1 /* 2 * fs/f2fs/checkpoint.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/bio.h> 13 #include <linux/mpage.h> 14 #include <linux/writeback.h> 15 #include <linux/blkdev.h> 16 #include <linux/f2fs_fs.h> 17 #include <linux/pagevec.h> 18 #include <linux/swap.h> 19 20 #include "f2fs.h" 21 #include "node.h" 22 #include "segment.h" 23 24 static struct kmem_cache *orphan_entry_slab; 25 static struct kmem_cache *inode_entry_slab; 26 27 /* 28 * We guarantee no failure on the returned page. 29 */ 30 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 31 { 32 struct address_space *mapping = sbi->meta_inode->i_mapping; 33 struct page *page = NULL; 34 repeat: 35 page = grab_cache_page(mapping, index); 36 if (!page) { 37 cond_resched(); 38 goto repeat; 39 } 40 41 /* We wait writeback only inside grab_meta_page() */ 42 wait_on_page_writeback(page); 43 SetPageUptodate(page); 44 return page; 45 } 46 47 /* 48 * We guarantee no failure on the returned page. 49 */ 50 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 51 { 52 struct address_space *mapping = sbi->meta_inode->i_mapping; 53 struct page *page; 54 repeat: 55 page = grab_cache_page(mapping, index); 56 if (!page) { 57 cond_resched(); 58 goto repeat; 59 } 60 if (f2fs_readpage(sbi, page, index, READ_SYNC)) { 61 f2fs_put_page(page, 1); 62 goto repeat; 63 } 64 mark_page_accessed(page); 65 66 /* We do not allow returning an errorneous page */ 67 return page; 68 } 69 70 static int f2fs_write_meta_page(struct page *page, 71 struct writeback_control *wbc) 72 { 73 struct inode *inode = page->mapping->host; 74 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 75 int err; 76 77 wait_on_page_writeback(page); 78 79 err = write_meta_page(sbi, page, wbc); 80 if (err) { 81 wbc->pages_skipped++; 82 set_page_dirty(page); 83 } 84 85 dec_page_count(sbi, F2FS_DIRTY_META); 86 87 /* In this case, we should not unlock this page */ 88 if (err != AOP_WRITEPAGE_ACTIVATE) 89 unlock_page(page); 90 return err; 91 } 92 93 static int f2fs_write_meta_pages(struct address_space *mapping, 94 struct writeback_control *wbc) 95 { 96 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); 97 struct block_device *bdev = sbi->sb->s_bdev; 98 long written; 99 100 if (wbc->for_kupdate) 101 return 0; 102 103 if (get_pages(sbi, F2FS_DIRTY_META) == 0) 104 return 0; 105 106 /* if mounting is failed, skip writing node pages */ 107 mutex_lock(&sbi->cp_mutex); 108 written = sync_meta_pages(sbi, META, bio_get_nr_vecs(bdev)); 109 mutex_unlock(&sbi->cp_mutex); 110 wbc->nr_to_write -= written; 111 return 0; 112 } 113 114 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 115 long nr_to_write) 116 { 117 struct address_space *mapping = sbi->meta_inode->i_mapping; 118 pgoff_t index = 0, end = LONG_MAX; 119 struct pagevec pvec; 120 long nwritten = 0; 121 struct writeback_control wbc = { 122 .for_reclaim = 0, 123 }; 124 125 pagevec_init(&pvec, 0); 126 127 while (index <= end) { 128 int i, nr_pages; 129 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 130 PAGECACHE_TAG_DIRTY, 131 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 132 if (nr_pages == 0) 133 break; 134 135 for (i = 0; i < nr_pages; i++) { 136 struct page *page = pvec.pages[i]; 137 lock_page(page); 138 BUG_ON(page->mapping != mapping); 139 BUG_ON(!PageDirty(page)); 140 clear_page_dirty_for_io(page); 141 f2fs_write_meta_page(page, &wbc); 142 if (nwritten++ >= nr_to_write) 143 break; 144 } 145 pagevec_release(&pvec); 146 cond_resched(); 147 } 148 149 if (nwritten) 150 f2fs_submit_bio(sbi, type, nr_to_write == LONG_MAX); 151 152 return nwritten; 153 } 154 155 static int f2fs_set_meta_page_dirty(struct page *page) 156 { 157 struct address_space *mapping = page->mapping; 158 