1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/checkpoint.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/bio.h> 10 #include <linux/mpage.h> 11 #include <linux/writeback.h> 12 #include <linux/blkdev.h> 13 #include <linux/f2fs_fs.h> 14 #include <linux/pagevec.h> 15 #include <linux/swap.h> 16 17 #include "f2fs.h" 18 #include "node.h" 19 #include "segment.h" 20 #include "trace.h" 21 #include <trace/events/f2fs.h> 22 23 static struct kmem_cache *ino_entry_slab; 24 struct kmem_cache *f2fs_inode_entry_slab; 25 26 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io) 27 { 28 f2fs_build_fault_attr(sbi, 0, 0); 29 set_ckpt_flags(sbi, CP_ERROR_FLAG); 30 if (!end_io) 31 f2fs_flush_merged_writes(sbi); 32 } 33 34 /* 35 * We guarantee no failure on the returned page. 36 */ 37 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 38 { 39 struct address_space *mapping = META_MAPPING(sbi); 40 struct page *page; 41 repeat: 42 page = f2fs_grab_cache_page(mapping, index, false); 43 if (!page) { 44 cond_resched(); 45 goto repeat; 46 } 47 f2fs_wait_on_page_writeback(page, META, true, true); 48 if (!PageUptodate(page)) 49 SetPageUptodate(page); 50 return page; 51 } 52 53 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index, 54 bool is_meta) 55 { 56 struct address_space *mapping = META_MAPPING(sbi); 57 struct page *page; 58 struct f2fs_io_info fio = { 59 .sbi = sbi, 60 .type = META, 61 .op = REQ_OP_READ, 62 .op_flags = REQ_META | REQ_PRIO, 63 .old_blkaddr = index, 64 .new_blkaddr = index, 65 .encrypted_page = NULL, 66 .is_por = !is_meta, 67 }; 68 int err; 69 70 if (unlikely(!is_meta)) 71 fio.op_flags &= ~REQ_META; 72 repeat: 73 page = f2fs_grab_cache_page(mapping, index, false); 74 if (!page) { 75 cond_resched(); 76 goto repeat; 77 } 78 if (PageUptodate(page)) 79 goto out; 80 81 fio.page = page; 82 83 err = f2fs_submit_page_bio(&fio); 84 if (err) { 85 f2fs_put_page(page, 1); 86 return ERR_PTR(err); 87 } 88 89 f2fs_update_iostat(sbi, FS_META_READ_IO, F2FS_BLKSIZE); 90 91 lock_page(page); 92 if (unlikely(page->mapping != mapping)) { 93 f2fs_put_page(page, 1); 94 goto repeat; 95 } 96 97 if (unlikely(!PageUptodate(page))) { 98 f2fs_put_page(page, 1); 99 return ERR_PTR(-EIO); 100 } 101 out: 102 return page; 103 } 104 105 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 106 { 107 return __get_meta_page(sbi, index, true); 108 } 109 110 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index) 111 { 112 struct page *page; 113 int count = 0; 114 115 retry: 116 page = __get_meta_page(sbi, index, true); 117 if (IS_ERR(page)) { 118 if (PTR_ERR(page) == -EIO && 119 ++count <= DEFAULT_RETRY_IO_COUNT) 120 goto retry; 121 f2fs_stop_checkpoint(sbi, false); 122 } 123 return page; 124 } 125 126 /* for POR only */ 127 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index) 128 { 129 return __get_meta_page(sbi, index, false); 130 } 131 132 static bool __is_bitmap_valid(struct f2fs_sb_info *sbi, block_t blkaddr, 133 int type) 134 { 135 struct seg_entry *se; 136 unsigned int segno, offset; 137 bool exist; 138 139 if (type != DATA_GENERIC_ENHANCE && type != DATA_GENERIC_ENHANCE_READ) 140 return true; 141 142 segno = GET_SEGNO(sbi, blkaddr); 143 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 144 se = get_seg_entry(sbi, segno); 145 146 exist = f2fs_test_bit(offset, se->cur_valid_map); 147 if (!exist && type == DATA_GENERIC_ENHANCE) { 148 f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d", 149 blkaddr, exist); 150 set_sbi_flag(sbi, SBI_NEED_FSCK); 151 WARN_ON(1); 152 } 153 return exist; 154 } 155 156 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 157 block_t blkaddr, int type) 158 { 159 switch (type) { 160 case META_NAT: 161 break; 162 case META_SIT: 163 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi))) 164 return false; 165 break; 166 case META_SSA: 167 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) || 168 blkaddr < SM_I(sbi)->ssa_blkaddr)) 169 return false; 170 break; 171 case META_CP: 172 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr || 173 blkaddr < __start_cp_addr(sbi))) 174 return false; 175 break; 176 case META_POR: 177 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || 178 blkaddr < MAIN_BLKADDR(sbi))) 179 return false; 180 break; 181 case DATA_GENERIC: 182 case DATA_GENERIC_ENHANCE: 183 case DATA_GENERIC_ENHANCE_READ: 184 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || 185 blkaddr < MAIN_BLKADDR(sbi))) { 186 f2fs_warn(sbi, "access invalid blkaddr:%u", 187 blkaddr); 188 set_sbi_flag(sbi, SBI_NEED_FSCK); 189 WARN_ON(1); 190 return false; 191 } else { 192 return __is_bitmap_valid(sbi, blkaddr, type); 193 } 194 break; 195 case META_GENERIC: 196 if (unlikely(blkaddr < SEG0_BLKADDR(sbi) || 197 blkaddr >= MAIN_BLKADDR(sbi))) 198 return false; 199 break; 200 default: 201 BUG(); 202 } 203 204 return true; 205 } 206 207 /* 208 * Readahead CP/NAT/SIT/SSA/POR pages 209 */ 210 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 211 int type, bool sync) 212 { 213 struct page *page; 214 block_t blkno = start; 215 struct f2fs_io_info fio = { 216 .sbi = sbi, 217 .type = META, 218 .op = REQ_OP_READ, 219 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD, 220 .encrypted_page = NULL, 221 .in_list = false, 222 .is_por = (type == META_POR), 223 }; 224 struct blk_plug plug; 225 int err; 226 227 if (unlikely(type == META_POR)) 228 fio.op_flags &= ~REQ_META; 229 230 blk_start_plug(&plug); 231 for (; nrpages-- > 0; blkno++) { 232 233 if (!f2fs_is_valid_blkaddr(sbi, blkno, type)) 234 goto out; 235 236 switch (type) { 237 case META_NAT: 238 if (unlikely(blkno >= 239 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid))) 240 blkno = 0; 241 /* get nat block addr */ 242 fio.new_blkaddr = current_nat_addr(sbi, 243 blkno * NAT_ENTRY_PER_BLOCK); 244 break; 245 case META_SIT: 246 if (unlikely(blkno >= TOTAL_SEGS(sbi))) 247 goto out; 248 /* get sit block addr */ 249 fio.new_blkaddr = current_sit_addr(sbi, 250 blkno * SIT_ENTRY_PER_BLOCK); 251 break; 252 case META_SSA: 253 case META_CP: 254 case META_POR: 255 fio.new_blkaddr = blkno; 256 break; 257 default: 258 BUG(); 259 } 260 261 page = f2fs_grab_cache_page(META_MAPPING(sbi), 262 fio.new_blkaddr, false); 263 if (!page) 264 continue; 265 if (PageUptodate(page)) { 266 f2fs_put_page(page, 1); 267 continue; 268 } 269 270 fio.page = page; 271 err = f2fs_submit_page_bio(&fio); 272 f2fs_put_page(page, err ? 