1 /* 2 * linux/fs/ext4/super.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Big-endian to little-endian byte-swapping/bitmaps by 16 * David S. Miller (davem@caip.rutgers.edu), 1995 17 */ 18 19 #include <linux/module.h> 20 #include <linux/string.h> 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/vmalloc.h> 24 #include <linux/jbd2.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/parser.h> 29 #include <linux/smp_lock.h> 30 #include <linux/buffer_head.h> 31 #include <linux/exportfs.h> 32 #include <linux/vfs.h> 33 #include <linux/random.h> 34 #include <linux/mount.h> 35 #include <linux/namei.h> 36 #include <linux/quotaops.h> 37 #include <linux/seq_file.h> 38 #include <linux/proc_fs.h> 39 #include <linux/ctype.h> 40 #include <linux/log2.h> 41 #include <linux/crc16.h> 42 #include <asm/uaccess.h> 43 44 #include "ext4.h" 45 #include "ext4_jbd2.h" 46 #include "xattr.h" 47 #include "acl.h" 48 #include "mballoc.h" 49 50 #define CREATE_TRACE_POINTS 51 #include <trace/events/ext4.h> 52 53 struct proc_dir_entry *ext4_proc_root; 54 static struct kset *ext4_kset; 55 56 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 57 unsigned long journal_devnum); 58 static int ext4_commit_super(struct super_block *sb, int sync); 59 static void ext4_mark_recovery_complete(struct super_block *sb, 60 struct ext4_super_block *es); 61 static void ext4_clear_journal_err(struct super_block *sb, 62 struct ext4_super_block *es); 63 static int ext4_sync_fs(struct super_block *sb, int wait); 64 static const char *ext4_decode_error(struct super_block *sb, int errno, 65 char nbuf[16]); 66 static int ext4_remount(struct super_block *sb, int *flags, char *data); 67 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 68 static int ext4_unfreeze(struct super_block *sb); 69 static void ext4_write_super(struct super_block *sb); 70 static int ext4_freeze(struct super_block *sb); 71 72 73 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 74 struct ext4_group_desc *bg) 75 { 76 return le32_to_cpu(bg->bg_block_bitmap_lo) | 77 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 78 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 79 } 80 81 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 82 struct ext4_group_desc *bg) 83 { 84 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 85 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 86 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 87 } 88 89 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 90 struct ext4_group_desc *bg) 91 { 92 return le32_to_cpu(bg->bg_inode_table_lo) | 93 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 94 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 95 } 96 97 __u32 ext4_free_blks_count(struct super_block *sb, 98 struct ext4_group_desc *bg) 99 { 100 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 101 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 102 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 103 } 104 105 __u32 ext4_free_inodes_count(struct super_block *sb, 106 struct ext4_group_desc *bg) 107 { 108 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 109 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 110 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 111 } 112 113 __u32 ext4_used_dirs_count(struct super_block *sb, 114 struct ext4_group_desc *bg) 115 { 116 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 117 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 118 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 119 } 120 121 __u32 ext4_itable_unused_count(struct super_block *sb, 122 struct ext4_group_desc *bg) 123 { 124 return le16_to_cpu(bg->bg_itable_unused_lo) | 125 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 126 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 127 } 128 129 void ext4_block_bitmap_set(struct super_block *sb, 130 struct ext4_group_desc *bg, ext4_fsblk_t blk) 131 { 132 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 133 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 134 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 135 } 136 137 void ext4_inode_bitmap_set(struct super_block *sb, 138 struct ext4_group_desc *bg, ext4_fsblk_t blk) 139 { 140 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 141 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 142 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 143 } 144 145 void ext4_inode_table_set(struct super_block *sb, 146 struct ext4_group_desc *bg, ext4_fsblk_t blk) 147 { 148 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 149 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 150 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 151 } 152 153 void ext4_free_blks_set(struct super_block *sb, 154 struct ext4_group_desc *bg, __u32 count) 155 { 156 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 157 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 158 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 159 } 160 161 void ext4_free_inodes_set(struct super_block *sb, 162 struct ext4_group_desc *bg, __u32 count) 163 { 164 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 165 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 166 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 167 } 168 169 void ext4_used_dirs_set(struct super_block *sb, 170 struct ext4_group_desc *bg, __u32 count) 171 { 172 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 173 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 174 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 175 } 176 177 void ext4_itable_unused_set(struct super_block *sb, 178 struct ext4_group_desc *bg, __u32 count) 179 { 180 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 181 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 182 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 183 } 184 185 186 /* Just increment the non-pointer handle value */ 187 static handle_t *ext4_get_nojournal(void) 188 { 189 handle_t *handle = current->journal_info; 190 unsigned long ref_cnt = (unsigned long)handle; 191 192 BUG_ON(ref_cnt >= EXT4_NOJOURNAL_MAX_REF_COUNT); 193 194 ref_cnt++; 195 handle = (handle_t *)ref_cnt; 196 197 current->journal_info = handle; 198 return handle; 199 } 200 201 202 /* Decrement the non-pointer handle value */ 203 static void ext4_put_nojournal(handle_t *handle) 204 { 205 unsigned long ref_cnt = (unsigned long)handle; 206 207 BUG_ON(ref_cnt == 0); 208 209 ref_cnt--; 210 handle = (handle_t *)ref_cnt; 211 212 current->journal_info = handle; 213 } 214 215 /* 216 * Wrappers for jbd2_journal_start/end. 217 * 218 * The only special thing we need to do here is to make sure that all 219 * journal_end calls result in the superblock being marked dirty, so 220 * that sync() will call the filesystem's write_super callback if 221 * appropriate. 222 */ 223 handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks) 224 { 225 journal_t *journal; 226 227 if (sb->s_flags & MS_RDONLY) 228 return ERR_PTR(-EROFS); 229 230 /* Special case here: if the journal has aborted behind our 231 * backs (eg. EIO in the commit thread), then we still need to 232 * take the FS itself readonly cleanly. */ 233 journal = EXT4_SB(sb)->s_journal; 234 if (journal) { 235 if (is_journal_aborted(journal)) { 236 ext4_abort(sb, __func__, "Detected aborted journal"); 237 return ERR_PTR(-EROFS); 238 } 239 return jbd2_journal_start(journal, nblocks); 240 } 241 return ext4_get_nojournal(); 242 } 243 244 /* 245 * The only special thing we need to do here is to make sure that all 246 * jbd2_journal_stop calls result in the superblock being marked dirty, so 247 * that sync() will call the filesystem's write_super callback if 248 * appropriate. 249 */ 250 int __ext4_journal_stop(const char *where, handle_t *handle) 251 { 252 struct super_block *sb; 253 int err; 254 int rc; 255 256 if (!ext4_handle_valid(handle)) { 257 ext4_put_nojournal(handle); 258 return 0; 259 } 260 sb = handle->h_transaction->t_journal->j_private; 261 err = handle->h_err; 262 rc = jbd2_journal_stop(handle); 263 264 if (!err) 265 err = rc; 266 if (err) 267 __ext4_std_error(sb, where, err); 268 return err; 269 } 270 271 void ext4_journal_abort_handle(const char *caller, const char *err_fn, 272 struct buffer_head *bh, handle_t *handle, int err) 273 { 274 char nbuf[16]; 275 const char *errstr = ext4_decode_error(NULL, err, nbuf); 276 277 BUG_ON(!ext4_handle_valid(handle)); 278 279 if (bh) 280 BUFFER_TRACE(bh, "abort"); 281 282 if (!handle->h_err) 283 handle->h_err = err; 284 285 if (is_handle_aborted(handle)) 286 return; 287 288 printk(KERN_ERR "%s: aborting transaction: %s in %s\n", 289 caller, errstr, err_fn); 290 291 jbd2_journal_abort_handle(handle); 292 } 293 294 /* Deal with the reporting of failure conditions on a filesystem such as 295 * inconsistencies detected or read IO failures. 296 * 297 * On ext2, we can store the error state of the filesystem in the 298 * superblock. That is not possible on ext4, because we may have other 299 * write ordering constraints on the superblock which prevent us from 300 * writing it out straight away; and given that the journal is about to 301 * be aborted, we can't rely on the current, or future, transactions to 302 * write out the superblock safely. 303 * 304 * We'll just use the jbd2_journal_abort() error code to record an error in 305 * the journal instead. On recovery, the journal will compain about 306 * that error until we've noted it down and cleared it. 307 */ 308 309 static void ext4_handle_error(struct super_block *sb) 310 { 311 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 312 313 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 314 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 315 316 if (sb->s_flags & MS_RDONLY) 317 return; 318 319 if (!test_opt(sb, ERRORS_CONT)) { 320 journal_t *journal = EXT4_SB(sb)->s_journal; 321 322 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 323 if (journal) 324 jbd2_journal_abort(journal, -EIO); 325 } 326 if (test_opt(sb, ERRORS_RO)) { 327 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 328 sb->s_flags |= MS_RDONLY; 329 } 330 ext4_commit_super(sb, 1); 331 if (test_opt(sb, ERRORS_PANIC)) 332 panic("EXT4-fs (device %s): panic forced after error\n", 333 sb->s_id); 334 } 335 336 void ext4_error(struct super_block *sb, const char *function, 337 const char *fmt, ...) 338 { 339 va_list args; 340 341 va_start(args, fmt); 342 printk(KERN_CRIT "EXT4-fs error (device %s): %s: ", sb->s_id, function); 343 vprintk(fmt, args); 344 printk("\n"); 345 va_end(args); 346 347 ext4_handle_error(sb); 348 } 349 350 static const char *ext4_decode_error(struct super_block *sb, int errno, 351 char nbuf[16]) 352 { 353 char *errstr = NULL; 354 355 switch (errno) { 356 case -EIO: 357 errstr = "IO failure"; 358 break; 359 case -ENOMEM: 360 errstr = "Out of memory"; 361 break; 362 case -EROFS: 363 if (!sb || (EXT4_SB(sb)->s_journal && 364 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 365 errstr = "Journal has aborted"; 366 else 367 errstr = "Readonly filesystem"; 368 break; 369 default: 370 /* If the caller passed in an extra buffer for unknown 371 * errors, textualise them now. Else we just return 372 * NULL. */ 373 if (nbuf) { 374 /* Check for truncated error codes... */ 375 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 376 errstr = nbuf; 377 } 378 break; 379 } 380 381 return errstr; 382 } 383 384 /* __ext4_std_error decodes expected errors from journaling functions 385 * automatically and invokes the appropriate error response. */ 386 387 void __ext4_std_error(struct super_block *sb, const char *function, int errno) 388 { 389 char nbuf[16]; 390 const char *errstr; 391 392 /* Special case: if the error is EROFS, and we're not already 393 * inside a transaction, then there's really no point in logging 394 * an error. */ 395 if (errno == -EROFS && journal_current_handle() == NULL && 396 (sb->s_flags & MS_RDONLY)) 397 return; 398 399 errstr = ext4_decode_error(sb, errno, nbuf); 400 printk(KERN_CRIT "EXT4-fs error (device %s) in %s: %s\n", 401 sb->s_id, function, errstr); 402 403 ext4_handle_error(sb); 404 } 405 406 /* 407 * ext4_abort is a much stronger failure handler than ext4_error. The 408 * abort function may be used to deal with unrecoverable failures such 409 * as journal IO errors or ENOMEM at a critical moment in log management. 410 * 411 * We unconditionally force the filesystem into an ABORT|READONLY state, 412 * unless the error response on the fs has been set to panic in which 413 * case we take the easy way out and panic immediately. 414 */ 415 416 void ext4_abort(struct super_block *sb, const char *function, 417 const char *fmt, ...) 418 { 419 va_list args; 420 421 va_start(args, fmt); 422 printk(KERN_CRIT "EXT4-fs error (device %s): %s: ", sb->s_id, function); 423 vprintk(fmt, args); 424 printk("\n"); 425 va_end(args); 426 427 if (test_opt(sb, ERRORS_PANIC)) 428 panic("EXT4-fs panic from previous error\n"); 429 430 if (sb->s_flags & MS_RDONLY) 431 return; 432 433 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 434 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 435 sb->s_flags |= MS_RDONLY; 436 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 437 if (EXT4_SB(sb)->s_journal) 438 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 439 } 440 441 void ext4_msg (struct super_block * sb, const char *prefix, 442 const char *fmt, ...) 443 { 444 va_list args; 445 446 va_start(args, fmt); 447 printk("%sEXT4-fs (%s): ", prefix, sb->s_id); 448 vprintk(fmt, args); 449 printk("\n"); 450 va_end(args); 451 } 452 453 void ext4_warning(struct super_block *sb, const char *function, 454 const char *fmt, ...) 455 { 456 va_list args; 457 458 va_start(args, fmt); 459 printk(KERN_WARNING "EXT4-fs warning (device %s): %s: ", 460 sb->s_id, function); 461 vprintk(fmt, args); 462 printk("\n"); 463 va_end(args); 464 } 465 466 void ext4_grp_locked_error(struct super_block *sb, ext4_group_t grp, 467 const char *function, const char *fmt, ...) 468 __releases(bitlock) 469 __acquires(bitlock) 470 { 471 va_list args; 472 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 473 474 va_start(args, fmt); 475 printk(KERN_CRIT "EXT4-fs error (device %s): %s: ", sb->s_id, function); 476 vprintk(fmt, args); 477 printk("\n"); 478 va_end(args); 479 480 if (test_opt(sb, ERRORS_CONT)) { 481 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 482 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 483 ext4_commit_super(sb, 0); 484 return; 485 } 486 ext4_unlock_group(sb, grp); 487 ext4_handle_error(sb); 488 /* 489 * We only get here in the ERRORS_RO case; relocking the group 490 * may be dangerous, but nothing bad will happen since the 491 * filesystem will have already been marked read/only and the 492 * journal has been aborted. We return 1 as a hint to callers 493 * who might what to use the return value from 494 * ext4_grp_locked_error() to distinguish beween the 495 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 496 * aggressively from the ext4 function in question, with a 497 * more appropriate error code. 498 */ 499 ext4_lock_group(sb, grp); 500 return; 501 } 502 503 void ext4_update_dynamic_rev(struct super_block *sb) 504 { 505 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 506 507 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 508 return; 509 510 ext4_warning(sb, __func__, 511 "updating to rev %d because of new feature flag, " 512 "running e2fsck is recommended", 513 EXT4_DYNAMIC_REV); 514 515 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 516 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 517 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 518 /* leave es->s_feature_*compat flags alone */ 519 /* es->s_uuid will be set by e2fsck if empty */ 520 521 /* 522 * The rest of the superblock fields should be zero, and if not it 523 * means they are likely already in use, so leave them alone. We 524 * can leave it up to e2fsck to clean up any inconsistencies there. 