1 /* 2 * linux/fs/ext4/super.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Big-endian to little-endian byte-swapping/bitmaps by 16 * David S. Miller (davem@caip.rutgers.edu), 1995 17 */ 18 19 #include <linux/module.h> 20 #include <linux/string.h> 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/vmalloc.h> 24 #include <linux/jbd2.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/parser.h> 29 #include <linux/buffer_head.h> 30 #include <linux/exportfs.h> 31 #include <linux/vfs.h> 32 #include <linux/random.h> 33 #include <linux/mount.h> 34 #include <linux/namei.h> 35 #include <linux/quotaops.h> 36 #include <linux/seq_file.h> 37 #include <linux/proc_fs.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/cleancache.h> 42 #include <asm/uaccess.h> 43 44 #include <linux/kthread.h> 45 #include <linux/freezer.h> 46 47 #include "ext4.h" 48 #include "ext4_extents.h" 49 #include "ext4_jbd2.h" 50 #include "xattr.h" 51 #include "acl.h" 52 #include "mballoc.h" 53 54 #define CREATE_TRACE_POINTS 55 #include <trace/events/ext4.h> 56 57 static struct proc_dir_entry *ext4_proc_root; 58 static struct kset *ext4_kset; 59 static struct ext4_lazy_init *ext4_li_info; 60 static struct mutex ext4_li_mtx; 61 static struct ext4_features *ext4_feat; 62 63 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 64 unsigned long journal_devnum); 65 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 66 static int ext4_commit_super(struct super_block *sb, int sync); 67 static void ext4_mark_recovery_complete(struct super_block *sb, 68 struct ext4_super_block *es); 69 static void ext4_clear_journal_err(struct super_block *sb, 70 struct ext4_super_block *es); 71 static int ext4_sync_fs(struct super_block *sb, int wait); 72 static const char *ext4_decode_error(struct super_block *sb, int errno, 73 char nbuf[16]); 74 static int ext4_remount(struct super_block *sb, int *flags, char *data); 75 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 76 static int ext4_unfreeze(struct super_block *sb); 77 static int ext4_freeze(struct super_block *sb); 78 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 79 const char *dev_name, void *data); 80 static inline int ext2_feature_set_ok(struct super_block *sb); 81 static inline int ext3_feature_set_ok(struct super_block *sb); 82 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 83 static void ext4_destroy_lazyinit_thread(void); 84 static void ext4_unregister_li_request(struct super_block *sb); 85 static void ext4_clear_request_list(void); 86 87 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 88 static struct file_system_type ext2_fs_type = { 89 .owner = THIS_MODULE, 90 .name = "ext2", 91 .mount = ext4_mount, 92 .kill_sb = kill_block_super, 93 .fs_flags = FS_REQUIRES_DEV, 94 }; 95 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 96 #else 97 #define IS_EXT2_SB(sb) (0) 98 #endif 99 100 101 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 102 static struct file_system_type ext3_fs_type = { 103 .owner = THIS_MODULE, 104 .name = "ext3", 105 .mount = ext4_mount, 106 .kill_sb = kill_block_super, 107 .fs_flags = FS_REQUIRES_DEV, 108 }; 109 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 110 #else 111 #define IS_EXT3_SB(sb) (0) 112 #endif 113 114 static int ext4_verify_csum_type(struct super_block *sb, 115 struct ext4_super_block *es) 116 { 117 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 118 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 119 return 1; 120 121 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 122 } 123 124 static __le32 ext4_superblock_csum(struct super_block *sb, 125 struct ext4_super_block *es) 126 { 127 struct ext4_sb_info *sbi = EXT4_SB(sb); 128 int offset = offsetof(struct ext4_super_block, s_checksum); 129 __u32 csum; 130 131 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 132 133 return cpu_to_le32(csum); 134 } 135 136 int ext4_superblock_csum_verify(struct super_block *sb, 137 struct ext4_super_block *es) 138 { 139 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 140 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 141 return 1; 142 143 return es->s_checksum == ext4_superblock_csum(sb, es); 144 } 145 146 void ext4_superblock_csum_set(struct super_block *sb) 147 { 148 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 149 150 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 151 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 152 return; 153 154 es->s_checksum = ext4_superblock_csum(sb, es); 155 } 156 157 void *ext4_kvmalloc(size_t size, gfp_t flags) 158 { 159 void *ret; 160 161 ret = kmalloc(size, flags); 162 if (!ret) 163 ret = __vmalloc(size, flags, PAGE_KERNEL); 164 return ret; 165 } 166 167 void *ext4_kvzalloc(size_t size, gfp_t flags) 168 { 169 void *ret; 170 171 ret = kzalloc(size, flags); 172 if (!ret) 173 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 174 return ret; 175 } 176 177 void ext4_kvfree(void *ptr) 178 { 179 if (is_vmalloc_addr(ptr)) 180 vfree(ptr); 181 else 182 kfree(ptr); 183 184 } 185 186 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 187 struct ext4_group_desc *bg) 188 { 189 return le32_to_cpu(bg->bg_block_bitmap_lo) | 190 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 191 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 192 } 193 194 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 195 struct ext4_group_desc *bg) 196 { 197 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 198 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 199 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 200 } 201 202 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 203 struct ext4_group_desc *bg) 204 { 205 return le32_to_cpu(bg->bg_inode_table_lo) | 206 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 207 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 208 } 209 210 __u32 ext4_free_group_clusters(struct super_block *sb, 211 struct ext4_group_desc *bg) 212 { 213 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 214 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 215 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 216 } 217 218 __u32 ext4_free_inodes_count(struct super_block *sb, 219 struct ext4_group_desc *bg) 220 { 221 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 222 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 223 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 224 } 225 226 __u32 ext4_used_dirs_count(struct super_block *sb, 227 struct ext4_group_desc *bg) 228 { 229 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 230 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 231 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 232 } 233 234 __u32 ext4_itable_unused_count(struct super_block *sb, 235 struct ext4_group_desc *bg) 236 { 237 return le16_to_cpu(bg->bg_itable_unused_lo) | 238 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 239 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 240 } 241 242 void ext4_block_bitmap_set(struct super_block *sb, 243 struct ext4_group_desc *bg, ext4_fsblk_t blk) 244 { 245 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 246 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 247 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 248 } 249 250 void ext4_inode_bitmap_set(struct super_block *sb, 251 struct ext4_group_desc *bg, ext4_fsblk_t blk) 252 { 253 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 254 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 255 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 256 } 257 258 void ext4_inode_table_set(struct super_block *sb, 259 struct ext4_group_desc *bg, ext4_fsblk_t blk) 260 { 261 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 262 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 263 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 264 } 265 266 void ext4_free_group_clusters_set(struct super_block *sb, 267 struct ext4_group_desc *bg, __u32 count) 268 { 269 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 270 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 271 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 272 } 273 274 void ext4_free_inodes_set(struct super_block *sb, 275 struct ext4_group_desc *bg, __u32 count) 276 { 277 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 278 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 279 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 280 } 281 282 void ext4_used_dirs_set(struct super_block *sb, 283 struct ext4_group_desc *bg, __u32 count) 284 { 285 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 286 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 287 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 288 } 289 290 void ext4_itable_unused_set(struct super_block *sb, 291 struct ext4_group_desc *bg, __u32 count) 292 { 293 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 294 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 295 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 296 } 297 298 299 /* Just increment the non-pointer handle value */ 300 static handle_t *ext4_get_nojournal(void) 301 { 302 handle_t *handle = current->journal_info; 303 unsigned long ref_cnt = (unsigned long)handle; 304 305 BUG_ON(ref_cnt >= EXT4_NOJOURNAL_MAX_REF_COUNT); 306 307 ref_cnt++; 308 handle = (handle_t *)ref_cnt; 309 310 current->journal_info = handle; 311 return handle; 312 } 313 314 315 /* Decrement the non-pointer handle value */ 316 static void ext4_put_nojournal(handle_t *handle) 317 { 318 unsigned long ref_cnt = (unsigned long)handle; 319 320 BUG_ON(ref_cnt == 0); 321 322 ref_cnt--; 323 handle = (handle_t *)ref_cnt; 324 325 current->journal_info = handle; 326 } 327 328 /* 329 * Wrappers for jbd2_journal_start/end. 330 */ 331 handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks) 332 { 333 journal_t *journal; 334 335 trace_ext4_journal_start(sb, nblocks, _RET_IP_); 336 if (sb->s_flags & MS_RDONLY) 337 return ERR_PTR(-EROFS); 338 339 WARN_ON(sb->s_writers.frozen == SB_FREEZE_COMPLETE); 340 journal = EXT4_SB(sb)->s_journal; 341 if (!journal) 342 return ext4_get_nojournal(); 343 /* 344 * Special case here: if the journal has aborted behind our 345 * backs (eg. EIO in the commit thread), then we still need to 346 * take the FS itself readonly cleanly. 347 */ 348 if (is_journal_aborted(journal)) { 349 ext4_abort(sb, "Detected aborted journal"); 350 return ERR_PTR(-EROFS); 351 } 352 return jbd2_journal_start(journal, nblocks); 353 } 354 355 int __ext4_journal_stop(const char *where, unsigned int line, handle_t *handle) 356 { 357 struct super_block *sb; 358 int err; 359 int rc; 360 361 if (!ext4_handle_valid(handle)) { 362 ext4_put_nojournal(handle); 363 return 0; 364 } 365 sb = handle->h_transaction->t_journal->j_private; 366 err = handle->h_err; 367 rc = jbd2_journal_stop(handle); 368 369 if (!err) 370 err = rc; 371 if (err) 372 __ext4_std_error(sb, where, line, err); 373 return err; 374 } 375 376 void ext4_journal_abort_handle(const char *caller, unsigned int line, 377 const char *err_fn, struct buffer_head *bh, 378 handle_t *handle, int err) 379 { 380 char nbuf[16]; 381 const char *errstr = ext4_decode_error(NULL, err, nbuf); 382 383 BUG_ON(!ext4_handle_valid(handle)); 384 385 if (bh) 386 BUFFER_TRACE(bh, "abort"); 387 388 if (!handle->h_err) 389 handle->h_err = err; 390 391 if (is_handle_aborted(handle)) 392 return; 393 394 printk(KERN_ERR "EXT4-fs: %s:%d: aborting transaction: %s in %s\n", 395 caller, line, errstr, err_fn); 396 397 jbd2_journal_abort_handle(handle); 398 } 399 400 static void __save_error_info(struct super_block *sb, const char *func, 401 unsigned int line) 402 { 403 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 404 405 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 406 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 407 es->s_last_error_time = cpu_to_le32(get_seconds()); 408 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 409 es->s_last_error_line = cpu_to_le32(line); 410 if (!es->s_first_error_time) { 411 es->s_first_error_time = es->s_last_error_time; 412 strncpy(es->s_first_error_func, func, 413 sizeof(es->s_first_error_func)); 414 es->s_first_error_line = cpu_to_le32(line); 415 es->s_first_error_ino = es->s_last_error_ino; 416 es->s_first_error_block = es->s_last_error_block; 417 } 418 /* 419 * Start the daily error reporting function if it hasn't been 420 * started already 421 */ 422 if (!es->s_error_count) 423 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 424 le32_add_cpu(&es->s_error_count, 1); 425 } 426 427 static void save_error_info(struct super_block *sb, const char *func, 428 unsigned int line) 429 { 430 __save_error_info(sb, func, line); 431 ext4_commit_super(sb, 1); 432 } 433 434 /* 435 * The del_gendisk() function uninitializes the disk-specific data 436 * structures, including the bdi structure, without telling anyone 437 * else. Once this happens, any attempt to call mark_buffer_dirty() 438 * (for example, by ext4_commit_super), will cause a kernel OOPS. 439 * This is a kludge to prevent these oops until we can put in a proper 440 * hook in del_gendisk() to inform the VFS and file system layers. 441 */ 442 static int block_device_ejected(struct super_block *sb) 443 { 444 struct inode *bd_inode = sb->s_bdev->bd_inode; 445 struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info; 446 447 return bdi->dev == NULL; 448 } 449 450 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 451 { 452 struct super_block *sb = journal->j_private; 453 struct ext4_sb_info *sbi = EXT4_SB(sb); 454 int error = is_journal_aborted(journal); 455 struct ext4_journal_cb_entry *jce, *tmp; 456 457 spin_lock(&sbi->s_md_lock); 458 list_for_each_entry_safe(jce, tmp, &txn->t_private_list, jce_list) { 459 list_del_init(&jce->jce_list); 460 spin_unlock(&sbi->s_md_lock); 461 jce->jce_func(sb, jce, error); 462 spin_lock(&sbi->s_md_lock); 463 } 464 spin_unlock(&sbi->s_md_lock); 465 } 466 467 /* Deal with the reporting of failure conditions on a filesystem such as 468 * inconsistencies detected or read IO failures. 469 * 470 * On ext2, we can store the error state of the filesystem in the 471 * superblock. That is not possible on ext4, because we may have other 472 * write ordering constraints on the superblock which prevent us from 473 * writing it out straight away; and given that the journal is about to 474 * be aborted, we can't rely on the current, or future, transactions to 475 * write out the superblock safely. 476 * 477 * We'll just use the jbd2_journal_abort() error code to record an error in 478 * the journal instead. On recovery, the journal will complain about 479 * that error until we've noted it down and cleared it. 480 */ 481 482 static void ext4_handle_error(struct super_block *sb) 483 { 484 if (sb->s_flags & MS_RDONLY) 485 return; 486 487 if (!test_opt(sb, ERRORS_CONT)) { 488 journal_t *journal = EXT4_SB(sb)->s_journal; 489 490 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 491 if (journal) 492 jbd2_journal_abort(journal, -EIO); 493 } 494 if (test_opt(sb, ERRORS_RO)) { 495 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 496 sb->s_flags |= MS_RDONLY; 497 } 498 if (test_opt(sb, ERRORS_PANIC)) 499 panic("EXT4-fs (device %s): panic forced after error\n", 500 sb->s_id); 501 } 502 503 void __ext4_error(struct super_block *sb, const char *function, 504 unsigned int line, const char *fmt, ...) 505 { 506 struct va_format vaf; 507 va_list args; 508 509 va_start(args, fmt); 510 vaf.fmt = fmt; 511 vaf.va = &args; 512 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 513 sb->s_id, function, line, current->comm, &vaf); 514 va_end(args); 515 save_error_info(sb, function, line); 516 517 ext4_handle_error(sb); 518 } 519 520 void ext4_error_inode(struct inode *inode, const char *function, 521 unsigned int line, ext4_fsblk_t block, 522 const char *fmt, ...) 523 { 524 va_list args; 525 struct va_format vaf; 526 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 527 528 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 529 es->s_last_error_block = cpu_to_le64(block); 530 save_error_info(inode->i_sb, function, line); 531 va_start(args, fmt); 532 vaf.fmt = fmt; 533 vaf.va = &args; 534 if (block) 535 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 536 "inode #%lu: block %llu: comm %s: %pV\n", 537 inode->i_sb->s_id, function, line, inode->i_ino, 538 block, current->comm, &vaf); 539 else 540 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 541 "inode #%lu: comm %s: %pV\n", 542 inode->i_sb->s_id, function, line, inode->i_ino, 543 current->comm, &vaf); 544 va_end(args); 545 546 ext4_handle_error(inode->i_sb); 547 } 548 549 void ext4_error_file(struct file *file, const char *function, 550 unsigned int line, ext4_fsblk_t block, 551 const char *fmt, ...) 552 { 553 va_list args; 554 struct va_format vaf; 555 struct ext4_super_block *es; 556 struct inode *inode = file->f_dentry->d_inode; 557 char pathname[80], *path; 558 559 es = EXT4_SB(inode->i_sb)->s_es; 560 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 561 save_error_info(inode->i_sb, function, line); 562 path = d_path(&(file->f_path), pathname, sizeof(pathname)); 563 if (IS_ERR(path)) 564 path = "(unknown)"; 565 va_start(args, fmt); 566 vaf.fmt = fmt; 567 vaf.va = &args; 568 if (block) 569 printk(KERN_CRIT 570 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 571 "block %llu: comm %s: path %s: %pV\n", 572 inode->i_sb->s_id, function, line, inode->i_ino, 573 block, current->comm, path, &vaf); 574 else 575 printk(KERN_CRIT 576 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 577 "comm %s: path %s: %pV\n", 578 inode->i_sb->s_id, function, line, inode->i_ino, 579 current->comm, path, &vaf); 580 va_end(args); 581 582 ext4_handle_error(inode->i_sb); 583 } 584 585 static const char *ext4_decode_error(struct super_block *sb, int errno, 586 char nbuf[16]) 587 { 588 char *errstr = NULL; 589 590 switch (errno) { 591 case -EIO: 592 errstr = "IO failure"; 593 break; 594 case -ENOMEM: 595 errstr = "Out of memory"; 596 break; 597 case -EROFS: 598 if (!sb || (EXT4_SB(sb)->s_journal && 599 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 600 errstr = "Journal has aborted"; 601 else 602 errstr = "Readonly filesystem"; 603 break; 604 default: 605 /* If the caller passed in an extra buffer for unknown 606 * errors, textualise them now. Else we just return 607 * NULL. */ 608 if (nbuf) { 609 /* Check for truncated error codes... */ 610 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 611 errstr = nbuf; 612 } 613 break; 614 } 615 616 return errstr; 617 } 618 619 /* __ext4_std_error decodes expected errors from journaling functions 620 * automatically and invokes the appropriate error response. */ 621 622 void __ext4_std_error(struct super_block *sb, const char *function, 623 unsigned int line, int errno) 624 { 625 char nbuf[16]; 626 const char *errstr; 627 628 /* Special case: if the error is EROFS, and we're not already 629 * inside a transaction, then there's really no point in logging 630 * an error. */ 631 if (errno == -EROFS && journal_current_handle() == NULL && 632 (sb->s_flags & MS_RDONLY)) 633 return; 634 635 errstr = ext4_decode_error(sb, errno, nbuf); 636 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 637 sb->s_id, function, line, errstr); 638 save_error_info(sb, function, line); 639 640 ext4_handle_error(sb); 641 } 642 643 /* 644 * ext4_abort is a much stronger failure handler than ext4_error. The 645 * abort function may be used to deal with unrecoverable failures such 646 * as journal IO errors or ENOMEM at a critical moment in log management. 647 * 648 * We unconditionally force the filesystem into an ABORT|READONLY state, 649 * unless the error response on the fs has been set to panic in which 650 * case we take the easy way out and panic immediately. 651 */ 652 653 void __ext4_abort(struct super_block *sb, const char *function, 654 unsigned int line, const char *fmt, ...) 655 { 656 va_list args; 657 658 save_error_info(sb, function, line); 659 va_start(args, fmt); 660 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id, 661 function, line); 662 vprintk(fmt, args); 663 printk("\n"); 664 va_end(args); 665 666 if ((sb->s_flags & MS_RDONLY) == 0) { 667 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 668 sb->s_flags |= MS_RDONLY; 669 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 670 if (EXT4_SB(sb)->s_journal) 671 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 672 save_error_info(sb, function, line); 673 } 674 if (test_opt(sb, ERRORS_PANIC)) 675 panic("EXT4-fs panic from previous error\n"); 676 } 677 678 void ext4_msg(struct super_block *sb, const char *prefix, const char *fmt, ...) 679 { 680 struct va_format vaf; 681 va_list args; 682 683 va_start(args, fmt); 684 vaf.fmt = fmt; 685 vaf.va = &args; 686 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 687 va_end(args); 688 } 689 690 void __ext4_warning(struct super_block *sb, const char *function, 691 unsigned int line, const char *fmt, ...) 