xref: /linux/fs/ext4/super.c (revision dfc349402de8e95f6a42e8341e9ea193b718eee3)
1 /*
2  *  linux/fs/ext4/super.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Big-endian to little-endian byte-swapping/bitmaps by
16  *        David S. Miller (davem@caip.rutgers.edu), 1995
17  */
18 
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/jbd2.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/parser.h>
29 #include <linux/smp_lock.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/proc_fs.h>
39 #include <linux/ctype.h>
40 #include <linux/log2.h>
41 #include <linux/crc16.h>
42 #include <asm/uaccess.h>
43 
44 #include "ext4.h"
45 #include "ext4_jbd2.h"
46 #include "xattr.h"
47 #include "acl.h"
48 #include "mballoc.h"
49 
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/ext4.h>
52 
53 struct proc_dir_entry *ext4_proc_root;
54 static struct kset *ext4_kset;
55 
56 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
57 			     unsigned long journal_devnum);
58 static int ext4_commit_super(struct super_block *sb, int sync);
59 static void ext4_mark_recovery_complete(struct super_block *sb,
60 					struct ext4_super_block *es);
61 static void ext4_clear_journal_err(struct super_block *sb,
62 				   struct ext4_super_block *es);
63 static int ext4_sync_fs(struct super_block *sb, int wait);
64 static const char *ext4_decode_error(struct super_block *sb, int errno,
65 				     char nbuf[16]);
66 static int ext4_remount(struct super_block *sb, int *flags, char *data);
67 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
68 static int ext4_unfreeze(struct super_block *sb);
69 static void ext4_write_super(struct super_block *sb);
70 static int ext4_freeze(struct super_block *sb);
71 
72 
73 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
74 			       struct ext4_group_desc *bg)
75 {
76 	return le32_to_cpu(bg->bg_block_bitmap_lo) |
77 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
78 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
79 }
80 
81 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
82 			       struct ext4_group_desc *bg)
83 {
84 	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
85 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
86 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
87 }
88 
89 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
90 			      struct ext4_group_desc *bg)
91 {
92 	return le32_to_cpu(bg->bg_inode_table_lo) |
93 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
94 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
95 }
96 
97 __u32 ext4_free_blks_count(struct super_block *sb,
98 			      struct ext4_group_desc *bg)
99 {
100 	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
101 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
102 		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
103 }
104 
105 __u32 ext4_free_inodes_count(struct super_block *sb,
106 			      struct ext4_group_desc *bg)
107 {
108 	return le16_to_cpu(bg->bg_free_inodes_count_lo) |
109 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
110 		 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
111 }
112 
113 __u32 ext4_used_dirs_count(struct super_block *sb,
114 			      struct ext4_group_desc *bg)
115 {
116 	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
117 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
118 		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
119 }
120 
121 __u32 ext4_itable_unused_count(struct super_block *sb,
122 			      struct ext4_group_desc *bg)
123 {
124 	return le16_to_cpu(bg->bg_itable_unused_lo) |
125 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
126 		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
127 }
128 
129 void ext4_block_bitmap_set(struct super_block *sb,
130 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
131 {
132 	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
133 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
134 		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
135 }
136 
137 void ext4_inode_bitmap_set(struct super_block *sb,
138 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
139 {
140 	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
141 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
142 		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
143 }
144 
145 void ext4_inode_table_set(struct super_block *sb,
146 			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
147 {
148 	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
149 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
150 		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
151 }
152 
153 void ext4_free_blks_set(struct super_block *sb,
154 			  struct ext4_group_desc *bg, __u32 count)
155 {
156 	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
157 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
158 		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
159 }
160 
161 void ext4_free_inodes_set(struct super_block *sb,
162 			  struct ext4_group_desc *bg, __u32 count)
163 {
164 	bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
165 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
166 		bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
167 }
168 
169 void ext4_used_dirs_set(struct super_block *sb,
170 			  struct ext4_group_desc *bg, __u32 count)
171 {
172 	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
173 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
174 		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
175 }
176 
177 void ext4_itable_unused_set(struct super_block *sb,
178 			  struct ext4_group_desc *bg, __u32 count)
179 {
180 	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
181 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
182 		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
183 }
184 
185 
186 /* Just increment the non-pointer handle value */
187 static handle_t *ext4_get_nojournal(void)
188 {
189 	handle_t *handle = current->journal_info;
190 	unsigned long ref_cnt = (unsigned long)handle;
191 
192 	BUG_ON(ref_cnt >= EXT4_NOJOURNAL_MAX_REF_COUNT);
193 
194 	ref_cnt++;
195 	handle = (handle_t *)ref_cnt;
196 
197 	current->journal_info = handle;
198 	return handle;
199 }
200 
201 
202 /* Decrement the non-pointer handle value */
203 static void ext4_put_nojournal(handle_t *handle)
204 {
205 	unsigned long ref_cnt = (unsigned long)handle;
206 
207 	BUG_ON(ref_cnt == 0);
208 
209 	ref_cnt--;
210 	handle = (handle_t *)ref_cnt;
211 
212 	current->journal_info = handle;
213 }
214 
215 /*
216  * Wrappers for jbd2_journal_start/end.
217  *
218  * The only special thing we need to do here is to make sure that all
219  * journal_end calls result in the superblock being marked dirty, so
220  * that sync() will call the filesystem's write_super callback if
221  * appropriate.
222  */
223 handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks)
224 {
225 	journal_t *journal;
226 
227 	if (sb->s_flags & MS_RDONLY)
228 		return ERR_PTR(-EROFS);
229 
230 	/* Special case here: if the journal has aborted behind our
231 	 * backs (eg. EIO in the commit thread), then we still need to
232 	 * take the FS itself readonly cleanly. */
233 	journal = EXT4_SB(sb)->s_journal;
234 	if (journal) {
235 		if (is_journal_aborted(journal)) {
236 			ext4_abort(sb, __func__, "Detected aborted journal");
237 			return ERR_PTR(-EROFS);
238 		}
239 		return jbd2_journal_start(journal, nblocks);
240 	}
241 	return ext4_get_nojournal();
242 }
243 
244 /*
245  * The only special thing we need to do here is to make sure that all
246  * jbd2_journal_stop calls result in the superblock being marked dirty, so
247  * that sync() will call the filesystem's write_super callback if
248  * appropriate.
249  */
250 int __ext4_journal_stop(const char *where, handle_t *handle)
251 {
252 	struct super_block *sb;
253 	int err;
254 	int rc;
255 
256 	if (!ext4_handle_valid(handle)) {
257 		ext4_put_nojournal(handle);
258 		return 0;
259 	}
260 	sb = handle->h_transaction->t_journal->j_private;
261 	err = handle->h_err;
262 	rc = jbd2_journal_stop(handle);
263 
264 	if (!err)
265 		err = rc;
266 	if (err)
267 		__ext4_std_error(sb, where, err);
268 	return err;
269 }
270 
271 void ext4_journal_abort_handle(const char *caller, const char *err_fn,
272 		struct buffer_head *bh, handle_t *handle, int err)
273 {
274 	char nbuf[16];
275 	const char *errstr = ext4_decode_error(NULL, err, nbuf);
276 
277 	BUG_ON(!ext4_handle_valid(handle));
278 
279 	if (bh)
280 		BUFFER_TRACE(bh, "abort");
281 
282 	if (!handle->h_err)
283 		handle->h_err = err;
284 
285 	if (is_handle_aborted(handle))
286 		return;
287 
288 	printk(KERN_ERR "%s: aborting transaction: %s in %s\n",
289 	       caller, errstr, err_fn);
290 
291 	jbd2_journal_abort_handle(handle);
292 }
293 
294 /* Deal with the reporting of failure conditions on a filesystem such as
295  * inconsistencies detected or read IO failures.
296  *
297  * On ext2, we can store the error state of the filesystem in the
298  * superblock.  That is not possible on ext4, because we may have other
299  * write ordering constraints on the superblock which prevent us from
300  * writing it out straight away; and given that the journal is about to
301  * be aborted, we can't rely on the current, or future, transactions to
302  * write out the superblock safely.
303  *
304  * We'll just use the jbd2_journal_abort() error code to record an error in
305  * the journal instead.  On recovery, the journal will compain about
306  * that error until we've noted it down and cleared it.
307  */
308 
309 static void ext4_handle_error(struct super_block *sb)
310 {
311 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
312 
313 	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
314 	es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
315 
316 	if (sb->s_flags & MS_RDONLY)
317 		return;
318 
319 	if (!test_opt(sb, ERRORS_CONT)) {
320 		journal_t *journal = EXT4_SB(sb)->s_journal;
321 
322 		EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
323 		if (journal)
324 			jbd2_journal_abort(journal, -EIO);
325 	}
326 	if (test_opt(sb, ERRORS_RO)) {
327 		ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
328 		sb->s_flags |= MS_RDONLY;
329 	}
330 	ext4_commit_super(sb, 1);
331 	if (test_opt(sb, ERRORS_PANIC))
332 		panic("EXT4-fs (device %s): panic forced after error\n",
333 			sb->s_id);
334 }
335 
336 void ext4_error(struct super_block *sb, const char *function,
337 		const char *fmt, ...)
338 {
339 	va_list args;
340 
341 	va_start(args, fmt);
342 	printk(KERN_CRIT "EXT4-fs error (device %s): %s: ", sb->s_id, function);
343 	vprintk(fmt, args);
344 	printk("\n");
345 	va_end(args);
346 
347 	ext4_handle_error(sb);
348 }
349 
350 static const char *ext4_decode_error(struct super_block *sb, int errno,
351 				     char nbuf[16])
352 {
353 	char *errstr = NULL;
354 
355 	switch (errno) {
356 	case -EIO:
357 		errstr = "IO failure";
358 		break;
359 	case -ENOMEM:
360 		errstr = "Out of memory";
361 		break;
362 	case -EROFS:
363 		if (!sb || (EXT4_SB(sb)->s_journal &&
364 			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
365 			errstr = "Journal has aborted";
366 		else
367 			errstr = "Readonly filesystem";
368 		break;
369 	default:
370 		/* If the caller passed in an extra buffer for unknown
371 		 * errors, textualise them now.  Else we just return
372 		 * NULL. */
373 		if (nbuf) {
374 			/* Check for truncated error codes... */
375 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
376 				errstr = nbuf;
377 		}
378 		break;
379 	}
380 
381 	return errstr;
382 }
383 
384 /* __ext4_std_error decodes expected errors from journaling functions
385  * automatically and invokes the appropriate error response.  */
386 
387 void __ext4_std_error(struct super_block *sb, const char *function, int errno)
388 {
389 	char nbuf[16];
390 	const char *errstr;
391 
392 	/* Special case: if the error is EROFS, and we're not already
393 	 * inside a transaction, then there's really no point in logging
394 	 * an error. */
395 	if (errno == -EROFS && journal_current_handle() == NULL &&
396 	    (sb->s_flags & MS_RDONLY))
397 		return;
398 
399 	errstr = ext4_decode_error(sb, errno, nbuf);
400 	printk(KERN_CRIT "EXT4-fs error (device %s) in %s: %s\n",
401 	       sb->s_id, function, errstr);
402 
403 	ext4_handle_error(sb);
404 }
405 
406 /*
407  * ext4_abort is a much stronger failure handler than ext4_error.  The
408  * abort function may be used to deal with unrecoverable failures such
409  * as journal IO errors or ENOMEM at a critical moment in log management.
410  *
411  * We unconditionally force the filesystem into an ABORT|READONLY state,
412  * unless the error response on the fs has been set to panic in which
413  * case we take the easy way out and panic immediately.
414  */
415 
416 void ext4_abort(struct super_block *sb, const char *function,
417 		const char *fmt, ...)
418 {
419 	va_list args;
420 
421 	va_start(args, fmt);
422 	printk(KERN_CRIT "EXT4-fs error (device %s): %s: ", sb->s_id, function);
423 	vprintk(fmt, args);
424 	printk("\n");
425 	va_end(args);
426 
427 	if (test_opt(sb, ERRORS_PANIC))
428 		panic("EXT4-fs panic from previous error\n");
429 
430 	if (sb->s_flags & MS_RDONLY)
431 		return;
432 
433 	ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
434 	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
435 	sb->s_flags |= MS_RDONLY;
436 	EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
437 	if (EXT4_SB(sb)->s_journal)
438 		jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
439 }
440 
441 void ext4_msg (struct super_block * sb, const char *prefix,
442 		   const char *fmt, ...)
443 {
444 	va_list args;
445 
446 	va_start(args, fmt);
447 	printk("%sEXT4-fs (%s): ", prefix, sb->s_id);
448 	vprintk(fmt, args);
449 	printk("\n");
450 	va_end(args);
451 }
452 
453 void ext4_warning(struct super_block *sb, const char *function,
454 		  const char *fmt, ...)
455 {
456 	va_list args;
457 
458 	va_start(args, fmt);
459 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s: ",
460 	       sb->s_id, function);
461 	vprintk(fmt, args);
462 	printk("\n");
463 	va_end(args);
464 }
465 
466 void ext4_grp_locked_error(struct super_block *sb, ext4_group_t grp,
467 			   const char *function, const char *fmt, ...)
468 __releases(bitlock)
469 __acquires(bitlock)
470 {
471 	va_list args;
472 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
473 
474 	va_start(args, fmt);
475 	printk(KERN_CRIT "EXT4-fs error (device %s): %s: ", sb->s_id, function);
476 	vprintk(fmt, args);
477 	printk("\n");
478 	va_end(args);
479 
480 	if (test_opt(sb, ERRORS_CONT)) {
481 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
482 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
483 		ext4_commit_super(sb, 0);
484 		return;
485 	}
486 	ext4_unlock_group(sb, grp);
487 	ext4_handle_error(sb);
488 	/*
489 	 * We only get here in the ERRORS_RO case; relocking the group
490 	 * may be dangerous, but nothing bad will happen since the
491 	 * filesystem will have already been marked read/only and the
492 	 * journal has been aborted.  We return 1 as a hint to callers
493 	 * who might what to use the return value from
494 	 * ext4_grp_locked_error() to distinguish beween the
495 	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
496 	 * aggressively from the ext4 function in question, with a
497 	 * more appropriate error code.
498 	 */
499 	ext4_lock_group(sb, grp);
500 	return;
501 }
502 
503 void ext4_update_dynamic_rev(struct super_block *sb)
504 {
505 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
506 
507 	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
508 		return;
509 
510 	ext4_warning(sb, __func__,
511 		     "updating to rev %d because of new feature flag, "
512 		     "running e2fsck is recommended",
513 		     EXT4_DYNAMIC_REV);
514 
515 	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
516 	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
517 	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
518 	/* leave es->s_feature_*compat flags alone */
519 	/* es->s_uuid will be set by e2fsck if empty */
520 
521 	/*
522 	 * The rest of the superblock fields should be zero, and if not it
523 	 * means they are likely already in use, so leave them alone.  We
524 	 * can leave it up to e2fsck to clean up any inconsistencies there.
525 	 */
526 }
527 
528 /*
529  * Open the external journal device
530  */
531 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
532 {
533 	struct block_device *bdev;
534 	char b[BDEVNAME_SIZE];
535 
536 	bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
537 	if (IS_ERR(bdev))
538 		goto fail;
539 	return bdev;
540 
541 fail:
542 	ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
543 			__bdevname(dev, b), PTR_ERR(bdev));
544 	return NULL;
545 }
546 
547 /*
548  * Release the journal device
549  */
550 static int ext4_blkdev_put(struct block_device *bdev)
551 {
552 	bd_release(bdev);
553 	return blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
554 }
555 
556 static int ext4_blkdev_remove(struct ext4_sb_info *sbi)
557 {
558 	struct block_device *bdev;
559 	int ret = -ENODEV;
560 
561 	bdev = sbi->journal_bdev;
562 	if (bdev) {
563 		ret = ext4_blkdev_put(bdev);
564 		sbi->journal_bdev = NULL;
565 	}
566 	return ret;
567 }
568 
569 static inline struct inode *orphan_list_entry(struct list_head *l)
570 {
571 	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
572 }
573 
574 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
575 {
576 	struct list_head *l;
577 
578 	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
579 		 le32_to_cpu(sbi->s_es->s_last_orphan));
580 
581 	printk(KERN_ERR "sb_info orphan list:\n");
582 	list_for_each(l, &sbi->s_orphan) {
583 		struct inode *inode = orphan_list_entry(l);
584 		printk(KERN_ERR "  "
585 		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
586 		       inode->i_sb->s_id, inode->i_ino, inode,
587 		       inode->i_mode, inode->i_nlink,
588 		       NEXT_ORPHAN(inode));
589 	}
590 }
591 
592 static void ext4_put_super(struct super_block *sb)
593 {
594 	struct ext4_sb_info *sbi = EXT4_SB(sb);
595 	struct ext4_super_block *es = sbi->s_es;
596 	int i, err;
597 
598 	flush_workqueue(sbi->dio_unwritten_wq);
599 	destroy_workqueue(sbi->dio_unwritten_wq);
600 
601 	lock_super(sb);
602 	lock_kernel();
603 	if (sb->s_dirt)
604 		ext4_commit_super(sb, 1);
605 
606 	ext4_release_system_zone(sb);
607 	ext4_mb_release(sb);
608 	ext4_ext_release(sb);
609 	ext4_xattr_put_super(sb);
610 	if (sbi->s_journal) {
611 		err = jbd2_journal_destroy(sbi->s_journal);
612 		sbi->s_journal = NULL;
613 		if (err < 0)
614 			ext4_abort(sb, __func__,
615 				   "Couldn't clean up the journal");
616 	}
617 	if (!(sb->s_flags & MS_RDONLY)) {
618 		EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
619 		es->s_state = cpu_to_le16(sbi->s_mount_state);
620 		ext4_commit_super(sb, 1);
621 	}
622 	if (sbi->s_proc) {
623 		remove_proc_entry(sb->s_id, ext4_proc_root);
624 	}
625 	kobject_del(&sbi->s_kobj);
626 
627 	for (i = 0; i < sbi->s_gdb_count; i++)
628 		brelse(sbi->s_group_desc[i]);
629 	kfree(sbi->s_group_desc);
630 	if (is_vmalloc_addr(sbi->s_flex_groups))
631 		vfree(sbi->s_flex_groups);
632 	else
633 		kfree(sbi->s_flex_groups);
634 	percpu_counter_destroy(&sbi->s_freeblocks_counter);
635 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
636 	percpu_counter_destroy(&sbi->s_dirs_counter);
637 	percpu_counter_destroy(&sbi->s_dirtyblocks_counter);
638 	brelse(sbi->s_sbh);
639 #ifdef CONFIG_QUOTA
640 	for (i = 0; i < MAXQUOTAS; i++)
641 		kfree(sbi->s_qf_names[i]);
642 #endif
643 
644 	/* Debugging code just in case the in-memory inode orphan list
645 	 * isn't empty.  The on-disk one can be non-empty if we've
646 	 * detected an error and taken the fs readonly, but the
647 	 * in-memory list had better be clean by this point. */
648 	if (!list_empty(&sbi->s_orphan))
649 		dump_orphan_list(sb, sbi);
650 	J_ASSERT(list_empty(&sbi->s_orphan));
651 
652 	invalidate_bdev(sb->s_bdev);
653 	if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
654 		/*
655 		 * Invalidate the journal device's buffers.  We don't want them
656 		 * floating about in memory - the physical journal device may
657 		 * hotswapped, and it breaks the `ro-after' testing code.