525 */ 526 } 527 528 /* 529 * Open the external journal device 530 */ 531 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 532 { 533 struct block_device *bdev; 534 char b[BDEVNAME_SIZE]; 535 536 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE); 537 if (IS_ERR(bdev)) 538 goto fail; 539 return bdev; 540 541 fail: 542 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 543 __bdevname(dev, b), PTR_ERR(bdev)); 544 return NULL; 545 } 546 547 /* 548 * Release the journal device 549 */ 550 static int ext4_blkdev_put(struct block_device *bdev) 551 { 552 bd_release(bdev); 553 return blkdev_put(bdev, FMODE_READ|FMODE_WRITE); 554 } 555 556 static int ext4_blkdev_remove(struct ext4_sb_info *sbi) 557 { 558 struct block_device *bdev; 559 int ret = -ENODEV; 560 561 bdev = sbi->journal_bdev; 562 if (bdev) { 563 ret = ext4_blkdev_put(bdev); 564 sbi->journal_bdev = NULL; 565 } 566 return ret; 567 } 568 569 static inline struct inode *orphan_list_entry(struct list_head *l) 570 { 571 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 572 } 573 574 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 575 { 576 struct list_head *l; 577 578 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 579 le32_to_cpu(sbi->s_es->s_last_orphan)); 580 581 printk(KERN_ERR "sb_info orphan list:\n"); 582 list_for_each(l, &sbi->s_orphan) { 583 struct inode *inode = orphan_list_entry(l); 584 printk(KERN_ERR " " 585 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 586 inode->i_sb->s_id, inode->i_ino, inode, 587 inode->i_mode, inode->i_nlink, 588 NEXT_ORPHAN(inode)); 589 } 590 } 591 592 static void ext4_put_super(struct super_block *sb) 593 { 594 struct ext4_sb_info *sbi = EXT4_SB(sb); 595 struct ext4_super_block *es = sbi->s_es; 596 int i, err; 597 598 flush_workqueue(sbi->dio_unwritten_wq); 599 destroy_workqueue(sbi->dio_unwritten_wq); 600 601 lock_super(sb); 602 lock_kernel(); 603 if (sb->s_dirt) 604 ext4_commit_super(sb, 1); 605 606 ext4_release_system_zone(sb); 607 ext4_mb_release(sb); 608 ext4_ext_release(sb); 609 ext4_xattr_put_super(sb); 610 if (sbi->s_journal) { 611 err = jbd2_journal_destroy(sbi->s_journal); 612 sbi->s_journal = NULL; 613 if (err < 0) 614 ext4_abort(sb, __func__, 615 "Couldn't clean up the journal"); 616 } 617 if (!(sb->s_flags & MS_RDONLY)) { 618 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 619 es->s_state = cpu_to_le16(sbi->s_mount_state); 620 ext4_commit_super(sb, 1); 621 } 622 if (sbi->s_proc) { 623 remove_proc_entry(sb->s_id, ext4_proc_root); 624 } 625 kobject_del(&sbi->s_kobj); 626 627 for (i = 0; i < sbi->s_gdb_count; i++) 628 brelse(sbi->s_group_desc[i]); 629 kfree(sbi->s_group_desc); 630 if (is_vmalloc_addr(sbi->s_flex_groups)) 631 vfree(sbi->s_flex_groups); 632 else 633 kfree(sbi->s_flex_groups); 634 percpu_counter_destroy(&sbi->s_freeblocks_counter); 635 percpu_counter_destroy(&sbi->s_freeinodes_counter); 636 percpu_counter_destroy(&sbi->s_dirs_counter); 637 percpu_counter_destroy(&sbi->s_dirtyblocks_counter); 638 brelse(sbi->s_sbh); 639 #ifdef CONFIG_QUOTA 640 for (i = 0; i < MAXQUOTAS; i++) 641 kfree(sbi->s_qf_names[i]); 642 #endif 643 644 /* Debugging code just in case the in-memory inode orphan list 645 * isn't empty. The on-disk one can be non-empty if we've 646 * detected an error and taken the fs readonly, but the 647 * in-memory list had better be clean by this point. */ 648 if (!list_empty(&sbi->s_orphan)) 649 dump_orphan_list(sb, sbi); 650 J_ASSERT(list_empty(&sbi->s_orphan)); 651 652 invalidate_bdev(sb->s_bdev); 653 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 654 /* 655 * Invalidate the journal device's buffers. We don't want them 656 * floating about in memory - the physical journal device may 657 * hotswapped, and it breaks the `ro-after' testing code. 658 */ 659 sync_blockdev(sbi->journal_bdev); 660 invalidate_bdev(sbi->journal_bdev); 661 ext4_blkdev_remove(sbi); 662 } 663 sb->s_fs_info = NULL; 664 /* 665 * Now that we are completely done shutting down the 666 * superblock, we need to actually destroy the kobject. 667 */ 668 unlock_kernel(); 669 unlock_super(sb); 670 kobject_put(&sbi->s_kobj); 671 wait_for_completion(&sbi->s_kobj_unregister); 672 kfree(sbi->s_blockgroup_lock); 673 kfree(sbi); 674 } 675 676 static struct kmem_cache *ext4_inode_cachep; 677 678 /* 679 * Called inside transaction, so use GFP_NOFS 680 */ 681 static struct inode *ext4_alloc_inode(struct super_block *sb) 682 { 683 struct ext4_inode_info *ei; 684 685 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 686 if (!ei) 687 return NULL; 688 689 ei->vfs_inode.i_version = 1; 690 ei->vfs_inode.i_data.writeback_index = 0; 691 memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache)); 692 INIT_LIST_HEAD(&ei->i_prealloc_list); 693 spin_lock_init(&ei->i_prealloc_lock); 694 /* 695 * Note: We can be called before EXT4_SB(sb)->s_journal is set, 696 * therefore it can be null here. Don't check it, just initialize 697 * jinode. 698 */ 699 jbd2_journal_init_jbd_inode(&ei->jinode, &ei->vfs_inode); 700 ei->i_reserved_data_blocks = 0; 701 ei->i_reserved_meta_blocks = 0; 702 ei->i_allocated_meta_blocks = 0; 703 ei->i_delalloc_reserved_flag = 0; 704 spin_lock_init(&(ei->i_block_reservation_lock)); 705 INIT_LIST_HEAD(&ei->i_aio_dio_complete_list); 706 ei->cur_aio_dio = NULL; 707 708 return &ei->vfs_inode; 709 } 710 711 static void ext4_destroy_inode(struct inode *inode) 712 { 713 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 714 ext4_msg(inode->i_sb, KERN_ERR, 715 "Inode %lu (%p): orphan list check failed!", 716 inode->i_ino, EXT4_I(inode)); 717 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 718 EXT4_I(inode), sizeof(struct ext4_inode_info), 719 true); 720 dump_stack(); 721 } 722 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 723 } 724 725 static void init_once(void *foo) 726 { 727 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 728 729 INIT_LIST_HEAD(&ei->i_orphan); 730 #ifdef CONFIG_EXT4_FS_XATTR 731 init_rwsem(&ei->xattr_sem); 732 #endif 733 init_rwsem(&ei->i_data_sem); 734 inode_init_once(&ei->vfs_inode); 735 } 736 737 static int init_inodecache(void) 738 { 739 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache", 740 sizeof(struct ext4_inode_info), 741 0, (SLAB_RECLAIM_ACCOUNT| 742 SLAB_MEM_SPREAD), 743 init_once); 744 if (ext4_inode_cachep == NULL) 745 return -ENOMEM; 746 return 0; 747 } 748 749 static void destroy_inodecache(void) 750 { 751 kmem_cache_destroy(ext4_inode_cachep); 752 } 753 754 static void ext4_clear_inode(struct inode *inode) 755 { 756 ext4_discard_preallocations(inode); 757 if (EXT4_JOURNAL(inode)) 758 jbd2_journal_release_jbd_inode(EXT4_SB(inode->i_sb)->s_journal, 759 &EXT4_I(inode)->jinode); 760 } 761 762 static inline void ext4_show_quota_options(struct seq_file *seq, 763 struct super_block *sb) 764 { 765 #if defined(CONFIG_QUOTA) 766 struct ext4_sb_info *sbi = EXT4_SB(sb); 767 768 if (sbi->s_jquota_fmt) 769 seq_printf(seq, ",jqfmt=%s", 770 (sbi->s_jquota_fmt == QFMT_VFS_OLD) ? "vfsold" : "vfsv0"); 771 772 if (sbi->s_qf_names[USRQUOTA]) 773 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]); 774 775 if (sbi->s_qf_names[GRPQUOTA]) 776 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]); 777 778 if (sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA) 779 seq_puts(seq, ",usrquota"); 780 781 if (sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA) 782 seq_puts(seq, ",grpquota"); 783 #endif 784 } 785 786 /* 787 * Show an option if 788 * - it's set to a non-default value OR 789 * - if the per-sb default is different from the global default 790 */ 791 static int ext4_show_options(struct seq_file *seq, struct vfsmount *vfs) 792 { 793 int def_errors; 794 unsigned long def_mount_opts; 795 struct super_block *sb = vfs->mnt_sb; 796 struct ext4_sb_info *sbi = EXT4_SB(sb); 797 struct ext4_super_block *es = sbi->s_es; 798 799 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 800 def_errors = le16_to_cpu(es->s_errors); 801 802 if (sbi->s_sb_block != 1) 803 seq_printf(seq, ",sb=%llu", sbi->s_sb_block); 804 if (test_opt(sb, MINIX_DF)) 805 seq_puts(seq, ",minixdf"); 806 if (test_opt(sb, GRPID) && !(def_mount_opts & EXT4_DEFM_BSDGROUPS)) 807 seq_puts(seq, ",grpid"); 808 if (!test_opt(sb, GRPID) && (def_mount_opts & EXT4_DEFM_BSDGROUPS)) 809 seq_puts(seq, ",nogrpid"); 810 if (sbi->s_resuid != EXT4_DEF_RESUID || 811 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) { 812 seq_printf(seq, ",resuid=%u", sbi->s_resuid); 813 } 814 if (sbi->s_resgid != EXT4_DEF_RESGID || 815 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) { 816 seq_printf(seq, ",resgid=%u", sbi->s_resgid); 817 } 818 if (test_opt(sb, ERRORS_RO)) { 819 if (def_errors == EXT4_ERRORS_PANIC || 820 def_errors == EXT4_ERRORS_CONTINUE) { 821 seq_puts(seq, ",errors=remount-ro"); 822 } 823 } 824 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 825 seq_puts(seq, ",errors=continue"); 826 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 827 seq_puts(seq, ",errors=panic"); 828 if (test_opt(sb, NO_UID32) && !(def_mount_opts & EXT4_DEFM_UID16)) 829 seq_puts(seq, ",nouid32"); 830 if (test_opt(sb, DEBUG) && !(def_mount_opts & EXT4_DEFM_DEBUG)) 831 seq_puts(seq, ",debug"); 832 if (test_opt(sb, OLDALLOC)) 833 seq_puts(seq, ",oldalloc"); 834 #ifdef CONFIG_EXT4_FS_XATTR 835 if (test_opt(sb, XATTR_USER) && 836 !(def_mount_opts & EXT4_DEFM_XATTR_USER)) 837 seq_puts(seq, ",user_xattr"); 838 if (!test_opt(sb, XATTR_USER) && 839 (def_mount_opts & EXT4_DEFM_XATTR_USER)) { 840 seq_puts(seq, ",nouser_xattr"); 841 } 842 #endif 843 #ifdef CONFIG_EXT4_FS_POSIX_ACL 844 if (test_opt(sb, POSIX_ACL) && !(def_mount_opts & EXT4_DEFM_ACL)) 845 seq_puts(seq, ",acl"); 846 if (!test_opt(sb, POSIX_ACL) && (def_mount_opts & EXT4_DEFM_ACL)) 847 seq_puts(seq, ",noacl"); 848 #endif 849 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 850 seq_printf(seq, ",commit=%u", 851 (unsigned) (sbi->s_commit_interval / HZ)); 852 } 853 if (sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) { 854 seq_printf(seq, ",min_batch_time=%u", 855 (unsigned) sbi->s_min_batch_time); 856 } 857 if (sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) { 858 seq_printf(seq, ",max_batch_time=%u", 859 (unsigned) sbi->s_min_batch_time); 860 } 861 862 /* 863 * We're changing the default of barrier mount option, so 864 * let's always display its mount state so it's clear what its 865 * status is. 866 */ 867 seq_puts(seq, ",barrier="); 868 seq_puts(seq, test_opt(sb, BARRIER) ? "1" : "0"); 869 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) 870 seq_puts(seq, ",journal_async_commit"); 871 if (test_opt(sb, NOBH)) 872 seq_puts(seq, ",nobh"); 873 if (test_opt(sb, I_VERSION)) 874 seq_puts(seq, ",i_version"); 875 if (!test_opt(sb, DELALLOC)) 876 seq_puts(seq, ",nodelalloc"); 877 878 879 if (sbi->s_stripe) 880 seq_printf(seq, ",stripe=%lu", sbi->s_stripe); 881 /* 882 * journal mode get enabled in different ways 883 * So just print the value even if we didn't specify it 884 */ 885 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 886 seq_puts(seq, ",data=journal"); 887 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 888 seq_puts(seq, ",data=ordered"); 889 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 890 seq_puts(seq, ",data=writeback"); 891 892 if (sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 893 seq_printf(seq, ",inode_readahead_blks=%u", 894 sbi->s_inode_readahead_blks); 895 896 if (test_opt(sb, DATA_ERR_ABORT)) 897 seq_puts(seq, ",data_err=abort"); 898 899 if (test_opt(sb, NO_AUTO_DA_ALLOC)) 900 seq_puts(seq, ",noauto_da_alloc"); 901 902 ext4_show_quota_options(seq, sb); 903 904 return 0; 905 } 906 907 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 908 u64 ino, u32 generation) 909 { 910 struct inode *inode; 911 912 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 913 return ERR_PTR(-ESTALE); 914 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 915 return ERR_PTR(-ESTALE); 916 917 /* iget isn't really right if the inode is currently unallocated!! 918 * 919 * ext4_read_inode will return a bad_inode if the inode had been 920 * deleted, so we should be safe. 921 * 922 * Currently we don't know the generation for parent directory, so 923 * a generation of 0 means "accept any" 924 */ 925 inode = ext4_iget(sb, ino); 926 if (IS_ERR(inode)) 927 return ERR_CAST(inode); 928 if (generation && inode->i_generation != generation) { 929 iput(inode); 930 return ERR_PTR(-ESTALE); 931 } 932 933 return inode; 934 } 935 936 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 937 int fh_len, int fh_type) 938 { 939 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 940 ext4_nfs_get_inode); 941 } 942 943 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 944 int fh_len, int fh_type) 945 { 946 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 947 ext4_nfs_get_inode); 948 } 949 950 /* 951 * Try to release metadata pages (indirect blocks, directories) which are 952 * mapped via the block device. Since these pages could have journal heads 953 * which would prevent try_to_free_buffers() from freeing them, we must use 954 * jbd2 layer's try_to_free_buffers() function to release them. 955 */ 956 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 957 gfp_t wait) 958 { 959 journal_t *journal = EXT4_SB(sb)->s_journal; 960 961 WARN_ON(PageChecked(page)); 962 if (!page_has_buffers(page)) 963 return 0; 964 if (journal) 965 return jbd2_journal_try_to_free_buffers(journal, page, 966 wait & ~__GFP_WAIT); 967 return try_to_free_buffers(page); 968 } 969 970 #ifdef CONFIG_QUOTA 971 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group") 972 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA)) 973 974 static int ext4_write_dquot(struct dquot *dquot); 975 static int ext4_acquire_dquot(struct dquot *dquot); 976 static int ext4_release_dquot(struct dquot *dquot); 977 static int ext4_mark_dquot_dirty(struct dquot *dquot); 978 static int ext4_write_info(struct super_block *sb, int type); 979 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 980 char *path, int remount); 981 static int ext4_quota_on_mount(struct super_block *sb, int type); 982 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 983 size_t len, loff_t off); 984 static ssize_t ext4_quota_write(struct super_block *sb, int type, 985 const char *data, size_t len, loff_t off); 986 987 static const struct dquot_operations ext4_quota_operations = { 988 .initialize = dquot_initialize, 989 .drop = dquot_drop, 990 .alloc_space = dquot_alloc_space, 991 .reserve_space = dquot_reserve_space, 992 .claim_space = dquot_claim_space, 993 .release_rsv = dquot_release_reserved_space, 994 .get_reserved_space = ext4_get_reserved_space, 995 .alloc_inode = dquot_alloc_inode, 996 .free_space = dquot_free_space, 997 .free_inode = dquot_free_inode, 998 .transfer = dquot_transfer, 999 .write_dquot = ext4_write_dquot, 1000 .acquire_dquot = ext4_acquire_dquot, 1001 .release_dquot = ext4_release_dquot, 1002 .mark_dirty = ext4_mark_dquot_dirty, 1003 .write_info = ext4_write_info, 1004 .alloc_dquot = dquot_alloc, 1005 .destroy_dquot = dquot_destroy, 1006 }; 1007 1008 static const struct quotactl_ops ext4_qctl_operations = { 1009 .quota_on = ext4_quota_on, 1010 .quota_off = vfs_quota_off, 1011 .quota_sync = vfs_quota_sync, 1012 .get_info = vfs_get_dqinfo, 1013 .set_info = vfs_set_dqinfo, 1014 .get_dqblk = vfs_get_dqblk, 1015 .set_dqblk = vfs_set_dqblk 1016 }; 1017 #endif 1018 1019 static const struct super_operations ext4_sops = { 1020 .alloc_inode = ext4_alloc_inode, 1021 .destroy_inode = ext4_destroy_inode, 