1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/checkpoint.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/bio.h> 10 #include <linux/mpage.h> 11 #include <linux/writeback.h> 12 #include <linux/blkdev.h> 13 #include <linux/f2fs_fs.h> 14 #include <linux/pagevec.h> 15 #include <linux/swap.h> 16 #include <linux/kthread.h> 17 18 #include "f2fs.h" 19 #include "node.h" 20 #include "segment.h" 21 #include "iostat.h" 22 #include <trace/events/f2fs.h> 23 24 #define DEFAULT_CHECKPOINT_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 25 26 static struct kmem_cache *ino_entry_slab; 27 struct kmem_cache *f2fs_inode_entry_slab; 28 29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io, 30 unsigned char reason) 31 { 32 f2fs_build_fault_attr(sbi, 0, 0); 33 set_ckpt_flags(sbi, CP_ERROR_FLAG); 34 if (!end_io) { 35 f2fs_flush_merged_writes(sbi); 36 37 f2fs_handle_stop(sbi, reason); 38 } 39 } 40 41 /* 42 * We guarantee no failure on the returned page. 43 */ 44 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 45 { 46 struct address_space *mapping = META_MAPPING(sbi); 47 struct page *page; 48 repeat: 49 page = f2fs_grab_cache_page(mapping, index, false); 50 if (!page) { 51 cond_resched(); 52 goto repeat; 53 } 54 f2fs_wait_on_page_writeback(page, META, true, true); 55 if (!PageUptodate(page)) 56 SetPageUptodate(page); 57 return page; 58 } 59 60 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index, 61 bool is_meta) 62 { 63 struct address_space *mapping = META_MAPPING(sbi); 64 struct page *page; 65 struct f2fs_io_info fio = { 66 .sbi = sbi, 67 .type = META, 68 .op = REQ_OP_READ, 69 .op_flags = REQ_META | REQ_PRIO, 70 .old_blkaddr = index, 71 .new_blkaddr = index, 72 .encrypted_page = NULL, 73 .is_por = !is_meta, 74 }; 75 int err; 76 77 if (unlikely(!is_meta)) 78 fio.op_flags &= ~REQ_META; 79 repeat: 80 page = f2fs_grab_cache_page(mapping, index, false); 81 if (!page) { 82 cond_resched(); 83 goto repeat; 84 } 85 if (PageUptodate(page)) 86 goto out; 87 88 fio.page = page; 89 90 err = f2fs_submit_page_bio(&fio); 91 if (err) { 92 f2fs_put_page(page, 1); 93 return ERR_PTR(err); 94 } 95 96 f2fs_update_iostat(sbi, NULL, FS_META_READ_IO, F2FS_BLKSIZE); 97 98 lock_page(page); 99 if (unlikely(page->mapping != mapping)) { 100 f2fs_put_page(page, 1); 101 goto repeat; 102 } 103 104 if (unlikely(!PageUptodate(page))) { 105 f2fs_handle_page_eio(sbi, page->index, META); 106 f2fs_put_page(page, 1); 107 return ERR_PTR(-EIO); 108 } 109 out: 110 return page; 111 } 112 113 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 114 { 115 return __get_meta_page(sbi, index, true); 116 } 117 118 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index) 119 { 120 struct page *page; 121 int count = 0; 122 123 retry: 124 page = __get_meta_page(sbi, index, true); 125 if (IS_ERR(page)) { 126 if (PTR_ERR(page) == -EIO && 127 ++count <= DEFAULT_RETRY_IO_COUNT) 128 goto retry; 129 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_META_PAGE); 130 } 131 return page; 132 } 133 134 /* for POR only */ 135 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index) 136 { 137 return __get_meta_page(sbi, index, false); 138 } 139 140 static bool __is_bitmap_valid(struct f2fs_sb_info *sbi, block_t blkaddr, 141 int type) 142 { 143 struct seg_entry *se; 144 unsigned int segno, offset; 145 bool exist; 146 147 if (type == DATA_GENERIC) 148 return true; 149 150 segno = GET_SEGNO(sbi, blkaddr); 151 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 152 se = get_seg_entry(sbi, segno); 153 154 exist = f2fs_test_bit(offset, se->cur_valid_map); 155 if (exist && type == DATA_GENERIC_ENHANCE_UPDATE) { 156 f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d", 157 blkaddr, exist); 158 set_sbi_flag(sbi, SBI_NEED_FSCK); 159 return exist; 160 } 161 162 if (!exist && type == DATA_GENERIC_ENHANCE) { 163 f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d", 164 blkaddr, exist); 165 set_sbi_flag(sbi, SBI_NEED_FSCK); 166 dump_stack(); 167 } 168 return exist; 169 } 170 171 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 172 block_t blkaddr, int type) 173 { 174 if (time_to_inject(sbi, FAULT_BLKADDR)) { 175 f2fs_show_injection_info(sbi, FAULT_BLKADDR); 176 return false; 177 } 178 179 switch (type) { 180 case META_NAT: 181 break; 182 case META_SIT: 183 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi))) 184 return false; 185 break; 186 case META_SSA: 187 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) || 188 blkaddr < SM_I(sbi)->ssa_blkaddr)) 189 return false; 190 break; 191 case META_CP: 192 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr || 193 blkaddr < __start_cp_addr(sbi))) 194 return false; 195 break; 196 case META_POR: 197 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || 198 blkaddr < MAIN_BLKADDR(sbi))) 199 return false; 200 break; 201 case DATA_GENERIC: 202 case DATA_GENERIC_ENHANCE: 203 case DATA_GENERIC_ENHANCE_READ: 204 case DATA_GENERIC_ENHANCE_UPDATE: 205 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || 206 blkaddr < MAIN_BLKADDR(sbi))) { 207 f2fs_warn(sbi, "access invalid blkaddr:%u", 208 blkaddr); 209 set_sbi_flag(sbi, SBI_NEED_FSCK); 210 dump_stack(); 211 return false; 212 } else { 213 return __is_bitmap_valid(sbi, blkaddr, type); 214 } 215 break; 216 case META_GENERIC: 217 if (unlikely(blkaddr < SEG0_BLKADDR(sbi) || 218 blkaddr >= MAIN_BLKADDR(sbi))) 219 return false; 220 break; 221 default: 222 BUG(); 223 } 224 225 return true; 226 } 227 228 /* 229 * Readahead CP/NAT/SIT/SSA/POR pages 230 */ 231 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 232 int type, bool sync) 233 { 234 struct page *page; 235 block_t blkno = start; 236 struct f2fs_io_info fio = { 237 .sbi = sbi, 238 .type = META, 239 .op = REQ_OP_READ, 240 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD, 241 .encrypted_page = NULL, 242 .in_list = false, 243 .is_por = (type == META_POR), 244 }; 245 struct blk_plug plug; 246 int err; 247 248 if (unlikely(type == META_POR)) 249 fio.op_flags &= ~REQ_META; 250 251 blk_start_plug(&plug); 252 for (; nrpages-- > 0; blkno++) { 253 254 if (!f2fs_is_valid_blkaddr(sbi, blkno, type)) 255 goto out; 256 257 switch (type) { 258 case META_NAT: 259 if (unlikely(blkno >= 260 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid))) 261 blkno = 0; 262 /* get nat block addr */ 263 fio.new_blkaddr = current_nat_addr(sbi, 264 blkno * NAT_ENTRY_PER_BLOCK); 265 break; 266 case META_SIT: 267 if (unlikely(blkno >= TOTAL_SEGS(sbi))) 268 goto out; 269 /* get sit block addr */ 270 fio.new_blkaddr = current_sit_addr(sbi, 271 blkno * SIT_ENTRY_PER_BLOCK); 272 break; 273 case META_SSA: 274 case META_CP: 275 case META_POR: 276 fio.new_blkaddr = blkno; 277 break; 278 default: 279 BUG(); 280 } 281 282 page = f2fs_grab_cache_page(META_MAPPING(sbi), 283 fio.new_blkaddr, false); 284 if (!page) 285 continue; 286 if (PageUptodate(page)) { 287 f2fs_put_page(page, 1); 288 continue; 289 } 290 291 fio.page = page; 292 err = f2fs_submit_page_bio(&fio); 293 f2fs_put_page(page, err ? 