692 { 693 struct va_format vaf; 694 va_list args; 695 696 va_start(args, fmt); 697 vaf.fmt = fmt; 698 vaf.va = &args; 699 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 700 sb->s_id, function, line, &vaf); 701 va_end(args); 702 } 703 704 void __ext4_grp_locked_error(const char *function, unsigned int line, 705 struct super_block *sb, ext4_group_t grp, 706 unsigned long ino, ext4_fsblk_t block, 707 const char *fmt, ...) 708 __releases(bitlock) 709 __acquires(bitlock) 710 { 711 struct va_format vaf; 712 va_list args; 713 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 714 715 es->s_last_error_ino = cpu_to_le32(ino); 716 es->s_last_error_block = cpu_to_le64(block); 717 __save_error_info(sb, function, line); 718 719 va_start(args, fmt); 720 721 vaf.fmt = fmt; 722 vaf.va = &args; 723 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 724 sb->s_id, function, line, grp); 725 if (ino) 726 printk(KERN_CONT "inode %lu: ", ino); 727 if (block) 728 printk(KERN_CONT "block %llu:", (unsigned long long) block); 729 printk(KERN_CONT "%pV\n", &vaf); 730 va_end(args); 731 732 if (test_opt(sb, ERRORS_CONT)) { 733 ext4_commit_super(sb, 0); 734 return; 735 } 736 737 ext4_unlock_group(sb, grp); 738 ext4_handle_error(sb); 739 /* 740 * We only get here in the ERRORS_RO case; relocking the group 741 * may be dangerous, but nothing bad will happen since the 742 * filesystem will have already been marked read/only and the 743 * journal has been aborted. We return 1 as a hint to callers 744 * who might what to use the return value from 745 * ext4_grp_locked_error() to distinguish between the 746 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 747 * aggressively from the ext4 function in question, with a 748 * more appropriate error code. 749 */ 750 ext4_lock_group(sb, grp); 751 return; 752 } 753 754 void ext4_update_dynamic_rev(struct super_block *sb) 755 { 756 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 757 758 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 759 return; 760 761 ext4_warning(sb, 762 "updating to rev %d because of new feature flag, " 763 "running e2fsck is recommended", 764 EXT4_DYNAMIC_REV); 765 766 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 767 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 768 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 769 /* leave es->s_feature_*compat flags alone */ 770 /* es->s_uuid will be set by e2fsck if empty */ 771 772 /* 773 * The rest of the superblock fields should be zero, and if not it 774 * means they are likely already in use, so leave them alone. We 775 * can leave it up to e2fsck to clean up any inconsistencies there. 776 */ 777 } 778 779 /* 780 * Open the external journal device 781 */ 782 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 783 { 784 struct block_device *bdev; 785 char b[BDEVNAME_SIZE]; 786 787 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 788 if (IS_ERR(bdev)) 789 goto fail; 790 return bdev; 791 792 fail: 793 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 794 __bdevname(dev, b), PTR_ERR(bdev)); 795 return NULL; 796 } 797 798 /* 799 * Release the journal device 800 */ 801 static int ext4_blkdev_put(struct block_device *bdev) 802 { 803 return blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 804 } 805 806 static int ext4_blkdev_remove(struct ext4_sb_info *sbi) 807 { 808 struct block_device *bdev; 809 int ret = -ENODEV; 810 811 bdev = sbi->journal_bdev; 812 if (bdev) { 813 ret = ext4_blkdev_put(bdev); 814 sbi->journal_bdev = NULL; 815 } 816 return ret; 817 } 818 819 static inline struct inode *orphan_list_entry(struct list_head *l) 820 { 821 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 822 } 823 824 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 825 { 826 struct list_head *l; 827 828 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 829 le32_to_cpu(sbi->s_es->s_last_orphan)); 830 831 printk(KERN_ERR "sb_info orphan list:\n"); 832 list_for_each(l, &sbi->s_orphan) { 833 struct inode *inode = orphan_list_entry(l); 834 printk(KERN_ERR " " 835 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 836 inode->i_sb->s_id, inode->i_ino, inode, 837 inode->i_mode, inode->i_nlink, 838 NEXT_ORPHAN(inode)); 839 } 840 } 841 842 static void ext4_put_super(struct super_block *sb) 843 { 844 struct ext4_sb_info *sbi = EXT4_SB(sb); 845 struct ext4_super_block *es = sbi->s_es; 846 int i, err; 847 848 ext4_unregister_li_request(sb); 849 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED); 850 851 flush_workqueue(sbi->dio_unwritten_wq); 852 destroy_workqueue(sbi->dio_unwritten_wq); 853 854 if (sbi->s_journal) { 855 err = jbd2_journal_destroy(sbi->s_journal); 856 sbi->s_journal = NULL; 857 if (err < 0) 858 ext4_abort(sb, "Couldn't clean up the journal"); 859 } 860 861 del_timer(&sbi->s_err_report); 862 ext4_release_system_zone(sb); 863 ext4_mb_release(sb); 864 ext4_ext_release(sb); 865 ext4_xattr_put_super(sb); 866 867 if (!(sb->s_flags & MS_RDONLY)) { 868 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 869 es->s_state = cpu_to_le16(sbi->s_mount_state); 870 } 871 if (!(sb->s_flags & MS_RDONLY)) 872 ext4_commit_super(sb, 1); 873 874 if (sbi->s_proc) { 875 remove_proc_entry("options", sbi->s_proc); 876 remove_proc_entry(sb->s_id, ext4_proc_root); 877 } 878 kobject_del(&sbi->s_kobj); 879 880 for (i = 0; i < sbi->s_gdb_count; i++) 881 brelse(sbi->s_group_desc[i]); 882 ext4_kvfree(sbi->s_group_desc); 883 ext4_kvfree(sbi->s_flex_groups); 884 percpu_counter_destroy(&sbi->s_freeclusters_counter); 885 percpu_counter_destroy(&sbi->s_freeinodes_counter); 886 percpu_counter_destroy(&sbi->s_dirs_counter); 887 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 888 brelse(sbi->s_sbh); 889 #ifdef CONFIG_QUOTA 890 for (i = 0; i < MAXQUOTAS; i++) 891 kfree(sbi->s_qf_names[i]); 892 #endif 893 894 /* Debugging code just in case the in-memory inode orphan list 895 * isn't empty. The on-disk one can be non-empty if we've 896 * detected an error and taken the fs readonly, but the 897 * in-memory list had better be clean by this point. */ 898 if (!list_empty(&sbi->s_orphan)) 899 dump_orphan_list(sb, sbi); 900 J_ASSERT(list_empty(&sbi->s_orphan)); 901 902 invalidate_bdev(sb->s_bdev); 903 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 904 /* 905 * Invalidate the journal device's buffers. We don't want them 906 * floating about in memory - the physical journal device may 907 * hotswapped, and it breaks the `ro-after' testing code. 908 */ 909 sync_blockdev(sbi->journal_bdev); 910 invalidate_bdev(sbi->journal_bdev); 911 ext4_blkdev_remove(sbi); 912 } 913 if (sbi->s_mmp_tsk) 914 kthread_stop(sbi->s_mmp_tsk); 915 sb->s_fs_info = NULL; 916 /* 917 * Now that we are completely done shutting down the 918 * superblock, we need to actually destroy the kobject. 919 */ 920 kobject_put(&sbi->s_kobj); 921 wait_for_completion(&sbi->s_kobj_unregister); 922 if (sbi->s_chksum_driver) 923 crypto_free_shash(sbi->s_chksum_driver); 924 kfree(sbi->s_blockgroup_lock); 925 kfree(sbi); 926 } 927 928 static struct kmem_cache *ext4_inode_cachep; 929 930 /* 931 * Called inside transaction, so use GFP_NOFS 932 */ 933 static struct inode *ext4_alloc_inode(struct super_block *sb) 934 { 935 struct ext4_inode_info *ei; 936 937 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 938 if (!ei) 939 return NULL; 940 941 ei->vfs_inode.i_version = 1; 942 ei->vfs_inode.i_data.writeback_index = 0; 943 memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache)); 944 INIT_LIST_HEAD(&ei->i_prealloc_list); 945 spin_lock_init(&ei->i_prealloc_lock); 946 ei->i_reserved_data_blocks = 0; 947 ei->i_reserved_meta_blocks = 0; 948 ei->i_allocated_meta_blocks = 0; 949 ei->i_da_metadata_calc_len = 0; 950 ei->i_da_metadata_calc_last_lblock = 0; 951 spin_lock_init(&(ei->i_block_reservation_lock)); 952 #ifdef CONFIG_QUOTA 953 ei->i_reserved_quota = 0; 954 #endif 955 ei->jinode = NULL; 956 INIT_LIST_HEAD(&ei->i_completed_io_list); 957 spin_lock_init(&ei->i_completed_io_lock); 958 ei->i_sync_tid = 0; 959 ei->i_datasync_tid = 0; 960 atomic_set(&ei->i_ioend_count, 0); 961 atomic_set(&ei->i_unwritten, 0); 962 963 return &ei->vfs_inode; 964 } 965 966 static int ext4_drop_inode(struct inode *inode) 967 { 968 int drop = generic_drop_inode(inode); 969 970 trace_ext4_drop_inode(inode, drop); 971 return drop; 972 } 973 974 static void ext4_i_callback(struct rcu_head *head) 975 { 976 struct inode *inode = container_of(head, struct inode, i_rcu); 977 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 978 } 979 980 static void ext4_destroy_inode(struct inode *inode) 981 { 982 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 983 ext4_msg(inode->i_sb, KERN_ERR, 984 "Inode %lu (%p): orphan list check failed!", 985 inode->i_ino, EXT4_I(inode)); 986 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 987 EXT4_I(inode), sizeof(struct ext4_inode_info), 988 true); 989 dump_stack(); 990 } 991 call_rcu(&inode->i_rcu, ext4_i_callback); 992 } 993 994 static void init_once(void *foo) 995 { 996 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 997 998 INIT_LIST_HEAD(&ei->i_orphan); 999 #ifdef CONFIG_EXT4_FS_XATTR 1000 init_rwsem(&ei->xattr_sem); 1001 #endif 1002 init_rwsem(&ei->i_data_sem); 1003 inode_init_once(&ei->vfs_inode); 1004 } 1005 1006 static int init_inodecache(void) 1007 { 1008 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache", 1009 sizeof(struct ext4_inode_info), 1010 0, (SLAB_RECLAIM_ACCOUNT| 1011 SLAB_MEM_SPREAD), 1012 init_once); 1013 if (ext4_inode_cachep == NULL) 1014 return -ENOMEM; 1015 return 0; 1016 } 1017 1018 static void destroy_inodecache(void) 1019 { 1020 /* 1021 * Make sure all delayed rcu free inodes are flushed before we 1022 * destroy cache. 1023 */ 1024 rcu_barrier(); 1025 kmem_cache_destroy(ext4_inode_cachep); 1026 } 1027 1028 void ext4_clear_inode(struct inode *inode) 1029 { 1030 invalidate_inode_buffers(inode); 1031 clear_inode(inode); 1032 dquot_drop(inode); 1033 ext4_discard_preallocations(inode); 1034 if (EXT4_I(inode)->jinode) { 1035 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1036 EXT4_I(inode)->jinode); 1037 jbd2_free_inode(EXT4_I(inode)->jinode); 1038 EXT4_I(inode)->jinode = NULL; 1039 } 1040 } 1041 1042 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1043 u64 ino, u32 generation) 1044 { 1045 struct inode *inode; 1046 1047 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 1048 return ERR_PTR(-ESTALE); 1049 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 1050 return ERR_PTR(-ESTALE); 1051 1052 /* iget isn't really right if the inode is currently unallocated!! 1053 * 1054 * ext4_read_inode will return a bad_inode if the inode had been 1055 * deleted, so we should be safe. 1056 * 1057 * Currently we don't know the generation for parent directory, so 1058 * a generation of 0 means "accept any" 1059 */ 1060 inode = ext4_iget(sb, ino); 1061 if (IS_ERR(inode)) 1062 return ERR_CAST(inode); 1063 if (generation && inode->i_generation != generation) { 1064 iput(inode); 1065 return ERR_PTR(-ESTALE); 1066 } 1067 1068 return inode; 1069 } 1070 1071 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1072 int fh_len, int fh_type) 1073 { 1074 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1075 ext4_nfs_get_inode); 1076 } 1077 1078 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1079 int fh_len, int fh_type) 1080 { 1081 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1082 ext4_nfs_get_inode); 1083 } 1084 1085 /* 1086 * Try to release metadata pages (indirect blocks, directories) which are 1087 * mapped via the block device. Since these pages could have journal heads 1088 * which would prevent try_to_free_buffers() from freeing them, we must use 1089 * jbd2 layer's try_to_free_buffers() function to release them. 1090 */ 1091 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1092 gfp_t wait) 1093 { 1094 journal_t *journal = EXT4_SB(sb)->s_journal; 1095 1096 WARN_ON(PageChecked(page)); 1097 if (!page_has_buffers(page)) 1098 return 0; 1099 if (journal) 1100 return jbd2_journal_try_to_free_buffers(journal, page, 1101 wait & ~__GFP_WAIT); 1102 return try_to_free_buffers(page); 1103 } 1104 1105 #ifdef CONFIG_QUOTA 1106 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group") 1107 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA)) 1108 1109 static int ext4_write_dquot(struct dquot *dquot); 1110 static int ext4_acquire_dquot(struct dquot *dquot); 1111 static int ext4_release_dquot(struct dquot *dquot); 1112 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1113 static int ext4_write_info(struct super_block *sb, int type); 1114 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1115 struct path *path); 1116 static int ext4_quota_on_sysfile(struct super_block *sb, int type, 1117 int format_id); 1118 static int ext4_quota_off(struct super_block *sb, int type); 1119 static int ext4_quota_off_sysfile(struct super_block *sb, int type); 1120 static int ext4_quota_on_mount(struct super_block *sb, int type); 1121 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1122 size_t len, loff_t off); 1123 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1124 const char *data, size_t len, loff_t off); 1125 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1126 unsigned int flags); 1127 static int ext4_enable_quotas(struct super_block *sb); 1128 1129 static const struct dquot_operations ext4_quota_operations = { 1130 .get_reserved_space = ext4_get_reserved_space, 1131 .write_dquot = ext4_write_dquot, 1132 .acquire_dquot = ext4_acquire_dquot, 1133 .release_dquot = ext4_release_dquot, 1134 .mark_dirty = ext4_mark_dquot_dirty, 1135 .write_info = ext4_write_info, 1136 .alloc_dquot = dquot_alloc, 1137 .destroy_dquot = dquot_destroy, 1138 }; 1139 1140 static const struct quotactl_ops ext4_qctl_operations = { 1141 .quota_on = ext4_quota_on, 1142 .quota_off = ext4_quota_off, 1143 .quota_sync = dquot_quota_sync, 1144 .get_info = dquot_get_dqinfo, 1145 .set_info = dquot_set_dqinfo, 1146 .get_dqblk = dquot_get_dqblk, 1147 .set_dqblk = dquot_set_dqblk 1148 }; 1149 1150 static const struct quotactl_ops ext4_qctl_sysfile_operations = { 1151 .quota_on_meta = ext4_quota_on_sysfile, 1152 .quota_off = ext4_quota_off_sysfile, 1153 .quota_sync = dquot_quota_sync, 1154 .get_info = dquot_get_dqinfo, 1155 .set_info = dquot_set_dqinfo, 1156 .get_dqblk = dquot_get_dqblk, 1157 .set_dqblk = dquot_set_dqblk 1158 }; 1159 #endif 1160 1161 static const struct super_operations ext4_sops = { 1162 .alloc_inode = ext4_alloc_inode, 1163 .destroy_inode = ext4_destroy_inode, 1164 .write_inode = ext4_write_inode, 1165 .dirty_inode = ext4_dirty_inode, 1166 .drop_inode = ext4_drop_inode, 1167 .evict_inode = ext4_evict_inode, 1168 .put_super = ext4_put_super, 1169 .sync_fs = ext4_sync_fs, 1170 .freeze_fs = ext4_freeze, 1171 .unfreeze_fs = ext4_unfreeze, 1172 .statfs = ext4_statfs, 1173 .remount_fs = ext4_remount, 1174 .show_options = ext4_show_options, 1175 #ifdef CONFIG_QUOTA 1176 .quota_read = ext4_quota_read, 1177 .quota_write = ext4_quota_write, 1178 #endif 1179 .bdev_try_to_free_page = bdev_try_to_free_page, 1180 }; 1181 1182 static const struct super_operations ext4_nojournal_sops = { 1183 .alloc_inode = ext4_alloc_inode, 1184 .destroy_inode = ext4_destroy_inode, 1185 .write_inode = ext4_write_inode, 1186 .dirty_inode = ext4_dirty_inode, 1187 .drop_inode = ext4_drop_inode, 1188 .evict_inode = ext4_evict_inode, 1189 .put_super = ext4_put_super, 1190 .statfs = ext4_statfs, 1191 .remount_fs = ext4_remount, 1192 .show_options = ext4_show_options, 1193 #ifdef CONFIG_QUOTA 1194 .quota_read = ext4_quota_read, 1195 .quota_write = ext4_quota_write, 1196 #endif 1197 .bdev_try_to_free_page = bdev_try_to_free_page, 1198 }; 1199 1200 static const struct export_operations ext4_export_ops = { 1201 .fh_to_dentry = ext4_fh_to_dentry, 1202 .fh_to_parent = ext4_fh_to_parent, 1203 .get_parent = ext4_get_parent, 1204 }; 1205 1206 enum { 1207 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1208 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1209 Opt_nouid32, Opt_debug, Opt_removed, 1210 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1211 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1212 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, 1213 Opt_journal_dev, Opt_journal_checksum, Opt_journal_async_commit, 1214 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1215 Opt_data_err_abort, Opt_data_err_ignore, 1216 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1217 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1218 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1219 Opt_usrquota, Opt_grpquota, Opt_i_version, 1220 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit, 1221 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1222 Opt_inode_readahead_blks, Opt_journal_ioprio, 1223 Opt_dioread_nolock, Opt_dioread_lock, 1224 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1225 Opt_max_dir_size_kb, 1226 }; 1227 1228 static const match_table_t tokens = { 1229 {Opt_bsd_df, "bsddf"}, 1230 {Opt_minix_df, "minixdf"}, 1231 {Opt_grpid, "grpid"}, 1232 {Opt_grpid, "bsdgroups"}, 1233 {Opt_nogrpid, "nogrpid"}, 1234 {Opt_nogrpid, "sysvgroups"}, 1235 {Opt_resgid, "resgid=%u"}, 1236 {Opt_resuid, "resuid=%u"}, 1237 {Opt_sb, "sb=%u"}, 1238 {Opt_err_cont, "errors=continue"}, 1239 {Opt_err_panic, "errors=panic"}, 1240 {Opt_err_ro, "errors=remount-ro"}, 1241 {Opt_nouid32, "nouid32"}, 1242 {Opt_debug, "debug"}, 1243 {Opt_removed, "oldalloc"}, 1244 {Opt_removed, "orlov"}, 1245 {Opt_user_xattr, "user_xattr"}, 1246 {Opt_nouser_xattr, "nouser_xattr"}, 1247 {Opt_acl, "acl"}, 1248 {Opt_noacl, "noacl"}, 1249 {Opt_noload, "norecovery"}, 1250 {Opt_noload, "noload"}, 1251 {Opt_removed, "nobh"}, 1252 {Opt_removed, "bh"}, 1253 {Opt_commit, "commit=%u"}, 1254 {Opt_min_batch_time, "min_batch_time=%u"}, 1255 {Opt_max_batch_time, "max_batch_time=%u"}, 1256 {Opt_journal_dev, "journal_dev=%u"}, 1257 {Opt_journal_checksum, "journal_checksum"}, 1258 {Opt_journal_async_commit, "journal_async_commit"}, 1259 {Opt_abort, "abort"}, 1260 {Opt_data_journal, "data=journal"}, 1261 {Opt_data_ordered, "data=ordered"}, 1262 {Opt_data_writeback, "data=writeback"}, 1263 {Opt_data_err_abort, "data_err=abort"}, 1264 {Opt_data_err_ignore, "data_err=ignore"}, 1265 {Opt_offusrjquota, "usrjquota="}, 1266 {Opt_usrjquota, "usrjquota=%s"}, 1267 {Opt_offgrpjquota, "grpjquota="}, 1268 {Opt_grpjquota, "grpjquota=%s"}, 1269 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1270 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1271 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1272 {Opt_grpquota, "grpquota"}, 1273 {Opt_noquota, "noquota"}, 1274 {Opt_quota, "quota"}, 1275 {Opt_usrquota, "usrquota"}, 1276 {Opt_barrier, "barrier=%u"}, 1277 {Opt_barrier, "barrier"}, 1278 {Opt_nobarrier, "nobarrier"}, 1279 {Opt_i_version, "i_version"}, 1280 {Opt_stripe, "stripe=%u"}, 1281 {Opt_delalloc, "delalloc"}, 1282 {Opt_nodelalloc, "nodelalloc"}, 1283 {Opt_mblk_io_submit, "mblk_io_submit"}, 1284 {Opt_nomblk_io_submit, "nomblk_io_submit"}, 1285 {Opt_block_validity, "block_validity"}, 1286 {Opt_noblock_validity, "noblock_validity"}, 1287 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1288 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1289 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1290 {Opt_auto_da_alloc, "auto_da_alloc"}, 1291 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1292 {Opt_dioread_nolock, "dioread_nolock"}, 1293 {Opt_dioread_lock, "dioread_lock"}, 1294 {Opt_discard, "discard"}, 1295 {Opt_nodiscard, "nodiscard"}, 1296 {Opt_init_itable, "init_itable=%u"}, 1297 {Opt_init_itable, "init_itable"}, 1298 {Opt_noinit_itable, "noinit_itable"}, 1299 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1300 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1301 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1302 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1303 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1304 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1305 {Opt_err, NULL}, 1306 }; 1307 1308 static ext4_fsblk_t get_sb_block(void **data) 1309 { 1310 ext4_fsblk_t sb_block; 1311 char *options = (char *) *data; 1312 1313 if (!options || strncmp(options, "sb=", 3) != 0) 1314 return 1; /* Default location */ 1315 1316 options += 3; 1317 /* TODO: use simple_strtoll with >32bit ext4 */ 1318 sb_block = simple_strtoul(options, &options, 0); 1319 if (*options && *options != ',') { 1320 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1321 (char *) *data); 1322 return 1; 1323 } 1324 if (*options == ',') 1325 options++; 1326 *data = (void *) options; 1327 1328 return sb_block; 1329 } 1330 1331 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1332 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n" 1333 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1334 1335 #ifdef CONFIG_QUOTA 1336 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1337 { 1338 struct ext4_sb_info *sbi = EXT4_SB(sb); 1339 char *qname; 1340 1341 if (sb_any_quota_loaded(sb) && 1342 !sbi->s_qf_names[qtype]) { 1343 ext4_msg(sb, KERN_ERR, 1344 "Cannot change journaled " 1345 "quota options when quota turned on"); 1346 return -1; 1347 } 1348 qname = match_strdup(args); 1349 if (!qname) { 1350 ext4_msg(sb, KERN_ERR, 1351 "Not enough memory for storing quotafile name"); 1352 return -1; 1353 } 1354 if (sbi->s_qf_names[qtype] && 1355 strcmp(sbi->s_qf_names[qtype], qname)) { 1356 ext4_msg(sb, KERN_ERR, 1357 "%s quota file already specified", QTYPE2NAME(qtype)); 1358 kfree(qname); 1359 return -1; 1360 } 1361 sbi->s_qf_names[qtype] = qname; 1362 if (strchr(sbi->s_qf_names[qtype], '/')) { 1363 ext4_msg(sb, KERN_ERR, 1364 "quotafile must be on filesystem root"); 1365 kfree(sbi->s_qf_names[qtype]); 1366 sbi->s_qf_names[qtype] = NULL; 1367 return -1; 1368 } 1369 set_opt(sb, QUOTA); 1370 return 1; 1371 } 1372 1373 static int clear_qf_name(struct super_block *sb, int qtype) 1374 { 1375 1376 struct ext4_sb_info *sbi = EXT4_SB(sb); 1377 1378 if (sb_any_quota_loaded(sb) && 1379 sbi->s_qf_names[qtype]) { 1380 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1381 " when quota turned on"); 1382 return -1; 1383 } 1384 /* 1385 * The space will be released later when all options are confirmed 1386 * to be correct 1387 */ 1388 sbi->s_qf_names[qtype] = NULL; 1389 return 1; 1390 } 1391 #endif 1392 1393 #define MOPT_SET 0x0001 1394 #define MOPT_CLEAR 0x0002 1395 #define MOPT_NOSUPPORT 0x0004 1396 #define MOPT_EXPLICIT 0x0008 1397 #define MOPT_CLEAR_ERR 0x0010 1398 #define MOPT_GTE0 0x0020 1399 #ifdef CONFIG_QUOTA 1400 #define MOPT_Q 0 1401 #define MOPT_QFMT 0x0040 1402 #else 1403 #define MOPT_Q MOPT_NOSUPPORT 1404 #define MOPT_QFMT MOPT_NOSUPPORT 1405 #endif 1406 #define MOPT_DATAJ 0x0080 1407 1408 static const struct mount_opts { 1409 int token; 1410 int mount_opt; 1411 int flags; 1412 } ext4_mount_opts[] = { 1413 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1414 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1415 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1416 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1417 {Opt_mblk_io_submit, EXT4_MOUNT_MBLK_IO_SUBMIT, MOPT_SET}, 1418 {Opt_nomblk_io_submit, EXT4_MOUNT_MBLK_IO_SUBMIT, MOPT_CLEAR}, 1419 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1420 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1421 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, MOPT_SET}, 1422 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, MOPT_CLEAR}, 1423 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1424 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1425 {Opt_delalloc, EXT4_MOUNT_DELALLOC, MOPT_SET | MOPT_EXPLICIT}, 1426 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, MOPT_CLEAR | MOPT_EXPLICIT}, 1427 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, MOPT_SET}, 1428 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1429 EXT4_MOUNT_JOURNAL_CHECKSUM), MOPT_SET}, 1430 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_SET}, 1431 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1432 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1433 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1434 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_SET}, 1435 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_CLEAR}, 1436 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1437 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1438 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1439 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1440 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1441 {Opt_commit, 0, MOPT_GTE0}, 1442 {Opt_max_batch_time, 0, MOPT_GTE0}, 1443 {Opt_min_batch_time, 0, MOPT_GTE0}, 1444 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1445 {Opt_init_itable, 0, MOPT_GTE0}, 1446 {Opt_stripe, 0, MOPT_GTE0}, 1447 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_DATAJ}, 1448 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_DATAJ}, 1449 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, MOPT_DATAJ}, 1450 #ifdef CONFIG_EXT4_FS_XATTR 1451 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1452 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1453 #else 1454 {Opt_user_xattr, 0, MOPT_NOSUPPORT}, 1455 {Opt_nouser_xattr, 0, MOPT_NOSUPPORT}, 1456 #endif 1457 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1458 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1459 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1460 #else 1461 {Opt_acl, 0, MOPT_NOSUPPORT}, 1462 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1463 #endif 1464 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1465 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1466 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1467 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1468 MOPT_SET | MOPT_Q}, 1469 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1470 MOPT_SET | MOPT_Q}, 1471 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1472 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q}, 1473 {Opt_usrjquota, 0, MOPT_Q}, 1474 {Opt_grpjquota, 0, MOPT_Q}, 1475 {Opt_offusrjquota, 0, MOPT_Q}, 1476 {Opt_offgrpjquota, 0, MOPT_Q}, 1477 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1478 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1479 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1480 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 1481 {Opt_err, 0, 0} 1482 }; 1483 1484 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 1485 substring_t *args, unsigned long *journal_devnum, 1486 unsigned int *journal_ioprio, int is_remount) 1487 { 1488 struct ext4_sb_info *sbi = EXT4_SB(sb); 1489 const struct mount_opts *m; 1490 kuid_t uid; 1491 kgid_t gid; 1492 int arg = 0; 1493 1494 #ifdef CONFIG_QUOTA 1495 if (token == Opt_usrjquota) 1496 return set_qf_name(sb, USRQUOTA, &args[0]); 1497 else if (token == Opt_grpjquota) 1498 return set_qf_name(sb, GRPQUOTA, &args[0]); 1499 else if (token == Opt_offusrjquota) 1500 return clear_qf_name(sb, USRQUOTA); 1501 else if (token == Opt_offgrpjquota) 1502 return clear_qf_name(sb, GRPQUOTA); 1503 #endif 1504 if (args->from && match_int(args, &arg)) 1505 return -1; 1506 switch (token) { 1507 case Opt_noacl: 1508 case Opt_nouser_xattr: 1509 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 1510 break; 1511 case Opt_sb: 1512 return 1; /* handled by get_sb_block() */ 1513 case Opt_removed: 1514 ext4_msg(sb, KERN_WARNING, 1515 "Ignoring removed %s option", opt); 1516 return 1; 1517 case Opt_resuid: 1518 uid = make_kuid(current_user_ns(), arg); 1519 if (!uid_valid(uid)) { 1520 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 1521 return -1; 1522 } 1523 sbi->s_resuid = uid; 1524 return 1; 1525 case Opt_resgid: 1526 gid = make_kgid(current_user_ns(), arg); 1527 if (!gid_valid(gid)) { 1528 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 1529 return -1; 1530 } 1531 sbi->s_resgid = gid; 1532 return 1; 1533 case Opt_abort: 1534 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1535 return 1; 1536 case Opt_i_version: 1537 sb->s_flags |= MS_I_VERSION; 1538 return 1; 1539 case Opt_journal_dev: 1540 if (is_remount) { 1541 ext4_msg(sb, KERN_ERR, 1542 "Cannot specify journal on remount"); 1543 return -1; 1544 } 1545 *journal_devnum = arg; 1546 return 1; 1547 case Opt_journal_ioprio: 1548 if (arg < 0 || arg > 7) 1549 return -1; 1550 *journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 1551 return 1; 1552 } 1553 1554 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 1555 if (token != m->token) 1556 continue; 1557 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 1558 return -1; 1559 if (m->flags & MOPT_EXPLICIT) 1560 set_opt2(sb, EXPLICIT_DELALLOC); 1561 if (m->flags & MOPT_CLEAR_ERR) 1562 clear_opt(sb, ERRORS_MASK); 1563 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 1564 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1565 "options when quota turned on"); 1566 return -1; 1567 } 1568 1569 if (m->flags & MOPT_NOSUPPORT) { 1570 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 1571 } else if (token == Opt_commit) { 1572 if (arg == 0) 1573 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 1574 sbi->s_commit_interval = HZ * arg; 1575 } else if (token == Opt_max_batch_time) { 1576 if (arg == 0) 1577 arg = EXT4_DEF_MAX_BATCH_TIME; 1578 sbi->s_max_batch_time = arg; 1579 } else if (token == Opt_min_batch_time) { 1580 sbi->s_min_batch_time = arg; 1581 } else if (token == Opt_inode_readahead_blks) { 1582 if (arg > (1 << 30)) 1583 return -1; 1584 if (arg && !is_power_of_2(arg)) { 1585 ext4_msg(sb, KERN_ERR, 1586 "EXT4-fs: inode_readahead_blks" 1587 " must be a power of 2"); 1588 return -1; 1589 } 1590 sbi->s_inode_readahead_blks = arg; 1591 } else if (token == Opt_init_itable) { 1592 set_opt(sb, INIT_INODE_TABLE); 1593 if (!args->from) 1594 arg = EXT4_DEF_LI_WAIT_MULT; 1595 sbi->s_li_wait_mult = arg; 1596 } else if (token == Opt_max_dir_size_kb) { 1597 sbi->s_max_dir_size_kb = arg; 1598 } else if (token == Opt_stripe) { 1599 sbi->s_stripe = arg; 1600 } else if (m->flags & MOPT_DATAJ) { 1601 if (is_remount) { 1602 if (!sbi->s_journal) 1603 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 1604 else if (test_opt(sb, DATA_FLAGS) != 1605 m->mount_opt) { 1606 ext4_msg(sb, KERN_ERR, 1607 "Cannot change data mode on remount"); 1608 return -1; 1609 } 1610 } else { 1611 clear_opt(sb, DATA_FLAGS); 1612 sbi->s_mount_opt |= m->mount_opt; 1613 } 1614 #ifdef CONFIG_QUOTA 1615 } else if (m->flags & MOPT_QFMT) { 1616 if (sb_any_quota_loaded(sb) && 1617 sbi->s_jquota_fmt != m->mount_opt) { 1618 ext4_msg(sb, KERN_ERR, "Cannot " 1619 "change journaled quota options " 1620 "when quota turned on"); 1621 return -1; 1622 } 1623 sbi->s_jquota_fmt = m->mount_opt; 1624 #endif 1625 } else { 1626 if (!args->from) 1627 arg = 1; 1628 if (m->flags & MOPT_CLEAR) 1629 arg = !arg; 1630 else if (unlikely(!(m->flags & MOPT_SET))) { 1631 ext4_msg(sb, KERN_WARNING, 1632 "buggy handling of option %s", opt); 1633 WARN_ON(1); 1634 return -1; 1635 } 1636 if (arg != 0) 1637 sbi->s_mount_opt |= m->mount_opt; 1638 else 1639 sbi->s_mount_opt &= ~m->mount_opt; 1640 } 1641 return 1; 1642 } 1643 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 1644 "or missing value", opt); 1645 return -1; 1646 } 1647 1648 static int parse_options(char *options, struct super_block *sb, 1649 unsigned long *journal_devnum, 1650 unsigned int *journal_ioprio, 1651 int is_remount) 1652 { 1653 #ifdef CONFIG_QUOTA 1654 struct ext4_sb_info *sbi = EXT4_SB(sb); 1655 #endif 1656 char *p; 1657 substring_t args[MAX_OPT_ARGS]; 1658 int token; 1659 1660 if (!options) 1661 return 1; 1662 1663 while ((p = strsep(&options, ",")) != NULL) { 1664 if (!*p) 1665 continue; 1666 /* 1667 * Initialize args struct so we know whether arg was 1668 * found; some options take optional arguments. 1669 */ 1670 args[0].to = args[0].from = NULL; 1671 token = match_token(p, tokens, args); 1672 if (handle_mount_opt(sb, p, token, args, journal_devnum, 1673 journal_ioprio, is_remount) < 0) 1674 return 0; 1675 } 1676 #ifdef CONFIG_QUOTA 1677 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1678 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA]) 1679 clear_opt(sb, USRQUOTA); 1680 1681 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA]) 1682 clear_opt(sb, GRPQUOTA); 1683 1684 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 1685 ext4_msg(sb, KERN_ERR, "old and new quota " 1686 "format mixing"); 1687 return 0; 1688 } 1689 1690 if (!sbi->s_jquota_fmt) { 1691 ext4_msg(sb, KERN_ERR, "journaled quota format " 1692 "not specified"); 1693 return 0; 1694 } 1695 } else { 1696 if (sbi->s_jquota_fmt) { 1697 ext4_msg(sb, KERN_ERR, "journaled quota format " 1698 "specified with no journaling " 1699 "enabled"); 1700 return 0; 1701 } 1702 } 1703 #endif 1704 return 1; 1705 } 1706 1707 static inline void ext4_show_quota_options(struct seq_file *seq, 1708 struct super_block *sb) 1709 { 1710 #if defined(CONFIG_QUOTA) 1711 struct ext4_sb_info *sbi = EXT4_SB(sb); 1712 1713 if (sbi->s_jquota_fmt) { 1714 char *fmtname = ""; 1715 1716 switch (sbi->s_jquota_fmt) { 1717 case QFMT_VFS_OLD: 1718 fmtname = "vfsold"; 1719 break; 1720 case QFMT_VFS_V0: 1721 fmtname = "vfsv0"; 1722 break; 1723 case QFMT_VFS_V1: 1724 fmtname = "vfsv1"; 1725 break; 1726 } 1727 seq_printf(seq, ",jqfmt=%s", fmtname); 1728 } 1729 1730 if (sbi->s_qf_names[USRQUOTA]) 1731 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]); 1732 1733 if (sbi->s_qf_names[GRPQUOTA]) 1734 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]); 1735 1736 if (test_opt(sb, USRQUOTA)) 1737 seq_puts(seq, ",usrquota"); 1738 1739 if (test_opt(sb, GRPQUOTA)) 1740 seq_puts(seq, ",grpquota"); 1741 #endif 1742 } 1743 1744 static const char *token2str(int token) 1745 { 1746 const struct match_token *t; 1747 1748 for (t = tokens; t->token != Opt_err; t++) 1749 if (t->token == token && !strchr(t->pattern, '=')) 1750 break; 1751 return t->pattern; 1752 } 1753 1754 /* 1755 * Show an option if 1756 * - it's set to a non-default value OR 1757 * - if the per-sb default is different from the global default 1758 */ 1759 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 1760 int nodefs) 1761 { 1762 struct ext4_sb_info *sbi = EXT4_SB(sb); 1763 struct ext4_super_block *es = sbi->s_es; 1764 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt; 1765 const struct mount_opts *m; 1766 char sep = nodefs ? '\n' : ','; 1767 1768 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 1769 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 1770 1771 if (sbi->s_sb_block != 1) 1772 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 1773 1774 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 1775 int want_set = m->flags & MOPT_SET; 1776 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 1777 (m->flags & MOPT_CLEAR_ERR)) 1778 continue; 1779 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 1780 continue; /* skip if same as the default */ 1781 if ((want_set && 1782 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 1783 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 1784 continue; /* select Opt_noFoo vs Opt_Foo */ 1785 SEQ_OPTS_PRINT("%s", token2str(m->token)); 1786 } 1787 1788 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 1789 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 1790 SEQ_OPTS_PRINT("resuid=%u", 1791 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 1792 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 1793 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 1794 SEQ_OPTS_PRINT("resgid=%u", 1795 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 1796 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 1797 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 1798 SEQ_OPTS_PUTS("errors=remount-ro"); 1799 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 1800 SEQ_OPTS_PUTS("errors=continue"); 1801 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 1802 SEQ_OPTS_PUTS("errors=panic"); 1803 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 1804 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 1805 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 1806 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 1807 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 1808 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 1809 if (sb->s_flags & MS_I_VERSION) 1810 SEQ_OPTS_PUTS("i_version"); 1811 if (nodefs || sbi->s_stripe) 1812 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 1813 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) { 1814 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 1815 SEQ_OPTS_PUTS("data=journal"); 1816 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 1817 SEQ_OPTS_PUTS("data=ordered"); 1818 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 1819 SEQ_OPTS_PUTS("data=writeback"); 1820 } 1821 if (nodefs || 1822 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 1823 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 1824 sbi->s_inode_readahead_blks); 1825 1826 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) && 1827 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 1828 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 1829 if (nodefs || sbi->s_max_dir_size_kb) 1830 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 1831 1832 ext4_show_quota_options(seq, sb); 1833 return 0; 1834 } 1835 1836 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 1837 { 1838 return _ext4_show_options(seq, root->d_sb, 0); 1839 } 1840 1841 static int options_seq_show(struct seq_file *seq, void *offset) 1842 { 1843 struct super_block *sb = seq->private; 1844 int rc; 1845 1846 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw"); 1847 rc = _ext4_show_options(seq, sb, 1); 1848 seq_puts(seq, "\n"); 1849 return rc; 1850 } 1851 1852 static int options_open_fs(struct inode *inode, struct file *file) 1853 { 1854 return single_open(file, options_seq_show, PDE(inode)->data); 1855 } 1856 1857 static const struct file_operations ext4_seq_options_fops = { 1858 .owner = THIS_MODULE, 1859 .open = options_open_fs, 1860 .read = seq_read, 1861 .llseek = seq_lseek, 1862 .release = single_release, 1863 }; 1864 1865 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 1866 int read_only) 1867 { 1868 struct ext4_sb_info *sbi = EXT4_SB(sb); 1869 int res = 0; 1870 1871 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 1872 ext4_msg(sb, KERN_ERR, "revision level too high, " 1873 "forcing read-only mode"); 1874 res = MS_RDONLY; 1875 } 1876 if (read_only) 1877 goto done; 1878 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 1879 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 1880 "running e2fsck is recommended"); 1881 else if ((sbi->s_mount_state & EXT4_ERROR_FS)) 1882 ext4_msg(sb, KERN_WARNING, 1883 "warning: mounting fs with errors, " 1884 "running e2fsck is recommended"); 1885 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 1886 le16_to_cpu(es->s_mnt_count) >= 1887 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 1888 ext4_msg(sb, KERN_WARNING, 1889 "warning: maximal mount count reached, " 1890 "running e2fsck is recommended"); 1891 else if (le32_to_cpu(es->s_checkinterval) && 1892 (le32_to_cpu(es->s_lastcheck) + 1893 le32_to_cpu(es->s_checkinterval) <= get_seconds())) 1894 ext4_msg(sb, KERN_WARNING, 1895 "warning: checktime reached, " 1896 "running e2fsck is recommended"); 1897 if (!sbi->s_journal) 1898 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 1899 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 1900 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 1901 le16_add_cpu(&es->s_mnt_count, 1); 1902 es->s_mtime = cpu_to_le32(get_seconds()); 1903 ext4_update_dynamic_rev(sb); 1904 if (sbi->s_journal) 1905 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 1906 1907 ext4_commit_super(sb, 1); 1908 done: 1909 if (test_opt(sb, DEBUG)) 1910 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 1911 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 1912 sb->s_blocksize, 1913 sbi->s_groups_count, 1914 EXT4_BLOCKS_PER_GROUP(sb), 1915 EXT4_INODES_PER_GROUP(sb), 1916 sbi->s_mount_opt, sbi->s_mount_opt2); 1917 1918 cleancache_init_fs(sb); 1919 return res; 1920 } 1921 1922 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 1923 { 1924 struct ext4_sb_info *sbi = EXT4_SB(sb); 1925 struct flex_groups *new_groups; 1926 int size; 1927 1928 if (!sbi->s_log_groups_per_flex) 1929 return 0; 1930 1931 size = ext4_flex_group(sbi, ngroup - 1) + 1; 1932 if (size <= sbi->s_flex_groups_allocated) 1933 return 0; 1934 1935 size = roundup_pow_of_two(size * sizeof(struct flex_groups)); 1936 new_groups = ext4_kvzalloc(size, GFP_KERNEL); 1937 if (!new_groups) { 1938 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups", 1939 size / (int) sizeof(struct flex_groups)); 1940 return -ENOMEM; 1941 } 1942 1943 if (sbi->s_flex_groups) { 1944 memcpy(new_groups, sbi->s_flex_groups, 1945 (sbi->s_flex_groups_allocated * 1946 sizeof(struct flex_groups))); 1947 ext4_kvfree(sbi->s_flex_groups); 1948 } 1949 sbi->s_flex_groups = new_groups; 1950 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups); 1951 return 0; 1952 } 1953 1954 static int ext4_fill_flex_info(struct super_block *sb) 1955 { 1956 struct ext4_sb_info *sbi = EXT4_SB(sb); 1957 struct ext4_group_desc *gdp = NULL; 1958 ext4_group_t flex_group; 1959 unsigned int groups_per_flex = 0; 1960 int i, err; 1961 1962 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 1963 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 1964 sbi->s_log_groups_per_flex = 0; 1965 return 1; 1966 } 1967 groups_per_flex = 1U << sbi->s_log_groups_per_flex; 1968 1969 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 1970 if (err) 1971 goto failed; 1972 1973 for (i = 0; i < sbi->s_groups_count; i++) { 1974 gdp = ext4_get_group_desc(sb, i, NULL); 1975 1976 flex_group = ext4_flex_group(sbi, i); 1977 atomic_add(ext4_free_inodes_count(sb, gdp), 1978 &sbi->s_flex_groups[flex_group].free_inodes); 1979 atomic_add(ext4_free_group_clusters(sb, gdp), 1980 &sbi->s_flex_groups[flex_group].free_clusters); 1981 atomic_add(ext4_used_dirs_count(sb, gdp), 1982 &sbi->s_flex_groups[flex_group].used_dirs); 1983 } 1984 1985 return 1; 1986 failed: 1987 return 0; 1988 } 1989 1990 static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group, 1991 struct ext4_group_desc *gdp) 1992 { 1993 int offset; 1994 __u16 crc = 0; 1995 __le32 le_group = cpu_to_le32(block_group); 1996 1997 if ((sbi->s_es->s_feature_ro_compat & 1998 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))) { 1999 /* Use new metadata_csum algorithm */ 2000 __u16 old_csum; 2001 __u32 csum32; 2002 2003 old_csum = gdp->bg_checksum; 2004 gdp->bg_checksum = 0; 2005 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 2006 sizeof(le_group)); 2007 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, 2008 sbi->s_desc_size); 2009 gdp->bg_checksum = old_csum; 2010 2011 crc = csum32 & 0xFFFF; 2012 goto out; 2013 } 2014 2015 /* old crc16 code */ 2016 offset = offsetof(struct ext4_group_desc, bg_checksum); 2017 2018 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2019 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2020 crc = crc16(crc, (__u8 *)gdp, offset); 2021 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2022 /* for checksum of struct ext4_group_desc do the rest...