xref: /linux/fs/f2fs/checkpoint.c (revision 2fe05e1139a555ae91f00a812cb9520e7d3022ab)
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19 
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25 
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *inode_entry_slab;
28 
29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
30 {
31 	set_ckpt_flags(sbi, CP_ERROR_FLAG);
32 	sbi->sb->s_flags |= MS_RDONLY;
33 	if (!end_io)
34 		f2fs_flush_merged_writes(sbi);
35 }
36 
37 /*
38  * We guarantee no failure on the returned page.
39  */
40 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
41 {
42 	struct address_space *mapping = META_MAPPING(sbi);
43 	struct page *page = NULL;
44 repeat:
45 	page = f2fs_grab_cache_page(mapping, index, false);
46 	if (!page) {
47 		cond_resched();
48 		goto repeat;
49 	}
50 	f2fs_wait_on_page_writeback(page, META, true);
51 	if (!PageUptodate(page))
52 		SetPageUptodate(page);
53 	return page;
54 }
55 
56 /*
57  * We guarantee no failure on the returned page.
58  */
59 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
60 							bool is_meta)
61 {
62 	struct address_space *mapping = META_MAPPING(sbi);
63 	struct page *page;
64 	struct f2fs_io_info fio = {
65 		.sbi = sbi,
66 		.type = META,
67 		.op = REQ_OP_READ,
68 		.op_flags = REQ_META | REQ_PRIO,
69 		.old_blkaddr = index,
70 		.new_blkaddr = index,
71 		.encrypted_page = NULL,
72 	};
73 
74 	if (unlikely(!is_meta))
75 		fio.op_flags &= ~REQ_META;
76 repeat:
77 	page = f2fs_grab_cache_page(mapping, index, false);
78 	if (!page) {
79 		cond_resched();
80 		goto repeat;
81 	}
82 	if (PageUptodate(page))
83 		goto out;
84 
85 	fio.page = page;
86 
87 	if (f2fs_submit_page_bio(&fio)) {
88 		f2fs_put_page(page, 1);
89 		goto repeat;
90 	}
91 
92 	lock_page(page);
93 	if (unlikely(page->mapping != mapping)) {
94 		f2fs_put_page(page, 1);
95 		goto repeat;
96 	}
97 
98 	/*
99 	 * if there is any IO error when accessing device, make our filesystem
100 	 * readonly and make sure do not write checkpoint with non-uptodate
101 	 * meta page.
102 	 */
103 	if (unlikely(!PageUptodate(page)))
104 		f2fs_stop_checkpoint(sbi, false);
105 out:
106 	return page;
107 }
108 
109 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
110 {
111 	return __get_meta_page(sbi, index, true);
112 }
113 
114 /* for POR only */
115 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
116 {
117 	return __get_meta_page(sbi, index, false);
118 }
119 
120 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
121 {
122 	switch (type) {
123 	case META_NAT:
124 		break;
125 	case META_SIT:
126 		if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
127 			return false;
128 		break;
129 	case META_SSA:
130 		if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
131 			blkaddr < SM_I(sbi)->ssa_blkaddr))
132 			return false;
133 		break;
134 	case META_CP:
135 		if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
136 			blkaddr < __start_cp_addr(sbi)))
137 			return false;
138 		break;
139 	case META_POR:
140 		if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
141 			blkaddr < MAIN_BLKADDR(sbi)))
142 			return false;
143 		break;
144 	default:
145 		BUG();
146 	}
147 
148 	return true;
149 }
150 
151 /*
152  * Readahead CP/NAT/SIT/SSA pages
153  */
154 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
155 							int type, bool sync)
156 {
157 	struct page *page;
158 	block_t blkno = start;
159 	struct f2fs_io_info fio = {
160 		.sbi = sbi,
161 		.type = META,
162 		.op = REQ_OP_READ,
163 		.op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
164 		.encrypted_page = NULL,
165 		.in_list = false,
166 	};
167 	struct blk_plug plug;
168 
169 	if (unlikely(type == META_POR))
170 		fio.op_flags &= ~REQ_META;
171 
172 	blk_start_plug(&plug);
173 	for (; nrpages-- > 0; blkno++) {
174 
175 		if (!is_valid_blkaddr(sbi, blkno, type))
176 			goto out;
177 
178 		switch (type) {
179 		case META_NAT:
180 			if (unlikely(blkno >=
181 					NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
182 				blkno = 0;
183 			/* get nat block addr */
184 			fio.new_blkaddr = current_nat_addr(sbi,
185 					blkno * NAT_ENTRY_PER_BLOCK);
186 			break;
187 		case META_SIT:
188 			/* get sit block addr */
189 			fio.new_blkaddr = current_sit_addr(sbi,
190 					blkno * SIT_ENTRY_PER_BLOCK);
191 			break;
192 		case META_SSA:
193 		case META_CP:
194 		case META_POR:
195 			fio.new_blkaddr = blkno;
196 			break;
197 		default:
198 			BUG();
199 		}
200 
201 		page = f2fs_grab_cache_page(META_MAPPING(sbi),
202 						fio.new_blkaddr, false);
203 		if (!page)
204 			continue;
205 		if (PageUptodate(page)) {
206 			f2fs_put_page(page, 1);
207 			continue;
208 		}