1022 .write_inode = ext4_write_inode, 1023 .dirty_inode = ext4_dirty_inode, 1024 .delete_inode = ext4_delete_inode, 1025 .put_super = ext4_put_super, 1026 .sync_fs = ext4_sync_fs, 1027 .freeze_fs = ext4_freeze, 1028 .unfreeze_fs = ext4_unfreeze, 1029 .statfs = ext4_statfs, 1030 .remount_fs = ext4_remount, 1031 .clear_inode = ext4_clear_inode, 1032 .show_options = ext4_show_options, 1033 #ifdef CONFIG_QUOTA 1034 .quota_read = ext4_quota_read, 1035 .quota_write = ext4_quota_write, 1036 #endif 1037 .bdev_try_to_free_page = bdev_try_to_free_page, 1038 }; 1039 1040 static const struct super_operations ext4_nojournal_sops = { 1041 .alloc_inode = ext4_alloc_inode, 1042 .destroy_inode = ext4_destroy_inode, 1043 .write_inode = ext4_write_inode, 1044 .dirty_inode = ext4_dirty_inode, 1045 .delete_inode = ext4_delete_inode, 1046 .write_super = ext4_write_super, 1047 .put_super = ext4_put_super, 1048 .statfs = ext4_statfs, 1049 .remount_fs = ext4_remount, 1050 .clear_inode = ext4_clear_inode, 1051 .show_options = ext4_show_options, 1052 #ifdef CONFIG_QUOTA 1053 .quota_read = ext4_quota_read, 1054 .quota_write = ext4_quota_write, 1055 #endif 1056 .bdev_try_to_free_page = bdev_try_to_free_page, 1057 }; 1058 1059 static const struct export_operations ext4_export_ops = { 1060 .fh_to_dentry = ext4_fh_to_dentry, 1061 .fh_to_parent = ext4_fh_to_parent, 1062 .get_parent = ext4_get_parent, 1063 }; 1064 1065 enum { 1066 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1067 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1068 Opt_nouid32, Opt_debug, Opt_oldalloc, Opt_orlov, 1069 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1070 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, Opt_nobh, Opt_bh, 1071 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, 1072 Opt_journal_update, Opt_journal_dev, 1073 Opt_journal_checksum, Opt_journal_async_commit, 1074 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1075 Opt_data_err_abort, Opt_data_err_ignore, 1076 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1077 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_quota, Opt_noquota, 1078 Opt_ignore, Opt_barrier, Opt_nobarrier, Opt_err, Opt_resize, 1079 Opt_usrquota, Opt_grpquota, Opt_i_version, 1080 Opt_stripe, Opt_delalloc, Opt_nodelalloc, 1081 Opt_block_validity, Opt_noblock_validity, 1082 Opt_inode_readahead_blks, Opt_journal_ioprio 1083 }; 1084 1085 static const match_table_t tokens = { 1086 {Opt_bsd_df, "bsddf"}, 1087 {Opt_minix_df, "minixdf"}, 1088 {Opt_grpid, "grpid"}, 1089 {Opt_grpid, "bsdgroups"}, 1090 {Opt_nogrpid, "nogrpid"}, 1091 {Opt_nogrpid, "sysvgroups"}, 1092 {Opt_resgid, "resgid=%u"}, 1093 {Opt_resuid, "resuid=%u"}, 1094 {Opt_sb, "sb=%u"}, 1095 {Opt_err_cont, "errors=continue"}, 1096 {Opt_err_panic, "errors=panic"}, 1097 {Opt_err_ro, "errors=remount-ro"}, 1098 {Opt_nouid32, "nouid32"}, 1099 {Opt_debug, "debug"}, 1100 {Opt_oldalloc, "oldalloc"}, 1101 {Opt_orlov, "orlov"}, 1102 {Opt_user_xattr, "user_xattr"}, 1103 {Opt_nouser_xattr, "nouser_xattr"}, 1104 {Opt_acl, "acl"}, 1105 {Opt_noacl, "noacl"}, 1106 {Opt_noload, "noload"}, 1107 {Opt_nobh, "nobh"}, 1108 {Opt_bh, "bh"}, 1109 {Opt_commit, "commit=%u"}, 1110 {Opt_min_batch_time, "min_batch_time=%u"}, 1111 {Opt_max_batch_time, "max_batch_time=%u"}, 1112 {Opt_journal_update, "journal=update"}, 1113 {Opt_journal_dev, "journal_dev=%u"}, 1114 {Opt_journal_checksum, "journal_checksum"}, 1115 {Opt_journal_async_commit, "journal_async_commit"}, 1116 {Opt_abort, "abort"}, 1117 {Opt_data_journal, "data=journal"}, 1118 {Opt_data_ordered, "data=ordered"}, 1119 {Opt_data_writeback, "data=writeback"}, 1120 {Opt_data_err_abort, "data_err=abort"}, 1121 {Opt_data_err_ignore, "data_err=ignore"}, 1122 {Opt_offusrjquota, "usrjquota="}, 1123 {Opt_usrjquota, "usrjquota=%s"}, 1124 {Opt_offgrpjquota, "grpjquota="}, 1125 {Opt_grpjquota, "grpjquota=%s"}, 1126 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1127 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1128 {Opt_grpquota, "grpquota"}, 1129 {Opt_noquota, "noquota"}, 1130 {Opt_quota, "quota"}, 1131 {Opt_usrquota, "usrquota"}, 1132 {Opt_barrier, "barrier=%u"}, 1133 {Opt_barrier, "barrier"}, 1134 {Opt_nobarrier, "nobarrier"}, 1135 {Opt_i_version, "i_version"}, 1136 {Opt_stripe, "stripe=%u"}, 1137 {Opt_resize, "resize"}, 1138 {Opt_delalloc, "delalloc"}, 1139 {Opt_nodelalloc, "nodelalloc"}, 1140 {Opt_block_validity, "block_validity"}, 1141 {Opt_noblock_validity, "noblock_validity"}, 1142 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1143 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1144 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1145 {Opt_auto_da_alloc, "auto_da_alloc"}, 1146 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1147 {Opt_err, NULL}, 1148 }; 1149 1150 static ext4_fsblk_t get_sb_block(void **data) 1151 { 1152 ext4_fsblk_t sb_block; 1153 char *options = (char *) *data; 1154 1155 if (!options || strncmp(options, "sb=", 3) != 0) 1156 return 1; /* Default location */ 1157 1158 options += 3; 1159 /* TODO: use simple_strtoll with >32bit ext4 */ 1160 sb_block = simple_strtoul(options, &options, 0); 1161 if (*options && *options != ',') { 1162 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1163 (char *) *data); 1164 return 1; 1165 } 1166 if (*options == ',') 1167 options++; 1168 *data = (void *) options; 1169 1170 return sb_block; 1171 } 1172 1173 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1174 1175 static int parse_options(char *options, struct super_block *sb, 1176 unsigned long *journal_devnum, 1177 unsigned int *journal_ioprio, 1178 ext4_fsblk_t *n_blocks_count, int is_remount) 1179 { 1180 struct ext4_sb_info *sbi = EXT4_SB(sb); 1181 char *p; 1182 substring_t args[MAX_OPT_ARGS]; 1183 int data_opt = 0; 1184 int option; 1185 #ifdef CONFIG_QUOTA 1186 int qtype, qfmt; 1187 char *qname; 1188 #endif 1189 1190 if (!options) 1191 return 1; 1192 1193 while ((p = strsep(&options, ",")) != NULL) { 1194 int token; 1195 if (!*p) 1196 continue; 1197 1198 token = match_token(p, tokens, args); 1199 switch (token) { 1200 case Opt_bsd_df: 1201 clear_opt(sbi->s_mount_opt, MINIX_DF); 1202 break; 1203 case Opt_minix_df: 1204 set_opt(sbi->s_mount_opt, MINIX_DF); 1205 break; 1206 case Opt_grpid: 1207 set_opt(sbi->s_mount_opt, GRPID); 1208 break; 1209 case Opt_nogrpid: 1210 clear_opt(sbi->s_mount_opt, GRPID); 1211 break; 1212 case Opt_resuid: 1213 if (match_int(&args[0], &option)) 1214 return 0; 1215 sbi->s_resuid = option; 1216 break; 1217 case Opt_resgid: 1218 if (match_int(&args[0], &option)) 1219 return 0; 1220 sbi->s_resgid = option; 1221 break; 1222 case Opt_sb: 1223 /* handled by get_sb_block() instead of here */ 1224 /* *sb_block = match_int(&args[0]); */ 1225 break; 1226 case Opt_err_panic: 1227 clear_opt(sbi->s_mount_opt, ERRORS_CONT); 1228 clear_opt(sbi->s_mount_opt, ERRORS_RO); 1229 set_opt(sbi->s_mount_opt, ERRORS_PANIC); 1230 break; 1231 case Opt_err_ro: 1232 clear_opt(sbi->s_mount_opt, ERRORS_CONT); 1233 clear_opt(sbi->s_mount_opt, ERRORS_PANIC); 1234 set_opt(sbi->s_mount_opt, ERRORS_RO); 1235 break; 1236 case Opt_err_cont: 1237 clear_opt(sbi->s_mount_opt, ERRORS_RO); 1238 clear_opt(sbi->s_mount_opt, ERRORS_PANIC); 1239 set_opt(sbi->s_mount_opt, ERRORS_CONT); 1240 break; 1241 case Opt_nouid32: 1242 set_opt(sbi->s_mount_opt, NO_UID32); 1243 break; 1244 case Opt_debug: 1245 set_opt(sbi->s_mount_opt, DEBUG); 1246 break; 1247 case Opt_oldalloc: 1248 set_opt(sbi->s_mount_opt, OLDALLOC); 1249 break; 1250 case Opt_orlov: 1251 clear_opt(sbi->s_mount_opt, OLDALLOC); 1252 break; 1253 #ifdef CONFIG_EXT4_FS_XATTR 1254 case Opt_user_xattr: 1255 set_opt(sbi->s_mount_opt, XATTR_USER); 1256 break; 1257 case Opt_nouser_xattr: 1258 clear_opt(sbi->s_mount_opt, XATTR_USER); 1259 break; 1260 #else 1261 case Opt_user_xattr: 1262 case Opt_nouser_xattr: 1263 ext4_msg(sb, KERN_ERR, "(no)user_xattr options not supported"); 1264 break; 1265 #endif 1266 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1267 case Opt_acl: 1268 set_opt(sbi->s_mount_opt, POSIX_ACL); 1269 break; 1270 case Opt_noacl: 1271 clear_opt(sbi->s_mount_opt, POSIX_ACL); 1272 break; 1273 #else 1274 case Opt_acl: 1275 case Opt_noacl: 1276 ext4_msg(sb, KERN_ERR, "(no)acl options not supported"); 1277 break; 1278 #endif 1279 case Opt_journal_update: 1280 /* @@@ FIXME */ 1281 /* Eventually we will want to be able to create 1282 a journal file here. For now, only allow the 1283 user to specify an existing inode to be the 1284 journal file. */ 1285 if (is_remount) { 1286 ext4_msg(sb, KERN_ERR, 1287 "Cannot specify journal on remount"); 1288 return 0; 1289 } 1290 set_opt(sbi->s_mount_opt, UPDATE_JOURNAL); 1291 break; 1292 case Opt_journal_dev: 1293 if (is_remount) { 1294 ext4_msg(sb, KERN_ERR, 1295 "Cannot specify journal on remount"); 1296 return 0; 1297 } 1298 if (match_int(&args[0], &option)) 1299 return 0; 1300 *journal_devnum = option; 1301 break; 1302 case Opt_journal_checksum: 1303 set_opt(sbi->s_mount_opt, JOURNAL_CHECKSUM); 1304 break; 1305 case Opt_journal_async_commit: 1306 set_opt(sbi->s_mount_opt, JOURNAL_ASYNC_COMMIT); 1307 set_opt(sbi->s_mount_opt, JOURNAL_CHECKSUM); 1308 break; 1309 case Opt_noload: 1310 set_opt(sbi->s_mount_opt, NOLOAD); 1311 break; 1312 case Opt_commit: 1313 if (match_int(&args[0], &option)) 1314 return 0; 1315 if (option < 0) 1316 return 0; 1317 if (option == 0) 1318 option = JBD2_DEFAULT_MAX_COMMIT_AGE; 1319 sbi->s_commit_interval = HZ * option; 1320 break; 1321 case Opt_max_batch_time: 1322 if (match_int(&args[0], &option)) 1323 return 0; 1324 if (option < 0) 1325 return 0; 1326 if (option == 0) 1327 option = EXT4_DEF_MAX_BATCH_TIME; 1328 sbi->s_max_batch_time = option; 1329 break; 1330 case Opt_min_batch_time: 1331 if (match_int(&args[0], &option)) 1332 return 0; 1333 if (option < 0) 1334 return 0; 1335 sbi->s_min_batch_time = option; 1336 break; 1337 case Opt_data_journal: 1338 data_opt = EXT4_MOUNT_JOURNAL_DATA; 1339 goto datacheck; 1340 case Opt_data_ordered: 1341 data_opt = EXT4_MOUNT_ORDERED_DATA; 1342 goto datacheck; 1343 case Opt_data_writeback: 1344 data_opt = EXT4_MOUNT_WRITEBACK_DATA; 1345 datacheck: 1346 if (is_remount) { 1347 if ((sbi->s_mount_opt & EXT4_MOUNT_DATA_FLAGS) 1348 != data_opt) { 1349 ext4_msg(sb, KERN_ERR, 1350 "Cannot change data mode on remount"); 1351 return 0; 1352 } 1353 } else { 1354 sbi->s_mount_opt &= ~EXT4_MOUNT_DATA_FLAGS; 1355 sbi->s_mount_opt |= data_opt; 1356 } 1357 break; 1358 case Opt_data_err_abort: 1359 set_opt(sbi->s_mount_opt, DATA_ERR_ABORT); 1360 break; 1361 case Opt_data_err_ignore: 1362 clear_opt(sbi->s_mount_opt, DATA_ERR_ABORT); 1363 break; 1364 #ifdef CONFIG_QUOTA 1365 case Opt_usrjquota: 1366 qtype = USRQUOTA; 1367 goto set_qf_name; 1368 case Opt_grpjquota: 1369 qtype = GRPQUOTA; 1370 set_qf_name: 1371 if (sb_any_quota_loaded(sb) && 1372 !sbi->s_qf_names[qtype]) { 1373 ext4_msg(sb, KERN_ERR, 1374 "Cannot change journaled " 1375 "quota options when quota turned on"); 1376 return 0; 1377 } 1378 qname = match_strdup(&args[0]); 1379 if (!qname) { 1380 ext4_msg(sb, KERN_ERR, 1381 "Not enough memory for " 1382 "storing quotafile name"); 1383 return 0; 1384 } 1385 if (sbi->s_qf_names[qtype] && 1386 strcmp(sbi->s_qf_names[qtype], qname)) { 1387 ext4_msg(sb, KERN_ERR, 1388 "%s quota file already " 1389 "specified", QTYPE2NAME(qtype)); 1390 kfree(qname); 1391 return 0; 1392 } 1393 sbi->s_qf_names[qtype] = qname; 1394 if (strchr(sbi->s_qf_names[qtype], '/')) { 1395 ext4_msg(sb, KERN_ERR, 1396 "quotafile must be on " 1397 "filesystem root"); 1398 kfree(sbi->s_qf_names[qtype]); 1399 sbi->s_qf_names[qtype] = NULL; 1400 return 0; 1401 } 1402 set_opt(sbi->s_mount_opt, QUOTA); 1403 break; 1404 case Opt_offusrjquota: 1405 qtype = USRQUOTA; 1406 goto clear_qf_name; 1407 case Opt_offgrpjquota: 1408 qtype = GRPQUOTA; 1409 clear_qf_name: 1410 if (sb_any_quota_loaded(sb) && 1411 sbi->s_qf_names[qtype]) { 1412 ext4_msg(sb, KERN_ERR, "Cannot change " 1413 "journaled quota options when " 1414 "quota turned on"); 1415 return 0; 1416 } 1417 /* 1418 * The space will be released later when all options 1419 * are confirmed to be correct 1420 */ 1421 sbi->s_qf_names[qtype] = NULL; 1422 break; 1423 case Opt_jqfmt_vfsold: 1424 qfmt = QFMT_VFS_OLD; 1425 goto set_qf_format; 1426 case Opt_jqfmt_vfsv0: 1427 qfmt = QFMT_VFS_V0; 1428 set_qf_format: 1429 if (sb_any_quota_loaded(sb) && 1430 sbi->s_jquota_fmt != qfmt) { 1431 ext4_msg(sb, KERN_ERR, "Cannot change " 1432 "journaled quota options when " 1433 "quota turned on"); 1434 return 0; 1435 } 1436 sbi->s_jquota_fmt = qfmt; 1437 break; 1438 case Opt_quota: 1439 case Opt_usrquota: 1440 set_opt(sbi->s_mount_opt, QUOTA); 1441 set_opt(sbi->s_mount_opt, USRQUOTA); 1442 break; 1443 case Opt_grpquota: 1444 set_opt(sbi->s_mount_opt, QUOTA); 1445 set_opt(sbi->s_mount_opt, GRPQUOTA); 1446 break; 1447 case Opt_noquota: 1448 if (sb_any_quota_loaded(sb)) { 1449 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1450 "options when quota turned on"); 1451 return 0; 1452 } 1453 clear_opt(sbi->s_mount_opt, QUOTA); 1454 clear_opt(sbi->s_mount_opt, USRQUOTA); 1455 clear_opt(sbi->s_mount_opt, GRPQUOTA); 1456 break; 1457 #else 1458 case Opt_quota: 1459 case Opt_usrquota: 1460 case Opt_grpquota: 1461 ext4_msg(sb, KERN_ERR, 1462 "quota options not supported"); 1463 break; 1464 case Opt_usrjquota: 1465 case Opt_grpjquota: 1466 case Opt_offusrjquota: 1467 case Opt_offgrpjquota: 1468 case Opt_jqfmt_vfsold: 1469 case Opt_jqfmt_vfsv0: 1470 ext4_msg(sb, KERN_ERR, 1471 "journaled quota options not supported"); 1472 break; 1473 case Opt_noquota: 1474 break; 1475 #endif 1476 case Opt_abort: 1477 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1478 break; 1479 case Opt_nobarrier: 1480 clear_opt(sbi->s_mount_opt, BARRIER); 1481 break; 1482 case Opt_barrier: 1483 if (match_int(&args[0], &option)) { 1484 set_opt(sbi->s_mount_opt, BARRIER); 1485 break; 1486 } 1487 if (option) 1488 set_opt(sbi->s_mount_opt, BARRIER); 1489 else 1490 clear_opt(sbi->s_mount_opt, BARRIER); 1491 break; 1492 case Opt_ignore: 1493 break; 1494 case Opt_resize: 1495 if (!is_remount) { 1496 ext4_msg(sb, KERN_ERR, 1497 "resize option only available " 1498 "for remount"); 1499 return 0; 1500 } 1501 if (match_int(&args[0], &option) != 0) 1502 return 0; 1503 *n_blocks_count = option; 1504 break; 1505 case Opt_nobh: 1506 set_opt(sbi->s_mount_opt, NOBH); 1507 break; 1508 case Opt_bh: 1509 clear_opt(sbi->s_mount_opt, NOBH); 1510 break; 1511 case Opt_i_version: 1512 set_opt(sbi->s_mount_opt, I_VERSION); 1513 sb->s_flags |= MS_I_VERSION; 1514 break; 1515 case Opt_nodelalloc: 1516 clear_opt(sbi->s_mount_opt, DELALLOC); 1517 break; 1518 case Opt_stripe: 1519 if (match_int(&args[0], &option)) 1520 return 0; 1521 if (option < 0) 1522 return 0; 1523 sbi->s_stripe = option; 1524 break; 1525 case Opt_delalloc: 1526 set_opt(sbi->s_mount_opt, DELALLOC); 1527 break; 1528 case Opt_block_validity: 1529 set_opt(sbi->s_mount_opt, BLOCK_VALIDITY); 1530 break; 1531 case Opt_noblock_validity: 1532 clear_opt(sbi->s_mount_opt, BLOCK_VALIDITY); 1533 break; 1534 case Opt_inode_readahead_blks: 1535 if (match_int(&args[0], &option)) 1536 return 0; 1537 if (option < 0 || option > (1 << 30)) 1538 return 0; 1539 if (!is_power_of_2(option)) { 1540 ext4_msg(sb, KERN_ERR, 1541 "EXT4-fs: inode_readahead_blks" 1542 " must be a power of 2"); 1543 return 0; 1544 } 1545 sbi->s_inode_readahead_blks = option; 1546 break; 1547 case Opt_journal_ioprio: 1548 if (match_int(&args[0], &option)) 1549 return 0; 1550 if (option < 0 || option > 7) 1551 break; 1552 *journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 1553 option); 1554 break; 1555 case Opt_noauto_da_alloc: 1556 set_opt(sbi->s_mount_opt,NO_AUTO_DA_ALLOC); 1557 break; 1558 case Opt_auto_da_alloc: 1559 if (match_int(&args[0], &option)) { 1560 clear_opt(sbi->s_mount_opt, NO_AUTO_DA_ALLOC); 1561 break; 1562 } 1563 if (option) 1564 clear_opt(sbi->s_mount_opt, NO_AUTO_DA_ALLOC); 1565 else 1566 set_opt(sbi->s_mount_opt,NO_AUTO_DA_ALLOC); 1567 break; 1568 default: 1569 ext4_msg(sb, KERN_ERR, 1570 "Unrecognized mount option \"%s\" " 1571 "or missing value", p); 1572 return 0; 1573 } 1574 } 1575 #ifdef CONFIG_QUOTA 1576 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1577 if ((sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA) && 1578 sbi->s_qf_names[USRQUOTA]) 1579 clear_opt(sbi->s_mount_opt, USRQUOTA); 1580 1581 if ((sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA) && 1582 sbi->s_qf_names[GRPQUOTA]) 1583 clear_opt(sbi->s_mount_opt, GRPQUOTA); 1584 1585 if ((sbi->s_qf_names[USRQUOTA] && 1586 (sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA)) || 1587 (sbi->s_qf_names[GRPQUOTA] && 1588 (sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA))) { 1589 ext4_msg(sb, KERN_ERR, "old and new quota " 1590 "format mixing"); 1591 return 0; 1592 } 1593 1594 if (!sbi->s_jquota_fmt) { 1595 ext4_msg(sb, KERN_ERR, "journaled quota format " 1596 "not specified"); 1597 return 0; 1598 } 1599 } else { 1600 if (sbi->s_jquota_fmt) { 1601 ext4_msg(sb, KERN_ERR, "journaled quota format " 1602 "specified with no journaling " 1603 "enabled"); 1604 return 0; 1605 } 1606 } 1607 #endif 1608 return 1; 1609 } 1610 1611 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 1612 int read_only) 1613 { 1614 struct ext4_sb_info *sbi = EXT4_SB(sb); 1615 int res = 0; 1616 1617 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 1618 ext4_msg(sb, KERN_ERR, "revision level too high, " 1619 "forcing read-only mode"); 1620 res = MS_RDONLY; 1621 } 1622 if (read_only) 1623 return res; 1624 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 1625 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 1626 "running e2fsck is recommended"); 1627 else if ((sbi->s_mount_state & EXT4_ERROR_FS)) 1628 ext4_msg(sb, KERN_WARNING, 1629 "warning: mounting fs with errors, " 1630 "running e2fsck is recommended"); 1631 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) >= 0 && 1632 le16_to_cpu(es->s_mnt_count) >= 1633 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 1634 ext4_msg(sb, KERN_WARNING, 1635 "warning: maximal mount count reached, " 1636 "running e2fsck is recommended"); 1637 else if (le32_to_cpu(es->s_checkinterval) && 1638 (le32_to_cpu(es->s_lastcheck) + 1639 le32_to_cpu(es->s_checkinterval) <= get_seconds())) 1640 ext4_msg(sb, KERN_WARNING, 1641 "warning: checktime reached, " 1642 "running e2fsck is recommended"); 1643 if (!sbi->s_journal) 1644 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 1645 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 1646 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 1647 le16_add_cpu(&es->s_mnt_count, 1); 1648 es->s_mtime = cpu_to_le32(get_seconds()); 1649 ext4_update_dynamic_rev(sb); 1650 if (sbi->s_journal) 1651 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 1652 1653 ext4_commit_super(sb, 1); 1654 if (test_opt(sb, DEBUG)) 1655 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 1656 "bpg=%lu, ipg=%lu, mo=%04x]\n", 1657 sb->s_blocksize, 1658 sbi->s_groups_count, 1659 EXT4_BLOCKS_PER_GROUP(sb), 1660 EXT4_INODES_PER_GROUP(sb), 1661 sbi->s_mount_opt); 1662 1663 return res; 1664 } 1665 1666 static int ext4_fill_flex_info(struct super_block *sb) 1667 { 1668 struct ext4_sb_info *sbi = EXT4_SB(sb); 1669 struct ext4_group_desc *gdp = NULL; 1670 ext4_group_t flex_group_count; 1671 ext4_group_t flex_group; 1672 int groups_per_flex = 0; 1673 size_t size; 1674 int i; 1675 1676 if (!sbi->s_es->s_log_groups_per_flex) { 1677 sbi->s_log_groups_per_flex = 0; 1678 return 1; 1679 } 1680 1681 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 1682 groups_per_flex = 1 << sbi->s_log_groups_per_flex; 1683 1684 /* We allocate both existing and potentially added groups */ 1685 flex_group_count = ((sbi->s_groups_count + groups_per_flex - 1) + 1686 ((le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) + 1) << 1687 EXT4_DESC_PER_BLOCK_BITS(sb))) / groups_per_flex; 1688 size = flex_group_count * sizeof(struct flex_groups); 1689 sbi->s_flex_groups = kzalloc(size, GFP_KERNEL); 1690 if (sbi->s_flex_groups == NULL) { 1691 sbi->s_flex_groups = vmalloc(size); 1692 if (sbi->s_flex_groups) 1693 memset(sbi->s_flex_groups, 0, size); 1694 } 1695 if (sbi->s_flex_groups == NULL) { 1696 ext4_msg(sb, KERN_ERR, "not enough memory for " 1697 "%u flex groups", flex_group_count); 1698 goto failed; 1699 } 1700 1701 for (i = 0; i < sbi->s_groups_count; i++) { 1702 gdp = ext4_get_group_desc(sb, i, NULL); 1703 1704 flex_group = ext4_flex_group(sbi, i); 1705 atomic_add(ext4_free_inodes_count(sb, gdp), 1706 &sbi->s_flex_groups[flex_group].free_inodes); 1707 atomic_add(ext4_free_blks_count(sb, gdp), 1708 &sbi->s_flex_groups[flex_group].free_blocks); 1709 atomic_add(ext4_used_dirs_count(sb, gdp), 1710 &sbi->s_flex_groups[flex_group].used_dirs); 1711 } 1712 1713 return 1; 1714 failed: 1715 return 0; 1716 } 1717 1718 __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group, 1719 struct ext4_group_desc *gdp) 1720 { 1721 __u16 crc = 0; 1722 1723 if (sbi->s_es->s_feature_ro_compat & 1724 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) { 1725 int offset = offsetof(struct ext4_group_desc, bg_checksum); 1726 __le32 le_group = cpu_to_le32(block_group); 1727 1728 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 1729 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 1730 crc = crc16(crc, (__u8 *)gdp, offset); 1731 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 1732 /* for checksum of struct ext4_group_desc do the rest...*/ 1733 if ((sbi->s_es->s_feature_incompat & 1734 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) && 1735 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 1736 crc = crc16(crc, (__u8 *)gdp + offset, 1737 le16_to_cpu(sbi->s_es->s_desc_size) - 1738 offset); 1739 } 1740 1741 return cpu_to_le16(crc); 1742 } 1743 1744 int ext4_group_desc_csum_verify(struct ext4_sb_info *sbi, __u32 block_group, 1745 struct ext4_group_desc *gdp) 1746 { 1747 if ((sbi->s_es->s_feature_ro_compat & 1748 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) && 1749 (gdp->bg_checksum != ext4_group_desc_csum(sbi, block_group, gdp))) 1750 return 0; 1751 1752 return 1; 1753 } 1754 1755 /* Called at mount-time, super-block is locked */ 1756 static int ext4_check_descriptors(struct super_block *sb) 1757 { 1758 struct ext4_sb_info *sbi = EXT4_SB(sb); 1759 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 1760 ext4_fsblk_t last_block; 1761 ext4_fsblk_t block_bitmap; 1762 ext4_fsblk_t inode_bitmap; 1763 ext4_fsblk_t inode_table; 1764 int flexbg_flag = 0; 1765 ext4_group_t i; 1766 1767 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 1768 flexbg_flag = 1; 1769 1770 ext4_debug("Checking group descriptors"); 1771 1772 for (i = 0; i < sbi->s_groups_count; i++) { 1773 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 1774 1775 if (i == sbi->s_groups_count - 1 || flexbg_flag) 1776 last_block = ext4_blocks_count(sbi->s_es) - 1; 1777 else 1778 last_block = first_block + 1779 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 1780 1781 block_bitmap = ext4_block_bitmap(sb, gdp); 1782 if (block_bitmap < first_block || block_bitmap > last_block) { 1783 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 1784 "Block bitmap for group %u not in group " 1785 "(block %llu)!", i, block_bitmap); 1786 return 0; 1787 } 1788 inode_bitmap = ext4_inode_bitmap(sb, gdp); 1789 if (inode_bitmap < first_block || inode_bitmap > last_block) { 1790 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 1791 "Inode bitmap for group %u not in group " 1792 "(block %llu)!", i, inode_bitmap); 1793 return 0; 1794 } 1795 inode_table = ext4_inode_table(sb, gdp); 1796 if (inode_table < first_block || 1797 inode_table + sbi->s_itb_per_group - 1 > last_block) { 1798 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 1799 "Inode table for group %u not in group " 1800 "(block %llu)!", i, inode_table); 1801 return 0; 1802 } 1803 ext4_lock_group(sb, i); 1804 if (!ext4_group_desc_csum_verify(sbi, i, gdp)) { 1805 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 1806 "Checksum for group %u failed (%u!=%u)", 1807 i, le16_to_cpu(ext4_group_desc_csum(sbi, i, 1808 gdp)), le16_to_cpu(gdp->bg_checksum)); 1809 if (!(sb->s_flags & MS_RDONLY)) { 1810 ext4_unlock_group(sb, i); 1811 return 0; 1812 } 1813 } 1814 ext4_unlock_group(sb, i); 1815 if (!flexbg_flag) 1816 first_block += EXT4_BLOCKS_PER_GROUP(sb); 1817 } 1818 1819 ext4_free_blocks_count_set(sbi->s_es, ext4_count_free_blocks(sb)); 1820 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb)); 1821 return 1; 1822 } 1823 1824 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 1825 * the superblock) which were deleted from all directories, but held open by 1826 * a process at the time of a crash. We walk the list and try to delete these 1827 * inodes at recovery time (only with a read-write filesystem). 1828 * 1829 * In order to keep the orphan inode chain consistent during traversal (in 1830 * case of crash during recovery), we link each inode into the superblock 1831 * orphan list_head and handle it the same way as an inode deletion during 1832 * normal operation (which journals the operations for us). 1833 * 1834 * We only do an iget() and an iput() on each inode, which is very safe if we 1835 * accidentally point at an in-use or already deleted inode. The worst that 1836 * can happen in this case is that we get a "bit already cleared" message from 1837 * ext4_free_inode(). The only reason we would point at a wrong inode is if 1838 * e2fsck was run on this filesystem, and it must have already done the orphan 1839 * inode cleanup for us, so we can safely abort without any further action. 1840 */ 1841 static void ext4_orphan_cleanup(struct super_block *sb, 1842 struct ext4_super_block *es) 1843 { 1844 unsigned int s_flags = sb->s_flags; 1845 int nr_orphans = 0, nr_truncates = 0; 1846 #ifdef CONFIG_QUOTA 1847 int i; 1848 #endif 1849 if (!es->s_last_orphan) { 1850 jbd_debug(4, "no orphan inodes to clean up\n"); 1851 return; 1852 } 1853 1854 if (bdev_read_only(sb->s_bdev)) { 1855 ext4_msg(sb, KERN_ERR, "write access " 1856 "unavailable, skipping orphan cleanup"); 1857 return; 1858 } 1859 1860 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 1861 if (es->s_last_orphan) 1862 jbd_debug(1, "Errors on filesystem, " 1863 "clearing orphan list.\n"); 1864 es->s_last_orphan = 0; 1865 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 1866 return; 1867 } 1868 1869 if (s_flags & MS_RDONLY) { 1870 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 1871 sb->s_flags &= ~MS_RDONLY; 1872 } 1873 #ifdef CONFIG_QUOTA 1874 /* Needed for iput() to work correctly and not trash data */ 1875 sb->s_flags |= MS_ACTIVE; 1876 /* Turn on quotas so that they are updated correctly */ 1877 for (i = 0; i < MAXQUOTAS; i++) { 1878 if (EXT4_SB(sb)->s_qf_names[i]) { 1879 int ret = ext4_quota_on_mount(sb, i); 1880 if (ret < 0) 1881 ext4_msg(sb, KERN_ERR, 1882 "Cannot turn on journaled " 1883 "quota: error %d", ret); 1884 } 1885 } 1886 #endif 1887 1888 while (es->s_last_orphan) { 1889 struct inode *inode; 1890 1891 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 1892 if (IS_ERR(inode)) { 1893 es->s_last_orphan = 0; 1894 break; 1895 } 1896 1897 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 1898 vfs_dq_init(inode); 1899 if (inode->i_nlink) { 1900 ext4_msg(sb, KERN_DEBUG, 1901 "%s: truncating inode %lu to %lld bytes", 1902 __func__, inode->i_ino, inode->i_size); 1903 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 1904 inode->i_ino, inode->i_size); 1905 ext4_truncate(inode); 1906 nr_truncates++; 1907 } else { 1908 ext4_msg(sb, KERN_DEBUG, 1909 "%s: deleting unreferenced inode %lu", 1910 __func__, inode->i_ino); 1911 jbd_debug(2, "deleting unreferenced inode %lu\n", 1912 inode->i_ino); 1913 nr_orphans++; 1914 } 1915 iput(inode); /* The delete magic happens here! */ 1916 } 1917 1918 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 1919 1920 if (nr_orphans) 1921 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 1922 PLURAL(nr_orphans)); 1923 if (nr_truncates) 1924 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 1925 PLURAL(nr_truncates)); 1926 #ifdef CONFIG_QUOTA 1927 /* Turn quotas off */ 1928 for (i = 0; i < MAXQUOTAS; i++) { 1929 if (sb_dqopt(sb)->files[i]) 1930 vfs_quota_off(sb, i, 0); 1931 } 1932 #endif 1933 sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 1934 } 1935 1936 /* 1937 * Maximal extent format file size. 1938 * Resulting logical blkno at s_maxbytes must fit in our on-disk 1939 * extent format containers, within a sector_t, and within i_blocks 1940 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 1941 * so that won't be a limiting factor. 1942 * 1943 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 1944 */ 1945 static loff_t ext4_max_size(int blkbits, int has_huge_files) 1946 { 1947 loff_t res; 1948 loff_t upper_limit = MAX_LFS_FILESIZE; 1949 1950 /* small i_blocks in vfs inode? */ 1951 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 1952 /* 1953 * CONFIG_LBDAF is not enabled implies the inode 1954 * i_block represent total blocks in 512 bytes 1955 * 32 == size of vfs inode i_blocks * 8 1956 */ 1957 upper_limit = (1LL << 32) - 1; 1958 1959 /* total blocks in file system block size */ 1960 upper_limit >>= (blkbits - 9); 1961 upper_limit <<= blkbits; 1962 } 1963 1964 /* 32-bit extent-start container, ee_block */ 1965 res = 1LL << 32; 1966 res <<= blkbits; 1967 res -= 1; 1968 1969 /* Sanity check against vm- & vfs- imposed limits */ 1970 if (res > upper_limit) 1971 res = upper_limit; 1972 1973 return res; 1974 } 1975 1976 /* 1977 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 1978 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 1979 * We need to be 1 filesystem block less than the 2^48 sector limit. 1980 */ 1981 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 1982 { 1983 loff_t res = EXT4_NDIR_BLOCKS; 1984 int meta_blocks; 1985 loff_t upper_limit; 1986 /* This is calculated to be the largest file size for a dense, block 1987 * mapped file such that the file's total number of 512-byte sectors, 1988 * including data and all indirect blocks, does not exceed (2^48 - 1). 1989 * 1990 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 1991 * number of 512-byte sectors of the file. 1992 */ 1993 1994 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 1995 /* 1996 * !has_huge_files or CONFIG_LBDAF not enabled implies that 1997 * the inode i_block field represents total file blocks in 1998 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 1999 */ 2000 upper_limit = (1LL << 32) - 1; 2001 2002 /* total blocks in file system block size */ 2003 upper_limit >>= (bits - 9); 2004 2005 } else { 2006 /* 2007 * We use 48 bit ext4_inode i_blocks 2008 * With EXT4_HUGE_FILE_FL set the i_blocks 2009 * represent total number of blocks in 2010 * file system block size 2011 */ 2012 upper_limit = (1LL << 48) - 1; 2013 2014 } 2015 2016 /* indirect blocks */ 2017 meta_blocks = 1; 2018 /* double indirect blocks */ 2019 meta_blocks += 1 + (1LL << (bits-2)); 2020 /* tripple indirect blocks */ 2021 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2022 2023 upper_limit -= meta_blocks; 2024 upper_limit <<= bits; 2025 2026 res += 1LL << (bits-2); 2027 res += 1LL << (2*(bits-2)); 2028 res += 1LL << (3*(bits-2)); 2029 res <<= bits; 2030 if (res > upper_limit) 2031 res = upper_limit; 2032 2033 if (res > MAX_LFS_FILESIZE) 2034 res = MAX_LFS_FILESIZE; 2035 2036 return res; 2037 } 2038 2039 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2040 ext4_fsblk_t logical_sb_block, int nr) 2041 { 2042 struct ext4_sb_info *sbi = EXT4_SB(sb); 2043 ext4_group_t bg, first_meta_bg; 2044 int has_super = 0; 2045 2046 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2047 2048 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) || 2049 nr < first_meta_bg) 2050 return logical_sb_block + nr + 1; 2051 bg = sbi->s_desc_per_block * nr; 2052 if (ext4_bg_has_super(sb, bg)) 2053 has_super = 1; 2054 2055 return (has_super + ext4_group_first_block_no(sb, bg)); 2056 } 2057 2058 /** 2059 * ext4_get_stripe_size: Get the stripe size. 2060 * @sbi: In memory super block info 2061 * 2062 * If we have specified it via mount option, then 2063 * use the mount option value. If the value specified at mount time is 2064 * greater than the blocks per group use the super block value. 