1 : 0); 294 295 if (!err) 296 f2fs_update_iostat(sbi, NULL, FS_META_READ_IO, 297 F2FS_BLKSIZE); 298 } 299 out: 300 blk_finish_plug(&plug); 301 return blkno - start; 302 } 303 304 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index, 305 unsigned int ra_blocks) 306 { 307 struct page *page; 308 bool readahead = false; 309 310 if (ra_blocks == RECOVERY_MIN_RA_BLOCKS) 311 return; 312 313 page = find_get_page(META_MAPPING(sbi), index); 314 if (!page || !PageUptodate(page)) 315 readahead = true; 316 f2fs_put_page(page, 0); 317 318 if (readahead) 319 f2fs_ra_meta_pages(sbi, index, ra_blocks, META_POR, true); 320 } 321 322 static int __f2fs_write_meta_page(struct page *page, 323 struct writeback_control *wbc, 324 enum iostat_type io_type) 325 { 326 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 327 328 trace_f2fs_writepage(page, META); 329 330 if (unlikely(f2fs_cp_error(sbi))) 331 goto redirty_out; 332 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 333 goto redirty_out; 334 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0)) 335 goto redirty_out; 336 337 f2fs_do_write_meta_page(sbi, page, io_type); 338 dec_page_count(sbi, F2FS_DIRTY_META); 339 340 if (wbc->for_reclaim) 341 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, META); 342 343 unlock_page(page); 344 345 if (unlikely(f2fs_cp_error(sbi))) 346 f2fs_submit_merged_write(sbi, META); 347 348 return 0; 349 350 redirty_out: 351 redirty_page_for_writepage(wbc, page); 352 return AOP_WRITEPAGE_ACTIVATE; 353 } 354 355 static int f2fs_write_meta_page(struct page *page, 356 struct writeback_control *wbc) 357 { 358 return __f2fs_write_meta_page(page, wbc, FS_META_IO); 359 } 360 361 static int f2fs_write_meta_pages(struct address_space *mapping, 362 struct writeback_control *wbc) 363 { 364 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 365 long diff, written; 366 367 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 368 goto skip_write; 369 370 /* collect a number of dirty meta pages and write together */ 371 if (wbc->sync_mode != WB_SYNC_ALL && 372 get_pages(sbi, F2FS_DIRTY_META) < 373 nr_pages_to_skip(sbi, META)) 374 goto skip_write; 375 376 /* if locked failed, cp will flush dirty pages instead */ 377 if (!f2fs_down_write_trylock(&sbi->cp_global_sem)) 378 goto skip_write; 379 380 trace_f2fs_writepages(mapping->host, wbc, META); 381 diff = nr_pages_to_write(sbi, META, wbc); 382 written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO); 383 f2fs_up_write(&sbi->cp_global_sem); 384 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff); 385 return 0; 386 387 skip_write: 388 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META); 389 trace_f2fs_writepages(mapping->host, wbc, META); 390 return 0; 391 } 392 393 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 394 long nr_to_write, enum iostat_type io_type) 395 { 396 struct address_space *mapping = META_MAPPING(sbi); 397 pgoff_t index = 0, prev = ULONG_MAX; 398 struct pagevec pvec; 399 long nwritten = 0; 400 int nr_pages; 401 struct writeback_control wbc = { 402 .for_reclaim = 0, 403 }; 404 struct blk_plug plug; 405 406 pagevec_init(&pvec); 407 408 blk_start_plug(&plug); 409 410 while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 411 PAGECACHE_TAG_DIRTY))) { 412 int i; 413 414 for (i = 0; i < nr_pages; i++) { 415 struct page *page = pvec.pages[i]; 416 417 if (prev == ULONG_MAX) 418 prev = page->index - 1; 419 if (nr_to_write != LONG_MAX && page->index != prev + 1) { 420 pagevec_release(&pvec); 421 goto stop; 422 } 423 424 lock_page(page); 425 426 if (unlikely(page->mapping != mapping)) { 427 continue_unlock: 428 unlock_page(page); 429 continue; 430 } 431 if (!PageDirty(page)) { 432 /* someone wrote it for us */ 433 goto continue_unlock; 434 } 435 436 f2fs_wait_on_page_writeback(page, META, true, true); 437 438 if (!clear_page_dirty_for_io(page)) 439 goto continue_unlock; 440 441 if (__f2fs_write_meta_page(page, &wbc, io_type)) { 442 unlock_page(page); 443 break; 444 } 445 nwritten++; 446 prev = page->index; 447 if (unlikely(nwritten >= nr_to_write)) 448 break; 449 } 450 pagevec_release(&pvec); 451 cond_resched(); 452 } 453 stop: 454 if (nwritten) 455 f2fs_submit_merged_write(sbi, type); 456 457 blk_finish_plug(&plug); 458 459 return nwritten; 460 } 461 462 static bool f2fs_dirty_meta_folio(struct address_space *mapping, 463 struct folio *folio) 464 { 465 trace_f2fs_set_page_dirty(&folio->page, META); 466 467 if (!folio_test_uptodate(folio)) 468 folio_mark_uptodate(folio); 469 if (filemap_dirty_folio(mapping, folio)) { 470 inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_META); 471 set_page_private_reference(&folio->page); 472 return true; 473 } 474 return false; 475 } 476 477 const struct address_space_operations f2fs_meta_aops = { 478 .writepage = f2fs_write_meta_page, 479 .writepages = f2fs_write_meta_pages, 480 .dirty_folio = f2fs_dirty_meta_folio, 481 .invalidate_folio = f2fs_invalidate_folio, 482 .release_folio = f2fs_release_folio, 483 .migrate_folio = filemap_migrate_folio, 484 }; 485 486 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, 487 unsigned int devidx, int type) 488 { 489 struct inode_management *im = &sbi->im[type]; 490 struct ino_entry *e = NULL, *new = NULL; 491 492 if (type == FLUSH_INO) { 493 rcu_read_lock(); 494 e = radix_tree_lookup(&im->ino_root, ino); 495 rcu_read_unlock(); 496 } 497 498 retry: 499 if (!e) 500 new = f2fs_kmem_cache_alloc(ino_entry_slab, 501 GFP_NOFS, true, NULL); 502 503 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL); 504 505 spin_lock(&im->ino_lock); 506 e = radix_tree_lookup(&im->ino_root, ino); 507 if (!e) { 508 if (!new) { 509 spin_unlock(&im->ino_lock); 510 goto retry; 511 } 512 e = new; 513 if (unlikely(radix_tree_insert(&im->ino_root, ino, e))) 514 f2fs_bug_on(sbi, 1); 515 516 memset(e, 0, sizeof(struct ino_entry)); 517 e->ino = ino; 518 519 list_add_tail(&e->list, &im->ino_list); 520 if (type != ORPHAN_INO) 521 im->ino_num++; 522 } 523 524 if (type == FLUSH_INO) 525 f2fs_set_bit(devidx, (char *)&e->dirty_device); 526 527 spin_unlock(&im->ino_lock); 528 radix_tree_preload_end(); 529 530 if (new && e != new) 531 kmem_cache_free(ino_entry_slab, new); 532 } 533 534 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 535 { 536 struct inode_management *im = &sbi->im[type]; 537 struct ino_entry *e; 538 539 spin_lock(&im->ino_lock); 540 e = radix_tree_lookup(&im->ino_root, ino); 541 if (e) { 542 list_del(&e->list); 543 radix_tree_delete(&im->ino_root, ino); 544 im->ino_num--; 545 spin_unlock(&im->ino_lock); 546 kmem_cache_free(ino_entry_slab, e); 547 return; 548 } 549 spin_unlock(&im->ino_lock); 550 } 551 552 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 553 { 554 /* add new dirty ino entry into list */ 555 __add_ino_entry(sbi, ino, 0, type); 556 } 