209 
210 		fio.page = page;
211 		f2fs_submit_page_bio(&fio);
212 		f2fs_put_page(page, 0);
213 	}
214 out:
215 	blk_finish_plug(&plug);
216 	return blkno - start;
217 }
218 
219 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
220 {
221 	struct page *page;
222 	bool readahead = false;
223 
224 	page = find_get_page(META_MAPPING(sbi), index);
225 	if (!page || !PageUptodate(page))
226 		readahead = true;
227 	f2fs_put_page(page, 0);
228 
229 	if (readahead)
230 		ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true);
231 }
232 
233 static int f2fs_write_meta_page(struct page *page,
234 				struct writeback_control *wbc)
235 {
236 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
237 
238 	trace_f2fs_writepage(page, META);
239 
240 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
241 		goto redirty_out;
242 	if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
243 		goto redirty_out;
244 	if (unlikely(f2fs_cp_error(sbi)))
245 		goto redirty_out;
246 
247 	write_meta_page(sbi, page);
248 	dec_page_count(sbi, F2FS_DIRTY_META);
249 
250 	if (wbc->for_reclaim)
251 		f2fs_submit_merged_write_cond(sbi, page->mapping->host,
252 						0, page->index, META);
253 
254 	unlock_page(page);
255 
256 	if (unlikely(f2fs_cp_error(sbi)))
257 		f2fs_submit_merged_write(sbi, META);
258 
259 	return 0;
260 
261 redirty_out:
262 	redirty_page_for_writepage(wbc, page);
263 	return AOP_WRITEPAGE_ACTIVATE;
264 }
265 
266 static int f2fs_write_meta_pages(struct address_space *mapping,
267 				struct writeback_control *wbc)
268 {
269 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
270 	long diff, written;
271 
272 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
273 		goto skip_write;
274 
275 	/* collect a number of dirty meta pages and write together */
276 	if (wbc->for_kupdate ||
277 		get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
278 		goto skip_write;
279 
280 	/* if locked failed, cp will flush dirty pages instead */
281 	if (!mutex_trylock(&sbi->cp_mutex))
282 		goto skip_write;
283 
284 	trace_f2fs_writepages(mapping->host, wbc, META);
285 	diff = nr_pages_to_write(sbi, META, wbc);
286 	written = sync_meta_pages(sbi, META, wbc->nr_to_write);
287 	mutex_unlock(&sbi->cp_mutex);
288 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
289 	return 0;
290 
291 skip_write:
292 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
293 	trace_f2fs_writepages(mapping->host, wbc, META);
294 	return 0;
295 }
296 
297 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
298 						long nr_to_write)
299 {
300 	struct address_space *mapping = META_MAPPING(sbi);
301 	pgoff_t index = 0, end = ULONG_MAX, prev = ULONG_MAX;
302 	struct pagevec pvec;
303 	long nwritten = 0;
304 	struct writeback_control wbc = {
305 		.for_reclaim = 0,
306 	};
307 	struct blk_plug plug;
308 
309 	pagevec_init(&pvec, 0);
310 
311 	blk_start_plug(&plug);
312 
313 	while (index <= end) {
314 		int i, nr_pages;
315 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
316 				PAGECACHE_TAG_DIRTY,
317 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
318 		if (unlikely(nr_pages == 0))
319 			break;
320 
321 		for (i = 0; i < nr_pages; i++) {
322 			struct page *page = pvec.pages[i];
323 
324 			if (prev == ULONG_MAX)
325 				prev = page->index - 1;
326 			if (nr_to_write != LONG_MAX && page->index != prev + 1) {
327 				pagevec_release(&pvec);
328 				goto stop;
329 			}
330 
331 			lock_page(page);
332 
333 			if (unlikely(page->mapping != mapping)) {
334 continue_unlock:
335 				unlock_page(page);
336 				continue;
337 			}
338 			if (!PageDirty(page)) {
339 				/* someone wrote it for us */
340 				goto continue_unlock;
341 			}
342 
343 			f2fs_wait_on_page_writeback(page, META, true);
344 
345 			BUG_ON(PageWriteback(page));
346 			if (!clear_page_dirty_for_io(page))
347 				goto continue_unlock;
348 
349 			if (mapping->a_ops->writepage(page, &wbc)) {
350 				unlock_page(page);
351 				break;
352 			}
353 			nwritten++;
354 			prev = page->index;
355 			if (unlikely(nwritten >= nr_to_write))
356 				break;
357 		}
358 		pagevec_release(&pvec);
359 		cond_resched();
360 	}
361 stop:
362 	if (nwritten)
363 		f2fs_submit_merged_write(sbi, type);
364 
365 	blk_finish_plug(&plug);
366 
367 	return nwritten;
368 }
369 
370 static int f2fs_set_meta_page_dirty(struct page *page)
371 {
372 	trace_f2fs_set_page_dirty(page, META);
373 
374 	if (!PageUptodate(page))
375 		SetPageUptodate(page);
376 	if (!PageDirty(page)) {
377 		f2fs_set_page_dirty_nobuffers(page);
378 		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
379 		SetPagePrivate(page);
380 		f2fs_trace_pid(page);
381 		return 1;
382 	}
383 	return 0;
384 }