1 : 0); 273 274 if (!err) 275 f2fs_update_iostat(sbi, FS_META_READ_IO, F2FS_BLKSIZE); 276 } 277 out: 278 blk_finish_plug(&plug); 279 return blkno - start; 280 } 281 282 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index) 283 { 284 struct page *page; 285 bool readahead = false; 286 287 page = find_get_page(META_MAPPING(sbi), index); 288 if (!page || !PageUptodate(page)) 289 readahead = true; 290 f2fs_put_page(page, 0); 291 292 if (readahead) 293 f2fs_ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true); 294 } 295 296 static int __f2fs_write_meta_page(struct page *page, 297 struct writeback_control *wbc, 298 enum iostat_type io_type) 299 { 300 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 301 302 trace_f2fs_writepage(page, META); 303 304 if (unlikely(f2fs_cp_error(sbi))) 305 goto redirty_out; 306 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 307 goto redirty_out; 308 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0)) 309 goto redirty_out; 310 311 f2fs_do_write_meta_page(sbi, page, io_type); 312 dec_page_count(sbi, F2FS_DIRTY_META); 313 314 if (wbc->for_reclaim) 315 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, META); 316 317 unlock_page(page); 318 319 if (unlikely(f2fs_cp_error(sbi))) 320 f2fs_submit_merged_write(sbi, META); 321 322 return 0; 323 324 redirty_out: 325 redirty_page_for_writepage(wbc, page); 326 return AOP_WRITEPAGE_ACTIVATE; 327 } 328 329 static int f2fs_write_meta_page(struct page *page, 330 struct writeback_control *wbc) 331 { 332 return __f2fs_write_meta_page(page, wbc, FS_META_IO); 333 } 334 335 static int f2fs_write_meta_pages(struct address_space *mapping, 336 struct writeback_control *wbc) 337 { 338 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 339 long diff, written; 340 341 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 342 goto skip_write; 343 344 /* collect a number of dirty meta pages and write together */ 345 if (wbc->sync_mode != WB_SYNC_ALL && 346 get_pages(sbi, F2FS_DIRTY_META) < 347 nr_pages_to_skip(sbi, META)) 348 goto skip_write; 349 350 /* if locked failed, cp will flush dirty pages instead */ 351 if (!down_write_trylock(&sbi->cp_global_sem)) 352 goto skip_write; 353 354 trace_f2fs_writepages(mapping->host, wbc, META); 355 diff = nr_pages_to_write(sbi, META, wbc); 356 written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO); 357 up_write(&sbi->cp_global_sem); 358 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff); 359 return 0; 360 361 skip_write: 362 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META); 363 trace_f2fs_writepages(mapping->host, wbc, META); 364 return 0; 365 } 366 367 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 368 long nr_to_write, enum iostat_type io_type) 369 { 370 struct address_space *mapping = META_MAPPING(sbi); 371 pgoff_t index = 0, prev = ULONG_MAX; 372 struct pagevec pvec; 373 long nwritten = 0; 374 int nr_pages; 375 struct writeback_control wbc = { 376 .for_reclaim = 0, 377 }; 378 struct blk_plug plug; 379 380 pagevec_init(&pvec); 381 382 blk_start_plug(&plug); 383 384 while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 385 PAGECACHE_TAG_DIRTY))) { 386 int i; 387 388 for (i = 0; i < nr_pages; i++) { 389 struct page *page = pvec.pages[i]; 390 391 if (prev == ULONG_MAX) 392 prev = page->index - 1; 393 if (nr_to_write != LONG_MAX && page->index != prev + 1) { 394 pagevec_release(&pvec); 395 goto stop; 396 } 397 398 lock_page(page); 399 400 if (unlikely(page->mapping != mapping)) { 401 continue_unlock: 402 unlock_page(page); 403 continue; 404 } 405 if (!PageDirty(page)) { 406 /* someone wrote it for us */ 407 goto continue_unlock; 408 } 409 410 f2fs_wait_on_page_writeback(page, META, true, true); 411 412 if (!clear_page_dirty_for_io(page)) 413 goto continue_unlock; 414 415 if (__f2fs_write_meta_page(page, &wbc, io_type)) { 416 unlock_page(page); 417 break; 418 } 419 nwritten++; 420 prev = page->index; 421 if (unlikely(nwritten >= nr_to_write)) 422 break; 423 } 424 pagevec_release(&pvec); 425 cond_resched(); 426 } 427 stop: 428 if (nwritten) 429 f2fs_submit_merged_write(sbi, type); 430 431 blk_finish_plug(&plug); 432 433 return nwritten; 434 } 435 436 static int f2fs_set_meta_page_dirty(struct page *page) 437 { 438 trace_f2fs_set_page_dirty(page, META); 439 440 if (!PageUptodate(page)) 441 SetPageUptodate(page); 442 if (!PageDirty(page)) { 443 __set_page_dirty_nobuffers(page); 444 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META); 445 f2fs_set_page_private(page, 0); 446 f2fs_trace_pid(page); 447 return 1; 448 } 449 return 0; 450 } 451 452 const struct address_space_operations f2fs_meta_aops = { 453 .writepage = f2fs_write_meta_page, 454 .writepages = f2fs_write_meta_pages, 455 .set_page_dirty = f2fs_set_meta_page_dirty, 456 .invalidatepage = f2fs_invalidate_page, 457 .releasepage = f2fs_release_page, 458 #ifdef CONFIG_MIGRATION 459 .migratepage = f2fs_migrate_page, 460 #endif 461 }; 462 463 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, 464 unsigned int devidx, int type) 465 { 466 struct inode_management *im = &sbi->im[type]; 467 struct ino_entry *e, *tmp; 468 469 tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS); 470 471 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL); 472 473 spin_lock(&im->ino_lock); 474 e = radix_tree_lookup(&im->ino_root, ino); 475 if (!e) { 476 e = tmp; 477 if (unlikely(radix_tree_insert(&im->ino_root, ino, e))) 478 f2fs_bug_on(sbi, 1); 479 480 memset(e, 0, sizeof(struct ino_entry)); 481 e->ino = ino; 482 483 list_add_tail(&e->list, &im->ino_list); 484 if (type != ORPHAN_INO) 485 im->ino_num++; 486 } 