1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/checkpoint.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/bio.h> 10 #include <linux/mpage.h> 11 #include <linux/writeback.h> 12 #include <linux/blkdev.h> 13 #include <linux/f2fs_fs.h> 14 #include <linux/pagevec.h> 15 #include <linux/swap.h> 16 #include <linux/kthread.h> 17 18 #include "f2fs.h" 19 #include "node.h" 20 #include "segment.h" 21 #include "iostat.h" 22 #include <trace/events/f2fs.h> 23 24 #define DEFAULT_CHECKPOINT_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 25 26 static struct kmem_cache *ino_entry_slab; 27 struct kmem_cache *f2fs_inode_entry_slab; 28 29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io, 30 unsigned char reason) 31 { 32 f2fs_build_fault_attr(sbi, 0, 0); 33 if (!end_io) 34 f2fs_flush_merged_writes(sbi); 35 f2fs_handle_critical_error(sbi, reason, end_io); 36 } 37 38 /* 39 * We guarantee no failure on the returned page. 40 */ 41 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 42 { 43 struct address_space *mapping = META_MAPPING(sbi); 44 struct page *page; 45 repeat: 46 page = f2fs_grab_cache_page(mapping, index, false); 47 if (!page) { 48 cond_resched(); 49 goto repeat; 50 } 51 f2fs_wait_on_page_writeback(page, META, true, true); 52 if (!PageUptodate(page)) 53 SetPageUptodate(page); 54 return page; 55 } 56 57 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index, 58 bool is_meta) 59 { 60 struct address_space *mapping = META_MAPPING(sbi); 61 struct page *page; 62 struct f2fs_io_info fio = { 63 .sbi = sbi, 64 .type = META, 65 .op = REQ_OP_READ, 66 .op_flags = REQ_META | REQ_PRIO, 67 .old_blkaddr = index, 68 .new_blkaddr = index, 69 .encrypted_page = NULL, 70 .is_por = !is_meta ? 1 : 0, 71 }; 72 int err; 73 74 if (unlikely(!is_meta)) 75 fio.op_flags &= ~REQ_META; 76 repeat: 77 page = f2fs_grab_cache_page(mapping, index, false); 78 if (!page) { 79 cond_resched(); 80 goto repeat; 81 } 82 if (PageUptodate(page)) 83 goto out; 84 85 fio.page = page; 86 87 err = f2fs_submit_page_bio(&fio); 88 if (err) { 89 f2fs_put_page(page, 1); 90 return ERR_PTR(err); 91 } 92 93 f2fs_update_iostat(sbi, NULL, FS_META_READ_IO, F2FS_BLKSIZE); 94 95 lock_page(page); 96 if (unlikely(page->mapping != mapping)) { 97 f2fs_put_page(page, 1); 98 goto repeat; 99 } 100 101 if (unlikely(!PageUptodate(page))) { 102 f2fs_handle_page_eio(sbi, page->index, META); 103 f2fs_put_page(page, 1); 104 return ERR_PTR(-EIO); 105 } 106 out: 107 return page; 108 } 109 110 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 111 { 112 return __get_meta_page(sbi, index, true); 113 } 114 115 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index) 116 { 117 struct page *page; 118 int count = 0; 119 120 retry: 121 page = __get_meta_page(sbi, index, true); 122 if (IS_ERR(page)) { 123 if (PTR_ERR(page) == -EIO && 124 ++count <= DEFAULT_RETRY_IO_COUNT) 125 goto retry; 126 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_META_PAGE); 127 } 128 return page; 129 } 130 131 /* for POR only */ 132 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index) 133 { 134 return __get_meta_page(sbi, index, false); 135 } 136 137 static bool __is_bitmap_valid(struct f2fs_sb_info *sbi, block_t blkaddr, 138 int type) 139 { 140 struct seg_entry *se; 141 unsigned int segno, offset; 142 bool exist; 143 144 if (type == DATA_GENERIC) 145 return true; 146 147 segno = GET_SEGNO(sbi, blkaddr); 148 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 149 se = get_seg_entry(sbi, segno); 150 151 exist = f2fs_test_bit(offset, se->cur_valid_map); 152 153 /* skip data, if we already have an error in checkpoint. */ 154 if (unlikely(f2fs_cp_error(sbi))) 155 return exist; 156 157 if ((exist && type == DATA_GENERIC_ENHANCE_UPDATE) || 158 (!exist && type == DATA_GENERIC_ENHANCE)) 159 goto out_err; 160 if (!exist && type != DATA_GENERIC_ENHANCE_UPDATE) 161 goto out_handle; 162 return exist; 163 164 out_err: 165 f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d", 166 blkaddr, exist); 167 set_sbi_flag(sbi, SBI_NEED_FSCK); 168 dump_stack(); 169 out_handle: 170 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 171 return exist; 172 } 173 174 static bool __f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 175 block_t blkaddr, int type) 176 { 177 switch (type) { 178 case META_NAT: 179 break; 180 case META_SIT: 181 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi))) 182 goto err; 183 break; 184 case META_SSA: 185 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) || 186 blkaddr < SM_I(sbi)->ssa_blkaddr)) 187 goto err; 188 break; 189 case META_CP: 190 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr || 191 blkaddr < __start_cp_addr(sbi))) 192 goto err; 193 break; 194 case META_POR: 195 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || 196 blkaddr < MAIN_BLKADDR(sbi))) 197 goto err; 198 break; 199 case DATA_GENERIC: 200 case DATA_GENERIC_ENHANCE: 201 case DATA_GENERIC_ENHANCE_READ: 202 case DATA_GENERIC_ENHANCE_UPDATE: 203 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || 204 blkaddr < MAIN_BLKADDR(sbi))) { 205 206 /* Skip to emit an error message. */ 207 if (unlikely(f2fs_cp_error(sbi))) 208 return false; 209 210 f2fs_warn(sbi, "access invalid blkaddr:%u", 211 blkaddr); 212 set_sbi_flag(sbi, SBI_NEED_FSCK); 213 dump_stack(); 214 goto err; 215 } else { 216 return __is_bitmap_valid(sbi, blkaddr, type); 217 } 218 break; 219 case META_GENERIC: 220 if (unlikely(blkaddr < SEG0_BLKADDR(sbi) || 221 blkaddr >= MAIN_BLKADDR(sbi))) 222 goto err; 223 break; 224 default: 225 BUG(); 226 } 227 228 return true; 229 err: 230 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 231 return false; 232 } 233 234 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 235 block_t blkaddr, int type) 236 { 237 if (time_to_inject(sbi, FAULT_BLKADDR_VALIDITY)) 238 return false; 239 return __f2fs_is_valid_blkaddr(sbi, blkaddr, type); 240 } 241 242 bool f2fs_is_valid_blkaddr_raw(struct f2fs_sb_info *sbi, 243 block_t blkaddr, int type) 244 { 245 return __f2fs_is_valid_blkaddr(sbi, blkaddr, type); 246 } 247 248 /* 249 * Readahead CP/NAT/SIT/SSA/POR pages 250 */ 251 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 252 int type, bool sync) 253 { 254 struct page *page; 255 block_t blkno = start; 256 struct f2fs_io_info fio = { 257 .sbi = sbi, 258 .type = META, 259 .op = REQ_OP_READ, 260 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD, 261 .encrypted_page = NULL, 262 .in_list = 0, 263 .is_por = (type == META_POR) ? 