1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/super.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * Big-endian to little-endian byte-swapping/bitmaps by 17 * David S. Miller (davem@caip.rutgers.edu), 1995 18 */ 19 20 #include <linux/module.h> 21 #include <linux/string.h> 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/vmalloc.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/parser.h> 30 #include <linux/buffer_head.h> 31 #include <linux/exportfs.h> 32 #include <linux/vfs.h> 33 #include <linux/random.h> 34 #include <linux/mount.h> 35 #include <linux/namei.h> 36 #include <linux/quotaops.h> 37 #include <linux/seq_file.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/dax.h> 42 #include <linux/uaccess.h> 43 #include <linux/iversion.h> 44 #include <linux/unicode.h> 45 #include <linux/part_stat.h> 46 #include <linux/kthread.h> 47 #include <linux/freezer.h> 48 #include <linux/fsnotify.h> 49 #include <linux/fs_context.h> 50 #include <linux/fs_parser.h> 51 52 #include "ext4.h" 53 #include "ext4_extents.h" /* Needed for trace points definition */ 54 #include "ext4_jbd2.h" 55 #include "xattr.h" 56 #include "acl.h" 57 #include "mballoc.h" 58 #include "fsmap.h" 59 60 #define CREATE_TRACE_POINTS 61 #include <trace/events/ext4.h> 62 63 static struct ext4_lazy_init *ext4_li_info; 64 static DEFINE_MUTEX(ext4_li_mtx); 65 static struct ratelimit_state ext4_mount_msg_ratelimit; 66 67 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 68 unsigned long journal_devnum); 69 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 70 static void ext4_update_super(struct super_block *sb); 71 static int ext4_commit_super(struct super_block *sb); 72 static int ext4_mark_recovery_complete(struct super_block *sb, 73 struct ext4_super_block *es); 74 static int ext4_clear_journal_err(struct super_block *sb, 75 struct ext4_super_block *es); 76 static int ext4_sync_fs(struct super_block *sb, int wait); 77 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 78 static int ext4_unfreeze(struct super_block *sb); 79 static int ext4_freeze(struct super_block *sb); 80 static inline int ext2_feature_set_ok(struct super_block *sb); 81 static inline int ext3_feature_set_ok(struct super_block *sb); 82 static void ext4_destroy_lazyinit_thread(void); 83 static void ext4_unregister_li_request(struct super_block *sb); 84 static void ext4_clear_request_list(void); 85 static struct inode *ext4_get_journal_inode(struct super_block *sb, 86 unsigned int journal_inum); 87 static int ext4_validate_options(struct fs_context *fc); 88 static int ext4_check_opt_consistency(struct fs_context *fc, 89 struct super_block *sb); 90 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb); 91 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param); 92 static int ext4_get_tree(struct fs_context *fc); 93 static int ext4_reconfigure(struct fs_context *fc); 94 static void ext4_fc_free(struct fs_context *fc); 95 static int ext4_init_fs_context(struct fs_context *fc); 96 static void ext4_kill_sb(struct super_block *sb); 97 static const struct fs_parameter_spec ext4_param_specs[]; 98 99 /* 100 * Lock ordering 101 * 102 * page fault path: 103 * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start 104 * -> page lock -> i_data_sem (rw) 105 * 106 * buffered write path: 107 * sb_start_write -> i_mutex -> mmap_lock 108 * sb_start_write -> i_mutex -> transaction start -> page lock -> 109 * i_data_sem (rw) 110 * 111 * truncate: 112 * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) -> 113 * page lock 114 * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start -> 115 * i_data_sem (rw) 116 * 117 * direct IO: 118 * sb_start_write -> i_mutex -> mmap_lock 119 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw) 120 * 121 * writepages: 122 * transaction start -> page lock(s) -> i_data_sem (rw) 123 */ 124 125 static const struct fs_context_operations ext4_context_ops = { 126 .parse_param = ext4_parse_param, 127 .get_tree = ext4_get_tree, 128 .reconfigure = ext4_reconfigure, 129 .free = ext4_fc_free, 130 }; 131 132 133 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 134 static struct file_system_type