1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/checkpoint.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/bio.h> 10 #include <linux/mpage.h> 11 #include <linux/writeback.h> 12 #include <linux/blkdev.h> 13 #include <linux/f2fs_fs.h> 14 #include <linux/pagevec.h> 15 #include <linux/swap.h> 16 #include <linux/kthread.h> 17 18 #include "f2fs.h" 19 #include "node.h" 20 #include "segment.h" 21 #include "iostat.h" 22 #include <trace/events/f2fs.h> 23 24 #define DEFAULT_CHECKPOINT_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_RT, 3)) 25 26 static struct kmem_cache *ino_entry_slab; 27 struct kmem_cache *f2fs_inode_entry_slab; 28 29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io, 30 unsigned char reason) 31 { 32 f2fs_build_fault_attr(sbi, 0, 0, FAULT_ALL); 33 if (!end_io) 34 f2fs_flush_merged_writes(sbi); 35 f2fs_handle_critical_error(sbi, reason); 36 } 37 38 /* 39 * We guarantee no failure on the returned page. 40 */ 41 struct folio *f2fs_grab_meta_folio(struct f2fs_sb_info *sbi, pgoff_t index) 42 { 43 struct address_space *mapping = META_MAPPING(sbi); 44 struct folio *folio; 45 repeat: 46 folio = f2fs_grab_cache_folio(mapping, index, false); 47 if (IS_ERR(folio)) { 48 cond_resched(); 49 goto repeat; 50 } 51 f2fs_folio_wait_writeback(folio, META, true, true); 52 if (!folio_test_uptodate(folio)) 53 folio_mark_uptodate(folio); 54 return folio; 55 } 56 57 static struct folio *__get_meta_folio(struct f2fs_sb_info *sbi, pgoff_t index, 58 bool is_meta) 59 { 60 struct address_space *mapping = META_MAPPING(sbi); 61 struct folio *folio; 62 struct f2fs_io_info fio = { 63 .sbi = sbi, 64 .type = META, 65 .op = REQ_OP_READ, 66 .op_flags = REQ_META | REQ_PRIO, 67 .old_blkaddr = index, 68 .new_blkaddr = index, 69 .encrypted_page = NULL, 70 .is_por = !is_meta ? 1 : 0, 71 }; 72 int err; 73 74 if (unlikely(!is_meta)) 75 fio.op_flags &= ~REQ_META; 76 repeat: 77 folio = f2fs_grab_cache_folio(mapping, index, false); 78 if (IS_ERR(folio)) { 79 cond_resched(); 80 goto repeat; 81 } 82 if (folio_test_uptodate(folio)) 83 goto out; 84 85 fio.folio = folio; 86 87 err = f2fs_submit_page_bio(&fio); 88 if (err) { 89 f2fs_folio_put(folio, true); 90 return ERR_PTR(err); 91 } 92 93 f2fs_update_iostat(sbi, NULL, FS_META_READ_IO, F2FS_BLKSIZE); 94 95 folio_lock(folio); 96 if (unlikely(!is_meta_folio(folio))) { 97 f2fs_folio_put(folio, true); 98 goto repeat; 99 } 100 101 if (unlikely(!folio_test_uptodate(folio))) { 102 f2fs_handle_page_eio(sbi, folio, META); 103 f2fs_folio_put(folio, true); 104 return ERR_PTR(-EIO); 105 } 106 out: 107 return folio; 108 } 109 110 struct folio *f2fs_get_meta_folio(struct f2fs_sb_info *sbi, pgoff_t index) 111 { 112 return __get_meta_folio(sbi, index, true); 113 } 114 115 struct folio *f2fs_get_meta_folio_retry(struct f2fs_sb_info *sbi, pgoff_t index) 116 { 117 struct folio *folio; 118 int count = 0; 119 120 retry: 121 folio = __get_meta_folio(sbi, index, true); 122 if (IS_ERR(folio)) { 123 if (PTR_ERR(folio) == -EIO && 124 ++count <= DEFAULT_RETRY_IO_COUNT) 125 goto retry; 126 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_META_PAGE); 127 } 128 return folio; 129 } 130 131 /* for POR only */ 132 struct folio *f2fs_get_tmp_folio(struct f2fs_sb_info *sbi, pgoff_t index) 133 { 134 return __get_meta_folio(sbi, index, false); 135 } 136 137 static bool __is_bitmap_valid(struct f2fs_sb_info *sbi, block_t blkaddr, 138 int type) 139 { 140 struct seg_entry *se; 141 unsigned int segno, offset; 142 bool exist; 143 144 if (type == DATA_GENERIC) 145 return true; 146 147 segno = GET_SEGNO(sbi, blkaddr); 148 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 149 se = get_seg_entry(sbi, segno); 150 151 exist = f2fs_test_bit(offset, se->cur_valid_map); 152 153 /* skip data, if we already have an error in checkpoint. */ 154 if (unlikely(f2fs_cp_error(sbi))) 155 return exist; 156 157 if ((exist && type == DATA_GENERIC_ENHANCE_UPDATE) || 158 (!exist && type == DATA_GENERIC_ENHANCE)) 159 goto out_err; 160 if (!exist && type != DATA_GENERIC_ENHANCE_UPDATE) 161 goto out_handle; 162 return exist; 163 164 out_err: 165 f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d", 166 blkaddr, exist); 167 set_sbi_flag(sbi, SBI_NEED_FSCK); 168 dump_stack(); 169 out_handle: 170 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 171 return exist; 172 } 173 174 static bool __f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 175 block_t blkaddr, int type) 176 { 177 switch (type) { 178 case META_NAT: 179 break; 180 case META_SIT: 181 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi))) 182 goto check_only; 183 break; 184 case META_SSA: 185 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) || 186 blkaddr < SM_I(sbi)->ssa_blkaddr)) 187 goto check_only; 188 break; 189 case META_CP: 190 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr || 191 blkaddr < __start_cp_addr(sbi))) 192 goto check_only; 193 break; 194 case META_POR: 195 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || 196 blkaddr < MAIN_BLKADDR(sbi))) 197 goto check_only; 198 break; 199 case DATA_GENERIC: 200 case DATA_GENERIC_ENHANCE: 201 case DATA_GENERIC_ENHANCE_READ: 202 case DATA_GENERIC_ENHANCE_UPDATE: 203 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || 204 blkaddr < MAIN_BLKADDR(sbi))) { 205 206 /* Skip to emit an error message. */ 207 if (unlikely(f2fs_cp_error(sbi))) 208 return false; 209 210 f2fs_warn(sbi, "access invalid blkaddr:%u", 211 blkaddr); 212 set_sbi_flag(sbi, SBI_NEED_FSCK); 213 dump_stack(); 214 goto err; 215 } else { 216 return __is_bitmap_valid(sbi, blkaddr, type); 217 } 218 break; 219 case META_GENERIC: 220 if (unlikely(blkaddr < SEG0_BLKADDR(sbi) || 221 blkaddr >= MAIN_BLKADDR(sbi))) 222 goto err; 223 break; 224 default: 225 BUG(); 226 } 227 228 return true; 229 err: 230 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 231 check_only: 232 return false; 233 } 234 235 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 236 block_t blkaddr, int type) 237 { 238 if (time_to_inject(sbi, FAULT_BLKADDR_VALIDITY)) 239 return false; 240 return __f2fs_is_valid_blkaddr(sbi, blkaddr, type); 241 } 242 243 bool f2fs_is_valid_blkaddr_raw(struct f2fs_sb_info *sbi, 244 block_t blkaddr, int type) 245 { 246 return __f2fs_is_valid_blkaddr(sbi, blkaddr, type); 247 } 248 249 /* 250 * Readahead CP/NAT/SIT/SSA/POR pages 251 */ 252 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 253 int type, bool sync) 254 { 255 block_t blkno = start; 256 struct f2fs_io_info fio = { 257 .sbi = sbi, 258 .type = META, 259 .op = REQ_OP_READ, 260 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD, 261 .encrypted_page = NULL, 262 .in_list = 0, 263 .is_por = (type == META_POR) ? 