557 558 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 559 { 560 /* remove dirty ino entry from list */ 561 __remove_ino_entry(sbi, ino, type); 562 } 563 564 /* mode should be APPEND_INO, UPDATE_INO or TRANS_DIR_INO */ 565 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode) 566 { 567 struct inode_management *im = &sbi->im[mode]; 568 struct ino_entry *e; 569 570 spin_lock(&im->ino_lock); 571 e = radix_tree_lookup(&im->ino_root, ino); 572 spin_unlock(&im->ino_lock); 573 return e ? true : false; 574 } 575 576 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all) 577 { 578 struct ino_entry *e, *tmp; 579 int i; 580 581 for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) { 582 struct inode_management *im = &sbi->im[i]; 583 584 spin_lock(&im->ino_lock); 585 list_for_each_entry_safe(e, tmp, &im->ino_list, list) { 586 list_del(&e->list); 587 radix_tree_delete(&im->ino_root, e->ino); 588 kmem_cache_free(ino_entry_slab, e); 589 im->ino_num--; 590 } 591 spin_unlock(&im->ino_lock); 592 } 593 } 594 595 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 596 unsigned int devidx, int type) 597 { 598 __add_ino_entry(sbi, ino, devidx, type); 599 } 600 601 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 602 unsigned int devidx, int type) 603 { 604 struct inode_management *im = &sbi->im[type]; 605 struct ino_entry *e; 606 bool is_dirty = false; 607 608 spin_lock(&im->ino_lock); 609 e = radix_tree_lookup(&im->ino_root, ino); 610 if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device)) 611 is_dirty = true; 612 spin_unlock(&im->ino_lock); 613 return is_dirty; 614 } 615 616 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi) 617 { 618 struct inode_management *im = &sbi->im[ORPHAN_INO]; 619 int err = 0; 620 621 spin_lock(&im->ino_lock); 622 623 if (time_to_inject(sbi, FAULT_ORPHAN)) { 624 spin_unlock(&im->ino_lock); 625 f2fs_show_injection_info(sbi, FAULT_ORPHAN); 626 return -ENOSPC; 627 } 628 629 if (unlikely(im->ino_num >= sbi->max_orphans)) 630 err = -ENOSPC; 631 else 632 im->ino_num++; 633 spin_unlock(&im->ino_lock); 634 635 return err; 636 } 637 638 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi) 639 { 640 struct inode_management *im = &sbi->im[ORPHAN_INO]; 641 642 spin_lock(&im->ino_lock); 643 f2fs_bug_on(sbi, im->ino_num == 0); 644 im->ino_num--; 645 spin_unlock(&im->ino_lock); 646 } 647 648 void f2fs_add_orphan_inode(struct inode *inode) 649 { 650 /* add new orphan ino entry into list */ 651 __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO); 652 f2fs_update_inode_page(inode); 653 } 654 655 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 656 { 657 /* remove orphan entry from orphan list */ 658 __remove_ino_entry(sbi, ino, ORPHAN_INO); 659 } 660 661 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 662 { 663 struct inode *inode; 664 struct node_info ni; 665 int err; 666 667 inode = f2fs_iget_retry(sbi->sb, ino); 668 if (IS_ERR(inode)) { 669 /* 670 * there should be a bug that we can't find the entry 671 * to orphan inode. 672 */ 673 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT); 674 return PTR_ERR(inode); 675 } 676 677 err = f2fs_dquot_initialize(inode); 678 if (err) { 679 iput(inode); 680 goto err_out; 681 } 682 683 clear_nlink(inode); 684 685 /* truncate all the data during iput */ 686 iput(inode); 687 688 err = f2fs_get_node_info(sbi, ino, &ni, false); 689 if (err) 690 goto err_out; 691 692 /* ENOMEM was fully retried in f2fs_evict_inode. */ 693 if (ni.blk_addr != NULL_ADDR) { 694 err = -EIO; 695 goto err_out; 696 } 697 return 0; 698 699 err_out: 700 set_sbi_flag(sbi, SBI_NEED_FSCK); 701 f2fs_warn(sbi, "%s: orphan failed (ino=%x), run fsck to fix.", 702 __func__, ino); 703 return err; 704 } 705 706 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi) 707 { 708 block_t start_blk, orphan_blocks, i, j; 709 unsigned int s_flags = sbi->sb->s_flags; 710 int err = 0; 711 #ifdef CONFIG_QUOTA 712 int quota_enabled; 713 #endif 714 715 if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG)) 716 return 0; 717 718 if (bdev_read_only(sbi->sb->s_bdev)) { 719 f2fs_info(sbi, "write access unavailable, skipping orphan cleanup"); 720 return 0; 721 } 722 723 if (s_flags & SB_RDONLY) { 724 f2fs_info(sbi, "orphan cleanup on readonly fs"); 725 sbi->sb->s_flags &= ~SB_RDONLY; 726 } 727 728 #ifdef CONFIG_QUOTA 729 /* 730 * Turn on quotas which were not enabled for read-only mounts if 731 * filesystem has quota feature, so that they are updated correctly. 732 */ 733 quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY); 734 #endif 735 736 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi); 737 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi); 738 739 f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true); 740 741 for (i = 0; i < orphan_blocks; i++) { 742 struct page *page; 743 struct f2fs_orphan_block *orphan_blk; 744 745 page = f2fs_get_meta_page(sbi, start_blk + i); 746 if (IS_ERR(page)) { 747 err = PTR_ERR(page); 748 goto out; 749 } 750 751 orphan_blk = (struct f2fs_orphan_block *)page_address(page); 752 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) { 753 nid_t ino = le32_to_cpu(orphan_blk->ino[j]); 754 755 err = recover_orphan_inode(sbi, ino); 756 if (err) { 757 f2fs_put_page(page, 1); 758 goto out; 759 } 760 } 761 f2fs_put_page(page, 1); 762 } 763 /* clear Orphan Flag */ 764 clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG); 765 out: 766 set_sbi_flag(sbi, SBI_IS_RECOVERED); 767 768 #ifdef CONFIG_QUOTA 769 /* Turn quotas off */ 770 if (quota_enabled) 771 f2fs_quota_off_umount(sbi->sb); 772 #endif 773 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 774 775 return err; 776 } 777 778 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk) 779 { 780 struct list_head *head; 781 struct f2fs_orphan_block *orphan_blk = NULL; 782 unsigned int nentries = 0; 783 unsigned short index = 1; 784 unsigned short orphan_blocks; 785 struct page *page = NULL; 786 struct ino_entry *orphan = NULL; 787 struct inode_management *im = &sbi->im[ORPHAN_INO]; 788 789 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num); 790 791 /* 792 * we don't need to do spin_lock(&im->ino_lock) here, since all the 793 * orphan inode operations are covered under f2fs_lock_op(). 794 * And, spin_lock should be avoided due to page operations below. 