ext2_fs_type = { 135 .owner = THIS_MODULE, 136 .name = "ext2", 137 .init_fs_context = ext4_init_fs_context, 138 .parameters = ext4_param_specs, 139 .kill_sb = ext4_kill_sb, 140 .fs_flags = FS_REQUIRES_DEV, 141 }; 142 MODULE_ALIAS_FS("ext2"); 143 MODULE_ALIAS("ext2"); 144 #define IS_EXT2_SB(sb) ((sb)->s_type == &ext2_fs_type) 145 #else 146 #define IS_EXT2_SB(sb) (0) 147 #endif 148 149 150 static struct file_system_type ext3_fs_type = { 151 .owner = THIS_MODULE, 152 .name = "ext3", 153 .init_fs_context = ext4_init_fs_context, 154 .parameters = ext4_param_specs, 155 .kill_sb = ext4_kill_sb, 156 .fs_flags = FS_REQUIRES_DEV, 157 }; 158 MODULE_ALIAS_FS("ext3"); 159 MODULE_ALIAS("ext3"); 160 #define IS_EXT3_SB(sb) ((sb)->s_type == &ext3_fs_type) 161 162 163 static inline void __ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags, 164 bh_end_io_t *end_io) 165 { 166 /* 167 * buffer's verified bit is no longer valid after reading from 168 * disk again due to write out error, clear it to make sure we 169 * recheck the buffer contents. 170 */ 171 clear_buffer_verified(bh); 172 173 bh->b_end_io = end_io ? end_io : end_buffer_read_sync; 174 get_bh(bh); 175 submit_bh(REQ_OP_READ | op_flags, bh); 176 } 177 178 void ext4_read_bh_nowait(struct buffer_head *bh, blk_opf_t op_flags, 179 bh_end_io_t *end_io) 180 { 181 BUG_ON(!buffer_locked(bh)); 182 183 if (ext4_buffer_uptodate(bh)) { 184 unlock_buffer(bh); 185 return; 186 } 187 __ext4_read_bh(bh, op_flags, end_io); 188 } 189 190 int ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags, bh_end_io_t *end_io) 191 { 192 BUG_ON(!buffer_locked(bh)); 193 194 if (ext4_buffer_uptodate(bh)) { 195 unlock_buffer(bh); 196 return 0; 197 } 198 199 __ext4_read_bh(bh, op_flags, end_io); 200 201 wait_on_buffer(bh); 202 if (buffer_uptodate(bh)) 203 return 0; 204 return -EIO; 205 } 206 207 int ext4_read_bh_lock(struct buffer_head *bh, blk_opf_t op_flags, bool wait) 208 { 209 lock_buffer(bh); 210 if (!wait) { 211 ext4_read_bh_nowait(bh, op_flags, NULL); 212 return 0; 213 } 214 return ext4_read_bh(bh, op_flags, NULL); 215 } 216 217 /* 218 * This works like __bread_gfp() except it uses ERR_PTR for error 219 * returns. Currently with sb_bread it's impossible to distinguish 220 * between ENOMEM and EIO situations (since both result in a NULL 221 * return. 222 */ 223 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb, 224 sector_t block, 225 blk_opf_t op_flags, gfp_t gfp) 226 { 227 struct buffer_head *bh; 228 int ret; 229 230 bh = sb_getblk_gfp(sb, block, gfp); 231 if (bh == NULL) 232 return ERR_PTR(-ENOMEM); 233 if (ext4_buffer_uptodate(bh)) 234 return bh; 235 236 ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true); 237 if (ret) { 238 put_bh(bh); 239 return ERR_PTR(ret); 240 } 241 return bh; 242 } 243 244 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block, 245 blk_opf_t op_flags) 246 { 247 gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_inode->i_mapping, 248 ~__GFP_FS) | __GFP_MOVABLE; 249 250 return __ext4_sb_bread_gfp(sb, block, op_flags, gfp); 251 } 252 253 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb, 254 sector_t block) 255 { 256 gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_inode->i_mapping, 257 ~__GFP_FS); 258 259 return __ext4_sb_bread_gfp(sb, block, 0, gfp); 260 } 261 262 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block) 263 { 264 struct buffer_head *bh = bdev_getblk(sb->s_bdev, block, 265 sb->s_blocksize, GFP_NOWAIT | __GFP_NOWARN); 266 267 if (likely(bh)) { 268 if (trylock_buffer(bh)) 269 ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL); 270 brelse(bh); 271 } 272 } 273 274 static int ext4_verify_csum_type(struct super_block *sb, 275 struct ext4_super_block *es) 276 { 277 if (!ext4_has_feature_metadata_csum(sb)) 278 return 1; 279 280 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 281 } 282 283 __le32 ext4_superblock_csum(struct super_block *sb, 284 struct ext4_super_block *es) 285 { 286 struct ext4_sb_info *sbi = EXT4_SB(sb); 287 int offset = offsetof(struct ext4_super_block, s_checksum); 288 __u32 csum; 289 290 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 291 292 return