1 : 0, 264 }; 265 struct blk_plug plug; 266 int err; 267 268 if (unlikely(type == META_POR)) 269 fio.op_flags &= ~REQ_META; 270 271 blk_start_plug(&plug); 272 for (; nrpages-- > 0; blkno++) { 273 struct folio *folio; 274 275 if (!f2fs_is_valid_blkaddr(sbi, blkno, type)) 276 goto out; 277 278 switch (type) { 279 case META_NAT: 280 if (unlikely(blkno >= 281 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid))) 282 blkno = 0; 283 /* get nat block addr */ 284 fio.new_blkaddr = current_nat_addr(sbi, 285 blkno * NAT_ENTRY_PER_BLOCK); 286 break; 287 case META_SIT: 288 if (unlikely(blkno >= TOTAL_SEGS(sbi))) 289 goto out; 290 /* get sit block addr */ 291 fio.new_blkaddr = current_sit_addr(sbi, 292 blkno * SIT_ENTRY_PER_BLOCK); 293 break; 294 case META_SSA: 295 case META_CP: 296 case META_POR: 297 fio.new_blkaddr = blkno; 298 break; 299 default: 300 BUG(); 301 } 302 303 folio = f2fs_grab_cache_folio(META_MAPPING(sbi), 304 fio.new_blkaddr, false); 305 if (IS_ERR(folio)) 306 continue; 307 if (folio_test_uptodate(folio)) { 308 f2fs_folio_put(folio, true); 309 continue; 310 } 311 312 fio.folio = folio; 313 err = f2fs_submit_page_bio(&fio); 314 f2fs_folio_put(folio, err ? true : false); 315 316 if (!err) 317 f2fs_update_iostat(sbi, NULL, FS_META_READ_IO, 318 F2FS_BLKSIZE); 319 } 320 out: 321 blk_finish_plug(&plug); 322 return blkno - start; 323 } 324 325 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index, 326 unsigned int ra_blocks) 327 { 328 struct folio *folio; 329 bool readahead = false; 330 331 if (ra_blocks == RECOVERY_MIN_RA_BLOCKS) 332 return; 333 334 folio = filemap_get_folio(META_MAPPING(sbi), index); 335 if (IS_ERR(folio) || !folio_test_uptodate(folio)) 336 readahead = true; 337 f2fs_folio_put(folio, false); 338 339 if (readahead) 340 f2fs_ra_meta_pages(sbi, index, ra_blocks, META_POR, true); 341 } 342 343 static bool __f2fs_write_meta_folio(struct folio *folio, 344 struct writeback_control *wbc, 345 enum iostat_type io_type) 346 { 347 struct f2fs_sb_info *sbi = F2FS_F_SB(folio); 348 349 trace_f2fs_writepage(folio, META); 350 351 if (unlikely(f2fs_cp_error(sbi))) { 352 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) { 353 folio_clear_uptodate(folio); 354 dec_page_count(sbi, F2FS_DIRTY_META); 355 folio_unlock(folio); 356 return true; 357 } 358 goto redirty_out; 359 } 360 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 361 goto redirty_out; 362 363 f2fs_do_write_meta_page(sbi, folio, io_type); 364 dec_page_count(sbi, F2FS_DIRTY_META); 365 366 folio_unlock(folio); 367 368 if (unlikely(f2fs_cp_error(sbi))) 369 f2fs_submit_merged_write(sbi, META); 370 371 return true; 372 373 redirty_out: 374 folio_redirty_for_writepage(wbc, folio); 375 return false; 376 } 377 378 static int f2fs_write_meta_pages(struct address_space *mapping, 379 struct writeback_control *wbc) 380 { 381 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 382 long diff, written; 383 384 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 385 goto skip_write; 386 387 /* collect a number of dirty meta pages and write together */ 388 if (wbc->sync_mode != WB_SYNC_ALL && 389 get_pages(sbi, F2FS_DIRTY_META) < 390 nr_pages_to_skip(sbi, META)) 391 goto skip_write; 392 393 /* if locked failed, cp will flush dirty pages instead */ 394 if (!f2fs_down_write_trylock(&sbi->cp_global_sem)) 395 goto skip_write; 396 397 trace_f2fs_writepages(mapping->host, wbc, META); 398 diff = nr_pages_to_write(sbi, META, wbc); 399 written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO); 400 f2fs_up_write(&sbi->cp_global_sem); 401 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff); 402 return 0; 403 404 skip_write: 405 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META); 406 trace_f2fs_writepages(mapping->host, wbc, META); 407 return 0; 408 } 409 410 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 411 long nr_to_write, enum iostat_type io_type) 412 { 413 struct address_space *mapping = META_MAPPING(sbi); 414 pgoff_t index = 0, prev = ULONG_MAX; 415 struct folio_batch fbatch; 416 long nwritten = 0; 417 int nr_folios; 418 struct writeback_control wbc = {}; 419 struct blk_plug plug; 420 421 folio_batch_init(&fbatch); 422 423 blk_start_plug(&plug); 424 425 while ((nr_folios = filemap_get_folios_tag(mapping, &index, 426 (pgoff_t)-1, 427 PAGECACHE_TAG_DIRTY, &fbatch))) { 428 int i; 429 430 for (i = 0; i < nr_folios; i++) { 431 struct folio *folio = fbatch.folios[i]; 432 433 if (nr_to_write != LONG_MAX && i != 0 && 434 folio->index != prev + 435 folio_nr_pages(fbatch.folios[i-1])) { 436 folio_batch_release(&fbatch); 437 goto stop; 438 } 439 440 folio_lock(folio); 441 442 if (unlikely(!is_meta_folio(folio))) { 443 continue_unlock: 444 folio_unlock(folio); 445 continue; 446 } 447 if (!folio_test_dirty(folio)) { 448 /* someone wrote it for us */ 449 goto continue_unlock; 450 } 451 452 f2fs_folio_wait_writeback(folio, META, true, true); 453 454 if (!folio_clear_dirty_for_io(folio)) 455 goto continue_unlock; 456 457 if (!__f2fs_write_meta_folio(folio, &wbc, 458 io_type)) { 459 folio_unlock(folio); 460 break; 461 } 462 nwritten += folio_nr_pages(folio); 463 prev = folio->index; 464 if (unlikely(nwritten >= nr_to_write)) 465 break; 466 } 467 folio_batch_release(&fbatch); 468 cond_resched(); 469 } 470 stop: 471 if (nwritten) 472 f2fs_submit_merged_write(sbi, type); 473 474 blk_finish_plug(&plug); 475 476 return nwritten; 477 } 478 479 static bool f2fs_dirty_meta_folio(struct address_space *mapping, 480 struct folio *folio) 481 { 482 trace_f2fs_set_page_dirty(folio, META); 483 484 if (!folio_test_uptodate(folio)) 485 folio_mark_uptodate(folio); 486 if (filemap_dirty_folio(mapping, folio)) { 487 inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_META); 488 folio_set_f2fs_reference(folio); 489 return true; 490 } 491 return false; 492 } 493 494 const struct address_space_operations f2fs_meta_aops = { 495 .writepages = f2fs_write_meta_pages, 496 .dirty_folio = f2fs_dirty_meta_folio, 497 .invalidate_folio = f2fs_invalidate_folio, 498 .release_folio = f2fs_release_folio, 499 .migrate_folio = filemap_migrate_folio, 500 }; 501 502 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, 503 unsigned int devidx, int type) 504 { 505 struct inode_management *im = &sbi->im[type]; 506 struct ino_entry *e = NULL, *new = NULL; 507 int ret; 508 509 if (type == FLUSH_INO) { 510 rcu_read_lock(); 511 e = radix_tree_lookup(&im->ino_root, ino); 512 rcu_read_unlock(); 513 } 514 515 retry: 516 if (!e) 517 new = f2fs_kmem_cache_alloc(ino_entry_slab, 518 GFP_NOFS, true, NULL); 519 520 ret = radix_tree_preload(GFP_NOFS | __GFP_NOFAIL); 521 f2fs_bug_on(sbi, ret); 522 523 spin_lock(&im->ino_lock); 524 e = radix_tree_lookup(&im->ino_root, ino); 525 if (!e) { 526 if (!new) { 527 spin_unlock(&im->ino_lock); 528 radix_tree_preload_end(); 529 goto retry; 530 } 531 e = new; 532 if (unlikely(radix_tree_insert(&im->ino_root, ino, e))) 533 f2fs_bug_on(sbi, 1); 534 535 memset(e, 0, sizeof(struct ino_entry)); 536 e->ino = ino; 537 538 list_add_tail(&e->list, &im->ino_list); 539 if (type != ORPHAN_INO) 540 