1 : 0, 264 }; 265 struct blk_plug plug; 266 int err; 267 268 if (unlikely(type == META_POR)) 269 fio.op_flags &= ~REQ_META; 270 271 blk_start_plug(&plug); 272 for (; nrpages-- > 0; blkno++) { 273 274 if (!f2fs_is_valid_blkaddr(sbi, blkno, type)) 275 goto out; 276 277 switch (type) { 278 case META_NAT: 279 if (unlikely(blkno >= 280 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid))) 281 blkno = 0; 282 /* get nat block addr */ 283 fio.new_blkaddr = current_nat_addr(sbi, 284 blkno * NAT_ENTRY_PER_BLOCK); 285 break; 286 case META_SIT: 287 if (unlikely(blkno >= TOTAL_SEGS(sbi))) 288 goto out; 289 /* get sit block addr */ 290 fio.new_blkaddr = current_sit_addr(sbi, 291 blkno * SIT_ENTRY_PER_BLOCK); 292 break; 293 case META_SSA: 294 case META_CP: 295 case META_POR: 296 fio.new_blkaddr = blkno; 297 break; 298 default: 299 BUG(); 300 } 301 302 page = f2fs_grab_cache_page(META_MAPPING(sbi), 303 fio.new_blkaddr, false); 304 if (!page) 305 continue; 306 if (PageUptodate(page)) { 307 f2fs_put_page(page, 1); 308 continue; 309 } 310 311 fio.page = page; 312 err = f2fs_submit_page_bio(&fio); 313 f2fs_put_page(page, err ? 1 : 0); 314 315 if (!err) 316 f2fs_update_iostat(sbi, NULL, FS_META_READ_IO, 317 F2FS_BLKSIZE); 318 } 319 out: 320 blk_finish_plug(&plug); 321 return blkno - start; 322 } 323 324 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index, 325 unsigned int ra_blocks) 326 { 327 struct page *page; 328 bool readahead = false; 329 330 if (ra_blocks == RECOVERY_MIN_RA_BLOCKS) 331 return; 332 333 page = find_get_page(META_MAPPING(sbi), index); 334 if (!page || !PageUptodate(page)) 335 readahead = true; 336 f2fs_put_page(page, 0); 337 338 if (readahead) 339 f2fs_ra_meta_pages(sbi, index, ra_blocks, META_POR, true); 340 } 341 342 static int __f2fs_write_meta_page(struct page *page, 343 struct writeback_control *wbc, 344 enum iostat_type io_type) 345 { 346 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 347 348 trace_f2fs_writepage(page, META); 349 350 if (unlikely(f2fs_cp_error(sbi))) { 351 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) { 352 ClearPageUptodate(page); 353 dec_page_count(sbi, F2FS_DIRTY_META); 354 unlock_page(page); 355 return 0; 356 } 357 goto redirty_out; 358 } 359 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 360 goto redirty_out; 361 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0)) 362 goto redirty_out; 363 364 f2fs_do_write_meta_page(sbi, page, io_type); 365 dec_page_count(sbi, F2FS_DIRTY_META); 366 367 if (wbc->for_reclaim) 368 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, META); 369 370 unlock_page(page); 371 372 if (unlikely(f2fs_cp_error(sbi))) 373 f2fs_submit_merged_write(sbi, META); 374 375 return 0; 376 377 redirty_out: 378 redirty_page_for_writepage(wbc, page); 379 return AOP_WRITEPAGE_ACTIVATE; 380 } 381 382 static int f2fs_write_meta_page(struct page *page, 383 struct writeback_control *wbc) 384 { 385 return __f2fs_write_meta_page(page, wbc, FS_META_IO); 386 } 387 388 static int f2fs_write_meta_pages(struct address_space *mapping, 389 struct writeback_control *wbc) 390 { 391 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 392 long diff, written; 393 394 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 395 goto skip_write; 396 397 /* collect a number of dirty meta pages and write together */ 398 if (wbc->sync_mode != WB_SYNC_ALL && 399 get_pages(sbi, F2FS_DIRTY_META) < 400 nr_pages_to_skip(sbi, META)) 401 goto skip_write; 402 403 /* if locked failed, cp will flush dirty pages instead */ 404 if (!f2fs_down_write_trylock(&sbi->cp_global_sem)) 405 goto skip_write; 406 407 trace_f2fs_writepages(mapping->host, wbc, META); 408 diff = nr_pages_to_write(sbi, META, wbc); 409 written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO); 410 f2fs_up_write(&sbi->cp_global_sem); 411 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff); 412 return 0; 413 414 skip_write: 415 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META); 416 trace_f2fs_writepages(mapping->host, wbc, META); 417 return 0; 418 } 419 420 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 421 long nr_to_write, enum iostat_type io_type) 422 { 423 struct address_space *mapping = META_MAPPING(sbi); 424 pgoff_t index = 0, prev = ULONG_MAX; 425 struct folio_batch fbatch; 426 long nwritten = 0; 427 int nr_folios; 428 struct writeback_control wbc = { 429 .for_reclaim = 0, 430 }; 431 struct blk_plug plug; 432 433 folio_batch_init(&fbatch); 434 435 blk_start_plug(&plug); 436 437 while ((nr_folios = filemap_get_folios_tag(mapping, &index, 438 (pgoff_t)-1, 439 PAGECACHE_TAG_DIRTY, &fbatch))) { 440 int i; 441 442 for (i = 0; i < nr_folios; i++) { 443 struct folio *folio = fbatch.folios[i]; 444 445 if (nr_to_write != LONG_MAX && i != 0 && 446 folio->index != prev + 447 folio_nr_pages(fbatch.folios[i-1])) { 448 folio_batch_release(&fbatch); 449 goto stop; 450 } 451 452 folio_lock(folio); 453 454 if (unlikely(folio->mapping != mapping)) { 455 continue_unlock: 456 folio_unlock(folio); 457 continue; 458 } 459 if (!folio_test_dirty(folio)) { 460 /* someone wrote it for us */ 461 goto continue_unlock; 462 } 463 464 f2fs_wait_on_page_writeback(&folio->page, META, 465 true, true); 466 467 if (!folio_clear_dirty_for_io(folio)) 468 goto continue_unlock; 469 470 if (__f2fs_write_meta_page(&folio->page, &wbc, 471 io_type)) { 472 folio_unlock(folio); 473 break; 474 } 475 nwritten += folio_nr_pages(folio); 476 prev = folio->index; 477 if (unlikely(nwritten >= nr_to_write)) 478 break; 479 } 480 folio_batch_release(&fbatch); 481 cond_resched(); 482 } 483 stop: 484 if (nwritten) 485 f2fs_submit_merged_write(sbi, type); 486 487 blk_finish_plug(&plug); 488 489 return nwritten; 490 } 491 492 static bool f2fs_dirty_meta_folio(struct address_space *mapping, 493 struct folio *folio) 494 { 495 trace_f2fs_set_page_dirty(&folio->page, META); 496 497 if (!folio_test_uptodate(folio)) 498 folio_mark_uptodate(folio); 499 if (filemap_dirty_folio(mapping, folio)) { 500 inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_META); 501 set_page_private_reference(&folio->page); 502 return true; 503 } 504 return false; 505 } 506 507 const struct address_space_operations f2fs_meta_aops = { 508 .writepage = f2fs_write_meta_page, 509 .writepages = f2fs_write_meta_pages, 510 .dirty_folio = f2fs_dirty_meta_folio, 511 .invalidate_folio = f2fs_invalidate_folio, 512 .release_folio = f2fs_release_folio, 513 .migrate_folio = filemap_migrate_folio, 514 }; 515 516 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, 517 unsigned int devidx, int type) 518 { 519 struct inode_management *im = &sbi->im[type]; 520 struct ino_entry *e = NULL, *new = NULL; 521 522 if (type == FLUSH_INO) { 523 rcu_read_lock(); 524 e = radix_tree_lookup(&im->ino_root, ino); 525 rcu_read_unlock(); 526 } 527 528 retry: 529 if (!e) 530 new = f2fs_kmem_cache_alloc(ino_entry_slab, 531 GFP_NOFS, true, NULL); 532 533 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL); 534 535 spin_lock(&im->ino_lock); 536 e = radix_tree_lookup(&im->ino_root, ino); 537 if (!e) { 538 if (!new) { 539 spin_unlock(&im->ino_lock); 540 radix_tree_preload_end(); 541 goto retry; 542 } 543 e = new; 544 if (unlikely(radix_tree_insert(&im->ino_root, ino, e))) 545 f2fs_bug_on(sbi, 1); 546 547 memset(e, 0, sizeof(struct ino_entry)); 548 e->ino = ino; 549 550 list_add_tail(&e->list, &im->ino_list); 551 if (type != ORPHAN_INO) 552 