2065 * If the super block value is greater than blocks per group return 0. 2066 * Allocator needs it be less than blocks per group. 2067 * 2068 */ 2069 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2070 { 2071 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2072 unsigned long stripe_width = 2073 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2074 2075 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2076 return sbi->s_stripe; 2077 2078 if (stripe_width <= sbi->s_blocks_per_group) 2079 return stripe_width; 2080 2081 if (stride <= sbi->s_blocks_per_group) 2082 return stride; 2083 2084 return 0; 2085 } 2086 2087 /* sysfs supprt */ 2088 2089 struct ext4_attr { 2090 struct attribute attr; 2091 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *); 2092 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *, 2093 const char *, size_t); 2094 int offset; 2095 }; 2096 2097 static int parse_strtoul(const char *buf, 2098 unsigned long max, unsigned long *value) 2099 { 2100 char *endp; 2101 2102 while (*buf && isspace(*buf)) 2103 buf++; 2104 *value = simple_strtoul(buf, &endp, 0); 2105 while (*endp && isspace(*endp)) 2106 endp++; 2107 if (*endp || *value > max) 2108 return -EINVAL; 2109 2110 return 0; 2111 } 2112 2113 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a, 2114 struct ext4_sb_info *sbi, 2115 char *buf) 2116 { 2117 return snprintf(buf, PAGE_SIZE, "%llu\n", 2118 (s64) percpu_counter_sum(&sbi->s_dirtyblocks_counter)); 2119 } 2120 2121 static ssize_t session_write_kbytes_show(struct ext4_attr *a, 2122 struct ext4_sb_info *sbi, char *buf) 2123 { 2124 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2125 2126 return snprintf(buf, PAGE_SIZE, "%lu\n", 2127 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2128 sbi->s_sectors_written_start) >> 1); 2129 } 2130 2131 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a, 2132 struct ext4_sb_info *sbi, char *buf) 2133 { 2134 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2135 2136 return snprintf(buf, PAGE_SIZE, "%llu\n", 2137 sbi->s_kbytes_written + 2138 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2139 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 2140 } 2141 2142 static ssize_t inode_readahead_blks_store(struct ext4_attr *a, 2143 struct ext4_sb_info *sbi, 2144 const char *buf, size_t count) 2145 { 2146 unsigned long t; 2147 2148 if (parse_strtoul(buf, 0x40000000, &t)) 2149 return -EINVAL; 2150 2151 if (!is_power_of_2(t)) 2152 return -EINVAL; 2153 2154 sbi->s_inode_readahead_blks = t; 2155 return count; 2156 } 2157 2158 static ssize_t sbi_ui_show(struct ext4_attr *a, 2159 struct ext4_sb_info *sbi, char *buf) 2160 { 2161 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset); 2162 2163 return snprintf(buf, PAGE_SIZE, "%u\n", *ui); 2164 } 2165 2166 static ssize_t sbi_ui_store(struct ext4_attr *a, 2167 struct ext4_sb_info *sbi, 2168 const char *buf, size_t count) 2169 { 2170 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset); 2171 unsigned long t; 2172 2173 if (parse_strtoul(buf, 0xffffffff, &t)) 2174 return -EINVAL; 2175 *ui = t; 2176 return count; 2177 } 2178 2179 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \ 2180 static struct ext4_attr ext4_attr_##_name = { \ 2181 .attr = {.name = __stringify(_name), .mode = _mode }, \ 2182 .show = _show, \ 2183 .store = _store, \ 2184 .offset = offsetof(struct ext4_sb_info, _elname), \ 2185 } 2186 #define EXT4_ATTR(name, mode, show, store) \ 2187 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store) 2188 2189 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL) 2190 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store) 2191 #define EXT4_RW_ATTR_SBI_UI(name, elname) \ 2192 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname) 2193 #define ATTR_LIST(name) &ext4_attr_##name.attr 2194 2195 EXT4_RO_ATTR(delayed_allocation_blocks); 2196 EXT4_RO_ATTR(session_write_kbytes); 2197 EXT4_RO_ATTR(lifetime_write_kbytes); 2198 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show, 2199 inode_readahead_blks_store, s_inode_readahead_blks); 2200 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal); 2201 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats); 2202 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan); 2203 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan); 2204 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs); 2205 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request); 2206 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc); 2207 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump); 2208 2209 static struct attribute *ext4_attrs[] = { 2210 ATTR_LIST(delayed_allocation_blocks), 2211 ATTR_LIST(session_write_kbytes), 2212 ATTR_LIST(lifetime_write_kbytes), 2213 ATTR_LIST(inode_readahead_blks), 2214 ATTR_LIST(inode_goal), 2215 ATTR_LIST(mb_stats), 2216 ATTR_LIST(mb_max_to_scan), 2217 ATTR_LIST(mb_min_to_scan), 2218 ATTR_LIST(mb_order2_req), 2219 ATTR_LIST(mb_stream_req), 2220 ATTR_LIST(mb_group_prealloc), 2221 ATTR_LIST(max_writeback_mb_bump), 2222 NULL, 2223 }; 2224 2225 static ssize_t ext4_attr_show(struct kobject *kobj, 2226 struct attribute *attr, char *buf) 2227 { 2228 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2229 s_kobj); 2230 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2231 2232 return a->show ? a->show(a, sbi, buf) : 0; 2233 } 2234 2235 static ssize_t ext4_attr_store(struct kobject *kobj, 2236 struct attribute *attr, 2237 const char *buf, size_t len) 2238 { 2239 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2240 s_kobj); 2241 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2242 2243 return a->store ? a->store(a, sbi, buf, len) : 0; 2244 } 2245 2246 static void ext4_sb_release(struct kobject *kobj) 2247 { 2248 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2249 s_kobj); 2250 complete(&sbi->s_kobj_unregister); 2251 } 2252 2253 2254 static struct sysfs_ops ext4_attr_ops = { 2255 .show = ext4_attr_show, 2256 .store = ext4_attr_store, 2257 }; 2258 2259 static struct kobj_type ext4_ktype = { 2260 .default_attrs = ext4_attrs, 2261 .sysfs_ops = &ext4_attr_ops, 2262 .release = ext4_sb_release, 2263 }; 2264 2265 /* 2266 * Check whether this filesystem can be mounted based on 2267 * the features present and the RDONLY/RDWR mount requested. 2268 * Returns 1 if this filesystem can be mounted as requested, 2269 * 0 if it cannot be. 2270 */ 2271 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2272 { 2273 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) { 2274 ext4_msg(sb, KERN_ERR, 2275 "Couldn't mount because of " 2276 "unsupported optional features (%x)", 2277 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2278 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2279 return 0; 2280 } 2281 2282 if (readonly) 2283 return 1; 2284 2285 /* Check that feature set is OK for a read-write mount */ 2286 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) { 2287 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 2288 "unsupported optional features (%x)", 2289 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2290 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2291 return 0; 2292 } 2293 /* 2294 * Large file size enabled file system can only be mounted 2295 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF 2296 */ 2297 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 2298 if (sizeof(blkcnt_t) < sizeof(u64)) { 2299 ext4_msg(sb, KERN_ERR, "Filesystem with huge files " 2300 "cannot be mounted RDWR without " 2301 "CONFIG_LBDAF"); 2302 return 0; 2303 } 2304 } 2305 return 1; 2306 } 2307 2308 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 2309 __releases(kernel_lock) 2310 __acquires(kernel_lock) 2311 { 2312 struct buffer_head *bh; 2313 struct ext4_super_block *es = NULL; 2314 struct ext4_sb_info *sbi; 2315 ext4_fsblk_t block; 2316 ext4_fsblk_t sb_block = get_sb_block(&data); 2317 ext4_fsblk_t logical_sb_block; 2318 unsigned long offset = 0; 2319 unsigned long journal_devnum = 0; 2320 unsigned long def_mount_opts; 2321 struct inode *root; 2322 char *cp; 2323 const char *descr; 2324 int ret = -EINVAL; 2325 int blocksize; 2326 unsigned int db_count; 2327 unsigned int i; 2328 int needs_recovery, has_huge_files; 2329 __u64 blocks_count; 2330 int err; 2331 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 2332 2333 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 2334 if (!sbi) 2335 return -ENOMEM; 2336 2337 sbi->s_blockgroup_lock = 2338 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 2339 if (!sbi->s_blockgroup_lock) { 2340 kfree(sbi); 2341 return -ENOMEM; 2342 } 2343 sb->s_fs_info = sbi; 2344 sbi->s_mount_opt = 0; 2345 sbi->s_resuid = EXT4_DEF_RESUID; 2346 sbi->s_resgid = EXT4_DEF_RESGID; 2347 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 2348 sbi->s_sb_block = sb_block; 2349 sbi->s_sectors_written_start = part_stat_read(sb->s_bdev->bd_part, 2350 sectors[1]); 2351 2352 unlock_kernel(); 2353 2354 /* Cleanup superblock name */ 2355 for (cp = sb->s_id; (cp = strchr(cp, '/'));) 2356 *cp = '!'; 2357 2358 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 2359 if (!blocksize) { 2360 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 2361 goto out_fail; 2362 } 2363 2364 /* 2365 * The ext4 superblock will not be buffer aligned for other than 1kB 2366 * block sizes. We need to calculate the offset from buffer start. 2367 */ 2368 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 2369 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 2370 offset = do_div(logical_sb_block, blocksize); 2371 } else { 2372 logical_sb_block = sb_block; 2373 } 2374 2375 if (!(bh = sb_bread(sb, logical_sb_block))) { 2376 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 2377 goto out_fail; 2378 } 2379 /* 2380 * Note: s_es must be initialized as soon as possible because 2381 * some ext4 macro-instructions depend on its value 2382 */ 2383 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset); 2384 sbi->s_es = es; 2385 sb->s_magic = le16_to_cpu(es->s_magic); 2386 if (sb->s_magic != EXT4_SUPER_MAGIC) 2387 goto cantfind_ext4; 2388 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 2389 2390 /* Set defaults before we parse the mount options */ 2391 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 2392 if (def_mount_opts & EXT4_DEFM_DEBUG) 2393 set_opt(sbi->s_mount_opt, DEBUG); 2394 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 2395 set_opt(sbi->s_mount_opt, GRPID); 2396 if (def_mount_opts & EXT4_DEFM_UID16) 2397 set_opt(sbi->s_mount_opt, NO_UID32); 2398 #ifdef CONFIG_EXT4_FS_XATTR 2399 if (def_mount_opts & EXT4_DEFM_XATTR_USER) 2400 set_opt(sbi->s_mount_opt, XATTR_USER); 2401 #endif 2402 #ifdef CONFIG_EXT4_FS_POSIX_ACL 2403 if (def_mount_opts & EXT4_DEFM_ACL) 2404 set_opt(sbi->s_mount_opt, POSIX_ACL); 2405 #endif 2406 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 2407 sbi->s_mount_opt |= EXT4_MOUNT_JOURNAL_DATA; 2408 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 2409 sbi->s_mount_opt |= EXT4_MOUNT_ORDERED_DATA; 2410 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 2411 sbi->s_mount_opt |= EXT4_MOUNT_WRITEBACK_DATA; 2412 2413 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 2414 set_opt(sbi->s_mount_opt, ERRORS_PANIC); 2415 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 2416 set_opt(sbi->s_mount_opt, ERRORS_CONT); 2417 else 2418 set_opt(sbi->s_mount_opt, ERRORS_RO); 2419 2420 sbi->s_resuid = le16_to_cpu(es->s_def_resuid); 2421 sbi->s_resgid = le16_to_cpu(es->s_def_resgid); 2422 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 2423 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 2424 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 2425 2426 set_opt(sbi->s_mount_opt, BARRIER); 2427 2428 /* 2429 * enable delayed allocation by default 2430 * Use -o nodelalloc to turn it off 2431 */ 2432 set_opt(sbi->s_mount_opt, DELALLOC); 2433 2434 if (!parse_options((char *) data, sb, &journal_devnum, 2435 &journal_ioprio, NULL, 0)) 2436 goto failed_mount; 2437 2438 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 2439 ((sbi->s_mount_opt & EXT4_MOUNT_POSIX_ACL) ? MS_POSIXACL : 0); 2440 2441 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 2442 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) || 2443 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) || 2444 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U))) 2445 ext4_msg(sb, KERN_WARNING, 2446 "feature flags set on rev 0 fs, " 2447 "running e2fsck is recommended"); 2448 2449 /* 2450 * Check feature flags regardless of the revision level, since we 2451 * previously didn't change the revision level when setting the flags, 2452 * so there is a chance incompat flags are set on a rev 0 filesystem. 2453 */ 2454 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY))) 2455 goto failed_mount; 2456 2457 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 2458 2459 if (blocksize < EXT4_MIN_BLOCK_SIZE || 2460 blocksize > EXT4_MAX_BLOCK_SIZE) { 2461 ext4_msg(sb, KERN_ERR, 2462 "Unsupported filesystem blocksize %d", blocksize); 2463 goto failed_mount; 2464 } 2465 2466 if (sb->s_blocksize != blocksize) { 2467 /* Validate the filesystem blocksize */ 2468 if (!sb_set_blocksize(sb, blocksize)) { 2469 ext4_msg(sb, KERN_ERR, "bad block size %d", 2470 blocksize); 2471 goto failed_mount; 2472 } 2473 2474 brelse(bh); 2475 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 2476 offset = do_div(logical_sb_block, blocksize); 2477 bh = sb_bread(sb, logical_sb_block); 2478 if (!bh) { 2479 ext4_msg(sb, KERN_ERR, 2480 "Can't read superblock on 2nd try"); 2481 goto failed_mount; 2482 } 2483 es = (struct ext4_super_block *)(((char *)bh->b_data) + offset); 2484 sbi->s_es = es; 2485 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 2486 ext4_msg(sb, KERN_ERR, 2487 "Magic mismatch, very weird!"); 2488 goto failed_mount; 2489 } 2490 } 2491 2492 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb, 2493 EXT4_FEATURE_RO_COMPAT_HUGE_FILE); 2494 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 2495 has_huge_files); 2496 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 2497 2498 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 2499 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 2500 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 2501 } else { 2502 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 2503 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 2504 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 2505 (!is_power_of_2(sbi->s_inode_size)) || 2506 (sbi->s_inode_size > blocksize)) { 2507 ext4_msg(sb, KERN_ERR, 2508 "unsupported inode size: %d", 2509 sbi->s_inode_size); 2510 goto failed_mount; 2511 } 2512 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 2513 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 2514 } 2515 2516 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 2517 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) { 2518 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 2519 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 2520 !is_power_of_2(sbi->s_desc_size)) { 2521 ext4_msg(sb, KERN_ERR, 2522 "unsupported descriptor size %lu", 2523 sbi->s_desc_size); 2524 goto failed_mount; 2525 } 2526 } else 2527 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 2528 2529 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 2530 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 2531 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0) 2532 goto cantfind_ext4; 2533 2534 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 2535 if (sbi->s_inodes_per_block == 0) 2536 goto cantfind_ext4; 2537 sbi->s_itb_per_group = sbi->s_inodes_per_group / 2538 sbi->s_inodes_per_block; 2539 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 2540 sbi->s_sbh = bh; 2541 sbi->s_mount_state = le16_to_cpu(es->s_state); 2542 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 2543 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 2544 2545 for (i = 0; i < 4; i++) 2546 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 2547 sbi->s_def_hash_version = es->s_def_hash_version; 2548 i = le32_to_cpu(es->s_flags); 2549 if (i & EXT2_FLAGS_UNSIGNED_HASH) 2550 sbi->s_hash_unsigned = 3; 2551 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 2552 #ifdef __CHAR_UNSIGNED__ 2553 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 2554 sbi->s_hash_unsigned = 3; 2555 #else 2556 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 2557 #endif 2558 sb->s_dirt = 1; 2559 } 2560 2561 if (sbi->s_blocks_per_group > blocksize * 8) { 2562 ext4_msg(sb, KERN_ERR, 2563 "#blocks per group too big: %lu", 2564 sbi->s_blocks_per_group); 2565 goto failed_mount; 2566 } 2567 if (sbi->s_inodes_per_group > blocksize * 8) { 2568 ext4_msg(sb, KERN_ERR, 2569 "#inodes per group too big: %lu", 2570 sbi->s_inodes_per_group); 2571 goto failed_mount; 2572 } 2573 2574 /* 2575 * Test whether we have more sectors than will fit in sector_t, 2576 * and whether the max offset is addressable by the page cache. 