im->ino_num++; 541 } 542 543 if (type == FLUSH_INO) 544 f2fs_set_bit(devidx, (char *)&e->dirty_device); 545 546 spin_unlock(&im->ino_lock); 547 radix_tree_preload_end(); 548 549 if (new && e != new) 550 kmem_cache_free(ino_entry_slab, new); 551 } 552 553 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 554 { 555 struct inode_management *im = &sbi->im[type]; 556 struct ino_entry *e; 557 558 spin_lock(&im->ino_lock); 559 e = radix_tree_lookup(&im->ino_root, ino); 560 if (e) { 561 list_del(&e->list); 562 radix_tree_delete(&im->ino_root, ino); 563 im->ino_num--; 564 spin_unlock(&im->ino_lock); 565 kmem_cache_free(ino_entry_slab, e); 566 return; 567 } 568 spin_unlock(&im->ino_lock); 569 } 570 571 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 572 { 573 /* add new dirty ino entry into list */ 574 __add_ino_entry(sbi, ino, 0, type); 575 } 576 577 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 578 { 579 /* remove dirty ino entry from list */ 580 __remove_ino_entry(sbi, ino, type); 581 } 582 583 /* mode should be APPEND_INO, UPDATE_INO or TRANS_DIR_INO */ 584 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode) 585 { 586 struct inode_management *im = &sbi->im[mode]; 587 struct ino_entry *e; 588 589 spin_lock(&im->ino_lock); 590 e = radix_tree_lookup(&im->ino_root, ino); 591 spin_unlock(&im->ino_lock); 592 return e ? true : false; 593 } 594 595 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all) 596 { 597 struct ino_entry *e, *tmp; 598 int i; 599 600 for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) { 601 struct inode_management *im = &sbi->im[i]; 602 603 spin_lock(&im->ino_lock); 604 list_for_each_entry_safe(e, tmp, &im->ino_list, list) { 605 list_del(&e->list); 606 radix_tree_delete(&im->ino_root, e->ino); 607 kmem_cache_free(ino_entry_slab, e); 608 im->ino_num--; 609 } 610 spin_unlock(&im->ino_lock); 611 } 612 } 613 614 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 615 unsigned int devidx, int type) 616 { 617 __add_ino_entry(sbi, ino, devidx, type); 618 } 619 620 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 621 unsigned int devidx, int type) 622 { 623 struct inode_management *im = &sbi->im[type]; 624 struct ino_entry *e; 625 bool is_dirty = false; 626 627 spin_lock(&im->ino_lock); 628 e = radix_tree_lookup(&im->ino_root, ino); 629 if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device)) 630 is_dirty = true; 631 spin_unlock(&im->ino_lock); 632 return is_dirty; 633 } 634 635 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi) 636 { 637 struct inode_management *im = &sbi->im[ORPHAN_INO]; 638 int err = 0; 639 640 spin_lock(&im->ino_lock); 641 642 if (time_to_inject(sbi, FAULT_ORPHAN)) { 643 spin_unlock(&im->ino_lock); 644 return -ENOSPC; 645 } 646 647 if (unlikely(im->ino_num >= sbi->max_orphans)) 648 err = -ENOSPC; 649 else 650 im->ino_num++; 651 spin_unlock(&im->ino_lock); 652 653 return err; 654 } 655 656 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi) 657 { 658 struct inode_management *im = &sbi->im[ORPHAN_INO]; 659 660 spin_lock(&im->ino_lock); 661 f2fs_bug_on(sbi, im->ino_num == 0); 662 im->ino_num--; 663 spin_unlock(&im->ino_lock); 664 } 665 666 void f2fs_add_orphan_inode(struct inode *inode) 667 { 668 /* add new orphan ino entry into list */ 669 __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO); 670 f2fs_update_inode_page(inode); 671 } 672 673 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 674 { 675 /* remove orphan entry from orphan list */ 676 __remove_ino_entry(sbi, ino, ORPHAN_INO); 677 } 678 679 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 680 { 681 struct inode *inode; 682 struct node_info ni; 683 int err; 684 685 inode = f2fs_iget_retry(sbi->sb, ino); 686 if (IS_ERR(inode)) { 687 /* 688 * there should be a bug that we can't find the entry 689 * to orphan inode. 690 */ 691 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT); 692 return PTR_ERR(inode); 693 } 694 695 err = f2fs_dquot_initialize(inode); 696 if (err) { 697 iput(inode); 698 goto err_out; 699 } 700 701 clear_nlink(inode); 702 703 /* truncate all the data during iput */ 704 iput(inode); 705 706 err = f2fs_get_node_info(sbi, ino, &ni, false); 707 if (err) 708 goto err_out; 709 710 /* ENOMEM was fully retried in f2fs_evict_inode. */ 711 if (ni.blk_addr != NULL_ADDR) { 712 err = -EIO; 713 goto err_out; 714 } 715 return 0; 716 717 err_out: 718 set_sbi_flag(sbi, SBI_NEED_FSCK); 719 f2fs_warn(sbi, "%s: orphan failed (ino=%x), run fsck to fix.", 720 __func__, ino); 721 return err; 722 } 723 724 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi) 725 { 726 block_t start_blk, orphan_blocks, i, j; 727 int err = 0; 728 729 if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG)) 730 return 0; 731 732 if (f2fs_hw_is_readonly(sbi)) { 733 f2fs_info(sbi, "write access unavailable, skipping orphan cleanup"); 734 return 0; 735 } 736 737 if (is_sbi_flag_set(sbi, SBI_IS_WRITABLE)) 738 f2fs_info(sbi, "orphan cleanup on readonly fs"); 739 740 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi); 741 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi); 742 743 f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true); 744 745 for (i = 0; i < orphan_blocks; i++) { 746 struct folio *folio; 747 struct f2fs_orphan_block *orphan_blk; 748 749 folio = f2fs_get_meta_folio(sbi, start_blk + i); 750 if (IS_ERR(folio)) { 751 err = PTR_ERR(folio); 752 goto out; 753 } 754 755 orphan_blk = folio_address(folio); 756 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) { 757 nid_t ino = le32_to_cpu(orphan_blk->ino[j]); 758 759 err = recover_orphan_inode(sbi, ino); 760 if (err) { 761 f2fs_folio_put(folio, true); 762 goto out; 763 } 764 } 765 f2fs_folio_put(folio, true); 766 } 767 /* clear Orphan Flag */ 768 clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG); 769 out: 770 set_sbi_flag(sbi, SBI_IS_RECOVERED); 771 772 return err; 773 } 774 775 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk) 776 { 777 struct list_head *head; 778 struct f2fs_orphan_block *orphan_blk = NULL; 779 unsigned int nentries = 0; 780 unsigned short index = 1; 781 unsigned short orphan_blocks; 782 struct folio *folio = NULL; 783 struct ino_entry *orphan = NULL; 784 struct inode_management *im = &sbi->im[ORPHAN_INO]; 785 786 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num); 787 788 /* 789 * we don't need to do spin_lock(&im->ino_lock) here, since all the 790 * orphan inode operations are covered under f2fs_lock_op(). 791 * And, spin_lock should be avoided due to page operations below. 