;
412 	unsigned long long cp_start_blk_no;
413 
414 	sbi->ckpt = kzalloc(blk_size, GFP_KERNEL);
415 	if (!sbi->ckpt)
416 		return -ENOMEM;
417 	/*
418 	 * Finding out valid cp block involves read both
419 	 * sets( cp pack1 and cp pack 2)
420 	 */
421 	cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
422 	cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
423 
424 	/* The second checkpoint pack should start at the next segment */
425 	cp_start_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
426 	cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
427 
428 	if (cp1 && cp2) {
429 		if (ver_after(cp2_version, cp1_version))
430 			cur_page = cp2;
431 		else
432 			cur_page = cp1;
433 	} else if (cp1) {
434 		cur_page = cp1;
435 	} else if (cp2) {
436 		cur_page = cp2;
437 	} else {
438 		goto fail_no_cp;
439 	}
440 
441 	cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
442 	memcpy(sbi->ckpt, cp_block, blk_size);
443 
444 	f2fs_put_page(cp1, 1);
445 	f2fs_put_page(cp2, 1);
446 	return 0;
447 
448 fail_no_cp:
449 	kfree(sbi->ckpt);
450 	return -EINVAL;
451 }
452 
453 void set_dirty_dir_page(struct inode *inode, struct page *page)
454 {
455 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
456 	struct list_head *head = &sbi->dir_inode_list;
457 	struct dir_inode_entry *new;
458 	struct list_head *this;
459 
460 	if (!S_ISDIR(inode->i_mode))
461 		return;
462 retry:
463 	new = kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
464 	if (!new) {
465 		cond_resched();
466 		goto retry;
467 	}
468 	new->inode = inode;
469 	INIT_LIST_HEAD(&new->list);
470 
471 	spin_lock(&sbi->dir_inode_lock);
472 	list_for_each(this, head) {
473 		struct dir_inode_entry *entry;
474 		entry = list_entry(this, struct dir_inode_entry, list);
475 		if (entry->inode == inode) {
476 			kmem_cache_free(inode_entry_slab, new);
477 			goto out;
478 		}
479 	}
480 	list_add_tail(&new->list, head);
481 	sbi->n_dirty_dirs++;
482 
483 	BUG_ON(!S_ISDIR(inode->i_mode));
484 out:
485 	inc_page_count(sbi, F2FS_DIRTY_DENTS);
486 	inode_inc_dirty_dents(inode);
487 	SetPagePrivate(page);
488 
489 	spin_unlock(&sbi->dir_inode_lock);
490 }
491 
492 void remove_dirty_dir_inode(struct inode *inode)
493 {
494 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
495 	struct list_head *head = &sbi->dir_inode_list;
496 	struct list_head *this;
497 
498 	if (!S_ISDIR(inode->i_mode))
499 		return;
500 
501 	spin_lock(&sbi->dir_inode_lock);
502 	if (atomic_read(&F2FS_I(inode)->dirty_dents))
503 		goto out;
504 
505 	list_for_each(this, head) {
506 		struct dir_inode_entry *entry;
507 		entry = list_entry(this, struct dir_inode_entry, list);
508 		if (entry->inode == inode) {
509 			list_del(&entry->list);
510 			kmem_cache_free(inode_entry_slab, entry);
511 			sbi->n_dirty_dirs--;
512 			break;
513 		}
514 	}
515 out:
516 	spin_unlock(&sbi->dir_inode_lock);
517 }
518 
519 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
520 {
521 	struct list_head *head = &sbi->dir_inode_list;
522 	struct dir_inode_entry *entry;
523 	struct inode *inode;
524 retry:
525 	spin_lock(&sbi->dir_inode_lock);
526 	if (list_empty(head)) {
527 		spin_unlock(&sbi->dir_inode_lock);
528 		return;
529 	}
530 	entry = list_entry(head->next, struct dir_inode_entry, list);
531 	inode = igrab(entry->inode);
532 	spin_unlock(&sbi->dir_inode_lock);
533 	if (inode) {
534 		filemap_flush(inode->i_mapping);
535 		iput(inode);
536 	} else {
537 		/*
538 		 * We should submit bio, since it exists several
539 		 * wribacking dentry pages in the freeing inode.
540 		 */
541 		f2fs_submit_bio(sbi, DATA, true);
542 	}
543 	goto retry;
544 }
545 
546 /*
547  * Freeze all the FS-operations for checkpoint.