*/ 2023 if ((sbi->s_es->s_feature_incompat & 2024 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) && 2025 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2026 crc = crc16(crc, (__u8 *)gdp + offset, 2027 le16_to_cpu(sbi->s_es->s_desc_size) - 2028 offset); 2029 2030 out: 2031 return cpu_to_le16(crc); 2032 } 2033 2034 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2035 struct ext4_group_desc *gdp) 2036 { 2037 if (ext4_has_group_desc_csum(sb) && 2038 (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb), 2039 block_group, gdp))) 2040 return 0; 2041 2042 return 1; 2043 } 2044 2045 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2046 struct ext4_group_desc *gdp) 2047 { 2048 if (!ext4_has_group_desc_csum(sb)) 2049 return; 2050 gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp); 2051 } 2052 2053 /* Called at mount-time, super-block is locked */ 2054 static int ext4_check_descriptors(struct super_block *sb, 2055 ext4_group_t *first_not_zeroed) 2056 { 2057 struct ext4_sb_info *sbi = EXT4_SB(sb); 2058 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2059 ext4_fsblk_t last_block; 2060 ext4_fsblk_t block_bitmap; 2061 ext4_fsblk_t inode_bitmap; 2062 ext4_fsblk_t inode_table; 2063 int flexbg_flag = 0; 2064 ext4_group_t i, grp = sbi->s_groups_count; 2065 2066 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 2067 flexbg_flag = 1; 2068 2069 ext4_debug("Checking group descriptors"); 2070 2071 for (i = 0; i < sbi->s_groups_count; i++) { 2072 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2073 2074 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2075 last_block = ext4_blocks_count(sbi->s_es) - 1; 2076 else 2077 last_block = first_block + 2078 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2079 2080 if ((grp == sbi->s_groups_count) && 2081 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2082 grp = i; 2083 2084 block_bitmap = ext4_block_bitmap(sb, gdp); 2085 if (block_bitmap < first_block || block_bitmap > last_block) { 2086 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2087 "Block bitmap for group %u not in group " 2088 "(block %llu)!", i, block_bitmap); 2089 return 0; 2090 } 2091 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2092 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2093 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2094 "Inode bitmap for group %u not in group " 2095 "(block %llu)!", i, inode_bitmap); 2096 return 0; 2097 } 2098 inode_table = ext4_inode_table(sb, gdp); 2099 if (inode_table < first_block || 2100 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2101 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2102 "Inode table for group %u not in group " 2103 "(block %llu)!", i, inode_table); 2104 return 0; 2105 } 2106 ext4_lock_group(sb, i); 2107 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2108 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2109 "Checksum for group %u failed (%u!=%u)", 2110 i, le16_to_cpu(ext4_group_desc_csum(sbi, i, 2111 gdp)), le16_to_cpu(gdp->bg_checksum)); 2112 if (!(sb->s_flags & MS_RDONLY)) { 2113 ext4_unlock_group(sb, i); 2114 return 0; 2115 } 2116 } 2117 ext4_unlock_group(sb, i); 2118 if (!flexbg_flag) 2119 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2120 } 2121 if (NULL != first_not_zeroed) 2122 *first_not_zeroed = grp; 2123 2124 ext4_free_blocks_count_set(sbi->s_es, 2125 EXT4_C2B(sbi, ext4_count_free_clusters(sb))); 2126 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb)); 2127 return 1; 2128 } 2129 2130 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2131 * the superblock) which were deleted from all directories, but held open by 2132 * a process at the time of a crash. We walk the list and try to delete these 2133 * inodes at recovery time (only with a read-write filesystem). 2134 * 2135 * In order to keep the orphan inode chain consistent during traversal (in 2136 * case of crash during recovery), we link each inode into the superblock 2137 * orphan list_head and handle it the same way as an inode deletion during 2138 * normal operation (which journals the operations for us). 2139 * 2140 * We only do an iget() and an iput() on each inode, which is very safe if we 2141 * accidentally point at an in-use or already deleted inode. The worst that 2142 * can happen in this case is that we get a "bit already cleared" message from 2143 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2144 * e2fsck was run on this filesystem, and it must have already done the orphan 2145 * inode cleanup for us, so we can safely abort without any further action. 2146 */ 2147 static void ext4_orphan_cleanup(struct super_block *sb, 2148 struct ext4_super_block *es) 2149 { 2150 unsigned int s_flags = sb->s_flags; 2151 int nr_orphans = 0, nr_truncates = 0; 2152 #ifdef CONFIG_QUOTA 2153 int i; 2154 #endif 2155 if (!es->s_last_orphan) { 2156 jbd_debug(4, "no orphan inodes to clean up\n"); 2157 return; 2158 } 2159 2160 if (bdev_read_only(sb->s_bdev)) { 2161 ext4_msg(sb, KERN_ERR, "write access " 2162 "unavailable, skipping orphan cleanup"); 2163 return; 2164 } 2165 2166 /* Check if feature set would not allow a r/w mount */ 2167 if (!ext4_feature_set_ok(sb, 0)) { 2168 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2169 "unknown ROCOMPAT features"); 2170 return; 2171 } 2172 2173 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2174 /* don't clear list on RO mount w/ errors */ 2175 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) { 2176 jbd_debug(1, "Errors on filesystem, " 2177 "clearing orphan list.\n"); 2178 es->s_last_orphan = 0; 2179 } 2180 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2181 return; 2182 } 2183 2184 if (s_flags & MS_RDONLY) { 2185 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2186 sb->s_flags &= ~MS_RDONLY; 2187 } 2188 #ifdef CONFIG_QUOTA 2189 /* Needed for iput() to work correctly and not trash data */ 2190 sb->s_flags |= MS_ACTIVE; 2191 /* Turn on quotas so that they are updated correctly */ 2192 for (i = 0; i < MAXQUOTAS; i++) { 2193 if (EXT4_SB(sb)->s_qf_names[i]) { 2194 int ret = ext4_quota_on_mount(sb, i); 2195 if (ret < 0) 2196 ext4_msg(sb, KERN_ERR, 2197 "Cannot turn on journaled " 2198 "quota: error %d", ret); 2199 } 2200 } 2201 #endif 2202 2203 while (es->s_last_orphan) { 2204 struct inode *inode; 2205 2206 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2207 if (IS_ERR(inode)) { 2208 es->s_last_orphan = 0; 2209 break; 2210 } 2211 2212 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2213 dquot_initialize(inode); 2214 if (inode->i_nlink) { 2215 ext4_msg(sb, KERN_DEBUG, 2216 "%s: truncating inode %lu to %lld bytes", 2217 __func__, inode->i_ino, inode->i_size); 2218 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2219 inode->i_ino, inode->i_size); 2220 ext4_truncate(inode); 2221 nr_truncates++; 2222 } else { 2223 ext4_msg(sb, KERN_DEBUG, 2224 "%s: deleting unreferenced inode %lu", 2225 __func__, inode->i_ino); 2226 jbd_debug(2, "deleting unreferenced inode %lu\n", 2227 inode->i_ino); 2228 nr_orphans++; 2229 } 2230 iput(inode); /* The delete magic happens here! */ 2231 } 2232 2233 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2234 2235 if (nr_orphans) 2236 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2237 PLURAL(nr_orphans)); 2238 if (nr_truncates) 2239 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2240 PLURAL(nr_truncates)); 2241 #ifdef CONFIG_QUOTA 2242 /* Turn quotas off */ 2243 for (i = 0; i < MAXQUOTAS; i++) { 2244 if (sb_dqopt(sb)->files[i]) 2245 dquot_quota_off(sb, i); 2246 } 2247 #endif 2248 sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 2249 } 2250 2251 /* 2252 * Maximal extent format file size. 2253 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2254 * extent format containers, within a sector_t, and within i_blocks 2255 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2256 * so that won't be a limiting factor. 2257 * 2258 * However there is other limiting factor. We do store extents in the form 2259 * of starting block and length, hence the resulting length of the extent 2260 * covering maximum file size must fit into on-disk format containers as 2261 * well. Given that length is always by 1 unit bigger than max unit (because 2262 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2263 * 2264 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2265 */ 2266 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2267 { 2268 loff_t res; 2269 loff_t upper_limit = MAX_LFS_FILESIZE; 2270 2271 /* small i_blocks in vfs inode? */ 2272 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2273 /* 2274 * CONFIG_LBDAF is not enabled implies the inode 2275 * i_block represent total blocks in 512 bytes 2276 * 32 == size of vfs inode i_blocks * 8 2277 */ 2278 upper_limit = (1LL << 32) - 1; 2279 2280 /* total blocks in file system block size */ 2281 upper_limit >>= (blkbits - 9); 2282 upper_limit <<= blkbits; 2283 } 2284 2285 /* 2286 * 32-bit extent-start container, ee_block. We lower the maxbytes 2287 * by one fs block, so ee_len can cover the extent of maximum file 2288 * size 2289 */ 2290 res = (1LL << 32) - 1; 2291 res <<= blkbits; 2292 2293 /* Sanity check against vm- & vfs- imposed limits */ 2294 if (res > upper_limit) 2295 res = upper_limit; 2296 2297 return res; 2298 } 2299 2300 /* 2301 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2302 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2303 * We need to be 1 filesystem block less than the 2^48 sector limit. 2304 */ 2305 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2306 { 2307 loff_t res = EXT4_NDIR_BLOCKS; 2308 int meta_blocks; 2309 loff_t upper_limit; 2310 /* This is calculated to be the largest file size for a dense, block 2311 * mapped file such that the file's total number of 512-byte sectors, 2312 * including data and all indirect blocks, does not exceed (2^48 - 1). 2313 * 2314 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2315 * number of 512-byte sectors of the file. 2316 */ 2317 2318 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2319 /* 2320 * !has_huge_files or CONFIG_LBDAF not enabled implies that 2321 * the inode i_block field represents total file blocks in 2322 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 2323 */ 2324 upper_limit = (1LL << 32) - 1; 2325 2326 /* total blocks in file system block size */ 2327 upper_limit >>= (bits - 9); 2328 2329 } else { 2330 /* 2331 * We use 48 bit ext4_inode i_blocks 2332 * With EXT4_HUGE_FILE_FL set the i_blocks 2333 * represent total number of blocks in 2334 * file system block size 2335 */ 2336 upper_limit = (1LL << 48) - 1; 2337 2338 } 2339 2340 /* indirect blocks */ 2341 meta_blocks = 1; 2342 /* double indirect blocks */ 2343 meta_blocks += 1 + (1LL << (bits-2)); 2344 /* tripple indirect blocks */ 2345 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2346 2347 upper_limit -= meta_blocks; 2348 upper_limit <<= bits; 2349 2350 res += 1LL << (bits-2); 2351 res += 1LL << (2*(bits-2)); 2352 res += 1LL << (3*(bits-2)); 2353 res <<= bits; 2354 if (res > upper_limit) 2355 res = upper_limit; 2356 2357 if (res > MAX_LFS_FILESIZE) 2358 res = MAX_LFS_FILESIZE; 2359 2360 return res; 2361 } 2362 2363 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2364 ext4_fsblk_t logical_sb_block, int nr) 2365 { 2366 struct ext4_sb_info *sbi = EXT4_SB(sb); 2367 ext4_group_t bg, first_meta_bg; 2368 int has_super = 0; 2369 2370 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2371 2372 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) || 2373 nr < first_meta_bg) 2374 return logical_sb_block + nr + 1; 2375 bg = sbi->s_desc_per_block * nr; 2376 if (ext4_bg_has_super(sb, bg)) 2377 has_super = 1; 2378 2379 return (has_super + ext4_group_first_block_no(sb, bg)); 2380 } 2381 2382 /** 2383 * ext4_get_stripe_size: Get the stripe size. 2384 * @sbi: In memory super block info 2385 * 2386 * If we have specified it via mount option, then 2387 * use the mount option value. If the value specified at mount time is 2388 * greater than the blocks per group use the super block value. 2389 * If the super block value is greater than blocks per group return 0. 2390 * Allocator needs it be less than blocks per group. 2391 * 2392 */ 2393 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2394 { 2395 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2396 unsigned long stripe_width = 2397 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2398 int ret; 2399 2400 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2401 ret = sbi->s_stripe; 2402 else if (stripe_width <= sbi->s_blocks_per_group) 2403 ret = stripe_width; 2404 else if (stride <= sbi->s_blocks_per_group) 2405 ret = stride; 2406 else 2407 ret = 0; 2408 2409 /* 2410 * If the stripe width is 1, this makes no sense and 2411 * we set it to 0 to turn off stripe handling code. 2412 */ 2413 if (ret <= 1) 2414 ret = 0; 2415 2416 return ret; 2417 } 2418 2419 /* sysfs supprt */ 2420 2421 struct ext4_attr { 2422 struct attribute attr; 2423 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *); 2424 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *, 2425 const char *, size_t); 2426 int offset; 2427 }; 2428 2429 static int parse_strtoul(const char *buf, 2430 unsigned long max, unsigned long *value) 2431 { 2432 char *endp; 2433 2434 *value = simple_strtoul(skip_spaces(buf), &endp, 0); 2435 endp = skip_spaces(endp); 2436 if (*endp || *value > max) 2437 return -EINVAL; 2438 2439 return 0; 2440 } 2441 2442 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a, 2443 struct ext4_sb_info *sbi, 2444 char *buf) 2445 { 2446 return snprintf(buf, PAGE_SIZE, "%llu\n", 2447 (s64) EXT4_C2B(sbi, 2448 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 2449 } 2450 2451 static ssize_t session_write_kbytes_show(struct ext4_attr *a, 2452 struct ext4_sb_info *sbi, char *buf) 2453 { 2454 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2455 2456 if (!sb->s_bdev->bd_part) 2457 return snprintf(buf, PAGE_SIZE, "0\n"); 2458 return snprintf(buf, PAGE_SIZE, "%lu\n", 2459 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2460 sbi->s_sectors_written_start) >> 1); 2461 } 2462 2463 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a, 2464 struct ext4_sb_info *sbi, char *buf) 2465 { 2466 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2467 2468 if (!sb->s_bdev->bd_part) 2469 return snprintf(buf, PAGE_SIZE, "0\n"); 2470 return snprintf(buf, PAGE_SIZE, "%llu\n", 2471 (unsigned long long)(sbi->s_kbytes_written + 2472 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2473 EXT4_SB(sb)->s_sectors_written_start) >> 1))); 2474 } 2475 2476 static ssize_t inode_readahead_blks_store(struct ext4_attr *a, 2477 struct ext4_sb_info *sbi, 2478 const char *buf, size_t count) 2479 { 2480 unsigned long t; 2481 2482 if (parse_strtoul(buf, 0x40000000, &t)) 2483 return -EINVAL; 2484 2485 if (t && !is_power_of_2(t)) 2486 return -EINVAL; 2487 2488 sbi->s_inode_readahead_blks = t; 2489 return count; 2490 } 2491 2492 static ssize_t sbi_ui_show(struct ext4_attr *a, 2493 struct ext4_sb_info *sbi, char *buf) 2494 { 2495 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset); 2496 2497 return snprintf(buf, PAGE_SIZE, "%u\n", *ui); 2498 } 2499 2500 static ssize_t sbi_ui_store(struct ext4_attr *a, 2501 struct ext4_sb_info *sbi, 2502 const char *buf, size_t count) 2503 { 2504 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset); 2505 unsigned long t; 2506 2507 if (parse_strtoul(buf, 0xffffffff, &t)) 2508 return -EINVAL; 2509 *ui = t; 2510 return count; 2511 } 2512 2513 static ssize_t trigger_test_error(struct ext4_attr *a, 2514 struct ext4_sb_info *sbi, 2515 const char *buf, size_t count) 2516 { 2517 int len = count; 2518 2519 if (!capable(CAP_SYS_ADMIN)) 2520 return -EPERM; 2521 2522 if (len && buf[len-1] == '\n') 2523 len--; 2524 2525 if (len) 2526 ext4_error(sbi->s_sb, "%.*s", len, buf); 2527 return count; 2528 } 2529 2530 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \ 2531 static struct ext4_attr ext4_attr_##_name = { \ 2532 .attr = {.name = __stringify(_name), .mode = _mode }, \ 2533 .show = _show, \ 2534 .store = _store, \ 2535 .offset = offsetof(struct ext4_sb_info, _elname), \ 2536 } 2537 #define EXT4_ATTR(name, mode, show, store) \ 2538 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store) 2539 2540 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL) 2541 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL) 2542 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store) 2543 #define EXT4_RW_ATTR_SBI_UI(name, elname) \ 2544 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname) 2545 #define ATTR_LIST(name) &ext4_attr_##name.attr 2546 2547 EXT4_RO_ATTR(delayed_allocation_blocks); 2548 EXT4_RO_ATTR(session_write_kbytes); 2549 EXT4_RO_ATTR(lifetime_write_kbytes); 2550 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show, 2551 inode_readahead_blks_store, s_inode_readahead_blks); 2552 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal); 2553 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats); 2554 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan); 2555 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan); 2556 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs); 2557 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request); 2558 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc); 2559 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump); 2560 EXT4_RW_ATTR_SBI_UI(extent_max_zeroout_kb, s_extent_max_zeroout_kb); 2561 EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error); 2562 2563 static struct attribute *ext4_attrs[] = { 2564 ATTR_LIST(delayed_allocation_blocks), 2565 ATTR_LIST(session_write_kbytes), 2566 ATTR_LIST(lifetime_write_kbytes), 2567 ATTR_LIST(inode_readahead_blks), 2568 ATTR_LIST(inode_goal), 2569 ATTR_LIST(mb_stats), 2570 ATTR_LIST(mb_max_to_scan), 2571 ATTR_LIST(mb_min_to_scan), 2572 ATTR_LIST(mb_order2_req), 2573 ATTR_LIST(mb_stream_req), 2574 ATTR_LIST(mb_group_prealloc), 2575 ATTR_LIST(max_writeback_mb_bump), 2576 ATTR_LIST(extent_max_zeroout_kb), 2577 ATTR_LIST(trigger_fs_error), 2578 NULL, 2579 }; 2580 2581 /* Features this copy of ext4 supports */ 2582 EXT4_INFO_ATTR(lazy_itable_init); 2583 EXT4_INFO_ATTR(batched_discard); 2584 EXT4_INFO_ATTR(meta_bg_resize); 2585 2586 static struct attribute *ext4_feat_attrs[] = { 2587 ATTR_LIST(lazy_itable_init), 2588 ATTR_LIST(batched_discard), 2589 ATTR_LIST(meta_bg_resize), 2590 NULL, 2591 }; 2592 2593 static ssize_t ext4_attr_show(struct kobject *kobj, 2594 struct attribute *attr, char *buf) 2595 { 2596 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2597 s_kobj); 2598 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2599 2600 return a->show ? a->show(a, sbi, buf) : 0; 2601 } 2602 2603 static ssize_t ext4_attr_store(struct kobject *kobj, 2604 struct attribute *attr, 2605 const char *buf, size_t len) 2606 { 2607 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2608 s_kobj); 2609 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2610 2611 return a->store ? a->store(a, sbi, buf, len) : 0; 2612 } 2613 2614 static void ext4_sb_release(struct kobject *kobj) 2615 { 2616 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2617 s_kobj); 2618 complete(&sbi->s_kobj_unregister); 2619 } 2620 2621 static const struct sysfs_ops ext4_attr_ops = { 2622 .show = ext4_attr_show, 2623 .store = ext4_attr_store, 2624 }; 2625 2626 static struct kobj_type ext4_ktype = { 2627 .default_attrs = ext4_attrs, 2628 .sysfs_ops = &ext4_attr_ops, 2629 .release = ext4_sb_release, 2630 }; 2631 2632 static void ext4_feat_release(struct kobject *kobj) 2633 { 2634 complete(&ext4_feat->f_kobj_unregister); 2635 } 2636 2637 static struct kobj_type ext4_feat_ktype = { 2638 .default_attrs = ext4_feat_attrs, 2639 .sysfs_ops = &ext4_attr_ops, 2640 .release = ext4_feat_release, 2641 }; 2642 2643 /* 2644 * Check whether this filesystem can be mounted based on 2645 * the features present and the RDONLY/RDWR mount requested. 