792 */ 793 head = &im->ino_list; 794 795 /* loop for each orphan inode entry and write them in journal block */ 796 list_for_each_entry(orphan, head, list) { 797 if (!folio) { 798 folio = f2fs_grab_meta_folio(sbi, start_blk++); 799 orphan_blk = folio_address(folio); 800 memset(orphan_blk, 0, sizeof(*orphan_blk)); 801 } 802 803 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino); 804 805 if (nentries == F2FS_ORPHANS_PER_BLOCK) { 806 /* 807 * an orphan block is full of 1020 entries, 808 * then we need to flush current orphan blocks 809 * and bring another one in memory 810 */ 811 orphan_blk->blk_addr = cpu_to_le16(index); 812 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 813 orphan_blk->entry_count = cpu_to_le32(nentries); 814 folio_mark_dirty(folio); 815 f2fs_folio_put(folio, true); 816 index++; 817 nentries = 0; 818 folio = NULL; 819 } 820 } 821 822 if (folio) { 823 orphan_blk->blk_addr = cpu_to_le16(index); 824 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 825 orphan_blk->entry_count = cpu_to_le32(nentries); 826 folio_mark_dirty(folio); 827 f2fs_folio_put(folio, true); 828 } 829 } 830 831 static __u32 f2fs_checkpoint_chksum(struct f2fs_checkpoint *ckpt) 832 { 833 unsigned int chksum_ofs = le32_to_cpu(ckpt->checksum_offset); 834 __u32 chksum; 835 836 chksum = f2fs_crc32(ckpt, chksum_ofs); 837 if (chksum_ofs < CP_CHKSUM_OFFSET) { 838 chksum_ofs += sizeof(chksum); 839 chksum = f2fs_chksum(chksum, (__u8 *)ckpt + chksum_ofs, 840 F2FS_BLKSIZE - chksum_ofs); 841 } 842 return chksum; 843 } 844 845 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr, 846 struct f2fs_checkpoint **cp_block, struct folio **cp_folio, 847 unsigned long long *version) 848 { 849 size_t crc_offset = 0; 850 __u32 crc; 851 852 *cp_folio = f2fs_get_meta_folio(sbi, cp_addr); 853 if (IS_ERR(*cp_folio)) 854 return PTR_ERR(*cp_folio); 855 856 *cp_block = folio_address(*cp_folio); 857 858 crc_offset = le32_to_cpu((*cp_block)->checksum_offset); 859 if (crc_offset < CP_MIN_CHKSUM_OFFSET || 860 crc_offset > CP_CHKSUM_OFFSET) { 861 f2fs_folio_put(*cp_folio, true); 862 f2fs_warn(sbi, "invalid crc_offset: %zu", crc_offset); 863 return -EINVAL; 864 } 865 866 crc = f2fs_checkpoint_chksum(*cp_block); 867 if (crc != cur_cp_crc(*cp_block)) { 868 f2fs_folio_put(*cp_folio, true); 869 f2fs_warn(sbi, "invalid crc value"); 870 return -EINVAL; 871 } 872 873 *version = cur_cp_version(*cp_block); 874 return 0; 875 } 876 877 static struct folio *validate_checkpoint(struct f2fs_sb_info *sbi, 878 block_t cp_addr, unsigned long long *version) 879 { 880 struct folio *cp_folio_1 = NULL, *cp_folio_2 = NULL; 881 struct f2fs_checkpoint *cp_block = NULL; 882 unsigned long long cur_version = 0, pre_version = 0; 883 unsigned int cp_blocks; 884 int err; 885 886 err = get_checkpoint_version(sbi, cp_addr, &cp_block, 887 &cp_folio_1, version); 888 if (err) 889 return NULL; 890 891 cp_blocks = le32_to_cpu(cp_block->cp_pack_total_block_count); 892 893 if (cp_blocks > BLKS_PER_SEG(sbi) || cp_blocks <= F2FS_CP_PACKS) { 894 f2fs_warn(sbi, "invalid cp_pack_total_block_count:%u", 895 le32_to_cpu(cp_block->cp_pack_total_block_count)); 896 goto invalid_cp; 897 } 898 pre_version = *version; 899 900 cp_addr += cp_blocks - 1; 901 err = get_checkpoint_version(sbi, cp_addr, &cp_block, 902 &cp_folio_2, version); 903 if (err) 904 goto invalid_cp; 905 cur_version = *version; 906 907 if (cur_version == pre_version) { 908 *version = cur_version; 909 f2fs_folio_put(cp_folio_2, true); 910 return cp_folio_1; 911 } 912 f2fs_folio_put(cp_folio_2, true); 913 invalid_cp: 914 f2fs_folio_put(cp_folio_1, true); 915 return NULL; 916 } 917 918 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi) 919 { 920 struct f2fs_checkpoint *cp_block; 921 struct f2fs_super_block *fsb = sbi->raw_super; 922 struct folio *cp1, *cp2, *cur_folio; 923 unsigned long blk_size = sbi->blocksize; 924 unsigned long long cp1_version = 0, cp2_version = 0; 925 unsigned long long cp_start_blk_no; 926 unsigned int cp_blks = 1 + __cp_payload(sbi); 927 block_t cp_blk_no; 928 int i; 929 int err; 930 931 sbi->ckpt = f2fs_kvzalloc(sbi, array_size(blk_size, cp_blks), 932 GFP_KERNEL); 933 if (!sbi->ckpt) 934 return -ENOMEM; 935 /* 936 * Finding out valid cp block involves read both 937 * sets( cp pack 1 and cp pack 2) 938 */ 939 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr); 940 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); 941 942 /* The second checkpoint pack should start at the next segment */ 943 cp_start_blk_no += ((unsigned long long)1) << 944 le32_to_cpu(fsb->log_blocks_per_seg); 945 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); 946 947 if (cp1 && cp2) { 948 if (ver_after(cp2_version, cp1_version)) 949 cur_folio = cp2; 950 else 951 cur_folio = cp1; 952 } else if (cp1) { 953 cur_folio = cp1; 954 } else if (cp2) { 955 cur_folio = cp2; 956 } else { 957 err = -EFSCORRUPTED; 958 goto fail_no_cp; 959 } 960 961 cp_block = folio_address(cur_folio); 962 memcpy(sbi->ckpt, cp_block, blk_size); 963 964 if (cur_folio == cp1) 965 sbi->cur_cp_pack = 1; 966 else 967 sbi->cur_cp_pack = 2; 968 969 /* Sanity checking of checkpoint */ 970 if (f2fs_sanity_check_ckpt(sbi)) { 971 err = -EFSCORRUPTED; 972 goto free_fail_no_cp; 973 } 974 975 if (cp_blks <= 1) 976 goto done; 977 978 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr); 979 if (cur_folio == cp2) 980 cp_blk_no += BIT(le32_to_cpu(fsb->log_blocks_per_seg)); 981 982 for (i = 1; i < cp_blks; i++) { 983 void *sit_bitmap_ptr; 984 unsigned char *ckpt = (unsigned char *)sbi->ckpt; 985 986 cur_folio = f2fs_get_meta_folio(sbi, cp_blk_no + i); 987 if (IS_ERR(cur_folio)) { 988 err = PTR_ERR(cur_folio); 989 goto free_fail_no_cp; 990 } 991 sit_bitmap_ptr = folio_address(cur_folio); 992 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size); 993 f2fs_folio_put(cur_folio, true); 994 } 995 done: 996 f2fs_folio_put(cp1, true); 997 f2fs_folio_put(cp2, true); 998 return 0; 999 1000 free_fail_no_cp: 1001 f2fs_folio_put(cp1, true); 1002 f2fs_folio_put(cp2, true); 1003 fail_no_cp: 1004 kvfree(sbi->ckpt); 1005 return err; 1006 } 1007 1008 static void __add_dirty_inode(struct inode *inode, enum inode_type type) 1009 { 1010 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1011 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 1012 1013 if (is_inode_flag_set(inode, flag)) 1014 return; 1015 1016 set_inode_flag(inode, flag); 1017 list_add_tail(&F2FS_I(inode)->dirty_list, &sbi->inode_list[type]); 1018 stat_inc_dirty_inode(sbi, type); 1019 } 1020 1021 static void __remove_dirty_inode(struct inode *inode, enum inode_type type) 1022 { 1023 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 1024 1025 if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag)) 1026 return; 1027 1028 list_del_init(&F2FS_I(inode)->dirty_list); 1029 clear_inode_flag(inode, flag); 1030 stat_dec_dirty_inode(F2FS_I_SB(inode), type); 1031 } 1032 1033 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio) 1034 { 1035 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1036 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 1037 1038 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1039 !S_ISLNK(inode->i_mode)) 1040 return; 1041 1042 spin_lock(&sbi->inode_lock[type]); 