795 */ 796 head = &im->ino_list; 797 798 /* loop for each orphan inode entry and write them in Jornal block */ 799 list_for_each_entry(orphan, head, list) { 800 if (!page) { 801 page = f2fs_grab_meta_page(sbi, start_blk++); 802 orphan_blk = 803 (struct f2fs_orphan_block *)page_address(page); 804 memset(orphan_blk, 0, sizeof(*orphan_blk)); 805 } 806 807 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino); 808 809 if (nentries == F2FS_ORPHANS_PER_BLOCK) { 810 /* 811 * an orphan block is full of 1020 entries, 812 * then we need to flush current orphan blocks 813 * and bring another one in memory 814 */ 815 orphan_blk->blk_addr = cpu_to_le16(index); 816 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 817 orphan_blk->entry_count = cpu_to_le32(nentries); 818 set_page_dirty(page); 819 f2fs_put_page(page, 1); 820 index++; 821 nentries = 0; 822 page = NULL; 823 } 824 } 825 826 if (page) { 827 orphan_blk->blk_addr = cpu_to_le16(index); 828 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 829 orphan_blk->entry_count = cpu_to_le32(nentries); 830 set_page_dirty(page); 831 f2fs_put_page(page, 1); 832 } 833 } 834 835 static __u32 f2fs_checkpoint_chksum(struct f2fs_sb_info *sbi, 836 struct f2fs_checkpoint *ckpt) 837 { 838 unsigned int chksum_ofs = le32_to_cpu(ckpt->checksum_offset); 839 __u32 chksum; 840 841 chksum = f2fs_crc32(sbi, ckpt, chksum_ofs); 842 if (chksum_ofs < CP_CHKSUM_OFFSET) { 843 chksum_ofs += sizeof(chksum); 844 chksum = f2fs_chksum(sbi, chksum, (__u8 *)ckpt + chksum_ofs, 845 F2FS_BLKSIZE - chksum_ofs); 846 } 847 return chksum; 848 } 849 850 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr, 851 struct f2fs_checkpoint **cp_block, struct page **cp_page, 852 unsigned long long *version) 853 { 854 size_t crc_offset = 0; 855 __u32 crc; 856 857 *cp_page = f2fs_get_meta_page(sbi, cp_addr); 858 if (IS_ERR(*cp_page)) 859 return PTR_ERR(*cp_page); 860 861 *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page); 862 863 crc_offset = le32_to_cpu((*cp_block)->checksum_offset); 864 if (crc_offset < CP_MIN_CHKSUM_OFFSET || 865 crc_offset > CP_CHKSUM_OFFSET) { 866 f2fs_put_page(*cp_page, 1); 867 f2fs_warn(sbi, "invalid crc_offset: %zu", crc_offset); 868 return -EINVAL; 869 } 870 871 crc = f2fs_checkpoint_chksum(sbi, *cp_block); 872 if (crc != cur_cp_crc(*cp_block)) { 873 f2fs_put_page(*cp_page, 1); 874 f2fs_warn(sbi, "invalid crc value"); 875 return -EINVAL; 876 } 877 878 *version = cur_cp_version(*cp_block); 879 return 0; 880 } 881 882 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi, 883 block_t cp_addr, unsigned long long *version) 884 { 885 struct page *cp_page_1 = NULL, *cp_page_2 = NULL; 886 struct f2fs_checkpoint *cp_block = NULL; 887 unsigned long long cur_version = 0, pre_version = 0; 888 unsigned int cp_blocks; 889 int err; 890 891 err = get_checkpoint_version(sbi, cp_addr, &cp_block, 892 &cp_page_1, version); 893 if (err) 894 return NULL; 895 896 cp_blocks = le32_to_cpu(cp_block->cp_pack_total_block_count); 897 898 if (cp_blocks > sbi->blocks_per_seg || cp_blocks <= F2FS_CP_PACKS) { 899 f2fs_warn(sbi, "invalid cp_pack_total_block_count:%u", 900 le32_to_cpu(cp_block->cp_pack_total_block_count)); 901 goto invalid_cp; 902 } 903 pre_version = *version; 904 905 cp_addr += cp_blocks - 1; 906 err = get_checkpoint_version(sbi, cp_addr, &cp_block, 907 &cp_page_2, version); 908 if (err) 909 goto invalid_cp; 910 cur_version = *version; 911 912 if (cur_version == pre_version) { 913 *version = cur_version; 914 f2fs_put_page(cp_page_2, 1); 915 return cp_page_1; 916 } 917 f2fs_put_page(cp_page_2, 1); 918 invalid_cp: 919 f2fs_put_page(cp_page_1, 1); 920 return NULL; 921 } 922 923 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi) 924 { 925 struct f2fs_checkpoint *cp_block; 926 struct f2fs_super_block *fsb = sbi->raw_super; 927 struct page *cp1, *cp2, *cur_page; 928 unsigned long blk_size = sbi->blocksize; 929 unsigned long long cp1_version = 0, cp2_version = 0; 930 unsigned long long cp_start_blk_no; 931 unsigned int cp_blks = 1 + __cp_payload(sbi); 932 block_t cp_blk_no; 933 int i; 934 int err; 935 936 sbi->ckpt = f2fs_kvzalloc(sbi, array_size(blk_size, cp_blks), 937 GFP_KERNEL); 938 if (!sbi->ckpt) 939 return -ENOMEM; 940 /* 941 * Finding out valid cp block involves read both 942 * sets( cp pack 1 and cp pack 2) 943 */ 944 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr); 945 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); 946 947 /* The second checkpoint pack should start at the next segment */ 948 cp_start_blk_no += ((unsigned long long)1) << 949 le32_to_cpu(fsb->log_blocks_per_seg); 950 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); 951 952 if (cp1 && cp2) { 953 if (ver_after(cp2_version, cp1_version)) 954 cur_page = cp2; 955 else 956 cur_page = cp1; 957 } else if (cp1) { 958 cur_page = cp1; 959 } else if (cp2) { 960 cur_page = cp2; 961 } else { 962 err = -EFSCORRUPTED; 963 goto fail_no_cp; 964 } 965 966 cp_block = (struct f2fs_checkpoint *)page_address(cur_page); 967 memcpy(sbi->ckpt, cp_block, blk_size); 968 969 if (cur_page == cp1) 970 sbi->cur_cp_pack = 1; 971 else 972 sbi->cur_cp_pack = 2; 973 974 /* Sanity checking of checkpoint */ 975 if (f2fs_sanity_check_ckpt(sbi)) { 976 err = -EFSCORRUPTED; 977 goto free_fail_no_cp; 978 } 979 980 if (cp_blks <= 1) 981 goto done; 982 983 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr); 984 if (cur_page == cp2) 985 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg); 986 987 for (i = 1; i < cp_blks; i++) { 988 void *sit_bitmap_ptr; 989 unsigned char *ckpt = (unsigned char *)sbi->ckpt; 990 991 cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i); 992 if (IS_ERR(cur_page)) { 993 err = PTR_ERR(cur_page); 994 goto free_fail_no_cp; 995 } 996 sit_bitmap_ptr = page_address(cur_page); 997 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size); 998 f2fs_put_page(cur_page, 1); 999 } 1000 done: 1001 f2fs_put_page(cp1, 1); 1002 f2fs_put_page(cp2, 1); 1003 return 0; 1004 1005 free_fail_no_cp: 1006 f2fs_put_page(cp1, 1); 1007 f2fs_put_page(cp2, 1); 1008 fail_no_cp: 1009 kvfree(sbi->ckpt); 1010 return err; 1011 } 1012 1013 static void __add_dirty_inode(struct inode *inode, enum inode_type type) 1014 { 1015 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1016 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 1017 1018 if (is_inode_flag_set(inode, flag)) 1019 return; 1020 1021 set_inode_flag(inode, flag); 1022 list_add_tail(&F2FS_I(inode)->dirty_list, &sbi->inode_list[type]); 1023 stat_inc_dirty_inode(sbi, type); 1024 } 1025 1026 static void __remove_dirty_inode(struct inode *inode, enum inode_type type) 1027 { 1028 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 1029 1030 if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag)) 1031 return; 1032 1033 list_del_init(&F2FS_I(inode)->dirty_list); 1034 clear_inode_flag(inode, flag); 1035 stat_dec_dirty_inode(F2FS_I_SB(inode), type); 1036 } 1037 1038 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio) 1039 { 1040 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1041 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 1042 1043 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1044 !S_ISLNK(inode->i_mode)) 1045 return; 1046 1047 spin_lock(&sbi->inode_lock[type]); 1048 if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH)) 1049 __add_dirty_inode(inode, type); 1050 inode_inc_dirty_pages(inode); 1051 spin_unlock(&sbi->inode_lock[type]); 1052 1053 set_page_private_reference(&folio->page); 1054 } 1055 1056 void f2fs_remove_dirty_inode(struct inode *inode) 1057 { 1058 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1059 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 1060 1061 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1062 !S_ISLNK(inode->i_mode)) 1063 return; 1064 1065 if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH)) 1066 return; 1067 1068 spin_lock(&sbi->inode_lock[type]); 1069 __remove_dirty_inode(inode, type); 1070 spin_unlock(&sbi->inode_lock[type]); 1071 } 1072 1073 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type, 1074 bool from_cp) 1075 { 1076 struct list_head *head; 1077 struct inode *inode; 1078 struct f2fs_inode_info *fi; 1079 bool is_dir = (type == DIR_INODE); 1080 unsigned long ino = 0; 1081 1082 trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir, 1083 get_pages(sbi, is_dir ? 