im->ino_num++; 553 } 554 555 if (type == FLUSH_INO) 556 f2fs_set_bit(devidx, (char *)&e->dirty_device); 557 558 spin_unlock(&im->ino_lock); 559 radix_tree_preload_end(); 560 561 if (new && e != new) 562 kmem_cache_free(ino_entry_slab, new); 563 } 564 565 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 566 { 567 struct inode_management *im = &sbi->im[type]; 568 struct ino_entry *e; 569 570 spin_lock(&im->ino_lock); 571 e = radix_tree_lookup(&im->ino_root, ino); 572 if (e) { 573 list_del(&e->list); 574 radix_tree_delete(&im->ino_root, ino); 575 im->ino_num--; 576 spin_unlock(&im->ino_lock); 577 kmem_cache_free(ino_entry_slab, e); 578 return; 579 } 580 spin_unlock(&im->ino_lock); 581 } 582 583 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 584 { 585 /* add new dirty ino entry into list */ 586 __add_ino_entry(sbi, ino, 0, type); 587 } 588 589 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 590 { 591 /* remove dirty ino entry from list */ 592 __remove_ino_entry(sbi, ino, type); 593 } 594 595 /* mode should be APPEND_INO, UPDATE_INO or TRANS_DIR_INO */ 596 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode) 597 { 598 struct inode_management *im = &sbi->im[mode]; 599 struct ino_entry *e; 600 601 spin_lock(&im->ino_lock); 602 e = radix_tree_lookup(&im->ino_root, ino); 603 spin_unlock(&im->ino_lock); 604 return e ? true : false; 605 } 606 607 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all) 608 { 609 struct ino_entry *e, *tmp; 610 int i; 611 612 for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) { 613 struct inode_management *im = &sbi->im[i]; 614 615 spin_lock(&im->ino_lock); 616 list_for_each_entry_safe(e, tmp, &im->ino_list, list) { 617 list_del(&e->list); 618 radix_tree_delete(&im->ino_root, e->ino); 619 kmem_cache_free(ino_entry_slab, e); 620 im->ino_num--; 621 } 622 spin_unlock(&im->ino_lock); 623 } 624 } 625 626 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 627 unsigned int devidx, int type) 628 { 629 __add_ino_entry(sbi, ino, devidx, type); 630 } 631 632 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 633 unsigned int devidx, int type) 634 { 635 struct inode_management *im = &sbi->im[type]; 636 struct ino_entry *e; 637 bool is_dirty = false; 638 639 spin_lock(&im->ino_lock); 640 e = radix_tree_lookup(&im->ino_root, ino); 641 if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device)) 642 is_dirty = true; 643 spin_unlock(&im->ino_lock); 644 return is_dirty; 645 } 646 647 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi) 648 { 649 struct inode_management *im = &sbi->im[ORPHAN_INO]; 650 int err = 0; 651 652 spin_lock(&im->ino_lock); 653 654 if (time_to_inject(sbi, FAULT_ORPHAN)) { 655 spin_unlock(&im->ino_lock); 656 return -ENOSPC; 657 } 658 659 if (unlikely(im->ino_num >= sbi->max_orphans)) 660 err = -ENOSPC; 661 else 662 im->ino_num++; 663 spin_unlock(&im->ino_lock); 664 665 return err; 666 } 667 668 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi) 669 { 670 struct inode_management *im = &sbi->im[ORPHAN_INO]; 671 672 spin_lock(&im->ino_lock); 673 f2fs_bug_on(sbi, im->ino_num == 0); 674 im->ino_num--; 675 spin_unlock(&im->ino_lock); 676 } 677 678 void f2fs_add_orphan_inode(struct inode *inode) 679 { 680 /* add new orphan ino entry into list */ 681 __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO); 682 f2fs_update_inode_page(inode); 683 } 684 685 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 686 { 687 /* remove orphan entry from orphan list */ 688 __remove_ino_entry(sbi, ino, ORPHAN_INO); 689 } 690 691 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 692 { 693 struct inode *inode; 694 struct node_info ni; 695 int err; 696 697 inode = f2fs_iget_retry(sbi->sb, ino); 698 if (IS_ERR(inode)) { 699 /* 700 * there should be a bug that we can't find the entry 701 * to orphan inode. 702 */ 703 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT); 704 return PTR_ERR(inode); 705 } 706 707 err = f2fs_dquot_initialize(inode); 708 if (err) { 709 iput(inode); 710 goto err_out; 711 } 712 713 clear_nlink(inode); 714 715 /* truncate all the data during iput */ 716 iput(inode); 717 718 err = f2fs_get_node_info(sbi, ino, &ni, false); 719 if (err) 720 goto err_out; 721 722 /* ENOMEM was fully retried in f2fs_evict_inode. */ 723 if (ni.blk_addr != NULL_ADDR) { 724 err = -EIO; 725 goto err_out; 726 } 727 return 0; 728 729 err_out: 730 set_sbi_flag(sbi, SBI_NEED_FSCK); 731 f2fs_warn(sbi, "%s: orphan failed (ino=%x), run fsck to fix.", 732 __func__, ino); 733 return err; 734 } 735 736 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi) 737 { 738 block_t start_blk, orphan_blocks, i, j; 739 int err = 0; 740 741 if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG)) 742 return 0; 743 744 if (f2fs_hw_is_readonly(sbi)) { 745 f2fs_info(sbi, "write access unavailable, skipping orphan cleanup"); 746 return 0; 747 } 748 749 if (is_sbi_flag_set(sbi, SBI_IS_WRITABLE)) 750 f2fs_info(sbi, "orphan cleanup on readonly fs"); 751 752 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi); 753 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi); 754 755 f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true); 756 757 for (i = 0; i < orphan_blocks; i++) { 758 struct page *page; 759 struct f2fs_orphan_block *orphan_blk; 760 761 page = f2fs_get_meta_page(sbi, start_blk + i); 762 if (IS_ERR(page)) { 763 err = PTR_ERR(page); 764 goto out; 765 } 766 767 orphan_blk = (struct f2fs_orphan_block *)page_address(page); 768 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) { 769 nid_t ino = le32_to_cpu(orphan_blk->ino[j]); 770 771 err = recover_orphan_inode(sbi, ino); 772 if (err) { 773 f2fs_put_page(page, 1); 774 goto out; 775 } 776 } 777 f2fs_put_page(page, 1); 778 } 779 /* clear Orphan Flag */ 780 clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG); 781 out: 782 set_sbi_flag(sbi, SBI_IS_RECOVERED); 783 784 return err; 785 } 786 787 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk) 788 { 789 struct list_head *head; 790 struct f2fs_orphan_block *orphan_blk = NULL; 791 unsigned int nentries = 0; 792 unsigned short index = 1; 793 unsigned short orphan_blocks; 794 struct page *page = NULL; 795 struct ino_entry *orphan = NULL; 796 struct inode_management *im = &sbi->im[ORPHAN_INO]; 797 798 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num); 799 800 /* 801 * we don't need to do spin_lock(&im->ino_lock) here, since all the 802 * orphan inode operations are covered under f2fs_lock_op(). 803 * And, spin_lock should be avoided due to page operations below. 