cpu_to_le32(csum); 293 } 294 295 static int ext4_superblock_csum_verify(struct super_block *sb, 296 struct ext4_super_block *es) 297 { 298 if (!ext4_has_metadata_csum(sb)) 299 return 1; 300 301 return es->s_checksum == ext4_superblock_csum(sb, es); 302 } 303 304 void ext4_superblock_csum_set(struct super_block *sb) 305 { 306 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 307 308 if (!ext4_has_metadata_csum(sb)) 309 return; 310 311 es->s_checksum = ext4_superblock_csum(sb, es); 312 } 313 314 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 315 struct ext4_group_desc *bg) 316 { 317 return le32_to_cpu(bg->bg_block_bitmap_lo) | 318 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 319 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 320 } 321 322 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 323 struct ext4_group_desc *bg) 324 { 325 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 326 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 327 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 328 } 329 330 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 331 struct ext4_group_desc *bg) 332 { 333 return le32_to_cpu(bg->bg_inode_table_lo) | 334 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 335 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 336 } 337 338 __u32 ext4_free_group_clusters(struct super_block *sb, 339 struct ext4_group_desc *bg) 340 { 341 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 342 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 343 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 344 } 345 346 __u32 ext4_free_inodes_count(struct super_block *sb, 347 struct ext4_group_desc *bg) 348 { 349 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 350 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 351 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 352 } 353 354 __u32 ext4_used_dirs_count(struct super_block *sb, 355 struct ext4_group_desc *bg) 356 { 357 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 358 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 359 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 360 } 361 362 __u32 ext4_itable_unused_count(struct super_block *sb, 363 struct ext4_group_desc *bg) 364 { 365 return le16_to_cpu(bg->bg_itable_unused_lo) | 366 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 367 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 368 } 369 370 void ext4_block_bitmap_set(struct super_block *sb, 371 struct ext4_group_desc *bg, ext4_fsblk_t blk) 372 { 373 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 374 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 375 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 376 } 377 378 void ext4_inode_bitmap_set(struct super_block *sb, 379 struct ext4_group_desc *bg, ext4_fsblk_t blk) 380 { 381 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 382 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 383 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 384 } 385 386 void ext4_inode_table_set(struct super_block *sb, 387 struct ext4_group_desc *bg, ext4_fsblk_t blk) 388 { 389 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 390 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 391 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 392 } 393 394 void ext4_free_group_clusters_set(struct super_block *sb, 395 struct ext4_group_desc *bg, __u32 count) 396 { 397 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 398 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 399 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 400 } 401 402 void ext4_free_inodes_set(struct super_block *sb, 403 struct ext4_group_desc *bg, __u32 count) 404 { 405 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 406 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 407 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 408 } 409 410 void ext4_used_dirs_set(struct super_block *sb, 411 struct ext4_group_desc *bg, __u32 count) 412 { 413 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 414 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 415 