1043 if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH)) 1044 __add_dirty_inode(inode, type); 1045 inode_inc_dirty_pages(inode); 1046 spin_unlock(&sbi->inode_lock[type]); 1047 1048 folio_set_f2fs_reference(folio); 1049 } 1050 1051 void f2fs_remove_dirty_inode(struct inode *inode) 1052 { 1053 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1054 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 1055 1056 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1057 !S_ISLNK(inode->i_mode)) 1058 return; 1059 1060 if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH)) 1061 return; 1062 1063 spin_lock(&sbi->inode_lock[type]); 1064 __remove_dirty_inode(inode, type); 1065 spin_unlock(&sbi->inode_lock[type]); 1066 } 1067 1068 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type, 1069 bool from_cp) 1070 { 1071 struct list_head *head; 1072 struct inode *inode; 1073 struct f2fs_inode_info *fi; 1074 bool is_dir = (type == DIR_INODE); 1075 unsigned long ino = 0; 1076 1077 trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir, 1078 get_pages(sbi, is_dir ? 1079 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 1080 retry: 1081 if (unlikely(f2fs_cp_error(sbi))) { 1082 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir, 1083 get_pages(sbi, is_dir ? 1084 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 1085 return -EIO; 1086 } 1087 1088 spin_lock(&sbi->inode_lock[type]); 1089 1090 head = &sbi->inode_list[type]; 1091 if (list_empty(head)) { 1092 spin_unlock(&sbi->inode_lock[type]); 1093 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir, 1094 get_pages(sbi, is_dir ? 1095 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 1096 return 0; 1097 } 1098 fi = list_first_entry(head, struct f2fs_inode_info, dirty_list); 1099 inode = igrab(&fi->vfs_inode); 1100 spin_unlock(&sbi->inode_lock[type]); 1101 if (inode) { 1102 unsigned long cur_ino = inode->i_ino; 1103 1104 if (from_cp) 1105 F2FS_I(inode)->cp_task = current; 1106 F2FS_I(inode)->wb_task = current; 1107 1108 filemap_fdatawrite(inode->i_mapping); 1109 1110 F2FS_I(inode)->wb_task = NULL; 1111 if (from_cp) 1112 F2FS_I(inode)->cp_task = NULL; 1113 1114 iput(inode); 1115 /* We need to give cpu to another writers. */ 1116 if (ino == cur_ino) 1117 cond_resched(); 1118 else 1119 ino = cur_ino; 1120 } else { 1121 /* 1122 * We should submit bio, since it exists several 1123 * writebacking dentry pages in the freeing inode. 1124 */ 1125 f2fs_submit_merged_write(sbi, DATA); 1126 cond_resched(); 1127 } 1128 goto retry; 1129 } 1130 1131 static int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi) 1132 { 1133 struct list_head *head = &sbi->inode_list[DIRTY_META]; 1134 struct inode *inode; 1135 struct f2fs_inode_info *fi; 1136 s64 total = get_pages(sbi, F2FS_DIRTY_IMETA); 1137 1138 while (total--) { 1139 if (unlikely(f2fs_cp_error(sbi))) 1140 return -EIO; 1141 1142 spin_lock(&sbi->inode_lock[DIRTY_META]); 1143 if (list_empty(head)) { 1144 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1145 return 0; 1146 } 1147 fi = list_first_entry(head, struct f2fs_inode_info, 1148 gdirty_list); 1149 inode = igrab(&fi->vfs_inode); 1150 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1151 if (inode) { 1152 sync_inode_metadata(inode, 0); 1153 1154 /* it's on eviction */ 1155 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) 1156 f2fs_update_inode_page(inode); 1157 iput(inode); 1158 } 1159 } 1160 return 0; 1161 } 1162 1163 static void __prepare_cp_block(struct f2fs_sb_info *sbi) 1164 { 1165 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1166 struct f2fs_nm_info *nm_i = NM_I(sbi); 1167 nid_t last_nid = nm_i->next_scan_nid; 1168 1169 next_free_nid(sbi, &last_nid); 1170 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi)); 1171 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi)); 1172 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi)); 1173 ckpt->next_free_nid = cpu_to_le32(last_nid); 1174 1175 /* update user_block_counts */ 1176 sbi->last_valid_block_count = sbi->total_valid_block_count; 1177 percpu_counter_set(&sbi->alloc_valid_block_count, 0); 1178 percpu_counter_set(&sbi->rf_node_block_count, 0); 1179 } 1180 1181 static bool __need_flush_quota(struct f2fs_sb_info *sbi) 1182 { 1183 bool ret = false; 1184 1185 if (!is_journalled_quota(sbi)) 1186 return false; 1187 1188 if (!f2fs_down_write_trylock(&sbi->quota_sem)) 1189 return true; 1190 if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) { 1191 ret = false; 1192 } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) { 1193 ret = false; 1194 } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_FLUSH)) { 1195 clear_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 1196 ret = true; 1197 } else if (get_pages(sbi, F2FS_DIRTY_QDATA)) { 1198 ret = true; 1199 } 1200 f2fs_up_write(&sbi->quota_sem); 1201 return ret; 1202 } 1203 1204 /* 1205 * Freeze all the FS-operations for checkpoint. 1206 */ 1207 static int block_operations(struct f2fs_sb_info *sbi) 1208 { 1209 struct writeback_control wbc = { 1210 .sync_mode = WB_SYNC_ALL, 1211 .nr_to_write = LONG_MAX, 1212 }; 1213 int err = 0, cnt = 0; 1214 1215 /* 1216 * Let's flush inline_data in dirty node pages. 1217 */ 1218 f2fs_flush_inline_data(sbi); 1219 1220 retry_flush_quotas: 1221 f2fs_lock_all(sbi); 1222 if (__need_flush_quota(sbi)) { 1223 bool need_lock = sbi->umount_lock_holder != current; 1224 1225 if (++cnt > DEFAULT_RETRY_QUOTA_FLUSH_COUNT) { 1226 set_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH); 1227 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 1228 goto retry_flush_dents; 1229 } 1230 f2fs_unlock_all(sbi); 1231 1232 /* don't grab s_umount lock during mount/umount/remount/freeze/quotactl */ 1233 if (!need_lock) { 1234 f2fs_do_quota_sync(sbi->sb, -1); 1235 } else if (down_read_trylock(&sbi->sb->s_umount)) { 1236 f2fs_do_quota_sync(sbi->sb, -1); 1237 up_read(&sbi->sb->s_umount); 1238 } 1239 cond_resched(); 1240 goto retry_flush_quotas; 1241 } 1242 1243 retry_flush_dents: 1244 /* write all the dirty dentry pages */ 1245 if (get_pages(sbi, F2FS_DIRTY_DENTS)) { 1246 f2fs_unlock_all(sbi); 1247 err = f2fs_sync_dirty_inodes(sbi, DIR_INODE, true); 1248 if (err) 1249 return err; 1250 cond_resched(); 1251 goto retry_flush_quotas; 1252 } 1253 1254 /* 1255 * POR: we should ensure that there are no dirty node pages 1256 * until finishing nat/sit flush. inode->i_blocks can be updated. 1257 */ 1258 f2fs_down_write(&sbi->node_change); 1259 1260 if (get_pages(sbi, F2FS_DIRTY_IMETA)) { 1261 f2fs_up_write(&sbi->node_change); 1262 f2fs_unlock_all(sbi); 1263 err = f2fs_sync_inode_meta(sbi); 1264 if (err) 1265 return err; 1266 cond_resched(); 1267 goto retry_flush_quotas; 1268 } 1269 1270 retry_flush_nodes: 1271 f2fs_down_write(&sbi->node_write); 1272 1273 if (get_pages(sbi, F2FS_DIRTY_NODES)) { 1274 f2fs_up_write(&sbi->node_write); 1275 atomic_inc(&sbi->wb_sync_req[NODE]); 1276 err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO); 1277 atomic_dec(&sbi->wb_sync_req[NODE]); 1278 if (err) { 1279 f2fs_up_write(&sbi->node_change); 1280 f2fs_unlock_all(sbi); 1281 return err; 1282 } 1283 cond_resched(); 1284 goto retry_flush_nodes; 1285 } 1286 1287 /* 1288 * sbi->node_change is used only for AIO write_begin path which produces 1289 * dirty node blocks and some checkpoint values by block allocation. 