804 */ 805 head = &im->ino_list; 806 807 /* loop for each orphan inode entry and write them in journal block */ 808 list_for_each_entry(orphan, head, list) { 809 if (!page) { 810 page = f2fs_grab_meta_page(sbi, start_blk++); 811 orphan_blk = 812 (struct f2fs_orphan_block *)page_address(page); 813 memset(orphan_blk, 0, sizeof(*orphan_blk)); 814 } 815 816 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino); 817 818 if (nentries == F2FS_ORPHANS_PER_BLOCK) { 819 /* 820 * an orphan block is full of 1020 entries, 821 * then we need to flush current orphan blocks 822 * and bring another one in memory 823 */ 824 orphan_blk->blk_addr = cpu_to_le16(index); 825 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 826 orphan_blk->entry_count = cpu_to_le32(nentries); 827 set_page_dirty(page); 828 f2fs_put_page(page, 1); 829 index++; 830 nentries = 0; 831 page = NULL; 832 } 833 } 834 835 if (page) { 836 orphan_blk->blk_addr = cpu_to_le16(index); 837 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 838 orphan_blk->entry_count = cpu_to_le32(nentries); 839 set_page_dirty(page); 840 f2fs_put_page(page, 1); 841 } 842 } 843 844 static __u32 f2fs_checkpoint_chksum(struct f2fs_sb_info *sbi, 845 struct f2fs_checkpoint *ckpt) 846 { 847 unsigned int chksum_ofs = le32_to_cpu(ckpt->checksum_offset); 848 __u32 chksum; 849 850 chksum = f2fs_crc32(sbi, ckpt, chksum_ofs); 851 if (chksum_ofs < CP_CHKSUM_OFFSET) { 852 chksum_ofs += sizeof(chksum); 853 chksum = f2fs_chksum(sbi, chksum, (__u8 *)ckpt + chksum_ofs, 854 F2FS_BLKSIZE - chksum_ofs); 855 } 856 return chksum; 857 } 858 859 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr, 860 struct f2fs_checkpoint **cp_block, struct page **cp_page, 861 unsigned long long *version) 862 { 863 size_t crc_offset = 0; 864 __u32 crc; 865 866 *cp_page = f2fs_get_meta_page(sbi, cp_addr); 867 if (IS_ERR(*cp_page)) 868 return PTR_ERR(*cp_page); 869 870 *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page); 871 872 crc_offset = le32_to_cpu((*cp_block)->checksum_offset); 873 if (crc_offset < CP_MIN_CHKSUM_OFFSET || 874 crc_offset > CP_CHKSUM_OFFSET) { 875 f2fs_put_page(*cp_page, 1); 876 f2fs_warn(sbi, "invalid crc_offset: %zu", crc_offset); 877 return -EINVAL; 878 } 879 880 crc = f2fs_checkpoint_chksum(sbi, *cp_block); 881 if (crc != cur_cp_crc(*cp_block)) { 882 f2fs_put_page(*cp_page, 1); 883 f2fs_warn(sbi, "invalid crc value"); 884 return -EINVAL; 885 } 886 887 *version = cur_cp_version(*cp_block); 888 return 0; 889 } 890 891 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi, 892 block_t cp_addr, unsigned long long *version) 893 { 894 struct page *cp_page_1 = NULL, *cp_page_2 = NULL; 895 struct f2fs_checkpoint *cp_block = NULL; 896 unsigned long long cur_version = 0, pre_version = 0; 897 unsigned int cp_blocks; 898 int err; 899 900 err = get_checkpoint_version(sbi, cp_addr, &cp_block, 901 &cp_page_1, version); 902 if (err) 903 return NULL; 904 905 cp_blocks = le32_to_cpu(cp_block->cp_pack_total_block_count); 906 907 if (cp_blocks > BLKS_PER_SEG(sbi) || cp_blocks <= F2FS_CP_PACKS) { 908 f2fs_warn(sbi, "invalid cp_pack_total_block_count:%u", 909 le32_to_cpu(cp_block->cp_pack_total_block_count)); 910 goto invalid_cp; 911 } 912 pre_version = *version; 913 914 cp_addr += cp_blocks - 1; 915 err = get_checkpoint_version(sbi, cp_addr, &cp_block, 916 &cp_page_2, version); 917 if (err) 918 goto invalid_cp; 919 cur_version = *version; 920 921 if (cur_version == pre_version) { 922 *version = cur_version; 923 f2fs_put_page(cp_page_2, 1); 924 return cp_page_1; 925 } 926 f2fs_put_page(cp_page_2, 1); 927 invalid_cp: 928 f2fs_put_page(cp_page_1, 1); 929 return NULL; 930 } 931 932 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi) 933 { 934 struct f2fs_checkpoint *cp_block; 935 struct f2fs_super_block *fsb = sbi->raw_super; 936 struct page *cp1, *cp2, *cur_page; 937 unsigned long blk_size = sbi->blocksize; 938 unsigned long long cp1_version = 0, cp2_version = 0; 939 unsigned long long cp_start_blk_no; 940 unsigned int cp_blks = 1 + __cp_payload(sbi); 941 block_t cp_blk_no; 942 int i; 943 int err; 944 945 sbi->ckpt = f2fs_kvzalloc(sbi, array_size(blk_size, cp_blks), 946 GFP_KERNEL); 947 if (!sbi->ckpt) 948 return -ENOMEM; 949 /* 950 * Finding out valid cp block involves read both 951 * sets( cp pack 1 and cp pack 2) 952 */ 953 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr); 954 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); 955 956 /* The second checkpoint pack should start at the next segment */ 957 cp_start_blk_no += ((unsigned long long)1) << 958 le32_to_cpu(fsb->log_blocks_per_seg); 959 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); 960 961 if (cp1 && cp2) { 962 if (ver_after(cp2_version, cp1_version)) 963 cur_page = cp2; 964 else 965 cur_page = cp1; 966 } else if (cp1) { 967 cur_page = cp1; 968 } else if (cp2) { 969 cur_page = cp2; 970 } else { 971 err = -EFSCORRUPTED; 972 goto fail_no_cp; 973 } 974 975 cp_block = (struct f2fs_checkpoint *)page_address(cur_page); 976 memcpy(sbi->ckpt, cp_block, blk_size); 977 978 if (cur_page == cp1) 979 sbi->cur_cp_pack = 1; 980 else 981 sbi->cur_cp_pack = 2; 982 983 /* Sanity checking of checkpoint */ 984 if (f2fs_sanity_check_ckpt(sbi)) { 985 err = -EFSCORRUPTED; 986 goto free_fail_no_cp; 987 } 988 989 if (cp_blks <= 1) 990 goto done; 991 992 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr); 993 if (cur_page == cp2) 994 cp_blk_no += BIT(le32_to_cpu(fsb->log_blocks_per_seg)); 995 996 for (i = 1; i < cp_blks; i++) { 997 void *sit_bitmap_ptr; 998 unsigned char *ckpt = (unsigned char *)sbi->ckpt; 999 1000 cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i); 1001 if (IS_ERR(cur_page)) { 1002 err = PTR_ERR(cur_page); 1003 goto free_fail_no_cp; 1004 } 1005 sit_bitmap_ptr = page_address(cur_page); 1006 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size); 1007 f2fs_put_page(cur_page, 1); 1008 } 1009 done: 1010 f2fs_put_page(cp1, 1); 1011 f2fs_put_page(cp2, 1); 1012 return 0; 1013 1014 free_fail_no_cp: 1015 f2fs_put_page(cp1, 1); 1016 f2fs_put_page(cp2, 1); 1017 fail_no_cp: 1018 kvfree(sbi->ckpt); 1019 return err; 1020 } 1021 1022 static void __add_dirty_inode(struct inode *inode, enum inode_type type) 1023 { 1024 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1025 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 1026 1027 if (is_inode_flag_set(inode, flag)) 1028 return; 1029 1030 set_inode_flag(inode, flag); 1031 list_add_tail(&F2FS_I(inode)->dirty_list, &sbi->inode_list[type]); 1032 stat_inc_dirty_inode(sbi, type); 1033 } 1034 1035 static void __remove_dirty_inode(struct inode *inode, enum inode_type type) 1036 { 1037 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 1038 1039 if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag)) 1040 return; 1041 1042 list_del_init(&F2FS_I(inode)->dirty_list); 1043 clear_inode_flag(inode, flag); 1044 stat_dec_dirty_inode(F2FS_I_SB(inode), type); 1045 } 1046 1047 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio) 1048 { 1049 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1050 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 1051 1052 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1053 !S_ISLNK(inode->i_mode)) 1054 return; 1055 1056 spin_lock(&sbi->inode_lock[type]); 1057 if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH)) 1058 __add_dirty_inode(inode, type); 1059 inode_inc_dirty_pages(inode); 1060 spin_unlock(&sbi->inode_lock[type]); 1061 1062 set_page_private_reference(&folio->page); 1063 } 1064 1065 void f2fs_remove_dirty_inode(struct inode *inode) 1066 { 1067 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1068 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 1069 1070 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1071 !S_ISLNK(inode->i_mode)) 1072 return; 1073 1074 if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH)) 1075 return; 1076 1077 spin_lock(&sbi->inode_lock[type]); 1078 __remove_dirty_inode(inode, type); 1079 spin_unlock(&sbi->inode_lock[type]); 1080 } 1081 1082 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type, 1083 bool from_cp) 1084 { 1085 struct list_head *head; 1086 struct inode *inode; 1087 struct f2fs_inode_info *fi; 1088 bool is_dir = (type == DIR_INODE); 1089 unsigned long ino = 0; 1090 1091 trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir, 1092 get_pages(sbi, is_dir ? 