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 416 } 417 418 void ext4_itable_unused_set(struct super_block *sb, 419 struct ext4_group_desc *bg, __u32 count) 420 { 421 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 422 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 423 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 424 } 425 426 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now) 427 { 428 now = clamp_val(now, 0, (1ull << 40) - 1); 429 430 *lo = cpu_to_le32(lower_32_bits(now)); 431 *hi = upper_32_bits(now); 432 } 433 434 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi) 435 { 436 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo); 437 } 438 #define ext4_update_tstamp(es, tstamp) \ 439 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \ 440 ktime_get_real_seconds()) 441 #define ext4_get_tstamp(es, tstamp) \ 442 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi) 443 444 #define EXT4_SB_REFRESH_INTERVAL_SEC (3600) /* seconds (1 hour) */ 445 #define EXT4_SB_REFRESH_INTERVAL_KB (16384) /* kilobytes (16MB) */ 446 447 /* 448 * The ext4_maybe_update_superblock() function checks and updates the 449 * superblock if needed. 450 * 451 * This function is designed to update the on-disk superblock only under 452 * certain conditions to prevent excessive disk writes and unnecessary 453 * waking of the disk from sleep. The superblock will be updated if: 454 * 1. More than an hour has passed since the last superblock update, and 455 * 2. More than 16MB have been written since the last superblock update. 456 * 457 * @sb: The superblock 458 */ 459 static void ext4_maybe_update_superblock(struct super_block *sb) 460 { 461 struct ext4_sb_info *sbi = EXT4_SB(sb); 462 struct ext4_super_block *es = sbi->s_es; 463 journal_t *journal = sbi->s_journal; 464 time64_t now; 465 __u64 last_update; 466 __u64 lifetime_write_kbytes; 467 __u64 diff_size; 468 469 if (sb_rdonly(sb) || !(sb->s_flags & SB_ACTIVE) || 470 !journal || (journal->j_flags & JBD2_UNMOUNT)) 471 return; 472 473 now = ktime_get_real_seconds(); 474 last_update = ext4_get_tstamp(es, s_wtime); 475 476 if (likely(now - last_update < EXT4_SB_REFRESH_INTERVAL_SEC)) 477 return; 478 479 lifetime_write_kbytes = sbi->s_kbytes_written + 480 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) - 481 sbi->s_sectors_written_start) >> 1); 482 483 /* Get the number of kilobytes not written to disk to account 484 * for statistics and compare with a multiple of 16 MB. This 485 * is used to determine when the next superblock commit should 486 * occur (i.e. not more often than once per 16MB if there was 487 * less written in an hour). 488 */ 489 diff_size = lifetime_write_kbytes - le64_to_cpu(es->s_kbytes_written); 490 491 if (diff_size > EXT4_SB_REFRESH_INTERVAL_KB) 492 schedule_work(&EXT4_SB(sb)->s_sb_upd_work); 493 } 494 495 /* 496 * The del_gendisk() function uninitializes the disk-specific data 497 * structures, including the bdi structure, without telling anyone 498 * else. Once this happens, any attempt to call mark_buffer_dirty() 499 * (for example, by ext4_commit_super), will cause a kernel OOPS. 500 * This is a kludge to prevent these oops until we can put in a proper 501 * hook in del_gendisk() to inform the VFS and file system layers. 502 */ 503 static int block_device_ejected(struct super_block *sb) 504 { 505 struct inode *bd_inode = sb->s_bdev->bd_inode; 506 struct backing_dev_info *bdi = inode_to_bdi(bd_inode); 507 508 return bdi->dev == NULL; 509 } 510 511 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 512 { 513 struct super_block *sb = journal->j_private; 514 struct ext4_sb_info *sbi = EXT4_SB(sb); 515 int error = is_journal_aborted(journal); 516 struct ext4_journal_cb_entry *jce; 517 518 BUG_ON(txn->t_state == T_FINISHED); 519 520 ext4_process_freed_data(sb, txn->t_tid); 521 ext4_maybe_update_superblock(sb); 522 523 spin_lock(&sbi->s_md_lock); 524 while (!list_empty(&txn->t_private_list)) { 525 jce = list_entry(txn->t_private_list.next, 526 struct ext4_journal_cb_entry, jce_list); 527 list_del_init(&jce->jce_list); 528 spin_unlock(&sbi->s_md_lock); 529 jce->jce_func(sb, jce, error); 530 spin_lock(&sbi->s_md_lock); 531 } 532 spin_unlock(&sbi->s_md_lock); 533 } 534 535 /* 536 * This writepage callback for write_cache_pages() 537 * takes care of a few cases after page cleaning. 