1084 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 1085 retry: 1086 if (unlikely(f2fs_cp_error(sbi))) { 1087 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir, 1088 get_pages(sbi, is_dir ? 1089 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 1090 return -EIO; 1091 } 1092 1093 spin_lock(&sbi->inode_lock[type]); 1094 1095 head = &sbi->inode_list[type]; 1096 if (list_empty(head)) { 1097 spin_unlock(&sbi->inode_lock[type]); 1098 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir, 1099 get_pages(sbi, is_dir ? 1100 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 1101 return 0; 1102 } 1103 fi = list_first_entry(head, struct f2fs_inode_info, dirty_list); 1104 inode = igrab(&fi->vfs_inode); 1105 spin_unlock(&sbi->inode_lock[type]); 1106 if (inode) { 1107 unsigned long cur_ino = inode->i_ino; 1108 1109 if (from_cp) 1110 F2FS_I(inode)->cp_task = current; 1111 F2FS_I(inode)->wb_task = current; 1112 1113 filemap_fdatawrite(inode->i_mapping); 1114 1115 F2FS_I(inode)->wb_task = NULL; 1116 if (from_cp) 1117 F2FS_I(inode)->cp_task = NULL; 1118 1119 iput(inode); 1120 /* We need to give cpu to another writers. */ 1121 if (ino == cur_ino) 1122 cond_resched(); 1123 else 1124 ino = cur_ino; 1125 } else { 1126 /* 1127 * We should submit bio, since it exists several 1128 * wribacking dentry pages in the freeing inode. 1129 */ 1130 f2fs_submit_merged_write(sbi, DATA); 1131 cond_resched(); 1132 } 1133 goto retry; 1134 } 1135 1136 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi) 1137 { 1138 struct list_head *head = &sbi->inode_list[DIRTY_META]; 1139 struct inode *inode; 1140 struct f2fs_inode_info *fi; 1141 s64 total = get_pages(sbi, F2FS_DIRTY_IMETA); 1142 1143 while (total--) { 1144 if (unlikely(f2fs_cp_error(sbi))) 1145 return -EIO; 1146 1147 spin_lock(&sbi->inode_lock[DIRTY_META]); 1148 if (list_empty(head)) { 1149 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1150 return 0; 1151 } 1152 fi = list_first_entry(head, struct f2fs_inode_info, 1153 gdirty_list); 1154 inode = igrab(&fi->vfs_inode); 1155 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1156 if (inode) { 1157 sync_inode_metadata(inode, 0); 1158 1159 /* it's on eviction */ 1160 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) 1161 f2fs_update_inode_page(inode); 1162 iput(inode); 1163 } 1164 } 1165 return 0; 1166 } 1167 1168 static void __prepare_cp_block(struct f2fs_sb_info *sbi) 1169 { 1170 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1171 struct f2fs_nm_info *nm_i = NM_I(sbi); 1172 nid_t last_nid = nm_i->next_scan_nid; 1173 1174 next_free_nid(sbi, &last_nid); 1175 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi)); 1176 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi)); 1177 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi)); 1178 ckpt->next_free_nid = cpu_to_le32(last_nid); 1179 } 1180 1181 static bool __need_flush_quota(struct f2fs_sb_info *sbi) 1182 { 1183 bool ret = false; 1184 1185 if (!is_journalled_quota(sbi)) 1186 return false; 1187 1188 if (!f2fs_down_write_trylock(&sbi->quota_sem)) 1189 return true; 1190 if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) { 1191 ret = false; 1192 } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) { 1193 ret = false; 1194 } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_FLUSH)) { 1195 clear_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 1196 ret = true; 1197 } else if (get_pages(sbi, F2FS_DIRTY_QDATA)) { 1198 ret = true; 1199 } 1200 f2fs_up_write(&sbi->quota_sem); 1201 return ret; 1202 } 1203 1204 /* 1205 * Freeze all the FS-operations for checkpoint. 1206 */ 1207 static int block_operations(struct f2fs_sb_info *sbi) 1208 { 1209 struct writeback_control wbc = { 1210 .sync_mode = WB_SYNC_ALL, 1211 .nr_to_write = LONG_MAX, 1212 .for_reclaim = 0, 1213 }; 1214 int err = 0, cnt = 0; 1215 1216 /* 1217 * Let's flush inline_data in dirty node pages. 1218 */ 1219 f2fs_flush_inline_data(sbi); 1220 1221 retry_flush_quotas: 1222 f2fs_lock_all(sbi); 1223 if (__need_flush_quota(sbi)) { 1224 int locked; 1225 1226 if (++cnt > DEFAULT_RETRY_QUOTA_FLUSH_COUNT) { 1227 set_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH); 1228 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 1229 goto retry_flush_dents; 1230 } 1231 f2fs_unlock_all(sbi); 1232 1233 /* only failed during mount/umount/freeze/quotactl */ 1234 locked = down_read_trylock(&sbi->sb->s_umount); 1235 f2fs_quota_sync(sbi->sb, -1); 1236 if (locked) 1237 up_read(&sbi->sb->s_umount); 1238 cond_resched(); 1239 goto retry_flush_quotas; 1240 } 1241 1242 retry_flush_dents: 1243 /* write all the dirty dentry pages */ 1244 if (get_pages(sbi, F2FS_DIRTY_DENTS)) { 1245 f2fs_unlock_all(sbi); 1246 err = f2fs_sync_dirty_inodes(sbi, DIR_INODE, true); 1247 if (err) 1248 return err; 1249 cond_resched(); 1250 goto retry_flush_quotas; 1251 } 1252 1253 /* 1254 * POR: we should ensure that there are no dirty node pages 1255 * until finishing nat/sit flush. inode->i_blocks can be updated. 1256 */ 1257 f2fs_down_write(&sbi->node_change); 1258 1259 if (get_pages(sbi, F2FS_DIRTY_IMETA)) { 1260 f2fs_up_write(&sbi->node_change); 1261 f2fs_unlock_all(sbi); 1262 err = f2fs_sync_inode_meta(sbi); 1263 if (err) 1264 return err; 1265 cond_resched(); 1266 goto retry_flush_quotas; 1267 } 1268 1269 retry_flush_nodes: 1270 f2fs_down_write(&sbi->node_write); 1271 1272 if (get_pages(sbi, F2FS_DIRTY_NODES)) { 1273 f2fs_up_write(&sbi->node_write); 1274 atomic_inc(&sbi->wb_sync_req[NODE]); 1275 err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO); 1276 atomic_dec(&sbi->wb_sync_req[NODE]); 1277 if (err) { 1278 f2fs_up_write(&sbi->node_change); 1279 f2fs_unlock_all(sbi); 1280 return err; 1281 } 1282 cond_resched(); 1283 goto retry_flush_nodes; 1284 } 1285 1286 /* 1287 * sbi->node_change is used only for AIO write_begin path which produces 1288 * dirty node blocks and some checkpoint values by block allocation. 