385 
386 const struct address_space_operations f2fs_meta_aops = {
387 	.writepage	= f2fs_write_meta_page,
388 	.writepages	= f2fs_write_meta_pages,
389 	.set_page_dirty	= f2fs_set_meta_page_dirty,
390 	.invalidatepage = f2fs_invalidate_page,
391 	.releasepage	= f2fs_release_page,
392 #ifdef CONFIG_MIGRATION
393 	.migratepage    = f2fs_migrate_page,
394 #endif
395 };
396 
397 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
398 {
399 	struct inode_management *im = &sbi->im[type];
400 	struct ino_entry *e, *tmp;
401 
402 	tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
403 retry:
404 	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
405 
406 	spin_lock(&im->ino_lock);
407 	e = radix_tree_lookup(&im->ino_root, ino);
408 	if (!e) {
409 		e = tmp;
410 		if (radix_tree_insert(&im->ino_root, ino, e)) {
411 			spin_unlock(&im->ino_lock);
412 			radix_tree_preload_end();
413 			goto retry;
414 		}
415 		memset(e, 0, sizeof(struct ino_entry));
416 		e->ino = ino;
417 
418 		list_add_tail(&e->list, &im->ino_list);
419 		if (type != ORPHAN_INO)
420 			im->ino_num++;
421 	}
422 	spin_unlock(&im->ino_lock);
423 	radix_tree_preload_end();
424 
425 	if (e != tmp)
426 		kmem_cache_free(ino_entry_slab, tmp);
427 }
428 
429 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
430 {
431 	struct inode_management *im = &sbi->im[type];
432 	struct ino_entry *e;
433 
434 	spin_lock(&im->ino_lock);
435 	e = radix_tree_lookup(&im->ino_root, ino);
436 	if (e) {
437 		list_del(&e->list);
438 		radix_tree_delete(&im->ino_root, ino);
439 		im->ino_num--;
440 		spin_unlock(&im->ino_lock);
441 		kmem_cache_free(ino_entry_slab, e);
442 		return;
443 	}
444 	spin_unlock(&im->ino_lock);
445 }
446 
447 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
448 {
449 	/* add new dirty ino entry into list */
450 	__add_ino_entry(sbi, ino, type);
451 }
452 
453 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
454 {
455 	/* remove dirty ino entry from list */
456 	__remove_ino_entry(sbi, ino, type);
457 }
458 
459 /* mode should be APPEND_INO or UPDATE_INO */
460 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
461 {
462 	struct inode_management *im = &sbi->im[mode];
463 	struct ino_entry *e;
464 
465 	spin_lock(&im->ino_lock);
466 	e = radix_tree_lookup(&im->ino_root, ino);
467 	spin_unlock(&im->ino_lock);
468 	return e ? true : false;
469 }
470 
471 void release_ino_entry(struct f2fs_sb_info *sbi, bool all)
472 {
473 	struct ino_entry *e, *tmp;
474 	int i;
475 
476 	for (i = all ? ORPHAN_INO: APPEND_INO; i <= UPDATE_INO; i++) {
477 		struct inode_management *im = &sbi->im[i];
478 
479 		spin_lock(&im->ino_lock);
480 		list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
481 			list_del(&e->list);
482 			radix_tree_delete(&im->ino_root, e->ino);
483 			kmem_cache_free(ino_entry_slab, e);
484 			im->ino_num--;
485 		}
486 		spin_unlock(&im->ino_lock);
487 	}
488 }
489 
490 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
491 {
492 	struct inode_management *im = &sbi->im[ORPHAN_INO];
493 	int err = 0;
494 
495 	spin_lock(&im->ino_lock);
496 
497 #ifdef CONFIG_F2FS_FAULT_INJECTION
498 	if (time_to_inject(sbi, FAULT_ORPHAN)) {
499 		spin_unlock(&im->ino_lock);
500 		f2fs_show_injection_info(FAULT_ORPHAN);
501 		return -ENOSPC;
502 	}
503 #endif
504 	if (unlikely(im->ino_num >= sbi->max_orphans))
505 		err = -ENOSPC;
506 	else
507 		im->ino_num++;
508 	spin_unlock(&im->ino_lock);
509 
510 	return err;
511 }
512 
513 void release_orphan_inode(struct f2fs_sb_info *sbi)
514 {
515 	struct inode_management *im = &sbi->im[ORPHAN_INO];
516 
517 	spin_lock(&im->ino_lock);
518 	f2fs_bug_on(sbi, im->ino_num == 0);
519 	im->ino_num--;
520 	spin_unlock(&im->ino_lock);
521 }
522 
523 void add_orphan_inode(struct inode *inode)
524 {
525 	/* add new orphan ino entry into list */
526 	__add_ino_entry(F2FS_I_SB(inode), inode->i_ino, ORPHAN_INO);
527 	update_inode_page(inode);
528 }
529 
530 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
531 {
532 	/* remove orphan entry from orphan list */
533 	__remove_ino_entry(sbi, ino, ORPHAN_INO);
534 }
535 
536 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
537 {
538 	struct inode *inode;
539 	struct node_info ni;
540 	int err = acquire_orphan_inode(sbi);
541 
542 	if (err) {
543 		set_sbi_flag(sbi, SBI_NEED_FSCK);
544 		f2fs_msg(sbi->sb, KERN_WARNING,
545 				"%s: orphan failed (ino=%x), run fsck to fix.",
546 				__func__, ino);
547 		return err;
548 	}
549 
550 	__add_ino_entry(sbi, ino, ORPHAN_INO);
551 
552 	inode = f2fs_iget_retry(sbi->sb, ino);
553 	if (IS_ERR(inode)) {
554 		/*
555 		 * there should be a bug that we can't find the entry
556 		 * to orphan inode.