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); 159 160 SetPageUptodate(page); 161 if (!PageDirty(page)) { 162 __set_page_dirty_nobuffers(page); 163 inc_page_count(sbi, F2FS_DIRTY_META); 164 F2FS_SET_SB_DIRT(sbi); 165 return 1; 166 } 167 return 0; 168 } 169 170 const struct address_space_operations f2fs_meta_aops = { 171 .writepage = f2fs_write_meta_page, 172 .writepages = f2fs_write_meta_pages, 173 .set_page_dirty = f2fs_set_meta_page_dirty, 174 }; 175 176 int check_orphan_space(struct f2fs_sb_info *sbi) 177 { 178 unsigned int max_orphans; 179 int err = 0; 180 181 /* 182 * considering 512 blocks in a segment 5 blocks are needed for cp 183 * and log segment summaries. Remaining blocks are used to keep 184 * orphan entries with the limitation one reserved segment 185 * for cp pack we can have max 1020*507 orphan entries 186 */ 187 max_orphans = (sbi->blocks_per_seg - 5) * F2FS_ORPHANS_PER_BLOCK; 188 mutex_lock(&sbi->orphan_inode_mutex); 189 if (sbi->n_orphans >= max_orphans) 190 err = -ENOSPC; 191 mutex_unlock(&sbi->orphan_inode_mutex); 192 return err; 193 } 194 195 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 196 { 197 struct list_head *head, *this; 198 struct orphan_inode_entry *new = NULL, *orphan = NULL; 199 200 mutex_lock(&sbi->orphan_inode_mutex); 201 head = &sbi->orphan_inode_list; 202 list_for_each(this, head) { 203 orphan = list_entry(this, struct orphan_inode_entry, list); 204 if (orphan->ino == ino) 205 goto out; 206 if (orphan->ino > ino) 207 break; 208 orphan = NULL; 209 } 210 retry: 211 new = kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC); 212 if (!new) { 213 cond_resched(); 214 goto retry; 215 } 216 new->ino = ino; 217 INIT_LIST_HEAD(&new->list); 218 219 /* add new_oentry into list which is sorted by inode number */ 220 if (orphan) { 221 struct orphan_inode_entry *prev; 222 223 /* get previous entry */ 224 prev = list_entry(orphan->list.prev, typeof(*prev), list); 225 if (&prev->list != head) 226 /* insert new orphan inode entry */ 227 list_add(&new->list, &prev->list); 228 else 229 list_add(&new->list, head); 230 } else { 231 list_add_tail(&new->list, head); 232 } 233 sbi->n_orphans++; 234 out: 235 mutex_unlock(&sbi->orphan_inode_mutex); 236 } 237 238 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 239 { 240 struct list_head *this, *next, *head; 241 struct orphan_inode_entry *orphan; 242 243 mutex_lock(&sbi->orphan_inode_mutex); 244 head = &sbi->orphan_inode_list; 245 list_for_each_safe(this, next, head) { 246 orphan = list_entry(this, struct orphan_inode_entry, list); 247 if (orphan->ino == ino) { 248 list_del(&orphan->list); 249 kmem_cache_free(orphan_entry_slab, orphan); 250 sbi->n_orphans--; 251 break; 252 } 253 } 254 mutex_unlock(&sbi->orphan_inode_mutex); 255 } 256 257 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 258 { 259 struct inode *inode = f2fs_iget(sbi->sb, ino); 260 BUG_ON(IS_ERR(inode)); 261 clear_nlink(inode); 262 263 /* truncate all the data during iput */ 264 iput(inode); 265 } 266 267 int recover_orphan_inodes(struct f2fs_sb_info *sbi) 268 { 269 block_t start_blk, orphan_blkaddr, i, j; 270 271 if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG)) 272 return 0; 273 274 sbi->por_doing = 1; 275 start_blk = __start_cp_addr(sbi) + 1; 276 orphan_blkaddr = __start_sum_addr(sbi) - 1; 277 278 for (i = 0; i < orphan_blkaddr; i++) { 279 struct page *page = get_meta_page(sbi, start_blk + i); 280 struct f2fs_orphan_block *orphan_blk; 281 282 orphan_blk = (struct f2fs_orphan_block *)page_address(page); 283 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) { 284 nid_t ino = le32_to_cpu(orphan_blk->ino[j]); 285 recover_orphan_inode(sbi, ino); 286 } 287 f2fs_put_page(page, 1); 288 } 289 /* clear