1093 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 1094 retry: 1095 if (unlikely(f2fs_cp_error(sbi))) { 1096 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir, 1097 get_pages(sbi, is_dir ? 1098 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 1099 return -EIO; 1100 } 1101 1102 spin_lock(&sbi->inode_lock[type]); 1103 1104 head = &sbi->inode_list[type]; 1105 if (list_empty(head)) { 1106 spin_unlock(&sbi->inode_lock[type]); 1107 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir, 1108 get_pages(sbi, is_dir ? 1109 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 1110 return 0; 1111 } 1112 fi = list_first_entry(head, struct f2fs_inode_info, dirty_list); 1113 inode = igrab(&fi->vfs_inode); 1114 spin_unlock(&sbi->inode_lock[type]); 1115 if (inode) { 1116 unsigned long cur_ino = inode->i_ino; 1117 1118 if (from_cp) 1119 F2FS_I(inode)->cp_task = current; 1120 F2FS_I(inode)->wb_task = current; 1121 1122 filemap_fdatawrite(inode->i_mapping); 1123 1124 F2FS_I(inode)->wb_task = NULL; 1125 if (from_cp) 1126 F2FS_I(inode)->cp_task = NULL; 1127 1128 iput(inode); 1129 /* We need to give cpu to another writers. */ 1130 if (ino == cur_ino) 1131 cond_resched(); 1132 else 1133 ino = cur_ino; 1134 } else { 1135 /* 1136 * We should submit bio, since it exists several 1137 * writebacking dentry pages in the freeing inode. 1138 */ 1139 f2fs_submit_merged_write(sbi, DATA); 1140 cond_resched(); 1141 } 1142 goto retry; 1143 } 1144 1145 static int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi) 1146 { 1147 struct list_head *head = &sbi->inode_list[DIRTY_META]; 1148 struct inode *inode; 1149 struct f2fs_inode_info *fi; 1150 s64 total = get_pages(sbi, F2FS_DIRTY_IMETA); 1151 1152 while (total--) { 1153 if (unlikely(f2fs_cp_error(sbi))) 1154 return -EIO; 1155 1156 spin_lock(&sbi->inode_lock[DIRTY_META]); 1157 if (list_empty(head)) { 1158 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1159 return 0; 1160 } 1161 fi = list_first_entry(head, struct f2fs_inode_info, 1162 gdirty_list); 1163 inode = igrab(&fi->vfs_inode); 1164 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1165 if (inode) { 1166 sync_inode_metadata(inode, 0); 1167 1168 /* it's on eviction */ 1169 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) 1170 f2fs_update_inode_page(inode); 1171 iput(inode); 1172 } 1173 } 1174 return 0; 1175 } 1176 1177 static void __prepare_cp_block(struct f2fs_sb_info *sbi) 1178 { 1179 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1180 struct f2fs_nm_info *nm_i = NM_I(sbi); 1181 nid_t last_nid = nm_i->next_scan_nid; 1182 1183 next_free_nid(sbi, &last_nid); 1184 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi)); 1185 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi)); 1186 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi)); 1187 ckpt->next_free_nid = cpu_to_le32(last_nid); 1188 } 1189 1190 static bool __need_flush_quota(struct f2fs_sb_info *sbi) 1191 { 1192 bool ret = false; 1193 1194 if (!is_journalled_quota(sbi)) 1195 return false; 1196 1197 if (!f2fs_down_write_trylock(&sbi->quota_sem)) 1198 return true; 1199 if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) { 1200 ret = false; 1201 } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) { 1202 ret = false; 1203 } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_FLUSH)) { 1204 clear_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 1205 ret = true; 1206 } else if (get_pages(sbi, F2FS_DIRTY_QDATA)) { 1207 ret = true; 1208 } 1209 f2fs_up_write(&sbi->quota_sem); 1210 return ret; 1211 } 1212 1213 /* 1214 * Freeze all the FS-operations for checkpoint. 1215 */ 1216 static int block_operations(struct f2fs_sb_info *sbi) 1217 { 1218 struct writeback_control wbc = { 1219 .sync_mode = WB_SYNC_ALL, 1220 .nr_to_write = LONG_MAX, 1221 .for_reclaim = 0, 1222 }; 1223 int err = 0, cnt = 0; 1224 1225 /* 1226 * Let's flush inline_data in dirty node pages. 1227 */ 1228 f2fs_flush_inline_data(sbi); 1229 1230 retry_flush_quotas: 1231 f2fs_lock_all(sbi); 1232 if (__need_flush_quota(sbi)) { 1233 int locked; 1234 1235 if (++cnt > DEFAULT_RETRY_QUOTA_FLUSH_COUNT) { 1236 set_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH); 1237 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 1238 goto retry_flush_dents; 1239 } 1240 f2fs_unlock_all(sbi); 1241 1242 /* only failed during mount/umount/freeze/quotactl */ 1243 locked = down_read_trylock(&sbi->sb->s_umount); 1244 f2fs_quota_sync(sbi->sb, -1); 1245 if (locked) 1246 up_read(&sbi->sb->s_umount); 1247 cond_resched(); 1248 goto retry_flush_quotas; 1249 } 1250 1251 retry_flush_dents: 1252 /* write all the dirty dentry pages */ 1253 if (get_pages(sbi, F2FS_DIRTY_DENTS)) { 1254 f2fs_unlock_all(sbi); 1255 err = f2fs_sync_dirty_inodes(sbi, DIR_INODE, true); 1256 if (err) 1257 return err; 1258 cond_resched(); 1259 goto retry_flush_quotas; 1260 } 1261 1262 /* 1263 * POR: we should ensure that there are no dirty node pages 1264 * until finishing nat/sit flush. inode->i_blocks can be updated. 1265 */ 1266 f2fs_down_write(&sbi->node_change); 1267 1268 if (get_pages(sbi, F2FS_DIRTY_IMETA)) { 1269 f2fs_up_write(&sbi->node_change); 1270 f2fs_unlock_all(sbi); 1271 err = f2fs_sync_inode_meta(sbi); 1272 if (err) 1273 return err; 1274 cond_resched(); 1275 goto retry_flush_quotas; 1276 } 1277 1278 retry_flush_nodes: 1279 f2fs_down_write(&sbi->node_write); 1280 1281 if (get_pages(sbi, F2FS_DIRTY_NODES)) { 1282 f2fs_up_write(&sbi->node_write); 1283 atomic_inc(&sbi->wb_sync_req[NODE]); 1284 err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO); 1285 atomic_dec(&sbi->wb_sync_req[NODE]); 1286 if (err) { 1287 f2fs_up_write(&sbi->node_change); 1288 f2fs_unlock_all(sbi); 1289 return err; 1290 } 1291 cond_resched(); 1292 goto retry_flush_nodes; 1293 } 1294 1295 /* 1296 * sbi->node_change is used only for AIO write_begin path which produces 1297 * dirty node blocks and some checkpoint values by block allocation. 