548  */
549 void block_operations(struct f2fs_sb_info *sbi)
550 {
551 	int t;
552 	struct writeback_control wbc = {
553 		.sync_mode = WB_SYNC_ALL,
554 		.nr_to_write = LONG_MAX,
555 		.for_reclaim = 0,
556 	};
557 
558 	/* Stop renaming operation */
559 	mutex_lock_op(sbi, RENAME);
560 	mutex_lock_op(sbi, DENTRY_OPS);
561 
562 retry_dents:
563 	/* write all the dirty dentry pages */
564 	sync_dirty_dir_inodes(sbi);
565 
566 	mutex_lock_op(sbi, DATA_WRITE);
567 	if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
568 		mutex_unlock_op(sbi, DATA_WRITE);
569 		goto retry_dents;
570 	}
571 
572 	/* block all the operations */
573 	for (t = DATA_NEW; t <= NODE_TRUNC; t++)
574 		mutex_lock_op(sbi, t);
575 
576 	mutex_lock(&sbi->write_inode);
577 
578 	/*
579 	 * POR: we should ensure that there is no dirty node pages
580 	 * until finishing nat/sit flush.
581 	 */
582 retry:
583 	sync_node_pages(sbi, 0, &wbc);
584 
585 	mutex_lock_op(sbi, NODE_WRITE);
586 
587 	if (get_pages(sbi, F2FS_DIRTY_NODES)) {
588 		mutex_unlock_op(sbi, NODE_WRITE);
589 		goto retry;
590 	}
591 	mutex_unlock(&sbi->write_inode);
592 }
593 
594 static void unblock_operations(struct f2fs_sb_info *sbi)
595 {
596 	int t;
597 	for (t = NODE_WRITE; t >= RENAME; t--)
598 		mutex_unlock_op(sbi, t);
599 }
600 
601 static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
602 {
603 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
604 	nid_t last_nid = 0;
605 	block_t start_blk;
606 	struct page *cp_page;
607 	unsigned int data_sum_blocks, orphan_blocks;
608 	unsigned int crc32 = 0;
609 	void *kaddr;
610 	int i;
611 
612 	/* Flush all the NAT/SIT pages */
613 	while (get_pages(sbi, F2FS_DIRTY_META))
614 		sync_meta_pages(sbi, META, LONG_MAX);
615 
616 	next_free_nid(sbi, &last_nid);
617 
618 	/*
619 	 * modify checkpoint
620 	 * version number is already updated
621 	 */
622 	ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
623 	ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
624 	ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
625 	for (i = 0; i < 3; i++) {
626 		ckpt->cur_node_segno[i] =
627 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
628 		ckpt->cur_node_blkoff[i] =
629 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
630 		ckpt->alloc_type[i + CURSEG_HOT_NODE] =
631 				curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
632 	}
633 	for (i = 0; i < 3; i++) {
634 		ckpt->cur_data_segno[i] =
635 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
636 		ckpt->cur_data_blkoff[i] =
637 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
638 		ckpt->alloc_type[i + CURSEG_HOT_DATA] =
639 				curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
640 	}
641 
642 	ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
643 	ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
644 	ckpt->next_free_nid = cpu_to_le32(last_nid);
645 
646 	/* 2 cp  + n data seg summary + orphan inode blocks */
647 	data_sum_blocks = npages_for_summary_flush(sbi);
648 	if (data_sum_blocks < 3)
649 		set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
650 	else
651 		clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
652 
653 	orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1)
654 					/ F2FS_ORPHANS_PER_BLOCK;
655 	ckpt->cp_pack_start_sum = cpu_to_le32(1 + orphan_blocks);
656 
657 	if (is_umount) {
658 		set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
659 		ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
660 			data_sum_blocks + orphan_blocks + NR_CURSEG_NODE_TYPE);
661 	} else {
662 		clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
663 		ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
664 			data_sum_blocks + orphan_blocks);
665 	}
666 
667 	if (sbi->n_orphans)
668 		set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
669 	else
670 		clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