1289 */ 1290 __prepare_cp_block(sbi); 1291 f2fs_up_write(&sbi->node_change); 1292 return err; 1293 } 1294 1295 static void unblock_operations(struct f2fs_sb_info *sbi) 1296 { 1297 f2fs_up_write(&sbi->node_write); 1298 f2fs_unlock_all(sbi); 1299 } 1300 1301 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type) 1302 { 1303 DEFINE_WAIT(wait); 1304 1305 for (;;) { 1306 if (!get_pages(sbi, type)) 1307 break; 1308 1309 if (unlikely(f2fs_cp_error(sbi))) 1310 break; 1311 1312 if (type == F2FS_DIRTY_META) 1313 f2fs_sync_meta_pages(sbi, META, LONG_MAX, 1314 FS_CP_META_IO); 1315 else if (type == F2FS_WB_CP_DATA) 1316 f2fs_submit_merged_write(sbi, DATA); 1317 1318 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE); 1319 io_schedule_timeout(DEFAULT_IO_TIMEOUT); 1320 } 1321 finish_wait(&sbi->cp_wait, &wait); 1322 } 1323 1324 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1325 { 1326 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num; 1327 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1328 unsigned long flags; 1329 1330 if (cpc->reason & CP_UMOUNT) { 1331 if (le32_to_cpu(ckpt->cp_pack_total_block_count) + 1332 NM_I(sbi)->nat_bits_blocks > sbi->blocks_per_seg) { 1333 clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG); 1334 f2fs_notice(sbi, "Disable nat_bits due to no space"); 1335 } else if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG) && 1336 f2fs_nat_bitmap_enabled(sbi)) { 1337 f2fs_enable_nat_bits(sbi); 1338 set_ckpt_flags(sbi, CP_NAT_BITS_FLAG); 1339 f2fs_notice(sbi, "Rebuild and enable nat_bits"); 1340 } 1341 } 1342 1343 spin_lock_irqsave(&sbi->cp_lock, flags); 1344 1345 if (cpc->reason & CP_TRIMMED) 1346 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG); 1347 else 1348 __clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG); 1349 1350 if (cpc->reason & CP_UMOUNT) 1351 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1352 else 1353 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1354 1355 if (cpc->reason & CP_FASTBOOT) 1356 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1357 else 1358 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1359 1360 if (orphan_num) 1361 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1362 else 1363 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1364 1365 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1366 __set_ckpt_flags(ckpt, CP_FSCK_FLAG); 1367 1368 if (is_sbi_flag_set(sbi, SBI_IS_RESIZEFS)) 1369 __set_ckpt_flags(ckpt, CP_RESIZEFS_FLAG); 1370 else 1371 __clear_ckpt_flags(ckpt, CP_RESIZEFS_FLAG); 1372 1373 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED)) 1374 __set_ckpt_flags(ckpt, CP_DISABLED_FLAG); 1375 else 1376 __clear_ckpt_flags(ckpt, CP_DISABLED_FLAG); 1377 1378 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK)) 1379 __set_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG); 1380 else 1381 __clear_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG); 1382 1383 if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) 1384 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); 1385 else 1386 __clear_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); 1387 1388 if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) 1389 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); 1390 1391 /* set this flag to activate crc|cp_ver for recovery */ 1392 __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG); 1393 __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG); 1394 1395 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1396 } 1397 1398 static void commit_checkpoint(struct f2fs_sb_info *sbi, 1399 void *src, block_t blk_addr) 1400 { 1401 struct writeback_control wbc = { 1402 .for_reclaim = 0, 1403 }; 1404 1405 /* 1406 * pagevec_lookup_tag and lock_page again will take 1407 * some extra time. Therefore, f2fs_update_meta_pages and 1408 * f2fs_sync_meta_pages are combined in this function. 1409 */ 1410 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 1411 int err; 1412 1413 f2fs_wait_on_page_writeback(page, META, true, true); 1414 1415 memcpy(page_address(page), src, PAGE_SIZE); 1416 1417 set_page_dirty(page); 1418 if (unlikely(!clear_page_dirty_for_io(page))) 1419 f2fs_bug_on(sbi, 1); 1420 1421 /* writeout cp pack 2 page */ 1422 err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO); 1423 if (unlikely(err && f2fs_cp_error(sbi))) { 1424 f2fs_put_page(page, 1); 1425 return; 1426 } 1427 1428 f2fs_bug_on(sbi, err); 1429 f2fs_put_page(page, 0); 1430 1431 /* submit checkpoint (with barrier if NOBARRIER is not set) */ 1432 f2fs_submit_merged_write(sbi, META_FLUSH); 1433 } 1434 1435 static inline u64 get_sectors_written(struct block_device *bdev) 1436 { 1437 return (u64)part_stat_read(bdev, sectors[STAT_WRITE]); 1438 } 1439 1440 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi) 1441 { 1442 if (f2fs_is_multi_device(sbi)) { 1443 u64 sectors = 0; 1444 int i; 1445 1446 for (i = 0; i < sbi->s_ndevs; i++) 1447 sectors += get_sectors_written(FDEV(i).bdev); 1448 1449 return sectors; 1450 } 1451 1452 return get_sectors_written(sbi->sb->s_bdev); 1453 } 1454 1455 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1456 { 1457 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1458 struct f2fs_nm_info *nm_i = NM_I(sbi); 1459 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags; 1460 block_t start_blk; 1461 unsigned int data_sum_blocks, orphan_blocks; 1462 __u32 crc32 = 0; 1463 int i; 1464 int cp_payload_blks = __cp_payload(sbi); 1465 struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 1466 u64 kbytes_written; 1467 int err; 1468 1469 /* Flush all the NAT/SIT pages */ 1470 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO); 1471 1472 /* start to update checkpoint, cp ver is already updated previously */ 1473 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true)); 1474 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi)); 1475 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 1476 ckpt->cur_node_segno[i] = 1477 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE)); 1478 ckpt->cur_node_blkoff[i] = 1479 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE)); 1480 ckpt->alloc_type[i + CURSEG_HOT_NODE] = 1481 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE); 1482 } 1483 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 1484 ckpt->cur_data_segno[i] = 1485 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA)); 1486 ckpt->cur_data_blkoff[i] = 1487 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA)); 1488 ckpt->alloc_type[i + CURSEG_HOT_DATA] = 1489 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA); 1490 } 1491 1492 /* 2 cp + n data seg summary + orphan inode blocks */ 1493 data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false); 1494 spin_lock_irqsave(&sbi->cp_lock, flags); 1495 if (data_sum_blocks < NR_CURSEG_DATA_TYPE) 1496 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1497 else 1498 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1499 