1298 */ 1299 __prepare_cp_block(sbi); 1300 f2fs_up_write(&sbi->node_change); 1301 return err; 1302 } 1303 1304 static void unblock_operations(struct f2fs_sb_info *sbi) 1305 { 1306 f2fs_up_write(&sbi->node_write); 1307 f2fs_unlock_all(sbi); 1308 } 1309 1310 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type) 1311 { 1312 DEFINE_WAIT(wait); 1313 1314 for (;;) { 1315 if (!get_pages(sbi, type)) 1316 break; 1317 1318 if (unlikely(f2fs_cp_error(sbi) && 1319 !is_sbi_flag_set(sbi, SBI_IS_CLOSE))) 1320 break; 1321 1322 if (type == F2FS_DIRTY_META) 1323 f2fs_sync_meta_pages(sbi, META, LONG_MAX, 1324 FS_CP_META_IO); 1325 else if (type == F2FS_WB_CP_DATA) 1326 f2fs_submit_merged_write(sbi, DATA); 1327 1328 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE); 1329 io_schedule_timeout(DEFAULT_IO_TIMEOUT); 1330 } 1331 finish_wait(&sbi->cp_wait, &wait); 1332 } 1333 1334 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1335 { 1336 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num; 1337 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1338 unsigned long flags; 1339 1340 if (cpc->reason & CP_UMOUNT) { 1341 if (le32_to_cpu(ckpt->cp_pack_total_block_count) + 1342 NM_I(sbi)->nat_bits_blocks > BLKS_PER_SEG(sbi)) { 1343 clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG); 1344 f2fs_notice(sbi, "Disable nat_bits due to no space"); 1345 } else if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG) && 1346 f2fs_nat_bitmap_enabled(sbi)) { 1347 f2fs_enable_nat_bits(sbi); 1348 set_ckpt_flags(sbi, CP_NAT_BITS_FLAG); 1349 f2fs_notice(sbi, "Rebuild and enable nat_bits"); 1350 } 1351 } 1352 1353 spin_lock_irqsave(&sbi->cp_lock, flags); 1354 1355 if (cpc->reason & CP_TRIMMED) 1356 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG); 1357 else 1358 __clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG); 1359 1360 if (cpc->reason & CP_UMOUNT) 1361 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1362 else 1363 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1364 1365 if (cpc->reason & CP_FASTBOOT) 1366 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1367 else 1368 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1369 1370 if (orphan_num) 1371 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1372 else 1373 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1374 1375 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1376 __set_ckpt_flags(ckpt, CP_FSCK_FLAG); 1377 1378 if (is_sbi_flag_set(sbi, SBI_IS_RESIZEFS)) 1379 __set_ckpt_flags(ckpt, CP_RESIZEFS_FLAG); 1380 else 1381 __clear_ckpt_flags(ckpt, CP_RESIZEFS_FLAG); 1382 1383 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED)) 1384 __set_ckpt_flags(ckpt, CP_DISABLED_FLAG); 1385 else 1386 __clear_ckpt_flags(ckpt, CP_DISABLED_FLAG); 1387 1388 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK)) 1389 __set_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG); 1390 else 1391 __clear_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG); 1392 1393 if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) 1394 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); 1395 else 1396 __clear_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); 1397 1398 if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) 1399 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); 1400 1401 /* set this flag to activate crc|cp_ver for recovery */ 1402 __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG); 1403 __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG); 1404 1405 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1406 } 1407 1408 static void commit_checkpoint(struct f2fs_sb_info *sbi, 1409 void *src, block_t blk_addr) 1410 { 1411 struct writeback_control wbc = { 1412 .for_reclaim = 0, 1413 }; 1414 1415 /* 1416 * filemap_get_folios_tag and lock_page again will take 1417 * some extra time. Therefore, f2fs_update_meta_pages and 1418 * f2fs_sync_meta_pages are combined in this function. 1419 */ 1420 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 1421 int err; 1422 1423 f2fs_wait_on_page_writeback(page, META, true, true); 1424 1425 memcpy(page_address(page), src, PAGE_SIZE); 1426 1427 set_page_dirty(page); 1428 if (unlikely(!clear_page_dirty_for_io(page))) 1429 f2fs_bug_on(sbi, 1); 1430 1431 /* writeout cp pack 2 page */ 1432 err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO); 1433 if (unlikely(err && f2fs_cp_error(sbi))) { 1434 f2fs_put_page(page, 1); 1435 return; 1436 } 1437 1438 f2fs_bug_on(sbi, err); 1439 f2fs_put_page(page, 0); 1440 1441 /* submit checkpoint (with barrier if NOBARRIER is not set) */ 1442 f2fs_submit_merged_write(sbi, META_FLUSH); 1443 } 1444 1445 static inline u64 get_sectors_written(struct block_device *bdev) 1446 { 1447 return (u64)part_stat_read(bdev, sectors[STAT_WRITE]); 1448 } 1449 1450 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi) 1451 { 1452 if (f2fs_is_multi_device(sbi)) { 1453 u64 sectors = 0; 1454 int i; 1455 1456 for (i = 0; i < sbi->s_ndevs; i++) 1457 sectors += get_sectors_written(FDEV(i).bdev); 1458 1459 return sectors; 1460 } 1461 1462 return get_sectors_written(sbi->sb->s_bdev); 1463 } 1464 1465 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1466 { 1467 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1468 struct f2fs_nm_info *nm_i = NM_I(sbi); 1469 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags; 1470 block_t start_blk; 1471 unsigned int data_sum_blocks, orphan_blocks; 1472 __u32 crc32 = 0; 1473 int i; 1474 int cp_payload_blks = __cp_payload(sbi); 1475 struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 1476 u64 kbytes_written; 1477 int err; 1478 1479 /* Flush all the NAT/SIT pages */ 1480 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO); 1481 1482 /* start to update checkpoint, cp ver is already updated previously */ 1483 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true)); 1484 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi)); 1485 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 1486 struct curseg_info *curseg = CURSEG_I(sbi, i + CURSEG_HOT_NODE); 1487 1488 ckpt->cur_node_segno[i] = cpu_to_le32(curseg->segno); 1489 ckpt->cur_node_blkoff[i] = cpu_to_le16(curseg->next_blkoff); 1490 ckpt->alloc_type[i + CURSEG_HOT_NODE] = curseg->alloc_type; 1491 } 1492 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 1493 struct curseg_info *curseg = CURSEG_I(sbi, i + CURSEG_HOT_DATA); 1494 1495 ckpt->cur_data_segno[i] = cpu_to_le32(curseg->segno); 1496 ckpt->cur_data_blkoff[i] = cpu_to_le16(curseg->next_blkoff); 1497 ckpt->alloc_type[i + CURSEG_HOT_DATA] = curseg->alloc_type; 1498 } 1499 1500 /* 2 cp + n data seg summary + orphan inode blocks */ 1501 data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false); 1502 spin_lock_irqsave(&sbi->cp_lock, flags); 1503 if (data_sum_blocks < NR_CURSEG_DATA_TYPE) 1504 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1505 else 1506 