487 488 if (type == FLUSH_INO) 489 f2fs_set_bit(devidx, (char *)&e->dirty_device); 490 491 spin_unlock(&im->ino_lock); 492 radix_tree_preload_end(); 493 494 if (e != tmp) 495 kmem_cache_free(ino_entry_slab, tmp); 496 } 497 498 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 499 { 500 struct inode_management *im = &sbi->im[type]; 501 struct ino_entry *e; 502 503 spin_lock(&im->ino_lock); 504 e = radix_tree_lookup(&im->ino_root, ino); 505 if (e) { 506 list_del(&e->list); 507 radix_tree_delete(&im->ino_root, ino); 508 im->ino_num--; 509 spin_unlock(&im->ino_lock); 510 kmem_cache_free(ino_entry_slab, e); 511 return; 512 } 513 spin_unlock(&im->ino_lock); 514 } 515 516 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 517 { 518 /* add new dirty ino entry into list */ 519 __add_ino_entry(sbi, ino, 0, type); 520 } 521 522 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 523 { 524 /* remove dirty ino entry from list */ 525 __remove_ino_entry(sbi, ino, type); 526 } 527 528 /* mode should be APPEND_INO, UPDATE_INO or TRANS_DIR_INO */ 529 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode) 530 { 531 struct inode_management *im = &sbi->im[mode]; 532 struct ino_entry *e; 533 534 spin_lock(&im->ino_lock); 535 e = radix_tree_lookup(&im->ino_root, ino); 536 spin_unlock(&im->ino_lock); 537 return e ? true : false; 538 } 539 540 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all) 541 { 542 struct ino_entry *e, *tmp; 543 int i; 544 545 for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) { 546 struct inode_management *im = &sbi->im[i]; 547 548 spin_lock(&im->ino_lock); 549 list_for_each_entry_safe(e, tmp, &im->ino_list, list) { 550 list_del(&e->list); 551 radix_tree_delete(&im->ino_root, e->ino); 552 kmem_cache_free(ino_entry_slab, e); 553 im->ino_num--; 554 } 555 spin_unlock(&im->ino_lock); 556 } 557 } 558 559 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 560 unsigned int devidx, int type) 561 { 562 __add_ino_entry(sbi, ino, devidx, type); 563 } 564 565 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 566 unsigned int devidx, int type) 567 { 568 struct inode_management *im = &sbi->im[type]; 569 struct ino_entry *e; 570 bool is_dirty = false; 571 572 spin_lock(&im->ino_lock); 573 e = radix_tree_lookup(&im->ino_root, ino); 574 if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device)) 575 is_dirty = true; 576 spin_unlock(&im->ino_lock); 577 return is_dirty; 578 } 579 580 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi) 581 { 582 struct inode_management *im = &sbi->im[ORPHAN_INO]; 583 int err = 0; 584 585 spin_lock(&im->ino_lock); 586 587 if (time_to_inject(sbi, FAULT_ORPHAN)) { 588 spin_unlock(&im->ino_lock); 589 f2fs_show_injection_info(sbi, FAULT_ORPHAN); 590 return -ENOSPC; 591 } 592 593 if (unlikely(im->ino_num >= sbi->max_orphans)) 594 err = -ENOSPC; 595 else 596 im->ino_num++; 597 spin_unlock(&im->ino_lock); 598 599 return err; 600 } 601 602 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi) 603 { 604 struct inode_management *im = &sbi->im[ORPHAN_INO]; 605 606 spin_lock(&im->ino_lock); 607 f2fs_bug_on(sbi, im->ino_num == 0); 608 im->ino_num--; 609 spin_unlock(&im->ino_lock); 610 } 611 612 void f2fs_add_orphan_inode(struct inode *inode) 613 { 614 /* add new orphan ino entry into list */ 615 __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO); 616 f2fs_update_inode_page(inode); 617 } 618 619 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 620 { 621 /* remove orphan entry from orphan list */ 622 __remove_ino_entry(sbi, ino, ORPHAN_INO); 623 } 624 625 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 626 { 627 struct inode *inode; 628 struct node_info ni; 629 int err; 630 631 inode = f2fs_iget_retry(sbi->sb, ino); 632 if (IS_ERR(inode)) { 633 /* 634 * there should be a bug that we can't find the entry 635 * to orphan inode. 636 */ 637 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT); 638 return PTR_ERR(inode); 639 } 640 641 err = dquot_initialize(inode); 642 if (err) { 643 iput(inode); 644 goto err_out; 645 } 646 647 clear_nlink(inode); 648 649 /* truncate all the data during iput */ 650 iput(inode); 651 652 err = f2fs_get_node_info(sbi, ino, &ni); 653 if (err) 654 goto err_out; 655 656 /* ENOMEM was fully retried in f2fs_evict_inode. */ 657 if (ni.blk_addr != NULL_ADDR) { 658 err = -EIO; 659 goto err_out; 660 } 661 return 0; 662 663 err_out: 664 set_sbi_flag(sbi, SBI_NEED_FSCK); 665 f2fs_warn(sbi, "%s: orphan failed (ino=%x), run fsck to fix.", 666 __func__, ino); 667 return err; 668 } 669 670 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi) 671 { 672 block_t start_blk, orphan_blocks, i, j; 673 unsigned int s_flags = sbi->sb->s_flags; 674 int err = 0; 675 #ifdef CONFIG_QUOTA 676 int quota_enabled; 677 #endif 678 679 if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG)) 680 return 0; 681 682 if (bdev_read_only(sbi->sb->s_bdev)) { 683 f2fs_info(sbi, "write access unavailable, skipping orphan cleanup"); 684 return 0; 685 } 686 687 if (s_flags & SB_RDONLY) { 688 f2fs_info(sbi, "orphan cleanup on readonly fs"); 689 sbi->sb->s_flags &= ~SB_RDONLY; 690 } 691 692 #ifdef CONFIG_QUOTA 693 /* Needed for iput() to work correctly and not trash data */ 694 sbi->sb->s_flags |= SB_ACTIVE; 695 696 /* 697 * Turn on quotas which were not enabled for read-only mounts if 698 * filesystem has quota feature, so that they are updated correctly. 