2577 */ 2578 if ((ext4_blocks_count(es) > 2579 (sector_t)(~0ULL) >> (sb->s_blocksize_bits - 9)) || 2580 (ext4_blocks_count(es) > 2581 (pgoff_t)(~0ULL) >> (PAGE_CACHE_SHIFT - sb->s_blocksize_bits))) { 2582 ext4_msg(sb, KERN_ERR, "filesystem" 2583 " too large to mount safely on this system"); 2584 if (sizeof(sector_t) < 8) 2585 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 2586 ret = -EFBIG; 2587 goto failed_mount; 2588 } 2589 2590 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 2591 goto cantfind_ext4; 2592 2593 /* check blocks count against device size */ 2594 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 2595 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 2596 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 2597 "exceeds size of device (%llu blocks)", 2598 ext4_blocks_count(es), blocks_count); 2599 goto failed_mount; 2600 } 2601 2602 /* 2603 * It makes no sense for the first data block to be beyond the end 2604 * of the filesystem. 2605 */ 2606 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 2607 ext4_msg(sb, KERN_WARNING, "bad geometry: first data" 2608 "block %u is beyond end of filesystem (%llu)", 2609 le32_to_cpu(es->s_first_data_block), 2610 ext4_blocks_count(es)); 2611 goto failed_mount; 2612 } 2613 blocks_count = (ext4_blocks_count(es) - 2614 le32_to_cpu(es->s_first_data_block) + 2615 EXT4_BLOCKS_PER_GROUP(sb) - 1); 2616 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 2617 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 2618 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 2619 "(block count %llu, first data block %u, " 2620 "blocks per group %lu)", sbi->s_groups_count, 2621 ext4_blocks_count(es), 2622 le32_to_cpu(es->s_first_data_block), 2623 EXT4_BLOCKS_PER_GROUP(sb)); 2624 goto failed_mount; 2625 } 2626 sbi->s_groups_count = blocks_count; 2627 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 2628 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 2629 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 2630 EXT4_DESC_PER_BLOCK(sb); 2631 sbi->s_group_desc = kmalloc(db_count * sizeof(struct buffer_head *), 2632 GFP_KERNEL); 2633 if (sbi->s_group_desc == NULL) { 2634 ext4_msg(sb, KERN_ERR, "not enough memory"); 2635 goto failed_mount; 2636 } 2637 2638 #ifdef CONFIG_PROC_FS 2639 if (ext4_proc_root) 2640 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root); 2641 #endif 2642 2643 bgl_lock_init(sbi->s_blockgroup_lock); 2644 2645 for (i = 0; i < db_count; i++) { 2646 block = descriptor_loc(sb, logical_sb_block, i); 2647 sbi->s_group_desc[i] = sb_bread(sb, block); 2648 if (!sbi->s_group_desc[i]) { 2649 ext4_msg(sb, KERN_ERR, 2650 "can't read group descriptor %d", i); 2651 db_count = i; 2652 goto failed_mount2; 2653 } 2654 } 2655 if (!ext4_check_descriptors(sb)) { 2656 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 2657 goto failed_mount2; 2658 } 2659 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 2660 if (!ext4_fill_flex_info(sb)) { 2661 ext4_msg(sb, KERN_ERR, 2662 "unable to initialize " 2663 "flex_bg meta info!"); 2664 goto failed_mount2; 2665 } 2666 2667 sbi->s_gdb_count = db_count; 2668 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 2669 spin_lock_init(&sbi->s_next_gen_lock); 2670 2671 err = percpu_counter_init(&sbi->s_freeblocks_counter, 2672 ext4_count_free_blocks(sb)); 2673 if (!err) { 2674 err = percpu_counter_init(&sbi->s_freeinodes_counter, 2675 ext4_count_free_inodes(sb)); 2676 } 2677 if (!err) { 2678 err = percpu_counter_init(&sbi->s_dirs_counter, 2679 ext4_count_dirs(sb)); 2680 } 2681 if (!err) { 2682 err = percpu_counter_init(&sbi->s_dirtyblocks_counter, 0); 2683 } 2684 if (err) { 2685 ext4_msg(sb, KERN_ERR, "insufficient memory"); 2686 goto failed_mount3; 2687 } 2688 2689 sbi->s_stripe = ext4_get_stripe_size(sbi); 2690 sbi->s_max_writeback_mb_bump = 128; 2691 2692 /* 2693 * set up enough so that it can read an inode 2694 */ 2695 if (!test_opt(sb, NOLOAD) && 2696 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) 2697 sb->s_op = &ext4_sops; 2698 else 2699 sb->s_op = &ext4_nojournal_sops; 2700 sb->s_export_op = &ext4_export_ops; 2701 sb->s_xattr = ext4_xattr_handlers; 2702 #ifdef CONFIG_QUOTA 2703 sb->s_qcop = &ext4_qctl_operations; 2704 sb->dq_op = &ext4_quota_operations; 2705 #endif 2706 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 2707 mutex_init(&sbi->s_orphan_lock); 2708 mutex_init(&sbi->s_resize_lock); 2709 2710 sb->s_root = NULL; 2711 2712 needs_recovery = (es->s_last_orphan != 0 || 2713 EXT4_HAS_INCOMPAT_FEATURE(sb, 2714 EXT4_FEATURE_INCOMPAT_RECOVER)); 2715 2716 /* 2717 * The first inode we look at is the journal inode. Don't try 2718 * root first: it may be modified in the journal! 2719 */ 2720 if (!test_opt(sb, NOLOAD) && 2721 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 2722 if (ext4_load_journal(sb, es, journal_devnum)) 2723 goto failed_mount3; 2724 if (!(sb->s_flags & MS_RDONLY) && 2725 EXT4_SB(sb)->s_journal->j_failed_commit) { 2726 ext4_msg(sb, KERN_CRIT, "error: " 2727 "ext4_fill_super: Journal transaction " 2728 "%u is corrupt", 2729 EXT4_SB(sb)->s_journal->j_failed_commit); 2730 if (test_opt(sb, ERRORS_RO)) { 2731 ext4_msg(sb, KERN_CRIT, 2732 "Mounting filesystem read-only"); 2733 sb->s_flags |= MS_RDONLY; 2734 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 2735 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 2736 } 2737 if (test_opt(sb, ERRORS_PANIC)) { 2738 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 2739 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 2740 ext4_commit_super(sb, 1); 2741 goto failed_mount4; 2742 } 2743 } 2744 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) && 2745 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 2746 ext4_msg(sb, KERN_ERR, "required journal recovery " 2747 "suppressed and not mounted read-only"); 2748 goto failed_mount4; 2749 } else { 2750 clear_opt(sbi->s_mount_opt, DATA_FLAGS); 2751 set_opt(sbi->s_mount_opt, WRITEBACK_DATA); 2752 sbi->s_journal = NULL; 2753 needs_recovery = 0; 2754 goto no_journal; 2755 } 2756 2757 if (ext4_blocks_count(es) > 0xffffffffULL && 2758 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 2759 JBD2_FEATURE_INCOMPAT_64BIT)) { 2760 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 2761 goto failed_mount4; 2762 } 2763 2764 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 2765 jbd2_journal_set_features(sbi->s_journal, 2766 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 2767 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 2768 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 2769 jbd2_journal_set_features(sbi->s_journal, 2770 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 0); 2771 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 2772 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 2773 } else { 2774 jbd2_journal_clear_features(sbi->s_journal, 2775 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 2776 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 2777 } 2778 2779 /* We have now updated the journal if required, so we can 2780 * validate the data journaling mode. */ 2781 switch (test_opt(sb, DATA_FLAGS)) { 2782 case 0: 2783 /* No mode set, assume a default based on the journal 2784 * capabilities: ORDERED_DATA if the journal can 2785 * cope, else JOURNAL_DATA 2786 */ 2787 if (jbd2_journal_check_available_features 2788 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) 2789 set_opt(sbi->s_mount_opt, ORDERED_DATA); 2790 else 2791 set_opt(sbi->s_mount_opt, JOURNAL_DATA); 2792 break; 2793 2794 case EXT4_MOUNT_ORDERED_DATA: 2795 case EXT4_MOUNT_WRITEBACK_DATA: 2796 if (!jbd2_journal_check_available_features 2797 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 2798 ext4_msg(sb, KERN_ERR, "Journal does not support " 2799 "requested data journaling mode"); 2800 goto failed_mount4; 2801 } 2802 default: 2803 break; 2804 } 2805 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 2806 2807 no_journal: 2808 2809 if (test_opt(sb, NOBH)) { 2810 if (!(test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)) { 2811 ext4_msg(sb, KERN_WARNING, "Ignoring nobh option - " 2812 "its supported only with writeback mode"); 2813 clear_opt(sbi->s_mount_opt, NOBH); 2814 } 2815 } 2816 EXT4_SB(sb)->dio_unwritten_wq = create_workqueue("ext4-dio-unwritten"); 2817 if (!EXT4_SB(sb)->dio_unwritten_wq) { 2818 printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n"); 2819 goto failed_mount_wq; 2820 } 2821 2822 /* 2823 * The jbd2_journal_load will have done any necessary log recovery, 2824 * so we can safely mount the rest of the filesystem now. 2825 */ 2826 2827 root = ext4_iget(sb, EXT4_ROOT_INO); 2828 if (IS_ERR(root)) { 2829 ext4_msg(sb, KERN_ERR, "get root inode failed"); 2830 ret = PTR_ERR(root); 2831 goto failed_mount4; 2832 } 2833 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 2834 iput(root); 2835 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 2836 goto failed_mount4; 2837 } 2838 sb->s_root = d_alloc_root(root); 2839 if (!sb->s_root) { 2840 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 2841 iput(root); 2842 ret = -ENOMEM; 2843 goto failed_mount4; 2844 } 2845 2846 ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY); 2847 2848 /* determine the minimum size of new large inodes, if present */ 2849 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 2850 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 2851 EXT4_GOOD_OLD_INODE_SIZE; 2852 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 2853 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) { 2854 if (sbi->s_want_extra_isize < 2855 le16_to_cpu(es->s_want_extra_isize)) 2856 sbi->s_want_extra_isize = 2857 le16_to_cpu(es->s_want_extra_isize); 2858 if (sbi->s_want_extra_isize < 2859 le16_to_cpu(es->s_min_extra_isize)) 2860 sbi->s_want_extra_isize = 2861 le16_to_cpu(es->s_min_extra_isize); 2862 } 2863 } 2864 /* Check if enough inode space is available */ 2865 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 2866 sbi->s_inode_size) { 2867 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 2868 EXT4_GOOD_OLD_INODE_SIZE; 2869 ext4_msg(sb, KERN_INFO, "required extra inode space not" 2870 "available"); 2871 } 2872 2873 if (test_opt(sb, DELALLOC) && 2874 (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) { 2875 ext4_msg(sb, KERN_WARNING, "Ignoring delalloc option - " 2876 "requested data journaling mode"); 2877 clear_opt(sbi->s_mount_opt, DELALLOC); 2878 } 2879 2880 err = ext4_setup_system_zone(sb); 2881 if (err) { 2882 ext4_msg(sb, KERN_ERR, "failed to initialize system " 2883 "zone (%d)\n", err); 2884 goto failed_mount4; 2885 } 2886 2887 ext4_ext_init(sb); 2888 err = ext4_mb_init(sb, needs_recovery); 2889 if (err) { 2890 ext4_msg(sb, KERN_ERR, "failed to initalize mballoc (%d)", 2891 err); 2892 goto failed_mount4; 2893 } 2894 2895 sbi->s_kobj.kset = ext4_kset; 2896 init_completion(&sbi->s_kobj_unregister); 2897 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL, 2898 "%s", sb->s_id); 2899 if (err) { 2900 ext4_mb_release(sb); 2901 ext4_ext_release(sb); 2902 goto failed_mount4; 2903 }; 2904 2905 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 2906 ext4_orphan_cleanup(sb, es); 2907 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 2908 if (needs_recovery) { 2909 ext4_msg(sb, KERN_INFO, "recovery complete"); 2910 ext4_mark_recovery_complete(sb, es); 2911 } 2912 if (EXT4_SB(sb)->s_journal) { 2913 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 2914 descr = " journalled data mode"; 2915 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 2916 descr = " ordered data mode"; 2917 else 2918 descr = " writeback data mode"; 2919 } else 2920 descr = "out journal"; 2921 2922 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s", descr); 2923 2924 lock_kernel(); 2925 return 0; 2926 2927 cantfind_ext4: 2928 if (!silent) 2929 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 2930 goto failed_mount; 2931 2932 failed_mount4: 2933 ext4_msg(sb, KERN_ERR, "mount failed"); 2934 destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq); 2935 failed_mount_wq: 2936 ext4_release_system_zone(sb); 2937 if (sbi->s_journal) { 2938 jbd2_journal_destroy(sbi->s_journal); 2939 sbi->s_journal = NULL; 2940 } 2941 failed_mount3: 2942 if (sbi->s_flex_groups) { 2943 if (is_vmalloc_addr(sbi->s_flex_groups)) 2944 vfree(sbi->s_flex_groups); 2945 else 2946 kfree(sbi->s_flex_groups); 2947 } 2948 percpu_counter_destroy(&sbi->s_freeblocks_counter); 2949 percpu_counter_destroy(&sbi->s_freeinodes_counter); 2950 percpu_counter_destroy(&sbi->s_dirs_counter); 2951 percpu_counter_destroy(&sbi->s_dirtyblocks_counter); 2952 failed_mount2: 2953 for (i = 0; i < db_count; i++) 2954 brelse(sbi->s_group_desc[i]); 2955 kfree(sbi->s_group_desc); 2956 failed_mount: 2957 if (sbi->s_proc) { 2958 remove_proc_entry(sb->s_id, ext4_proc_root); 2959 } 2960 #ifdef CONFIG_QUOTA 2961 for (i = 0; i < MAXQUOTAS; i++) 2962 kfree(sbi->s_qf_names[i]); 2963 #endif 2964 ext4_blkdev_remove(sbi); 2965 brelse(bh); 2966 out_fail: 2967 sb->s_fs_info = NULL; 2968 kfree(sbi->s_blockgroup_lock); 2969 kfree(sbi); 2970 lock_kernel(); 2971 return ret; 2972 } 2973 2974 /* 2975 * Setup any per-fs journal parameters now. We'll do this both on 2976 * initial mount, once the journal has been initialised but before we've 2977 * done any recovery; and again on any subsequent remount. 