658 		 */
659 		sync_blockdev(sbi->journal_bdev);
660 		invalidate_bdev(sbi->journal_bdev);
661 		ext4_blkdev_remove(sbi);
662 	}
663 	sb->s_fs_info = NULL;
664 	/*
665 	 * Now that we are completely done shutting down the
666 	 * superblock, we need to actually destroy the kobject.
667 	 */
668 	unlock_kernel();
669 	unlock_super(sb);
670 	kobject_put(&sbi->s_kobj);
671 	wait_for_completion(&sbi->s_kobj_unregister);
672 	kfree(sbi->s_blockgroup_lock);
673 	kfree(sbi);
674 }
675 
676 static struct kmem_cache *ext4_inode_cachep;
677 
678 /*
679  * Called inside transaction, so use GFP_NOFS
680  */
681 static struct inode *ext4_alloc_inode(struct super_block *sb)
682 {
683 	struct ext4_inode_info *ei;
684 
685 	ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
686 	if (!ei)
687 		return NULL;
688 
689 	ei->vfs_inode.i_version = 1;
690 	ei->vfs_inode.i_data.writeback_index = 0;
691 	memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache));
692 	INIT_LIST_HEAD(&ei->i_prealloc_list);
693 	spin_lock_init(&ei->i_prealloc_lock);
694 	/*
695 	 * Note:  We can be called before EXT4_SB(sb)->s_journal is set,
696 	 * therefore it can be null here.  Don't check it, just initialize
697 	 * jinode.
698 	 */
699 	jbd2_journal_init_jbd_inode(&ei->jinode, &ei->vfs_inode);
700 	ei->i_reserved_data_blocks = 0;
701 	ei->i_reserved_meta_blocks = 0;
702 	ei->i_allocated_meta_blocks = 0;
703 	ei->i_delalloc_reserved_flag = 0;
704 	spin_lock_init(&(ei->i_block_reservation_lock));
705 	INIT_LIST_HEAD(&ei->i_aio_dio_complete_list);
706 	ei->cur_aio_dio = NULL;
707 
708 	return &ei->vfs_inode;
709 }
710 
711 static void ext4_destroy_inode(struct inode *inode)
712 {
713 	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
714 		ext4_msg(inode->i_sb, KERN_ERR,
715 			 "Inode %lu (%p): orphan list check failed!",
716 			 inode->i_ino, EXT4_I(inode));
717 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
718 				EXT4_I(inode), sizeof(struct ext4_inode_info),
719 				true);
720 		dump_stack();
721 	}
722 	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
723 }
724 
725 static void init_once(void *foo)
726 {
727 	struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
728 
729 	INIT_LIST_HEAD(&ei->i_orphan);
730 #ifdef CONFIG_EXT4_FS_XATTR
731 	init_rwsem(&ei->xattr_sem);
732 #endif
733 	init_rwsem(&ei->i_data_sem);
734 	inode_init_once(&ei->vfs_inode);
735 }
736 
737 static int init_inodecache(void)
738 {
739 	ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
740 					     sizeof(struct ext4_inode_info),
741 					     0, (SLAB_RECLAIM_ACCOUNT|
742 						SLAB_MEM_SPREAD),
743 					     init_once);
744 	if (ext4_inode_cachep == NULL)
745 		return -ENOMEM;
746 	return 0;
747 }
748 
749 static void destroy_inodecache(void)
750 {
751 	kmem_cache_destroy(ext4_inode_cachep);
752 }
753 
754 static void ext4_clear_inode(struct inode *inode)
755 {
756 	ext4_discard_preallocations(inode);
757 	if (EXT4_JOURNAL(inode))
758 		jbd2_journal_release_jbd_inode(EXT4_SB(inode->i_sb)->s_journal,
759 				       &EXT4_I(inode)->jinode);
760 }
761 
762 static inline void ext4_show_quota_options(struct seq_file *seq,
763 					   struct super_block *sb)
764 {
765 #if defined(CONFIG_QUOTA)
766 	struct ext4_sb_info *sbi = EXT4_SB(sb);
767 
768 	if (sbi->s_jquota_fmt)
769 		seq_printf(seq, ",jqfmt=%s",
770 		(sbi->s_jquota_fmt == QFMT_VFS_OLD) ? "vfsold" : "vfsv0");
771 
772 	if (sbi->s_qf_names[USRQUOTA])
773 		seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
774 
775 	if (sbi->s_qf_names[GRPQUOTA])
776 		seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
777 
778 	if (sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA)
779 		seq_puts(seq, ",usrquota");
780 
781 	if (sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA)
782 		seq_puts(seq, ",grpquota");
783 #endif
784 }
785 
786 /*
787  * Show an option if
788  *  - it's set to a non-default value OR
789  *  - if the per-sb default is different from the global default
790  */
791 static int ext4_show_options(struct seq_file *seq, struct vfsmount *vfs)
792 {
793 	int def_errors;
794 	unsigned long def_mount_opts;
795 	struct super_block *sb = vfs->mnt_sb;
796 	struct ext4_sb_info *sbi = EXT4_SB(sb);
797 	struct ext4_super_block *es = sbi->s_es;
798 
799 	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
800 	def_errors     = le16_to_cpu(es->s_errors);
801 
802 	if (sbi->s_sb_block != 1)
803 		seq_printf(seq, ",sb=%llu", sbi->s_sb_block);
804 	if (test_opt(sb, MINIX_DF))
805 		seq_puts(seq, ",minixdf");
806 	if (test_opt(sb, GRPID) && !(def_mount_opts & EXT4_DEFM_BSDGROUPS))
807 		seq_puts(seq, ",grpid");
808 	if (!test_opt(sb, GRPID) && (def_mount_opts & EXT4_DEFM_BSDGROUPS))
809 		seq_puts(seq, ",nogrpid");
810 	if (sbi->s_resuid != EXT4_DEF_RESUID ||
811 	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) {
812 		seq_printf(seq, ",resuid=%u", sbi->s_resuid);
813 	}
814 	if (sbi->s_resgid != EXT4_DEF_RESGID ||
815 	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) {
816 		seq_printf(seq, ",resgid=%u", sbi->s_resgid);
817 	}
818 	if (test_opt(sb, ERRORS_RO)) {
819 		if (def_errors == EXT4_ERRORS_PANIC ||
820 		    def_errors == EXT4_ERRORS_CONTINUE) {
821 			seq_puts(seq, ",errors=remount-ro");
822 		}
823 	}
824 	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
825 		seq_puts(seq, ",errors=continue");
826 	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
827 		seq_puts(seq, ",errors=panic");
828 	if (test_opt(sb, NO_UID32) && !(def_mount_opts & EXT4_DEFM_UID16))
829 		seq_puts(seq, ",nouid32");
830 	if (test_opt(sb, DEBUG) && !(def_mount_opts & EXT4_DEFM_DEBUG))
831 		seq_puts(seq, ",debug");
832 	if (test_opt(sb, OLDALLOC))
833 		seq_puts(seq, ",oldalloc");
834 #ifdef CONFIG_EXT4_FS_XATTR
835 	if (test_opt(sb, XATTR_USER) &&
836 		!(def_mount_opts & EXT4_DEFM_XATTR_USER))
837 		seq_puts(seq, ",user_xattr");
838 	if (!test_opt(sb, XATTR_USER) &&
839 	    (def_mount_opts & EXT4_DEFM_XATTR_USER)) {
840 		seq_puts(seq, ",nouser_xattr");
841 	}
842 #endif
843 #ifdef CONFIG_EXT4_FS_POSIX_ACL
844 	if (test_opt(sb, POSIX_ACL) && !(def_mount_opts & EXT4_DEFM_ACL))
845 		seq_puts(seq, ",acl");
846 	if (!test_opt(sb, POSIX_ACL) && (def_mount_opts & EXT4_DEFM_ACL))
847 		seq_puts(seq, ",noacl");
848 #endif
849 	if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
850 		seq_printf(seq, ",commit=%u",
851 			   (unsigned) (sbi->s_commit_interval / HZ));
852 	}
853 	if (sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) {
854 		seq_printf(seq, ",min_batch_time=%u",
855 			   (unsigned) sbi->s_min_batch_time);
856 	}
857 	if (sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) {
858 		seq_printf(seq, ",max_batch_time=%u",
859 			   (unsigned) sbi->s_min_batch_time);
860 	}
861 
862 	/*
863 	 * We're changing the default of barrier mount option, so
864 	 * let's always display its mount state so it's clear what its
865 	 * status is.
866 	 */
867 	seq_puts(seq, ",barrier=");
868 	seq_puts(seq, test_opt(sb, BARRIER) ? "1" : "0");
869 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT))
870 		seq_puts(seq, ",journal_async_commit");
871 	if (test_opt(sb, NOBH))
872 		seq_puts(seq, ",nobh");
873 	if (test_opt(sb, I_VERSION))
874 		seq_puts(seq, ",i_version");
875 	if (!test_opt(sb, DELALLOC))
876 		seq_puts(seq, ",nodelalloc");
877 
878 
879 	if (sbi->s_stripe)
880 		seq_printf(seq, ",stripe=%lu", sbi->s_stripe);
881 	/*
882 	 * journal mode get enabled in different ways
883 	 * So just print the value even if we didn't specify it
884 	 */
885 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
886 		seq_puts(seq, ",data=journal");
887 	else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
888 		seq_puts(seq, ",data=ordered");
889 	else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
890 		seq_puts(seq, ",data=writeback");
891 
892 	if (sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
893 		seq_printf(seq, ",inode_readahead_blks=%u",
894 			   sbi->s_inode_readahead_blks);
895 
896 	if (test_opt(sb, DATA_ERR_ABORT))
897 		seq_puts(seq, ",data_err=abort");
898 
899 	if (test_opt(sb, NO_AUTO_DA_ALLOC))
900 		seq_puts(seq, ",noauto_da_alloc");
901 
902 	ext4_show_quota_options(seq, sb);
903 
904 	return 0;
905 }
906 
907 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
908 					u64 ino, u32 generation)
909 {
910 	struct inode *inode;
911 
912 	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
913 		return ERR_PTR(-ESTALE);
914 	if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
915 		return ERR_PTR(-ESTALE);
916 
917 	/* iget isn't really right if the inode is currently unallocated!!
918 	 *
919 	 * ext4_read_inode will return a bad_inode if the inode had been
920 	 * deleted, so we should be safe.
921 	 *
922 	 * Currently we don't know the generation for parent directory, so
923 	 * a generation of 0 means "accept any"
924 	 */
925 	inode = ext4_iget(sb, ino);
926 	if (IS_ERR(inode))
927 		return ERR_CAST(inode);
928 	if (generation && inode->i_generation != generation) {
929 		iput(inode);
930 		return ERR_PTR(-ESTALE);
931 	}
932 
933 	return inode;
934 }
935 
936 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
937 					int fh_len, int fh_type)
938 {
939 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
940 				    ext4_nfs_get_inode);
941 }
942 
943 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
944 					int fh_len, int fh_type)
945 {
946 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
947 				    ext4_nfs_get_inode);
948 }
949 
950 /*
951  * Try to release metadata pages (indirect blocks, directories) which are
952  * mapped via the block device.  Since these pages could have journal heads
953  * which would prevent try_to_free_buffers() from freeing them, we must use
954  * jbd2 layer's try_to_free_buffers() function to release them.
955  */
956 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
957 				 gfp_t wait)
958 {
959 	journal_t *journal = EXT4_SB(sb)->s_journal;
960 
961 	WARN_ON(PageChecked(page));
962 	if (!page_has_buffers(page))
963 		return 0;
964 	if (journal)
965 		return jbd2_journal_try_to_free_buffers(journal, page,
966 							wait & ~__GFP_WAIT);
967 	return try_to_free_buffers(page);
968 }
969 
970 #ifdef CONFIG_QUOTA
971 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
972 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
973 
974 static int ext4_write_dquot(struct dquot *dquot);
975 static int ext4_acquire_dquot(struct dquot *dquot);
976 static int ext4_release_dquot(struct dquot *dquot);
977 static int ext4_mark_dquot_dirty(struct dquot *dquot);
978 static int ext4_write_info(struct super_block *sb, int type);
979 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
980 				char *path, int remount);
981 static int ext4_quota_on_mount(struct super_block *sb, int type);
982 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
983 			       size_t len, loff_t off);
984 static ssize_t ext4_quota_write(struct super_block *sb, int type,
985 				const char *data, size_t len, loff_t off);
986 
987 static const struct dquot_operations ext4_quota_operations = {
988 	.initialize	= dquot_initialize,
989 	.drop		= dquot_drop,
990 	.alloc_space	= dquot_alloc_space,
991 	.reserve_space	= dquot_reserve_space,
992 	.claim_space	= dquot_claim_space,
993 	.release_rsv	= dquot_release_reserved_space,
994 	.get_reserved_space = ext4_get_reserved_space,
995 	.alloc_inode	= dquot_alloc_inode,
996 	.free_space	= dquot_free_space,
997 	.free_inode	= dquot_free_inode,
998 	.transfer	= dquot_transfer,
999 	.write_dquot	= ext4_write_dquot,
1000 	.acquire_dquot	= ext4_acquire_dquot,
1001 	.release_dquot	= ext4_release_dquot,
1002 	.mark_dirty	= ext4_mark_dquot_dirty,
1003 	.write_info	= ext4_write_info,
1004 	.alloc_dquot	= dquot_alloc,
1005 	.destroy_dquot	= dquot_destroy,
1006 };
1007 
1008 static const struct quotactl_ops ext4_qctl_operations = {
1009 	.quota_on	= ext4_quota_on,
1010 	.quota_off	= vfs_quota_off,
1011 	.quota_sync	= vfs_quota_sync,
1012 	.get_info	= vfs_get_dqinfo,
1013 	.set_info	= vfs_set_dqinfo,
1014 	.get_dqblk	= vfs_get_dqblk,
1015 	.set_dqblk	= vfs_set_dqblk
1016 };
1017 #endif
1018 
1019 static const struct super_operations ext4_sops = {
1020 	.alloc_inode	= ext4_alloc_inode,
1021 	.destroy_inode	= ext4_destroy_inode,
1022 	.write_inode	= ext4_write_inode,
1023 	.dirty_inode	= ext4_dirty_inode,
1024 	.delete_inode	= ext4_delete_inode,
1025 	.put_super	= ext4_put_super,
1026 	.sync_fs	= ext4_sync_fs,
1027 	.freeze_fs	= ext4_freeze,
1028 	.unfreeze_fs	= ext4_unfreeze,
1029 	.statfs		= ext4_statfs,
1030 	.remount_fs	= ext4_remount,
1031 	.clear_inode	= ext4_clear_inode,
1032 	.show_options	= ext4_show_options,
1033 #ifdef CONFIG_QUOTA
1034 	.quota_read	= ext4_quota_read,
1035 	.quota_write	= ext4_quota_write,
1036 #endif
1037 	.bdev_try_to_free_page = bdev_try_to_free_page,
1038 };
1039 
1040 static const struct super_operations ext4_nojournal_sops = {
1041 	.alloc_inode	= ext4_alloc_inode,
1042 	.destroy_inode	= ext4_destroy_inode,
1043 	.write_inode	= ext4_write_inode,
1044 	.dirty_inode	= ext4_dirty_inode,
1045 	.delete_inode	= ext4_delete_inode,
1046 	.write_super	= ext4_write_super,
1047 	.put_super	= ext4_put_super,
1048 	.statfs		= ext4_statfs,
1049 	.remount_fs	= ext4_remount,
1050 	.clear_inode	= ext4_clear_inode,
1051 	.show_options	= ext4_show_options,
1052 #ifdef CONFIG_QUOTA
1053 	.quota_read	= ext4_quota_read,
1054 	.quota_write	= ext4_quota_write,
1055 #endif
1056 	.bdev_try_to_free_page = bdev_try_to_free_page,
1057 };
1058 
1059 static const struct export_operations ext4_export_ops = {
1060 	.fh_to_dentry = ext4_fh_to_dentry,
1061 	.fh_to_parent = ext4_fh_to_parent,
1062 	.get_parent = ext4_get_parent,
1063 };
1064 
1065 enum {
1066 	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1067 	Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1068 	Opt_nouid32, Opt_debug, Opt_oldalloc, Opt_orlov,
1069 	Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1070 	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, Opt_nobh, Opt_bh,
1071 	Opt_commit, Opt_min_batch_time, Opt_max_batch_time,
1072 	Opt_journal_update, Opt_journal_dev,
1073 	Opt_journal_checksum, Opt_journal_async_commit,
1074 	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1075 	Opt_data_err_abort, Opt_data_err_ignore,
1076 	Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1077 	Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_quota, Opt_noquota,
1078 	Opt_ignore, Opt_barrier, Opt_nobarrier, Opt_err, Opt_resize,
1079 	Opt_usrquota, Opt_grpquota, Opt_i_version,
1080 	Opt_stripe, Opt_delalloc, Opt_nodelalloc,
1081 	Opt_block_validity, Opt_noblock_validity,
1082 	Opt_inode_readahead_blks, Opt_journal_ioprio
1083 };
1084 
1085 static const match_table_t tokens = {
1086 	{Opt_bsd_df, "bsddf"},
1087 	{Opt_minix_df, "minixdf"},
1088 	{Opt_grpid, "grpid"},
1089 	{Opt_grpid, "bsdgroups"},
1090 	{Opt_nogrpid, "nogrpid"},