699 */ 700 quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY); 701 #endif 702 703 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi); 704 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi); 705 706 f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true); 707 708 for (i = 0; i < orphan_blocks; i++) { 709 struct page *page; 710 struct f2fs_orphan_block *orphan_blk; 711 712 page = f2fs_get_meta_page(sbi, start_blk + i); 713 if (IS_ERR(page)) { 714 err = PTR_ERR(page); 715 goto out; 716 } 717 718 orphan_blk = (struct f2fs_orphan_block *)page_address(page); 719 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) { 720 nid_t ino = le32_to_cpu(orphan_blk->ino[j]); 721 err = recover_orphan_inode(sbi, ino); 722 if (err) { 723 f2fs_put_page(page, 1); 724 goto out; 725 } 726 } 727 f2fs_put_page(page, 1); 728 } 729 /* clear Orphan Flag */ 730 clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG); 731 out: 732 set_sbi_flag(sbi, SBI_IS_RECOVERED); 733 734 #ifdef CONFIG_QUOTA 735 /* Turn quotas off */ 736 if (quota_enabled) 737 f2fs_quota_off_umount(sbi->sb); 738 #endif 739 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 740 741 return err; 742 } 743 744 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk) 745 { 746 struct list_head *head; 747 struct f2fs_orphan_block *orphan_blk = NULL; 748 unsigned int nentries = 0; 749 unsigned short index = 1; 750 unsigned short orphan_blocks; 751 struct page *page = NULL; 752 struct ino_entry *orphan = NULL; 753 struct inode_management *im = &sbi->im[ORPHAN_INO]; 754 755 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num); 756 757 /* 758 * we don't need to do spin_lock(&im->ino_lock) here, since all the 759 * orphan inode operations are covered under f2fs_lock_op(). 760 * And, spin_lock should be avoided due to page operations below. 761 */ 762 head = &im->ino_list; 763 764 /* loop for each orphan inode entry and write them in Jornal block */ 765 list_for_each_entry(orphan, head, list) { 766 if (!page) { 767 page = f2fs_grab_meta_page(sbi, start_blk++); 768 orphan_blk = 769 (struct f2fs_orphan_block *)page_address(page); 770 memset(orphan_blk, 0, sizeof(*orphan_blk)); 771 } 772 773 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino); 774 775 if (nentries == F2FS_ORPHANS_PER_BLOCK) { 776 /* 777 * an orphan block is full of 1020 entries, 778 * then we need to flush current orphan blocks 779 * and bring another one in memory 780 */ 781 orphan_blk->blk_addr = cpu_to_le16(index); 782 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 783 orphan_blk->entry_count = cpu_to_le32(nentries); 784 set_page_dirty(page); 785 f2fs_put_page(page, 1); 786 index++; 787 nentries = 0; 788 page = NULL; 789 } 790 } 791 792 if (page) { 793 orphan_blk->blk_addr = cpu_to_le16(index); 794 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 795 orphan_blk->entry_count = cpu_to_le32(nentries); 796 set_page_dirty(page); 797 f2fs_put_page(page, 1); 798 } 799 } 800 801 static __u32 f2fs_checkpoint_chksum(struct f2fs_sb_info *sbi, 802 struct f2fs_checkpoint *ckpt) 803 { 804 unsigned int chksum_ofs = le32_to_cpu(ckpt->checksum_offset); 805 __u32 chksum; 806 807 chksum = f2fs_crc32(sbi, ckpt, chksum_ofs); 808 if (chksum_ofs < CP_CHKSUM_OFFSET) { 809 chksum_ofs += sizeof(chksum); 810 chksum = f2fs_chksum(sbi, chksum, (__u8 *)ckpt + chksum_ofs, 811 F2FS_BLKSIZE - chksum_ofs); 812 } 813 return chksum; 814 } 815 816 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr, 817 struct f2fs_checkpoint **cp_block, struct page **cp_page, 818 unsigned long long *version) 819 { 820 size_t crc_offset = 0; 821 __u32 crc; 822 823 *cp_page = f2fs_get_meta_page(sbi, cp_addr); 824 if (IS_ERR(*cp_page)) 825 return PTR_ERR(*cp_page); 826 827 *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page); 828 829 crc_offset = le32_to_cpu((*cp_block)->checksum_offset); 830 if (crc_offset < CP_MIN_CHKSUM_OFFSET || 831 crc_offset > CP_CHKSUM_OFFSET) { 832 f2fs_put_page(*cp_page, 1); 833 f2fs_warn(sbi, "invalid crc_offset: %zu", crc_offset); 834 return -EINVAL; 835 } 836 837 crc = f2fs_checkpoint_chksum(sbi, *cp_block); 838 if (crc != cur_cp_crc(*cp_block)) { 839 f2fs_put_page(*cp_page, 1); 840 f2fs_warn(sbi, "invalid crc value"); 841 return -EINVAL; 842 } 843 844 *version = cur_cp_version(*cp_block); 845 return 0; 846 } 847 848 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi, 849 block_t cp_addr, unsigned long long *version) 850 { 851 struct page *cp_page_1 = NULL, *cp_page_2 = NULL; 852 struct f2fs_checkpoint *cp_block = NULL; 853 unsigned long long cur_version = 0, pre_version = 0; 854 int err; 855 856 err = get_checkpoint_version(sbi, cp_addr, &cp_block, 857 &cp_page_1, version); 858 if (err) 859 return NULL; 860 861 if (le32_to_cpu(cp_block->cp_pack_total_block_count) > 862 sbi->blocks_per_seg) { 863 f2fs_warn(sbi, "invalid cp_pack_total_block_count:%u", 864 le32_to_cpu(cp_block->cp_pack_total_block_count)); 865 goto invalid_cp; 866 } 867 pre_version = *version; 868 869 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1; 870 err = get_checkpoint_version(sbi, cp_addr, &cp_block, 871 &cp_page_2, version); 872 if (err) 873 goto invalid_cp; 874 cur_version = *version; 875 876 if (cur_version == pre_version) { 877 *version = cur_version; 878 f2fs_put_page(cp_page_2, 1); 879 return cp_page_1; 880 } 881 f2fs_put_page(cp_page_2, 1); 882 invalid_cp: 883 f2fs_put_page(cp_page_1, 1); 884 return NULL; 885 } 886 887 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi) 888 { 889 struct f2fs_checkpoint *cp_block; 890 struct f2fs_super_block *fsb = sbi->raw_super; 891 struct page *cp1, *cp2, *cur_page; 892 unsigned long blk_size = sbi->blocksize; 893 unsigned long long cp1_version = 0, cp2_version = 0; 894 unsigned long long cp_start_blk_no; 895 unsigned int cp_blks = 1 + __cp_payload(sbi); 896 block_t cp_blk_no; 897 int i; 898 int err; 899 900 sbi->ckpt = f2fs_kvzalloc(sbi, array_size(blk_size, cp_blks), 901 GFP_KERNEL); 902 if (!sbi->ckpt) 903 return -ENOMEM; 904 /* 905 * Finding out valid cp block involves read both 906 * sets( cp pack 1 and cp pack 2) 907 */ 908 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr); 909 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); 910 911 /* The second checkpoint pack should start at the next segment */ 912 cp_start_blk_no += ((unsigned long long)1) << 913 le32_to_cpu(fsb->log_blocks_per_seg); 914 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); 915 916 if (cp1 && cp2) { 917 if (ver_after(cp2_version, cp1_version)) 918 cur_page = cp2; 919 else 920 cur_page = cp1; 921 } else if (cp1) { 922 cur_page = cp1; 