557 		 */
558 		f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
559 		return PTR_ERR(inode);
560 	}
561 
562 	clear_nlink(inode);
563 
564 	/* truncate all the data during iput */
565 	iput(inode);
566 
567 	get_node_info(sbi, ino, &ni);
568 
569 	/* ENOMEM was fully retried in f2fs_evict_inode. */
570 	if (ni.blk_addr != NULL_ADDR) {
571 		set_sbi_flag(sbi, SBI_NEED_FSCK);
572 		f2fs_msg(sbi->sb, KERN_WARNING,
573 			"%s: orphan failed (ino=%x) by kernel, retry mount.",
574 				__func__, ino);
575 		return -EIO;
576 	}
577 	__remove_ino_entry(sbi, ino, ORPHAN_INO);
578 	return 0;
579 }
580 
581 int recover_orphan_inodes(struct f2fs_sb_info *sbi)
582 {
583 	block_t start_blk, orphan_blocks, i, j;
584 	int err;
585 
586 	if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
587 		return 0;
588 
589 	start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
590 	orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
591 
592 	ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
593 
594 	for (i = 0; i < orphan_blocks; i++) {
595 		struct page *page = get_meta_page(sbi, start_blk + i);
596 		struct f2fs_orphan_block *orphan_blk;
597 
598 		orphan_blk = (struct f2fs_orphan_block *)page_address(page);
599 		for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
600 			nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
601 			err = recover_orphan_inode(sbi, ino);
602 			if (err) {
603 				f2fs_put_page(page, 1);
604 				return err;
605 			}
606 		}
607 		f2fs_put_page(page, 1);
608 	}
609 	/* clear Orphan Flag */
610 	clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
611 	return 0;
612 }
613 
614 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
615 {
616 	struct list_head *head;
617 	struct f2fs_orphan_block *orphan_blk = NULL;
618 	unsigned int nentries = 0;
619 	unsigned short index = 1;
620 	unsigned short orphan_blocks;
621 	struct page *page = NULL;
622 	struct ino_entry *orphan = NULL;
623 	struct inode_management *im = &sbi->im[ORPHAN_INO];
624 
625 	orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
626 
627 	/*
628 	 * we don't need to do spin_lock(&im->ino_lock) here, since all the
629 	 * orphan inode operations are covered under f2fs_lock_op().
630 	 * And, spin_lock should be avoided due to page operations below.
631 	 */
632 	head = &im->ino_list;
633 
634 	/* loop for each orphan inode entry and write them in Jornal block */
635 	list_for_each_entry(orphan, head, list) {
636 		if (!page) {
637 			page = grab_meta_page(sbi, start_blk++);
638 			orphan_blk =
639 				(struct f2fs_orphan_block *)page_address(page);
640 			memset(orphan_blk, 0, sizeof(*orphan_blk));
641 		}
642 
643 		orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
644 
645 		if (nentries == F2FS_ORPHANS_PER_BLOCK) {
646 			/*
647 			 * an orphan block is full of 1020 entries,
648 			 * then we need to flush current orphan blocks
649 			 * and bring another one in memory
650 			 */
651 			orphan_blk->blk_addr = cpu_to_le16(index);
652 			orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
653 			orphan_blk->entry_count = cpu_to_le32(nentries);
654 			set_page_dirty(page);
655 			f2fs_put_page(page, 1);
656 			index++;
657 			nentries = 0;
658 			page = NULL;
659 		}
660 	}
661 
662 	if (page) {
663 		orphan_blk->blk_addr = cpu_to_le16(index);
664 		orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
665 		orphan_blk->entry_count = cpu_to_le32(nentries);
666 		set_page_dirty(page);
667 		f2fs_put_page(page, 1);
668 	}
669 }
670 
671 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
672 		struct f2fs_checkpoint **cp_block, struct page **cp_page,
673 		unsigned long long *version)
674 {
675 	unsigned long blk_size = sbi->blocksize;
676 	size_t crc_offset = 0;
677 	__u32 crc = 0;
678 
679 	*cp_page = get_meta_page(sbi, cp_addr);
680 	*cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
681 
682 	crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
683 	if (crc_offset > (blk_size - sizeof(__le32))) {
684 		f2fs_msg(sbi->sb, KERN_WARNING,
685 			"invalid crc_offset: %zu", crc_offset);
686 		return -EINVAL;
687 	}
688 
689 	crc = cur_cp_crc(*cp_block);
690 	if (!f2fs_crc_valid(sbi, crc, *cp_block, crc_offset)) {
691 		f2fs_msg(sbi->sb, KERN_WARNING, "invalid crc value");
692 		return -EINVAL;
693 	}
694 
695 	*version = cur_cp_version(*cp_block);
696 	return 0;
697 }
698 
699 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
700 				block_t cp_addr, unsigned long long *version)
701 {
702 	struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
703 	struct f2fs_checkpoint *cp_block = NULL;
704 	unsigned long long cur_version = 0, pre_version = 0;
705 	int err;
706 
707 	err = get_checkpoint_version(sbi, cp_addr, &cp_block,
708 					&cp_page_1, version);
709 	if (err)
710 		goto invalid_cp1;
711 	pre_version = *version;
712 
713 	cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
714 	err = get_checkpoint_version(sbi, cp_addr, &cp_block,
715 					&cp_page_2, version);
716 	if (err)
717 		goto invalid_cp2;
718 	cur_version = *version;
719 
720 	if (cur_version == pre_version) {