1091 	{Opt_nogrpid, "sysvgroups"},
1092 	{Opt_resgid, "resgid=%u"},
1093 	{Opt_resuid, "resuid=%u"},
1094 	{Opt_sb, "sb=%u"},
1095 	{Opt_err_cont, "errors=continue"},
1096 	{Opt_err_panic, "errors=panic"},
1097 	{Opt_err_ro, "errors=remount-ro"},
1098 	{Opt_nouid32, "nouid32"},
1099 	{Opt_debug, "debug"},
1100 	{Opt_oldalloc, "oldalloc"},
1101 	{Opt_orlov, "orlov"},
1102 	{Opt_user_xattr, "user_xattr"},
1103 	{Opt_nouser_xattr, "nouser_xattr"},
1104 	{Opt_acl, "acl"},
1105 	{Opt_noacl, "noacl"},
1106 	{Opt_noload, "noload"},
1107 	{Opt_nobh, "nobh"},
1108 	{Opt_bh, "bh"},
1109 	{Opt_commit, "commit=%u"},
1110 	{Opt_min_batch_time, "min_batch_time=%u"},
1111 	{Opt_max_batch_time, "max_batch_time=%u"},
1112 	{Opt_journal_update, "journal=update"},
1113 	{Opt_journal_dev, "journal_dev=%u"},
1114 	{Opt_journal_checksum, "journal_checksum"},
1115 	{Opt_journal_async_commit, "journal_async_commit"},
1116 	{Opt_abort, "abort"},
1117 	{Opt_data_journal, "data=journal"},
1118 	{Opt_data_ordered, "data=ordered"},
1119 	{Opt_data_writeback, "data=writeback"},
1120 	{Opt_data_err_abort, "data_err=abort"},
1121 	{Opt_data_err_ignore, "data_err=ignore"},
1122 	{Opt_offusrjquota, "usrjquota="},
1123 	{Opt_usrjquota, "usrjquota=%s"},
1124 	{Opt_offgrpjquota, "grpjquota="},
1125 	{Opt_grpjquota, "grpjquota=%s"},
1126 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1127 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1128 	{Opt_grpquota, "grpquota"},
1129 	{Opt_noquota, "noquota"},
1130 	{Opt_quota, "quota"},
1131 	{Opt_usrquota, "usrquota"},
1132 	{Opt_barrier, "barrier=%u"},
1133 	{Opt_barrier, "barrier"},
1134 	{Opt_nobarrier, "nobarrier"},
1135 	{Opt_i_version, "i_version"},
1136 	{Opt_stripe, "stripe=%u"},
1137 	{Opt_resize, "resize"},
1138 	{Opt_delalloc, "delalloc"},
1139 	{Opt_nodelalloc, "nodelalloc"},
1140 	{Opt_block_validity, "block_validity"},
1141 	{Opt_noblock_validity, "noblock_validity"},
1142 	{Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1143 	{Opt_journal_ioprio, "journal_ioprio=%u"},
1144 	{Opt_auto_da_alloc, "auto_da_alloc=%u"},
1145 	{Opt_auto_da_alloc, "auto_da_alloc"},
1146 	{Opt_noauto_da_alloc, "noauto_da_alloc"},
1147 	{Opt_err, NULL},
1148 };
1149 
1150 static ext4_fsblk_t get_sb_block(void **data)
1151 {
1152 	ext4_fsblk_t	sb_block;
1153 	char		*options = (char *) *data;
1154 
1155 	if (!options || strncmp(options, "sb=", 3) != 0)
1156 		return 1;	/* Default location */
1157 
1158 	options += 3;
1159 	/* TODO: use simple_strtoll with >32bit ext4 */
1160 	sb_block = simple_strtoul(options, &options, 0);
1161 	if (*options && *options != ',') {
1162 		printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1163 		       (char *) *data);
1164 		return 1;
1165 	}
1166 	if (*options == ',')
1167 		options++;
1168 	*data = (void *) options;
1169 
1170 	return sb_block;
1171 }
1172 
1173 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1174 
1175 static int parse_options(char *options, struct super_block *sb,
1176 			 unsigned long *journal_devnum,
1177 			 unsigned int *journal_ioprio,
1178 			 ext4_fsblk_t *n_blocks_count, int is_remount)
1179 {
1180 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1181 	char *p;
1182 	substring_t args[MAX_OPT_ARGS];
1183 	int data_opt = 0;
1184 	int option;
1185 #ifdef CONFIG_QUOTA
1186 	int qtype, qfmt;
1187 	char *qname;
1188 #endif
1189 
1190 	if (!options)
1191 		return 1;
1192 
1193 	while ((p = strsep(&options, ",")) != NULL) {
1194 		int token;
1195 		if (!*p)
1196 			continue;
1197 
1198 		token = match_token(p, tokens, args);
1199 		switch (token) {
1200 		case Opt_bsd_df:
1201 			clear_opt(sbi->s_mount_opt, MINIX_DF);
1202 			break;
1203 		case Opt_minix_df:
1204 			set_opt(sbi->s_mount_opt, MINIX_DF);
1205 			break;
1206 		case Opt_grpid:
1207 			set_opt(sbi->s_mount_opt, GRPID);
1208 			break;
1209 		case Opt_nogrpid:
1210 			clear_opt(sbi->s_mount_opt, GRPID);
1211 			break;
1212 		case Opt_resuid:
1213 			if (match_int(&args[0], &option))
1214 				return 0;
1215 			sbi->s_resuid = option;
1216 			break;
1217 		case Opt_resgid:
1218 			if (match_int(&args[0], &option))
1219 				return 0;
1220 			sbi->s_resgid = option;
1221 			break;
1222 		case Opt_sb:
1223 			/* handled by get_sb_block() instead of here */
1224 			/* *sb_block = match_int(&args[0]); */
1225 			break;
1226 		case Opt_err_panic:
1227 			clear_opt(sbi->s_mount_opt, ERRORS_CONT);
1228 			clear_opt(sbi->s_mount_opt, ERRORS_RO);
1229 			set_opt(sbi->s_mount_opt, ERRORS_PANIC);
1230 			break;
1231 		case Opt_err_ro:
1232 			clear_opt(sbi->s_mount_opt, ERRORS_CONT);
1233 			clear_opt(sbi->s_mount_opt, ERRORS_PANIC);
1234 			set_opt(sbi->s_mount_opt, ERRORS_RO);
1235 			break;
1236 		case Opt_err_cont:
1237 			clear_opt(sbi->s_mount_opt, ERRORS_RO);
1238 			clear_opt(sbi->s_mount_opt, ERRORS_PANIC);
1239 			set_opt(sbi->s_mount_opt, ERRORS_CONT);
1240 			break;
1241 		case Opt_nouid32:
1242 			set_opt(sbi->s_mount_opt, NO_UID32);
1243 			break;
1244 		case Opt_debug:
1245 			set_opt(sbi->s_mount_opt, DEBUG);
1246 			break;
1247 		case Opt_oldalloc:
1248 			set_opt(sbi->s_mount_opt, OLDALLOC);
1249 			break;
1250 		case Opt_orlov:
1251 			clear_opt(sbi->s_mount_opt, OLDALLOC);
1252 			break;
1253 #ifdef CONFIG_EXT4_FS_XATTR
1254 		case Opt_user_xattr:
1255 			set_opt(sbi->s_mount_opt, XATTR_USER);
1256 			break;
1257 		case Opt_nouser_xattr:
1258 			clear_opt(sbi->s_mount_opt, XATTR_USER);
1259 			break;
1260 #else
1261 		case Opt_user_xattr:
1262 		case Opt_nouser_xattr:
1263 			ext4_msg(sb, KERN_ERR, "(no)user_xattr options not supported");
1264 			break;
1265 #endif
1266 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1267 		case Opt_acl:
1268 			set_opt(sbi->s_mount_opt, POSIX_ACL);
1269 			break;
1270 		case Opt_noacl:
1271 			clear_opt(sbi->s_mount_opt, POSIX_ACL);
1272 			break;
1273 #else
1274 		case Opt_acl:
1275 		case Opt_noacl:
1276 			ext4_msg(sb, KERN_ERR, "(no)acl options not supported");
1277 			break;
1278 #endif
1279 		case Opt_journal_update:
1280 			/* @@@ FIXME */
1281 			/* Eventually we will want to be able to create
1282 			   a journal file here.  For now, only allow the
1283 			   user to specify an existing inode to be the
1284 			   journal file. */
1285 			if (is_remount) {
1286 				ext4_msg(sb, KERN_ERR,
1287 					 "Cannot specify journal on remount");
1288 				return 0;
1289 			}
1290 			set_opt(sbi->s_mount_opt, UPDATE_JOURNAL);
1291 			break;
1292 		case Opt_journal_dev:
1293 			if (is_remount) {
1294 				ext4_msg(sb, KERN_ERR,
1295 					"Cannot specify journal on remount");
1296 				return 0;
1297 			}
1298 			if (match_int(&args[0], &option))
1299 				return 0;
1300 			*journal_devnum = option;
1301 			break;
1302 		case Opt_journal_checksum:
1303 			set_opt(sbi->s_mount_opt, JOURNAL_CHECKSUM);
1304 			break;
1305 		case Opt_journal_async_commit:
1306 			set_opt(sbi->s_mount_opt, JOURNAL_ASYNC_COMMIT);
1307 			set_opt(sbi->s_mount_opt, JOURNAL_CHECKSUM);
1308 			break;
1309 		case Opt_noload:
1310 			set_opt(sbi->s_mount_opt, NOLOAD);
1311 			break;
1312 		case Opt_commit:
1313 			if (match_int(&args[0], &option))
1314 				return 0;
1315 			if (option < 0)
1316 				return 0;
1317 			if (option == 0)
1318 				option = JBD2_DEFAULT_MAX_COMMIT_AGE;
1319 			sbi->s_commit_interval = HZ * option;
1320 			break;
1321 		case Opt_max_batch_time:
1322 			if (match_int(&args[0], &option))
1323 				return 0;
1324 			if (option < 0)
1325 				return 0;
1326 			if (option == 0)
1327 				option = EXT4_DEF_MAX_BATCH_TIME;
1328 			sbi->s_max_batch_time = option;
1329 			break;
1330 		case Opt_min_batch_time:
1331 			if (match_int(&args[0], &option))
1332 				return 0;
1333 			if (option < 0)
1334 				return 0;
1335 			sbi->s_min_batch_time = option;
1336 			break;
1337 		case Opt_data_journal:
1338 			data_opt = EXT4_MOUNT_JOURNAL_DATA;
1339 			goto datacheck;
1340 		case Opt_data_ordered:
1341 			data_opt = EXT4_MOUNT_ORDERED_DATA;
1342 			goto datacheck;
1343 		case Opt_data_writeback:
1344 			data_opt = EXT4_MOUNT_WRITEBACK_DATA;
1345 		datacheck:
1346 			if (is_remount) {
1347 				if ((sbi->s_mount_opt & EXT4_MOUNT_DATA_FLAGS)
1348 						!= data_opt) {
1349 					ext4_msg(sb, KERN_ERR,
1350 						"Cannot change data mode on remount");
1351 					return 0;
1352 				}
1353 			} else {
1354 				sbi->s_mount_opt &= ~EXT4_MOUNT_DATA_FLAGS;
1355 				sbi->s_mount_opt |= data_opt;
1356 			}
1357 			break;
1358 		case Opt_data_err_abort:
1359 			set_opt(sbi->s_mount_opt, DATA_ERR_ABORT);
1360 			break;
1361 		case Opt_data_err_ignore:
1362 			clear_opt(sbi->s_mount_opt, DATA_ERR_ABORT);
1363 			break;
1364 #ifdef CONFIG_QUOTA
1365 		case Opt_usrjquota:
1366 			qtype = USRQUOTA;
1367 			goto set_qf_name;
1368 		case Opt_grpjquota:
1369 			qtype = GRPQUOTA;
1370 set_qf_name:
1371 			if (sb_any_quota_loaded(sb) &&
1372 			    !sbi->s_qf_names[qtype]) {
1373 				ext4_msg(sb, KERN_ERR,
1374 				       "Cannot change journaled "
1375 				       "quota options when quota turned on");
1376 				return 0;
1377 			}
1378 			qname = match_strdup(&args[0]);
1379 			if (!qname) {
1380 				ext4_msg(sb, KERN_ERR,
1381 					"Not enough memory for "
1382 					"storing quotafile name");
1383 				return 0;
1384 			}
1385 			if (sbi->s_qf_names[qtype] &&
1386 			    strcmp(sbi->s_qf_names[qtype], qname)) {
1387 				ext4_msg(sb, KERN_ERR,
1388 					"%s quota file already "
1389 					"specified", QTYPE2NAME(qtype));
1390 				kfree(qname);
1391 				return 0;
1392 			}
1393 			sbi->s_qf_names[qtype] = qname;
1394 			if (strchr(sbi->s_qf_names[qtype], '/')) {
1395 				ext4_msg(sb, KERN_ERR,
1396 					"quotafile must be on "
1397 					"filesystem root");
1398 				kfree(sbi->s_qf_names[qtype]);
1399 				sbi->s_qf_names[qtype] = NULL;
1400 				return 0;
1401 			}
1402 			set_opt(sbi->s_mount_opt, QUOTA);
1403 			break;
1404 		case Opt_offusrjquota:
1405 			qtype = USRQUOTA;
1406 			goto clear_qf_name;
1407 		case Opt_offgrpjquota:
1408 			qtype = GRPQUOTA;
1409 clear_qf_name:
1410 			if (sb_any_quota_loaded(sb) &&
1411 			    sbi->s_qf_names[qtype]) {
1412 				ext4_msg(sb, KERN_ERR, "Cannot change "
1413 					"journaled quota options when "
1414 					"quota turned on");
1415 				return 0;
1416 			}
1417 			/*
1418 			 * The space will be released later when all options
1419 			 * are confirmed to be correct
1420 			 */
1421 			sbi->s_qf_names[qtype] = NULL;
1422 			break;
1423 		case Opt_jqfmt_vfsold:
1424 			qfmt = QFMT_VFS_OLD;
1425 			goto set_qf_format;
1426 		case Opt_jqfmt_vfsv0:
1427 			qfmt = QFMT_VFS_V0;
1428 set_qf_format:
1429 			if (sb_any_quota_loaded(sb) &&
1430 			    sbi->s_jquota_fmt != qfmt) {
1431 				ext4_msg(sb, KERN_ERR, "Cannot change "
1432 					"journaled quota options when "
1433 					"quota turned on");
1434 				return 0;
1435 			}
1436 			sbi->s_jquota_fmt = qfmt;
1437 			break;
1438 		case Opt_quota:
1439 		case Opt_usrquota:
1440 			set_opt(sbi->s_mount_opt, QUOTA);
1441 			set_opt(sbi->s_mount_opt, USRQUOTA);
1442 			break;
1443 		case Opt_grpquota:
1444 			set_opt(sbi->s_mount_opt, QUOTA);
1445 			set_opt(sbi->s_mount_opt, GRPQUOTA);
1446 			break;
1447 		case Opt_noquota:
1448 			if (sb_any_quota_loaded(sb)) {
1449 				ext4_msg(sb, KERN_ERR, "Cannot change quota "
1450 					"options when quota turned on");
1451 				return 0;
1452 			}
1453 			clear_opt(sbi->s_mount_opt, QUOTA);
1454 			clear_opt(sbi->s_mount_opt, USRQUOTA);
1455 			clear_opt(sbi->s_mount_opt, GRPQUOTA);
1456 			break;
1457 #else
1458 		case Opt_quota:
1459 		case Opt_usrquota:
1460 		case Opt_grpquota:
1461 			ext4_msg(sb, KERN_ERR,
1462 				"quota options not supported");
1463 			break;
1464 		case Opt_usrjquota:
1465 		case Opt_grpjquota:
1466 		case Opt_offusrjquota:
1467 		case Opt_offgrpjquota:
1468 		case Opt_jqfmt_vfsold:
1469 		case Opt_jqfmt_vfsv0:
1470 			ext4_msg(sb, KERN_ERR,
1471 				"journaled quota options not supported");
1472 			break;
1473 		case Opt_noquota:
1474 			break;
1475 #endif
1476 		case Opt_abort:
1477 			sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1478 			break;
1479 		case Opt_nobarrier:
1480 			clear_opt(sbi->s_mount_opt, BARRIER);
1481 			break;
1482 		case Opt_barrier:
1483 			if (match_int(&args[0], &option)) {
1484 				set_opt(sbi->s_mount_opt, BARRIER);
1485 				break;
1486 			}
1487 			if (option)
1488 				set_opt(sbi->s_mount_opt, BARRIER);
1489 			else
1490 				clear_opt(sbi->s_mount_opt, BARRIER);
1491 			break;
1492 		case Opt_ignore:
1493 			break;
1494 		case Opt_resize:
1495 			if (!is_remount) {
1496 				ext4_msg(sb, KERN_ERR,
1497 					"resize option only available "
1498 					"for remount");
1499 				return 0;
1500 			}
1501 			if (match_int(&args[0], &option) != 0)
1502 				return 0;
1503 			*n_blocks_count = option;
1504 			break;
1505 		case Opt_nobh:
1506 			set_opt(sbi->s_mount_opt, NOBH);
1507 			break;
1508 		case Opt_bh:
1509 			clear_opt(sbi->s_mount_opt, NOBH);
1510 			break;
1511 		case Opt_i_version:
1512 			set_opt(sbi->s_mount_opt, I_VERSION);
1513 			sb->s_flags |= MS_I_VERSION;
1514 			break;
1515 		case Opt_nodelalloc:
1516 			clear_opt(sbi->s_mount_opt, DELALLOC);
1517 			break;
1518 		case Opt_stripe:
1519 			if (match_int(&args[0], &option))
1520 				return 0;
1521 			if (option < 0)
1522 				return 0;
1523 			sbi->s_stripe = option;
1524 			break;
1525 		case Opt_delalloc:
1526 			set_opt(sbi->s_mount_opt, DELALLOC);
1527 			break;
1528 		case Opt_block_validity:
1529 			set_opt(sbi->s_mount_opt, BLOCK_VALIDITY);
1530 			break;
1531 		case Opt_noblock_validity:
1532 			clear_opt(sbi->s_mount_opt, BLOCK_VALIDITY);
1533 			break;
1534 		case Opt_inode_readahead_blks:
1535 			if (match_int(&args[0], &option))
1536 				return 0;
1537 			if (option < 0 || option > (1 << 30))
1538 				return 0;
1539 			if (!is_power_of_2(option)) {
1540 				ext4_msg(sb, KERN_ERR,
1541 					 "EXT4-fs: inode_readahead_blks"
1542 					 " must be a power of 2");
1543 				return 0;
1544 			}
1545 			sbi->s_inode_readahead_blks = option;
1546 			break;
1547 		case Opt_journal_ioprio:
1548 			if (match_int(&args[0], &option))
1549 				return 0;
1550 			if (option < 0 || option > 7)
1551 				break;
1552 			*journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE,
1553 							    option);
1554 			break;
1555 		case Opt_noauto_da_alloc:
1556 			set_opt(sbi->s_mount_opt,NO_AUTO_DA_ALLOC);
1557 			break;
1558 		case Opt_auto_da_alloc:
1559 			if (match_int(&args[0], &option)) {
1560 				clear_opt(sbi->s_mount_opt, NO_AUTO_DA_ALLOC);
1561 				break;
1562 			}
1563 			if (option)
1564 				clear_opt(sbi->s_mount_opt, NO_AUTO_DA_ALLOC);
1565 			else
1566 				set_opt(sbi->s_mount_opt,NO_AUTO_DA_ALLOC);
1567 			break;
1568 		default:
1569 			ext4_msg(sb, KERN_ERR,
1570 			       "Unrecognized mount option \"%s\" "
1571 			       "or missing value", p);
1572 			return 0;
1573 		}
1574 	}
1575 #ifdef CONFIG_QUOTA