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1500 1501 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num); 1502 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks + 1503 orphan_blocks); 1504 1505 if (__remain_node_summaries(cpc->reason)) 1506 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + 1507 cp_payload_blks + data_sum_blocks + 1508 orphan_blocks + NR_CURSEG_NODE_TYPE); 1509 else 1510 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + 1511 cp_payload_blks + data_sum_blocks + 1512 orphan_blocks); 1513 1514 /* update ckpt flag for checkpoint */ 1515 update_ckpt_flags(sbi, cpc); 1516 1517 /* update SIT/NAT bitmap */ 1518 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP)); 1519 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP)); 1520 1521 crc32 = f2fs_checkpoint_chksum(sbi, ckpt); 1522 *((__le32 *)((unsigned char *)ckpt + 1523 le32_to_cpu(ckpt->checksum_offset))) 1524 = cpu_to_le32(crc32); 1525 1526 start_blk = __start_cp_next_addr(sbi); 1527 1528 /* write nat bits */ 1529 if ((cpc->reason & CP_UMOUNT) && 1530 is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) { 1531 __u64 cp_ver = cur_cp_version(ckpt); 1532 block_t blk; 1533 1534 cp_ver |= ((__u64)crc32 << 32); 1535 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver); 1536 1537 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks; 1538 for (i = 0; i < nm_i->nat_bits_blocks; i++) 1539 f2fs_update_meta_page(sbi, nm_i->nat_bits + 1540 (i << F2FS_BLKSIZE_BITS), blk + i); 1541 } 1542 1543 /* write out checkpoint buffer at block 0 */ 1544 f2fs_update_meta_page(sbi, ckpt, start_blk++); 1545 1546 for (i = 1; i < 1 + cp_payload_blks; i++) 1547 f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE, 1548 start_blk++); 1549 1550 if (orphan_num) { 1551 write_orphan_inodes(sbi, start_blk); 1552 start_blk += orphan_blocks; 1553 } 1554 1555 f2fs_write_data_summaries(sbi, start_blk); 1556 start_blk += data_sum_blocks; 1557 1558 /* Record write statistics in the hot node summary */ 1559 kbytes_written = sbi->kbytes_written; 1560 kbytes_written += (f2fs_get_sectors_written(sbi) - 1561 sbi->sectors_written_start) >> 1; 1562 seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written); 1563 1564 if (__remain_node_summaries(cpc->reason)) { 1565 f2fs_write_node_summaries(sbi, start_blk); 1566 start_blk += NR_CURSEG_NODE_TYPE; 1567 } 1568 1569 /* update user_block_counts */ 1570 sbi->last_valid_block_count = sbi->total_valid_block_count; 1571 percpu_counter_set(&sbi->alloc_valid_block_count, 0); 1572 percpu_counter_set(&sbi->rf_node_block_count, 0); 1573 1574 /* Here, we have one bio having CP pack except cp pack 2 page */ 1575 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO); 1576 /* Wait for all dirty meta pages to be submitted for IO */ 1577 f2fs_wait_on_all_pages(sbi, F2FS_DIRTY_META); 1578 1579 /* wait for previous submitted meta pages writeback */ 1580 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA); 1581 1582 /* flush all device cache */ 1583 err = f2fs_flush_device_cache(sbi); 1584 if (err) 1585 return err; 1586 1587 /* barrier and flush checkpoint cp pack 2 page if it can */ 1588 commit_checkpoint(sbi, ckpt, start_blk); 1589 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA); 1590 1591 /* 1592 * invalidate intermediate page cache borrowed from meta inode which are 1593 * used for migration of encrypted, verity or compressed inode's blocks. 1594 */ 1595 if (f2fs_sb_has_encrypt(sbi) || f2fs_sb_has_verity(sbi) || 1596 f2fs_sb_has_compression(sbi)) 1597 invalidate_mapping_pages(META_MAPPING(sbi), 1598 MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1); 1599 1600 f2fs_release_ino_entry(sbi, false); 1601 1602 f2fs_reset_fsync_node_info(sbi); 1603 1604 clear_sbi_flag(sbi, SBI_IS_DIRTY); 1605 clear_sbi_flag(sbi, SBI_NEED_CP); 1606 clear_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH); 1607 1608 spin_lock(&sbi->stat_lock); 1609 sbi->unusable_block_count = 0; 1610 spin_unlock(&sbi->stat_lock); 1611 1612 __set_cp_next_pack(sbi); 1613 1614 /* 1615 * redirty superblock if metadata like node page or inode cache is 1616 * updated during writing checkpoint. 1617 */ 1618 if (get_pages(sbi, F2FS_DIRTY_NODES) || 1619 get_pages(sbi, F2FS_DIRTY_IMETA)) 1620 set_sbi_flag(sbi, SBI_IS_DIRTY); 1621 1622 f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS)); 1623 1624 return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0; 1625 } 1626 1627 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1628 { 1629 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1630 unsigned long long ckpt_ver; 1631 int err = 0; 1632 1633 if (f2fs_readonly(sbi->sb) || f2fs_hw_is_readonly(sbi)) 1634 return -EROFS; 1635 1636 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 1637 if (cpc->reason != CP_PAUSE) 1638 return 0; 1639 f2fs_warn(sbi, "Start checkpoint disabled!"); 1640 } 1641 if (cpc->reason != CP_RESIZE) 1642 f2fs_down_write(&sbi->cp_global_sem); 1643 1644 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) && 1645 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) || 1646 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks))) 1647 goto out; 1648 if (unlikely(f2fs_cp_error(sbi))) { 1649 err = -EIO; 1650 goto out; 1651 } 1652 1653 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops"); 1654 1655 err = block_operations(sbi); 1656 if (err) 1657 goto out; 1658 1659 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops"); 1660 1661 f2fs_flush_merged_writes(sbi); 1662 1663 /* this is the case of multiple fstrims without any changes */ 1664 if (cpc->reason & CP_DISCARD) { 1665 if (!f2fs_exist_trim_candidates(sbi, cpc)) { 1666 unblock_operations(sbi); 1667 goto out; 1668 } 1669 1670 if (NM_I(sbi)->nat_cnt[DIRTY_NAT] == 0 && 1671 SIT_I(sbi)->dirty_sentries == 0 && 1672 prefree_segments(sbi) == 0) { 1673 f2fs_flush_sit_entries(sbi, cpc); 1674 f2fs_clear_prefree_segments(sbi, cpc); 1675 unblock_operations(sbi); 1676 goto out; 1677 } 1678 } 1679 1680 /* 1681 * update checkpoint pack index 1682 * Increase the version number so that 1683 * SIT entries and seg summaries are written at correct place 1684 */ 1685 ckpt_ver = cur_cp_version(ckpt); 1686 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver); 1687 1688 /* write cached NAT/SIT entries to NAT/SIT area */ 1689 err = f2fs_flush_nat_entries(sbi, cpc); 1690 if (err) { 1691 f2fs_err(sbi, "f2fs_flush_nat_entries failed err:%d, stop checkpoint", err); 1692 f2fs_bug_on(sbi, !f2fs_cp_error(sbi)); 1693 goto stop; 1694 } 1695 1696 f2fs_flush_sit_entries(sbi, cpc); 1697 1698 /* save inmem log status */ 1699 f2fs_save_inmem_curseg(sbi); 1700 1701 err = do_checkpoint(sbi, cpc); 1702 if (err) { 1703 f2fs_err(sbi, "do_checkpoint failed err:%d, stop checkpoint", err); 1704 f2fs_bug_on(sbi, !f2fs_cp_error(sbi)); 1705 f2fs_release_discard_addrs(sbi); 1706 } else { 1707 f2fs_clear_prefree_segments(sbi, cpc); 1708 } 1709 1710 f2fs_restore_inmem_curseg(sbi); 