1 /* 2 * fs/f2fs/checkpoint.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/bio.h> 13 #include <linux/mpage.h> 14 #include <linux/writeback.h> 15 #include <linux/blkdev.h> 16 #include <linux/f2fs_fs.h> 17 #include <linux/pagevec.h> 18 #include <linux/swap.h> 19 20 #include "f2fs.h" 21 #include "node.h" 22 #include "segment.h" 23 #include "trace.h" 24 #include <trace/events/f2fs.h> 25 26 static struct kmem_cache *ino_entry_slab; 27 struct kmem_cache *inode_entry_slab; 28 29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io) 30 { 31 set_ckpt_flags(sbi, CP_ERROR_FLAG); 32 sbi->sb->s_flags |= MS_RDONLY; 33 if (!end_io) 34 f2fs_flush_merged_writes(sbi); 35 } 36 37 /* 38 * We guarantee no failure on the returned page. 39 */ 40 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 41 { 42 struct address_space *mapping = META_MAPPING(sbi); 43 struct page *page = NULL; 44 repeat: 45 page = f2fs_grab_cache_page(mapping, index, false); 46 if (!page) { 47 cond_resched(); 48 goto repeat; 49 } 50 f2fs_wait_on_page_writeback(page, META, true); 51 if (!PageUptodate(page)) 52 SetPageUptodate(page); 53 return page; 54 } 55 56 /* 57 * We guarantee no failure on the returned page. 58 */ 59 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index, 60 bool is_meta) 61 { 62 struct address_space *mapping = META_MAPPING(sbi); 63 struct page *page; 64 struct f2fs_io_info fio = { 65 .sbi = sbi, 66 .type = META, 67 .op = REQ_OP_READ, 68 .op_flags = REQ_META | REQ_PRIO, 69 .old_blkaddr = index, 70 .new_blkaddr = index, 71 .encrypted_page = NULL, 72 }; 73 74 if (unlikely(!is_meta)) 75 fio.op_flags &= ~REQ_META; 76 repeat: 77 page = f2fs_grab_cache_page(mapping, index, false); 78 if (!page) { 79 cond_resched(); 80 goto repeat; 81 } 82 if (PageUptodate(page)) 83 goto out; 84 85 fio.page = page; 86 87 if (f2fs_submit_page_bio(&fio)) { 88 f2fs_put_page(page, 1); 89 goto repeat; 90 } 91 92 lock_page(page); 93 if (unlikely(page->mapping != mapping)) { 94 f2fs_put_page(page, 1); 95 goto repeat; 96 } 97 98 /* 99 * if there is any IO error when accessing device, make our filesystem 100 * readonly and make sure do not write checkpoint with non-uptodate 101 * meta page. 102 */ 103 if (unlikely(!PageUptodate(page))) 104 f2fs_stop_checkpoint(sbi, false); 105 out: 106 return page; 107 } 108 109 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 110 { 111 return __get_meta_page(sbi, index, true); 112 } 113 114 /* for POR only */ 115 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index) 116 { 117 return __get_meta_page(sbi, index, false); 118 } 119 120 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type) 121 { 122 switch (type) { 123 case META_NAT: 124 break; 125 case META_SIT: 126 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi))) 127 return false; 128 break; 129 case META_SSA: 130 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) || 131 blkaddr < SM_I(sbi)->ssa_blkaddr)) 132 return false; 133 break; 134 case META_CP: 135 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr || 136 blkaddr < __start_cp_addr(sbi))) 137 return false; 138 break; 139 case META_POR: 140 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || 141 blkaddr < MAIN_BLKADDR(sbi))) 142 return false; 143 break; 144 default: 145 BUG(); 146 } 147 148 return true; 149 } 150 151 /* 152 * Readahead CP/NAT/SIT/SSA pages 153 */ 154 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 155 int type, bool sync) 156 { 157 struct page *page; 158 block_t blkno = start; 159 struct f2fs_io_info fio = { 160 .sbi = sbi, 161 .type = META, 162 .op = REQ_OP_READ, 163 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD, 164 .encrypted_page = NULL, 165 .in_list = false, 166 }; 167 struct blk_plug plug; 168 169 if (unlikely(type == META_POR)) 170 fio.op_flags &= ~REQ_META; 171 172 blk_start_plug(&plug); 173 for (; nrpages-- > 0; blkno++) { 174 175 if (!is_valid_blkaddr(sbi, blkno, type)) 176 goto out; 177 178 switch (type) { 179 case META_NAT: 180 if (unlikely(blkno >= 181 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid))) 182 blkno = 0; 183 /* get nat block addr */ 184 fio.new_blkaddr = current_nat_addr(sbi, 185 blkno * NAT_ENTRY_PER_BLOCK); 186 break; 187 case META_SIT: 188 /* get sit block addr */ 189 fio.new_blkaddr = current_sit_addr(sbi, 190 blkno * SIT_ENTRY_PER_BLOCK); 191 break; 192 case META_SSA: 193 case META_CP: 194 case META_POR: 195 fio.new_blkaddr = blkno; 196 break; 197 default: 198 BUG(); 199 } 200 201 page = f2fs_grab_cache_page(META_MAPPING(sbi), 202 fio.new_blkaddr, false); 203 if (!page) 204 continue; 205 if (PageUptodate(page)) { 206 f2fs_put_page(page, 1); 207 continue; 208 } 209 210 fio.page = page; 211 f2fs_submit_page_bio(&fio); 212 f2fs_put_page(page, 0); 213 } 214 out: 215 blk_finish_plug(&plug); 216 return