1290 */ 1291 __prepare_cp_block(sbi); 1292 f2fs_up_write(&sbi->node_change); 1293 return err; 1294 } 1295 1296 static void unblock_operations(struct f2fs_sb_info *sbi) 1297 { 1298 f2fs_up_write(&sbi->node_write); 1299 f2fs_unlock_all(sbi); 1300 } 1301 1302 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type) 1303 { 1304 DEFINE_WAIT(wait); 1305 1306 for (;;) { 1307 if (!get_pages(sbi, type)) 1308 break; 1309 1310 if (unlikely(f2fs_cp_error(sbi) && 1311 !is_sbi_flag_set(sbi, SBI_IS_CLOSE))) 1312 break; 1313 1314 if (type == F2FS_DIRTY_META) 1315 f2fs_sync_meta_pages(sbi, META, LONG_MAX, 1316 FS_CP_META_IO); 1317 else if (type == F2FS_WB_CP_DATA) 1318 f2fs_submit_merged_write(sbi, DATA); 1319 1320 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE); 1321 io_schedule_timeout(DEFAULT_IO_TIMEOUT); 1322 } 1323 finish_wait(&sbi->cp_wait, &wait); 1324 } 1325 1326 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1327 { 1328 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num; 1329 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1330 unsigned long flags; 1331 1332 spin_lock_irqsave(&sbi->cp_lock, flags); 1333 1334 if ((cpc->reason & CP_UMOUNT) && 1335 le32_to_cpu(ckpt->cp_pack_total_block_count) > 1336 sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks) 1337 disable_nat_bits(sbi, false); 1338 1339 if (cpc->reason & CP_TRIMMED) 1340 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG); 1341 else 1342 __clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG); 1343 1344 if (cpc->reason & CP_UMOUNT) 1345 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1346 else 1347 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1348 1349 if (cpc->reason & CP_FASTBOOT) 1350 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1351 else 1352 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1353 1354 if (orphan_num) 1355 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1356 else 1357 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1358 1359 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1360 __set_ckpt_flags(ckpt, CP_FSCK_FLAG); 1361 1362 if (is_sbi_flag_set(sbi, SBI_IS_RESIZEFS)) 1363 __set_ckpt_flags(ckpt, CP_RESIZEFS_FLAG); 1364 else 1365 __clear_ckpt_flags(ckpt, CP_RESIZEFS_FLAG); 1366 1367 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED)) 1368 __set_ckpt_flags(ckpt, CP_DISABLED_FLAG); 1369 else 1370 __clear_ckpt_flags(ckpt, CP_DISABLED_FLAG); 1371 1372 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK)) 1373 __set_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG); 1374 else 1375 __clear_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG); 1376 1377 if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) 1378 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); 1379 else 1380 __clear_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); 1381 1382 if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) 1383 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); 1384 1385 /* set this flag to activate crc|cp_ver for recovery */ 1386 __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG); 1387 __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG); 1388 1389 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1390 } 1391 1392 static void commit_checkpoint(struct f2fs_sb_info *sbi, 1393 void *src, block_t blk_addr) 1394 { 1395 struct writeback_control wbc = {}; 1396 1397 /* 1398 * filemap_get_folios_tag and folio_lock again will take 1399 * some extra time. Therefore, f2fs_update_meta_pages and 1400 * f2fs_sync_meta_pages are combined in this function. 1401 */ 1402 struct folio *folio = f2fs_grab_meta_folio(sbi, blk_addr); 1403 1404 memcpy(folio_address(folio), src, PAGE_SIZE); 1405 1406 folio_mark_dirty(folio); 1407 if (unlikely(!folio_clear_dirty_for_io(folio))) 1408 f2fs_bug_on(sbi, 1); 1409 1410 /* writeout cp pack 2 page */ 1411 if (unlikely(!__f2fs_write_meta_folio(folio, &wbc, FS_CP_META_IO))) { 1412 if (f2fs_cp_error(sbi)) { 1413 f2fs_folio_put(folio, true); 1414 return; 1415 } 1416 f2fs_bug_on(sbi, true); 1417 } 1418 1419 f2fs_folio_put(folio, false); 1420 1421 /* submit checkpoint (with barrier if NOBARRIER is not set) */ 1422 f2fs_submit_merged_write(sbi, META_FLUSH); 1423 } 1424 1425 static inline u64 get_sectors_written(struct block_device *bdev) 1426 { 1427 return (u64)part_stat_read(bdev, sectors[STAT_WRITE]); 1428 } 1429 1430 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi) 1431 { 1432 if (f2fs_is_multi_device(sbi)) { 1433 u64 sectors = 0; 1434 int i; 1435 1436 for (i = 0; i < sbi->s_ndevs; i++) 1437 sectors += get_sectors_written(FDEV(i).bdev); 1438 1439 return sectors; 1440 } 1441 1442 return get_sectors_written(sbi->sb->s_bdev); 1443 } 1444 1445 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1446 { 1447 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1448 struct f2fs_nm_info *nm_i = NM_I(sbi); 1449 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags; 1450 block_t start_blk; 1451 unsigned int data_sum_blocks, orphan_blocks; 1452 __u32 crc32 = 0; 1453 int i; 1454 int cp_payload_blks = __cp_payload(sbi); 1455 struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 1456 u64 kbytes_written; 1457 int err; 1458 1459 /* Flush all the NAT/SIT pages */ 1460 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO); 1461 1462 /* start to update checkpoint, cp ver is already updated previously */ 1463 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true)); 1464 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi)); 1465 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 1466 struct curseg_info *curseg = CURSEG_I(sbi, i + CURSEG_HOT_NODE); 1467 1468 ckpt->cur_node_segno[i] = cpu_to_le32(curseg->segno); 1469 ckpt->cur_node_blkoff[i] = cpu_to_le16(curseg->next_blkoff); 1470 ckpt->alloc_type[i + CURSEG_HOT_NODE] = curseg->alloc_type; 1471 } 1472 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 1473 struct curseg_info *curseg = CURSEG_I(sbi, i + CURSEG_HOT_DATA); 1474 1475 ckpt->cur_data_segno[i] = cpu_to_le32(curseg->segno); 1476 ckpt->cur_data_blkoff[i] = cpu_to_le16(curseg->next_blkoff); 1477 ckpt->alloc_type[i + CURSEG_HOT_DATA] = curseg->alloc_type; 1478 } 1479 1480 /* 2 cp + n data seg summary + orphan inode blocks */ 1481 data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false); 1482 spin_lock_irqsave(&sbi->cp_lock, flags); 1483 if (data_sum_blocks < NR_CURSEG_DATA_TYPE) 1484 