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1507 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1508 1509 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num); 1510 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks + 1511 orphan_blocks); 1512 1513 if (__remain_node_summaries(cpc->reason)) 1514 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + 1515 cp_payload_blks + data_sum_blocks + 1516 orphan_blocks + NR_CURSEG_NODE_TYPE); 1517 else 1518 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + 1519 cp_payload_blks + data_sum_blocks + 1520 orphan_blocks); 1521 1522 /* update ckpt flag for checkpoint */ 1523 update_ckpt_flags(sbi, cpc); 1524 1525 /* update SIT/NAT bitmap */ 1526 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP)); 1527 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP)); 1528 1529 crc32 = f2fs_checkpoint_chksum(sbi, ckpt); 1530 *((__le32 *)((unsigned char *)ckpt + 1531 le32_to_cpu(ckpt->checksum_offset))) 1532 = cpu_to_le32(crc32); 1533 1534 start_blk = __start_cp_next_addr(sbi); 1535 1536 /* write nat bits */ 1537 if ((cpc->reason & CP_UMOUNT) && 1538 is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) { 1539 __u64 cp_ver = cur_cp_version(ckpt); 1540 block_t blk; 1541 1542 cp_ver |= ((__u64)crc32 << 32); 1543 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver); 1544 1545 blk = start_blk + BLKS_PER_SEG(sbi) - nm_i->nat_bits_blocks; 1546 for (i = 0; i < nm_i->nat_bits_blocks; i++) 1547 f2fs_update_meta_page(sbi, nm_i->nat_bits + 1548 (i << F2FS_BLKSIZE_BITS), blk + i); 1549 } 1550 1551 /* write out checkpoint buffer at block 0 */ 1552 f2fs_update_meta_page(sbi, ckpt, start_blk++); 1553 1554 for (i = 1; i < 1 + cp_payload_blks; i++) 1555 f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE, 1556 start_blk++); 1557 1558 if (orphan_num) { 1559 write_orphan_inodes(sbi, start_blk); 1560 start_blk += orphan_blocks; 1561 } 1562 1563 f2fs_write_data_summaries(sbi, start_blk); 1564 start_blk += data_sum_blocks; 1565 1566 /* Record write statistics in the hot node summary */ 1567 kbytes_written = sbi->kbytes_written; 1568 kbytes_written += (f2fs_get_sectors_written(sbi) - 1569 sbi->sectors_written_start) >> 1; 1570 seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written); 1571 1572 if (__remain_node_summaries(cpc->reason)) { 1573 f2fs_write_node_summaries(sbi, start_blk); 1574 start_blk += NR_CURSEG_NODE_TYPE; 1575 } 1576 1577 /* update user_block_counts */ 1578 sbi->last_valid_block_count = sbi->total_valid_block_count; 1579 percpu_counter_set(&sbi->alloc_valid_block_count, 0); 1580 percpu_counter_set(&sbi->rf_node_block_count, 0); 1581 1582 /* Here, we have one bio having CP pack except cp pack 2 page */ 1583 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO); 1584 /* Wait for all dirty meta pages to be submitted for IO */ 1585 f2fs_wait_on_all_pages(sbi, F2FS_DIRTY_META); 1586 1587 /* wait for previous submitted meta pages writeback */ 1588 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA); 1589 1590 /* flush all device cache */ 1591 err = f2fs_flush_device_cache(sbi); 1592 if (err) 1593 return err; 1594 1595 /* barrier and flush checkpoint cp pack 2 page if it can */ 1596 commit_checkpoint(sbi, ckpt, start_blk); 1597 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA); 1598 1599 /* 1600 * invalidate intermediate page cache borrowed from meta inode which are 1601 * used for migration of encrypted, verity or compressed inode's blocks. 1602 */ 1603 if (f2fs_sb_has_encrypt(sbi) || f2fs_sb_has_verity(sbi) || 1604 f2fs_sb_has_compression(sbi)) 1605 f2fs_bug_on(sbi, 1606 invalidate_inode_pages2_range(META_MAPPING(sbi), 1607 MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1)); 1608 1609 f2fs_release_ino_entry(sbi, false); 1610 1611 f2fs_reset_fsync_node_info(sbi); 1612 1613 clear_sbi_flag(sbi, SBI_IS_DIRTY); 1614 clear_sbi_flag(sbi, SBI_NEED_CP); 1615 clear_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH); 1616 1617 spin_lock(&sbi->stat_lock); 1618 sbi->unusable_block_count = 0; 1619 spin_unlock(&sbi->stat_lock); 1620 1621 __set_cp_next_pack(sbi); 1622 1623 /* 1624 * redirty superblock if metadata like node page or inode cache is 1625 * updated during writing checkpoint. 1626 */ 1627 if (get_pages(sbi, F2FS_DIRTY_NODES) || 1628 get_pages(sbi, F2FS_DIRTY_IMETA)) 1629 set_sbi_flag(sbi, SBI_IS_DIRTY); 1630 1631 f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS)); 1632 1633 return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0; 1634 } 1635 1636 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1637 { 1638 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1639 unsigned long long ckpt_ver; 1640 int err = 0; 1641 1642 if (f2fs_readonly(sbi->sb) || f2fs_hw_is_readonly(sbi)) 1643 return -EROFS; 1644 1645 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 1646 if (cpc->reason != CP_PAUSE) 1647 return 0; 1648 f2fs_warn(sbi, "Start checkpoint disabled!"); 1649 } 1650 if (cpc->reason != CP_RESIZE) 1651 f2fs_down_write(&sbi->cp_global_sem); 1652 1653 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) && 1654 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) || 1655 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks))) 1656 goto out; 1657 if (unlikely(f2fs_cp_error(sbi))) { 1658 err = -EIO; 1659 goto out; 1660 } 1661 1662 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops"); 1663 1664 err = block_operations(sbi); 1665 if (err) 1666 goto out; 1667 1668 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops"); 1669 1670 f2fs_flush_merged_writes(sbi); 1671 1672 /* this is the case of multiple fstrims without any changes */ 1673 if (cpc->reason & CP_DISCARD) { 1674 if (!f2fs_exist_trim_candidates(sbi, cpc)) { 1675 unblock_operations(sbi); 1676 goto out; 1677 } 1678 1679 if (NM_I(sbi)->nat_cnt[DIRTY_NAT] == 0 && 1680 SIT_I(sbi)->dirty_sentries == 0 && 1681 prefree_segments(sbi) == 0) { 1682 f2fs_flush_sit_entries(sbi, cpc); 1683 f2fs_clear_prefree_segments(sbi, cpc); 1684 unblock_operations(sbi); 1685 goto out; 1686 } 1687 } 1688 1689 /* 1690 * update checkpoint pack index 1691 * Increase the version number so that 1692 * SIT entries and seg summaries are written at correct place 1693 */ 1694 ckpt_ver = cur_cp_version(ckpt); 1695 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver); 1696 1697 /* write cached NAT/SIT entries to NAT/SIT area */ 1698 err = f2fs_flush_nat_entries(sbi, cpc); 1699 if (err) { 1700 f2fs_err(sbi, "f2fs_flush_nat_entries failed err:%d, stop checkpoint", err); 1701 f2fs_bug_on(sbi, !f2fs_cp_error(sbi)); 1702 goto stop; 1703 } 1704 1705 f2fs_flush_sit_entries(sbi, cpc); 1706 1707 /* save inmem log status */ 1708 f2fs_save_inmem_curseg(sbi); 1709 1710 err = do_checkpoint(sbi, cpc); 1711 if (err) { 1712 f2fs_err(sbi, "do_checkpoint failed err:%d, stop checkpoint", err); 1713 f2fs_bug_on(sbi, !f2fs_cp_error(sbi)); 1714 f2fs_release_discard_addrs(sbi); 1715 } else { 1716 f2fs_clear_prefree_segments(sbi, cpc); 