blkno - start; 217 } 218 219 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index) 220 { 221 struct page *page; 222 bool readahead = false; 223 224 page = find_get_page(META_MAPPING(sbi), index); 225 if (!page || !PageUptodate(page)) 226 readahead = true; 227 f2fs_put_page(page, 0); 228 229 if (readahead) 230 ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true); 231 } 232 233 static int f2fs_write_meta_page(struct page *page, 234 struct writeback_control *wbc) 235 { 236 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 237 238 trace_f2fs_writepage(page, META); 239 240 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 241 goto redirty_out; 242 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0)) 243 goto redirty_out; 244 if (unlikely(f2fs_cp_error(sbi))) 245 goto redirty_out; 246 247 write_meta_page(sbi, page); 248 dec_page_count(sbi, F2FS_DIRTY_META); 249 250 if (wbc->for_reclaim) 251 f2fs_submit_merged_write_cond(sbi, page->mapping->host, 252 0, page->index, META); 253 254 unlock_page(page); 255 256 if (unlikely(f2fs_cp_error(sbi))) 257 f2fs_submit_merged_write(sbi, META); 258 259 return 0; 260 261 redirty_out: 262 redirty_page_for_writepage(wbc, page); 263 return AOP_WRITEPAGE_ACTIVATE; 264 } 265 266 static int f2fs_write_meta_pages(struct address_space *mapping, 267 struct writeback_control *wbc) 268 { 269 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 270 long diff, written; 271 272 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 273 goto skip_write; 274 275 /* collect a number of dirty meta pages and write together */ 276 if (wbc->for_kupdate || 277 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META)) 278 goto skip_write; 279 280 /* if locked failed, cp will flush dirty pages instead */ 281 if (!mutex_trylock(&sbi->cp_mutex)) 282 goto skip_write; 283 284 trace_f2fs_writepages(mapping->host, wbc, META); 285 diff = nr_pages_to_write(sbi, META, wbc); 286 written = sync_meta_pages(sbi, META, wbc->nr_to_write); 287 mutex_unlock(&sbi->cp_mutex); 288 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff); 289 return 0; 290 291 skip_write: 292 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META); 293 trace_f2fs_writepages(mapping->host, wbc, META); 294 return 0; 295 } 296 297 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 298 long nr_to_write) 299 { 300 struct address_space *mapping = META_MAPPING(sbi); 301 pgoff_t index = 0, end = ULONG_MAX, prev = ULONG_MAX; 302 struct pagevec pvec; 303 long nwritten = 0; 304 struct writeback_control wbc = { 305 .for_reclaim = 0, 306 }; 307 struct blk_plug plug; 308 309 pagevec_init(&pvec, 0); 310 311 blk_start_plug(&plug); 312 313 while (index <= end) { 314 int i, nr_pages; 315 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 316 PAGECACHE_TAG_DIRTY, 317 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 318 if (unlikely(nr_pages == 0)) 319 break; 320 321 for (i = 0; i < nr_pages; i++) { 322 struct page *page = pvec.pages[i]; 323 324 if (prev == ULONG_MAX) 325 prev = page->index - 1; 326 if (nr_to_write != LONG_MAX && page->index != prev + 1) { 327 pagevec_release(&pvec); 328 goto stop; 329 } 330 331 lock_page(page); 332 333 if (unlikely(page->mapping != mapping)) { 334 continue_unlock: 335 unlock_page(page); 336 continue; 337 } 338 if (!PageDirty(page)) { 339 /* someone wrote it for us */ 340 goto continue_unlock; 341 } 342 343 f2fs_wait_on_page_writeback(page, META, true); 344 345 BUG_ON(PageWriteback(page)); 346 if (!clear_page_dirty_for_io(page)) 347 goto continue_unlock; 348 349 if (mapping->a_ops->writepage(page, &wbc)) { 350 unlock_page(page); 351 break; 352 } 353 nwritten++; 354 prev = page->index; 355 if (unlikely(nwritten >= nr_to_write)) 356 break; 357 } 358 pagevec_release(&pvec); 359 cond_resched(); 360 } 361 stop: 362 if (nwritten) 363 f2fs_submit_merged_write(sbi, type); 364 365 blk_finish_plug(&plug); 366 367 return nwritten; 368 } 369 370 static int f2fs_set_meta_page_dirty(struct page *page) 371 { 372 trace_f2fs_set_page_dirty(page, META); 373 374 if (!PageUptodate(page)) 375 SetPageUptodate(page); 376 if (!PageDirty(page)) { 377 f2fs_set_page_dirty_nobuffers(page); 378 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META); 379 SetPagePrivate(page); 380 f2fs_trace_pid(page); 381 return 1; 382 } 383 return 0; 384 } 385 386 const struct address_space_operations f2fs_meta_aops = { 387 .writepage = f2fs_write_meta_page, 388 .writepages = f2fs_write_meta_pages, 389 .set_page_dirty = f2fs_set_meta_page_dirty, 390 .invalidatepage = f2fs_invalidate_page, 391 .releasepage = f2fs_release_page, 392 #ifdef CONFIG_MIGRATION 393 .migratepage = f2fs_migrate_page, 394 #endif 395 }; 396 397 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 398 { 399 struct inode_management *im = &sbi->im[type]; 400 struct ino_entry *e, *tmp; 401 402 tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS); 403 retry: 404 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL); 405 406 spin_lock(&im->ino_lock); 407 e = radix_tree_lookup(&im->ino_root, ino); 408 if (!e) { 409 e = tmp; 410 if (radix_tree_insert(&im->ino_root, ino, e)) { 411 spin_unlock(&im->ino_lock); 412 radix_tree_preload_end(); 413 goto retry; 414 } 415 memset(e, 0, sizeof(struct ino_entry)); 416 e->ino = ino; 417 418 list_add_tail(&e->list, &im->ino_list); 419 if (type != ORPHAN_INO) 420 im->ino_num++; 421 } 422 spin_unlock(&im->ino_lock); 423 radix_tree_preload_end(); 424 425 if (e != tmp) 426 kmem_cache_free(ino_entry_slab, tmp); 427 } 428 429 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 430 { 431 struct inode_management *im = &sbi->im[type]; 432 struct ino_entry *e; 433 434 spin_lock(&im->ino_lock); 435 e = radix_tree_lookup(&im->ino_root, ino); 436 if (e) { 437 list_del(&e->list); 438 radix_tree_delete(&im->ino_root, ino); 439 im->ino_num--; 440 spin_unlock(&im->ino_lock); 441 kmem_cache_free(ino_entry_slab, e); 442 return; 443 } 444 spin_unlock(&im->ino_lock); 445 } 446 447 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 448 { 449 /* add new dirty ino entry into list */ 450 __add_ino_entry(sbi, ino, type); 451 } 452 453 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 454 { 455 /* remove dirty ino entry from list */ 456 __remove_ino_entry(sbi, ino, type); 457 } 458 459 /* mode should be APPEND_INO or UPDATE_INO */ 460 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode) 461 { 462 struct inode_management *im = &sbi->im[mode]; 463 struct ino_entry *e; 464 465 spin_lock(&im->ino_lock); 466 e = radix_tree_lookup(&im->ino_root, ino); 467 spin_unlock(&im->ino_lock); 468 return e ? true : false; 469 } 470 471 void release_ino_entry(struct f2fs_sb_info *sbi, bool all) 472 { 473 struct ino_entry *e, *tmp; 474 int i; 475 476 for (i = all ? ORPHAN_INO: APPEND_INO; i <= UPDATE_INO; i++) { 477 struct inode_management *im = &sbi->im[i]; 478 479 spin_lock(&im->ino_lock); 480 list_for_each_entry_safe(e, tmp, &im->ino_list, list) { 481 list_del(&e->list); 482 radix_tree_delete(&im->ino_root, e->ino); 483 kmem_cache_free(ino_entry_slab, e); 484 im->ino_num--; 485 } 486 spin_unlock(&im->ino_lock); 487 } 488 } 489 490 int acquire_orphan_inode(struct f2fs_sb_info *sbi) 491 { 492 struct inode_management *im = &sbi->im[ORPHAN_INO]; 493 int err = 0; 494 495 spin_lock(&im->ino_lock); 496 497 #ifdef CONFIG_F2FS_FAULT_INJECTION 498 if (time_to_inject(sbi, FAULT_ORPHAN)) { 499 spin_unlock(&im->ino_lock); 500 f2fs_show_injection_info(FAULT_ORPHAN); 501 return -ENOSPC; 502 } 503 #endif 504 if (unlikely(im->ino_num >= sbi->max_orphans)) 505 err = -ENOSPC; 506 else 507 im->ino_num++; 508 spin_unlock(&im->ino_lock); 509 510 return err; 511 } 512 513 void release_orphan_inode(struct f2fs_sb_info *sbi) 514 { 515 struct inode_management *im = &sbi->im[ORPHAN_INO]; 516 517 spin_lock(&im->ino_lock); 518 f2fs_bug_on(sbi, im->ino_num == 0); 519 im->ino_num--; 520 spin_unlock(&im->ino_lock); 521 } 522 523 void add_orphan_inode(struct inode *inode) 524 { 525 /* add new orphan ino entry into list */ 526 __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, ORPHAN_INO); 527 update_inode_page(inode); 528 } 529 530 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 531 { 532 /* remove orphan entry from orphan list */ 533 __remove_ino_entry(sbi, ino, ORPHAN_INO); 534 } 535 536 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 537 { 538 struct inode *inode; 539 struct node_info ni; 540 int err = acquire_orphan_inode(sbi); 541 542 if (err) { 543 set_sbi_flag(sbi, SBI_NEED_FSCK); 544 f2fs_msg(sbi->sb, KERN_WARNING, 545 "%s: orphan failed (ino=%x), run fsck to fix.", 546 __func__, ino); 547 return err; 548 } 549 550 __add_ino_entry(sbi, ino, ORPHAN_INO); 551 552 inode = f2fs_iget_retry(sbi->sb, ino); 553 if (IS_ERR(inode)) { 554 /* 555 * there should be a bug that we can't find the entry 556 * to orphan inode. 557 */ 558 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT); 559 return PTR_ERR(inode); 560 } 561 562 clear_nlink(inode); 563 564 /* truncate all the data during iput */ 565 iput(inode); 566 567 get_node_info(sbi, ino, &ni); 568 569 /* ENOMEM was fully retried in f2fs_evict_inode. */ 570 if (ni.blk_addr != NULL_ADDR) { 571 set_sbi_flag(sbi, SBI_NEED_FSCK); 572 f2fs_msg(sbi->sb, KERN_WARNING, 573 "%s: orphan failed (ino=%x) by kernel, retry mount.", 574 __func__, ino); 575 return -EIO; 576 } 577 __remove_ino_entry(sbi, ino, ORPHAN_INO); 578 return 0; 579 } 580 581 int recover_orphan_inodes(struct f2fs_sb_info *sbi) 582 { 583 block_t start_blk, orphan_blocks, i, j; 584 int err; 585 586 if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG)) 