Orphan Flag */ 290 clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG); 291 sbi->por_doing = 0; 292 return 0; 293 } 294 295 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk) 296 { 297 struct list_head *head, *this, *next; 298 struct f2fs_orphan_block *orphan_blk = NULL; 299 struct page *page = NULL; 300 unsigned int nentries = 0; 301 unsigned short index = 1; 302 unsigned short orphan_blocks; 303 304 orphan_blocks = (unsigned short)((sbi->n_orphans + 305 (F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK); 306 307 mutex_lock(&sbi->orphan_inode_mutex); 308 head = &sbi->orphan_inode_list; 309 310 /* loop for each orphan inode entry and write them in Jornal block */ 311 list_for_each_safe(this, next, head) { 312 struct orphan_inode_entry *orphan; 313 314 orphan = list_entry(this, struct orphan_inode_entry, list); 315 316 if (nentries == F2FS_ORPHANS_PER_BLOCK) { 317 /* 318 * an orphan block is full of 1020 entries, 319 * then we need to flush current orphan blocks 320 * and bring another one in memory 321 */ 322 orphan_blk->blk_addr = cpu_to_le16(index); 323 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 324 orphan_blk->entry_count = cpu_to_le32(nentries); 325 set_page_dirty(page); 326 f2fs_put_page(page, 1); 327 index++; 328 start_blk++; 329 nentries = 0; 330 page = NULL; 331 } 332 if (page) 333 goto page_exist; 334 335 page = grab_meta_page(sbi, start_blk); 336 orphan_blk = (struct f2fs_orphan_block *)page_address(page); 337 memset(orphan_blk, 0, sizeof(*orphan_blk)); 338 page_exist: 339 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino); 340 } 341 if (!page) 342 goto end; 343 344 orphan_blk->blk_addr = cpu_to_le16(index); 345 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 346 orphan_blk->entry_count = cpu_to_le32(nentries); 347 set_page_dirty(page); 348 f2fs_put_page(page, 1); 349 end: 350 mutex_unlock(&sbi->orphan_inode_mutex); 351 } 352 353 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi, 354 block_t cp_addr, unsigned long long *version) 355 { 356 struct page *cp_page_1, *cp_page_2 = NULL; 357 unsigned long blk_size = sbi->blocksize; 358 struct f2fs_checkpoint *cp_block; 359 unsigned long long cur_version = 0, pre_version = 0; 360 unsigned int crc = 0; 361 size_t crc_offset; 362 363 /* Read the 1st cp block in this CP pack */ 364 cp_page_1 = get_meta_page(sbi, cp_addr); 365 366 /* get the version number */ 367 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1); 368 crc_offset = le32_to_cpu(cp_block->checksum_offset); 369 if (crc_offset >= blk_size) 370 goto invalid_cp1; 371 372 crc = *(unsigned int *)((unsigned char *)cp_block + crc_offset); 373 if (!f2fs_crc_valid(crc, cp_block, crc_offset)) 374 goto invalid_cp1; 375 376 pre_version = le64_to_cpu(cp_block->checkpoint_ver); 377 378 /* Read the 2nd cp block in this CP pack */ 379 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1; 380 cp_page_2 = get_meta_page(sbi, cp_addr); 381 382 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2); 383 crc_offset = le32_to_cpu(cp_block->checksum_offset); 384 if (crc_offset >= blk_size) 385 goto invalid_cp2; 386 387 crc = *(unsigned int *)((unsigned char *)cp_block + crc_offset); 388 if (!f2fs_crc_valid(crc, cp_block, crc_offset)) 389 goto invalid_cp2; 390 391 cur_version = le64_to_cpu(cp_block->checkpoint_ver); 392 393 if (cur_version == pre_version) { 394 *version = cur_version; 395 f2fs_put_page(cp_page_2, 1); 396 return cp_page_1; 397 } 398 invalid_cp2: 399 f2fs_put_page(cp_page_2, 1); 400 invalid_cp1: 401 f2fs_put_page(cp_page_1, 1); 402 return NULL; 403 } 404 405 int get_valid_checkpoint(struct f2fs_sb_info *sbi) 406 { 407 struct f2fs_checkpoint *cp_block; 408 struct f2fs_super_block *fsb = sbi->raw_super; 