2646 * Returns 1 if this filesystem can be mounted as requested, 2647 * 0 if it cannot be. 2648 */ 2649 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2650 { 2651 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) { 2652 ext4_msg(sb, KERN_ERR, 2653 "Couldn't mount because of " 2654 "unsupported optional features (%x)", 2655 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2656 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2657 return 0; 2658 } 2659 2660 if (readonly) 2661 return 1; 2662 2663 /* Check that feature set is OK for a read-write mount */ 2664 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) { 2665 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 2666 "unsupported optional features (%x)", 2667 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2668 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2669 return 0; 2670 } 2671 /* 2672 * Large file size enabled file system can only be mounted 2673 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF 2674 */ 2675 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 2676 if (sizeof(blkcnt_t) < sizeof(u64)) { 2677 ext4_msg(sb, KERN_ERR, "Filesystem with huge files " 2678 "cannot be mounted RDWR without " 2679 "CONFIG_LBDAF"); 2680 return 0; 2681 } 2682 } 2683 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) && 2684 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) { 2685 ext4_msg(sb, KERN_ERR, 2686 "Can't support bigalloc feature without " 2687 "extents feature\n"); 2688 return 0; 2689 } 2690 2691 #ifndef CONFIG_QUOTA 2692 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) && 2693 !readonly) { 2694 ext4_msg(sb, KERN_ERR, 2695 "Filesystem with quota feature cannot be mounted RDWR " 2696 "without CONFIG_QUOTA"); 2697 return 0; 2698 } 2699 #endif /* CONFIG_QUOTA */ 2700 return 1; 2701 } 2702 2703 /* 2704 * This function is called once a day if we have errors logged 2705 * on the file system 2706 */ 2707 static void print_daily_error_info(unsigned long arg) 2708 { 2709 struct super_block *sb = (struct super_block *) arg; 2710 struct ext4_sb_info *sbi; 2711 struct ext4_super_block *es; 2712 2713 sbi = EXT4_SB(sb); 2714 es = sbi->s_es; 2715 2716 if (es->s_error_count) 2717 ext4_msg(sb, KERN_NOTICE, "error count: %u", 2718 le32_to_cpu(es->s_error_count)); 2719 if (es->s_first_error_time) { 2720 printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d", 2721 sb->s_id, le32_to_cpu(es->s_first_error_time), 2722 (int) sizeof(es->s_first_error_func), 2723 es->s_first_error_func, 2724 le32_to_cpu(es->s_first_error_line)); 2725 if (es->s_first_error_ino) 2726 printk(": inode %u", 2727 le32_to_cpu(es->s_first_error_ino)); 2728 if (es->s_first_error_block) 2729 printk(": block %llu", (unsigned long long) 2730 le64_to_cpu(es->s_first_error_block)); 2731 printk("\n"); 2732 } 2733 if (es->s_last_error_time) { 2734 printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d", 2735 sb->s_id, le32_to_cpu(es->s_last_error_time), 2736 (int) sizeof(es->s_last_error_func), 2737 es->s_last_error_func, 2738 le32_to_cpu(es->s_last_error_line)); 2739 if (es->s_last_error_ino) 2740 printk(": inode %u", 2741 le32_to_cpu(es->s_last_error_ino)); 2742 if (es->s_last_error_block) 2743 printk(": block %llu", (unsigned long long) 2744 le64_to_cpu(es->s_last_error_block)); 2745 printk("\n"); 2746 } 2747 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 2748 } 2749 2750 /* Find next suitable group and run ext4_init_inode_table */ 2751 static int ext4_run_li_request(struct ext4_li_request *elr) 2752 { 2753 struct ext4_group_desc *gdp = NULL; 2754 ext4_group_t group, ngroups; 2755 struct super_block *sb; 2756 unsigned long timeout = 0; 2757 int ret = 0; 2758 2759 sb = elr->lr_super; 2760 ngroups = EXT4_SB(sb)->s_groups_count; 2761 2762 sb_start_write(sb); 2763 for (group = elr->lr_next_group; group < ngroups; group++) { 2764 gdp = ext4_get_group_desc(sb, group, NULL); 2765 if (!gdp) { 2766 ret = 1; 2767 break; 2768 } 2769 2770 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2771 break; 2772 } 2773 2774 if (group == ngroups) 2775 ret = 1; 2776 2777 if (!ret) { 2778 timeout = jiffies; 2779 ret = ext4_init_inode_table(sb, group, 2780 elr->lr_timeout ? 0 : 1); 2781 if (elr->lr_timeout == 0) { 2782 timeout = (jiffies - timeout) * 2783 elr->lr_sbi->s_li_wait_mult; 2784 elr->lr_timeout = timeout; 2785 } 2786 elr->lr_next_sched = jiffies + elr->lr_timeout; 2787 elr->lr_next_group = group + 1; 2788 } 2789 sb_end_write(sb); 2790 2791 return ret; 2792 } 2793 2794 /* 2795 * Remove lr_request from the list_request and free the 2796 * request structure. Should be called with li_list_mtx held 2797 */ 2798 static void ext4_remove_li_request(struct ext4_li_request *elr) 2799 { 2800 struct ext4_sb_info *sbi; 2801 2802 if (!elr) 2803 return; 2804 2805 sbi = elr->lr_sbi; 2806 2807 list_del(&elr->lr_request); 2808 sbi->s_li_request = NULL; 2809 kfree(elr); 2810 } 2811 2812 static void ext4_unregister_li_request(struct super_block *sb) 2813 { 2814 mutex_lock(&ext4_li_mtx); 2815 if (!ext4_li_info) { 2816 mutex_unlock(&ext4_li_mtx); 2817 return; 2818 } 2819 2820 mutex_lock(&ext4_li_info->li_list_mtx); 2821 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 2822 mutex_unlock(&ext4_li_info->li_list_mtx); 2823 mutex_unlock(&ext4_li_mtx); 2824 } 2825 2826 static struct task_struct *ext4_lazyinit_task; 2827 2828 /* 2829 * This is the function where ext4lazyinit thread lives. It walks 2830 * through the request list searching for next scheduled filesystem. 2831 * When such a fs is found, run the lazy initialization request 2832 * (ext4_rn_li_request) and keep track of the time spend in this 2833 * function. Based on that time we compute next schedule time of 2834 * the request. When walking through the list is complete, compute 2835 * next waking time and put itself into sleep. 2836 */ 2837 static int ext4_lazyinit_thread(void *arg) 2838 { 2839 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 2840 struct list_head *pos, *n; 2841 struct ext4_li_request *elr; 2842 unsigned long next_wakeup, cur; 2843 2844 BUG_ON(NULL == eli); 2845 2846 cont_thread: 2847 while (true) { 2848 next_wakeup = MAX_JIFFY_OFFSET; 2849 2850 mutex_lock(&eli->li_list_mtx); 2851 if (list_empty(&eli->li_request_list)) { 2852 mutex_unlock(&eli->li_list_mtx); 2853 goto exit_thread; 2854 } 2855 2856 list_for_each_safe(pos, n, &eli->li_request_list) { 2857 elr = list_entry(pos, struct ext4_li_request, 2858 lr_request); 2859 2860 if (time_after_eq(jiffies, elr->lr_next_sched)) { 2861 if (ext4_run_li_request(elr) != 0) { 2862 /* error, remove the lazy_init job */ 2863 ext4_remove_li_request(elr); 2864 continue; 2865 } 2866 } 2867 2868 if (time_before(elr->lr_next_sched, next_wakeup)) 2869 next_wakeup = elr->lr_next_sched; 2870 } 2871 mutex_unlock(&eli->li_list_mtx); 2872 2873 try_to_freeze(); 2874 2875 cur = jiffies; 2876 if ((time_after_eq(cur, next_wakeup)) || 2877 (MAX_JIFFY_OFFSET == next_wakeup)) { 2878 cond_resched(); 2879 continue; 2880 } 2881 2882 schedule_timeout_interruptible(next_wakeup - cur); 2883 2884 if (kthread_should_stop()) { 2885 ext4_clear_request_list(); 2886 goto exit_thread; 2887 } 2888 } 2889 2890 exit_thread: 2891 /* 2892 * It looks like the request list is empty, but we need 2893 * to check it under the li_list_mtx lock, to prevent any 2894 * additions into it, and of course we should lock ext4_li_mtx 2895 * to atomically free the list and ext4_li_info, because at 2896 * this point another ext4 filesystem could be registering 2897 * new one. 2898 */ 2899 mutex_lock(&ext4_li_mtx); 2900 mutex_lock(&eli->li_list_mtx); 2901 if (!list_empty(&eli->li_request_list)) { 2902 mutex_unlock(&eli->li_list_mtx); 2903 mutex_unlock(&ext4_li_mtx); 2904 goto cont_thread; 2905 } 2906 mutex_unlock(&eli->li_list_mtx); 2907 kfree(ext4_li_info); 2908 ext4_li_info = NULL; 2909 mutex_unlock(&ext4_li_mtx); 2910 2911 return 0; 2912 } 2913 2914 static void ext4_clear_request_list(void) 2915 { 2916 struct list_head *pos, *n; 2917 struct ext4_li_request *elr; 2918 2919 mutex_lock(&ext4_li_info->li_list_mtx); 2920 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 2921 elr = list_entry(pos, struct ext4_li_request, 2922 lr_request); 2923 ext4_remove_li_request(elr); 2924 } 2925 mutex_unlock(&ext4_li_info->li_list_mtx); 2926 } 2927 2928 static int ext4_run_lazyinit_thread(void) 2929 { 2930 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 2931 ext4_li_info, "ext4lazyinit"); 2932 if (IS_ERR(ext4_lazyinit_task)) { 2933 int err = PTR_ERR(ext4_lazyinit_task); 2934 ext4_clear_request_list(); 2935 kfree(ext4_li_info); 2936 ext4_li_info = NULL; 2937 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 2938 "initialization thread\n", 2939 err); 2940 return err; 2941 } 2942 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 2943 return 0; 2944 } 2945 2946 /* 2947 * Check whether it make sense to run itable init. thread or not. 2948 * If there is at least one uninitialized inode table, return 2949 * corresponding group number, else the loop goes through all 2950 * groups and return total number of groups. 2951 */ 2952 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 2953 { 2954 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 2955 struct ext4_group_desc *gdp = NULL; 2956 2957 for (group = 0; group < ngroups; group++) { 2958 gdp = ext4_get_group_desc(sb, group, NULL); 2959 if (!gdp) 2960 continue; 2961 2962 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2963 break; 2964 } 2965 2966 return group; 2967 } 2968 2969 static int ext4_li_info_new(void) 2970 { 2971 struct ext4_lazy_init *eli = NULL; 2972 2973 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 2974 if (!eli) 2975 return -ENOMEM; 2976 2977 INIT_LIST_HEAD(&eli->li_request_list); 2978 mutex_init(&eli->li_list_mtx); 2979 2980 eli->li_state |= EXT4_LAZYINIT_QUIT; 2981 2982 ext4_li_info = eli; 2983 2984 return 0; 2985 } 2986 2987 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 2988 ext4_group_t start) 2989 { 2990 struct ext4_sb_info *sbi = EXT4_SB(sb); 2991 struct ext4_li_request *elr; 2992 unsigned long rnd; 2993 2994 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 2995 if (!elr) 2996 return NULL; 2997 2998 elr->lr_super = sb; 2999 elr->lr_sbi = sbi; 3000 elr->lr_next_group = start; 3001 3002 /* 3003 * Randomize first schedule time of the request to 3004 * spread the inode table initialization requests 3005 * better. 3006 */ 3007 get_random_bytes(&rnd, sizeof(rnd)); 3008 elr->lr_next_sched = jiffies + (unsigned long)rnd % 3009 (EXT4_DEF_LI_MAX_START_DELAY * HZ); 3010 3011 return elr; 3012 } 3013 3014 static int ext4_register_li_request(struct super_block *sb, 3015 ext4_group_t first_not_zeroed) 3016 { 3017 struct ext4_sb_info *sbi = EXT4_SB(sb); 3018 struct ext4_li_request *elr; 3019 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 3020 int ret = 0; 3021 3022 if (sbi->s_li_request != NULL) { 3023 /* 3024 * Reset timeout so it can be computed again, because 3025 * s_li_wait_mult might have changed. 3026 */ 3027 sbi->s_li_request->lr_timeout = 0; 3028 return 0; 3029 } 3030 3031 if (first_not_zeroed == ngroups || 3032 (sb->s_flags & MS_RDONLY) || 3033 !test_opt(sb, INIT_INODE_TABLE)) 3034 return 0; 3035 3036 elr = ext4_li_request_new(sb, first_not_zeroed); 3037 if (!elr) 3038 return -ENOMEM; 3039 3040 mutex_lock(&ext4_li_mtx); 3041 3042 if (NULL == ext4_li_info) { 3043 ret = ext4_li_info_new(); 3044 if (ret) 3045 goto out; 3046 } 3047 3048 mutex_lock(&ext4_li_info->li_list_mtx); 3049 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3050 mutex_unlock(&ext4_li_info->li_list_mtx); 3051 3052 sbi->s_li_request = elr; 3053 /* 3054 * set elr to NULL here since it has been inserted to 3055 * the request_list and the removal and free of it is 3056 * handled by ext4_clear_request_list from now on. 3057 */ 3058 elr = NULL; 3059 3060 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3061 ret = ext4_run_lazyinit_thread(); 3062 if (ret) 3063 goto out; 3064 } 3065 out: 3066 mutex_unlock(&ext4_li_mtx); 3067 if (ret) 3068 kfree(elr); 3069 return ret; 3070 } 3071 3072 /* 3073 * We do not need to lock anything since this is called on 3074 * module unload. 3075 */ 3076 static void ext4_destroy_lazyinit_thread(void) 3077 { 3078 /* 3079 * If thread exited earlier 3080 * there's nothing to be done. 3081 */ 3082 if (!ext4_li_info || !ext4_lazyinit_task) 3083 return; 3084 3085 kthread_stop(ext4_lazyinit_task); 3086 } 3087 3088 static int set_journal_csum_feature_set(struct super_block *sb) 3089 { 3090 int ret = 1; 3091 int compat, incompat; 3092 struct ext4_sb_info *sbi = EXT4_SB(sb); 3093 3094 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3095 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) { 3096 /* journal checksum v2 */ 3097 compat = 0; 3098 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V2; 3099 } else { 3100 /* journal checksum v1 */ 3101 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3102 incompat = 0; 3103 } 3104 3105 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3106 ret = jbd2_journal_set_features(sbi->s_journal, 3107 compat, 0, 3108 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3109 incompat); 3110 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3111 ret = jbd2_journal_set_features(sbi->s_journal, 3112 compat, 0, 3113 incompat); 3114 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3115 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3116 } else { 3117 jbd2_journal_clear_features(sbi->s_journal, 3118 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3119 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3120 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3121 } 3122 3123 return ret; 3124 } 3125 3126 /* 3127 * Note: calculating the overhead so we can be compatible with 3128 * historical BSD practice is quite difficult in the face of 3129 * clusters/bigalloc. This is because multiple metadata blocks from 3130 * different block group can end up in the same allocation cluster. 3131 * Calculating the exact overhead in the face of clustered allocation 3132 * requires either O(all block bitmaps) in memory or O(number of block 3133 * groups**2) in time. We will still calculate the superblock for 3134 * older file systems --- and if we come across with a bigalloc file 3135 * system with zero in s_overhead_clusters the estimate will be close to 3136 * correct especially for very large cluster sizes --- but for newer 3137 * file systems, it's better to calculate this figure once at mkfs 3138 * time, and store it in the superblock. If the superblock value is 3139 * present (even for non-bigalloc file systems), we will use it. 3140 */ 3141 static int count_overhead(struct super_block *sb, ext4_group_t grp, 3142 char *buf) 3143 { 3144 struct ext4_sb_info *sbi = EXT4_SB(sb); 3145 struct ext4_group_desc *gdp; 3146 ext4_fsblk_t first_block, last_block, b; 3147 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3148 int s, j, count = 0; 3149 3150 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC)) 3151 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3152 sbi->s_itb_per_group + 2); 3153 3154 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3155 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3156 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3157 for (i = 0; i < ngroups; i++) { 3158 gdp = ext4_get_group_desc(sb, i, NULL); 3159 b = ext4_block_bitmap(sb, gdp); 3160 if (b >= first_block && b <= last_block) { 3161 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3162 count++; 3163 } 3164 b = ext4_inode_bitmap(sb, gdp); 3165 if (b >= first_block && b <= last_block) { 3166 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3167 count++; 3168 } 3169 b = ext4_inode_table(sb, gdp); 3170 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3171 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3172 int c = EXT4_B2C(sbi, b - first_block); 3173 ext4_set_bit(c, buf); 3174 count++; 3175 } 3176 if (i != grp) 3177 continue; 3178 s = 0; 3179 if (ext4_bg_has_super(sb, grp)) { 3180 ext4_set_bit(s++, buf); 3181 count++; 3182 } 3183 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) { 3184 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3185 count++; 3186 } 3187 } 3188 if (!count) 3189 return 0; 3190 return EXT4_CLUSTERS_PER_GROUP(sb) - 3191 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3192 } 3193 3194 /* 3195 * Compute the overhead and stash it in sbi->s_overhead 3196 */ 3197 int ext4_calculate_overhead(struct super_block *sb) 3198 { 3199 struct ext4_sb_info *sbi = EXT4_SB(sb); 3200 struct ext4_super_block *es = sbi->s_es; 3201 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3202 ext4_fsblk_t overhead = 0; 3203 char *buf = (char *) get_zeroed_page(GFP_KERNEL); 3204 3205 memset(buf, 0, PAGE_SIZE); 3206 if (!buf) 3207 return -ENOMEM; 3208 3209 /* 3210 * Compute the overhead (FS structures). This is constant 3211 * for a given filesystem unless the number of block groups 3212 * changes so we cache the previous value until it does. 3213 */ 3214 3215 /* 3216 * All of the blocks before first_data_block are overhead 3217 */ 3218 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3219 3220 /* 3221 * Add the overhead found in each block group 3222 */ 3223 for (i = 0; i < ngroups; i++) { 3224 int blks; 3225 3226 blks = count_overhead(sb, i, buf); 3227 overhead += blks; 3228 if (blks) 3229 memset(buf, 0, PAGE_SIZE); 3230 cond_resched(); 3231 } 3232 sbi->s_overhead = overhead; 3233 smp_wmb(); 3234 free_page((unsigned long) buf); 3235 return 0; 3236 } 3237 3238 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3239 { 3240 char *orig_data = kstrdup(data, GFP_KERNEL); 3241 struct buffer_head *bh; 3242 struct ext4_super_block *es = NULL; 3243 struct ext4_sb_info *sbi; 3244 ext4_fsblk_t block; 3245 ext4_fsblk_t sb_block = get_sb_block(&data); 3246 ext4_fsblk_t logical_sb_block; 3247 unsigned long offset = 0; 3248 unsigned long journal_devnum = 0; 3249 unsigned long def_mount_opts; 3250 struct inode *root; 3251 char *cp; 3252 const char *descr; 3253 int ret = -ENOMEM; 3254 int blocksize, clustersize; 3255 unsigned int db_count; 3256 unsigned int i; 3257 int needs_recovery, has_huge_files, has_bigalloc; 3258 __u64 blocks_count; 3259 int err; 3260 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3261 ext4_group_t first_not_zeroed; 3262 3263 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3264 if (!sbi) 3265 goto out_free_orig; 3266 3267 sbi->s_blockgroup_lock = 3268 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3269 if (!sbi->s_blockgroup_lock) { 3270 kfree(sbi); 3271 goto out_free_orig; 3272 } 3273 sb->s_fs_info = sbi; 3274 sbi->s_sb = sb; 3275 sbi->s_mount_opt = 0; 3276 sbi->s_resuid = make_kuid(&init_user_ns, EXT4_DEF_RESUID); 3277 sbi->s_resgid = make_kgid(&init_user_ns, EXT4_DEF_RESGID); 3278 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3279 sbi->s_sb_block = sb_block; 3280 if (sb->s_bdev->bd_part) 3281 sbi->s_sectors_written_start = 3282 part_stat_read(sb->s_bdev->bd_part, sectors[1]); 3283 3284 /* Cleanup superblock name */ 3285 for (cp = sb->s_id; (cp = strchr(cp, '/'));) 3286 *cp = '!'; 3287 3288 ret = -EINVAL; 3289 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3290 if (!blocksize) { 3291 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3292 goto out_fail; 3293 } 3294 3295 /* 3296 * The ext4 superblock will not be buffer aligned for other than 1kB 3297 * block sizes. We need to calculate the offset from buffer start. 3298 */ 3299 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3300 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3301 offset = do_div(logical_sb_block, blocksize); 3302 } else { 3303 logical_sb_block = sb_block; 3304 } 3305 3306 if (!