923 } else if (cp2) { 924 cur_page = cp2; 925 } else { 926 err = -EFSCORRUPTED; 927 goto fail_no_cp; 928 } 929 930 cp_block = (struct f2fs_checkpoint *)page_address(cur_page); 931 memcpy(sbi->ckpt, cp_block, blk_size); 932 933 if (cur_page == cp1) 934 sbi->cur_cp_pack = 1; 935 else 936 sbi->cur_cp_pack = 2; 937 938 /* Sanity checking of checkpoint */ 939 if (f2fs_sanity_check_ckpt(sbi)) { 940 err = -EFSCORRUPTED; 941 goto free_fail_no_cp; 942 } 943 944 if (cp_blks <= 1) 945 goto done; 946 947 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr); 948 if (cur_page == cp2) 949 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg); 950 951 for (i = 1; i < cp_blks; i++) { 952 void *sit_bitmap_ptr; 953 unsigned char *ckpt = (unsigned char *)sbi->ckpt; 954 955 cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i); 956 if (IS_ERR(cur_page)) { 957 err = PTR_ERR(cur_page); 958 goto free_fail_no_cp; 959 } 960 sit_bitmap_ptr = page_address(cur_page); 961 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size); 962 f2fs_put_page(cur_page, 1); 963 } 964 done: 965 f2fs_put_page(cp1, 1); 966 f2fs_put_page(cp2, 1); 967 return 0; 968 969 free_fail_no_cp: 970 f2fs_put_page(cp1, 1); 971 f2fs_put_page(cp2, 1); 972 fail_no_cp: 973 kvfree(sbi->ckpt); 974 return err; 975 } 976 977 static void __add_dirty_inode(struct inode *inode, enum inode_type type) 978 { 979 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 980 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 981 982 if (is_inode_flag_set(inode, flag)) 983 return; 984 985 set_inode_flag(inode, flag); 986 if (!f2fs_is_volatile_file(inode)) 987 list_add_tail(&F2FS_I(inode)->dirty_list, 988 &sbi->inode_list[type]); 989 stat_inc_dirty_inode(sbi, type); 990 } 991 992 static void __remove_dirty_inode(struct inode *inode, enum inode_type type) 993 { 994 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 995 996 if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag)) 997 return; 998 999 list_del_init(&F2FS_I(inode)->dirty_list); 1000 clear_inode_flag(inode, flag); 1001 stat_dec_dirty_inode(F2FS_I_SB(inode), type); 1002 } 1003 1004 void f2fs_update_dirty_page(struct inode *inode, struct page *page) 1005 { 1006 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1007 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 1008 1009 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1010 !S_ISLNK(inode->i_mode)) 1011 return; 1012 1013 spin_lock(&sbi->inode_lock[type]); 1014 if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH)) 1015 __add_dirty_inode(inode, type); 1016 inode_inc_dirty_pages(inode); 1017 spin_unlock(&sbi->inode_lock[type]); 1018 1019 f2fs_set_page_private(page, 0); 1020 f2fs_trace_pid(page); 1021 } 1022 1023 void f2fs_remove_dirty_inode(struct inode *inode) 1024 { 1025 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1026 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 1027 1028 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1029 !S_ISLNK(inode->i_mode)) 1030 return; 1031 1032 if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH)) 1033 return; 1034 1035 spin_lock(&sbi->inode_lock[type]); 1036 __remove_dirty_inode(inode, type); 1037 spin_unlock(&sbi->inode_lock[type]); 1038 } 1039 1040 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type) 1041 { 1042 struct list_head *head; 1043 struct inode *inode; 1044 struct f2fs_inode_info *fi; 1045 bool is_dir = (type == DIR_INODE); 1046 unsigned long ino = 0; 1047 1048 trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir, 1049 get_pages(sbi, is_dir ? 1050 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 1051 retry: 1052 if (unlikely(f2fs_cp_error(sbi))) { 1053 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir, 1054 get_pages(sbi, is_dir ? 1055 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 1056 return -EIO; 1057 } 1058 1059 spin_lock(&sbi->inode_lock[type]); 1060 1061 head = &sbi->inode_list[type]; 1062 if (list_empty(head)) { 1063 spin_unlock(&sbi->inode_lock[type]); 1064 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir, 1065 get_pages(sbi, is_dir ? 1066 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 1067 return 0; 1068 } 1069 fi = list_first_entry(head, struct f2fs_inode_info, dirty_list); 1070 inode = igrab(&fi->vfs_inode); 1071 spin_unlock(&sbi->inode_lock[type]); 1072 if (inode) { 1073 unsigned long cur_ino = inode->i_ino; 1074 1075 F2FS_I(inode)->cp_task = current; 1076 1077 filemap_fdatawrite(inode->i_mapping); 1078 1079 F2FS_I(inode)->cp_task = NULL; 1080 1081 iput(inode); 1082 /* We need to give cpu to another writers. */ 1083 if (ino == cur_ino) 1084 cond_resched(); 1085 else 1086 ino = cur_ino; 1087 } else { 1088 /* 1089 * We should submit bio, since it exists several 1090 * wribacking dentry pages in the freeing inode. 1091 */ 1092 f2fs_submit_merged_write(sbi, DATA); 1093 cond_resched(); 1094 } 1095 goto retry; 1096 } 1097 1098 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi) 1099 { 1100 struct list_head *head = &sbi->inode_list[DIRTY_META]; 1101 struct inode *inode; 1102 struct f2fs_inode_info *fi; 1103 s64 total = get_pages(sbi, F2FS_DIRTY_IMETA); 1104 1105 while (total--) { 1106 if (unlikely(f2fs_cp_error(sbi))) 1107 return -EIO; 1108 1109 spin_lock(&sbi->inode_lock[DIRTY_META]); 1110 if (list_empty(head)) { 1111 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1112 return 0; 1113 } 1114 fi = list_first_entry(head, struct f2fs_inode_info, 1115 gdirty_list); 1116 inode = igrab(&fi->vfs_inode); 1117 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1118 if (inode) { 1119 sync_inode_metadata(inode, 0); 1120 1121 /* it's on eviction */ 1122 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) 1123 f2fs_update_inode_page(inode); 1124 iput(inode); 1125 } 1126 } 1127 return 0; 1128 } 1129 1130 static void __prepare_cp_block(struct f2fs_sb_info *sbi) 1131 { 1132 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1133 struct f2fs_nm_info *nm_i = NM_I(sbi); 1134 nid_t last_nid = nm_i->next_scan_nid; 