409 struct page *cp1, *cp2, *cur_page; 410 unsigned long blk_size = sbi->blocksize; 411 unsigned long long cp1_version = 0, cp2_version = 0; 412 unsigned long long cp_start_blk_no; 413 414 sbi->ckpt = kzalloc(blk_size, GFP_KERNEL); 415 if (!sbi->ckpt) 416 return -ENOMEM; 417 /* 418 * Finding out valid cp block involves read both 419 * sets( cp pack1 and cp pack 2) 420 */ 421 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr); 422 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); 423 424 /* The second checkpoint pack should start at the next segment */ 425 cp_start_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg); 426 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); 427 428 if (cp1 && cp2) { 429 if (ver_after(cp2_version, cp1_version)) 430 cur_page = cp2; 431 else 432 cur_page = cp1; 433 } else if (cp1) { 434 cur_page = cp1; 435 } else if (cp2) { 436 cur_page = cp2; 437 } else { 438 goto fail_no_cp; 439 } 440 441 cp_block = (struct f2fs_checkpoint *)page_address(cur_page); 442 memcpy(sbi->ckpt, cp_block, blk_size); 443 444 f2fs_put_page(cp1, 1); 445 f2fs_put_page(cp2, 1); 446 return 0; 447 448 fail_no_cp: 449 kfree(sbi->ckpt); 450 return -EINVAL; 451 } 452 453 void set_dirty_dir_page(struct inode *inode, struct page *page) 454 { 455 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 456 struct list_head *head = &sbi->dir_inode_list; 457 struct dir_inode_entry *new; 458 struct list_head *this; 459 460 if (!S_ISDIR(inode->i_mode)) 461 return; 462 retry: 463 new = kmem_cache_alloc(inode_entry_slab, GFP_NOFS); 464 if (!new) { 465 cond_resched(); 466 goto retry; 467 } 468 new->inode = inode; 469 INIT_LIST_HEAD(&new->list); 470 471 spin_lock(&sbi->dir_inode_lock); 472 list_for_each(this, head) { 473 struct dir_inode_entry *entry; 474 entry = list_entry(this, struct dir_inode_entry, list); 475 if (entry->inode == inode) { 476 kmem_cache_free(inode_entry_slab, new); 477 goto out; 478 } 479 } 480 list_add_tail(&new->list, head); 481 sbi->n_dirty_dirs++; 482 483 BUG_ON(!S_ISDIR(inode->i_mode)); 484 out: 485 inc_page_count(sbi, F2FS_DIRTY_DENTS); 486 inode_inc_dirty_dents(inode); 487 SetPagePrivate(page); 488 489 spin_unlock(&sbi->dir_inode_lock); 490 } 491 492 void remove_dirty_dir_inode(struct inode *inode) 493 { 494 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 495 struct list_head *head = &sbi->dir_inode_list; 496 struct list_head *this; 497 498 if (!S_ISDIR(inode->i_mode)) 499 return; 500 501 spin_lock(&sbi->dir_inode_lock); 502 if (atomic_read(&F2FS_I(inode)->dirty_dents)) 503 goto out; 504 505 list_for_each(this, head) { 506 struct dir_inode_entry *entry; 507 entry = list_entry(this, struct dir_inode_entry, list); 508 if (entry->inode == inode) { 509 list_del(&entry->list); 510 kmem_cache_free(inode_entry_slab, entry); 511 sbi->n_dirty_dirs--; 512 break; 513 } 514 } 515 out: 516 spin_unlock(&sbi->dir_inode_lock); 517 } 518 519 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi) 520 { 521 struct list_head *head = &sbi->dir_inode_list; 522 struct dir_inode_entry *entry; 523 struct inode *inode; 524 retry: 525 spin_lock(&sbi->dir_inode_lock); 526 if (list_empty(head)) { 527 spin_unlock(&sbi->dir_inode_lock); 528 return; 529 } 530 entry = list_entry(head->next, struct dir_inode_entry, list); 531 inode = igrab(entry->inode); 532 spin_unlock(&sbi->dir_inode_lock); 533 if (inode) { 534 filemap_flush(inode->i_mapping); 535 iput(inode); 536 } else { 537 /* 538 * We should submit bio, since it exists several 539 * wribacking dentry pages in the freeing inode. 540 */ 541 f2fs_submit_bio(sbi, DATA, true); 542 } 543 goto retry; 544 } 545 546 /* 547 * Freeze all the FS-operations for checkpoint. 