1711 stop: 1712 unblock_operations(sbi); 1713 stat_inc_cp_count(sbi->stat_info); 1714 1715 if (cpc->reason & CP_RECOVERY) 1716 f2fs_notice(sbi, "checkpoint: version = %llx", ckpt_ver); 1717 1718 /* update CP_TIME to trigger checkpoint periodically */ 1719 f2fs_update_time(sbi, CP_TIME); 1720 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint"); 1721 out: 1722 if (cpc->reason != CP_RESIZE) 1723 f2fs_up_write(&sbi->cp_global_sem); 1724 return err; 1725 } 1726 1727 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi) 1728 { 1729 int i; 1730 1731 for (i = 0; i < MAX_INO_ENTRY; i++) { 1732 struct inode_management *im = &sbi->im[i]; 1733 1734 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC); 1735 spin_lock_init(&im->ino_lock); 1736 INIT_LIST_HEAD(&im->ino_list); 1737 im->ino_num = 0; 1738 } 1739 1740 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS - 1741 NR_CURSEG_PERSIST_TYPE - __cp_payload(sbi)) * 1742 F2FS_ORPHANS_PER_BLOCK; 1743 } 1744 1745 int __init f2fs_create_checkpoint_caches(void) 1746 { 1747 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry", 1748 sizeof(struct ino_entry)); 1749 if (!ino_entry_slab) 1750 return -ENOMEM; 1751 f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry", 1752 sizeof(struct inode_entry)); 1753 if (!f2fs_inode_entry_slab) { 1754 kmem_cache_destroy(ino_entry_slab); 1755 return -ENOMEM; 1756 } 1757 return 0; 1758 } 1759 1760 void f2fs_destroy_checkpoint_caches(void) 1761 { 1762 kmem_cache_destroy(ino_entry_slab); 1763 kmem_cache_destroy(f2fs_inode_entry_slab); 1764 } 1765 1766 static int __write_checkpoint_sync(struct f2fs_sb_info *sbi) 1767 { 1768 struct cp_control cpc = { .reason = CP_SYNC, }; 1769 int err; 1770 1771 f2fs_down_write(&sbi->gc_lock); 1772 err = f2fs_write_checkpoint(sbi, &cpc); 1773 f2fs_up_write(&sbi->gc_lock); 1774 1775 return err; 1776 } 1777 1778 static void __checkpoint_and_complete_reqs(struct f2fs_sb_info *sbi) 1779 { 1780 struct ckpt_req_control *cprc = &sbi->cprc_info; 1781 struct ckpt_req *req, *next; 1782 struct llist_node *dispatch_list; 1783 u64 sum_diff = 0, diff, count = 0; 1784 int ret; 1785 1786 dispatch_list = llist_del_all(&cprc->issue_list); 1787 if (!dispatch_list) 1788 return; 1789 dispatch_list = llist_reverse_order(dispatch_list); 1790 1791 ret = __write_checkpoint_sync(sbi); 1792 atomic_inc(&cprc->issued_ckpt); 1793 1794 llist_for_each_entry_safe(req, next, dispatch_list, llnode) { 1795 diff = (u64)ktime_ms_delta(ktime_get(), req->queue_time); 1796 req->ret = ret; 1797 complete(&req->wait); 1798 1799 sum_diff += diff; 1800 count++; 1801 } 1802 atomic_sub(count, &cprc->queued_ckpt); 1803 atomic_add(count, &cprc->total_ckpt); 1804 1805 spin_lock(&cprc->stat_lock); 1806 cprc->cur_time = (unsigned int)div64_u64(sum_diff, count); 1807 if (cprc->peak_time < cprc->cur_time) 1808 cprc->peak_time = cprc->cur_time; 1809 spin_unlock(&cprc->stat_lock); 1810 } 1811 1812 static int issue_checkpoint_thread(void *data) 1813 { 1814 struct f2fs_sb_info *sbi = data; 1815 struct ckpt_req_control *cprc = &sbi->cprc_info; 1816 wait_queue_head_t *q = &cprc->ckpt_wait_queue; 1817 repeat: 1818 if (kthread_should_stop()) 1819 return 0; 1820 1821 if (!llist_empty(&cprc->issue_list)) 1822 __checkpoint_and_complete_reqs(sbi); 1823 1824 wait_event_interruptible(*q, 1825 kthread_should_stop() || !llist_empty(&cprc->issue_list)); 1826 goto repeat; 1827 } 1828 1829 static void flush_remained_ckpt_reqs(struct f2fs_sb_info *sbi, 1830 struct ckpt_req *wait_req) 1831 { 1832 struct ckpt_req_control *cprc = &sbi->cprc_info; 1833 1834 if (!llist_empty(&cprc->issue_list)) { 1835 __checkpoint_and_complete_reqs(sbi); 1836 } else { 1837 /* already dispatched by issue_checkpoint_thread */ 1838 if (wait_req) 1839 wait_for_completion(&wait_req->wait); 1840 } 1841 } 1842 1843 static void init_ckpt_req(struct ckpt_req *req) 1844 { 1845 memset(req, 0, sizeof(struct ckpt_req)); 1846 1847 init_completion(&req->wait); 1848 req->queue_time = ktime_get(); 1849 } 1850 1851 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi) 1852 { 1853 struct ckpt_req_control *cprc = &sbi->cprc_info; 1854 struct ckpt_req req; 1855 struct cp_control cpc; 1856 1857 cpc.reason = __get_cp_reason(sbi); 1858 if (!test_opt(sbi, MERGE_CHECKPOINT) || cpc.reason != CP_SYNC) { 1859 int ret; 1860 1861 f2fs_down_write(&sbi->gc_lock); 1862 ret = f2fs_write_checkpoint(sbi, &cpc); 1863 f2fs_up_write(&sbi->gc_lock); 1864 1865 return ret; 1866 } 1867 1868 if (!cprc->f2fs_issue_ckpt) 1869 return __write_checkpoint_sync(sbi); 1870 1871 init_ckpt_req(&req); 1872 1873 llist_add(&req.llnode, &cprc->issue_list); 1874 atomic_inc(&cprc->queued_ckpt); 1875 1876 /* 1877 * update issue_list before we wake up issue_checkpoint thread, 1878 * this smp_mb() pairs with another barrier in ___wait_event(), 1879 * see more details in comments of waitqueue_active(). 1880 */ 1881 smp_mb(); 1882 1883 if (waitqueue_active(&cprc->ckpt_wait_queue)) 1884 wake_up(&cprc->ckpt_wait_queue); 1885 1886 if (cprc->f2fs_issue_ckpt) 1887 wait_for_completion(&req.wait); 1888 else 1889 flush_remained_ckpt_reqs(sbi, &req); 1890 1891 return req.ret; 1892 } 1893 1894 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi) 1895 { 1896 dev_t dev = sbi->sb->s_bdev->bd_dev; 1897 struct ckpt_req_control *cprc = &sbi->cprc_info; 1898 1899 if (cprc->f2fs_issue_ckpt) 1900 return 0; 1901 1902 cprc->f2fs_issue_ckpt = kthread_run(issue_checkpoint_thread, sbi, 1903 "f2fs_ckpt-%u:%u", MAJOR(dev), MINOR(dev)); 1904 if (IS_ERR(cprc->f2fs_issue_ckpt)) { 1905 int err = PTR_ERR(cprc->f2fs_issue_ckpt); 1906 1907 cprc->f2fs_issue_ckpt = NULL; 1908 return err; 1909 } 1910 1911 set_task_ioprio(cprc->f2fs_issue_ckpt, cprc->ckpt_thread_ioprio); 1912 1913 return 0; 1914 } 1915 1916 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi) 1917 { 1918 struct ckpt_req_control *cprc = &sbi->cprc_info; 1919 struct task_struct *ckpt_task; 1920 1921 if (!cprc->f2fs_issue_ckpt) 1922 return; 1923 1924 ckpt_task = cprc->f2fs_issue_ckpt; 1925 cprc->f2fs_issue_ckpt = NULL; 1926 kthread_stop(ckpt_task); 1927 1928 f2fs_flush_ckpt_thread(sbi); 1929 } 1930 1931 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi) 1932 { 1933 struct ckpt_req_control *cprc = &sbi->cprc_info; 1934 1935 flush_remained_ckpt_reqs(sbi, NULL); 1936 1937 /* Let's wait for the previous dispatched checkpoint. */ 1938 while (atomic_read(&cprc->queued_ckpt)) 1939 io_schedule_timeout(DEFAULT_IO_TIMEOUT); 1940 } 1941 1942 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi) 1943 { 1944 struct ckpt_req_control *cprc = &sbi->cprc_info; 1945 1946 atomic_set(&cprc->issued_ckpt, 0); 1947 atomic_set(&cprc->total_ckpt, 0); 1948 atomic_set(&cprc->queued_ckpt, 0); 1949 cprc->ckpt_thread_ioprio = DEFAULT_CHECKPOINT_IOPRIO; 1950 init_waitqueue_head(&cprc->ckpt_wait_queue); 1951 init_llist_head(&cprc->issue_list); 1952 spin_lock_init(&cprc->stat_lock); 1953 } 1954