(bh = sb_bread(sb, logical_sb_block))) { 3307 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3308 goto out_fail; 3309 } 3310 /* 3311 * Note: s_es must be initialized as soon as possible because 3312 * some ext4 macro-instructions depend on its value 3313 */ 3314 es = (struct ext4_super_block *) (bh->b_data + offset); 3315 sbi->s_es = es; 3316 sb->s_magic = le16_to_cpu(es->s_magic); 3317 if (sb->s_magic != EXT4_SUPER_MAGIC) 3318 goto cantfind_ext4; 3319 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3320 3321 /* Warn if metadata_csum and gdt_csum are both set. */ 3322 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3323 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 3324 EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) 3325 ext4_warning(sb, KERN_INFO "metadata_csum and uninit_bg are " 3326 "redundant flags; please run fsck."); 3327 3328 /* Check for a known checksum algorithm */ 3329 if (!ext4_verify_csum_type(sb, es)) { 3330 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3331 "unknown checksum algorithm."); 3332 silent = 1; 3333 goto cantfind_ext4; 3334 } 3335 3336 /* Load the checksum driver */ 3337 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3338 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) { 3339 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3340 if (IS_ERR(sbi->s_chksum_driver)) { 3341 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3342 ret = PTR_ERR(sbi->s_chksum_driver); 3343 sbi->s_chksum_driver = NULL; 3344 goto failed_mount; 3345 } 3346 } 3347 3348 /* Check superblock checksum */ 3349 if (!ext4_superblock_csum_verify(sb, es)) { 3350 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3351 "invalid superblock checksum. Run e2fsck?"); 3352 silent = 1; 3353 goto cantfind_ext4; 3354 } 3355 3356 /* Precompute checksum seed for all metadata */ 3357 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3358 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 3359 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3360 sizeof(es->s_uuid)); 3361 3362 /* Set defaults before we parse the mount options */ 3363 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3364 set_opt(sb, INIT_INODE_TABLE); 3365 if (def_mount_opts & EXT4_DEFM_DEBUG) 3366 set_opt(sb, DEBUG); 3367 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 3368 set_opt(sb, GRPID); 3369 if (def_mount_opts & EXT4_DEFM_UID16) 3370 set_opt(sb, NO_UID32); 3371 /* xattr user namespace & acls are now defaulted on */ 3372 #ifdef CONFIG_EXT4_FS_XATTR 3373 set_opt(sb, XATTR_USER); 3374 #endif 3375 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3376 set_opt(sb, POSIX_ACL); 3377 #endif 3378 set_opt(sb, MBLK_IO_SUBMIT); 3379 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3380 set_opt(sb, JOURNAL_DATA); 3381 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3382 set_opt(sb, ORDERED_DATA); 3383 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3384 set_opt(sb, WRITEBACK_DATA); 3385 3386 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3387 set_opt(sb, ERRORS_PANIC); 3388 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3389 set_opt(sb, ERRORS_CONT); 3390 else 3391 set_opt(sb, ERRORS_RO); 3392 if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY) 3393 set_opt(sb, BLOCK_VALIDITY); 3394 if (def_mount_opts & EXT4_DEFM_DISCARD) 3395 set_opt(sb, DISCARD); 3396 3397 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 3398 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 3399 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3400 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3401 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3402 3403 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3404 set_opt(sb, BARRIER); 3405 3406 /* 3407 * enable delayed allocation by default 3408 * Use -o nodelalloc to turn it off 3409 */ 3410 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 3411 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3412 set_opt(sb, DELALLOC); 3413 3414 /* 3415 * set default s_li_wait_mult for lazyinit, for the case there is 3416 * no mount option specified. 3417 */ 3418 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3419 3420 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb, 3421 &journal_devnum, &journal_ioprio, 0)) { 3422 ext4_msg(sb, KERN_WARNING, 3423 "failed to parse options in superblock: %s", 3424 sbi->s_es->s_mount_opts); 3425 } 3426 sbi->s_def_mount_opt = sbi->s_mount_opt; 3427 if (!parse_options((char *) data, sb, &journal_devnum, 3428 &journal_ioprio, 0)) 3429 goto failed_mount; 3430 3431 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 3432 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting " 3433 "with data=journal disables delayed " 3434 "allocation and O_DIRECT support!\n"); 3435 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 3436 ext4_msg(sb, KERN_ERR, "can't mount with " 3437 "both data=journal and delalloc"); 3438 goto failed_mount; 3439 } 3440 if (test_opt(sb, DIOREAD_NOLOCK)) { 3441 ext4_msg(sb, KERN_ERR, "can't mount with " 3442 "both data=journal and delalloc"); 3443 goto failed_mount; 3444 } 3445 if (test_opt(sb, DELALLOC)) 3446 clear_opt(sb, DELALLOC); 3447 } 3448 3449 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3450 if (test_opt(sb, DIOREAD_NOLOCK)) { 3451 if (blocksize < PAGE_SIZE) { 3452 ext4_msg(sb, KERN_ERR, "can't mount with " 3453 "dioread_nolock if block size != PAGE_SIZE"); 3454 goto failed_mount; 3455 } 3456 } 3457 3458 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 3459 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 3460 3461 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 3462 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) || 3463 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) || 3464 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U))) 3465 ext4_msg(sb, KERN_WARNING, 3466 "feature flags set on rev 0 fs, " 3467 "running e2fsck is recommended"); 3468 3469 if (IS_EXT2_SB(sb)) { 3470 if (ext2_feature_set_ok(sb)) 3471 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 3472 "using the ext4 subsystem"); 3473 else { 3474 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 3475 "to feature incompatibilities"); 3476 goto failed_mount; 3477 } 3478 } 3479 3480 if (IS_EXT3_SB(sb)) { 3481 if (ext3_feature_set_ok(sb)) 3482 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 3483 "using the ext4 subsystem"); 3484 else { 3485 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 3486 "to feature incompatibilities"); 3487 goto failed_mount; 3488 } 3489 } 3490 3491 /* 3492 * Check feature flags regardless of the revision level, since we 3493 * previously didn't change the revision level when setting the flags, 3494 * so there is a chance incompat flags are set on a rev 0 filesystem. 3495 */ 3496 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY))) 3497 goto failed_mount; 3498 3499 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3500 blocksize > EXT4_MAX_BLOCK_SIZE) { 3501 ext4_msg(sb, KERN_ERR, 3502 "Unsupported filesystem blocksize %d", blocksize); 3503 goto failed_mount; 3504 } 3505 3506 if (sb->s_blocksize != blocksize) { 3507 /* Validate the filesystem blocksize */ 3508 if (!sb_set_blocksize(sb, blocksize)) { 3509 ext4_msg(sb, KERN_ERR, "bad block size %d", 3510 blocksize); 3511 goto failed_mount; 3512 } 3513 3514 brelse(bh); 3515 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3516 offset = do_div(logical_sb_block, blocksize); 3517 bh = sb_bread(sb, logical_sb_block); 3518 if (!bh) { 3519 ext4_msg(sb, KERN_ERR, 3520 "Can't read superblock on 2nd try"); 3521 goto failed_mount; 3522 } 3523 es = (struct ext4_super_block *)(bh->b_data + offset); 3524 sbi->s_es = es; 3525 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 3526 ext4_msg(sb, KERN_ERR, 3527 "Magic mismatch, very weird!"); 3528 goto failed_mount; 3529 } 3530 } 3531 3532 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb, 3533 EXT4_FEATURE_RO_COMPAT_HUGE_FILE); 3534 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 3535 has_huge_files); 3536 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 3537 3538 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3539 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3540 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3541 } else { 3542 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3543 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3544 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3545 (!is_power_of_2(sbi->s_inode_size)) || 3546 (sbi->s_inode_size > blocksize)) { 3547 ext4_msg(sb, KERN_ERR, 3548 "unsupported inode size: %d", 3549 sbi->s_inode_size); 3550 goto failed_mount; 3551 } 3552 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 3553 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 3554 } 3555 3556 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 3557 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) { 3558 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 3559 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 3560 !is_power_of_2(sbi->s_desc_size)) { 3561 ext4_msg(sb, KERN_ERR, 3562 "unsupported descriptor size %lu", 3563 sbi->s_desc_size); 3564 goto failed_mount; 3565 } 3566 } else 3567 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 3568 3569 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 3570 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 3571 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0) 3572 goto cantfind_ext4; 3573 3574 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 3575 if (sbi->s_inodes_per_block == 0) 3576 goto cantfind_ext4; 3577 sbi->s_itb_per_group = sbi->s_inodes_per_group / 3578 sbi->s_inodes_per_block; 3579 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 3580 sbi->s_sbh = bh; 3581 sbi->s_mount_state = le16_to_cpu(es->s_state); 3582 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 3583 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 3584 3585 for (i = 0; i < 4; i++) 3586 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 3587 sbi->s_def_hash_version = es->s_def_hash_version; 3588 i = le32_to_cpu(es->s_flags); 3589 if (i & EXT2_FLAGS_UNSIGNED_HASH) 3590 sbi->s_hash_unsigned = 3; 3591 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 3592 #ifdef __CHAR_UNSIGNED__ 3593 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 3594 sbi->s_hash_unsigned = 3; 3595 #else 3596 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 3597 #endif 3598 } 3599 3600 /* Handle clustersize */ 3601 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 3602 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb, 3603 EXT4_FEATURE_RO_COMPAT_BIGALLOC); 3604 if (has_bigalloc) { 3605 if (clustersize < blocksize) { 3606 ext4_msg(sb, KERN_ERR, 3607 "cluster size (%d) smaller than " 3608 "block size (%d)", clustersize, blocksize); 3609 goto failed_mount; 3610 } 3611 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 3612 le32_to_cpu(es->s_log_block_size); 3613 sbi->s_clusters_per_group = 3614 le32_to_cpu(es->s_clusters_per_group); 3615 if (sbi->s_clusters_per_group > blocksize * 8) { 3616 ext4_msg(sb, KERN_ERR, 3617 "#clusters per group too big: %lu", 3618 sbi->s_clusters_per_group); 3619 goto failed_mount; 3620 } 3621 if (sbi->s_blocks_per_group != 3622 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 3623 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 3624 "clusters per group (%lu) inconsistent", 3625 sbi->s_blocks_per_group, 3626 sbi->s_clusters_per_group); 3627 goto failed_mount; 3628 } 3629 } else { 3630 if (clustersize != blocksize) { 3631 ext4_warning(sb, "fragment/cluster size (%d) != " 3632 "block size (%d)", clustersize, 3633 blocksize); 3634 clustersize = blocksize; 3635 } 3636 if (sbi->s_blocks_per_group > blocksize * 8) { 3637 ext4_msg(sb, KERN_ERR, 3638 "#blocks per group too big: %lu", 3639 sbi->s_blocks_per_group); 3640 goto failed_mount; 3641 } 3642 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 3643 sbi->s_cluster_bits = 0; 3644 } 3645 sbi->s_cluster_ratio = clustersize / blocksize; 3646 3647 if (sbi->s_inodes_per_group > blocksize * 8) { 3648 ext4_msg(sb, KERN_ERR, 3649 "#inodes per group too big: %lu", 3650 sbi->s_inodes_per_group); 3651 goto failed_mount; 3652 } 3653 3654 /* 3655 * Test whether we have more sectors than will fit in sector_t, 3656 * and whether the max offset is addressable by the page cache. 3657 */ 3658 err = generic_check_addressable(sb->s_blocksize_bits, 3659 ext4_blocks_count(es)); 3660 if (err) { 3661 ext4_msg(sb, KERN_ERR, "filesystem" 3662 " too large to mount safely on this system"); 3663 if (sizeof(sector_t) < 8) 3664 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 3665 ret = err; 3666 goto failed_mount; 3667 } 3668 3669 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 3670 goto cantfind_ext4; 3671 3672 /* check blocks count against device size */ 3673 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 3674 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 3675 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 3676 "exceeds size of device (%llu blocks)", 3677 ext4_blocks_count(es), blocks_count); 3678 goto failed_mount; 3679 } 3680 3681 /* 3682 * It makes no sense for the first data block to be beyond the end 3683 * of the filesystem. 3684 */ 3685 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 3686 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 3687 "block %u is beyond end of filesystem (%llu)", 3688 le32_to_cpu(es->s_first_data_block), 3689 ext4_blocks_count(es)); 3690 goto failed_mount; 3691 } 3692 blocks_count = (ext4_blocks_count(es) - 3693 le32_to_cpu(es->s_first_data_block) + 3694 EXT4_BLOCKS_PER_GROUP(sb) - 1); 3695 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 3696 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 3697 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 3698 "(block count %llu, first data block %u, " 3699 "blocks per group %lu)", sbi->s_groups_count, 3700 ext4_blocks_count(es), 3701 le32_to_cpu(es->s_first_data_block), 3702 EXT4_BLOCKS_PER_GROUP(sb)); 3703 goto failed_mount; 3704 } 3705 sbi->s_groups_count = blocks_count; 3706 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 3707 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 3708 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 3709 EXT4_DESC_PER_BLOCK(sb); 3710 sbi->s_group_desc = ext4_kvmalloc(db_count * 3711 sizeof(struct buffer_head *), 3712 GFP_KERNEL); 3713 if (sbi->s_group_desc == NULL) { 3714 ext4_msg(sb, KERN_ERR, "not enough memory"); 3715 ret = -ENOMEM; 3716 goto failed_mount; 3717 } 3718 3719 if (ext4_proc_root) 3720 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root); 3721 3722 if (sbi->s_proc) 3723 proc_create_data("options", S_IRUGO, sbi->s_proc, 3724 &ext4_seq_options_fops, sb); 3725 3726 bgl_lock_init(sbi->s_blockgroup_lock); 3727 3728 for (i = 0; i < db_count; i++) { 3729 block = descriptor_loc(sb, logical_sb_block, i); 3730 sbi->s_group_desc[i] = sb_bread(sb, block); 3731 if (!sbi->s_group_desc[i]) { 3732 ext4_msg(sb, KERN_ERR, 3733 "can't read group descriptor %d", i); 3734 db_count = i; 3735 goto failed_mount2; 3736 } 3737 } 3738 if (!ext4_check_descriptors(sb, &first_not_zeroed)) { 3739 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 3740 goto failed_mount2; 3741 } 3742 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 3743 if (!ext4_fill_flex_info(sb)) { 3744 ext4_msg(sb, KERN_ERR, 3745 "unable to initialize " 3746 "flex_bg meta info!"); 3747 goto failed_mount2; 3748 } 3749 3750 sbi->s_gdb_count = db_count; 3751 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 3752 spin_lock_init(&sbi->s_next_gen_lock); 3753 3754 init_timer(&sbi->s_err_report); 3755 sbi->s_err_report.function = print_daily_error_info; 3756 sbi->s_err_report.data = (unsigned long) sb; 3757 3758 err = percpu_counter_init(&sbi->s_freeclusters_counter, 3759 ext4_count_free_clusters(sb)); 3760 if (!err) { 3761 err = percpu_counter_init(&sbi->s_freeinodes_counter, 3762 ext4_count_free_inodes(sb)); 3763 } 3764 if (!err) { 3765 err = percpu_counter_init(&sbi->s_dirs_counter, 3766 ext4_count_dirs(sb)); 3767 } 3768 if (!err) { 3769 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0); 3770 } 3771 if (err) { 3772 ext4_msg(sb, KERN_ERR, "insufficient memory"); 3773 ret = err; 3774 goto failed_mount3; 3775 } 3776 3777 sbi->s_stripe = ext4_get_stripe_size(sbi); 3778 sbi->s_max_writeback_mb_bump = 128; 3779 sbi->s_extent_max_zeroout_kb = 32; 3780 3781 /* 3782 * set up enough so that it can read an inode 3783 */ 3784 if (!test_opt(sb, NOLOAD) && 3785 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) 3786 sb->s_op = &ext4_sops; 3787 else 3788 sb->s_op = &ext4_nojournal_sops; 3789 sb->s_export_op = &ext4_export_ops; 3790 sb->s_xattr = ext4_xattr_handlers; 3791 #ifdef CONFIG_QUOTA 3792 sb->s_qcop = &ext4_qctl_operations; 3793 sb->dq_op = &ext4_quota_operations; 3794 3795 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) { 3796 /* Use qctl operations for hidden quota files. */ 3797 sb->s_qcop = &ext4_qctl_sysfile_operations; 3798 } 3799 #endif 3800 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 3801 3802 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 3803 mutex_init(&sbi->s_orphan_lock); 3804 sbi->s_resize_flags = 0; 3805 3806 sb->s_root = NULL; 3807 3808 needs_recovery = (es->s_last_orphan != 0 || 3809 EXT4_HAS_INCOMPAT_FEATURE(sb, 3810 EXT4_FEATURE_INCOMPAT_RECOVER)); 3811 3812 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) && 3813 !(sb->s_flags & MS_RDONLY)) 3814 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 3815 goto failed_mount3; 3816 3817 /* 3818 * The first inode we look at is the journal inode. Don't try 3819 * root first: it may be modified in the journal! 3820 */ 3821 if (!test_opt(sb, NOLOAD) && 3822 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 3823 if (ext4_load_journal(sb, es, journal_devnum)) 3824 goto failed_mount3; 3825 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) && 3826 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 3827 ext4_msg(sb, KERN_ERR, "required journal recovery " 3828 "suppressed and not mounted read-only"); 3829 goto failed_mount_wq; 3830 } else { 3831 clear_opt(sb, DATA_FLAGS); 3832 sbi->s_journal = NULL; 3833 needs_recovery = 0; 3834 goto no_journal; 3835 } 3836 3837 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) && 3838 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 3839 JBD2_FEATURE_INCOMPAT_64BIT)) { 3840 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 3841 goto failed_mount_wq; 3842 } 3843 3844 if (!set_journal_csum_feature_set(sb)) { 3845 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 3846 "feature set"); 3847 goto failed_mount_wq; 3848 } 3849 3850 /* We have now updated the journal if required, so we can 3851 * validate the data journaling mode. */ 3852 switch (test_opt(sb, DATA_FLAGS)) { 3853 case 0: 3854 /* No mode set, assume a default based on the journal 3855 * capabilities: ORDERED_DATA if the journal can 3856 * cope, else JOURNAL_DATA 3857 */ 3858 if (jbd2_journal_check_available_features 3859 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) 3860 set_opt(sb, ORDERED_DATA); 3861 else 3862 set_opt(sb, JOURNAL_DATA); 3863 break; 3864 3865 case EXT4_MOUNT_ORDERED_DATA: 3866 case EXT4_MOUNT_WRITEBACK_DATA: 3867 if (!jbd2_journal_check_available_features 3868 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 3869 ext4_msg(sb, KERN_ERR, "Journal does not support " 3870 "requested data journaling mode"); 3871 goto failed_mount_wq; 3872 } 3873 default: 3874 break; 3875 } 3876 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 3877 3878 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; 3879 3880 /* 3881 * The journal may have updated the bg summary counts, so we 3882 * need to update the global counters. 3883 */ 3884 percpu_counter_set(&sbi->s_freeclusters_counter, 3885 ext4_count_free_clusters(sb)); 3886 percpu_counter_set(&sbi->s_freeinodes_counter, 3887 ext4_count_free_inodes(sb)); 3888 percpu_counter_set(&sbi->s_dirs_counter, 3889 ext4_count_dirs(sb)); 3890 percpu_counter_set(&sbi->s_dirtyclusters_counter, 0); 3891 3892 no_journal: 3893 /* 3894 * Get the # of file system overhead blocks from the 3895 * superblock if present. 3896 */ 3897 if (es->s_overhead_clusters) 3898 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 3899 else { 3900 ret = ext4_calculate_overhead(sb); 3901 if (ret) 3902 goto failed_mount_wq; 3903 } 3904 3905 /* 3906 * The maximum number of concurrent works can be high and 3907 * concurrency isn't really necessary. Limit it to 1. 