587 return 0; 588 589 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi); 590 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi); 591 592 ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true); 593 594 for (i = 0; i < orphan_blocks; i++) { 595 struct page *page = get_meta_page(sbi, start_blk + i); 596 struct f2fs_orphan_block *orphan_blk; 597 598 orphan_blk = (struct f2fs_orphan_block *)page_address(page); 599 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) { 600 nid_t ino = le32_to_cpu(orphan_blk->ino[j]); 601 err = recover_orphan_inode(sbi, ino); 602 if (err) { 603 f2fs_put_page(page, 1); 604 return err; 605 } 606 } 607 f2fs_put_page(page, 1); 608 } 609 /* clear Orphan Flag */ 610 clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG); 611 return 0; 612 } 613 614 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk) 615 { 616 struct list_head *head; 617 struct f2fs_orphan_block *orphan_blk = NULL; 618 unsigned int nentries = 0; 619 unsigned short index = 1; 620 unsigned short orphan_blocks; 621 struct page *page = NULL; 622 struct ino_entry *orphan = NULL; 623 struct inode_management *im = &sbi->im[ORPHAN_INO]; 624 625 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num); 626 627 /* 628 * we don't need to do spin_lock(&im->ino_lock) here, since all the 629 * orphan inode operations are covered under f2fs_lock_op(). 630 * And, spin_lock should be avoided due to page operations below. 631 */ 632 head = &im->ino_list; 633 634 /* loop for each orphan inode entry and write them in Jornal block */ 635 list_for_each_entry(orphan, head, list) { 636 if (!page) { 637 page = grab_meta_page(sbi, start_blk++); 638 orphan_blk = 639 (struct f2fs_orphan_block *)page_address(page); 640 memset(orphan_blk, 0, sizeof(*orphan_blk)); 641 } 642 643 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino); 644 645 if (nentries == F2FS_ORPHANS_PER_BLOCK) { 646 /* 647 * an orphan block is full of 1020 entries, 648 * then we need to flush current orphan blocks 649 * and bring another one in memory 650 */ 651 orphan_blk->blk_addr = cpu_to_le16(index); 652 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 653 orphan_blk->entry_count = cpu_to_le32(nentries); 654 set_page_dirty(page); 655 f2fs_put_page(page, 1); 656 index++; 657 nentries = 0; 658 page = NULL; 659 } 660 } 661 662 if (page) { 663 orphan_blk->blk_addr = cpu_to_le16(index); 664 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 665 orphan_blk->entry_count = cpu_to_le32(nentries); 666 set_page_dirty(page); 667 f2fs_put_page(page, 1); 668 } 669 } 670 671 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr, 672 struct f2fs_checkpoint **cp_block, struct page **cp_page, 673 unsigned long long *version) 674 { 675 unsigned long blk_size = sbi->blocksize; 676 size_t crc_offset = 0; 677 __u32 crc = 0; 678 679 *cp_page = get_meta_page(sbi, cp_addr); 680 *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page); 681 682 crc_offset = le32_to_cpu((*cp_block)->checksum_offset); 683 if (crc_offset > (blk_size - sizeof(__le32))) { 684 f2fs_msg(sbi->sb, KERN_WARNING, 685 "invalid crc_offset: %zu", crc_offset); 686 return -EINVAL; 687 } 688 689 crc = cur_cp_crc(*cp_block); 690 if (!f2fs_crc_valid(sbi, crc, *cp_block, crc_offset)) { 691 f2fs_msg(sbi->sb, KERN_WARNING, "invalid crc value"); 692 return -EINVAL; 693 } 694 695 *version = cur_cp_version(*cp_block); 696 return 0; 697 } 698 699 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi, 700 block_t cp_addr, unsigned long long *version) 701 { 702 struct page *cp_page_1 = NULL, *cp_page_2 = NULL; 703 struct f2fs_checkpoint *cp_block = NULL; 704 unsigned long long cur_version = 0, pre_version = 0; 705 int err; 706 707 err = get_checkpoint_version(sbi, cp_addr, &cp_block, 708 &cp_page_1, version); 709 if (err) 710 goto invalid_cp1; 711 pre_version = *version; 712 713 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1; 714 err = get_checkpoint_version(sbi, cp_addr, &cp_block, 715 &cp_page_2, version); 716 if (err) 717 goto invalid_cp2; 718 cur_version = *version; 719 720 if (cur_version == pre_version) { 721 *version = cur_version; 722 f2fs_put_page(cp_page_2, 1); 723 return cp_page_1; 724 } 725 invalid_cp2: 726 f2fs_put_page(cp_page_2, 1); 727 invalid_cp1: 728 f2fs_put_page(cp_page_1, 1); 729 return NULL; 730 } 731 732 int get_valid_checkpoint(struct f2fs_sb_info *sbi) 733 { 734 struct f2fs_checkpoint *cp_block; 735 struct f2fs_super_block *fsb = sbi->raw_super; 736 struct page *cp1, *cp2, *cur_page; 737 unsigned long blk_size = sbi->blocksize; 738 unsigned long long cp1_version = 0, cp2_version = 0; 739 unsigned long long cp_start_blk_no; 740 unsigned int cp_blks = 1 + __cp_payload(sbi); 741 block_t cp_blk_no; 742 int i; 743 744 sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL); 745 if (!sbi->ckpt) 746 return -ENOMEM; 747 /* 748 * Finding out valid cp block involves read both 749 * sets( cp pack1 and cp pack 2) 750 */ 751 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr); 752 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); 753 754 /* The second checkpoint pack should start at the next segment */ 755 cp_start_blk_no += ((unsigned long long)1) << 756 le32_to_cpu(fsb->log_blocks_per_seg); 757 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); 758 759 if (cp1 && cp2) { 760 if (ver_after(cp2_version, cp1_version)) 761 cur_page = cp2; 762 else 763 cur_page = cp1; 764 } else if (cp1) { 765 cur_page = cp1; 766 } else if (cp2) { 767 cur_page = cp2; 768 } else { 769 goto fail_no_cp; 770 } 771 772 cp_block = (struct f2fs_checkpoint *)page_address(cur_page); 773 memcpy(sbi->ckpt, cp_block, blk_size); 774 775 /* Sanity checking of checkpoint */ 776 if (sanity_check_ckpt(sbi)) 777 goto free_fail_no_cp; 778 779 if (cur_page == cp1) 780 sbi->cur_cp_pack = 1; 781 else 782 sbi->cur_cp_pack = 2; 783 784 if (cp_blks <= 1) 785 goto done; 786 787 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr); 788 if (cur_page == cp2) 789 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg); 790 791 for (i = 1; i < cp_blks; i++) { 792 void *sit_bitmap_ptr; 793 unsigned char *ckpt = (unsigned char *)sbi->ckpt; 794 795 cur_page = get_meta_page(sbi, cp_blk_no + i); 796 sit_bitmap_ptr = page_address(cur_page); 797 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size); 798 f2fs_put_page(cur_page, 1); 799 } 800 done: 801 f2fs_put_page(cp1, 1); 802 f2fs_put_page(cp2, 1); 803 return 0; 804 805 free_fail_no_cp: 806 f2fs_put_page(cp1, 1); 807 f2fs_put_page(cp2, 1); 808 fail_no_cp: 809 kfree(sbi->ckpt); 810 return -EINVAL; 811 } 812 813 static void __add_dirty_inode(struct inode *inode, enum inode_type type) 814 { 815 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 816 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 817 818 if (is_inode_flag_set(inode, flag)) 819 return; 820 821 set_inode_flag(inode, flag); 822 if (!f2fs_is_volatile_file(inode)) 823 list_add_tail(&F2FS_I(inode)->dirty_list, 824 &sbi->inode_list[type]); 825 stat_inc_dirty_inode(sbi, type); 826 } 827 828 static void __remove_dirty_inode(struct inode *inode, enum inode_type type) 829 { 830 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 831 832 if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag)) 833 return; 834 835 list_del_init(&F2FS_I(inode)->dirty_list); 836 clear_inode_flag(inode, flag); 837 stat_dec_dirty_inode(F2FS_I_SB(inode), type); 838 } 839 840 void update_dirty_page(struct inode *inode, struct page *page) 841 { 842 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 843 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 844 845 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 846 !S_ISLNK(inode->i_mode)) 847 return; 848 849 spin_lock(&sbi->inode_lock[type]); 850 if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH)) 851 __add_dirty_inode(inode, type); 852 inode_inc_dirty_pages(inode); 853 spin_unlock(&sbi->inode_lock[type]); 854 855 SetPagePrivate(page); 856 f2fs_trace_pid(page); 857 } 858 859 void remove_dirty_inode(struct inode *inode) 860 { 861 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 862 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 863 864 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 865 !S_ISLNK(inode->i_mode)) 866 return; 867 868 if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH)) 869 return; 870 871 spin_lock(&sbi->inode_lock[type]); 872 __remove_dirty_inode(inode, type); 873 spin_unlock(&sbi->inode_lock[type]); 874 } 875 876 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type) 877 { 878 struct list_head *head; 879 struct inode *inode; 880 struct f2fs_inode_info *fi; 881 bool is_dir = (type == DIR_INODE); 882 883 trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir, 884 get_pages(sbi, is_dir ? 885 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 886 retry: 887 if (unlikely(f2fs_cp_error(sbi))) 888 return -EIO; 889 890 spin_lock(&sbi->inode_lock[type]); 891 892 head = &sbi->inode_list[type]; 893 if (list_empty(head)) { 894 spin_unlock(&sbi->inode_lock[type]); 895 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir, 896 get_pages(sbi, is_dir ? 897 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 898 return 0; 899 } 900 fi = list_first_entry(head, struct f2fs_inode_info, dirty_list); 901 inode = igrab(&fi->vfs_inode); 902 spin_unlock(&sbi->inode_lock[type]); 903 if (inode) { 904 filemap_fdatawrite(inode->i_mapping); 905 iput(inode); 906 } else { 907 /* 908 * We should submit bio, since it exists several 909 * wribacking dentry pages in the freeing inode. 