1576 	if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1577 		if ((sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA) &&
1578 		     sbi->s_qf_names[USRQUOTA])
1579 			clear_opt(sbi->s_mount_opt, USRQUOTA);
1580 
1581 		if ((sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA) &&
1582 		     sbi->s_qf_names[GRPQUOTA])
1583 			clear_opt(sbi->s_mount_opt, GRPQUOTA);
1584 
1585 		if ((sbi->s_qf_names[USRQUOTA] &&
1586 				(sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA)) ||
1587 		    (sbi->s_qf_names[GRPQUOTA] &&
1588 				(sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA))) {
1589 			ext4_msg(sb, KERN_ERR, "old and new quota "
1590 					"format mixing");
1591 			return 0;
1592 		}
1593 
1594 		if (!sbi->s_jquota_fmt) {
1595 			ext4_msg(sb, KERN_ERR, "journaled quota format "
1596 					"not specified");
1597 			return 0;
1598 		}
1599 	} else {
1600 		if (sbi->s_jquota_fmt) {
1601 			ext4_msg(sb, KERN_ERR, "journaled quota format "
1602 					"specified with no journaling "
1603 					"enabled");
1604 			return 0;
1605 		}
1606 	}
1607 #endif
1608 	return 1;
1609 }
1610 
1611 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1612 			    int read_only)
1613 {
1614 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1615 	int res = 0;
1616 
1617 	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1618 		ext4_msg(sb, KERN_ERR, "revision level too high, "
1619 			 "forcing read-only mode");
1620 		res = MS_RDONLY;
1621 	}
1622 	if (read_only)
1623 		return res;
1624 	if (!(sbi->s_mount_state & EXT4_VALID_FS))
1625 		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1626 			 "running e2fsck is recommended");
1627 	else if ((sbi->s_mount_state & EXT4_ERROR_FS))
1628 		ext4_msg(sb, KERN_WARNING,
1629 			 "warning: mounting fs with errors, "
1630 			 "running e2fsck is recommended");
1631 	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) >= 0 &&
1632 		 le16_to_cpu(es->s_mnt_count) >=
1633 		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1634 		ext4_msg(sb, KERN_WARNING,
1635 			 "warning: maximal mount count reached, "
1636 			 "running e2fsck is recommended");
1637 	else if (le32_to_cpu(es->s_checkinterval) &&
1638 		(le32_to_cpu(es->s_lastcheck) +
1639 			le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1640 		ext4_msg(sb, KERN_WARNING,
1641 			 "warning: checktime reached, "
1642 			 "running e2fsck is recommended");
1643 	if (!sbi->s_journal)
1644 		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1645 	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1646 		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1647 	le16_add_cpu(&es->s_mnt_count, 1);
1648 	es->s_mtime = cpu_to_le32(get_seconds());
1649 	ext4_update_dynamic_rev(sb);
1650 	if (sbi->s_journal)
1651 		EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1652 
1653 	ext4_commit_super(sb, 1);
1654 	if (test_opt(sb, DEBUG))
1655 		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1656 				"bpg=%lu, ipg=%lu, mo=%04x]\n",
1657 			sb->s_blocksize,
1658 			sbi->s_groups_count,
1659 			EXT4_BLOCKS_PER_GROUP(sb),
1660 			EXT4_INODES_PER_GROUP(sb),
1661 			sbi->s_mount_opt);
1662 
1663 	return res;
1664 }
1665 
1666 static int ext4_fill_flex_info(struct super_block *sb)
1667 {
1668 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1669 	struct ext4_group_desc *gdp = NULL;
1670 	ext4_group_t flex_group_count;
1671 	ext4_group_t flex_group;
1672 	int groups_per_flex = 0;
1673 	size_t size;
1674 	int i;
1675 
1676 	if (!sbi->s_es->s_log_groups_per_flex) {
1677 		sbi->s_log_groups_per_flex = 0;
1678 		return 1;
1679 	}
1680 
1681 	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1682 	groups_per_flex = 1 << sbi->s_log_groups_per_flex;
1683 
1684 	/* We allocate both existing and potentially added groups */
1685 	flex_group_count = ((sbi->s_groups_count + groups_per_flex - 1) +
1686 			((le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) + 1) <<
1687 			      EXT4_DESC_PER_BLOCK_BITS(sb))) / groups_per_flex;
1688 	size = flex_group_count * sizeof(struct flex_groups);
1689 	sbi->s_flex_groups = kzalloc(size, GFP_KERNEL);
1690 	if (sbi->s_flex_groups == NULL) {
1691 		sbi->s_flex_groups = vmalloc(size);
1692 		if (sbi->s_flex_groups)
1693 			memset(sbi->s_flex_groups, 0, size);
1694 	}
1695 	if (sbi->s_flex_groups == NULL) {
1696 		ext4_msg(sb, KERN_ERR, "not enough memory for "
1697 				"%u flex groups", flex_group_count);
1698 		goto failed;
1699 	}
1700 
1701 	for (i = 0; i < sbi->s_groups_count; i++) {
1702 		gdp = ext4_get_group_desc(sb, i, NULL);
1703 
1704 		flex_group = ext4_flex_group(sbi, i);
1705 		atomic_add(ext4_free_inodes_count(sb, gdp),
1706 			   &sbi->s_flex_groups[flex_group].free_inodes);
1707 		atomic_add(ext4_free_blks_count(sb, gdp),
1708 			   &sbi->s_flex_groups[flex_group].free_blocks);
1709 		atomic_add(ext4_used_dirs_count(sb, gdp),
1710 			   &sbi->s_flex_groups[flex_group].used_dirs);
1711 	}
1712 
1713 	return 1;
1714 failed:
1715 	return 0;
1716 }
1717 
1718 __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
1719 			    struct ext4_group_desc *gdp)
1720 {
1721 	__u16 crc = 0;
1722 
1723 	if (sbi->s_es->s_feature_ro_compat &
1724 	    cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) {
1725 		int offset = offsetof(struct ext4_group_desc, bg_checksum);
1726 		__le32 le_group = cpu_to_le32(block_group);
1727 
1728 		crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
1729 		crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
1730 		crc = crc16(crc, (__u8 *)gdp, offset);
1731 		offset += sizeof(gdp->bg_checksum); /* skip checksum */
1732 		/* for checksum of struct ext4_group_desc do the rest...*/
1733 		if ((sbi->s_es->s_feature_incompat &
1734 		     cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
1735 		    offset < le16_to_cpu(sbi->s_es->s_desc_size))
1736 			crc = crc16(crc, (__u8 *)gdp + offset,
1737 				    le16_to_cpu(sbi->s_es->s_desc_size) -
1738 					offset);
1739 	}
1740 
1741 	return cpu_to_le16(crc);
1742 }
1743 
1744 int ext4_group_desc_csum_verify(struct ext4_sb_info *sbi, __u32 block_group,
1745 				struct ext4_group_desc *gdp)
1746 {
1747 	if ((sbi->s_es->s_feature_ro_compat &
1748 	     cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) &&
1749 	    (gdp->bg_checksum != ext4_group_desc_csum(sbi, block_group, gdp)))
1750 		return 0;
1751 
1752 	return 1;
1753 }
1754 
1755 /* Called at mount-time, super-block is locked */
1756 static int ext4_check_descriptors(struct super_block *sb)
1757 {
1758 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1759 	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
1760 	ext4_fsblk_t last_block;
1761 	ext4_fsblk_t block_bitmap;
1762 	ext4_fsblk_t inode_bitmap;
1763 	ext4_fsblk_t inode_table;
1764 	int flexbg_flag = 0;
1765 	ext4_group_t i;
1766 
1767 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
1768 		flexbg_flag = 1;
1769 
1770 	ext4_debug("Checking group descriptors");
1771 
1772 	for (i = 0; i < sbi->s_groups_count; i++) {
1773 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1774 
1775 		if (i == sbi->s_groups_count - 1 || flexbg_flag)
1776 			last_block = ext4_blocks_count(sbi->s_es) - 1;
1777 		else
1778 			last_block = first_block +
1779 				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
1780 
1781 		block_bitmap = ext4_block_bitmap(sb, gdp);
1782 		if (block_bitmap < first_block || block_bitmap > last_block) {
1783 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
1784 			       "Block bitmap for group %u not in group "
1785 			       "(block %llu)!", i, block_bitmap);
1786 			return 0;
1787 		}
1788 		inode_bitmap = ext4_inode_bitmap(sb, gdp);
1789 		if (inode_bitmap < first_block || inode_bitmap > last_block) {
1790 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
1791 			       "Inode bitmap for group %u not in group "
1792 			       "(block %llu)!", i, inode_bitmap);
1793 			return 0;
1794 		}
1795 		inode_table = ext4_inode_table(sb, gdp);
1796 		if (inode_table < first_block ||
1797 		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
1798 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
1799 			       "Inode table for group %u not in group "
1800 			       "(block %llu)!", i, inode_table);
1801 			return 0;
1802 		}
1803 		ext4_lock_group(sb, i);
1804 		if (!ext4_group_desc_csum_verify(sbi, i, gdp)) {
1805 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
1806 				 "Checksum for group %u failed (%u!=%u)",
1807 				 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
1808 				     gdp)), le16_to_cpu(gdp->bg_checksum));
1809 			if (!(sb->s_flags & MS_RDONLY)) {
1810 				ext4_unlock_group(sb, i);
1811 				return 0;
1812 			}
1813 		}
1814 		ext4_unlock_group(sb, i);
1815 		if (!flexbg_flag)
1816 			first_block += EXT4_BLOCKS_PER_GROUP(sb);
1817 	}
1818 
1819 	ext4_free_blocks_count_set(sbi->s_es, ext4_count_free_blocks(sb));
1820 	sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb));
1821 	return 1;
1822 }
1823 
1824 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
1825  * the superblock) which were deleted from all directories, but held open by
1826  * a process at the time of a crash.  We walk the list and try to delete these
1827  * inodes at recovery time (only with a read-write filesystem).
1828  *
1829  * In order to keep the orphan inode chain consistent during traversal (in
1830  * case of crash during recovery), we link each inode into the superblock
1831  * orphan list_head and handle it the same way as an inode deletion during
1832  * normal operation (which journals the operations for us).
1833  *
1834  * We only do an iget() and an iput() on each inode, which is very safe if we
1835  * accidentally point at an in-use or already deleted inode.  The worst that
1836  * can happen in this case is that we get a "bit already cleared" message from
1837  * ext4_free_inode().  The only reason we would point at a wrong inode is if
1838  * e2fsck was run on this filesystem, and it must have already done the orphan
1839  * inode cleanup for us, so we can safely abort without any further action.
1840  */
1841 static void ext4_orphan_cleanup(struct super_block *sb,
1842 				struct ext4_super_block *es)
1843 {
1844 	unsigned int s_flags = sb->s_flags;
1845 	int nr_orphans = 0, nr_truncates = 0;
1846 #ifdef CONFIG_QUOTA
1847 	int i;
1848 #endif
1849 	if (!es->s_last_orphan) {
1850 		jbd_debug(4, "no orphan inodes to clean up\n");
1851 		return;
1852 	}
1853 
1854 	if (bdev_read_only(sb->s_bdev)) {
1855 		ext4_msg(sb, KERN_ERR, "write access "
1856 			"unavailable, skipping orphan cleanup");
1857 		return;
1858 	}
1859 
1860 	if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
1861 		if (es->s_last_orphan)
1862 			jbd_debug(1, "Errors on filesystem, "
1863 				  "clearing orphan list.\n");
1864 		es->s_last_orphan = 0;
1865 		jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
1866 		return;
1867 	}
1868 
1869 	if (s_flags & MS_RDONLY) {
1870 		ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
1871 		sb->s_flags &= ~MS_RDONLY;
1872 	}
1873 #ifdef CONFIG_QUOTA
1874 	/* Needed for iput() to work correctly and not trash data */
1875 	sb->s_flags |= MS_ACTIVE;
1876 	/* Turn on quotas so that they are updated correctly */
1877 	for (i = 0; i < MAXQUOTAS; i++) {
1878 		if (EXT4_SB(sb)->s_qf_names[i]) {
1879 			int ret = ext4_quota_on_mount(sb, i);
1880 			if (ret < 0)
1881 				ext4_msg(sb, KERN_ERR,
1882 					"Cannot turn on journaled "
1883 					"quota: error %d", ret);
1884 		}
1885 	}
1886 #endif
1887 
1888 	while (es->s_last_orphan) {
1889 		struct inode *inode;
1890 
1891 		inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
1892 		if (IS_ERR(inode)) {
1893 			es->s_last_orphan = 0;
1894 			break;
1895 		}
1896 
1897 		list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
1898 		vfs_dq_init(inode);
1899 		if (inode->i_nlink) {
1900 			ext4_msg(sb, KERN_DEBUG,
1901 				"%s: truncating inode %lu to %lld bytes",
1902 				__func__, inode->i_ino, inode->i_size);
1903 			jbd_debug(2, "truncating inode %lu to %lld bytes\n",
1904 				  inode->i_ino, inode->i_size);
1905 			ext4_truncate(inode);
1906 			nr_truncates++;
1907 		} else {
1908 			ext4_msg(sb, KERN_DEBUG,
1909 				"%s: deleting unreferenced inode %lu",
1910 				__func__, inode->i_ino);
1911 			jbd_debug(2, "deleting unreferenced inode %lu\n",
1912 				  inode->i_ino);
1913 			nr_orphans++;
1914 		}
1915 		iput(inode);  /* The delete magic happens here! */
1916 	}
1917 
1918 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
1919 
1920 	if (nr_orphans)
1921 		ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
1922 		       PLURAL(nr_orphans));
1923 	if (nr_truncates)
1924 		ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
1925 		       PLURAL(nr_truncates));
1926 #ifdef CONFIG_QUOTA
1927 	/* Turn quotas off */
1928 	for (i = 0; i < MAXQUOTAS; i++) {
1929 		if (sb_dqopt(sb)->files[i])
1930 			vfs_quota_off(sb, i, 0);
1931 	}
1932 #endif
1933 	sb->s_flags = s_flags; /* Restore MS_RDONLY status */
1934 }
1935 
1936 /*
1937  * Maximal extent format file size.
1938  * Resulting logical blkno at s_maxbytes must fit in our on-disk
1939  * extent format containers, within a sector_t, and within i_blocks
1940  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
1941  * so that won't be a limiting factor.
1942  *
1943  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
1944  */
1945 static loff_t ext4_max_size(int blkbits, int has_huge_files)
1946 {
1947 	loff_t res;
1948 	loff_t upper_limit = MAX_LFS_FILESIZE;
1949 
1950 	/* small i_blocks in vfs inode? */
1951 	if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
1952 		/*
1953 		 * CONFIG_LBDAF is not enabled implies the inode
1954 		 * i_block represent total blocks in 512 bytes
1955 		 * 32 == size of vfs inode i_blocks * 8
1956 		 */
1957 		upper_limit = (1LL << 32) - 1;
1958 
1959 		/* total blocks in file system block size */
1960 		upper_limit >>= (blkbits - 9);
1961 		upper_limit <<= blkbits;
1962 	}
1963 
1964 	/* 32-bit extent-start container, ee_block */
1965 	res = 1LL << 32;
1966 	res <<= blkbits;
1967 	res -= 1;
1968 
1969 	/* Sanity check against vm- & vfs- imposed limits */
1970 	if (res > upper_limit)
1971 		res = upper_limit;
1972 
1973 	return res;
1974 }
1975 
1976 /*
1977  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
1978  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
1979  * We need to be 1 filesystem block less than the 2^48 sector limit.
1980  */
1981 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
1982 {
1983 	loff_t res = EXT4_NDIR_BLOCKS;
1984 	int meta_blocks;
1985 	loff_t upper_limit;
1986 	/* This is calculated to be the largest file size for a dense, block
1987 	 * mapped file such that the file's total number of 512-byte sectors,
1988 	 * including data and all indirect blocks, does not exceed (2^48 - 1).
1989 	 *
1990 	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
1991 	 * number of 512-byte sectors of the file.