1135 1136 next_free_nid(sbi, &last_nid); 1137 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi)); 1138 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi)); 1139 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi)); 1140 ckpt->next_free_nid = cpu_to_le32(last_nid); 1141 } 1142 1143 static bool __need_flush_quota(struct f2fs_sb_info *sbi) 1144 { 1145 bool ret = false; 1146 1147 if (!is_journalled_quota(sbi)) 1148 return false; 1149 1150 down_write(&sbi->quota_sem); 1151 if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) { 1152 ret = false; 1153 } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) { 1154 ret = false; 1155 } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_FLUSH)) { 1156 clear_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 1157 ret = true; 1158 } else if (get_pages(sbi, F2FS_DIRTY_QDATA)) { 1159 ret = true; 1160 } 1161 up_write(&sbi->quota_sem); 1162 return ret; 1163 } 1164 1165 /* 1166 * Freeze all the FS-operations for checkpoint. 1167 */ 1168 static int block_operations(struct f2fs_sb_info *sbi) 1169 { 1170 struct writeback_control wbc = { 1171 .sync_mode = WB_SYNC_ALL, 1172 .nr_to_write = LONG_MAX, 1173 .for_reclaim = 0, 1174 }; 1175 int err = 0, cnt = 0; 1176 1177 /* 1178 * Let's flush inline_data in dirty node pages. 1179 */ 1180 f2fs_flush_inline_data(sbi); 1181 1182 retry_flush_quotas: 1183 f2fs_lock_all(sbi); 1184 if (__need_flush_quota(sbi)) { 1185 int locked; 1186 1187 if (++cnt > DEFAULT_RETRY_QUOTA_FLUSH_COUNT) { 1188 set_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH); 1189 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 1190 goto retry_flush_dents; 1191 } 1192 f2fs_unlock_all(sbi); 1193 1194 /* only failed during mount/umount/freeze/quotactl */ 1195 locked = down_read_trylock(&sbi->sb->s_umount); 1196 f2fs_quota_sync(sbi->sb, -1); 1197 if (locked) 1198 up_read(&sbi->sb->s_umount); 1199 cond_resched(); 1200 goto retry_flush_quotas; 1201 } 1202 1203 retry_flush_dents: 1204 /* write all the dirty dentry pages */ 1205 if (get_pages(sbi, F2FS_DIRTY_DENTS)) { 1206 f2fs_unlock_all(sbi); 1207 err = f2fs_sync_dirty_inodes(sbi, DIR_INODE); 1208 if (err) 1209 return err; 1210 cond_resched(); 1211 goto retry_flush_quotas; 1212 } 1213 1214 /* 1215 * POR: we should ensure that there are no dirty node pages 1216 * until finishing nat/sit flush. inode->i_blocks can be updated. 1217 */ 1218 down_write(&sbi->node_change); 1219 1220 if (get_pages(sbi, F2FS_DIRTY_IMETA)) { 1221 up_write(&sbi->node_change); 1222 f2fs_unlock_all(sbi); 1223 err = f2fs_sync_inode_meta(sbi); 1224 if (err) 1225 return err; 1226 cond_resched(); 1227 goto retry_flush_quotas; 1228 } 1229 1230 retry_flush_nodes: 1231 down_write(&sbi->node_write); 1232 1233 if (get_pages(sbi, F2FS_DIRTY_NODES)) { 1234 up_write(&sbi->node_write); 1235 atomic_inc(&sbi->wb_sync_req[NODE]); 1236 err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO); 1237 atomic_dec(&sbi->wb_sync_req[NODE]); 1238 if (err) { 1239 up_write(&sbi->node_change); 1240 f2fs_unlock_all(sbi); 1241 return err; 1242 } 1243 cond_resched(); 1244 goto retry_flush_nodes; 1245 } 1246 1247 /* 1248 * sbi->node_change is used only for AIO write_begin path which produces 1249 * dirty node blocks and some checkpoint values by block allocation. 1250 */ 1251 __prepare_cp_block(sbi); 1252 up_write(&sbi->node_change); 1253 return err; 1254 } 1255 1256 static void unblock_operations(struct f2fs_sb_info *sbi) 1257 { 1258 up_write(&sbi->node_write); 1259 f2fs_unlock_all(sbi); 1260 } 1261 1262 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type) 1263 { 1264 DEFINE_WAIT(wait); 1265 1266 for (;;) { 1267 if (!get_pages(sbi, type)) 1268 break; 1269 1270 if (unlikely(f2fs_cp_error(sbi))) 1271 break; 1272 1273 if (type == F2FS_DIRTY_META) 1274 f2fs_sync_meta_pages(sbi, META, LONG_MAX, 1275 FS_CP_META_IO); 1276 else if (type == F2FS_WB_CP_DATA) 1277 f2fs_submit_merged_write(sbi, DATA); 1278 1279 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE); 1280 io_schedule_timeout(DEFAULT_IO_TIMEOUT); 1281 } 1282 finish_wait(&sbi->cp_wait, &wait); 1283 } 1284 1285 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1286 { 1287 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num; 1288 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1289 unsigned long flags; 1290 1291 spin_lock_irqsave(&sbi->cp_lock, flags); 1292 1293 if ((cpc->reason & CP_UMOUNT) && 1294 le32_to_cpu(ckpt->cp_pack_total_block_count) > 1295 sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks) 1296 disable_nat_bits(sbi, false); 1297 1298 if (cpc->reason & CP_TRIMMED) 1299 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG); 1300 else 1301 __clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG); 1302 1303 if (cpc->reason & CP_UMOUNT) 1304 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1305 else 1306 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1307 1308 if (cpc->reason & CP_FASTBOOT) 1309 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1310 else 1311 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1312 1313 if (orphan_num) 1314 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1315 else 1316 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1317 1318 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1319 __set_ckpt_flags(ckpt, CP_FSCK_FLAG); 1320 1321 if (is_sbi_flag_set(sbi, SBI_IS_RESIZEFS)) 1322 __set_ckpt_flags(ckpt, CP_RESIZEFS_FLAG); 1323 else 1324 __clear_ckpt_flags(ckpt, CP_RESIZEFS_FLAG); 1325 1326 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED)) 1327 __set_ckpt_flags(ckpt, CP_DISABLED_FLAG); 1328 else 1329 __clear_ckpt_flags(ckpt, CP_DISABLED_FLAG); 1330 1331 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK)) 1332 __set_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG); 1333 else 1334 __clear_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG); 1335 1336 if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) 1337 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); 1338 else 1339 __clear_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); 1340 1341 if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) 1342 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); 1343 1344 /* set this flag to activate crc|cp_ver for recovery */ 1345 __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG); 1346 __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG); 1347 1348 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1349 } 1350 1351 static void commit_checkpoint(struct f2fs_sb_info *sbi, 1352 void *src, block_t blk_addr) 1353 { 1354 struct writeback_control wbc = { 1355 .for_reclaim = 0, 1356 }; 1357 1358 /* 1359 * pagevec_lookup_tag and lock_page again will take 1360 * some extra time. Therefore, f2fs_update_meta_pages and 1361 * f2fs_sync_meta_pages are combined in this function. 