910 */ 911 f2fs_submit_merged_write(sbi, DATA); 912 cond_resched(); 913 } 914 goto retry; 915 } 916 917 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi) 918 { 919 struct list_head *head = &sbi->inode_list[DIRTY_META]; 920 struct inode *inode; 921 struct f2fs_inode_info *fi; 922 s64 total = get_pages(sbi, F2FS_DIRTY_IMETA); 923 924 while (total--) { 925 if (unlikely(f2fs_cp_error(sbi))) 926 return -EIO; 927 928 spin_lock(&sbi->inode_lock[DIRTY_META]); 929 if (list_empty(head)) { 930 spin_unlock(&sbi->inode_lock[DIRTY_META]); 931 return 0; 932 } 933 fi = list_first_entry(head, struct f2fs_inode_info, 934 gdirty_list); 935 inode = igrab(&fi->vfs_inode); 936 spin_unlock(&sbi->inode_lock[DIRTY_META]); 937 if (inode) { 938 sync_inode_metadata(inode, 0); 939 940 /* it's on eviction */ 941 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) 942 update_inode_page(inode); 943 iput(inode); 944 } 945 }; 946 return 0; 947 } 948 949 static void __prepare_cp_block(struct f2fs_sb_info *sbi) 950 { 951 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 952 struct f2fs_nm_info *nm_i = NM_I(sbi); 953 nid_t last_nid = nm_i->next_scan_nid; 954 955 next_free_nid(sbi, &last_nid); 956 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi)); 957 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi)); 958 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi)); 959 ckpt->next_free_nid = cpu_to_le32(last_nid); 960 } 961 962 /* 963 * Freeze all the FS-operations for checkpoint. 964 */ 965 static int block_operations(struct f2fs_sb_info *sbi) 966 { 967 struct writeback_control wbc = { 968 .sync_mode = WB_SYNC_ALL, 969 .nr_to_write = LONG_MAX, 970 .for_reclaim = 0, 971 }; 972 struct blk_plug plug; 973 int err = 0; 974 975 blk_start_plug(&plug); 976 977 retry_flush_dents: 978 f2fs_lock_all(sbi); 979 /* write all the dirty dentry pages */ 980 if (get_pages(sbi, F2FS_DIRTY_DENTS)) { 981 f2fs_unlock_all(sbi); 982 err = sync_dirty_inodes(sbi, DIR_INODE); 983 if (err) 984 goto out; 985 cond_resched(); 986 goto retry_flush_dents; 987 } 988 989 /* 990 * POR: we should ensure that there are no dirty node pages 991 * until finishing nat/sit flush. inode->i_blocks can be updated. 992 */ 993 down_write(&sbi->node_change); 994 995 if (get_pages(sbi, F2FS_DIRTY_IMETA)) { 996 up_write(&sbi->node_change); 997 f2fs_unlock_all(sbi); 998 err = f2fs_sync_inode_meta(sbi); 999 if (err) 1000 goto out; 1001 cond_resched(); 1002 goto retry_flush_dents; 1003 } 1004 1005 retry_flush_nodes: 1006 down_write(&sbi->node_write); 1007 1008 if (get_pages(sbi, F2FS_DIRTY_NODES)) { 1009 up_write(&sbi->node_write); 1010 err = sync_node_pages(sbi, &wbc); 1011 if (err) { 1012 up_write(&sbi->node_change); 1013 f2fs_unlock_all(sbi); 1014 goto out; 1015 } 1016 cond_resched(); 1017 goto retry_flush_nodes; 1018 } 1019 1020 /* 1021 * sbi->node_change is used only for AIO write_begin path which produces 1022 * dirty node blocks and some checkpoint values by block allocation. 1023 */ 1024 __prepare_cp_block(sbi); 1025 up_write(&sbi->node_change); 1026 out: 1027 blk_finish_plug(&plug); 1028 return err; 1029 } 1030 1031 static void unblock_operations(struct f2fs_sb_info *sbi) 1032 { 1033 up_write(&sbi->node_write); 1034 f2fs_unlock_all(sbi); 1035 } 1036 1037 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi) 1038 { 1039 DEFINE_WAIT(wait); 1040 1041 for (;;) { 1042 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE); 1043 1044 if (!get_pages(sbi, F2FS_WB_CP_DATA)) 1045 break; 1046 1047 io_schedule_timeout(5*HZ); 1048 } 1049 finish_wait(&sbi->cp_wait, &wait); 1050 } 1051 1052 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1053 { 1054 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num; 1055 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1056 unsigned long flags; 1057 1058 spin_lock_irqsave(&sbi->cp_lock, flags); 1059 1060 if ((cpc->reason & CP_UMOUNT) && 1061 le32_to_cpu(ckpt->cp_pack_total_block_count) > 1062 sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks) 1063 disable_nat_bits(sbi, false); 1064 1065 if (cpc->reason & CP_TRIMMED) 1066 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG); 1067 1068 if (cpc->reason & CP_UMOUNT) 1069 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1070 else 1071 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1072 1073 if (cpc->reason & CP_FASTBOOT) 1074 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1075 else 1076 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1077 1078 if (orphan_num) 1079 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1080 else 1081 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1082 1083 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1084 __set_ckpt_flags(ckpt, CP_FSCK_FLAG); 1085 1086 /* set this flag to activate crc|cp_ver for