1992 	 */
1993 
1994 	if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
1995 		/*
1996 		 * !has_huge_files or CONFIG_LBDAF not enabled implies that
1997 		 * the inode i_block field represents total file blocks in
1998 		 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
1999 		 */
2000 		upper_limit = (1LL << 32) - 1;
2001 
2002 		/* total blocks in file system block size */
2003 		upper_limit >>= (bits - 9);
2004 
2005 	} else {
2006 		/*
2007 		 * We use 48 bit ext4_inode i_blocks
2008 		 * With EXT4_HUGE_FILE_FL set the i_blocks
2009 		 * represent total number of blocks in
2010 		 * file system block size
2011 		 */
2012 		upper_limit = (1LL << 48) - 1;
2013 
2014 	}
2015 
2016 	/* indirect blocks */
2017 	meta_blocks = 1;
2018 	/* double indirect blocks */
2019 	meta_blocks += 1 + (1LL << (bits-2));
2020 	/* tripple indirect blocks */
2021 	meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2022 
2023 	upper_limit -= meta_blocks;
2024 	upper_limit <<= bits;
2025 
2026 	res += 1LL << (bits-2);
2027 	res += 1LL << (2*(bits-2));
2028 	res += 1LL << (3*(bits-2));
2029 	res <<= bits;
2030 	if (res > upper_limit)
2031 		res = upper_limit;
2032 
2033 	if (res > MAX_LFS_FILESIZE)
2034 		res = MAX_LFS_FILESIZE;
2035 
2036 	return res;
2037 }
2038 
2039 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2040 				   ext4_fsblk_t logical_sb_block, int nr)
2041 {
2042 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2043 	ext4_group_t bg, first_meta_bg;
2044 	int has_super = 0;
2045 
2046 	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2047 
2048 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2049 	    nr < first_meta_bg)
2050 		return logical_sb_block + nr + 1;
2051 	bg = sbi->s_desc_per_block * nr;
2052 	if (ext4_bg_has_super(sb, bg))
2053 		has_super = 1;
2054 
2055 	return (has_super + ext4_group_first_block_no(sb, bg));
2056 }
2057 
2058 /**
2059  * ext4_get_stripe_size: Get the stripe size.
2060  * @sbi: In memory super block info
2061  *
2062  * If we have specified it via mount option, then
2063  * use the mount option value. If the value specified at mount time is
2064  * greater than the blocks per group use the super block value.
2065  * If the super block value is greater than blocks per group return 0.
2066  * Allocator needs it be less than blocks per group.
2067  *
2068  */
2069 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2070 {
2071 	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2072 	unsigned long stripe_width =
2073 			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2074 
2075 	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2076 		return sbi->s_stripe;
2077 
2078 	if (stripe_width <= sbi->s_blocks_per_group)
2079 		return stripe_width;
2080 
2081 	if (stride <= sbi->s_blocks_per_group)
2082 		return stride;
2083 
2084 	return 0;
2085 }
2086 
2087 /* sysfs supprt */
2088 
2089 struct ext4_attr {
2090 	struct attribute attr;
2091 	ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2092 	ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2093 			 const char *, size_t);
2094 	int offset;
2095 };
2096 
2097 static int parse_strtoul(const char *buf,
2098 		unsigned long max, unsigned long *value)
2099 {
2100 	char *endp;
2101 
2102 	while (*buf && isspace(*buf))
2103 		buf++;
2104 	*value = simple_strtoul(buf, &endp, 0);
2105 	while (*endp && isspace(*endp))
2106 		endp++;
2107 	if (*endp || *value > max)
2108 		return -EINVAL;
2109 
2110 	return 0;
2111 }
2112 
2113 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2114 					      struct ext4_sb_info *sbi,
2115 					      char *buf)
2116 {
2117 	return snprintf(buf, PAGE_SIZE, "%llu\n",
2118 			(s64) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2119 }
2120 
2121 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2122 					 struct ext4_sb_info *sbi, char *buf)
2123 {
2124 	struct super_block *sb = sbi->s_buddy_cache->i_sb;
2125 
2126 	return snprintf(buf, PAGE_SIZE, "%lu\n",
2127 			(part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2128 			 sbi->s_sectors_written_start) >> 1);
2129 }
2130 
2131 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2132 					  struct ext4_sb_info *sbi, char *buf)
2133 {
2134 	struct super_block *sb = sbi->s_buddy_cache->i_sb;
2135 
2136 	return snprintf(buf, PAGE_SIZE, "%llu\n",
2137 			sbi->s_kbytes_written +
2138 			((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2139 			  EXT4_SB(sb)->s_sectors_written_start) >> 1));
2140 }
2141 
2142 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2143 					  struct ext4_sb_info *sbi,
2144 					  const char *buf, size_t count)
2145 {
2146 	unsigned long t;
2147 
2148 	if (parse_strtoul(buf, 0x40000000, &t))
2149 		return -EINVAL;
2150 
2151 	if (!is_power_of_2(t))
2152 		return -EINVAL;
2153 
2154 	sbi->s_inode_readahead_blks = t;
2155 	return count;
2156 }
2157 
2158 static ssize_t sbi_ui_show(struct ext4_attr *a,
2159 			   struct ext4_sb_info *sbi, char *buf)
2160 {
2161 	unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2162 
2163 	return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2164 }
2165 
2166 static ssize_t sbi_ui_store(struct ext4_attr *a,
2167 			    struct ext4_sb_info *sbi,
2168 			    const char *buf, size_t count)
2169 {
2170 	unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2171 	unsigned long t;
2172 
2173 	if (parse_strtoul(buf, 0xffffffff, &t))
2174 		return -EINVAL;
2175 	*ui = t;
2176 	return count;
2177 }
2178 
2179 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2180 static struct ext4_attr ext4_attr_##_name = {			\
2181 	.attr = {.name = __stringify(_name), .mode = _mode },	\
2182 	.show	= _show,					\
2183 	.store	= _store,					\
2184 	.offset = offsetof(struct ext4_sb_info, _elname),	\
2185 }
2186 #define EXT4_ATTR(name, mode, show, store) \
2187 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2188 
2189 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2190 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2191 #define EXT4_RW_ATTR_SBI_UI(name, elname)	\
2192 	EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2193 #define ATTR_LIST(name) &ext4_attr_##name.attr
2194 
2195 EXT4_RO_ATTR(delayed_allocation_blocks);
2196 EXT4_RO_ATTR(session_write_kbytes);
2197 EXT4_RO_ATTR(lifetime_write_kbytes);
2198 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2199 		 inode_readahead_blks_store, s_inode_readahead_blks);
2200 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2201 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2202 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2203 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2204 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2205 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2206 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2207 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump);
2208 
2209 static struct attribute *ext4_attrs[] = {
2210 	ATTR_LIST(delayed_allocation_blocks),
2211 	ATTR_LIST(session_write_kbytes),
2212 	ATTR_LIST(lifetime_write_kbytes),
2213 	ATTR_LIST(inode_readahead_blks),
2214 	ATTR_LIST(inode_goal),
2215 	ATTR_LIST(mb_stats),
2216 	ATTR_LIST(mb_max_to_scan),
2217 	ATTR_LIST(mb_min_to_scan),
2218 	ATTR_LIST(mb_order2_req),
2219 	ATTR_LIST(mb_stream_req),
2220 	ATTR_LIST(mb_group_prealloc),
2221 	ATTR_LIST(max_writeback_mb_bump),
2222 	NULL,
2223 };
2224 
2225 static ssize_t ext4_attr_show(struct kobject *kobj,
2226 			      struct attribute *attr, char *buf)
2227 {
2228 	struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2229 						s_kobj);
2230 	struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2231 
2232 	return a->show ? a->show(a, sbi, buf) : 0;
2233 }
2234 
2235 static ssize_t ext4_attr_store(struct kobject *kobj,
2236 			       struct attribute *attr,
2237 			       const char *buf, size_t len)
2238 {
2239 	struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2240 						s_kobj);
2241 	struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2242 
2243 	return a->store ? a->store(a, sbi, buf, len) : 0;
2244 }
2245 
2246 static void ext4_sb_release(struct kobject *kobj)
2247 {
2248 	struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2249 						s_kobj);
2250 	complete(&sbi->s_kobj_unregister);
2251 }
2252 
2253 
2254 static struct sysfs_ops ext4_attr_ops = {
2255 	.show	= ext4_attr_show,
2256 	.store	= ext4_attr_store,
2257 };
2258 
2259 static struct kobj_type ext4_ktype = {
2260 	.default_attrs	= ext4_attrs,
2261 	.sysfs_ops	= &ext4_attr_ops,
2262 	.release	= ext4_sb_release,
2263 };
2264 
2265 /*
2266  * Check whether this filesystem can be mounted based on
2267  * the features present and the RDONLY/RDWR mount requested.
2268  * Returns 1 if this filesystem can be mounted as requested,
2269  * 0 if it cannot be.
2270  */
2271 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2272 {
2273 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2274 		ext4_msg(sb, KERN_ERR,
2275 			"Couldn't mount because of "
2276 			"unsupported optional features (%x)",
2277 			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2278 			~EXT4_FEATURE_INCOMPAT_SUPP));
2279 		return 0;
2280 	}
2281 
2282 	if (readonly)
2283 		return 1;
2284 
2285 	/* Check that feature set is OK for a read-write mount */
2286 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2287 		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2288 			 "unsupported optional features (%x)",
2289 			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2290 				~EXT4_FEATURE_RO_COMPAT_SUPP));
2291 		return 0;
2292 	}
2293 	/*
2294 	 * Large file size enabled file system can only be mounted
2295 	 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2296 	 */
2297 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2298 		if (sizeof(blkcnt_t) < sizeof(u64)) {
2299 			ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2300 				 "cannot be mounted RDWR without "
2301 				 "CONFIG_LBDAF");
2302 			return 0;
2303 		}
2304 	}
2305 	return 1;
2306 }
2307 
2308 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
2309 				__releases(kernel_lock)
2310 				__acquires(kernel_lock)
2311 {
2312 	struct buffer_head *bh;
2313 	struct ext4_super_block *es = NULL;
2314 	struct ext4_sb_info *sbi;
2315 	ext4_fsblk_t block;
2316 	ext4_fsblk_t sb_block = get_sb_block(&data);
2317 	ext4_fsblk_t logical_sb_block;
2318 	unsigned long offset = 0;
2319 	unsigned long journal_devnum = 0;
2320 	unsigned long def_mount_opts;
2321 	struct inode *root;
2322 	char *cp;
2323 	const char *descr;
2324 	int ret = -EINVAL;
2325 	int blocksize;
2326 	unsigned int db_count;
2327 	unsigned int i;
2328 	int needs_recovery, has_huge_files;
2329 	__u64 blocks_count;
2330 	int err;
2331 	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
2332 
2333 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2334 	if (!sbi)
2335 		return -ENOMEM;
2336 
2337 	sbi->s_blockgroup_lock =
2338 		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
2339 	if (!sbi->s_blockgroup_lock) {
2340 		kfree(sbi);
2341 		return -ENOMEM;
2342 	}
2343 	sb->s_fs_info = sbi;
2344 	sbi->s_mount_opt = 0;
2345 	sbi->s_resuid = EXT4_DEF_RESUID;
2346 	sbi->s_resgid = EXT4_DEF_RESGID;
2347 	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
2348 	sbi->s_sb_block = sb_block;
2349 	sbi->s_sectors_written_start = part_stat_read(sb->s_bdev->bd_part,
2350 						      sectors[1]);
2351 
2352 	unlock_kernel();
2353 
2354 	/* Cleanup superblock name */
2355 	for (cp = sb->s_id; (cp = strchr(cp, '/'));)
2356 		*cp = '!';
2357 
2358 	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
2359 	if (!blocksize) {
2360 		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
2361 		goto out_fail;
2362 	}
2363 
2364 	/*
2365 	 * The ext4 superblock will not be buffer aligned for other than 1kB
2366 	 * block sizes.  We need to calculate the offset from buffer start.
2367 	 */
2368 	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
2369 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
2370 		offset = do_div(logical_sb_block, blocksize);
2371 	} else {
2372 		logical_sb_block = sb_block;
2373 	}
2374 
2375 	if (!(bh = sb_bread(sb, logical_sb_block))) {
2376 		ext4_msg(sb, KERN_ERR, "unable to read superblock");
2377 		goto out_fail;
2378 	}
2379 	/*
2380 	 * Note: s_es must be initialized as soon as possible because
2381 	 *       some ext4 macro-instructions depend on its value
2382 	 */
2383 	es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
2384 	sbi->s_es = es;
2385 	sb->s_magic = le16_to_cpu(es->s_magic);
2386 	if (sb->s_magic != EXT4_SUPER_MAGIC)
2387 		goto cantfind_ext4;
2388 	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
2389 
2390 	/* Set defaults before we parse the mount options */
2391 	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
2392 	if (def_mount_opts & EXT4_DEFM_DEBUG)
2393 		set_opt(sbi->s_mount_opt, DEBUG);
2394 	if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
2395 		set_opt(sbi->s_mount_opt, GRPID);
2396 	if (def_mount_opts & EXT4_DEFM_UID16)
2397 		set_opt(sbi->s_mount_opt, NO_UID32);
2398 #ifdef CONFIG_EXT4_FS_XATTR
2399 	if (def_mount_opts & EXT4_DEFM_XATTR_USER)
2400 		set_opt(sbi->s_mount_opt, XATTR_USER);
2401 #endif
2402 #ifdef CONFIG_EXT4_FS_POSIX_ACL
2403 	if (def_mount_opts & EXT4_DEFM_ACL)
2404 		set_opt(sbi->s_mount_opt, POSIX_ACL);
2405 #endif
2406 	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
2407 		sbi->s_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
2408 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
2409 		sbi->s_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
2410 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
2411 		sbi->s_mount_opt |= EXT4_MOUNT_WRITEBACK_DATA;
2412 
2413 	if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
2414 		set_opt(sbi->s_mount_opt, ERRORS_PANIC);
2415 	else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
2416 		set_opt(sbi->s_mount_opt, ERRORS_CONT);
2417 	else
2418 		set_opt(sbi->s_mount_opt, ERRORS_RO);
2419 
2420 	sbi->s_resuid = le16_to_cpu(es->s_def_resuid);
2421 	sbi->s_resgid = le16_to_cpu(es->s_def_resgid);
2422 	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
2423 	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
2424 	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
2425 
2426 	set_opt(sbi->s_mount_opt, BARRIER);
2427 
2428 	/*
2429 	 * enable delayed allocation by default
2430 	 * Use -o nodelalloc to turn it off
2431 	 */
2432 	set_opt(sbi->s_mount_opt, DELALLOC);
2433 
2434 	if (!parse_options((char *) data, sb, &journal_devnum,
2435 			   &journal_ioprio, NULL, 0))
2436 		goto failed_mount;
2437 
2438 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
2439 		((sbi->s_mount_opt & EXT4_MOUNT_POSIX_ACL) ? MS_POSIXACL : 0);
2440 
2441 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
2442 	    (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
2443 	     EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
2444 	     EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
2445 		ext4_msg(sb, KERN_WARNING,
2446 		       "feature flags set on rev 0 fs, "
2447 		       "running e2fsck is recommended");
2448 
2449 	/*
2450 	 * Check feature flags regardless of the revision level, since we
2451 	 * previously didn't change the revision level when setting the flags,
2452 	 * so there is a chance incompat flags are set on a rev 0 filesystem.
2453 	 */
2454 	if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
2455 		goto failed_mount;
2456 
2457 	blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
2458 
2459 	if (blocksize < EXT4_MIN_BLOCK_SIZE ||
2460 	    blocksize > EXT4_MAX_BLOCK_SIZE) {
2461 		ext4_msg(sb, KERN_ERR,
2462 		       "Unsupported filesystem blocksize %d", blocksize);
2463 		goto failed_mount;
2464 	}
2465 
2466 	if (sb->s_blocksize != blocksize) {
2467 		/* Validate the filesystem blocksize */
2468 		if (!sb_set_blocksize(sb, blocksize)) {
2469 			ext4_msg(sb, KERN_ERR, "bad block size %d",
2470 					blocksize);
2471 			goto failed_mount;
2472 		}
2473 
2474 		brelse(bh);
2475 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
2476 		offset = do_div(logical_sb_block, blocksize);
2477 		bh = sb_bread(sb, logical_sb_block);
2478 		if (!bh) {
2479 			ext4_msg(sb, KERN_ERR,
2480 			       "Can't read superblock on 2nd try");
2481 			goto failed_mount;
2482 		}
2483 		es = (struct ext4_super_block *)(((char *)bh->b_data) + offset);
2484 		sbi->s_es = es;
2485 		if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
2486 			ext4_msg(sb, KERN_ERR,
2487 			       "Magic mismatch, very weird!");
2488 			goto failed_mount;
2489 		}
2490 	}
2491 
2492 	has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
2493 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
2494 	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
2495 						      has_huge_files);
2496 	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
2497 
2498 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
2499 		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
2500 		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
2501 	} else {
2502 		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
2503 		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
2504 		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
2505 		    (!is_power_of_2(sbi->s_inode_size)) ||
2506 		    (sbi->s_inode_size > blocksize)) {
2507 			ext4_msg(sb, KERN_ERR,
2508 			       "unsupported inode size: %d",
2509 			       sbi->s_inode_size);
2510 			goto failed_mount;
2511 		}
2512 		if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
2513 			sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
2514 	}
2515 
2516 	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
2517 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
2518 		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
2519 		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
2520 		    !is_power_of_2(sbi->s_desc_size)) {
2521 			ext4_msg(sb, KERN_ERR,
2522 			       "unsupported descriptor size %lu",
2523 			       sbi->s_desc_size);
2524 			goto failed_mount;
2525 		}
2526 	} else
2527 		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
2528 
2529 	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
2530 	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
2531 	if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
2532 		goto cantfind_ext4;
2533 
2534 	sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
2535 	if (sbi->s_inodes_per_block == 0)
2536 		goto cantfind_ext4;
2537 	sbi->s_itb_per_group = sbi->s_inodes_per_group /
2538 					sbi->s_inodes_per_block;
2539 	sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
2540 	sbi->s_sbh = bh;
2541 	sbi->s_mount_state = le16_to_cpu(es->s_state);
2542 	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
2543 	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
2544 
2545 	for (i = 0; i < 4; i++)
2546 		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
2547 	sbi->s_def_hash_version = es->s_def_hash_version;
2548 	i = le32_to_cpu(es->s_flags);
2549 	if (i & EXT2_FLAGS_UNSIGNED_HASH)
2550 		sbi->s_hash_unsigned = 3;
2551 	else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
2552 #ifdef __CHAR_UNSIGNED__
2553 		es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
2554 		sbi->s_hash_unsigned = 3;
2555 #else
2556 		es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
2557 #endif
2558 		sb->s_dirt = 1;
2559 	}
2560 
2561 	if (sbi->s_blocks_per_group > blocksize * 8) {
2562 		ext4_msg(sb, KERN_ERR,
2563 		       "#blocks per group too big: %lu",
2564 		       sbi->s_blocks_per_group);
2565 		goto failed_mount;
2566 	}
2567 	if (sbi->s_inodes_per_group > blocksize * 8) {
2568 		ext4_msg(sb, KERN_ERR,
2569 		       "#inodes per group too big: %lu",
2570 		       sbi->s_inodes_per_group);
2571 		goto failed_mount;
2572 	}
2573 
2574 	/*
2575 	 * Test whether we have more sectors than will fit in sector_t,
2576 	 * and whether the max offset is addressable by the page cache.