2978 */ 2979 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 2980 { 2981 struct ext4_sb_info *sbi = EXT4_SB(sb); 2982 2983 journal->j_commit_interval = sbi->s_commit_interval; 2984 journal->j_min_batch_time = sbi->s_min_batch_time; 2985 journal->j_max_batch_time = sbi->s_max_batch_time; 2986 2987 spin_lock(&journal->j_state_lock); 2988 if (test_opt(sb, BARRIER)) 2989 journal->j_flags |= JBD2_BARRIER; 2990 else 2991 journal->j_flags &= ~JBD2_BARRIER; 2992 if (test_opt(sb, DATA_ERR_ABORT)) 2993 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 2994 else 2995 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 2996 spin_unlock(&journal->j_state_lock); 2997 } 2998 2999 static journal_t *ext4_get_journal(struct super_block *sb, 3000 unsigned int journal_inum) 3001 { 3002 struct inode *journal_inode; 3003 journal_t *journal; 3004 3005 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 3006 3007 /* First, test for the existence of a valid inode on disk. Bad 3008 * things happen if we iget() an unused inode, as the subsequent 3009 * iput() will try to delete it. */ 3010 3011 journal_inode = ext4_iget(sb, journal_inum); 3012 if (IS_ERR(journal_inode)) { 3013 ext4_msg(sb, KERN_ERR, "no journal found"); 3014 return NULL; 3015 } 3016 if (!journal_inode->i_nlink) { 3017 make_bad_inode(journal_inode); 3018 iput(journal_inode); 3019 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 3020 return NULL; 3021 } 3022 3023 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 3024 journal_inode, journal_inode->i_size); 3025 if (!S_ISREG(journal_inode->i_mode)) { 3026 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 3027 iput(journal_inode); 3028 return NULL; 3029 } 3030 3031 journal = jbd2_journal_init_inode(journal_inode); 3032 if (!journal) { 3033 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 3034 iput(journal_inode); 3035 return NULL; 3036 } 3037 journal->j_private = sb; 3038 ext4_init_journal_params(sb, journal); 3039 return journal; 3040 } 3041 3042 static journal_t *ext4_get_dev_journal(struct super_block *sb, 3043 dev_t j_dev) 3044 { 3045 struct buffer_head *bh; 3046 journal_t *journal; 3047 ext4_fsblk_t start; 3048 ext4_fsblk_t len; 3049 int hblock, blocksize; 3050 ext4_fsblk_t sb_block; 3051 unsigned long offset; 3052 struct ext4_super_block *es; 3053 struct block_device *bdev; 3054 3055 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 3056 3057 bdev = ext4_blkdev_get(j_dev, sb); 3058 if (bdev == NULL) 3059 return NULL; 3060 3061 if (bd_claim(bdev, sb)) { 3062 ext4_msg(sb, KERN_ERR, 3063 "failed to claim external journal device"); 3064 blkdev_put(bdev, FMODE_READ|FMODE_WRITE); 3065 return NULL; 3066 } 3067 3068 blocksize = sb->s_blocksize; 3069 hblock = bdev_logical_block_size(bdev); 3070 if (blocksize < hblock) { 3071 ext4_msg(sb, KERN_ERR, 3072 "blocksize too small for journal device"); 3073 goto out_bdev; 3074 } 3075 3076 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 3077 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 3078 set_blocksize(bdev, blocksize); 3079 if (!(bh = __bread(bdev, sb_block, blocksize))) { 3080 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 3081 "external journal"); 3082 goto out_bdev; 3083 } 3084 3085 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset); 3086 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 3087 !(le32_to_cpu(es->s_feature_incompat) & 3088 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 3089 ext4_msg(sb, KERN_ERR, "external journal has " 3090 "bad superblock"); 3091 brelse(bh); 3092 goto out_bdev; 3093 } 3094 3095 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 3096 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 3097 brelse(bh); 3098 goto out_bdev; 3099 } 3100 3101 len = ext4_blocks_count(es); 3102 start = sb_block + 1; 3103 brelse(bh); /* we're done with the superblock */ 3104 3105 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 3106 start, len, blocksize); 3107 if (!journal) { 3108 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 3109 goto out_bdev; 3110 } 3111 journal->j_private = sb; 3112 ll_rw_block(READ, 1, &journal->j_sb_buffer); 3113 wait_on_buffer(journal->j_sb_buffer); 3114 if (!buffer_uptodate(journal->j_sb_buffer)) { 3115 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 3116 goto out_journal; 3117 } 3118 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 3119 ext4_msg(sb, KERN_ERR, "External journal has more than one " 3120 "user (unsupported) - %d", 3121 be32_to_cpu(journal->j_superblock->s_nr_users)); 3122 goto out_journal; 3123 } 3124 EXT4_SB(sb)->journal_bdev = bdev; 3125 ext4_init_journal_params(sb, journal); 3126 return journal; 3127 3128 out_journal: 3129 jbd2_journal_destroy(journal); 3130 out_bdev: 3131 ext4_blkdev_put(bdev); 3132 return NULL; 3133 } 3134 3135 static int ext4_load_journal(struct super_block *sb, 3136 struct ext4_super_block *es, 3137 unsigned long journal_devnum) 3138 { 3139 journal_t *journal; 3140 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 3141 dev_t journal_dev; 3142 int err = 0; 3143 int really_read_only; 3144 3145 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 3146 3147 if (journal_devnum && 3148 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 3149 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 3150 "numbers have changed"); 3151 journal_dev = new_decode_dev(journal_devnum); 3152 } else 3153 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 3154 3155 really_read_only = bdev_read_only(sb->s_bdev); 3156 3157 /* 3158 * Are we loading a blank journal or performing recovery after a 3159 * crash? For recovery, we need to check in advance whether we 3160 * can get read-write access to the device. 3161 */ 3162 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 3163 if (sb->s_flags & MS_RDONLY) { 3164 ext4_msg(sb, KERN_INFO, "INFO: recovery " 3165 "required on readonly filesystem"); 3166 if (really_read_only) { 3167 ext4_msg(sb, KERN_ERR, "write access " 3168 "unavailable, cannot proceed"); 3169 return -EROFS; 3170 } 3171 ext4_msg(sb, KERN_INFO, "write access will " 3172 "be enabled during recovery"); 3173 } 3174 } 3175 3176 if (journal_inum && journal_dev) { 3177 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 3178 "and inode journals!"); 3179 return -EINVAL; 3180 } 3181 3182 if (journal_inum) { 3183 if (!(journal = ext4_get_journal(sb, journal_inum))) 3184 return -EINVAL; 3185 } else { 3186 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 3187 return -EINVAL; 3188 } 3189 3190 if (!(journal->j_flags & JBD2_BARRIER)) 3191 ext4_msg(sb, KERN_INFO, "barriers disabled"); 3192 3193 if (!really_read_only && test_opt(sb, UPDATE_JOURNAL)) { 3194 err = jbd2_journal_update_format(journal); 3195 if (err) { 3196 ext4_msg(sb, KERN_ERR, "error updating journal"); 3197 jbd2_journal_destroy(journal); 3198 return err; 3199 } 3200 } 3201 3202 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) 3203 err = jbd2_journal_wipe(journal, !really_read_only); 3204 if (!err) 3205 err = jbd2_journal_load(journal); 3206 3207 if (err) { 3208 ext4_msg(sb, KERN_ERR, "error loading journal"); 3209 jbd2_journal_destroy(journal); 3210 return err; 3211 } 3212 3213 EXT4_SB(sb)->s_journal = journal; 3214 ext4_clear_journal_err(sb, es); 3215 3216 if (journal_devnum && 3217 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 3218 es->s_journal_dev = cpu_to_le32(journal_devnum); 3219 3220 /* Make sure we flush the recovery flag to disk. */ 3221 ext4_commit_super(sb, 1); 3222 } 3223 3224 return 0; 3225 } 3226 3227 static int ext4_commit_super(struct super_block *sb, int sync) 3228 { 3229 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 3230 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 3231 int error = 0; 3232 3233 if (!sbh) 3234 return error; 3235 if (buffer_write_io_error(sbh)) { 3236 /* 3237 * Oh, dear. A previous attempt to write the 3238 * superblock failed. This could happen because the 3239 * USB device was yanked out. Or it could happen to 3240 * be a transient write error and maybe the block will 3241 * be remapped. Nothing we can do but to retry the 3242 * write and hope for the best. 3243 */ 3244 ext4_msg(sb, KERN_ERR, "previous I/O error to " 3245 "superblock detected"); 3246 clear_buffer_write_io_error(sbh); 3247 set_buffer_uptodate(sbh); 3248 } 3249 /* 3250 * If the file system is mounted read-only, don't update the 3251 * superblock write time. This avoids updating the superblock 3252 * write time when we are mounting the root file system 3253 * read/only but we need to replay the journal; at that point, 3254 * for people who are east of GMT and who make their clock 3255 * tick in localtime for Windows bug-for-bug compatibility, 3256 * the clock is set in the future, and this will cause e2fsck 3257 * to complain and force a full file system check. 3258 */ 3259 if (!(sb->s_flags & MS_RDONLY)) 3260 es->s_wtime = cpu_to_le32(get_seconds()); 3261 es->s_kbytes_written = 3262 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 3263 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 3264 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 3265 ext4_free_blocks_count_set(es, percpu_counter_sum_positive( 3266 &EXT4_SB(sb)->s_freeblocks_counter)); 3267 es->s_free_inodes_count = cpu_to_le32(percpu_counter_sum_positive( 3268 &EXT4_SB(sb)->s_freeinodes_counter)); 3269 sb->s_dirt = 0; 3270 BUFFER_TRACE(sbh, "marking dirty"); 3271 mark_buffer_dirty(sbh); 3272 if (sync) { 3273 error = sync_dirty_buffer(sbh); 3274 if (error) 3275 return error; 3276 3277 error = buffer_write_io_error(sbh); 3278 if (error) { 3279 ext4_msg(sb, KERN_ERR, "I/O error while writing " 3280 "superblock"); 3281 clear_buffer_write_io_error(sbh); 3282 set_buffer_uptodate(sbh); 3283 } 3284 } 3285 return error; 3286 } 3287 3288 /* 3289 * Have we just finished recovery? If so, and if we are mounting (or 3290 * remounting) the filesystem readonly, then we will end up with a 3291 * consistent fs on disk. Record that fact. 3292 */ 3293 static void ext4_mark_recovery_complete(struct super_block *sb, 3294 struct ext4_super_block *es) 3295 { 3296 journal_t *journal = EXT4_SB(sb)->s_journal; 3297 3298 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 3299 BUG_ON(journal != NULL); 3300 return; 3301 } 3302 jbd2_journal_lock_updates(journal); 3303 if (jbd2_journal_flush(journal) < 0) 3304 goto out; 3305 3306 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) && 3307 sb->s_flags & MS_RDONLY) { 3308 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 3309 ext4_commit_super(sb, 1); 3310 } 3311 3312 out: 3313 jbd2_journal_unlock_updates(journal); 3314 } 3315 3316 /* 3317 * If we are mounting (or read-write remounting) a filesystem whose journal 3318 * has recorded an error from a previous lifetime, move that error to the 3319 * main filesystem now. 3320 */ 3321 static void ext4_clear_journal_err(struct super_block *sb, 3322 struct ext4_super_block *es) 3323 { 3324 journal_t *journal; 3325 int j_errno; 3326 const char *errstr; 3327 3328 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 3329 3330 journal = EXT4_SB(sb)->s_journal; 3331 3332 /* 3333 * Now check for any error status which may have been recorded in the 3334 * journal by a prior ext4_error() or ext4_abort() 3335 */ 3336 3337 j_errno = jbd2_journal_errno(journal); 3338 if (j_errno) { 3339 char nbuf[16]; 3340 3341 errstr = ext4_decode_error(sb, j_errno, nbuf); 3342 ext4_warning(sb, __func__, "Filesystem error recorded " 3343 "from previous mount: %s", errstr); 3344 ext4_warning(sb, __func__, "Marking fs in need of " 3345 "filesystem check."); 3346 3347 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 3348 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 3349 ext4_commit_super(sb, 1); 3350 3351 jbd2_journal_clear_err(journal); 3352 } 3353 } 3354 3355 /* 3356 * Force the running and committing transactions to commit, 3357 * and wait on the commit. 3358 */ 3359 int ext4_force_commit(struct super_block *sb) 3360 { 3361 journal_t *journal; 3362 int ret = 0; 3363 3364 if (sb->s_flags & MS_RDONLY) 3365 return 0; 3366 3367 journal = EXT4_SB(sb)->s_journal; 3368 if (journal) 3369 ret = ext4_journal_force_commit(journal); 3370 3371 return ret; 3372 } 3373 3374 static void ext4_write_super(struct super_block *sb) 3375 { 3376 lock_super(sb); 3377 ext4_commit_super(sb, 1); 3378 unlock_super(sb); 3379 } 3380 3381 static int ext4_sync_fs(struct super_block *sb, int wait) 3382 { 3383 int ret = 0; 3384 tid_t target; 3385 struct ext4_sb_info *sbi = EXT4_SB(sb); 3386 3387 trace_ext4_sync_fs(sb, wait); 3388 flush_workqueue(sbi->dio_unwritten_wq); 3389 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 3390 if (wait) 3391 jbd2_log_wait_commit(sbi->s_journal, target); 3392 } 3393 return ret; 3394 } 3395 3396 /* 3397 * LVM calls this function before a (read-only) snapshot is created. This 3398 * gives us a chance to flush the journal completely and mark the fs clean. 3399 */ 3400 static int ext4_freeze(struct super_block *sb) 3401 { 3402 int error = 0; 3403 journal_t *journal; 3404 3405 if (sb->s_flags & MS_RDONLY) 3406 return 0; 3407 3408 journal = EXT4_SB(sb)->s_journal; 3409 3410 /* Now we set up the journal barrier. */ 3411 jbd2_journal_lock_updates(journal); 3412 3413 /* 3414 * Don't clear the needs_recovery flag if we failed to flush 3415 * the journal. 3416 */ 3417 error = jbd2_journal_flush(journal); 3418 if (error < 0) { 3419 out: 3420 jbd2_journal_unlock_updates(journal); 3421 return error; 3422 } 3423 3424 /* Journal blocked and flushed, clear needs_recovery flag. */ 3425 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 3426 error = ext4_commit_super(sb, 1); 3427 if (error) 3428 goto out; 3429 return 0; 3430 } 3431 3432 /* 3433 * Called by LVM after the snapshot is done. We need to reset the RECOVER 3434 * flag here, even though the filesystem is not technically dirty yet. 3435 */ 3436 static int ext4_unfreeze(struct super_block *sb) 3437 { 3438 if (sb->s_flags & MS_RDONLY) 3439 return 0; 3440 3441 lock_super(sb); 3442 /* Reset the needs_recovery flag before the fs is unlocked. */ 3443 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 3444 ext4_commit_super(sb, 1); 3445 unlock_super(sb); 3446 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 3447 return 0; 3448 } 3449 3450 static int ext4_remount(struct super_block *sb, int *flags, char *data) 3451 { 3452 struct ext4_super_block *es; 3453 struct ext4_sb_info *sbi = EXT4_SB(sb); 3454 ext4_fsblk_t n_blocks_count = 0; 3455 unsigned long old_sb_flags; 3456 struct ext4_mount_options old_opts; 3457 ext4_group_t g; 3458 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3459 int err; 3460 #ifdef CONFIG_QUOTA 3461 int i; 3462 #endif 3463 3464 lock_kernel(); 3465 3466 /* Store the original options */ 3467 lock_super(sb); 3468 old_sb_flags = sb->s_flags; 3469 old_opts.s_mount_opt = sbi->s_mount_opt; 3470 old_opts.s_resuid = sbi->s_resuid; 3471 old_opts.s_resgid = sbi->s_resgid; 3472 old_opts.s_commit_interval = sbi->s_commit_interval; 3473 old_opts.s_min_batch_time = sbi->s_min_batch_time; 3474 old_opts.s_max_batch_time = sbi->s_max_batch_time; 3475 #ifdef CONFIG_QUOTA 3476 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 3477 for (i = 0; i < MAXQUOTAS; i++) 3478 old_opts.s_qf_names[i] = sbi->s_qf_names[i]; 3479 #endif 3480 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 3481 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 3482 3483 /* 3484 * Allow the "check" option to be passed as a remount option. 