3908 */ 3909 EXT4_SB(sb)->dio_unwritten_wq = 3910 alloc_workqueue("ext4-dio-unwritten", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 3911 if (!EXT4_SB(sb)->dio_unwritten_wq) { 3912 printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n"); 3913 goto failed_mount_wq; 3914 } 3915 3916 /* 3917 * The jbd2_journal_load will have done any necessary log recovery, 3918 * so we can safely mount the rest of the filesystem now. 3919 */ 3920 3921 root = ext4_iget(sb, EXT4_ROOT_INO); 3922 if (IS_ERR(root)) { 3923 ext4_msg(sb, KERN_ERR, "get root inode failed"); 3924 ret = PTR_ERR(root); 3925 root = NULL; 3926 goto failed_mount4; 3927 } 3928 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 3929 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 3930 iput(root); 3931 goto failed_mount4; 3932 } 3933 sb->s_root = d_make_root(root); 3934 if (!sb->s_root) { 3935 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 3936 ret = -ENOMEM; 3937 goto failed_mount4; 3938 } 3939 3940 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY)) 3941 sb->s_flags |= MS_RDONLY; 3942 3943 /* determine the minimum size of new large inodes, if present */ 3944 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 3945 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 3946 EXT4_GOOD_OLD_INODE_SIZE; 3947 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3948 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) { 3949 if (sbi->s_want_extra_isize < 3950 le16_to_cpu(es->s_want_extra_isize)) 3951 sbi->s_want_extra_isize = 3952 le16_to_cpu(es->s_want_extra_isize); 3953 if (sbi->s_want_extra_isize < 3954 le16_to_cpu(es->s_min_extra_isize)) 3955 sbi->s_want_extra_isize = 3956 le16_to_cpu(es->s_min_extra_isize); 3957 } 3958 } 3959 /* Check if enough inode space is available */ 3960 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 3961 sbi->s_inode_size) { 3962 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 3963 EXT4_GOOD_OLD_INODE_SIZE; 3964 ext4_msg(sb, KERN_INFO, "required extra inode space not" 3965 "available"); 3966 } 3967 3968 err = ext4_setup_system_zone(sb); 3969 if (err) { 3970 ext4_msg(sb, KERN_ERR, "failed to initialize system " 3971 "zone (%d)", err); 3972 goto failed_mount4a; 3973 } 3974 3975 ext4_ext_init(sb); 3976 err = ext4_mb_init(sb); 3977 if (err) { 3978 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 3979 err); 3980 goto failed_mount5; 3981 } 3982 3983 err = ext4_register_li_request(sb, first_not_zeroed); 3984 if (err) 3985 goto failed_mount6; 3986 3987 sbi->s_kobj.kset = ext4_kset; 3988 init_completion(&sbi->s_kobj_unregister); 3989 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL, 3990 "%s", sb->s_id); 3991 if (err) 3992 goto failed_mount7; 3993 3994 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 3995 ext4_orphan_cleanup(sb, es); 3996 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 3997 if (needs_recovery) { 3998 ext4_msg(sb, KERN_INFO, "recovery complete"); 3999 ext4_mark_recovery_complete(sb, es); 4000 } 4001 if (EXT4_SB(sb)->s_journal) { 4002 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 4003 descr = " journalled data mode"; 4004 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 4005 descr = " ordered data mode"; 4006 else 4007 descr = " writeback data mode"; 4008 } else 4009 descr = "out journal"; 4010 4011 #ifdef CONFIG_QUOTA 4012 /* Enable quota usage during mount. */ 4013 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) && 4014 !(sb->s_flags & MS_RDONLY)) { 4015 ret = ext4_enable_quotas(sb); 4016 if (ret) 4017 goto failed_mount7; 4018 } 4019 #endif /* CONFIG_QUOTA */ 4020 4021 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 4022 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts, 4023 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 4024 4025 if (es->s_error_count) 4026 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 4027 4028 kfree(orig_data); 4029 return 0; 4030 4031 cantfind_ext4: 4032 if (!silent) 4033 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 4034 goto failed_mount; 4035 4036 failed_mount7: 4037 ext4_unregister_li_request(sb); 4038 failed_mount6: 4039 ext4_mb_release(sb); 4040 failed_mount5: 4041 ext4_ext_release(sb); 4042 ext4_release_system_zone(sb); 4043 failed_mount4a: 4044 dput(sb->s_root); 4045 sb->s_root = NULL; 4046 failed_mount4: 4047 ext4_msg(sb, KERN_ERR, "mount failed"); 4048 destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq); 4049 failed_mount_wq: 4050 if (sbi->s_journal) { 4051 jbd2_journal_destroy(sbi->s_journal); 4052 sbi->s_journal = NULL; 4053 } 4054 failed_mount3: 4055 del_timer(&sbi->s_err_report); 4056 if (sbi->s_flex_groups) 4057 ext4_kvfree(sbi->s_flex_groups); 4058 percpu_counter_destroy(&sbi->s_freeclusters_counter); 4059 percpu_counter_destroy(&sbi->s_freeinodes_counter); 4060 percpu_counter_destroy(&sbi->s_dirs_counter); 4061 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 4062 if (sbi->s_mmp_tsk) 4063 kthread_stop(sbi->s_mmp_tsk); 4064 failed_mount2: 4065 for (i = 0; i < db_count; i++) 4066 brelse(sbi->s_group_desc[i]); 4067 ext4_kvfree(sbi->s_group_desc); 4068 failed_mount: 4069 if (sbi->s_chksum_driver) 4070 crypto_free_shash(sbi->s_chksum_driver); 4071 if (sbi->s_proc) { 4072 remove_proc_entry("options", sbi->s_proc); 4073 remove_proc_entry(sb->s_id, ext4_proc_root); 4074 } 4075 #ifdef CONFIG_QUOTA 4076 for (i = 0; i < MAXQUOTAS; i++) 4077 kfree(sbi->s_qf_names[i]); 4078 #endif 4079 ext4_blkdev_remove(sbi); 4080 brelse(bh); 4081 out_fail: 4082 sb->s_fs_info = NULL; 4083 kfree(sbi->s_blockgroup_lock); 4084 kfree(sbi); 4085 out_free_orig: 4086 kfree(orig_data); 4087 return ret; 4088 } 4089 4090 /* 4091 * Setup any per-fs journal parameters now. We'll do this both on 4092 * initial mount, once the journal has been initialised but before we've 4093 * done any recovery; and again on any subsequent remount. 4094 */ 4095 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 4096 { 4097 struct ext4_sb_info *sbi = EXT4_SB(sb); 4098 4099 journal->j_commit_interval = sbi->s_commit_interval; 4100 journal->j_min_batch_time = sbi->s_min_batch_time; 4101 journal->j_max_batch_time = sbi->s_max_batch_time; 4102 4103 write_lock(&journal->j_state_lock); 4104 if (test_opt(sb, BARRIER)) 4105 journal->j_flags |= JBD2_BARRIER; 4106 else 4107 journal->j_flags &= ~JBD2_BARRIER; 4108 if (test_opt(sb, DATA_ERR_ABORT)) 4109 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 4110 else 4111 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 4112 write_unlock(&journal->j_state_lock); 4113 } 4114 4115 static journal_t *ext4_get_journal(struct super_block *sb, 4116 unsigned int journal_inum) 4117 { 4118 struct inode *journal_inode; 4119 journal_t *journal; 4120 4121 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4122 4123 /* First, test for the existence of a valid inode on disk. Bad 4124 * things happen if we iget() an unused inode, as the subsequent 4125 * iput() will try to delete it. */ 4126 4127 journal_inode = ext4_iget(sb, journal_inum); 4128 if (IS_ERR(journal_inode)) { 4129 ext4_msg(sb, KERN_ERR, "no journal found"); 4130 return NULL; 4131 } 4132 if (!journal_inode->i_nlink) { 4133 make_bad_inode(journal_inode); 4134 iput(journal_inode); 4135 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 4136 return NULL; 4137 } 4138 4139 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 4140 journal_inode, journal_inode->i_size); 4141 if (!S_ISREG(journal_inode->i_mode)) { 4142 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 4143 iput(journal_inode); 4144 return NULL; 4145 } 4146 4147 journal = jbd2_journal_init_inode(journal_inode); 4148 if (!journal) { 4149 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 4150 iput(journal_inode); 4151 return NULL; 4152 } 4153 journal->j_private = sb; 4154 ext4_init_journal_params(sb, journal); 4155 return journal; 4156 } 4157 4158 static journal_t *ext4_get_dev_journal(struct super_block *sb, 4159 dev_t j_dev) 4160 { 4161 struct buffer_head *bh; 4162 journal_t *journal; 4163 ext4_fsblk_t start; 4164 ext4_fsblk_t len; 4165 int hblock, blocksize; 4166 ext4_fsblk_t sb_block; 4167 unsigned long offset; 4168 struct ext4_super_block *es; 4169 struct block_device *bdev; 4170 4171 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4172 4173 bdev = ext4_blkdev_get(j_dev, sb); 4174 if (bdev == NULL) 4175 return NULL; 4176 4177 blocksize = sb->s_blocksize; 4178 hblock = bdev_logical_block_size(bdev); 4179 if (blocksize < hblock) { 4180 ext4_msg(sb, KERN_ERR, 4181 "blocksize too small for journal device"); 4182 goto out_bdev; 4183 } 4184 4185 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 4186 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 4187 set_blocksize(bdev, blocksize); 4188 if (!(bh = __bread(bdev, sb_block, blocksize))) { 4189 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 4190 "external journal"); 4191 goto out_bdev; 4192 } 4193 4194 es = (struct ext4_super_block *) (bh->b_data + offset); 4195 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 4196 !(le32_to_cpu(es->s_feature_incompat) & 4197 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 4198 ext4_msg(sb, KERN_ERR, "external journal has " 4199 "bad superblock"); 4200 brelse(bh); 4201 goto out_bdev; 4202 } 4203 4204 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 4205 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 4206 brelse(bh); 4207 goto out_bdev; 4208 } 4209 4210 len = ext4_blocks_count(es); 4211 start = sb_block + 1; 4212 brelse(bh); /* we're done with the superblock */ 4213 4214 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 4215 start, len, blocksize); 4216 if (!journal) { 4217 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 4218 goto out_bdev; 4219 } 4220 journal->j_private = sb; 4221 ll_rw_block(READ, 1, &journal->j_sb_buffer); 4222 wait_on_buffer(journal->j_sb_buffer); 4223 if (!buffer_uptodate(journal->j_sb_buffer)) { 4224 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 4225 goto out_journal; 4226 } 4227 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 4228 ext4_msg(sb, KERN_ERR, "External journal has more than one " 4229 "user (unsupported) - %d", 4230 be32_to_cpu(journal->j_superblock->s_nr_users)); 4231 goto out_journal; 4232 } 4233 EXT4_SB(sb)->journal_bdev = bdev; 4234 ext4_init_journal_params(sb, journal); 4235 return journal; 4236 4237 out_journal: 4238 jbd2_journal_destroy(journal); 4239 out_bdev: 4240 ext4_blkdev_put(bdev); 4241 return NULL; 4242 } 4243 4244 static int ext4_load_journal(struct super_block *sb, 4245 struct ext4_super_block *es, 4246 unsigned long journal_devnum) 4247 { 4248 journal_t *journal; 4249 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 4250 dev_t journal_dev; 4251 int err = 0; 4252 int really_read_only; 4253 4254 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4255 4256 if (journal_devnum && 4257 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4258 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 4259 "numbers have changed"); 4260 journal_dev = new_decode_dev(journal_devnum); 4261 } else 4262 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 4263 4264 really_read_only = bdev_read_only(sb->s_bdev); 4265 4266 /* 4267 * Are we loading a blank journal or performing recovery after a 4268 * crash? For recovery, we need to check in advance whether we 4269 * can get read-write access to the device. 4270 */ 4271 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 4272 if (sb->s_flags & MS_RDONLY) { 4273 ext4_msg(sb, KERN_INFO, "INFO: recovery " 4274 "required on readonly filesystem"); 4275 if (really_read_only) { 4276 ext4_msg(sb, KERN_ERR, "write access " 4277 "unavailable, cannot proceed"); 4278 return -EROFS; 4279 } 4280 ext4_msg(sb, KERN_INFO, "write access will " 4281 "be enabled during recovery"); 4282 } 4283 } 4284 4285 if (journal_inum && journal_dev) { 4286 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 4287 "and inode journals!"); 4288 return -EINVAL; 4289 } 4290 4291 if (journal_inum) { 4292 if (!(journal = ext4_get_journal(sb, journal_inum))) 4293 return -EINVAL; 4294 } else { 4295 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 4296 return -EINVAL; 4297 } 4298 4299 if (!(journal->j_flags & JBD2_BARRIER)) 4300 ext4_msg(sb, KERN_INFO, "barriers disabled"); 4301 4302 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) 4303 err = jbd2_journal_wipe(journal, !really_read_only); 4304 if (!err) { 4305 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 4306 if (save) 4307 memcpy(save, ((char *) es) + 4308 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 4309 err = jbd2_journal_load(journal); 4310 if (save) 4311 memcpy(((char *) es) + EXT4_S_ERR_START, 4312 save, EXT4_S_ERR_LEN); 4313 kfree(save); 4314 } 4315 4316 if (err) { 4317 ext4_msg(sb, KERN_ERR, "error loading journal"); 4318 jbd2_journal_destroy(journal); 4319 return err; 4320 } 4321 4322 EXT4_SB(sb)->s_journal = journal; 4323 ext4_clear_journal_err(sb, es); 4324 4325 if (!really_read_only && journal_devnum && 4326 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4327 es->s_journal_dev = cpu_to_le32(journal_devnum); 4328 4329 /* Make sure we flush the recovery flag to disk. */ 4330 ext4_commit_super(sb, 1); 4331 } 4332 4333 return 0; 4334 } 4335 4336 static int ext4_commit_super(struct super_block *sb, int sync) 4337 { 4338 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4339 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 4340 int error = 0; 4341 4342 if (!sbh || block_device_ejected(sb)) 4343 return error; 4344 if (buffer_write_io_error(sbh)) { 4345 /* 4346 * Oh, dear. A previous attempt to write the 4347 * superblock failed. This could happen because the 4348 * USB device was yanked out. Or it could happen to 4349 * be a transient write error and maybe the block will 4350 * be remapped. Nothing we can do but to retry the 4351 * write and hope for the best. 4352 */ 4353 ext4_msg(sb, KERN_ERR, "previous I/O error to " 4354 "superblock detected"); 4355 clear_buffer_write_io_error(sbh); 4356 set_buffer_uptodate(sbh); 4357 } 4358 /* 4359 * If the file system is mounted read-only, don't update the 4360 * superblock write time. This avoids updating the superblock 4361 * write time when we are mounting the root file system 4362 * read/only but we need to replay the journal; at that point, 4363 * for people who are east of GMT and who make their clock 4364 * tick in localtime for Windows bug-for-bug compatibility, 4365 * the clock is set in the future, and this will cause e2fsck 4366 * to complain and force a full file system check. 4367 */ 4368 if (!(sb->s_flags & MS_RDONLY)) 4369 es->s_wtime = cpu_to_le32(get_seconds()); 4370 if (sb->s_bdev->bd_part) 4371 es->s_kbytes_written = 4372 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 4373 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 4374 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 4375 else 4376 es->s_kbytes_written = 4377 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 4378 ext4_free_blocks_count_set(es, 4379 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 4380 &EXT4_SB(sb)->s_freeclusters_counter))); 4381 es->s_free_inodes_count = 4382 cpu_to_le32(percpu_counter_sum_positive( 4383 &EXT4_SB(sb)->s_freeinodes_counter)); 4384 BUFFER_TRACE(sbh, "marking dirty"); 4385 ext4_superblock_csum_set(sb); 4386 mark_buffer_dirty(sbh); 4387 if (sync) { 4388 error = sync_dirty_buffer(sbh); 4389 if (error) 4390 return error; 4391 4392 error = buffer_write_io_error(sbh); 4393 if (error) { 4394 ext4_msg(sb, KERN_ERR, "I/O error while writing " 4395 "superblock"); 4396 clear_buffer_write_io_error(sbh); 4397 set_buffer_uptodate(sbh); 4398 } 4399 } 4400 return error; 4401 } 4402 4403 /* 4404 * Have we just finished recovery? If so, and if we are mounting (or 4405 * remounting) the filesystem readonly, then we will end up with a 4406 * consistent fs on disk. Record that fact. 4407 */ 4408 static void ext4_mark_recovery_complete(struct super_block *sb, 4409 struct ext4_super_block *es) 4410 { 4411 journal_t *journal = EXT4_SB(sb)->s_journal; 4412 4413 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 4414 BUG_ON(journal != NULL); 4415 return; 4416 } 4417 jbd2_journal_lock_updates(journal); 4418 if (jbd2_journal_flush(journal) < 0) 4419 goto out; 4420 4421 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) && 4422 sb->s_flags & MS_RDONLY) { 4423 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4424 ext4_commit_super(sb, 1); 4425 } 4426 4427 out: 4428 jbd2_journal_unlock_updates(journal); 4429 } 4430 4431 /* 4432 * If we are mounting (or read-write remounting) a filesystem whose journal 4433 * has recorded an error from a previous lifetime, move that error to the 4434 * main filesystem now. 4435 */ 4436 static void ext4_clear_journal_err(struct super_block *sb, 4437 struct ext4_super_block *es) 4438 { 4439 journal_t *journal; 4440 int j_errno; 4441 const char *errstr; 4442 4443 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4444 4445 journal = EXT4_SB(sb)->s_journal; 4446 4447 /* 4448 * Now check for any error status which may have been recorded in the 4449 * journal by a prior ext4_error() or ext4_abort() 4450 */ 4451 4452 j_errno = jbd2_journal_errno(journal); 4453 if (j_errno) { 4454 char nbuf[16]; 4455 4456 errstr = ext4_decode_error(sb, j_errno, nbuf); 4457 ext4_warning(sb, "Filesystem error recorded " 4458 "from previous mount: %s", errstr); 4459 ext4_warning(sb, "Marking fs in need of filesystem check."); 4460 4461 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 4462 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 4463 ext4_commit_super(sb, 1); 4464 4465 jbd2_journal_clear_err(journal); 4466 jbd2_journal_update_sb_errno(journal); 4467 } 4468 } 4469 4470 /* 4471 * Force the running and committing transactions to commit, 4472 * and wait on the commit. 4473 */ 4474 int ext4_force_commit(struct super_block *sb) 4475 { 4476 journal_t *journal; 4477 int ret = 0; 4478 4479 if (sb->s_flags & MS_RDONLY) 4480 return 0; 4481 4482 journal = EXT4_SB(sb)->s_journal; 4483 if (journal) 4484 ret = ext4_journal_force_commit(journal); 4485 4486 return ret; 4487 } 4488 4489 static int ext4_sync_fs(struct super_block *sb, int wait) 4490 { 4491 int ret = 0; 4492 tid_t target; 4493 struct ext4_sb_info *sbi = EXT4_SB(sb); 4494 4495 trace_ext4_sync_fs(sb, wait); 4496 flush_workqueue(sbi->dio_unwritten_wq); 4497 /* 4498 * Writeback quota in non-journalled quota case - journalled quota has 4499 * no dirty dquots 4500 */ 4501 dquot_writeback_dquots(sb, -1); 4502 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 4503 if (wait) 4504 jbd2_log_wait_commit(sbi->s_journal, target); 4505 } 4506 return ret; 4507 } 4508 4509 /* 4510 * LVM calls this function before a (read-only) snapshot is created. This 4511 * gives us a chance to flush the journal completely and mark the fs clean. 4512 * 4513 * Note that only this function cannot bring a filesystem to be in a clean 4514 * state independently. It relies on upper layer to stop all data & metadata 4515 * modifications. 4516 */ 4517 static int ext4_freeze(struct super_block *sb) 4518 { 4519 int error = 0; 4520 journal_t *journal; 4521 4522 if (sb->s_flags & MS_RDONLY) 4523 return 0; 4524 4525 journal = EXT4_SB(sb)->s_journal; 4526 4527 /* Now we set up the journal barrier. */ 4528 jbd2_journal_lock_updates(journal); 4529 4530 /* 4531 * Don't clear the needs_recovery flag if we failed to flush 4532 * the journal. 4533 */ 4534 error = jbd2_journal_flush(journal); 4535 if (error < 0) 4536 goto out; 4537 4538 /* Journal blocked and flushed, clear needs_recovery flag. */ 4539 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4540 error = ext4_commit_super(sb, 1); 4541 out: 4542 /* we rely on upper layer to stop further updates */ 4543 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 4544 return error; 4545 } 4546 4547 /* 4548 * Called by LVM after the snapshot is done. We need to reset the RECOVER 4549 * flag here, even though the filesystem is not technically dirty yet. 4550 */ 4551 static int ext4_unfreeze(struct super_block *sb) 4552 { 4553 if (sb->s_flags & MS_RDONLY) 4554 return 0; 4555 4556 /* Reset the needs_recovery flag before the fs is unlocked. */ 4557 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4558 ext4_commit_super(sb, 1); 4559 return 0; 4560 } 4561 4562 /* 4563 * Structure to save mount options for ext4_remount's benefit 4564 */ 4565 struct ext4_mount_options { 4566 unsigned long s_mount_opt; 4567 unsigned long s_mount_opt2; 4568 kuid_t s_resuid; 4569 kgid_t s_resgid; 4570 unsigned long s_commit_interval; 4571 u32 s_min_batch_time, s_max_batch_time; 4572 #ifdef CONFIG_QUOTA 4573 int s_jquota_fmt; 4574 char *s_qf_names[MAXQUOTAS]; 4575 #endif 4576 }; 4577 4578 static int ext4_remount(struct super_block *sb, int *flags, char *data) 4579 { 4580 struct ext4_super_block *es; 4581 struct ext4_sb_info *sbi = EXT4_SB(sb); 4582 unsigned long old_sb_flags; 4583 struct ext4_mount_options old_opts; 4584 int enable_quota = 0; 4585 ext4_group_t g; 4586 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 4587 int err = 0; 4588 #ifdef CONFIG_QUOTA 4589 int i; 4590 #endif 4591 char *orig_data = kstrdup(data, GFP_KERNEL); 4592 4593 /* Store the original options */ 4594 old_sb_flags = sb->s_flags; 4595 old_opts.s_mount_opt = sbi->s_mount_opt; 4596 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 4597 old_opts.s_resuid = sbi->s_resuid; 4598 old_opts.s_resgid = sbi->s_resgid; 4599 old_opts.s_commit_interval = sbi->s_commit_interval; 4600 old_opts.s_min_batch_time = sbi->s_min_batch_time; 4601 old_opts.s_max_batch_time = sbi->s_max_batch_time; 4602 #ifdef CONFIG_QUOTA 4603 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 4604 for (i = 0; i < MAXQUOTAS; i++) 4605 old_opts.s_qf_names[i] = sbi->s_qf_names[i]; 4606 #endif 4607 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 4608 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 4609 4610 /* 4611 * Allow the "check" option to be passed as a remount option. 4612 */ 4613 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 4614 err = -EINVAL; 4615 goto restore_opts; 4616 } 4617 4618 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 4619 ext4_abort(sb, "Abort forced by user"); 4620 4621 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 4622 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 4623 4624 es = sbi->s_es; 4625 4626 if (sbi->s_journal) { 4627 ext4_init_journal_params(sb, sbi->s_journal); 4628 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4629 } 4630 4631 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) { 4632 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 4633 err = -EROFS; 4634 goto restore_opts; 4635 } 4636 4637 if (*flags & MS_RDONLY) { 4638 err = dquot_suspend(sb, -1); 4639 if (err < 0) 4640 goto restore_opts; 4641 4642 /* 4643 * First of all, the unconditional stuff we have to do 4644 * to disable replay of the journal when we next remount 4645 */ 4646 sb->s_flags |= MS_RDONLY; 4647 4648 /* 4649 * OK, test if we are remounting a valid rw partition 4650 * readonly, and if so set the rdonly flag and then 4651 * mark the partition as valid again. 