2577 	 */
2578 	if ((ext4_blocks_count(es) >
2579 	     (sector_t)(~0ULL) >> (sb->s_blocksize_bits - 9)) ||
2580 	    (ext4_blocks_count(es) >
2581 	     (pgoff_t)(~0ULL) >> (PAGE_CACHE_SHIFT - sb->s_blocksize_bits))) {
2582 		ext4_msg(sb, KERN_ERR, "filesystem"
2583 			 " too large to mount safely on this system");
2584 		if (sizeof(sector_t) < 8)
2585 			ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
2586 		ret = -EFBIG;
2587 		goto failed_mount;
2588 	}
2589 
2590 	if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
2591 		goto cantfind_ext4;
2592 
2593 	/* check blocks count against device size */
2594 	blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
2595 	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
2596 		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
2597 		       "exceeds size of device (%llu blocks)",
2598 		       ext4_blocks_count(es), blocks_count);
2599 		goto failed_mount;
2600 	}
2601 
2602 	/*
2603 	 * It makes no sense for the first data block to be beyond the end
2604 	 * of the filesystem.
2605 	 */
2606 	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
2607                 ext4_msg(sb, KERN_WARNING, "bad geometry: first data"
2608 			 "block %u is beyond end of filesystem (%llu)",
2609 			 le32_to_cpu(es->s_first_data_block),
2610 			 ext4_blocks_count(es));
2611 		goto failed_mount;
2612 	}
2613 	blocks_count = (ext4_blocks_count(es) -
2614 			le32_to_cpu(es->s_first_data_block) +
2615 			EXT4_BLOCKS_PER_GROUP(sb) - 1);
2616 	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
2617 	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
2618 		ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
2619 		       "(block count %llu, first data block %u, "
2620 		       "blocks per group %lu)", sbi->s_groups_count,
2621 		       ext4_blocks_count(es),
2622 		       le32_to_cpu(es->s_first_data_block),
2623 		       EXT4_BLOCKS_PER_GROUP(sb));
2624 		goto failed_mount;
2625 	}
2626 	sbi->s_groups_count = blocks_count;
2627 	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
2628 			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
2629 	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
2630 		   EXT4_DESC_PER_BLOCK(sb);
2631 	sbi->s_group_desc = kmalloc(db_count * sizeof(struct buffer_head *),
2632 				    GFP_KERNEL);
2633 	if (sbi->s_group_desc == NULL) {
2634 		ext4_msg(sb, KERN_ERR, "not enough memory");
2635 		goto failed_mount;
2636 	}
2637 
2638 #ifdef CONFIG_PROC_FS
2639 	if (ext4_proc_root)
2640 		sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
2641 #endif
2642 
2643 	bgl_lock_init(sbi->s_blockgroup_lock);
2644 
2645 	for (i = 0; i < db_count; i++) {
2646 		block = descriptor_loc(sb, logical_sb_block, i);
2647 		sbi->s_group_desc[i] = sb_bread(sb, block);
2648 		if (!sbi->s_group_desc[i]) {
2649 			ext4_msg(sb, KERN_ERR,
2650 			       "can't read group descriptor %d", i);
2651 			db_count = i;
2652 			goto failed_mount2;
2653 		}
2654 	}
2655 	if (!ext4_check_descriptors(sb)) {
2656 		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
2657 		goto failed_mount2;
2658 	}
2659 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2660 		if (!ext4_fill_flex_info(sb)) {
2661 			ext4_msg(sb, KERN_ERR,
2662 			       "unable to initialize "
2663 			       "flex_bg meta info!");
2664 			goto failed_mount2;
2665 		}
2666 
2667 	sbi->s_gdb_count = db_count;
2668 	get_random_bytes(&sbi->s_next_generation, sizeof(u32));
2669 	spin_lock_init(&sbi->s_next_gen_lock);
2670 
2671 	err = percpu_counter_init(&sbi->s_freeblocks_counter,
2672 			ext4_count_free_blocks(sb));
2673 	if (!err) {
2674 		err = percpu_counter_init(&sbi->s_freeinodes_counter,
2675 				ext4_count_free_inodes(sb));
2676 	}
2677 	if (!err) {
2678 		err = percpu_counter_init(&sbi->s_dirs_counter,
2679 				ext4_count_dirs(sb));
2680 	}
2681 	if (!err) {
2682 		err = percpu_counter_init(&sbi->s_dirtyblocks_counter, 0);
2683 	}
2684 	if (err) {
2685 		ext4_msg(sb, KERN_ERR, "insufficient memory");
2686 		goto failed_mount3;
2687 	}
2688 
2689 	sbi->s_stripe = ext4_get_stripe_size(sbi);
2690 	sbi->s_max_writeback_mb_bump = 128;
2691 
2692 	/*
2693 	 * set up enough so that it can read an inode
2694 	 */
2695 	if (!test_opt(sb, NOLOAD) &&
2696 	    EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
2697 		sb->s_op = &ext4_sops;
2698 	else
2699 		sb->s_op = &ext4_nojournal_sops;
2700 	sb->s_export_op = &ext4_export_ops;
2701 	sb->s_xattr = ext4_xattr_handlers;
2702 #ifdef CONFIG_QUOTA
2703 	sb->s_qcop = &ext4_qctl_operations;
2704 	sb->dq_op = &ext4_quota_operations;
2705 #endif
2706 	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
2707 	mutex_init(&sbi->s_orphan_lock);
2708 	mutex_init(&sbi->s_resize_lock);
2709 
2710 	sb->s_root = NULL;
2711 
2712 	needs_recovery = (es->s_last_orphan != 0 ||
2713 			  EXT4_HAS_INCOMPAT_FEATURE(sb,
2714 				    EXT4_FEATURE_INCOMPAT_RECOVER));
2715 
2716 	/*
2717 	 * The first inode we look at is the journal inode.  Don't try
2718 	 * root first: it may be modified in the journal!
2719 	 */
2720 	if (!test_opt(sb, NOLOAD) &&
2721 	    EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
2722 		if (ext4_load_journal(sb, es, journal_devnum))
2723 			goto failed_mount3;
2724 		if (!(sb->s_flags & MS_RDONLY) &&
2725 		    EXT4_SB(sb)->s_journal->j_failed_commit) {
2726 			ext4_msg(sb, KERN_CRIT, "error: "
2727 			       "ext4_fill_super: Journal transaction "
2728 			       "%u is corrupt",
2729 			       EXT4_SB(sb)->s_journal->j_failed_commit);
2730 			if (test_opt(sb, ERRORS_RO)) {
2731 				ext4_msg(sb, KERN_CRIT,
2732 				       "Mounting filesystem read-only");
2733 				sb->s_flags |= MS_RDONLY;
2734 				EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
2735 				es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
2736 			}
2737 			if (test_opt(sb, ERRORS_PANIC)) {
2738 				EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
2739 				es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
2740 				ext4_commit_super(sb, 1);
2741 				goto failed_mount4;
2742 			}
2743 		}
2744 	} else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
2745 	      EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
2746 		ext4_msg(sb, KERN_ERR, "required journal recovery "
2747 		       "suppressed and not mounted read-only");
2748 		goto failed_mount4;
2749 	} else {
2750 		clear_opt(sbi->s_mount_opt, DATA_FLAGS);
2751 		set_opt(sbi->s_mount_opt, WRITEBACK_DATA);
2752 		sbi->s_journal = NULL;
2753 		needs_recovery = 0;
2754 		goto no_journal;
2755 	}
2756 
2757 	if (ext4_blocks_count(es) > 0xffffffffULL &&
2758 	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
2759 				       JBD2_FEATURE_INCOMPAT_64BIT)) {
2760 		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
2761 		goto failed_mount4;
2762 	}
2763 
2764 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
2765 		jbd2_journal_set_features(sbi->s_journal,
2766 				JBD2_FEATURE_COMPAT_CHECKSUM, 0,
2767 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
2768 	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
2769 		jbd2_journal_set_features(sbi->s_journal,
2770 				JBD2_FEATURE_COMPAT_CHECKSUM, 0, 0);
2771 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
2772 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
2773 	} else {
2774 		jbd2_journal_clear_features(sbi->s_journal,
2775 				JBD2_FEATURE_COMPAT_CHECKSUM, 0,
2776 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
2777 	}
2778 
2779 	/* We have now updated the journal if required, so we can
2780 	 * validate the data journaling mode. */
2781 	switch (test_opt(sb, DATA_FLAGS)) {
2782 	case 0:
2783 		/* No mode set, assume a default based on the journal
2784 		 * capabilities: ORDERED_DATA if the journal can
2785 		 * cope, else JOURNAL_DATA
2786 		 */
2787 		if (jbd2_journal_check_available_features
2788 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
2789 			set_opt(sbi->s_mount_opt, ORDERED_DATA);
2790 		else
2791 			set_opt(sbi->s_mount_opt, JOURNAL_DATA);
2792 		break;
2793 
2794 	case EXT4_MOUNT_ORDERED_DATA:
2795 	case EXT4_MOUNT_WRITEBACK_DATA:
2796 		if (!jbd2_journal_check_available_features
2797 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
2798 			ext4_msg(sb, KERN_ERR, "Journal does not support "
2799 			       "requested data journaling mode");
2800 			goto failed_mount4;
2801 		}
2802 	default:
2803 		break;
2804 	}
2805 	set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
2806 
2807 no_journal:
2808 
2809 	if (test_opt(sb, NOBH)) {
2810 		if (!(test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)) {
2811 			ext4_msg(sb, KERN_WARNING, "Ignoring nobh option - "
2812 				"its supported only with writeback mode");
2813 			clear_opt(sbi->s_mount_opt, NOBH);
2814 		}
2815 	}
2816 	EXT4_SB(sb)->dio_unwritten_wq = create_workqueue("ext4-dio-unwritten");
2817 	if (!EXT4_SB(sb)->dio_unwritten_wq) {
2818 		printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n");
2819 		goto failed_mount_wq;
2820 	}
2821 
2822 	/*
2823 	 * The jbd2_journal_load will have done any necessary log recovery,
2824 	 * so we can safely mount the rest of the filesystem now.
2825 	 */
2826 
2827 	root = ext4_iget(sb, EXT4_ROOT_INO);
2828 	if (IS_ERR(root)) {
2829 		ext4_msg(sb, KERN_ERR, "get root inode failed");
2830 		ret = PTR_ERR(root);
2831 		goto failed_mount4;
2832 	}
2833 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
2834 		iput(root);
2835 		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
2836 		goto failed_mount4;
2837 	}
2838 	sb->s_root = d_alloc_root(root);
2839 	if (!sb->s_root) {
2840 		ext4_msg(sb, KERN_ERR, "get root dentry failed");
2841 		iput(root);
2842 		ret = -ENOMEM;
2843 		goto failed_mount4;
2844 	}
2845 
2846 	ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY);
2847 
2848 	/* determine the minimum size of new large inodes, if present */
2849 	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
2850 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
2851 						     EXT4_GOOD_OLD_INODE_SIZE;
2852 		if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
2853 				       EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
2854 			if (sbi->s_want_extra_isize <
2855 			    le16_to_cpu(es->s_want_extra_isize))
2856 				sbi->s_want_extra_isize =
2857 					le16_to_cpu(es->s_want_extra_isize);
2858 			if (sbi->s_want_extra_isize <
2859 			    le16_to_cpu(es->s_min_extra_isize))
2860 				sbi->s_want_extra_isize =
2861 					le16_to_cpu(es->s_min_extra_isize);
2862 		}
2863 	}
2864 	/* Check if enough inode space is available */
2865 	if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
2866 							sbi->s_inode_size) {
2867 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
2868 						       EXT4_GOOD_OLD_INODE_SIZE;
2869 		ext4_msg(sb, KERN_INFO, "required extra inode space not"
2870 			 "available");
2871 	}
2872 
2873 	if (test_opt(sb, DELALLOC) &&
2874 	    (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) {
2875 		ext4_msg(sb, KERN_WARNING, "Ignoring delalloc option - "
2876 			 "requested data journaling mode");
2877 		clear_opt(sbi->s_mount_opt, DELALLOC);
2878 	}
2879 
2880 	err = ext4_setup_system_zone(sb);
2881 	if (err) {
2882 		ext4_msg(sb, KERN_ERR, "failed to initialize system "
2883 			 "zone (%d)\n", err);
2884 		goto failed_mount4;
2885 	}
2886 
2887 	ext4_ext_init(sb);
2888 	err = ext4_mb_init(sb, needs_recovery);
2889 	if (err) {
2890 		ext4_msg(sb, KERN_ERR, "failed to initalize mballoc (%d)",
2891 			 err);
2892 		goto failed_mount4;
2893 	}
2894 
2895 	sbi->s_kobj.kset = ext4_kset;
2896 	init_completion(&sbi->s_kobj_unregister);
2897 	err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
2898 				   "%s", sb->s_id);
2899 	if (err) {
2900 		ext4_mb_release(sb);
2901 		ext4_ext_release(sb);
2902 		goto failed_mount4;
2903 	};
2904 
2905 	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
2906 	ext4_orphan_cleanup(sb, es);
2907 	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
2908 	if (needs_recovery) {
2909 		ext4_msg(sb, KERN_INFO, "recovery complete");
2910 		ext4_mark_recovery_complete(sb, es);
2911 	}
2912 	if (EXT4_SB(sb)->s_journal) {
2913 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2914 			descr = " journalled data mode";
2915 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2916 			descr = " ordered data mode";
2917 		else
2918 			descr = " writeback data mode";
2919 	} else
2920 		descr = "out journal";
2921 
2922 	ext4_msg(sb, KERN_INFO, "mounted filesystem with%s", descr);
2923 
2924 	lock_kernel();
2925 	return 0;
2926 
2927 cantfind_ext4:
2928 	if (!silent)
2929 		ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
2930 	goto failed_mount;
2931 
2932 failed_mount4:
2933 	ext4_msg(sb, KERN_ERR, "mount failed");
2934 	destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq);
2935 failed_mount_wq:
2936 	ext4_release_system_zone(sb);
2937 	if (sbi->s_journal) {
2938 		jbd2_journal_destroy(sbi->s_journal);
2939 		sbi->s_journal = NULL;
2940 	}
2941 failed_mount3:
2942 	if (sbi->s_flex_groups) {
2943 		if (is_vmalloc_addr(sbi->s_flex_groups))
2944 			vfree(sbi->s_flex_groups);
2945 		else
2946 			kfree(sbi->s_flex_groups);
2947 	}
2948 	percpu_counter_destroy(&sbi->s_freeblocks_counter);
2949 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
2950 	percpu_counter_destroy(&sbi->s_dirs_counter);
2951 	percpu_counter_destroy(&sbi->s_dirtyblocks_counter);
2952 failed_mount2:
2953 	for (i = 0; i < db_count; i++)
2954 		brelse(sbi->s_group_desc[i]);
2955 	kfree(sbi->s_group_desc);
2956 failed_mount:
2957 	if (sbi->s_proc) {
2958 		remove_proc_entry(sb->s_id, ext4_proc_root);
2959 	}
2960 #ifdef CONFIG_QUOTA
2961 	for (i = 0; i < MAXQUOTAS; i++)
2962 		kfree(sbi->s_qf_names[i]);
2963 #endif
2964 	ext4_blkdev_remove(sbi);
2965 	brelse(bh);
2966 out_fail:
2967 	sb->s_fs_info = NULL;
2968 	kfree(sbi->s_blockgroup_lock);
2969 	kfree(sbi);
2970 	lock_kernel();
2971 	return ret;
2972 }
2973 
2974 /*
2975  * Setup any per-fs journal parameters now.  We'll do this both on
2976  * initial mount, once the journal has been initialised but before we've
2977  * done any recovery; and again on any subsequent remount.