recovery */ 1087 __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG); 1088 1089 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1090 } 1091 1092 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1093 { 1094 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1095 struct f2fs_nm_info *nm_i = NM_I(sbi); 1096 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags; 1097 block_t start_blk; 1098 unsigned int data_sum_blocks, orphan_blocks; 1099 __u32 crc32 = 0; 1100 int i; 1101 int cp_payload_blks = __cp_payload(sbi); 1102 struct super_block *sb = sbi->sb; 1103 struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 1104 u64 kbytes_written; 1105 1106 /* Flush all the NAT/SIT pages */ 1107 while (get_pages(sbi, F2FS_DIRTY_META)) { 1108 sync_meta_pages(sbi, META, LONG_MAX); 1109 if (unlikely(f2fs_cp_error(sbi))) 1110 return -EIO; 1111 } 1112 1113 /* 1114 * modify checkpoint 1115 * version number is already updated 1116 */ 1117 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi)); 1118 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi)); 1119 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 1120 ckpt->cur_node_segno[i] = 1121 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE)); 1122 ckpt->cur_node_blkoff[i] = 1123 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE)); 1124 ckpt->alloc_type[i + CURSEG_HOT_NODE] = 1125 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE); 1126 } 1127 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 1128 ckpt->cur_data_segno[i] = 1129 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA)); 1130 ckpt->cur_data_blkoff[i] = 1131 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA)); 1132 ckpt->alloc_type[i + CURSEG_HOT_DATA] = 1133 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA); 1134 } 1135 1136 /* 2 cp + n data seg summary + orphan inode blocks */ 1137 data_sum_blocks = npages_for_summary_flush(sbi, false); 1138 spin_lock_irqsave(&sbi->cp_lock, flags); 1139 if (data_sum_blocks < NR_CURSEG_DATA_TYPE) 1140 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1141 else 1142 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1143 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1144 1145 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num); 1146 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks + 1147 orphan_blocks); 1148 1149 if (__remain_node_summaries(cpc->reason)) 1150 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+ 1151 cp_payload_blks + data_sum_blocks + 1152 orphan_blocks + NR_CURSEG_NODE_TYPE); 1153 else 1154 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + 1155 cp_payload_blks + data_sum_blocks + 1156 orphan_blocks); 1157 1158 /* update ckpt flag for checkpoint */ 1159 update_ckpt_flags(sbi, cpc); 1160 1161 /* update SIT/NAT bitmap */ 1162 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP)); 1163 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP)); 1164 1165 crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset)); 1166 *((__le32 *)((unsigned char *)ckpt + 1167 le32_to_cpu(ckpt->checksum_offset))) 1168 = cpu_to_le32(crc32); 1169 1170 start_blk = __start_cp_next_addr(sbi); 1171 1172 /* write nat bits */ 1173 if (enabled_nat_bits(sbi, cpc)) { 1174 __u64 cp_ver = cur_cp_version(ckpt); 1175 block_t blk; 1176 1177 cp_ver |= ((__u64)crc32 << 32); 1178 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver); 1179 1180 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks; 1181 for (i = 0; i < nm_i->nat_bits_blocks; i++) 1182 update_meta_page(sbi, nm_i->nat_bits + 1183 (i << F2FS_BLKSIZE_BITS), blk + i); 1184 1185 /* Flush all the NAT BITS pages */ 1186 while (get_pages(sbi, F2FS_DIRTY_META)) { 1187 sync_meta_pages(sbi, META, LONG_MAX); 1188 if (unlikely(f2fs_cp_error(sbi))) 1189 return -EIO; 1190 } 1191 } 1192 1193 /* need to wait for end_io results */ 1194 wait_on_all_pages_writeback(sbi); 1195 if (unlikely(f2fs_cp_error(sbi))) 1196 return -EIO; 1197 1198 /* write out checkpoint buffer at block 0 */ 1199 update_meta_page(sbi, ckpt, start_blk++); 1200 1201 for (i = 1; i < 1 + cp_payload_blks; i++) 1202 update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE, 1203 start_blk++); 1204 1205 if (orphan_num) { 1206 write_orphan_inodes(sbi, start_blk); 1207 start_blk += orphan_blocks; 1208 } 1209 1210 write_data_summaries(sbi, start_blk); 1211 start_blk += data_sum_blocks; 1212 1213 /* Record write statistics in the hot node summary */ 1214 kbytes_written = sbi->kbytes_written; 1215 if (sb->s_bdev->bd_part) 1216 kbytes_written += BD_PART_WRITTEN(sbi); 1217 1218 seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written); 1219 1220 if (__remain_node_summaries(cpc->reason)) { 1221 write_node_summaries(sbi, start_blk); 1222 start_blk += NR_CURSEG_NODE_TYPE; 1223 } 