4652 */ 4653 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 4654 (sbi->s_mount_state & EXT4_VALID_FS)) 4655 es->s_state = cpu_to_le16(sbi->s_mount_state); 4656 4657 if (sbi->s_journal) 4658 ext4_mark_recovery_complete(sb, es); 4659 } else { 4660 /* Make sure we can mount this feature set readwrite */ 4661 if (!ext4_feature_set_ok(sb, 0)) { 4662 err = -EROFS; 4663 goto restore_opts; 4664 } 4665 /* 4666 * Make sure the group descriptor checksums 4667 * are sane. If they aren't, refuse to remount r/w. 4668 */ 4669 for (g = 0; g < sbi->s_groups_count; g++) { 4670 struct ext4_group_desc *gdp = 4671 ext4_get_group_desc(sb, g, NULL); 4672 4673 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 4674 ext4_msg(sb, KERN_ERR, 4675 "ext4_remount: Checksum for group %u failed (%u!=%u)", 4676 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)), 4677 le16_to_cpu(gdp->bg_checksum)); 4678 err = -EINVAL; 4679 goto restore_opts; 4680 } 4681 } 4682 4683 /* 4684 * If we have an unprocessed orphan list hanging 4685 * around from a previously readonly bdev mount, 4686 * require a full umount/remount for now. 4687 */ 4688 if (es->s_last_orphan) { 4689 ext4_msg(sb, KERN_WARNING, "Couldn't " 4690 "remount RDWR because of unprocessed " 4691 "orphan inode list. Please " 4692 "umount/remount instead"); 4693 err = -EINVAL; 4694 goto restore_opts; 4695 } 4696 4697 /* 4698 * Mounting a RDONLY partition read-write, so reread 4699 * and store the current valid flag. (It may have 4700 * been changed by e2fsck since we originally mounted 4701 * the partition.) 4702 */ 4703 if (sbi->s_journal) 4704 ext4_clear_journal_err(sb, es); 4705 sbi->s_mount_state = le16_to_cpu(es->s_state); 4706 if (!ext4_setup_super(sb, es, 0)) 4707 sb->s_flags &= ~MS_RDONLY; 4708 if (EXT4_HAS_INCOMPAT_FEATURE(sb, 4709 EXT4_FEATURE_INCOMPAT_MMP)) 4710 if (ext4_multi_mount_protect(sb, 4711 le64_to_cpu(es->s_mmp_block))) { 4712 err = -EROFS; 4713 goto restore_opts; 4714 } 4715 enable_quota = 1; 4716 } 4717 } 4718 4719 /* 4720 * Reinitialize lazy itable initialization thread based on 4721 * current settings 4722 */ 4723 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE)) 4724 ext4_unregister_li_request(sb); 4725 else { 4726 ext4_group_t first_not_zeroed; 4727 first_not_zeroed = ext4_has_uninit_itable(sb); 4728 ext4_register_li_request(sb, first_not_zeroed); 4729 } 4730 4731 ext4_setup_system_zone(sb); 4732 if (sbi->s_journal == NULL) 4733 ext4_commit_super(sb, 1); 4734 4735 #ifdef CONFIG_QUOTA 4736 /* Release old quota file names */ 4737 for (i = 0; i < MAXQUOTAS; i++) 4738 if (old_opts.s_qf_names[i] && 4739 old_opts.s_qf_names[i] != sbi->s_qf_names[i]) 4740 kfree(old_opts.s_qf_names[i]); 4741 if (enable_quota) { 4742 if (sb_any_quota_suspended(sb)) 4743 dquot_resume(sb, -1); 4744 else if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4745 EXT4_FEATURE_RO_COMPAT_QUOTA)) { 4746 err = ext4_enable_quotas(sb); 4747 if (err) 4748 goto restore_opts; 4749 } 4750 } 4751 #endif 4752 4753 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 4754 kfree(orig_data); 4755 return 0; 4756 4757 restore_opts: 4758 sb->s_flags = old_sb_flags; 4759 sbi->s_mount_opt = old_opts.s_mount_opt; 4760 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 4761 sbi->s_resuid = old_opts.s_resuid; 4762 sbi->s_resgid = old_opts.s_resgid; 4763 sbi->s_commit_interval = old_opts.s_commit_interval; 4764 sbi->s_min_batch_time = old_opts.s_min_batch_time; 4765 sbi->s_max_batch_time = old_opts.s_max_batch_time; 4766 #ifdef CONFIG_QUOTA 4767 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 4768 for (i = 0; i < MAXQUOTAS; i++) { 4769 if (sbi->s_qf_names[i] && 4770 old_opts.s_qf_names[i] != sbi->s_qf_names[i]) 4771 kfree(sbi->s_qf_names[i]); 4772 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 4773 } 4774 #endif 4775 kfree(orig_data); 4776 return err; 4777 } 4778 4779 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 4780 { 4781 struct super_block *sb = dentry->d_sb; 4782 struct ext4_sb_info *sbi = EXT4_SB(sb); 4783 struct ext4_super_block *es = sbi->s_es; 4784 ext4_fsblk_t overhead = 0; 4785 u64 fsid; 4786 s64 bfree; 4787 4788 if (!test_opt(sb, MINIX_DF)) 4789 overhead = sbi->s_overhead; 4790 4791 buf->f_type = EXT4_SUPER_MAGIC; 4792 buf->f_bsize = sb->s_blocksize; 4793 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, sbi->s_overhead); 4794 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 4795 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 4796 /* prevent underflow in case that few free space is available */ 4797 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 4798 buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es); 4799 if (buf->f_bfree < ext4_r_blocks_count(es)) 4800 buf->f_bavail = 0; 4801 buf->f_files = le32_to_cpu(es->s_inodes_count); 4802 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 4803 buf->f_namelen = EXT4_NAME_LEN; 4804 fsid = le64_to_cpup((void *)es->s_uuid) ^ 4805 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 4806 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 4807 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 4808 4809 return 0; 4810 } 4811 4812 /* Helper function for writing quotas on sync - we need to start transaction 4813 * before quota file is locked for write. Otherwise the are possible deadlocks: 4814 * Process 1 Process 2 4815 * ext4_create() quota_sync() 4816 * jbd2_journal_start() write_dquot() 4817 * dquot_initialize() down(dqio_mutex) 4818 * down(dqio_mutex) jbd2_journal_start() 4819 * 4820 */ 4821 4822 #ifdef CONFIG_QUOTA 4823 4824 static inline struct inode *dquot_to_inode(struct dquot *dquot) 4825 { 4826 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 4827 } 4828 4829 static int ext4_write_dquot(struct dquot *dquot) 4830 { 4831 int ret, err; 4832 handle_t *handle; 4833 struct inode *inode; 4834 4835 inode = dquot_to_inode(dquot); 4836 handle = ext4_journal_start(inode, 4837 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 4838 if (IS_ERR(handle)) 4839 return PTR_ERR(handle); 4840 ret = dquot_commit(dquot); 4841 err = ext4_journal_stop(handle); 4842 if (!ret) 4843 ret = err; 4844 return ret; 4845 } 4846 4847 static int ext4_acquire_dquot(struct dquot *dquot) 4848 { 4849 int ret, err; 4850 handle_t *handle; 4851 4852 handle = ext4_journal_start(dquot_to_inode(dquot), 4853 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 4854 if (IS_ERR(handle)) 4855 return PTR_ERR(handle); 4856 ret = dquot_acquire(dquot); 4857 err = ext4_journal_stop(handle); 4858 if (!ret) 4859 ret = err; 4860 return ret; 4861 } 4862 4863 static int ext4_release_dquot(struct dquot *dquot) 4864 { 4865 int ret, err; 4866 handle_t *handle; 4867 4868 handle = ext4_journal_start(dquot_to_inode(dquot), 4869 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 4870 if (IS_ERR(handle)) { 4871 /* Release dquot anyway to avoid endless cycle in dqput() */ 4872 dquot_release(dquot); 4873 return PTR_ERR(handle); 4874 } 4875 ret = dquot_release(dquot); 4876 err = ext4_journal_stop(handle); 4877 if (!ret) 4878 ret = err; 4879 return ret; 4880 } 4881 4882 static int ext4_mark_dquot_dirty(struct dquot *dquot) 4883 { 4884 /* Are we journaling quotas? */ 4885 if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] || 4886 EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) { 4887 dquot_mark_dquot_dirty(dquot); 4888 return ext4_write_dquot(dquot); 4889 } else { 4890 return dquot_mark_dquot_dirty(dquot); 4891 } 4892 } 4893 4894 static int ext4_write_info(struct super_block *sb, int type) 4895 { 4896 int ret, err; 4897 handle_t *handle; 4898 4899 /* Data block + inode block */ 4900 handle = ext4_journal_start(sb->s_root->d_inode, 2); 4901 if (IS_ERR(handle)) 4902 return PTR_ERR(handle); 4903 ret = dquot_commit_info(sb, type); 4904 err = ext4_journal_stop(handle); 4905 if (!ret) 4906 ret = err; 4907 return ret; 4908 } 4909 4910 /* 4911 * Turn on quotas during mount time - we need to find 4912 * the quota file and such... 4913 */ 4914 static int ext4_quota_on_mount(struct super_block *sb, int type) 4915 { 4916 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 4917 EXT4_SB(sb)->s_jquota_fmt, type); 4918 } 4919 4920 /* 4921 * Standard function to be called on quota_on 4922 */ 4923 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 4924 struct path *path) 4925 { 4926 int err; 4927 4928 if (!test_opt(sb, QUOTA)) 4929 return -EINVAL; 4930 4931 /* Quotafile not on the same filesystem? */ 4932 if (path->dentry->d_sb != sb) 4933 return -EXDEV; 4934 /* Journaling quota? */ 4935 if (EXT4_SB(sb)->s_qf_names[type]) { 4936 /* Quotafile not in fs root? */ 4937 if (path->dentry->d_parent != sb->s_root) 4938 ext4_msg(sb, KERN_WARNING, 4939 "Quota file not on filesystem root. " 4940 "Journaled quota will not work"); 4941 } 4942 4943 /* 4944 * When we journal data on quota file, we have to flush journal to see 4945 * all updates to the file when we bypass pagecache... 4946 */ 4947 if (EXT4_SB(sb)->s_journal && 4948 ext4_should_journal_data(path->dentry->d_inode)) { 4949 /* 4950 * We don't need to lock updates but journal_flush() could 4951 * otherwise be livelocked... 4952 */ 4953 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 4954 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 4955 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 4956 if (err) 4957 return err; 4958 } 4959 4960 return dquot_quota_on(sb, type, format_id, path); 4961 } 4962 4963 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 4964 unsigned int flags) 4965 { 4966 int err; 4967 struct inode *qf_inode; 4968 unsigned long qf_inums[MAXQUOTAS] = { 4969 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 4970 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum) 4971 }; 4972 4973 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)); 4974 4975 if (!qf_inums[type]) 4976 return -EPERM; 4977 4978 qf_inode = ext4_iget(sb, qf_inums[type]); 4979 if (IS_ERR(qf_inode)) { 4980 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 4981 return PTR_ERR(qf_inode); 4982 } 4983 4984 err = dquot_enable(qf_inode, type, format_id, flags); 4985 iput(qf_inode); 4986 4987 return err; 4988 } 4989 4990 /* Enable usage tracking for all quota types. */ 4991 static int ext4_enable_quotas(struct super_block *sb) 4992 { 4993 int type, err = 0; 4994 unsigned long qf_inums[MAXQUOTAS] = { 4995 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 4996 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum) 4997 }; 4998 4999 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 5000 for (type = 0; type < MAXQUOTAS; type++) { 5001 if (qf_inums[type]) { 5002 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 5003 DQUOT_USAGE_ENABLED); 5004 if (err) { 5005 ext4_warning(sb, 5006 "Failed to enable quota (type=%d) " 5007 "tracking. Please run e2fsck to fix.", 5008 type); 5009 return err; 5010 } 5011 } 5012 } 5013 return 0; 5014 } 5015 5016 /* 5017 * quota_on function that is used when QUOTA feature is set. 5018 */ 5019 static int ext4_quota_on_sysfile(struct super_block *sb, int type, 5020 int format_id) 5021 { 5022 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) 5023 return -EINVAL; 5024 5025 /* 5026 * USAGE was enabled at mount time. Only need to enable LIMITS now. 5027 */ 5028 return ext4_quota_enable(sb, type, format_id, DQUOT_LIMITS_ENABLED); 5029 } 5030 5031 static int ext4_quota_off(struct super_block *sb, int type) 5032 { 5033 struct inode *inode = sb_dqopt(sb)->files[type]; 5034 handle_t *handle; 5035 5036 /* Force all delayed allocation blocks to be allocated. 5037 * Caller already holds s_umount sem */ 5038 if (test_opt(sb, DELALLOC)) 5039 sync_filesystem(sb); 5040 5041 if (!inode) 5042 goto out; 5043 5044 /* Update modification times of quota files when userspace can 5045 * start looking at them */ 5046 handle = ext4_journal_start(inode, 1); 5047 if (IS_ERR(handle)) 5048 goto out; 5049 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 5050 ext4_mark_inode_dirty(handle, inode); 5051 ext4_journal_stop(handle); 5052 5053 out: 5054 return dquot_quota_off(sb, type); 5055 } 5056 5057 /* 5058 * quota_off function that is used when QUOTA feature is set. 5059 */ 5060 static int ext4_quota_off_sysfile(struct super_block *sb, int type) 5061 { 5062 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) 5063 return -EINVAL; 5064 5065 /* Disable only the limits. */ 5066 return dquot_disable(sb, type, DQUOT_LIMITS_ENABLED); 5067 } 5068 5069 /* Read data from quotafile - avoid pagecache and such because we cannot afford 5070 * acquiring the locks... As quota files are never truncated and quota code 5071 * itself serializes the operations (and no one else should touch the files) 5072 * we don't have to be afraid of races */ 5073 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 5074 size_t len, loff_t off) 5075 { 5076 struct inode *inode = sb_dqopt(sb)->files[type]; 5077 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5078 int err = 0; 5079 int offset = off & (sb->s_blocksize - 1); 5080 int tocopy; 5081 size_t toread; 5082 struct buffer_head *bh; 5083 loff_t i_size = i_size_read(inode); 5084 5085 if (off > i_size) 5086 return 0; 5087 if (off+len > i_size) 5088 len = i_size-off; 5089 toread = len; 5090 while (toread > 0) { 5091 tocopy = sb->s_blocksize - offset < toread ? 5092 sb->s_blocksize - offset : toread; 5093 bh = ext4_bread(NULL, inode, blk, 0, &err); 5094 if (err) 5095 return err; 5096 if (!bh) /* A hole? */ 5097 memset(data, 0, tocopy); 5098 else 5099 memcpy(data, bh->b_data+offset, tocopy); 5100 brelse(bh); 5101 offset = 0; 5102 toread -= tocopy; 5103 data += tocopy; 5104 blk++; 5105 } 5106 return len; 5107 } 5108 5109 /* Write to quotafile (we know the transaction is already started and has 5110 * enough credits) */ 5111 static ssize_t ext4_quota_write(struct super_block *sb, int type, 5112 const char *data, size_t len, loff_t off) 5113 { 5114 struct inode *inode = sb_dqopt(sb)->files[type]; 5115 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5116 int err = 0; 5117 int offset = off & (sb->s_blocksize - 1); 5118 struct buffer_head *bh; 5119 handle_t *handle = journal_current_handle(); 5120 5121 if (EXT4_SB(sb)->s_journal && !handle) { 5122 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5123 " cancelled because transaction is not started", 5124 (unsigned long long)off, (unsigned long long)len); 5125 return -EIO; 5126 } 5127 /* 5128 * Since we account only one data block in transaction credits, 5129 * then it is impossible to cross a block boundary. 5130 */ 5131 if (sb->s_blocksize - offset < len) { 5132 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5133 " cancelled because not block aligned", 5134 (unsigned long long)off, (unsigned long long)len); 5135 return -EIO; 5136 } 5137 5138 bh = ext4_bread(handle, inode, blk, 1, &err); 5139 if (!bh) 5140 goto out; 5141 err = ext4_journal_get_write_access(handle, bh); 5142 if (err) { 5143 brelse(bh); 5144 goto out; 5145 } 5146 lock_buffer(bh); 5147 memcpy(bh->b_data+offset, data, len); 5148 flush_dcache_page(bh->b_page); 5149 unlock_buffer(bh); 5150 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5151 brelse(bh); 5152 out: 5153 if (err) 5154 return err; 5155 if (inode->i_size < off + len) { 5156 i_size_write(inode, off + len); 5157 EXT4_I(inode)->i_disksize = inode->i_size; 5158 ext4_mark_inode_dirty(handle, inode); 5159 } 5160 return len; 5161 } 5162 5163 #endif 5164 5165 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 5166 const char *dev_name, void *data) 5167 { 5168 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 5169 } 5170 5171 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 5172 static inline void register_as_ext2(void) 5173 { 5174 int err = register_filesystem(&ext2_fs_type); 5175 if (err) 5176 printk(KERN_WARNING 5177 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 5178 } 5179 5180 static inline void unregister_as_ext2(void) 5181 { 5182 unregister_filesystem(&ext2_fs_type); 5183 } 5184 5185 static inline int ext2_feature_set_ok(struct super_block *sb) 5186 { 5187 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP)) 5188 return 0; 5189 if (sb->s_flags & MS_RDONLY) 5190 return 1; 5191 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP)) 5192 return 0; 5193 return 1; 5194 } 5195 MODULE_ALIAS("ext2"); 5196 #else 5197 static inline void register_as_ext2(void) { } 5198 static inline void unregister_as_ext2(void) { } 5199 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 5200 #endif 5201 5202 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 5203 static inline void register_as_ext3(void) 5204 { 5205 int err = register_filesystem(&ext3_fs_type); 5206 if (err) 5207 printk(KERN_WARNING 5208 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 5209 } 5210 5211 static inline void unregister_as_ext3(void) 5212 { 5213 unregister_filesystem(&ext3_fs_type); 5214 } 5215 5216 static inline int ext3_feature_set_ok(struct super_block *sb) 5217 { 5218 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP)) 5219 return 0; 5220 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) 5221 return 0; 5222 if (sb->s_flags & MS_RDONLY) 5223 return 1; 5224 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP)) 5225 return 0; 5226 return 1; 5227 } 5228 MODULE_ALIAS("ext3"); 5229 #else 5230 static inline void register_as_ext3(void) { } 5231 static inline void unregister_as_ext3(void) { } 5232 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; } 5233 #endif 5234 5235 static struct file_system_type ext4_fs_type = { 5236 .owner = THIS_MODULE, 5237 .name = "ext4", 5238 .mount = ext4_mount, 5239 .kill_sb = kill_block_super, 5240 .fs_flags = FS_REQUIRES_DEV, 5241 }; 5242 5243 static int __init ext4_init_feat_adverts(void) 5244 { 5245 struct ext4_features *ef; 5246 int ret = -ENOMEM; 5247 5248 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL); 5249 if (!ef) 5250 goto out; 5251 5252 ef->f_kobj.kset = ext4_kset; 5253 init_completion(&ef->f_kobj_unregister); 5254 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL, 5255 "features"); 5256 if (ret) { 5257 kfree(ef); 5258 goto out; 5259 } 5260 5261 ext4_feat = ef; 5262 ret = 0; 5263 out: 5264 return ret; 5265 } 5266 5267 static void ext4_exit_feat_adverts(void) 5268 { 5269 kobject_put(&ext4_feat->f_kobj); 5270 wait_for_completion(&ext4_feat->f_kobj_unregister); 5271 kfree(ext4_feat); 5272 } 5273 5274 /* Shared across all ext4 file systems */ 5275 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 5276 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ]; 5277 5278 static int __init ext4_init_fs(void) 5279 { 5280 int i, err; 5281 5282 ext4_li_info = NULL; 5283 mutex_init(&ext4_li_mtx); 5284 5285 ext4_check_flag_values(); 5286 5287 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) { 5288 mutex_init(&ext4__aio_mutex[i]); 5289 init_waitqueue_head(&ext4__ioend_wq[i]); 5290 } 5291 5292 err = ext4_init_pageio(); 5293 if (err) 5294 return err; 5295 err = ext4_init_system_zone(); 5296 if (err) 5297 goto out6; 5298 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj); 5299 if (!ext4_kset) { 5300 err = -ENOMEM; 5301 goto out5; 5302 } 5303 ext4_proc_root = proc_mkdir("fs/ext4", NULL); 5304 5305 err = ext4_init_feat_adverts(); 5306 if (err) 5307 goto out4; 5308 5309 err = ext4_init_mballoc(); 5310 if (err) 5311 goto out3; 5312 5313 err = ext4_init_xattr(); 5314 if (err) 5315 goto out2; 5316 err = init_inodecache(); 5317 if (err) 5318 goto out1; 5319 register_as_ext3(); 5320 register_as_ext2(); 5321 err = register_filesystem(&ext4_fs_type); 5322 if (err) 5323 goto out; 5324 5325 return 0; 5326 out: 5327 unregister_as_ext2(); 5328 unregister_as_ext3(); 5329 destroy_inodecache(); 5330 out1: 5331 ext4_exit_xattr(); 5332 out2: 5333 ext4_exit_mballoc(); 5334 out3: 5335 ext4_exit_feat_adverts(); 5336 out4: 5337 if (ext4_proc_root) 5338 remove_proc_entry("fs/ext4", NULL); 5339 kset_unregister(ext4_kset); 5340 out5: 5341 ext4_exit_system_zone(); 5342 out6: 5343 ext4_exit_pageio(); 5344 return err; 5345 } 5346 5347 static void __exit ext4_exit_fs(void) 5348 { 5349 ext4_destroy_lazyinit_thread(); 5350 unregister_as_ext2(); 5351 unregister_as_ext3(); 5352 unregister_filesystem(&ext4_fs_type); 5353 destroy_inodecache(); 5354 ext4_exit_xattr(); 5355 ext4_exit_mballoc(); 5356 ext4_exit_feat_adverts(); 5357 remove_proc_entry("fs/ext4", NULL); 5358 kset_unregister(ext4_kset); 5359 ext4_exit_system_zone(); 5360 ext4_exit_pageio(); 5361 } 5362 5363 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 5364 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 5365 MODULE_LICENSE("GPL"); 5366 module_init(ext4_init_fs) 5367 module_exit(ext4_exit_fs) 5368