671 
672 	/* update SIT/NAT bitmap */
673 	get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
674 	get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
675 
676 	crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
677 	*(__le32 *)((unsigned char *)ckpt +
678 				le32_to_cpu(ckpt->checksum_offset))
679 				= cpu_to_le32(crc32);
680 
681 	start_blk = __start_cp_addr(sbi);
682 
683 	/* write out checkpoint buffer at block 0 */
684 	cp_page = grab_meta_page(sbi, start_blk++);
685 	kaddr = page_address(cp_page);
686 	memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
687 	set_page_dirty(cp_page);
688 	f2fs_put_page(cp_page, 1);
689 
690 	if (sbi->n_orphans) {
691 		write_orphan_inodes(sbi, start_blk);
692 		start_blk += orphan_blocks;
693 	}
694 
695 	write_data_summaries(sbi, start_blk);
696 	start_blk += data_sum_blocks;
697 	if (is_umount) {
698 		write_node_summaries(sbi, start_blk);
699 		start_blk += NR_CURSEG_NODE_TYPE;
700 	}
701 
702 	/* writeout checkpoint block */
703 	cp_page = grab_meta_page(sbi, start_blk);
704 	kaddr = page_address(cp_page);
705 	memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
706 	set_page_dirty(cp_page);
707 	f2fs_put_page(cp_page, 1);
708 
709 	/* wait for previous submitted node/meta pages writeback */
710 	while (get_pages(sbi, F2FS_WRITEBACK))
711 		congestion_wait(BLK_RW_ASYNC, HZ / 50);
712 
713 	filemap_fdatawait_range(sbi->node_inode->i_mapping, 0, LONG_MAX);
714 	filemap_fdatawait_range(sbi->meta_inode->i_mapping, 0, LONG_MAX);
715 
716 	/* update user_block_counts */
717 	sbi->last_valid_block_count = sbi->total_valid_block_count;
718 	sbi->alloc_valid_block_count = 0;
719 
720 	/* Here, we only have one bio having CP pack */
721 	if (is_set_ckpt_flags(ckpt, CP_ERROR_FLAG))
722 		sbi->sb->s_flags |= MS_RDONLY;
723 	else
724 		sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
725 
726 	clear_prefree_segments(sbi);
727 	F2FS_RESET_SB_DIRT(sbi);
728 }
729 
730 /*
731  * We guarantee that this checkpoint procedure should not fail.
732  */
733 void write_checkpoint(struct f2fs_sb_info *sbi, bool blocked, bool is_umount)
734 {
735 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
736 	unsigned long long ckpt_ver;
737 
738 	if (!blocked) {
739 		mutex_lock(&sbi->cp_mutex);
740 		block_operations(sbi);
741 	}
742 
743 	f2fs_submit_bio(sbi, DATA, true);
744 	f2fs_submit_bio(sbi, NODE, true);
745 	f2fs_submit_bio(sbi, META, true);
746 
747 	/*
748 	 * update checkpoint pack index
749 	 * Increase the version number so that
750 	 * SIT entries and seg summaries are written at correct place
751 	 */
752 	ckpt_ver = le64_to_cpu(ckpt->checkpoint_ver);
753 	ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
754 
755 	/* write cached NAT/SIT entries to NAT/SIT area */
756 	flush_nat_entries(sbi);
757 	flush_sit_entries(sbi);
758 
759 	reset_victim_segmap(sbi);
760 
761 	/* unlock all the fs_lock[] in do_checkpoint() */
762 	do_checkpoint(sbi, is_umount);
763 
764 	unblock_operations(sbi);
765 	mutex_unlock(&sbi->cp_mutex);
766 }
767 
768 void init_orphan_info(struct f2fs_sb_info *sbi)
769 {
770 	mutex_init(&sbi->orphan_inode_mutex);
771 	INIT_LIST_HEAD(&sbi->orphan_inode_list);
772 	sbi->n_orphans = 0;
773 }
774 
775 int create_checkpoint_caches(void)
776 {
777 	orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry",
778 			sizeof(struct orphan_inode_entry), NULL);
779 	if (unlikely(!orphan_entry_slab))
780 		return -ENOMEM;
781 	inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
782 			sizeof(struct dir_inode_entry), NULL);
783 	if (unlikely(!inode_entry_slab)) {
784 		kmem_cache_destroy(orphan_entry_slab);
785 		return -ENOMEM;
786 	}
787 	return 0;
788 }
789 
790 void destroy_checkpoint_caches(void)
791 {
792 	kmem_cache_destroy(orphan_entry_slab);
793 	kmem_cache_destroy(inode_entry_slab);
794 }
795