721 		*version = cur_version;
722 		f2fs_put_page(cp_page_2, 1);
723 		return cp_page_1;
724 	}
725 invalid_cp2:
726 	f2fs_put_page(cp_page_2, 1);
727 invalid_cp1:
728 	f2fs_put_page(cp_page_1, 1);
729 	return NULL;
730 }
731 
732 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
733 {
734 	struct f2fs_checkpoint *cp_block;
735 	struct f2fs_super_block *fsb = sbi->raw_super;
736 	struct page *cp1, *cp2, *cur_page;
737 	unsigned long blk_size = sbi->blocksize;
738 	unsigned long long cp1_version = 0, cp2_version = 0;
739 	unsigned long long cp_start_blk_no;
740 	unsigned int cp_blks = 1 + __cp_payload(sbi);
741 	block_t cp_blk_no;
742 	int i;
743 
744 	sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
745 	if (!sbi->ckpt)
746 		return -ENOMEM;
747 	/*
748 	 * Finding out valid cp block involves read both
749 	 * sets( cp pack1 and cp pack 2)
750 	 */
751 	cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
752 	cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
753 
754 	/* The second checkpoint pack should start at the next segment */
755 	cp_start_blk_no += ((unsigned long long)1) <<
756 				le32_to_cpu(fsb->log_blocks_per_seg);
757 	cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
758 
759 	if (cp1 && cp2) {
760 		if (ver_after(cp2_version, cp1_version))
761 			cur_page = cp2;
762 		else
763 			cur_page = cp1;
764 	} else if (cp1) {
765 		cur_page = cp1;
766 	} else if (cp2) {
767 		cur_page = cp2;
768 	} else {
769 		goto fail_no_cp;
770 	}
771 
772 	cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
773 	memcpy(sbi->ckpt, cp_block, blk_size);
774 
775 	/* Sanity checking of checkpoint */
776 	if (sanity_check_ckpt(sbi))
777 		goto free_fail_no_cp;
778 
779 	if (cur_page == cp1)
780 		sbi->cur_cp_pack = 1;
781 	else
782 		sbi->cur_cp_pack = 2;
783 
784 	if (cp_blks <= 1)
785 		goto done;
786 
787 	cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
788 	if (cur_page == cp2)
789 		cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
790 
791 	for (i = 1; i < cp_blks; i++) {
792 		void *sit_bitmap_ptr;
793 		unsigned char *ckpt = (unsigned char *)sbi->ckpt;
794 
795 		cur_page = get_meta_page(sbi, cp_blk_no + i);
796 		sit_bitmap_ptr = page_address(cur_page);
797 		memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
798 		f2fs_put_page(cur_page, 1);
799 	}
800 done:
801 	f2fs_put_page(cp1, 1);
802 	f2fs_put_page(cp2, 1);
803 	return 0;
804 
805 free_fail_no_cp:
806 	f2fs_put_page(cp1, 1);
807 	f2fs_put_page(cp2, 1);
808 fail_no_cp:
809 	kfree(sbi->ckpt);
810 	return -EINVAL;
811 }
812 
813 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
814 {
815 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
816 	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
817 
818 	if (is_inode_flag_set(inode, flag))
819 		return;
820 
821 	set_inode_flag(inode, flag);
822 	if (!f2fs_is_volatile_file(inode))
823 		list_add_tail(&F2FS_I(inode)->dirty_list,
824 						&sbi->inode_list[type]);
825 	stat_inc_dirty_inode(sbi, type);
826 }
827 
828 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
829 {
830 	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
831 
832 	if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
833 		return;
834 
835 	list_del_init(&F2FS_I(inode)->dirty_list);
836 	clear_inode_flag(inode, flag);
837 	stat_dec_dirty_inode(F2FS_I_SB(inode), type);
838 }
839 
840 void update_dirty_page(struct inode *inode, struct page *page)
841 {
842 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
843 	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
844 
845 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
846 			!S_ISLNK(inode->i_mode))
847 		return;
848 
849 	spin_lock(&sbi->inode_lock[type]);
850 	if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
851 		__add_dirty_inode(inode, type);
852 	inode_inc_dirty_pages(inode);
853 	spin_unlock(&sbi->inode_lock[type]);
854 
855 	SetPagePrivate(page);
856 	f2fs_trace_pid(page);
857 }
858 
859 void remove_dirty_inode(struct inode *inode)
860 {
861 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
862 	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
863 
864 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
865 			!S_ISLNK(inode->i_mode))
866 		return;
867 
868 	if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
869 		return;
870 
871 	spin_lock(&sbi->inode_lock[type]);
872 	__remove_dirty_inode(inode, type);
873 	spin_unlock(&sbi->inode_lock[type]);
874 }
875 
876 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
877 {
878 	struct list_head *head;
879 	struct inode *inode;
880 	struct f2fs_inode_info *fi;
881 	bool is_dir = (type == DIR_INODE);
882 
883 	trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
884 				get_pages(sbi, is_dir ?
885 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
886 retry:
887 	if (unlikely(f2fs_cp_error(sbi)))
888 		return -EIO;
889 
890 	spin_lock(&sbi->inode_lock[type]);
891 
892 	head = &sbi->inode_list[type];
893 	if (list_empty(head)) {
894 		spin_unlock(&sbi->inode_lock[type]);
895 		trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
896 				get_pages(sbi, is_dir ?