3485 */ 3486 if (!parse_options(data, sb, NULL, &journal_ioprio, 3487 &n_blocks_count, 1)) { 3488 err = -EINVAL; 3489 goto restore_opts; 3490 } 3491 3492 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 3493 ext4_abort(sb, __func__, "Abort forced by user"); 3494 3495 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 3496 ((sbi->s_mount_opt & EXT4_MOUNT_POSIX_ACL) ? MS_POSIXACL : 0); 3497 3498 es = sbi->s_es; 3499 3500 if (sbi->s_journal) { 3501 ext4_init_journal_params(sb, sbi->s_journal); 3502 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 3503 } 3504 3505 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY) || 3506 n_blocks_count > ext4_blocks_count(es)) { 3507 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 3508 err = -EROFS; 3509 goto restore_opts; 3510 } 3511 3512 if (*flags & MS_RDONLY) { 3513 /* 3514 * First of all, the unconditional stuff we have to do 3515 * to disable replay of the journal when we next remount 3516 */ 3517 sb->s_flags |= MS_RDONLY; 3518 3519 /* 3520 * OK, test if we are remounting a valid rw partition 3521 * readonly, and if so set the rdonly flag and then 3522 * mark the partition as valid again. 3523 */ 3524 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 3525 (sbi->s_mount_state & EXT4_VALID_FS)) 3526 es->s_state = cpu_to_le16(sbi->s_mount_state); 3527 3528 if (sbi->s_journal) 3529 ext4_mark_recovery_complete(sb, es); 3530 } else { 3531 /* Make sure we can mount this feature set readwrite */ 3532 if (!ext4_feature_set_ok(sb, 0)) { 3533 err = -EROFS; 3534 goto restore_opts; 3535 } 3536 /* 3537 * Make sure the group descriptor checksums 3538 * are sane. If they aren't, refuse to remount r/w. 3539 */ 3540 for (g = 0; g < sbi->s_groups_count; g++) { 3541 struct ext4_group_desc *gdp = 3542 ext4_get_group_desc(sb, g, NULL); 3543 3544 if (!ext4_group_desc_csum_verify(sbi, g, gdp)) { 3545 ext4_msg(sb, KERN_ERR, 3546 "ext4_remount: Checksum for group %u failed (%u!=%u)", 3547 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)), 3548 le16_to_cpu(gdp->bg_checksum)); 3549 err = -EINVAL; 3550 goto restore_opts; 3551 } 3552 } 3553 3554 /* 3555 * If we have an unprocessed orphan list hanging 3556 * around from a previously readonly bdev mount, 3557 * require a full umount/remount for now. 3558 */ 3559 if (es->s_last_orphan) { 3560 ext4_msg(sb, KERN_WARNING, "Couldn't " 3561 "remount RDWR because of unprocessed " 3562 "orphan inode list. Please " 3563 "umount/remount instead"); 3564 err = -EINVAL; 3565 goto restore_opts; 3566 } 3567 3568 /* 3569 * Mounting a RDONLY partition read-write, so reread 3570 * and store the current valid flag. (It may have 3571 * been changed by e2fsck since we originally mounted 3572 * the partition.) 3573 */ 3574 if (sbi->s_journal) 3575 ext4_clear_journal_err(sb, es); 3576 sbi->s_mount_state = le16_to_cpu(es->s_state); 3577 if ((err = ext4_group_extend(sb, es, n_blocks_count))) 3578 goto restore_opts; 3579 if (!ext4_setup_super(sb, es, 0)) 3580 sb->s_flags &= ~MS_RDONLY; 3581 } 3582 } 3583 ext4_setup_system_zone(sb); 3584 if (sbi->s_journal == NULL) 3585 ext4_commit_super(sb, 1); 3586 3587 #ifdef CONFIG_QUOTA 3588 /* Release old quota file names */ 3589 for (i = 0; i < MAXQUOTAS; i++) 3590 if (old_opts.s_qf_names[i] && 3591 old_opts.s_qf_names[i] != sbi->s_qf_names[i]) 3592 kfree(old_opts.s_qf_names[i]); 3593 #endif 3594 unlock_super(sb); 3595 unlock_kernel(); 3596 return 0; 3597 3598 restore_opts: 3599 sb->s_flags = old_sb_flags; 3600 sbi->s_mount_opt = old_opts.s_mount_opt; 3601 sbi->s_resuid = old_opts.s_resuid; 3602 sbi->s_resgid = old_opts.s_resgid; 3603 sbi->s_commit_interval = old_opts.s_commit_interval; 3604 sbi->s_min_batch_time = old_opts.s_min_batch_time; 3605 sbi->s_max_batch_time = old_opts.s_max_batch_time; 3606 #ifdef CONFIG_QUOTA 3607 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 3608 for (i = 0; i < MAXQUOTAS; i++) { 3609 if (sbi->s_qf_names[i] && 3610 old_opts.s_qf_names[i] != sbi->s_qf_names[i]) 3611 kfree(sbi->s_qf_names[i]); 3612 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 3613 } 3614 #endif 3615 unlock_super(sb); 3616 unlock_kernel(); 3617 return err; 3618 } 3619 3620 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 3621 { 3622 struct super_block *sb = dentry->d_sb; 3623 struct ext4_sb_info *sbi = EXT4_SB(sb); 3624 struct ext4_super_block *es = sbi->s_es; 3625 u64 fsid; 3626 3627 if (test_opt(sb, MINIX_DF)) { 3628 sbi->s_overhead_last = 0; 3629 } else if (sbi->s_blocks_last != ext4_blocks_count(es)) { 3630 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3631 ext4_fsblk_t overhead = 0; 3632 3633 /* 3634 * Compute the overhead (FS structures). This is constant 3635 * for a given filesystem unless the number of block groups 3636 * changes so we cache the previous value until it does. 3637 */ 3638 3639 /* 3640 * All of the blocks before first_data_block are 3641 * overhead 3642 */ 3643 overhead = le32_to_cpu(es->s_first_data_block); 3644 3645 /* 3646 * Add the overhead attributed to the superblock and 3647 * block group descriptors. If the sparse superblocks 3648 * feature is turned on, then not all groups have this. 3649 */ 3650 for (i = 0; i < ngroups; i++) { 3651 overhead += ext4_bg_has_super(sb, i) + 3652 ext4_bg_num_gdb(sb, i); 3653 cond_resched(); 3654 } 3655 3656 /* 3657 * Every block group has an inode bitmap, a block 3658 * bitmap, and an inode table. 3659 */ 3660 overhead += ngroups * (2 + sbi->s_itb_per_group); 3661 sbi->s_overhead_last = overhead; 3662 smp_wmb(); 3663 sbi->s_blocks_last = ext4_blocks_count(es); 3664 } 3665 3666 buf->f_type = EXT4_SUPER_MAGIC; 3667 buf->f_bsize = sb->s_blocksize; 3668 buf->f_blocks = ext4_blocks_count(es) - sbi->s_overhead_last; 3669 buf->f_bfree = percpu_counter_sum_positive(&sbi->s_freeblocks_counter) - 3670 percpu_counter_sum_positive(&sbi->s_dirtyblocks_counter); 3671 ext4_free_blocks_count_set(es, buf->f_bfree); 3672 buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es); 3673 if (buf->f_bfree < ext4_r_blocks_count(es)) 3674 buf->f_bavail = 0; 3675 buf->f_files = le32_to_cpu(es->s_inodes_count); 3676 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 3677 es->s_free_inodes_count = cpu_to_le32(buf->f_ffree); 3678 buf->f_namelen = EXT4_NAME_LEN; 3679 fsid = le64_to_cpup((void *)es->s_uuid) ^ 3680 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 3681 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 3682 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 3683 3684 return 0; 3685 } 3686 3687 /* Helper function for writing quotas on sync - we need to start transaction 3688 * before quota file is locked for write. Otherwise the are possible deadlocks: 3689 * Process 1 Process 2 3690 * ext4_create() quota_sync() 3691 * jbd2_journal_start() write_dquot() 3692 * vfs_dq_init() down(dqio_mutex) 3693 * down(dqio_mutex) jbd2_journal_start() 3694 * 3695 */ 3696 3697 #ifdef CONFIG_QUOTA 3698 3699 static inline struct inode *dquot_to_inode(struct dquot *dquot) 3700 { 3701 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type]; 3702 } 3703 3704 static int ext4_write_dquot(struct dquot *dquot) 3705 { 3706 int ret, err; 3707 handle_t *handle; 3708 struct inode *inode; 3709 3710 inode = dquot_to_inode(dquot); 3711 handle = ext4_journal_start(inode, 3712 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 3713 if (IS_ERR(handle)) 3714 return PTR_ERR(handle); 3715 ret = dquot_commit(dquot); 3716 err = ext4_journal_stop(handle); 3717 if (!ret) 3718 ret = err; 3719 return ret; 3720 } 3721 3722 static int ext4_acquire_dquot(struct dquot *dquot) 3723 { 3724 int ret, err; 3725 handle_t *handle; 3726 3727 handle = ext4_journal_start(dquot_to_inode(dquot), 3728 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 3729 if (IS_ERR(handle)) 3730 return PTR_ERR(handle); 3731 ret = dquot_acquire(dquot); 3732 err = ext4_journal_stop(handle); 3733 if (!ret) 3734 ret = err; 3735 return ret; 3736 } 3737 3738 static int ext4_release_dquot(struct dquot *dquot) 3739 { 3740 int ret, err; 3741 handle_t *handle; 3742 3743 handle = ext4_journal_start(dquot_to_inode(dquot), 3744 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 3745 if (IS_ERR(handle)) { 3746 /* Release dquot anyway to avoid endless cycle in dqput() */ 3747 dquot_release(dquot); 3748 return PTR_ERR(handle); 3749 } 3750 ret = dquot_release(dquot); 3751 err = ext4_journal_stop(handle); 3752 if (!ret) 3753 ret = err; 3754 return ret; 3755 } 3756 3757 static int ext4_mark_dquot_dirty(struct dquot *dquot) 3758 { 3759 /* Are we journaling quotas? */ 3760 if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] || 3761 EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) { 3762 dquot_mark_dquot_dirty(dquot); 3763 return ext4_write_dquot(dquot); 3764 } else { 3765 return dquot_mark_dquot_dirty(dquot); 3766 } 3767 } 3768 3769 static int ext4_write_info(struct super_block *sb, int type) 3770 { 3771 int ret, err; 3772 handle_t *handle; 3773 3774 /* Data block + inode block */ 3775 handle = ext4_journal_start(sb->s_root->d_inode, 2); 3776 if (IS_ERR(handle)) 3777 return PTR_ERR(handle); 3778 ret = dquot_commit_info(sb, type); 3779 err = ext4_journal_stop(handle); 3780 if (!ret) 3781 ret = err; 3782 return ret; 3783 } 3784 3785 /* 3786 * Turn on quotas during mount time - we need to find 3787 * the quota file and such... 3788 */ 3789 static int ext4_quota_on_mount(struct super_block *sb, int type) 3790 { 3791 return vfs_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 3792 EXT4_SB(sb)->s_jquota_fmt, type); 3793 } 3794 3795 /* 3796 * Standard function to be called on quota_on 3797 */ 3798 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 3799 char *name, int remount) 3800 { 3801 int err; 3802 struct path path; 3803 3804 if (!test_opt(sb, QUOTA)) 3805 return -EINVAL; 3806 /* When remounting, no checks are needed and in fact, name is NULL */ 3807 if (remount) 3808 return vfs_quota_on(sb, type, format_id, name, remount); 3809 3810 err = kern_path(name, LOOKUP_FOLLOW, &path); 3811 if (err) 3812 return err; 3813 3814 /* Quotafile not on the same filesystem? */ 3815 if (path.mnt->mnt_sb != sb) { 3816 path_put(&path); 3817 return -EXDEV; 3818 } 3819 /* Journaling quota? */ 3820 if (EXT4_SB(sb)->s_qf_names[type]) { 3821 /* Quotafile not in fs root? */ 3822 if (path.dentry->d_parent != sb->s_root) 3823 ext4_msg(sb, KERN_WARNING, 3824 "Quota file not on filesystem root. " 3825 "Journaled quota will not work"); 3826 } 3827 3828 /* 3829 * When we journal data on quota file, we have to flush journal to see 3830 * all updates to the file when we bypass pagecache... 3831 */ 3832 if (EXT4_SB(sb)->s_journal && 3833 ext4_should_journal_data(path.dentry->d_inode)) { 3834 /* 3835 * We don't need to lock updates but journal_flush() could 3836 * otherwise be livelocked... 3837 */ 3838 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 3839 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 3840 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 3841 if (err) { 3842 path_put(&path); 3843 return err; 3844 } 3845 } 3846 3847 err = vfs_quota_on_path(sb, type, format_id, &path); 3848 path_put(&path); 3849 return err; 3850 } 3851 3852 /* Read data from quotafile - avoid pagecache and such because we cannot afford 3853 * acquiring the locks... As quota files are never truncated and quota code 3854 * itself serializes the operations (and noone else should touch the files) 3855 * we don't have to be afraid of races */ 3856 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 3857 size_t len, loff_t off) 3858 { 3859 struct inode *inode = sb_dqopt(sb)->files[type]; 3860 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 3861 int err = 0; 3862 int offset = off & (sb->s_blocksize - 1); 3863 int tocopy; 3864 size_t toread; 3865 struct buffer_head *bh; 3866 loff_t i_size = i_size_read(inode); 3867 3868 if (off > i_size) 3869 return 0; 3870 if (off+len > i_size) 3871 len = i_size-off; 3872 toread = len; 3873 while (toread > 0) { 3874 tocopy = sb->s_blocksize - offset < toread ? 3875 sb->s_blocksize - offset : toread; 3876 bh = ext4_bread(NULL, inode, blk, 0, &err); 3877 if (err) 3878 return err; 3879 if (!bh) /* A hole? */ 3880 memset(data, 0, tocopy); 3881 else 3882 memcpy(data, bh->b_data+offset, tocopy); 3883 brelse(bh); 3884 offset = 0; 3885 toread -= tocopy; 3886 data += tocopy; 3887 blk++; 3888 } 3889 return len; 3890 } 3891 3892 /* Write to quotafile (we know the transaction is already started and has 3893 * enough credits) */ 3894 static ssize_t ext4_quota_write(struct super_block *sb, int type, 3895 const char *data, size_t len, loff_t off) 3896 { 3897 struct inode *inode = sb_dqopt(sb)->files[type]; 3898 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 3899 int err = 0; 3900 int offset = off & (sb->s_blocksize - 1); 3901 int tocopy; 3902 int journal_quota = EXT4_SB(sb)->s_qf_names[type] != NULL; 3903 size_t towrite = len; 3904 struct buffer_head *bh; 3905 handle_t *handle = journal_current_handle(); 3906 3907 if (EXT4_SB(sb)->s_journal && !handle) { 3908 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 3909 " cancelled because transaction is not started", 3910 (unsigned long long)off, (unsigned long long)len); 3911 return -EIO; 3912 } 3913 mutex_lock_nested(&inode->i_mutex, I_MUTEX_QUOTA); 3914 while (towrite > 0) { 3915 tocopy = sb->s_blocksize - offset < towrite ? 3916 sb->s_blocksize - offset : towrite; 3917 bh = ext4_bread(handle, inode, blk, 1, &err); 3918 if (!bh) 3919 goto out; 3920 if (journal_quota) { 3921 err = ext4_journal_get_write_access(handle, bh); 3922 if (err) { 3923 brelse(bh); 3924 goto out; 3925 } 3926 } 3927 lock_buffer(bh); 3928 memcpy(bh->b_data+offset, data, tocopy); 3929 flush_dcache_page(bh->b_page); 3930 unlock_buffer(bh); 3931 if (journal_quota) 3932 err = ext4_handle_dirty_metadata(handle, NULL, bh); 3933 else { 3934 /* Always do at least ordered writes for quotas */ 3935 err = ext4_jbd2_file_inode(handle, inode); 3936 mark_buffer_dirty(bh); 3937 } 3938 brelse(bh); 3939 if (err) 3940 goto out; 3941 offset = 0; 3942 towrite -= tocopy; 3943 data += tocopy; 3944 blk++; 3945 } 3946 out: 3947 if (len == towrite) { 3948 mutex_unlock(&inode->i_mutex); 3949 return err; 3950 } 3951 if (inode->i_size < off+len-towrite) { 3952 i_size_write(inode, off+len-towrite); 3953 EXT4_I(inode)->i_disksize = inode->i_size; 3954 } 3955 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 3956 ext4_mark_inode_dirty(handle, inode); 3957 mutex_unlock(&inode->i_mutex); 3958 return len - towrite; 3959 } 3960 3961 #endif 3962 3963 static int ext4_get_sb(struct file_system_type *fs_type, int flags, 3964 const char *dev_name, void *data, struct vfsmount *mnt) 3965 { 3966 return get_sb_bdev(fs_type, flags, dev_name, data, ext4_fill_super,mnt); 3967 } 3968 3969 static struct file_system_type ext4_fs_type = { 3970 .owner = THIS_MODULE, 3971 .name = "ext4", 3972 .get_sb = ext4_get_sb, 3973 .kill_sb = kill_block_super, 3974 .fs_flags = FS_REQUIRES_DEV, 3975 }; 3976 3977 static int __init init_ext4_fs(void) 3978 { 3979 int err; 3980 3981 err = init_ext4_system_zone(); 3982 if (err) 3983 return err; 3984 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj); 3985 if (!ext4_kset) 3986 goto out4; 3987 ext4_proc_root = proc_mkdir("fs/ext4", NULL); 3988 err = init_ext4_mballoc(); 3989 if (err) 3990 goto out3; 3991 3992 err = init_ext4_xattr(); 3993 if (err) 3994 goto out2; 3995 err = init_inodecache(); 3996 if (err) 3997 goto out1; 3998 err = register_filesystem(&ext4_fs_type); 3999 if (err) 4000 goto out; 4001 return 0; 4002 out: 4003 destroy_inodecache(); 4004 out1: 4005 exit_ext4_xattr(); 4006 out2: 4007 exit_ext4_mballoc(); 4008 out3: 4009 remove_proc_entry("fs/ext4", NULL); 4010 kset_unregister(ext4_kset); 4011 out4: 4012 exit_ext4_system_zone(); 4013 return err; 4014 } 4015 4016 static void __exit exit_ext4_fs(void) 4017 { 4018 unregister_filesystem(&ext4_fs_type); 4019 destroy_inodecache(); 4020 exit_ext4_xattr(); 4021 exit_ext4_mballoc(); 4022 remove_proc_entry("fs/ext4", NULL); 4023 kset_unregister(ext4_kset); 4024 exit_ext4_system_zone(); 4025 } 4026 4027 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 4028 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 4029 MODULE_LICENSE("GPL"); 4030 module_init(init_ext4_fs) 4031 module_exit(exit_ext4_fs) 4032