548 */ 549 void block_operations(struct f2fs_sb_info *sbi) 550 { 551 int t; 552 struct writeback_control wbc = { 553 .sync_mode = WB_SYNC_ALL, 554 .nr_to_write = LONG_MAX, 555 .for_reclaim = 0, 556 }; 557 558 /* Stop renaming operation */ 559 mutex_lock_op(sbi, RENAME); 560 mutex_lock_op(sbi, DENTRY_OPS); 561 562 retry_dents: 563 /* write all the dirty dentry pages */ 564 sync_dirty_dir_inodes(sbi); 565 566 mutex_lock_op(sbi, DATA_WRITE); 567 if (get_pages(sbi, F2FS_DIRTY_DENTS)) { 568 mutex_unlock_op(sbi, DATA_WRITE); 569 goto retry_dents; 570 } 571 572 /* block all the operations */ 573 for (t = DATA_NEW; t <= NODE_TRUNC; t++) 574 mutex_lock_op(sbi, t); 575 576 mutex_lock(&sbi->write_inode); 577 578 /* 579 * POR: we should ensure that there is no dirty node pages 580 * until finishing nat/sit flush. 581 */ 582 retry: 583 sync_node_pages(sbi, 0, &wbc); 584 585 mutex_lock_op(sbi, NODE_WRITE); 586 587 if (get_pages(sbi, F2FS_DIRTY_NODES)) { 588 mutex_unlock_op(sbi, NODE_WRITE); 589 goto retry; 590 } 591 mutex_unlock(&sbi->write_inode); 592 } 593 594 static void unblock_operations(struct f2fs_sb_info *sbi) 595 { 596 int t; 597 for (t = NODE_WRITE; t >= RENAME; t--) 598 mutex_unlock_op(sbi, t); 599 } 600 601 static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount) 602 { 603 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 604 nid_t last_nid = 0; 605 block_t start_blk; 606 struct page *cp_page; 607 unsigned int data_sum_blocks, orphan_blocks; 608 unsigned int crc32 = 0; 609 void *kaddr; 610 int i; 611 612 /* Flush all the NAT/SIT pages */ 613 while (get_pages(sbi, F2FS_DIRTY_META)) 614 sync_meta_pages(sbi, META, LONG_MAX); 615 616 next_free_nid(sbi, &last_nid); 617 618 /* 619 * modify checkpoint 620 * version number is already updated 621 */ 622 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi)); 623 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi)); 624 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi)); 625 for (i = 0; i < 3; i++) { 626 ckpt->cur_node_segno[i] = 627 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE)); 628 ckpt->cur_node_blkoff[i] = 629 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE)); 630 ckpt->alloc_type[i + CURSEG_HOT_NODE] = 631 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE); 632 } 633 for (i = 0; i < 3; i++) { 634 ckpt->cur_data_segno[i] = 635 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA)); 636 ckpt->cur_data_blkoff[i] = 637 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA)); 638 ckpt->alloc_type[i + CURSEG_HOT_DATA] = 639 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA); 640 } 641 642 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi)); 643 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi)); 644 ckpt->next_free_nid = cpu_to_le32(last_nid); 645 646 /* 2 cp + n data seg summary + orphan inode blocks */ 647 data_sum_blocks = npages_for_summary_flush(sbi); 648 if (data_sum_blocks < 3) 649 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 650 else 651 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 652 653 orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1) 654 / F2FS_ORPHANS_PER_BLOCK; 655 ckpt->cp_pack_start_sum = cpu_to_le32(1 + orphan_blocks); 656 657 if (is_umount) { 658 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 659 ckpt->cp_pack_total_block_count = cpu_to_le32(2 + 660 data_sum_blocks + orphan_blocks + NR_CURSEG_NODE_TYPE); 661 } else { 662 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 663 ckpt->cp_pack_total_block_count = cpu_to_le32(2 + 664 data_sum_blocks + orphan_blocks); 665 } 666 667 if (sbi->n_orphans) 668 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 669 else 670 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 671 