897 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
898 		return 0;
899 	}
900 	fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
901 	inode = igrab(&fi->vfs_inode);
902 	spin_unlock(&sbi->inode_lock[type]);
903 	if (inode) {
904 		filemap_fdatawrite(inode->i_mapping);
905 		iput(inode);
906 	} else {
907 		/*
908 		 * We should submit bio, since it exists several
909 		 * wribacking dentry pages in the freeing inode.
910 		 */
911 		f2fs_submit_merged_write(sbi, DATA);
912 		cond_resched();
913 	}
914 	goto retry;
915 }
916 
917 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
918 {
919 	struct list_head *head = &sbi->inode_list[DIRTY_META];
920 	struct inode *inode;
921 	struct f2fs_inode_info *fi;
922 	s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
923 
924 	while (total--) {
925 		if (unlikely(f2fs_cp_error(sbi)))
926 			return -EIO;
927 
928 		spin_lock(&sbi->inode_lock[DIRTY_META]);
929 		if (list_empty(head)) {
930 			spin_unlock(&sbi->inode_lock[DIRTY_META]);
931 			return 0;
932 		}
933 		fi = list_first_entry(head, struct f2fs_inode_info,
934 							gdirty_list);
935 		inode = igrab(&fi->vfs_inode);
936 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
937 		if (inode) {
938 			sync_inode_metadata(inode, 0);
939 
940 			/* it's on eviction */
941 			if (is_inode_flag_set(inode, FI_DIRTY_INODE))
942 				update_inode_page(inode);
943 			iput(inode);
944 		}
945 	};
946 	return 0;
947 }
948 
949 static void __prepare_cp_block(struct f2fs_sb_info *sbi)
950 {
951 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
952 	struct f2fs_nm_info *nm_i = NM_I(sbi);
953 	nid_t last_nid = nm_i->next_scan_nid;
954 
955 	next_free_nid(sbi, &last_nid);
956 	ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
957 	ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
958 	ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
959 	ckpt->next_free_nid = cpu_to_le32(last_nid);
960 }
961 
962 /*
963  * Freeze all the FS-operations for checkpoint.
964  */
965 static int block_operations(struct f2fs_sb_info *sbi)
966 {
967 	struct writeback_control wbc = {
968 		.sync_mode = WB_SYNC_ALL,
969 		.nr_to_write = LONG_MAX,
970 		.for_reclaim = 0,
971 	};
972 	struct blk_plug plug;
973 	int err = 0;
974 
975 	blk_start_plug(&plug);
976 
977 retry_flush_dents:
978 	f2fs_lock_all(sbi);
979 	/* write all the dirty dentry pages */
980 	if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
981 		f2fs_unlock_all(sbi);
982 		err = sync_dirty_inodes(sbi, DIR_INODE);
983 		if (err)
984 			goto out;
985 		cond_resched();
986 		goto retry_flush_dents;
987 	}
988 
989 	/*
990 	 * POR: we should ensure that there are no dirty node pages
991 	 * until finishing nat/sit flush. inode->i_blocks can be updated.
992 	 */
993 	down_write(&sbi->node_change);
994 
995 	if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
996 		up_write(&sbi->node_change);
997 		f2fs_unlock_all(sbi);
998 		err = f2fs_sync_inode_meta(sbi);
999 		if (err)
1000 			goto out;
1001 		cond_resched();
1002 		goto retry_flush_dents;
1003 	}
1004 
1005 retry_flush_nodes:
1006 	down_write(&sbi->node_write);
1007 
1008 	if (get_pages(sbi, F2FS_DIRTY_NODES)) {
1009 		up_write(&sbi->node_write);
1010 		err = sync_node_pages(sbi, &wbc);
1011 		if (err) {
1012 			up_write(&sbi->node_change);
1013 			f2fs_unlock_all(sbi);
1014 			goto out;
1015 		}
1016 		cond_resched();
1017 		goto retry_flush_nodes;
1018 	}
1019 
1020 	/*
1021 	 * sbi->node_change is used only for AIO write_begin path which produces
1022 	 * dirty node blocks and some checkpoint values by block allocation.