2978  */
2979 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
2980 {
2981 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2982 
2983 	journal->j_commit_interval = sbi->s_commit_interval;
2984 	journal->j_min_batch_time = sbi->s_min_batch_time;
2985 	journal->j_max_batch_time = sbi->s_max_batch_time;
2986 
2987 	spin_lock(&journal->j_state_lock);
2988 	if (test_opt(sb, BARRIER))
2989 		journal->j_flags |= JBD2_BARRIER;
2990 	else
2991 		journal->j_flags &= ~JBD2_BARRIER;
2992 	if (test_opt(sb, DATA_ERR_ABORT))
2993 		journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
2994 	else
2995 		journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
2996 	spin_unlock(&journal->j_state_lock);
2997 }
2998 
2999 static journal_t *ext4_get_journal(struct super_block *sb,
3000 				   unsigned int journal_inum)
3001 {
3002 	struct inode *journal_inode;
3003 	journal_t *journal;
3004 
3005 	BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3006 
3007 	/* First, test for the existence of a valid inode on disk.  Bad
3008 	 * things happen if we iget() an unused inode, as the subsequent
3009 	 * iput() will try to delete it. */
3010 
3011 	journal_inode = ext4_iget(sb, journal_inum);
3012 	if (IS_ERR(journal_inode)) {
3013 		ext4_msg(sb, KERN_ERR, "no journal found");
3014 		return NULL;
3015 	}
3016 	if (!journal_inode->i_nlink) {
3017 		make_bad_inode(journal_inode);
3018 		iput(journal_inode);
3019 		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
3020 		return NULL;
3021 	}
3022 
3023 	jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
3024 		  journal_inode, journal_inode->i_size);
3025 	if (!S_ISREG(journal_inode->i_mode)) {
3026 		ext4_msg(sb, KERN_ERR, "invalid journal inode");
3027 		iput(journal_inode);
3028 		return NULL;
3029 	}
3030 
3031 	journal = jbd2_journal_init_inode(journal_inode);
3032 	if (!journal) {
3033 		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
3034 		iput(journal_inode);
3035 		return NULL;
3036 	}
3037 	journal->j_private = sb;
3038 	ext4_init_journal_params(sb, journal);
3039 	return journal;
3040 }
3041 
3042 static journal_t *ext4_get_dev_journal(struct super_block *sb,
3043 				       dev_t j_dev)
3044 {
3045 	struct buffer_head *bh;
3046 	journal_t *journal;
3047 	ext4_fsblk_t start;
3048 	ext4_fsblk_t len;
3049 	int hblock, blocksize;
3050 	ext4_fsblk_t sb_block;
3051 	unsigned long offset;
3052 	struct ext4_super_block *es;
3053 	struct block_device *bdev;
3054 
3055 	BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3056 
3057 	bdev = ext4_blkdev_get(j_dev, sb);
3058 	if (bdev == NULL)
3059 		return NULL;
3060 
3061 	if (bd_claim(bdev, sb)) {
3062 		ext4_msg(sb, KERN_ERR,
3063 			"failed to claim external journal device");
3064 		blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
3065 		return NULL;
3066 	}
3067 
3068 	blocksize = sb->s_blocksize;
3069 	hblock = bdev_logical_block_size(bdev);
3070 	if (blocksize < hblock) {
3071 		ext4_msg(sb, KERN_ERR,
3072 			"blocksize too small for journal device");
3073 		goto out_bdev;
3074 	}
3075 
3076 	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
3077 	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
3078 	set_blocksize(bdev, blocksize);
3079 	if (!(bh = __bread(bdev, sb_block, blocksize))) {
3080 		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
3081 		       "external journal");
3082 		goto out_bdev;
3083 	}
3084 
3085 	es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
3086 	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
3087 	    !(le32_to_cpu(es->s_feature_incompat) &
3088 	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
3089 		ext4_msg(sb, KERN_ERR, "external journal has "
3090 					"bad superblock");
3091 		brelse(bh);
3092 		goto out_bdev;
3093 	}
3094 
3095 	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
3096 		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
3097 		brelse(bh);
3098 		goto out_bdev;
3099 	}
3100 
3101 	len = ext4_blocks_count(es);
3102 	start = sb_block + 1;
3103 	brelse(bh);	/* we're done with the superblock */
3104 
3105 	journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
3106 					start, len, blocksize);
3107 	if (!journal) {
3108 		ext4_msg(sb, KERN_ERR, "failed to create device journal");
3109 		goto out_bdev;
3110 	}
3111 	journal->j_private = sb;
3112 	ll_rw_block(READ, 1, &journal->j_sb_buffer);
3113 	wait_on_buffer(journal->j_sb_buffer);
3114 	if (!buffer_uptodate(journal->j_sb_buffer)) {
3115 		ext4_msg(sb, KERN_ERR, "I/O error on journal device");
3116 		goto out_journal;
3117 	}
3118 	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
3119 		ext4_msg(sb, KERN_ERR, "External journal has more than one "
3120 					"user (unsupported) - %d",
3121 			be32_to_cpu(journal->j_superblock->s_nr_users));
3122 		goto out_journal;
3123 	}
3124 	EXT4_SB(sb)->journal_bdev = bdev;
3125 	ext4_init_journal_params(sb, journal);
3126 	return journal;
3127 
3128 out_journal:
3129 	jbd2_journal_destroy(journal);
3130 out_bdev:
3131 	ext4_blkdev_put(bdev);
3132 	return NULL;
3133 }
3134 
3135 static int ext4_load_journal(struct super_block *sb,
3136 			     struct ext4_super_block *es,
3137 			     unsigned long journal_devnum)
3138 {
3139 	journal_t *journal;
3140 	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
3141 	dev_t journal_dev;
3142 	int err = 0;
3143 	int really_read_only;
3144 
3145 	BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3146 
3147 	if (journal_devnum &&
3148 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
3149 		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
3150 			"numbers have changed");
3151 		journal_dev = new_decode_dev(journal_devnum);
3152 	} else
3153 		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
3154 
3155 	really_read_only = bdev_read_only(sb->s_bdev);
3156 
3157 	/*
3158 	 * Are we loading a blank journal or performing recovery after a
3159 	 * crash?  For recovery, we need to check in advance whether we
3160 	 * can get read-write access to the device.
3161 	 */
3162 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3163 		if (sb->s_flags & MS_RDONLY) {
3164 			ext4_msg(sb, KERN_INFO, "INFO: recovery "
3165 					"required on readonly filesystem");
3166 			if (really_read_only) {
3167 				ext4_msg(sb, KERN_ERR, "write access "
3168 					"unavailable, cannot proceed");
3169 				return -EROFS;
3170 			}
3171 			ext4_msg(sb, KERN_INFO, "write access will "
3172 			       "be enabled during recovery");
3173 		}
3174 	}
3175 
3176 	if (journal_inum && journal_dev) {
3177 		ext4_msg(sb, KERN_ERR, "filesystem has both journal "
3178 		       "and inode journals!");
3179 		return -EINVAL;
3180 	}
3181 
3182 	if (journal_inum) {
3183 		if (!(journal = ext4_get_journal(sb, journal_inum)))
3184 			return -EINVAL;
3185 	} else {
3186 		if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
3187 			return -EINVAL;
3188 	}
3189 
3190 	if (!(journal->j_flags & JBD2_BARRIER))
3191 		ext4_msg(sb, KERN_INFO, "barriers disabled");
3192 
3193 	if (!really_read_only && test_opt(sb, UPDATE_JOURNAL)) {
3194 		err = jbd2_journal_update_format(journal);
3195 		if (err)  {
3196 			ext4_msg(sb, KERN_ERR, "error updating journal");
3197 			jbd2_journal_destroy(journal);
3198 			return err;
3199 		}
3200 	}
3201 
3202 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
3203 		err = jbd2_journal_wipe(journal, !really_read_only);
3204 	if (!err)
3205 		err = jbd2_journal_load(journal);
3206 
3207 	if (err) {
3208 		ext4_msg(sb, KERN_ERR, "error loading journal");
3209 		jbd2_journal_destroy(journal);
3210 		return err;
3211 	}
3212 
3213 	EXT4_SB(sb)->s_journal = journal;
3214 	ext4_clear_journal_err(sb, es);
3215 
3216 	if (journal_devnum &&
3217 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
3218 		es->s_journal_dev = cpu_to_le32(journal_devnum);
3219 
3220 		/* Make sure we flush the recovery flag to disk. */
3221 		ext4_commit_super(sb, 1);
3222 	}
3223 
3224 	return 0;
3225 }
3226 
3227 static int ext4_commit_super(struct super_block *sb, int sync)
3228 {
3229 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
3230 	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
3231 	int error = 0;
3232 
3233 	if (!sbh)
3234 		return error;
3235 	if (buffer_write_io_error(sbh)) {
3236 		/*
3237 		 * Oh, dear.  A previous attempt to write the
3238 		 * superblock failed.  This could happen because the
3239 		 * USB device was yanked out.  Or it could happen to
3240 		 * be a transient write error and maybe the block will
3241 		 * be remapped.  Nothing we can do but to retry the
3242 		 * write and hope for the best.
3243 		 */
3244 		ext4_msg(sb, KERN_ERR, "previous I/O error to "
3245 		       "superblock detected");
3246 		clear_buffer_write_io_error(sbh);
3247 		set_buffer_uptodate(sbh);
3248 	}
3249 	/*
3250 	 * If the file system is mounted read-only, don't update the
3251 	 * superblock write time.  This avoids updating the superblock
3252 	 * write time when we are mounting the root file system
3253 	 * read/only but we need to replay the journal; at that point,
3254 	 * for people who are east of GMT and who make their clock
3255 	 * tick in localtime for Windows bug-for-bug compatibility,
3256 	 * the clock is set in the future, and this will cause e2fsck
3257 	 * to complain and force a full file system check.
3258 	 */
3259 	if (!(sb->s_flags & MS_RDONLY))
3260 		es->s_wtime = cpu_to_le32(get_seconds());
3261 	es->s_kbytes_written =
3262 		cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
3263 			    ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
3264 			      EXT4_SB(sb)->s_sectors_written_start) >> 1));
3265 	ext4_free_blocks_count_set(es, percpu_counter_sum_positive(
3266 					&EXT4_SB(sb)->s_freeblocks_counter));
3267 	es->s_free_inodes_count = cpu_to_le32(percpu_counter_sum_positive(
3268 					&EXT4_SB(sb)->s_freeinodes_counter));
3269 	sb->s_dirt = 0;
3270 	BUFFER_TRACE(sbh, "marking dirty");
3271 	mark_buffer_dirty(sbh);
3272 	if (sync) {
3273 		error = sync_dirty_buffer(sbh);
3274 		if (error)
3275 			return error;
3276 
3277 		error = buffer_write_io_error(sbh);
3278 		if (error) {
3279 			ext4_msg(sb, KERN_ERR, "I/O error while writing "
3280 			       "superblock");
3281 			clear_buffer_write_io_error(sbh);
3282 			set_buffer_uptodate(sbh);
3283 		}
3284 	}
3285 	return error;
3286 }
3287 
3288 /*
3289  * Have we just finished recovery?  If so, and if we are mounting (or
3290  * remounting) the filesystem readonly, then we will end up with a
3291  * consistent fs on disk.  Record that fact.
3292  */
3293 static void ext4_mark_recovery_complete(struct super_block *sb,
3294 					struct ext4_super_block *es)
3295 {
3296 	journal_t *journal = EXT4_SB(sb)->s_journal;
3297 
3298 	if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3299 		BUG_ON(journal != NULL);
3300 		return;
3301 	}
3302 	jbd2_journal_lock_updates(journal);
3303 	if (jbd2_journal_flush(journal) < 0)
3304 		goto out;
3305 
3306 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
3307 	    sb->s_flags & MS_RDONLY) {
3308 		EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
3309 		ext4_commit_super(sb, 1);
3310 	}
3311 
3312 out:
3313 	jbd2_journal_unlock_updates(journal);
3314 }
3315 
3316 /*
3317  * If we are mounting (or read-write remounting) a filesystem whose journal
3318  * has recorded an error from a previous lifetime, move that error to the
3319  * main filesystem now.
3320  */
3321 static void ext4_clear_journal_err(struct super_block *sb,
3322 				   struct ext4_super_block *es)
3323 {
3324 	journal_t *journal;
3325 	int j_errno;
3326 	const char *errstr;
3327 
3328 	BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3329 
3330 	journal = EXT4_SB(sb)->s_journal;
3331 
3332 	/*
3333 	 * Now check for any error status which may have been recorded in the
3334 	 * journal by a prior ext4_error() or ext4_abort()
3335 	 */
3336 
3337 	j_errno = jbd2_journal_errno(journal);
3338 	if (j_errno) {
3339 		char nbuf[16];
3340 
3341 		errstr = ext4_decode_error(sb, j_errno, nbuf);
3342 		ext4_warning(sb, __func__, "Filesystem error recorded "
3343 			     "from previous mount: %s", errstr);
3344 		ext4_warning(sb, __func__, "Marking fs in need of "
3345 			     "filesystem check.");
3346 
3347 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
3348 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
3349 		ext4_commit_super(sb, 1);
3350 
3351 		jbd2_journal_clear_err(journal);
3352 	}
3353 }
3354 
3355 /*
3356  * Force the running and committing transactions to commit,
3357  * and wait on the commit.
3358  */
3359 int ext4_force_commit(struct super_block *sb)
3360 {
3361 	journal_t *journal;
3362 	int ret = 0;
3363 
3364 	if (sb->s_flags & MS_RDONLY)
3365 		return 0;
3366 
3367 	journal = EXT4_SB(sb)->s_journal;
3368 	if (journal)
3369 		ret = ext4_journal_force_commit(journal);
3370 
3371 	return ret;
3372 }
3373 
3374 static void ext4_write_super(struct super_block *sb)
3375 {
3376 	lock_super(sb);
3377 	ext4_commit_super(sb, 1);
3378 	unlock_super(sb);
3379 }
3380 
3381 static int ext4_sync_fs(struct super_block *sb, int wait)
3382 {
3383 	int ret = 0;
3384 	tid_t target;
3385 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3386 
3387 	trace_ext4_sync_fs(sb, wait);
3388 	flush_workqueue(sbi->dio_unwritten_wq);
3389 	if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
3390 		if (wait)
3391 			jbd2_log_wait_commit(sbi->s_journal, target);
3392 	}
3393 	return ret;
3394 }
3395 
3396 /*
3397  * LVM calls this function before a (read-only) snapshot is created.  This
3398  * gives us a chance to flush the journal completely and mark the fs clean.
3399  */
3400 static int ext4_freeze(struct super_block *sb)
3401 {
3402 	int error = 0;
3403 	journal_t *journal;
3404 
3405 	if (sb->s_flags & MS_RDONLY)
3406 		return 0;
3407 
3408 	journal = EXT4_SB(sb)->s_journal;
3409 
3410 	/* Now we set up the journal barrier. */
3411 	jbd2_journal_lock_updates(journal);
3412 
3413 	/*
3414 	 * Don't clear the needs_recovery flag if we failed to flush
3415 	 * the journal.
3416 	 */
3417 	error = jbd2_journal_flush(journal);
3418 	if (error < 0) {
3419 	out:
3420 		jbd2_journal_unlock_updates(journal);
3421 		return error;
3422 	}
3423 
3424 	/* Journal blocked and flushed, clear needs_recovery flag. */
3425 	EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
3426 	error = ext4_commit_super(sb, 1);
3427 	if (error)
3428 		goto out;
3429 	return 0;
3430 }
3431 
3432 /*
3433  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
3434  * flag here, even though the filesystem is not technically dirty yet.
3435  */
3436 static int ext4_unfreeze(struct super_block *sb)
3437 {
3438 	if (sb->s_flags & MS_RDONLY)
3439 		return 0;
3440 
3441 	lock_super(sb);
3442 	/* Reset the needs_recovery flag before the fs is unlocked. */
3443 	EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
3444 	ext4_commit_super(sb, 1);
3445 	unlock_super(sb);
3446 	jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
3447 	return 0;
3448 }
3449 
3450 static int ext4_remount(struct super_block *sb, int *flags, char *data)
3451 {
3452 	struct ext4_super_block *es;
3453 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3454 	ext4_fsblk_t n_blocks_count = 0;
3455 	unsigned long old_sb_flags;
3456 	struct ext4_mount_options old_opts;
3457 	ext4_group_t g;
3458 	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3459 	int err;
3460 #ifdef CONFIG_QUOTA
3461 	int i;
3462 #endif
3463 
3464 	lock_kernel();
3465 
3466 	/* Store the original options */
3467 	lock_super(sb);
3468 	old_sb_flags = sb->s_flags;
3469 	old_opts.s_mount_opt = sbi->s_mount_opt;
3470 	old_opts.s_resuid = sbi->s_resuid;
3471 	old_opts.s_resgid = sbi->s_resgid;
3472 	old_opts.s_commit_interval = sbi->s_commit_interval;
3473 	old_opts.s_min_batch_time = sbi->s_min_batch_time;
3474 	old_opts.s_max_batch_time = sbi->s_max_batch_time;
3475 #ifdef CONFIG_QUOTA
3476 	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
3477 	for (i = 0; i < MAXQUOTAS; i++)
3478 		old_opts.s_qf_names[i] = sbi->s_qf_names[i];
3479 #endif
3480 	if (sbi->s_journal && sbi->s_journal->j_task->io_context)
3481 		journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
3482 
3483 	/*
3484 	 * Allow the "check" option to be passed as a remount option.
3485 	 */
3486 	if (!parse_options(data, sb, NULL, &journal_ioprio,
3487 			   &n_blocks_count, 1)) {
3488 		err = -EINVAL;
3489 		goto restore_opts;
3490 	}
3491 
3492 	if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
3493 		ext4_abort(sb, __func__, "Abort forced by user");
3494 
3495 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3496 		((sbi->s_mount_opt & EXT4_MOUNT_POSIX_ACL) ? MS_POSIXACL : 0);
3497 
3498 	es = sbi->s_es;
3499 
3500 	if (sbi->s_journal) {
3501 		ext4_init_journal_params(sb, sbi->s_journal);
3502 		set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3503 	}
3504 
3505 	if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY) ||
3506 		n_blocks_count > ext4_blocks_count(es)) {
3507 		if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
3508 			err = -EROFS;
3509 			goto restore_opts;
3510 		}
3511 
3512 		if (*flags & MS_RDONLY) {
3513 			/*
3514 			 * First of all, the unconditional stuff we have to do
3515 			 * to disable replay of the journal when we next remount
3516 			 */
3517 			sb->s_flags |= MS_RDONLY;
3518 
3519 			/*
3520 			 * OK, test if we are remounting a valid rw partition
3521 			 * readonly, and if so set the rdonly flag and then
3522 			 * mark the partition as valid again.
3523 			 */
3524 			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
3525 			    (sbi->s_mount_state & EXT4_VALID_FS))
3526 				es->s_state = cpu_to_le16(sbi->s_mount_state);
3527 
3528 			if (sbi->s_journal)
3529 				ext4_mark_recovery_complete(sb, es);
3530 		} else {
3531 			/* Make sure we can mount this feature set readwrite */
3532 			if (!ext4_feature_set_ok(sb, 0)) {
3533 				err = -EROFS;
3534 				goto restore_opts;
3535 			}
3536 			/*
3537 			 * Make sure the group descriptor checksums
3538 			 * are sane.  If they aren't, refuse to remount r/w.