672 /* update SIT/NAT bitmap */ 673 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP)); 674 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP)); 675 676 crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset)); 677 *(__le32 *)((unsigned char *)ckpt + 678 le32_to_cpu(ckpt->checksum_offset)) 679 = cpu_to_le32(crc32); 680 681 start_blk = __start_cp_addr(sbi); 682 683 /* write out checkpoint buffer at block 0 */ 684 cp_page = grab_meta_page(sbi, start_blk++); 685 kaddr = page_address(cp_page); 686 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize)); 687 set_page_dirty(cp_page); 688 f2fs_put_page(cp_page, 1); 689 690 if (sbi->n_orphans) { 691 write_orphan_inodes(sbi, start_blk); 692 start_blk += orphan_blocks; 693 } 694 695 write_data_summaries(sbi, start_blk); 696 start_blk += data_sum_blocks; 697 if (is_umount) { 698 write_node_summaries(sbi, start_blk); 699 start_blk += NR_CURSEG_NODE_TYPE; 700 } 701 702 /* writeout checkpoint block */ 703 cp_page = grab_meta_page(sbi, start_blk); 704 kaddr = page_address(cp_page); 705 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize)); 706 set_page_dirty(cp_page); 707 f2fs_put_page(cp_page, 1); 708 709 /* wait for previous submitted node/meta pages writeback */ 710 while (get_pages(sbi, F2FS_WRITEBACK)) 711 congestion_wait(BLK_RW_ASYNC, HZ / 50); 712 713 filemap_fdatawait_range(sbi->node_inode->i_mapping, 0, LONG_MAX); 714 filemap_fdatawait_range(sbi->meta_inode->i_mapping, 0, LONG_MAX); 715 716 /* update user_block_counts */ 717 sbi->last_valid_block_count = sbi->total_valid_block_count; 718 sbi->alloc_valid_block_count = 0; 719 720 /* Here, we only have one bio having CP pack */ 721 if (is_set_ckpt_flags(ckpt, CP_ERROR_FLAG)) 722 sbi->sb->s_flags |= MS_RDONLY; 723 else 724 sync_meta_pages(sbi, META_FLUSH, LONG_MAX); 725 726 clear_prefree_segments(sbi); 727 F2FS_RESET_SB_DIRT(sbi); 728 } 729 730 /* 731 * We guarantee that this checkpoint procedure should not fail. 732 */ 733 void write_checkpoint(struct f2fs_sb_info *sbi, bool blocked, bool is_umount) 734 { 735 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 736 unsigned long long ckpt_ver; 737 738 if (!blocked) { 739 mutex_lock(&sbi->cp_mutex); 740 block_operations(sbi); 741 } 742 743 f2fs_submit_bio(sbi, DATA, true); 744 f2fs_submit_bio(sbi, NODE, true); 745 f2fs_submit_bio(sbi, META, true); 746 747 /* 748 * update checkpoint pack index 749 * Increase the version number so that 750 * SIT entries and seg summaries are written at correct place 751 */ 752 ckpt_ver = le64_to_cpu(ckpt->checkpoint_ver); 753 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver); 754 755 /* write cached NAT/SIT entries to NAT/SIT area */ 756 flush_nat_entries(sbi); 757 flush_sit_entries(sbi); 758 759 reset_victim_segmap(sbi); 760 761 /* unlock all the fs_lock[] in do_checkpoint() */ 762 do_checkpoint(sbi, is_umount); 763 764 unblock_operations(sbi); 765 mutex_unlock(&sbi->cp_mutex); 766 } 767 768 void init_orphan_info(struct f2fs_sb_info *sbi) 769 { 770 mutex_init(&sbi->orphan_inode_mutex); 771 INIT_LIST_HEAD(&sbi->orphan_inode_list); 772 sbi->n_orphans = 0; 773 } 774 775 int create_checkpoint_caches(void) 776 { 777 orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry", 778 sizeof(struct orphan_inode_entry), NULL); 779 if (unlikely(!orphan_entry_slab)) 780 return -ENOMEM; 781 inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry", 782 sizeof(struct dir_inode_entry), NULL); 783 if (unlikely(!inode_entry_slab)) { 784 kmem_cache_destroy(orphan_entry_slab); 785 return -ENOMEM; 786 } 787 return 0; 788 } 789 790 void destroy_checkpoint_caches(void) 791 { 792 kmem_cache_destroy(orphan_entry_slab); 793 kmem_cache_destroy(inode_entry_slab); 794 } 795