1224 1225 /* writeout checkpoint block */ 1226 update_meta_page(sbi, ckpt, start_blk); 1227 1228 /* wait for previous submitted node/meta pages writeback */ 1229 wait_on_all_pages_writeback(sbi); 1230 1231 if (unlikely(f2fs_cp_error(sbi))) 1232 return -EIO; 1233 1234 filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LLONG_MAX); 1235 filemap_fdatawait_range(META_MAPPING(sbi), 0, LLONG_MAX); 1236 1237 /* update user_block_counts */ 1238 sbi->last_valid_block_count = sbi->total_valid_block_count; 1239 percpu_counter_set(&sbi->alloc_valid_block_count, 0); 1240 1241 /* Here, we only have one bio having CP pack */ 1242 sync_meta_pages(sbi, META_FLUSH, LONG_MAX); 1243 1244 /* wait for previous submitted meta pages writeback */ 1245 wait_on_all_pages_writeback(sbi); 1246 1247 release_ino_entry(sbi, false); 1248 1249 if (unlikely(f2fs_cp_error(sbi))) 1250 return -EIO; 1251 1252 clear_sbi_flag(sbi, SBI_IS_DIRTY); 1253 clear_sbi_flag(sbi, SBI_NEED_CP); 1254 __set_cp_next_pack(sbi); 1255 1256 /* 1257 * redirty superblock if metadata like node page or inode cache is 1258 * updated during writing checkpoint. 1259 */ 1260 if (get_pages(sbi, F2FS_DIRTY_NODES) || 1261 get_pages(sbi, F2FS_DIRTY_IMETA)) 1262 set_sbi_flag(sbi, SBI_IS_DIRTY); 1263 1264 f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS)); 1265 1266 return 0; 1267 } 1268 1269 /* 1270 * We guarantee that this checkpoint procedure will not fail. 1271 */ 1272 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1273 { 1274 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1275 unsigned long long ckpt_ver; 1276 int err = 0; 1277 1278 mutex_lock(&sbi->cp_mutex); 1279 1280 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) && 1281 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) || 1282 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks))) 1283 goto out; 1284 if (unlikely(f2fs_cp_error(sbi))) { 1285 err = -EIO; 1286 goto out; 1287 } 1288 if (f2fs_readonly(sbi->sb)) { 1289 err = -EROFS; 1290 goto out; 1291 } 1292 1293 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops"); 1294 1295 err = block_operations(sbi); 1296 if (err) 1297 goto out; 1298 1299 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops"); 1300 1301 f2fs_flush_merged_writes(sbi); 1302 1303 /* this is the case of multiple fstrims without any changes */ 1304 if (cpc->reason & CP_DISCARD) { 1305 if (!exist_trim_candidates(sbi, cpc)) { 1306 unblock_operations(sbi); 1307 goto out; 1308 } 1309 1310 if (NM_I(sbi)->dirty_nat_cnt == 0 && 1311 SIT_I(sbi)->dirty_sentries == 0 && 1312 prefree_segments(sbi) == 0) { 1313 flush_sit_entries(sbi, cpc); 1314 clear_prefree_segments(sbi, cpc); 1315 unblock_operations(sbi); 1316 goto out; 1317 } 1318 } 1319 1320 /* 1321 * update checkpoint pack index 1322 * Increase the version number so that 1323 * SIT entries and seg summaries are written at correct place 1324 */ 1325 ckpt_ver = cur_cp_version(ckpt); 1326 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver); 1327 1328 /* write cached NAT/SIT entries to NAT/SIT area */ 1329 flush_nat_entries(sbi, cpc); 1330 flush_sit_entries(sbi, cpc); 1331 1332 /* unlock all the fs_lock[] in do_checkpoint() */ 1333 err = do_checkpoint(sbi, cpc); 1334 if (err) 1335 release_discard_addrs(sbi); 1336 else 1337 clear_prefree_segments(sbi, cpc); 1338 1339 unblock_operations(sbi); 1340 stat_inc_cp_count(sbi->stat_info); 1341 1342 if (cpc->reason & CP_RECOVERY) 1343 f2fs_msg(sbi->sb, KERN_NOTICE, 1344 "checkpoint: version = %llx", ckpt_ver); 1345 1346 /* do checkpoint periodically */ 1347 f2fs_update_time(sbi, CP_TIME); 1348 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint"); 1349 out: 1350 mutex_unlock(&sbi->cp_mutex); 1351 return err; 1352 } 1353 1354 void init_ino_entry_info(struct f2fs_sb_info *sbi) 1355 { 1356 int i; 1357 1358 for (i = 0; i < MAX_INO_ENTRY; i++) { 1359 struct inode_management *im = &sbi->im[i]; 1360 1361 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC); 1362 spin_lock_init(&im->ino_lock); 1363 INIT_LIST_HEAD(&im->ino_list); 1364 im->ino_num = 0; 1365 } 1366 1367 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS - 1368 NR_CURSEG_TYPE - __cp_payload(sbi)) * 1369 F2FS_ORPHANS_PER_BLOCK; 1370 } 1371 1372 int __init create_checkpoint_caches(void) 1373 { 1374 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry", 1375 sizeof(struct ino_entry)); 1376 if (!ino_entry_slab) 1377 return -ENOMEM; 1378 inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry", 1379 sizeof(struct inode_entry)); 1380 if (!inode_entry_slab) { 1381 kmem_cache_destroy(ino_entry_slab); 1382 return -ENOMEM; 1383 } 1384 return 0; 1385 } 1386 1387 void destroy_checkpoint_caches(void) 1388 { 1389 kmem_cache_destroy(ino_entry_slab); 1390 kmem_cache_destroy(inode_entry_slab); 1391 } 1392