3539 			 */
3540 			for (g = 0; g < sbi->s_groups_count; g++) {
3541 				struct ext4_group_desc *gdp =
3542 					ext4_get_group_desc(sb, g, NULL);
3543 
3544 				if (!ext4_group_desc_csum_verify(sbi, g, gdp)) {
3545 					ext4_msg(sb, KERN_ERR,
3546 	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
3547 		g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
3548 					       le16_to_cpu(gdp->bg_checksum));
3549 					err = -EINVAL;
3550 					goto restore_opts;
3551 				}
3552 			}
3553 
3554 			/*
3555 			 * If we have an unprocessed orphan list hanging
3556 			 * around from a previously readonly bdev mount,
3557 			 * require a full umount/remount for now.
3558 			 */
3559 			if (es->s_last_orphan) {
3560 				ext4_msg(sb, KERN_WARNING, "Couldn't "
3561 				       "remount RDWR because of unprocessed "
3562 				       "orphan inode list.  Please "
3563 				       "umount/remount instead");
3564 				err = -EINVAL;
3565 				goto restore_opts;
3566 			}
3567 
3568 			/*
3569 			 * Mounting a RDONLY partition read-write, so reread
3570 			 * and store the current valid flag.  (It may have
3571 			 * been changed by e2fsck since we originally mounted
3572 			 * the partition.)
3573 			 */
3574 			if (sbi->s_journal)
3575 				ext4_clear_journal_err(sb, es);
3576 			sbi->s_mount_state = le16_to_cpu(es->s_state);
3577 			if ((err = ext4_group_extend(sb, es, n_blocks_count)))
3578 				goto restore_opts;
3579 			if (!ext4_setup_super(sb, es, 0))
3580 				sb->s_flags &= ~MS_RDONLY;
3581 		}
3582 	}
3583 	ext4_setup_system_zone(sb);
3584 	if (sbi->s_journal == NULL)
3585 		ext4_commit_super(sb, 1);
3586 
3587 #ifdef CONFIG_QUOTA
3588 	/* Release old quota file names */
3589 	for (i = 0; i < MAXQUOTAS; i++)
3590 		if (old_opts.s_qf_names[i] &&
3591 		    old_opts.s_qf_names[i] != sbi->s_qf_names[i])
3592 			kfree(old_opts.s_qf_names[i]);
3593 #endif
3594 	unlock_super(sb);
3595 	unlock_kernel();
3596 	return 0;
3597 
3598 restore_opts:
3599 	sb->s_flags = old_sb_flags;
3600 	sbi->s_mount_opt = old_opts.s_mount_opt;
3601 	sbi->s_resuid = old_opts.s_resuid;
3602 	sbi->s_resgid = old_opts.s_resgid;
3603 	sbi->s_commit_interval = old_opts.s_commit_interval;
3604 	sbi->s_min_batch_time = old_opts.s_min_batch_time;
3605 	sbi->s_max_batch_time = old_opts.s_max_batch_time;
3606 #ifdef CONFIG_QUOTA
3607 	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
3608 	for (i = 0; i < MAXQUOTAS; i++) {
3609 		if (sbi->s_qf_names[i] &&
3610 		    old_opts.s_qf_names[i] != sbi->s_qf_names[i])
3611 			kfree(sbi->s_qf_names[i]);
3612 		sbi->s_qf_names[i] = old_opts.s_qf_names[i];
3613 	}
3614 #endif
3615 	unlock_super(sb);
3616 	unlock_kernel();
3617 	return err;
3618 }
3619 
3620 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
3621 {
3622 	struct super_block *sb = dentry->d_sb;
3623 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3624 	struct ext4_super_block *es = sbi->s_es;
3625 	u64 fsid;
3626 
3627 	if (test_opt(sb, MINIX_DF)) {
3628 		sbi->s_overhead_last = 0;
3629 	} else if (sbi->s_blocks_last != ext4_blocks_count(es)) {
3630 		ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3631 		ext4_fsblk_t overhead = 0;
3632 
3633 		/*
3634 		 * Compute the overhead (FS structures).  This is constant
3635 		 * for a given filesystem unless the number of block groups
3636 		 * changes so we cache the previous value until it does.
3637 		 */
3638 
3639 		/*
3640 		 * All of the blocks before first_data_block are
3641 		 * overhead
3642 		 */
3643 		overhead = le32_to_cpu(es->s_first_data_block);
3644 
3645 		/*
3646 		 * Add the overhead attributed to the superblock and
3647 		 * block group descriptors.  If the sparse superblocks
3648 		 * feature is turned on, then not all groups have this.
3649 		 */
3650 		for (i = 0; i < ngroups; i++) {
3651 			overhead += ext4_bg_has_super(sb, i) +
3652 				ext4_bg_num_gdb(sb, i);
3653 			cond_resched();
3654 		}
3655 
3656 		/*
3657 		 * Every block group has an inode bitmap, a block
3658 		 * bitmap, and an inode table.
3659 		 */
3660 		overhead += ngroups * (2 + sbi->s_itb_per_group);
3661 		sbi->s_overhead_last = overhead;
3662 		smp_wmb();
3663 		sbi->s_blocks_last = ext4_blocks_count(es);
3664 	}
3665 
3666 	buf->f_type = EXT4_SUPER_MAGIC;
3667 	buf->f_bsize = sb->s_blocksize;
3668 	buf->f_blocks = ext4_blocks_count(es) - sbi->s_overhead_last;
3669 	buf->f_bfree = percpu_counter_sum_positive(&sbi->s_freeblocks_counter) -
3670 		       percpu_counter_sum_positive(&sbi->s_dirtyblocks_counter);
3671 	ext4_free_blocks_count_set(es, buf->f_bfree);
3672 	buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es);
3673 	if (buf->f_bfree < ext4_r_blocks_count(es))
3674 		buf->f_bavail = 0;
3675 	buf->f_files = le32_to_cpu(es->s_inodes_count);
3676 	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
3677 	es->s_free_inodes_count = cpu_to_le32(buf->f_ffree);
3678 	buf->f_namelen = EXT4_NAME_LEN;
3679 	fsid = le64_to_cpup((void *)es->s_uuid) ^
3680 	       le64_to_cpup((void *)es->s_uuid + sizeof(u64));
3681 	buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
3682 	buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
3683 
3684 	return 0;
3685 }
3686 
3687 /* Helper function for writing quotas on sync - we need to start transaction
3688  * before quota file is locked for write. Otherwise the are possible deadlocks:
3689  * Process 1                         Process 2
3690  * ext4_create()                     quota_sync()
3691  *   jbd2_journal_start()                  write_dquot()
3692  *   vfs_dq_init()                         down(dqio_mutex)
3693  *     down(dqio_mutex)                    jbd2_journal_start()
3694  *
3695  */
3696 
3697 #ifdef CONFIG_QUOTA
3698 
3699 static inline struct inode *dquot_to_inode(struct dquot *dquot)
3700 {
3701 	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type];
3702 }
3703 
3704 static int ext4_write_dquot(struct dquot *dquot)
3705 {
3706 	int ret, err;
3707 	handle_t *handle;
3708 	struct inode *inode;
3709 
3710 	inode = dquot_to_inode(dquot);
3711 	handle = ext4_journal_start(inode,
3712 				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
3713 	if (IS_ERR(handle))
3714 		return PTR_ERR(handle);
3715 	ret = dquot_commit(dquot);
3716 	err = ext4_journal_stop(handle);
3717 	if (!ret)
3718 		ret = err;
3719 	return ret;
3720 }
3721 
3722 static int ext4_acquire_dquot(struct dquot *dquot)
3723 {
3724 	int ret, err;
3725 	handle_t *handle;
3726 
3727 	handle = ext4_journal_start(dquot_to_inode(dquot),
3728 				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
3729 	if (IS_ERR(handle))
3730 		return PTR_ERR(handle);
3731 	ret = dquot_acquire(dquot);
3732 	err = ext4_journal_stop(handle);
3733 	if (!ret)
3734 		ret = err;
3735 	return ret;
3736 }
3737 
3738 static int ext4_release_dquot(struct dquot *dquot)
3739 {
3740 	int ret, err;
3741 	handle_t *handle;
3742 
3743 	handle = ext4_journal_start(dquot_to_inode(dquot),
3744 				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
3745 	if (IS_ERR(handle)) {
3746 		/* Release dquot anyway to avoid endless cycle in dqput() */
3747 		dquot_release(dquot);
3748 		return PTR_ERR(handle);
3749 	}
3750 	ret = dquot_release(dquot);
3751 	err = ext4_journal_stop(handle);
3752 	if (!ret)
3753 		ret = err;
3754 	return ret;
3755 }
3756 
3757 static int ext4_mark_dquot_dirty(struct dquot *dquot)
3758 {
3759 	/* Are we journaling quotas? */
3760 	if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] ||
3761 	    EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) {
3762 		dquot_mark_dquot_dirty(dquot);
3763 		return ext4_write_dquot(dquot);
3764 	} else {
3765 		return dquot_mark_dquot_dirty(dquot);
3766 	}
3767 }
3768 
3769 static int ext4_write_info(struct super_block *sb, int type)
3770 {
3771 	int ret, err;
3772 	handle_t *handle;
3773 
3774 	/* Data block + inode block */
3775 	handle = ext4_journal_start(sb->s_root->d_inode, 2);
3776 	if (IS_ERR(handle))
3777 		return PTR_ERR(handle);
3778 	ret = dquot_commit_info(sb, type);
3779 	err = ext4_journal_stop(handle);
3780 	if (!ret)
3781 		ret = err;
3782 	return ret;
3783 }
3784 
3785 /*
3786  * Turn on quotas during mount time - we need to find
3787  * the quota file and such...
3788  */
3789 static int ext4_quota_on_mount(struct super_block *sb, int type)
3790 {
3791 	return vfs_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
3792 				  EXT4_SB(sb)->s_jquota_fmt, type);
3793 }
3794 
3795 /*
3796  * Standard function to be called on quota_on
3797  */
3798 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
3799 			 char *name, int remount)
3800 {
3801 	int err;
3802 	struct path path;
3803 
3804 	if (!test_opt(sb, QUOTA))
3805 		return -EINVAL;
3806 	/* When remounting, no checks are needed and in fact, name is NULL */
3807 	if (remount)
3808 		return vfs_quota_on(sb, type, format_id, name, remount);
3809 
3810 	err = kern_path(name, LOOKUP_FOLLOW, &path);
3811 	if (err)
3812 		return err;
3813 
3814 	/* Quotafile not on the same filesystem? */
3815 	if (path.mnt->mnt_sb != sb) {
3816 		path_put(&path);
3817 		return -EXDEV;
3818 	}
3819 	/* Journaling quota? */
3820 	if (EXT4_SB(sb)->s_qf_names[type]) {
3821 		/* Quotafile not in fs root? */
3822 		if (path.dentry->d_parent != sb->s_root)
3823 			ext4_msg(sb, KERN_WARNING,
3824 				"Quota file not on filesystem root. "
3825 				"Journaled quota will not work");
3826 	}
3827 
3828 	/*
3829 	 * When we journal data on quota file, we have to flush journal to see
3830 	 * all updates to the file when we bypass pagecache...
3831 	 */
3832 	if (EXT4_SB(sb)->s_journal &&
3833 	    ext4_should_journal_data(path.dentry->d_inode)) {
3834 		/*
3835 		 * We don't need to lock updates but journal_flush() could
3836 		 * otherwise be livelocked...
3837 		 */
3838 		jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
3839 		err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
3840 		jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
3841 		if (err) {
3842 			path_put(&path);
3843 			return err;
3844 		}
3845 	}
3846 
3847 	err = vfs_quota_on_path(sb, type, format_id, &path);
3848 	path_put(&path);
3849 	return err;
3850 }
3851 
3852 /* Read data from quotafile - avoid pagecache and such because we cannot afford
3853  * acquiring the locks... As quota files are never truncated and quota code
3854  * itself serializes the operations (and noone else should touch the files)
3855  * we don't have to be afraid of races */
3856 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
3857 			       size_t len, loff_t off)
3858 {
3859 	struct inode *inode = sb_dqopt(sb)->files[type];
3860 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
3861 	int err = 0;
3862 	int offset = off & (sb->s_blocksize - 1);
3863 	int tocopy;
3864 	size_t toread;
3865 	struct buffer_head *bh;
3866 	loff_t i_size = i_size_read(inode);
3867 
3868 	if (off > i_size)
3869 		return 0;
3870 	if (off+len > i_size)
3871 		len = i_size-off;
3872 	toread = len;
3873 	while (toread > 0) {
3874 		tocopy = sb->s_blocksize - offset < toread ?
3875 				sb->s_blocksize - offset : toread;
3876 		bh = ext4_bread(NULL, inode, blk, 0, &err);
3877 		if (err)
3878 			return err;
3879 		if (!bh)	/* A hole? */
3880 			memset(data, 0, tocopy);
3881 		else
3882 			memcpy(data, bh->b_data+offset, tocopy);
3883 		brelse(bh);
3884 		offset = 0;
3885 		toread -= tocopy;
3886 		data += tocopy;
3887 		blk++;
3888 	}
3889 	return len;
3890 }
3891 
3892 /* Write to quotafile (we know the transaction is already started and has
3893  * enough credits) */
3894 static ssize_t ext4_quota_write(struct super_block *sb, int type,
3895 				const char *data, size_t len, loff_t off)
3896 {
3897 	struct inode *inode = sb_dqopt(sb)->files[type];
3898 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
3899 	int err = 0;
3900 	int offset = off & (sb->s_blocksize - 1);
3901 	int tocopy;
3902 	int journal_quota = EXT4_SB(sb)->s_qf_names[type] != NULL;
3903 	size_t towrite = len;
3904 	struct buffer_head *bh;
3905 	handle_t *handle = journal_current_handle();
3906 
3907 	if (EXT4_SB(sb)->s_journal && !handle) {
3908 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
3909 			" cancelled because transaction is not started",
3910 			(unsigned long long)off, (unsigned long long)len);
3911 		return -EIO;
3912 	}
3913 	mutex_lock_nested(&inode->i_mutex, I_MUTEX_QUOTA);
3914 	while (towrite > 0) {
3915 		tocopy = sb->s_blocksize - offset < towrite ?
3916 				sb->s_blocksize - offset : towrite;
3917 		bh = ext4_bread(handle, inode, blk, 1, &err);
3918 		if (!bh)
3919 			goto out;
3920 		if (journal_quota) {
3921 			err = ext4_journal_get_write_access(handle, bh);
3922 			if (err) {
3923 				brelse(bh);
3924 				goto out;
3925 			}
3926 		}
3927 		lock_buffer(bh);
3928 		memcpy(bh->b_data+offset, data, tocopy);
3929 		flush_dcache_page(bh->b_page);
3930 		unlock_buffer(bh);
3931 		if (journal_quota)
3932 			err = ext4_handle_dirty_metadata(handle, NULL, bh);
3933 		else {
3934 			/* Always do at least ordered writes for quotas */
3935 			err = ext4_jbd2_file_inode(handle, inode);
3936 			mark_buffer_dirty(bh);
3937 		}
3938 		brelse(bh);
3939 		if (err)
3940 			goto out;
3941 		offset = 0;
3942 		towrite -= tocopy;
3943 		data += tocopy;
3944 		blk++;
3945 	}
3946 out:
3947 	if (len == towrite) {
3948 		mutex_unlock(&inode->i_mutex);
3949 		return err;
3950 	}
3951 	if (inode->i_size < off+len-towrite) {
3952 		i_size_write(inode, off+len-towrite);
3953 		EXT4_I(inode)->i_disksize = inode->i_size;
3954 	}
3955 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
3956 	ext4_mark_inode_dirty(handle, inode);
3957 	mutex_unlock(&inode->i_mutex);
3958 	return len - towrite;
3959 }
3960 
3961 #endif
3962 
3963 static int ext4_get_sb(struct file_system_type *fs_type, int flags,
3964 		       const char *dev_name, void *data, struct vfsmount *mnt)
3965 {
3966 	return get_sb_bdev(fs_type, flags, dev_name, data, ext4_fill_super,mnt);
3967 }
3968 
3969 static struct file_system_type ext4_fs_type = {
3970 	.owner		= THIS_MODULE,
3971 	.name		= "ext4",
3972 	.get_sb		= ext4_get_sb,
3973 	.kill_sb	= kill_block_super,
3974 	.fs_flags	= FS_REQUIRES_DEV,
3975 };
3976 
3977 static int __init init_ext4_fs(void)
3978 {
3979 	int err;
3980 
3981 	err = init_ext4_system_zone();
3982 	if (err)
3983 		return err;
3984 	ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
3985 	if (!ext4_kset)
3986 		goto out4;
3987 	ext4_proc_root = proc_mkdir("fs/ext4", NULL);
3988 	err = init_ext4_mballoc();
3989 	if (err)
3990 		goto out3;
3991 
3992 	err = init_ext4_xattr();
3993 	if (err)
3994 		goto out2;
3995 	err = init_inodecache();
3996 	if (err)
3997 		goto out1;
3998 	err = register_filesystem(&ext4_fs_type);
3999 	if (err)
4000 		goto out;
4001 	return 0;
4002 out:
4003 	destroy_inodecache();
4004 out1:
4005 	exit_ext4_xattr();
4006 out2:
4007 	exit_ext4_mballoc();
4008 out3:
4009 	remove_proc_entry("fs/ext4", NULL);
4010 	kset_unregister(ext4_kset);
4011 out4:
4012 	exit_ext4_system_zone();
4013 	return err;
4014 }
4015 
4016 static void __exit exit_ext4_fs(void)
4017 {
4018 	unregister_filesystem(&ext4_fs_type);
4019 	destroy_inodecache();
4020 	exit_ext4_xattr();
4021 	exit_ext4_mballoc();
4022 	remove_proc_entry("fs/ext4", NULL);
4023 	kset_unregister(ext4_kset);
4024 	exit_ext4_system_zone();
4025 }
4026 
4027 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
4028 MODULE_DESCRIPTION("Fourth Extended Filesystem");
4029 MODULE_LICENSE("GPL");
4030 module_init(init_ext4_fs)
4031 module_exit(exit_ext4_fs)
4032