1023 	 */
1024 	__prepare_cp_block(sbi);
1025 	up_write(&sbi->node_change);
1026 out:
1027 	blk_finish_plug(&plug);
1028 	return err;
1029 }
1030 
1031 static void unblock_operations(struct f2fs_sb_info *sbi)
1032 {
1033 	up_write(&sbi->node_write);
1034 	f2fs_unlock_all(sbi);
1035 }
1036 
1037 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
1038 {
1039 	DEFINE_WAIT(wait);
1040 
1041 	for (;;) {
1042 		prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1043 
1044 		if (!get_pages(sbi, F2FS_WB_CP_DATA))
1045 			break;
1046 
1047 		io_schedule_timeout(5*HZ);
1048 	}
1049 	finish_wait(&sbi->cp_wait, &wait);
1050 }
1051 
1052 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1053 {
1054 	unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1055 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1056 	unsigned long flags;
1057 
1058 	spin_lock_irqsave(&sbi->cp_lock, flags);
1059 
1060 	if ((cpc->reason & CP_UMOUNT) &&
1061 			le32_to_cpu(ckpt->cp_pack_total_block_count) >
1062 			sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks)
1063 		disable_nat_bits(sbi, false);
1064 
1065 	if (cpc->reason & CP_TRIMMED)
1066 		__set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1067 
1068 	if (cpc->reason & CP_UMOUNT)
1069 		__set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1070 	else
1071 		__clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1072 
1073 	if (cpc->reason & CP_FASTBOOT)
1074 		__set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1075 	else
1076 		__clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1077 
1078 	if (orphan_num)
1079 		__set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1080 	else
1081 		__clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1082 
1083 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1084 		__set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1085 
1086 	/* set this flag to activate crc|cp_ver for recovery */
1087 	__set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1088 
1089 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1090 }
1091 
1092 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1093 {
1094 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1095 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1096 	unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
1097 	block_t start_blk;
1098 	unsigned int data_sum_blocks, orphan_blocks;
1099 	__u32 crc32 = 0;
1100 	int i;
1101 	int cp_payload_blks = __cp_payload(sbi);
1102 	struct super_block *sb = sbi->sb;
1103 	struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1104 	u64 kbytes_written;
1105 
1106 	/* Flush all the NAT/SIT pages */
1107 	while (get_pages(sbi, F2FS_DIRTY_META)) {
1108 		sync_meta_pages(sbi, META, LONG_MAX);
1109 		if (unlikely(f2fs_cp_error(sbi)))
1110 			return -EIO;
1111 	}
1112 
1113 	/*
1114 	 * modify checkpoint
1115 	 * version number is already updated
1116 	 */
1117 	ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
1118 	ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1119 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1120 		ckpt->cur_node_segno[i] =
1121 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
1122 		ckpt->cur_node_blkoff[i] =
1123 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
1124 		ckpt->alloc_type[i + CURSEG_HOT_NODE] =
1125 				curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
1126 	}
1127 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1128 		ckpt->cur_data_segno[i] =
1129 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
1130 		ckpt->cur_data_blkoff[i] =
1131 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
1132 		ckpt->alloc_type[i + CURSEG_HOT_DATA] =
1133 				curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
1134 	}
1135 
1136 	/* 2 cp  + n data seg summary + orphan inode blocks */
1137 	data_sum_blocks = npages_for_summary_flush(sbi, false);
1138 	spin_lock_irqsave(&sbi->cp_lock, flags);
1139 	if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1140 		__set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1141 	else
1142 		__clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1143 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1144 
1145 	orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1146 	ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1147 			orphan_blocks);
1148 
1149 	if (__remain_node_summaries(cpc->reason))
1150 		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
1151 				cp_payload_blks + data_sum_blocks +
1152 				orphan_blocks + NR_CURSEG_NODE_TYPE);
1153 	else
1154 		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1155 				cp_payload_blks + data_sum_blocks +
1156 				orphan_blocks);
1157 
1158 	/* update ckpt flag for checkpoint */
1159 	update_ckpt_flags(sbi, cpc);
1160 
1161 	/* update SIT/NAT bitmap */
1162 	get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1163 	get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1164 
1165 	crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset));
1166 	*((__le32 *)((unsigned char *)ckpt +
1167 				le32_to_cpu(ckpt->checksum_offset)))
1168 				= cpu_to_le32(crc32);
1169 
1170 	start_blk = __start_cp_next_addr(sbi);
1171 
1172 	/* write nat bits */
1173 	if (enabled_nat_bits(sbi, cpc)) {
1174 		__u64 cp_ver = cur_cp_version(ckpt);
1175 		block_t blk;
1176 
1177 		cp_ver |= ((__u64)crc32 << 32);
1178 		*(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1179 
1180 		blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
1181 		for (i = 0; i < nm_i->nat_bits_blocks; i++)
1182 			update_meta_page(sbi, nm_i->nat_bits +
1183 					(i << F2FS_BLKSIZE_BITS), blk + i);
1184 
1185 		/* Flush all the NAT BITS pages */
1186 		while (get_pages(sbi, F2FS_DIRTY_META)) {
1187 			sync_meta_pages(sbi, META, LONG_MAX);
1188 			if (unlikely(f2fs_cp_error(sbi)))
1189 				return -EIO;
1190 		}
1191 	}
1192 
1193 	/* need to wait for end_io results */
1194 	wait_on_all_pages_writeback(sbi);
1195 	if (unlikely(f2fs_cp_error(sbi)))
1196 		return -EIO;
1197 
1198 	/* write out checkpoint buffer at block 0 */
1199 	update_meta_page(sbi, ckpt, start_blk++);
1200 
1201 	for (i = 1; i < 1 + cp_payload_blks; i++)
1202 		update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1203 							start_blk++);
1204 
1205 	if (orphan_num) {
1206 		write_orphan_inodes(sbi, start_blk);
1207 		start_blk += orphan_blocks;
1208 	}
1209 
1210 	write_data_summaries(sbi, start_blk);
1211 	start_blk += data_sum_blocks;
1212 
1213 	/* Record write statistics in the hot node summary */
1214 	kbytes_written = sbi->kbytes_written;
1215 	if (sb->s_bdev->bd_part)
1216 		kbytes_written += BD_PART_WRITTEN(sbi);
1217 
1218 	seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1219 
1220 	if (__remain_node_summaries(cpc->reason)) {
1221 		write_node_summaries(sbi, start_blk);
1222 		start_blk += NR_CURSEG_NODE_TYPE;
1223 	}
1224 
1225 	/* writeout checkpoint block */
1226 	update_meta_page(sbi, ckpt, start_blk);
1227 
1228 	/* wait for previous submitted node/meta pages writeback */
1229 	wait_on_all_pages_writeback(sbi);
1230 
1231 	if (unlikely(f2fs_cp_error(sbi)))
1232 		return -EIO;
1233 
1234 	filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LLONG_MAX);
1235 	filemap_fdatawait_range(META_MAPPING(sbi), 0, LLONG_MAX);
1236 
1237 	/* update user_block_counts */
1238 	sbi->last_valid_block_count = sbi->total_valid_block_count;
1239 	percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1240 
1241 	/* Here, we only have one bio having CP pack */
1242 	sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
1243 
1244 	/* wait for previous submitted meta pages writeback */
1245 	wait_on_all_pages_writeback(sbi);
1246 
1247 	release_ino_entry(sbi, false);
1248 
1249 	if (unlikely(f2fs_cp_error(sbi)))
1250 		return -EIO;
1251 
1252 	clear_sbi_flag(sbi, SBI_IS_DIRTY);
1253 	clear_sbi_flag(sbi, SBI_NEED_CP);
1254 	__set_cp_next_pack(sbi);
1255 
1256 	/*
1257 	 * redirty superblock if metadata like node page or inode cache is
1258 	 * updated during writing checkpoint.