1717 } 1718 1719 f2fs_restore_inmem_curseg(sbi); 1720 stat_inc_cp_count(sbi); 1721 stop: 1722 unblock_operations(sbi); 1723 1724 if (cpc->reason & CP_RECOVERY) 1725 f2fs_notice(sbi, "checkpoint: version = %llx", ckpt_ver); 1726 1727 /* update CP_TIME to trigger checkpoint periodically */ 1728 f2fs_update_time(sbi, CP_TIME); 1729 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint"); 1730 out: 1731 if (cpc->reason != CP_RESIZE) 1732 f2fs_up_write(&sbi->cp_global_sem); 1733 return err; 1734 } 1735 1736 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi) 1737 { 1738 int i; 1739 1740 for (i = 0; i < MAX_INO_ENTRY; i++) { 1741 struct inode_management *im = &sbi->im[i]; 1742 1743 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC); 1744 spin_lock_init(&im->ino_lock); 1745 INIT_LIST_HEAD(&im->ino_list); 1746 im->ino_num = 0; 1747 } 1748 1749 sbi->max_orphans = (BLKS_PER_SEG(sbi) - F2FS_CP_PACKS - 1750 NR_CURSEG_PERSIST_TYPE - __cp_payload(sbi)) * 1751 F2FS_ORPHANS_PER_BLOCK; 1752 } 1753 1754 int __init f2fs_create_checkpoint_caches(void) 1755 { 1756 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry", 1757 sizeof(struct ino_entry)); 1758 if (!ino_entry_slab) 1759 return -ENOMEM; 1760 f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry", 1761 sizeof(struct inode_entry)); 1762 if (!f2fs_inode_entry_slab) { 1763 kmem_cache_destroy(ino_entry_slab); 1764 return -ENOMEM; 1765 } 1766 return 0; 1767 } 1768 1769 void f2fs_destroy_checkpoint_caches(void) 1770 { 1771 kmem_cache_destroy(ino_entry_slab); 1772 kmem_cache_destroy(f2fs_inode_entry_slab); 1773 } 1774 1775 static int __write_checkpoint_sync(struct f2fs_sb_info *sbi) 1776 { 1777 struct cp_control cpc = { .reason = CP_SYNC, }; 1778 int err; 1779 1780 f2fs_down_write(&sbi->gc_lock); 1781 err = f2fs_write_checkpoint(sbi, &cpc); 1782 f2fs_up_write(&sbi->gc_lock); 1783 1784 return err; 1785 } 1786 1787 static void __checkpoint_and_complete_reqs(struct f2fs_sb_info *sbi) 1788 { 1789 struct ckpt_req_control *cprc = &sbi->cprc_info; 1790 struct ckpt_req *req, *next; 1791 struct llist_node *dispatch_list; 1792 u64 sum_diff = 0, diff, count = 0; 1793 int ret; 1794 1795 dispatch_list = llist_del_all(&cprc->issue_list); 1796 if (!dispatch_list) 1797 return; 1798 dispatch_list = llist_reverse_order(dispatch_list); 1799 1800 ret = __write_checkpoint_sync(sbi); 1801 atomic_inc(&cprc->issued_ckpt); 1802 1803 llist_for_each_entry_safe(req, next, dispatch_list, llnode) { 1804 diff = (u64)ktime_ms_delta(ktime_get(), req->queue_time); 1805 req->ret = ret; 1806 complete(&req->wait); 1807 1808 sum_diff += diff; 1809 count++; 1810 } 1811 atomic_sub(count, &cprc->queued_ckpt); 1812 atomic_add(count, &cprc->total_ckpt); 1813 1814 spin_lock(&cprc->stat_lock); 1815 cprc->cur_time = (unsigned int)div64_u64(sum_diff, count); 1816 if (cprc->peak_time < cprc->cur_time) 1817 cprc->peak_time = cprc->cur_time; 1818 spin_unlock(&cprc->stat_lock); 1819 } 1820 1821 static int issue_checkpoint_thread(void *data) 1822 { 1823 struct f2fs_sb_info *sbi = data; 1824 struct ckpt_req_control *cprc = &sbi->cprc_info; 1825 wait_queue_head_t *q = &cprc->ckpt_wait_queue; 1826 repeat: 1827 if (kthread_should_stop()) 1828 return 0; 1829 1830 if (!llist_empty(&cprc->issue_list)) 1831 __checkpoint_and_complete_reqs(sbi); 1832 1833 wait_event_interruptible(*q, 1834 kthread_should_stop() || !llist_empty(&cprc->issue_list)); 1835 goto repeat; 1836 } 1837 1838 static void flush_remained_ckpt_reqs(struct f2fs_sb_info *sbi, 1839 struct ckpt_req *wait_req) 1840 { 1841 struct ckpt_req_control *cprc = &sbi->cprc_info; 1842 1843 if (!llist_empty(&cprc->issue_list)) { 1844 __checkpoint_and_complete_reqs(sbi); 1845 } else { 1846 /* already dispatched by issue_checkpoint_thread */ 1847 if (wait_req) 1848 wait_for_completion(&wait_req->wait); 1849 } 1850 } 1851 1852 static void init_ckpt_req(struct ckpt_req *req) 1853 { 1854 memset(req, 0, sizeof(struct ckpt_req)); 1855 1856 init_completion(&req->wait); 1857 req->queue_time = ktime_get(); 1858 } 1859 1860 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi) 1861 { 1862 struct ckpt_req_control *cprc = &sbi->cprc_info; 1863 struct ckpt_req req; 1864 struct cp_control cpc; 1865 1866 cpc.reason = __get_cp_reason(sbi); 1867 if (!test_opt(sbi, MERGE_CHECKPOINT) || cpc.reason != CP_SYNC) { 1868 int ret; 1869 1870 f2fs_down_write(&sbi->gc_lock); 1871 ret = f2fs_write_checkpoint(sbi, &cpc); 1872 f2fs_up_write(&sbi->gc_lock); 1873 1874 return ret; 1875 } 1876 1877 if (!cprc->f2fs_issue_ckpt) 1878 return __write_checkpoint_sync(sbi); 1879 1880 init_ckpt_req(&req); 1881 1882 llist_add(&req.llnode, &cprc->issue_list); 1883 atomic_inc(&cprc->queued_ckpt); 1884 1885 /* 1886 * update issue_list before we wake up issue_checkpoint thread, 1887 * this smp_mb() pairs with another barrier in ___wait_event(), 1888 * see more details in comments of waitqueue_active(). 1889 */ 1890 smp_mb(); 1891 1892 if (waitqueue_active(&cprc->ckpt_wait_queue)) 1893 wake_up(&cprc->ckpt_wait_queue); 1894 1895 if (cprc->f2fs_issue_ckpt) 1896 wait_for_completion(&req.wait); 1897 else 1898 flush_remained_ckpt_reqs(sbi, &req); 1899 1900 return req.ret; 1901 } 1902 1903 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi) 1904 { 1905 dev_t dev = sbi->sb->s_bdev->bd_dev; 1906 struct ckpt_req_control *cprc = &sbi->cprc_info; 1907 1908 if (cprc->f2fs_issue_ckpt) 1909 return 0; 1910 1911 cprc->f2fs_issue_ckpt = kthread_run(issue_checkpoint_thread, sbi, 1912 "f2fs_ckpt-%u:%u", MAJOR(dev), MINOR(dev)); 1913 if (IS_ERR(cprc->f2fs_issue_ckpt)) { 1914 int err = PTR_ERR(cprc->f2fs_issue_ckpt); 1915 1916 cprc->f2fs_issue_ckpt = NULL; 1917 return err; 1918 } 1919 1920 set_task_ioprio(cprc->f2fs_issue_ckpt, cprc->ckpt_thread_ioprio); 1921 1922 return 0; 1923 } 1924 1925 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi) 1926 { 1927 struct ckpt_req_control *cprc = &sbi->cprc_info; 1928 struct task_struct *ckpt_task; 1929 1930 if (!cprc->f2fs_issue_ckpt) 1931 return; 1932 1933 ckpt_task = cprc->f2fs_issue_ckpt; 1934 cprc->f2fs_issue_ckpt = NULL; 1935 kthread_stop(ckpt_task); 1936 1937 f2fs_flush_ckpt_thread(sbi); 1938 } 1939 1940 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi) 1941 { 1942 struct ckpt_req_control *cprc = &sbi->cprc_info; 1943 1944 flush_remained_ckpt_reqs(sbi, NULL); 1945 1946 /* Let's wait for the previous dispatched checkpoint. */ 1947 while (atomic_read(&cprc->queued_ckpt)) 1948 io_schedule_timeout(DEFAULT_IO_TIMEOUT); 1949 } 1950 1951 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi) 1952 { 1953 struct ckpt_req_control *cprc = &sbi->cprc_info; 1954 1955 atomic_set(&cprc->issued_ckpt, 0); 1956 atomic_set(&cprc->total_ckpt, 0); 1957 atomic_set(&cprc->queued_ckpt, 0); 1958 cprc->ckpt_thread_ioprio = DEFAULT_CHECKPOINT_IOPRIO; 1959 init_waitqueue_head(&cprc->ckpt_wait_queue); 1960 init_llist_head(&cprc->issue_list); 1961 spin_lock_init(&cprc->stat_lock); 1962 } 1963