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1485 else 1486 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1487 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1488 1489 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num); 1490 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks + 1491 orphan_blocks); 1492 1493 if (__remain_node_summaries(cpc->reason)) 1494 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + 1495 cp_payload_blks + data_sum_blocks + 1496 orphan_blocks + NR_CURSEG_NODE_TYPE); 1497 else 1498 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + 1499 cp_payload_blks + data_sum_blocks + 1500 orphan_blocks); 1501 1502 /* update ckpt flag for checkpoint */ 1503 update_ckpt_flags(sbi, cpc); 1504 1505 /* update SIT/NAT bitmap */ 1506 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP)); 1507 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP)); 1508 1509 crc32 = f2fs_checkpoint_chksum(ckpt); 1510 *((__le32 *)((unsigned char *)ckpt + 1511 le32_to_cpu(ckpt->checksum_offset))) 1512 = cpu_to_le32(crc32); 1513 1514 start_blk = __start_cp_next_addr(sbi); 1515 1516 /* write nat bits */ 1517 if (enabled_nat_bits(sbi, cpc)) { 1518 __u64 cp_ver = cur_cp_version(ckpt); 1519 block_t blk; 1520 1521 cp_ver |= ((__u64)crc32 << 32); 1522 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver); 1523 1524 blk = start_blk + BLKS_PER_SEG(sbi) - nm_i->nat_bits_blocks; 1525 for (i = 0; i < nm_i->nat_bits_blocks; i++) 1526 f2fs_update_meta_page(sbi, nm_i->nat_bits + 1527 F2FS_BLK_TO_BYTES(i), blk + i); 1528 } 1529 1530 /* write out checkpoint buffer at block 0 */ 1531 f2fs_update_meta_page(sbi, ckpt, start_blk++); 1532 1533 for (i = 1; i < 1 + cp_payload_blks; i++) 1534 f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE, 1535 start_blk++); 1536 1537 if (orphan_num) { 1538 write_orphan_inodes(sbi, start_blk); 1539 start_blk += orphan_blocks; 1540 } 1541 1542 f2fs_write_data_summaries(sbi, start_blk); 1543 start_blk += data_sum_blocks; 1544 1545 /* Record write statistics in the hot node summary */ 1546 kbytes_written = sbi->kbytes_written; 1547 kbytes_written += (f2fs_get_sectors_written(sbi) - 1548 sbi->sectors_written_start) >> 1; 1549 seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written); 1550 1551 if (__remain_node_summaries(cpc->reason)) { 1552 f2fs_write_node_summaries(sbi, start_blk); 1553 start_blk += NR_CURSEG_NODE_TYPE; 1554 } 1555 1556 /* Here, we have one bio having CP pack except cp pack 2 page */ 1557 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO); 1558 /* Wait for all dirty meta pages to be submitted for IO */ 1559 f2fs_wait_on_all_pages(sbi, F2FS_DIRTY_META); 1560 1561 /* wait for previous submitted meta pages writeback */ 1562 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA); 1563 1564 /* flush all device cache */ 1565 err = f2fs_flush_device_cache(sbi); 1566 if (err) 1567 return err; 1568 1569 /* barrier and flush checkpoint cp pack 2 page if it can */ 1570 commit_checkpoint(sbi, ckpt, start_blk); 1571 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA); 1572 1573 /* 1574 * invalidate intermediate page cache borrowed from meta inode which are 1575 * used for migration of encrypted, verity or compressed inode's blocks. 1576 */ 1577 if (f2fs_sb_has_encrypt(sbi) || f2fs_sb_has_verity(sbi) || 1578 f2fs_sb_has_compression(sbi)) 1579 f2fs_bug_on(sbi, 1580 invalidate_inode_pages2_range(META_MAPPING(sbi), 1581 MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1)); 1582 1583 f2fs_release_ino_entry(sbi, false); 1584 1585 f2fs_reset_fsync_node_info(sbi); 1586 1587 clear_sbi_flag(sbi, SBI_IS_DIRTY); 1588 clear_sbi_flag(sbi, SBI_NEED_CP); 1589 clear_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH); 1590 1591 spin_lock(&sbi->stat_lock); 1592 sbi->unusable_block_count = 0; 1593 spin_unlock(&sbi->stat_lock); 1594 1595 __set_cp_next_pack(sbi); 1596 1597 /* 1598 * redirty superblock if metadata like node page or inode cache is 1599 * updated during writing checkpoint. 1600 */ 1601 if (get_pages(sbi, F2FS_DIRTY_NODES) || 1602 get_pages(sbi, F2FS_DIRTY_IMETA)) 1603 set_sbi_flag(sbi, SBI_IS_DIRTY); 1604 1605 f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS)); 1606 1607 return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0; 1608 } 1609 1610 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1611 { 1612 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1613 unsigned long long ckpt_ver; 1614 int err = 0; 1615 1616 if (f2fs_readonly(sbi->sb) || f2fs_hw_is_readonly(sbi)) 1617 return -EROFS; 1618 1619 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 1620 if (cpc->reason != CP_PAUSE) 1621 return 0; 1622 f2fs_warn(sbi, "Start checkpoint disabled!"); 1623 } 1624 if (cpc->reason != CP_RESIZE) 1625 f2fs_down_write(&sbi->cp_global_sem); 1626 1627 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) && 1628 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) || 1629 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks))) 1630 goto out; 1631 if (unlikely(f2fs_cp_error(sbi))) { 1632 err = -EIO; 1633 goto out; 1634 } 1635 1636 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops"); 1637 1638 err = block_operations(sbi); 1639 if (err) 1640 goto out; 1641 1642 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops"); 1643 1644 f2fs_flush_merged_writes(sbi); 1645 1646 /* this is the case of multiple fstrims without any changes */ 1647 if (cpc->reason & CP_DISCARD) { 1648 if (!f2fs_exist_trim_candidates(sbi, cpc)) { 1649 unblock_operations(sbi); 1650 goto out; 1651 } 1652 1653 if (NM_I(sbi)->nat_cnt[DIRTY_NAT] == 0 && 1654 SIT_I(sbi)->dirty_sentries == 0 && 1655 prefree_segments(sbi) == 0) { 1656 f2fs_flush_sit_entries(sbi, cpc); 1657 f2fs_clear_prefree_segments(sbi, cpc); 1658 unblock_operations(sbi); 1659 goto out; 1660 } 1661 } 1662 1663 /* 1664 * update checkpoint pack index 1665 * Increase the version number so that 1666 * SIT entries and seg summaries are written at correct place 1667 */ 1668 ckpt_ver = cur_cp_version(ckpt); 1669 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver); 1670 1671 /* write cached NAT/SIT entries to NAT/SIT area */ 1672 err = f2fs_flush_nat_entries(sbi, cpc); 1673 if (err) { 1674 f2fs_err(sbi, "f2fs_flush_nat_entries failed err:%d, stop checkpoint", err); 1675 f2fs_bug_on(sbi, !f2fs_cp_error(sbi)); 1676 goto stop; 1677 } 1678 1679 f2fs_flush_sit_entries(sbi, cpc); 1680 1681 /* save inmem log status */ 1682 f2fs_save_inmem_curseg(sbi); 1683 1684 err = do_checkpoint(sbi, cpc); 1685 if (err) { 1686 f2fs_err(sbi, "do_checkpoint failed err:%d, stop checkpoint", err); 1687 f2fs_bug_on(sbi, !f2fs_cp_error(sbi)); 1688 f2fs_release_discard_addrs(sbi); 1689 } else { 1690 f2fs_clear_prefree_segments(sbi, cpc); 1691 } 1692 1693 f2fs_restore_inmem_curseg(sbi); 1694 f2fs_reinit_atgc_curseg(sbi); 1695 stat_inc_cp_count(sbi); 1696 stop: 