1259 	 */
1260 	if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1261 			get_pages(sbi, F2FS_DIRTY_IMETA))
1262 		set_sbi_flag(sbi, SBI_IS_DIRTY);
1263 
1264 	f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1265 
1266 	return 0;
1267 }
1268 
1269 /*
1270  * We guarantee that this checkpoint procedure will not fail.
1271  */
1272 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1273 {
1274 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1275 	unsigned long long ckpt_ver;
1276 	int err = 0;
1277 
1278 	mutex_lock(&sbi->cp_mutex);
1279 
1280 	if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1281 		((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
1282 		((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
1283 		goto out;
1284 	if (unlikely(f2fs_cp_error(sbi))) {
1285 		err = -EIO;
1286 		goto out;
1287 	}
1288 	if (f2fs_readonly(sbi->sb)) {
1289 		err = -EROFS;
1290 		goto out;
1291 	}
1292 
1293 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1294 
1295 	err = block_operations(sbi);
1296 	if (err)
1297 		goto out;
1298 
1299 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1300 
1301 	f2fs_flush_merged_writes(sbi);
1302 
1303 	/* this is the case of multiple fstrims without any changes */
1304 	if (cpc->reason & CP_DISCARD) {
1305 		if (!exist_trim_candidates(sbi, cpc)) {
1306 			unblock_operations(sbi);
1307 			goto out;
1308 		}
1309 
1310 		if (NM_I(sbi)->dirty_nat_cnt == 0 &&
1311 				SIT_I(sbi)->dirty_sentries == 0 &&
1312 				prefree_segments(sbi) == 0) {
1313 			flush_sit_entries(sbi, cpc);
1314 			clear_prefree_segments(sbi, cpc);
1315 			unblock_operations(sbi);
1316 			goto out;
1317 		}
1318 	}
1319 
1320 	/*
1321 	 * update checkpoint pack index
1322 	 * Increase the version number so that
1323 	 * SIT entries and seg summaries are written at correct place
1324 	 */
1325 	ckpt_ver = cur_cp_version(ckpt);
1326 	ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1327 
1328 	/* write cached NAT/SIT entries to NAT/SIT area */
1329 	flush_nat_entries(sbi, cpc);
1330 	flush_sit_entries(sbi, cpc);
1331 
1332 	/* unlock all the fs_lock[] in do_checkpoint() */
1333 	err = do_checkpoint(sbi, cpc);
1334 	if (err)
1335 		release_discard_addrs(sbi);
1336 	else
1337 		clear_prefree_segments(sbi, cpc);
1338 
1339 	unblock_operations(sbi);
1340 	stat_inc_cp_count(sbi->stat_info);
1341 
1342 	if (cpc->reason & CP_RECOVERY)
1343 		f2fs_msg(sbi->sb, KERN_NOTICE,
1344 			"checkpoint: version = %llx", ckpt_ver);
1345 
1346 	/* do checkpoint periodically */
1347 	f2fs_update_time(sbi, CP_TIME);
1348 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1349 out:
1350 	mutex_unlock(&sbi->cp_mutex);
1351 	return err;
1352 }
1353 
1354 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1355 {
1356 	int i;
1357 
1358 	for (i = 0; i < MAX_INO_ENTRY; i++) {
1359 		struct inode_management *im = &sbi->im[i];
1360 
1361 		INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1362 		spin_lock_init(&im->ino_lock);
1363 		INIT_LIST_HEAD(&im->ino_list);
1364 		im->ino_num = 0;
1365 	}
1366 
1367 	sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1368 			NR_CURSEG_TYPE - __cp_payload(sbi)) *
1369 				F2FS_ORPHANS_PER_BLOCK;
1370 }
1371 
1372 int __init create_checkpoint_caches(void)
1373 {
1374 	ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1375 			sizeof(struct ino_entry));
1376 	if (!ino_entry_slab)
1377 		return -ENOMEM;
1378 	inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1379 			sizeof(struct inode_entry));
1380 	if (!inode_entry_slab) {
1381 		kmem_cache_destroy(ino_entry_slab);
1382 		return -ENOMEM;
1383 	}
1384 	return 0;
1385 }
1386 
1387 void destroy_checkpoint_caches(void)
1388 {
1389 	kmem_cache_destroy(ino_entry_slab);
1390 	kmem_cache_destroy(inode_entry_slab);
1391 }
1392