1362 */ 1363 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 1364 int err; 1365 1366 f2fs_wait_on_page_writeback(page, META, true, true); 1367 1368 memcpy(page_address(page), src, PAGE_SIZE); 1369 1370 set_page_dirty(page); 1371 if (unlikely(!clear_page_dirty_for_io(page))) 1372 f2fs_bug_on(sbi, 1); 1373 1374 /* writeout cp pack 2 page */ 1375 err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO); 1376 if (unlikely(err && f2fs_cp_error(sbi))) { 1377 f2fs_put_page(page, 1); 1378 return; 1379 } 1380 1381 f2fs_bug_on(sbi, err); 1382 f2fs_put_page(page, 0); 1383 1384 /* submit checkpoint (with barrier if NOBARRIER is not set) */ 1385 f2fs_submit_merged_write(sbi, META_FLUSH); 1386 } 1387 1388 static inline u64 get_sectors_written(struct block_device *bdev) 1389 { 1390 return (u64)part_stat_read(bdev, sectors[STAT_WRITE]); 1391 } 1392 1393 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi) 1394 { 1395 if (f2fs_is_multi_device(sbi)) { 1396 u64 sectors = 0; 1397 int i; 1398 1399 for (i = 0; i < sbi->s_ndevs; i++) 1400 sectors += get_sectors_written(FDEV(i).bdev); 1401 1402 return sectors; 1403 } 1404 1405 return get_sectors_written(sbi->sb->s_bdev); 1406 } 1407 1408 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1409 { 1410 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1411 struct f2fs_nm_info *nm_i = NM_I(sbi); 1412 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags; 1413 block_t start_blk; 1414 unsigned int data_sum_blocks, orphan_blocks; 1415 __u32 crc32 = 0; 1416 int i; 1417 int cp_payload_blks = __cp_payload(sbi); 1418 struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 1419 u64 kbytes_written; 1420 int err; 1421 1422 /* Flush all the NAT/SIT pages */ 1423 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO); 1424 1425 /* start to update checkpoint, cp ver is already updated previously */ 1426 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true)); 1427 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi)); 1428 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 1429 ckpt->cur_node_segno[i] = 1430 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE)); 1431 ckpt->cur_node_blkoff[i] = 1432 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE)); 1433 ckpt->alloc_type[i + CURSEG_HOT_NODE] = 1434 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE); 1435 } 1436 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 1437 ckpt->cur_data_segno[i] = 1438 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA)); 1439 ckpt->cur_data_blkoff[i] = 1440 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA)); 1441 ckpt->alloc_type[i + CURSEG_HOT_DATA] = 1442 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA); 1443 } 1444 1445 /* 2 cp + n data seg summary + orphan inode blocks */ 1446 data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false); 1447 spin_lock_irqsave(&sbi->cp_lock, flags); 1448 if (data_sum_blocks < NR_CURSEG_DATA_TYPE) 1449 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1450 else 1451 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1452 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1453 1454 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num); 1455 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks + 1456 orphan_blocks); 1457 1458 if (__remain_node_summaries(cpc->reason)) 1459 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+ 1460 cp_payload_blks + data_sum_blocks + 1461 orphan_blocks + NR_CURSEG_NODE_TYPE); 1462 else 1463 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + 1464 cp_payload_blks + data_sum_blocks + 1465 orphan_blocks); 1466 1467 /* update ckpt flag for checkpoint */ 1468 update_ckpt_flags(sbi, cpc); 1469 1470 /* update SIT/NAT bitmap */ 1471 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP)); 1472 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP)); 1473 1474 crc32 = f2fs_checkpoint_chksum(sbi, ckpt); 1475 *((__le32 *)((unsigned char *)ckpt + 1476 le32_to_cpu(ckpt->checksum_offset))) 1477 = cpu_to_le32(crc32); 1478 1479 start_blk = __start_cp_next_addr(sbi); 1480 1481 /* write nat bits */ 1482 if (enabled_nat_bits(sbi, cpc)) { 1483 __u64 cp_ver = cur_cp_version(ckpt); 1484 block_t blk; 1485 1486 cp_ver |= ((__u64)crc32 << 32); 1487 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver); 1488 1489 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks; 1490 for (i = 0; i < nm_i->nat_bits_blocks; i++) 1491 f2fs_update_meta_page(sbi, nm_i->nat_bits + 1492 (i << F2FS_BLKSIZE_BITS), blk + i); 1493 } 1494 1495 /* write out checkpoint buffer at block 0 */ 1496 f2fs_update_meta_page(sbi, ckpt, start_blk++); 1497 1498 for (i = 1; i < 1 + cp_payload_blks; i++) 1499 f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE, 1500 start_blk++); 1501 1502 if (orphan_num) { 1503 write_orphan_inodes(sbi, start_blk); 1504 start_blk += orphan_blocks; 1505 } 1506 1507 f2fs_write_data_summaries(sbi, start_blk); 1508 start_blk += data_sum_blocks; 1509 1510 /* Record write statistics in the hot node summary */ 1511 kbytes_written = sbi->kbytes_written; 1512 kbytes_written += (f2fs_get_sectors_written(sbi) - 1513 sbi->sectors_written_start) >> 1; 1514 seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written); 1515 1516 if (__remain_node_summaries(cpc->reason)) { 1517 f2fs_write_node_summaries(sbi, start_blk); 1518 start_blk += NR_CURSEG_NODE_TYPE; 1519 } 1520 1521 /* update user_block_counts */ 1522 sbi->last_valid_block_count = sbi->total_valid_block_count; 1523 percpu_counter_set(&sbi->alloc_valid_block_count, 0); 1524 1525 /* Here, we have one bio having CP pack except cp pack 2 page */ 1526 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO); 1527 /* Wait for all dirty meta pages to be submitted for IO */ 1528 f2fs_wait_on_all_pages(sbi, F2FS_DIRTY_META); 1529 1530 /* wait for previous submitted meta pages writeback */ 1531 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA); 1532 1533 /* flush all device cache */ 1534 err = f2fs_flush_device_cache(sbi); 1535 if (err) 1536 return err; 1537 1538 /* barrier and flush checkpoint cp pack 2 page if it can */ 1539 commit_checkpoint(sbi, ckpt, start_blk); 1540 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA); 1541 1542 /* 1543 * invalidate intermediate page cache borrowed from meta inode which are 1544 * used for migration of encrypted, verity or compressed inode's blocks. 1545 */ 1546 if (f2fs_sb_has_encrypt(sbi) || f2fs_sb_has_verity(sbi) || 1547 f2fs_sb_has_compression(sbi)) 1548 invalidate_mapping_pages(META_MAPPING(sbi), 1549 MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1); 1550 1551 f2fs_release_ino_entry(sbi, false); 1552 1553 f2fs_reset_fsync_node_info(sbi); 1554 1555 clear_sbi_flag(sbi, SBI_IS_DIRTY); 1556 clear_sbi_flag(sbi, SBI_NEED_CP); 1557 clear_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH); 1558 1559 spin_lock(&sbi->stat_lock); 1560 sbi->unusable_block_count = 0; 1561 spin_unlock(&sbi->stat_lock); 1562 1563 __set_cp_next_pack(sbi); 1564 1565 /* 1566 * redirty superblock if metadata like node page or inode cache is 1567 * updated during writing checkpoint. 1568 */ 1569 if (get_pages(sbi, F2FS_DIRTY_NODES) || 1570 get_pages(sbi, F2FS_DIRTY_IMETA)) 1571 set_sbi_flag(sbi, SBI_IS_DIRTY); 1572 1573 f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS)); 1574 1575 return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0; 1576 } 1577 1578 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1579 { 1580 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1581 unsigned long long ckpt_ver; 1582 int err = 0; 1583 1584 if (f2fs_readonly(sbi->sb) || f2fs_hw_is_readonly(sbi)) 1585 return -EROFS; 1586 1587 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 1588 if (cpc->reason != CP_PAUSE) 1589 return 0; 1590 f2fs_warn(sbi, "Start checkpoint disabled!"); 1591 } 1592 if (cpc->reason != CP_RESIZE) 1593 down_write(&sbi->cp_global_sem); 1594 1595 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) && 1596 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) || 1597 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks))) 1598 goto out; 1599 if (unlikely(f2fs_cp_error(sbi))) { 1600 err = -EIO; 1601 goto out; 1602 } 1603 1604 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops"); 1605 1606 err = block_operations(sbi); 1607 if (err) 1608 goto out; 1609 1610 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops"); 1611 1612 f2fs_flush_merged_writes(sbi); 1613 1614 /* this is the case of multiple fstrims without any changes */ 1615 if (cpc->reason & CP_DISCARD) { 1616 if (!f2fs_exist_trim_candidates(sbi, cpc)) { 1617 unblock_operations(sbi); 1618 goto out; 1619 } 1620 1621 if (NM_I(sbi)->nat_cnt[DIRTY_NAT] == 0 && 1622 SIT_I(sbi)->dirty_sentries == 0 && 1623 prefree_segments(sbi) == 0) { 1624 f2fs_flush_sit_entries(sbi, cpc); 1625 f2fs_clear_prefree_segments(sbi, cpc); 1626 unblock_operations(sbi); 1627 goto out; 1628 } 1629 } 1630 1631 /* 1632 * update checkpoint pack index 1633 * Increase the version number so that 1634 * SIT entries and seg summaries are written at correct place 1635 */ 1636 ckpt_ver = cur_cp_version(ckpt); 1637 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver); 1638 1639 /* write cached NAT/SIT entries to NAT/SIT area */ 1640 err = f2fs_flush_nat_entries(sbi, cpc); 1641 if (err) 1642 goto stop; 1643 1644 f2fs_flush_sit_entries(sbi, cpc); 1645 1646 /* save inmem log status */ 1647 f2fs_save_inmem_curseg(sbi); 1648 1649 err = do_checkpoint(sbi, cpc); 1650 if (err) 1651 f2fs_release_discard_addrs(sbi); 1652 else 1653 f2fs_clear_prefree_segments(sbi, cpc); 1654 1655 f2fs_restore_inmem_curseg(sbi); 1656 stop: 1657 unblock_operations(sbi); 1658 stat_inc_cp_count(sbi->stat_info); 1659 1660 if (cpc->reason & CP_RECOVERY) 1661 f2fs_notice(sbi, "checkpoint: version = %llx", ckpt_ver); 1662 1663 /* update CP_TIME to trigger checkpoint periodically */ 1664 f2fs_update_time(sbi, CP_TIME); 1665 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint"); 1666 out: 1667 if (cpc->reason != CP_RESIZE) 1668 up_write(&sbi->cp_global_sem); 1669 return err; 1670 } 1671 1672 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi) 1673 { 1674 int i; 1675 1676 for (i = 0; i < MAX_INO_ENTRY; i++) { 1677 struct inode_management *im = &sbi->im[i]; 1678 1679 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC); 1680 spin_lock_init(&im->ino_lock); 1681 INIT_LIST_HEAD(&im->ino_list); 1682 im->ino_num = 0; 1683 } 1684 1685 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS - 1686 NR_CURSEG_PERSIST_TYPE - __cp_payload(sbi)) * 1687 F2FS_ORPHANS_PER_BLOCK; 1688 } 1689 1690 int __init f2fs_create_checkpoint_caches(void) 1691 { 1692 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry", 1693 sizeof(struct ino_entry)); 1694 if (!ino_entry_slab) 1695 return -ENOMEM; 1696 f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry", 1697 sizeof(struct inode_entry)); 1698 if (!f2fs_inode_entry_slab) { 1699 kmem_cache_destroy(ino_entry_slab); 1700 return -ENOMEM; 1701 } 1702 return 0; 1703 } 1704 1705 void f2fs_destroy_checkpoint_caches(void) 1706 { 1707 kmem_cache_destroy(ino_entry_slab); 1708 kmem_cache_destroy(f2fs_inode_entry_slab); 1709 } 1710