1697 unblock_operations(sbi); 1698 1699 if (cpc->reason & CP_RECOVERY) 1700 f2fs_notice(sbi, "checkpoint: version = %llx", ckpt_ver); 1701 1702 /* update CP_TIME to trigger checkpoint periodically */ 1703 f2fs_update_time(sbi, CP_TIME); 1704 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint"); 1705 out: 1706 if (cpc->reason != CP_RESIZE) 1707 f2fs_up_write(&sbi->cp_global_sem); 1708 return err; 1709 } 1710 1711 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi) 1712 { 1713 int i; 1714 1715 for (i = 0; i < MAX_INO_ENTRY; i++) { 1716 struct inode_management *im = &sbi->im[i]; 1717 1718 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC); 1719 spin_lock_init(&im->ino_lock); 1720 INIT_LIST_HEAD(&im->ino_list); 1721 im->ino_num = 0; 1722 } 1723 1724 sbi->max_orphans = (BLKS_PER_SEG(sbi) - F2FS_CP_PACKS - 1725 NR_CURSEG_PERSIST_TYPE - __cp_payload(sbi)) * 1726 F2FS_ORPHANS_PER_BLOCK; 1727 } 1728 1729 int __init f2fs_create_checkpoint_caches(void) 1730 { 1731 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry", 1732 sizeof(struct ino_entry)); 1733 if (!ino_entry_slab) 1734 return -ENOMEM; 1735 f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry", 1736 sizeof(struct inode_entry)); 1737 if (!f2fs_inode_entry_slab) { 1738 kmem_cache_destroy(ino_entry_slab); 1739 return -ENOMEM; 1740 } 1741 return 0; 1742 } 1743 1744 void f2fs_destroy_checkpoint_caches(void) 1745 { 1746 kmem_cache_destroy(ino_entry_slab); 1747 kmem_cache_destroy(f2fs_inode_entry_slab); 1748 } 1749 1750 static int __write_checkpoint_sync(struct f2fs_sb_info *sbi) 1751 { 1752 struct cp_control cpc = { .reason = CP_SYNC, }; 1753 int err; 1754 1755 f2fs_down_write(&sbi->gc_lock); 1756 err = f2fs_write_checkpoint(sbi, &cpc); 1757 f2fs_up_write(&sbi->gc_lock); 1758 1759 return err; 1760 } 1761 1762 static void __checkpoint_and_complete_reqs(struct f2fs_sb_info *sbi) 1763 { 1764 struct ckpt_req_control *cprc = &sbi->cprc_info; 1765 struct ckpt_req *req, *next; 1766 struct llist_node *dispatch_list; 1767 u64 sum_diff = 0, diff, count = 0; 1768 int ret; 1769 1770 dispatch_list = llist_del_all(&cprc->issue_list); 1771 if (!dispatch_list) 1772 return; 1773 dispatch_list = llist_reverse_order(dispatch_list); 1774 1775 ret = __write_checkpoint_sync(sbi); 1776 atomic_inc(&cprc->issued_ckpt); 1777 1778 llist_for_each_entry_safe(req, next, dispatch_list, llnode) { 1779 diff = (u64)ktime_ms_delta(ktime_get(), req->queue_time); 1780 req->ret = ret; 1781 complete(&req->wait); 1782 1783 sum_diff += diff; 1784 count++; 1785 } 1786 atomic_sub(count, &cprc->queued_ckpt); 1787 atomic_add(count, &cprc->total_ckpt); 1788 1789 spin_lock(&cprc->stat_lock); 1790 cprc->cur_time = (unsigned int)div64_u64(sum_diff, count); 1791 if (cprc->peak_time < cprc->cur_time) 1792 cprc->peak_time = cprc->cur_time; 1793 spin_unlock(&cprc->stat_lock); 1794 } 1795 1796 static int issue_checkpoint_thread(void *data) 1797 { 1798 struct f2fs_sb_info *sbi = data; 1799 struct ckpt_req_control *cprc = &sbi->cprc_info; 1800 wait_queue_head_t *q = &cprc->ckpt_wait_queue; 1801 repeat: 1802 if (kthread_should_stop()) 1803 return 0; 1804 1805 if (!llist_empty(&cprc->issue_list)) 1806 __checkpoint_and_complete_reqs(sbi); 1807 1808 wait_event_interruptible(*q, 1809 kthread_should_stop() || !llist_empty(&cprc->issue_list)); 1810 goto repeat; 1811 } 1812 1813 static void flush_remained_ckpt_reqs(struct f2fs_sb_info *sbi, 1814 struct ckpt_req *wait_req) 1815 { 1816 struct ckpt_req_control *cprc = &sbi->cprc_info; 1817 1818 if (!llist_empty(&cprc->issue_list)) { 1819 __checkpoint_and_complete_reqs(sbi); 1820 } else { 1821 /* already dispatched by issue_checkpoint_thread */ 1822 if (wait_req) 1823 wait_for_completion(&wait_req->wait); 1824 } 1825 } 1826 1827 static void init_ckpt_req(struct ckpt_req *req) 1828 { 1829 memset(req, 0, sizeof(struct ckpt_req)); 1830 1831 init_completion(&req->wait); 1832 req->queue_time = ktime_get(); 1833 } 1834 1835 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi) 1836 { 1837 struct ckpt_req_control *cprc = &sbi->cprc_info; 1838 struct ckpt_req req; 1839 struct cp_control cpc; 1840 1841 cpc.reason = __get_cp_reason(sbi); 1842 if (!test_opt(sbi, MERGE_CHECKPOINT) || cpc.reason != CP_SYNC || 1843 sbi->umount_lock_holder == current) { 1844 int ret; 1845 1846 f2fs_down_write(&sbi->gc_lock); 1847 ret = f2fs_write_checkpoint(sbi, &cpc); 1848 f2fs_up_write(&sbi->gc_lock); 1849 1850 return ret; 1851 } 1852 1853 if (!cprc->f2fs_issue_ckpt) 1854 return __write_checkpoint_sync(sbi); 1855 1856 init_ckpt_req(&req); 1857 1858 llist_add(&req.llnode, &cprc->issue_list); 1859 atomic_inc(&cprc->queued_ckpt); 1860 1861 /* 1862 * update issue_list before we wake up issue_checkpoint thread, 1863 * this smp_mb() pairs with another barrier in ___wait_event(), 1864 * see more details in comments of waitqueue_active(). 1865 */ 1866 smp_mb(); 1867 1868 if (waitqueue_active(&cprc->ckpt_wait_queue)) 1869 wake_up(&cprc->ckpt_wait_queue); 1870 1871 if (cprc->f2fs_issue_ckpt) 1872 wait_for_completion(&req.wait); 1873 else 1874 flush_remained_ckpt_reqs(sbi, &req); 1875 1876 return req.ret; 1877 } 1878 1879 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi) 1880 { 1881 dev_t dev = sbi->sb->s_bdev->bd_dev; 1882 struct ckpt_req_control *cprc = &sbi->cprc_info; 1883 1884 if (cprc->f2fs_issue_ckpt) 1885 return 0; 1886 1887 cprc->f2fs_issue_ckpt = kthread_run(issue_checkpoint_thread, sbi, 1888 "f2fs_ckpt-%u:%u", MAJOR(dev), MINOR(dev)); 1889 if (IS_ERR(cprc->f2fs_issue_ckpt)) { 1890 int err = PTR_ERR(cprc->f2fs_issue_ckpt); 1891 1892 cprc->f2fs_issue_ckpt = NULL; 1893 return err; 1894 } 1895 1896 set_task_ioprio(cprc->f2fs_issue_ckpt, cprc->ckpt_thread_ioprio); 1897 1898 return 0; 1899 } 1900 1901 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi) 1902 { 1903 struct ckpt_req_control *cprc = &sbi->cprc_info; 1904 struct task_struct *ckpt_task; 1905 1906 if (!cprc->f2fs_issue_ckpt) 1907 return; 1908 1909 ckpt_task = cprc->f2fs_issue_ckpt; 1910 cprc->f2fs_issue_ckpt = NULL; 1911 kthread_stop(ckpt_task); 1912 1913 f2fs_flush_ckpt_thread(sbi); 1914 } 1915 1916 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi) 1917 { 1918 struct ckpt_req_control *cprc = &sbi->cprc_info; 1919 1920 flush_remained_ckpt_reqs(sbi, NULL); 1921 1922 /* Let's wait for the previous dispatched checkpoint. */ 1923 while (atomic_read(&cprc->queued_ckpt)) 1924 io_schedule_timeout(DEFAULT_IO_TIMEOUT); 1925 } 1926 1927 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi) 1928 { 1929 struct ckpt_req_control *cprc = &sbi->cprc_info; 1930 1931 atomic_set(&cprc->issued_ckpt, 0); 1932 atomic_set(&cprc->total_ckpt, 0); 1933 atomic_set(&cprc->queued_ckpt, 0); 1934 cprc->ckpt_thread_ioprio = DEFAULT_CHECKPOINT_IOPRIO; 1935 init_waitqueue_head(&cprc->ckpt_wait_queue); 1936 init_llist_head(&cprc->issue_list); 1937 spin_lock_init(&cprc->stat_lock); 1938 } 1939