538 * 539 * write_cache_pages() already checks for dirty pages 540 * and calls clear_page_dirty_for_io(), which we want, 541 * to write protect the pages. 542 * 543 * However, we may have to redirty a page (see below.) 544 */ 545 static int ext4_journalled_writepage_callback(struct folio *folio, 546 struct writeback_control *wbc, 547 void *data) 548 { 549 transaction_t *transaction = (transaction_t *) data; 550 struct buffer_head *bh, *head; 551 struct journal_head *jh; 552 553 bh = head = folio_buffers(folio); 554 do { 555 /* 556 * We have to redirty a page in these cases: 557 * 1) If buffer is dirty, it means the page was dirty because it 558 * contains a buffer that needs checkpointing. So the dirty bit 559 * needs to be preserved so that checkpointing writes the buffer 560 * properly. 561 * 2) If buffer is not part of the committing transaction 562 * (we may have just accidentally come across this buffer because 563 * inode range tracking is not exact) or if the currently running 564 * transaction already contains this buffer as well, dirty bit 565 * needs to be preserved so that the buffer gets writeprotected 566 * properly on running transaction's commit. 567 */ 568 jh = bh2jh(bh); 569 if (buffer_dirty(bh) || 570 (jh && (jh->b_transaction != transaction || 571 jh->b_next_transaction))) { 572 folio_redirty_for_writepage(wbc, folio); 573 goto out; 574 } 575 } while ((bh = bh->b_this_page) != head); 576 577 out: 578 return AOP_WRITEPAGE_ACTIVATE; 579 } 580 581 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode) 582 { 583 struct address_space *mapping = jinode->i_vfs_inode->i_mapping; 584 struct writeback_control wbc = { 585 .sync_mode = WB_SYNC_ALL, 586 .nr_to_write = LONG_MAX, 587 .range_start = jinode->i_dirty_start, 588 .range_end = jinode->i_dirty_end, 589 }; 590 591 return write_cache_pages(mapping, &wbc, 592 ext4_journalled_writepage_callback, 593 jinode->i_transaction); 594 } 595 596 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode) 597 { 598 int ret; 599 600 if (ext4_should_journal_data(jinode->i_vfs_inode)) 601 ret = ext4_journalled_submit_inode_data_buffers(jinode); 602 else 603 ret = ext4_normal_submit_inode_data_buffers(jinode); 604 return ret; 605 } 606 607 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode) 608 { 609 int ret = 0; 610 611 if (!ext4_should_journal_data(jinode->i_vfs_inode)) 612 ret = jbd2_journal_finish_inode_data_buffers(jinode); 613 614 return ret; 615 } 616 617 static bool system_going_down(void) 618 { 619 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF 620 || system_state == SYSTEM_RESTART; 621 } 622 623 struct ext4_err_translation { 624 int code; 625 int errno; 626 }; 627 628 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err } 629 630 static struct ext4_err_translation err_translation[] = { 631 EXT4_ERR_TRANSLATE(EIO), 632 EXT4_ERR_TRANSLATE(ENOMEM), 633 EXT4_ERR_TRANSLATE(EFSBADCRC), 634 EXT4_ERR_TRANSLATE(EFSCORRUPTED), 635 EXT4_ERR_TRANSLATE(ENOSPC), 636 EXT4_ERR_TRANSLATE(ENOKEY), 637 EXT4_ERR_TRANSLATE(EROFS), 638 EXT4_ERR_TRANSLATE(EFBIG), 639 EXT4_ERR_TRANSLATE(EEXIST), 640 EXT4_ERR_TRANSLATE(ERANGE), 641 EXT4_ERR_TRANSLATE(EOVERFLOW), 642 EXT4_ERR_TRANSLATE(EBUSY), 643 EXT4_ERR_TRANSLATE(ENOTDIR), 644 EXT4_ERR_TRANSLATE(ENOTEMPTY), 645 EXT4_ERR_TRANSLATE(ESHUTDOWN), 646 EXT4_ERR_TRANSLATE(EFAULT), 647 }; 648 649 static int ext4_errno_to_code(int errno) 650 { 651 int i; 652 653 for (i = 0; i < ARRAY_SIZE(err_translation); i++) 654 if (err_translation[i].errno == errno) 655 return err_translation[i].code; 656 return EXT4_ERR_UNKNOWN; 657 } 658 659 static void save_error_info(struct super_block *sb, int error, 660 __u32 ino, __u64 block, 661 const char *func, unsigned int line) 662 { 663 struct ext4_sb_info *sbi = EXT4_SB(sb); 664 665 /* We default to EFSCORRUPTED error... */ 666 if (error == 0) 667 error = EFSCORRUPTED; 668 669 spin_lock(&sbi->s_error_lock); 670 sbi->s_add_error_count++; 671 sbi->s_last_error_code = error; 672 sbi->s_last_error_line = line; 673 sbi->s_last_error_ino = ino; 674 sbi->s_last_error_block = block; 675 sbi->s_last_error_func = func; 676 sbi->s_last_error_time = ktime_get_real_seconds(); 677 if (!sbi->s_first_error_time) { 678 sbi->s_first_error_code = error; 679 sbi->s_first_error_line = line; 680 sbi->s_first_error_ino = ino; 681 sbi->s_first_error_block = block; 682 sbi->s_first_error_func = func; 683 sbi->s_first_error_time = sbi->s_last_error_time; 684 } 685 spin_unlock(&sbi->s_error_lock); 686 } 687 688 /* Deal with the reporting of failure conditions on a filesystem such as 689 * inconsistencies detected or read IO failures. 690 * 691 * On ext2, we can store the error state of the filesystem in the 692 * superblock. That is not possible on ext4, because we may have other 693 * write ordering constraints on the superblock which prevent us from 694 * writing it out straight away; and given that the journal is about to 695 * be aborted, we can't rely on the current, or future, transactions to 696 * write out the superblock safely. 697 * 698 * We'll just use the jbd2_journal_abort() error code to record an error in 699 * the journal instead. On recovery, the journal will complain about 700 * that error until we've noted it down and cleared it. 701 * 702 * If force_ro is set, we unconditionally force the filesystem into an 703 * ABORT|READONLY state, unless the error response on the fs has been set to 704 * panic in which case we take the easy way out and panic immediately. This is 705 * used to deal with unrecoverable failures such as journal IO errors or ENOMEM 706 * at a critical moment in log management. 707 */ 708 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error, 709 __u32 ino, __u64 block, 710 const char *func, unsigned int line) 711 { 712 journal_t *journal = EXT4_SB(sb)->s_journal; 713 bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT); 714 715 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 716 if (test_opt(sb, WARN_ON_ERROR)) 717 WARN_ON_ONCE(1); 718 719 if (!continue_fs && !sb_rdonly(sb)) { 720 set_bit(EXT4_FLAGS_SHUTDOWN, &EXT4_SB(sb)->s_ext4_flags); 721 if (journal) 722 jbd2_journal_abort(journal, -EIO); 723 } 724 725 if (!bdev_read_only(sb->s_bdev)) { 726 save_error_info(sb, error, ino, block, func, line); 727 /* 728 * In case the fs should keep running, we need to writeout 729 * superblock through the journal. Due to lock ordering 730 * constraints, it may not be safe to do it right here so we 731 * defer superblock flushing to a workqueue. 732 */ 733 if (continue_fs && journal) 734 schedule_work(&EXT4_SB(sb)->s_sb_upd_work); 735 else 736 ext4_commit_super(sb); 737 } 738 739 /* 740 * We force ERRORS_RO behavior when system is rebooting. Otherwise we 741 * could panic during 'reboot -f' as the underlying device got already 742 * disabled. 743 */ 744 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) { 745 panic("EXT4-fs (device %s): panic forced after error\n", 746 sb->s_id); 747 } 748 749 if (sb_rdonly(sb) || continue_fs) 750 return; 751 752 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 753 /* 754 * Make sure updated value of ->s_mount_flags will be visible before 755 * ->s_flags update 756 */ 757 smp_wmb(); 758 sb->s_flags |= SB_RDONLY; 759 } 760 761 static void update_super_work(struct work_struct *work) 762 { 763 struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info, 764 s_sb_upd_work); 765 journal_t *journal = sbi->s_journal; 766 handle_t *handle; 767 768 /* 769 * If the journal is still running, we have to write out superblock 770 * through the journal to avoid collisions of other journalled sb 771 * updates. 772 * 773 * We use directly jbd2 functions here to avoid recursing back into 774 * ext4 error handling code during handling of previous errors. 775 */ 776 if (!sb_rdonly(sbi->s_sb) && journal) { 777 struct buffer_head *sbh = sbi->s_sbh; 778 bool call_notify_err = false; 779 780 handle = jbd2_journal_start(journal, 1); 781 if (IS_ERR(handle)) 782 goto write_directly; 783 if (jbd2_journal_get_write_access(handle, sbh)) { 784 jbd2_journal_stop(handle); 785 goto write_directly; 786 } 787 788 if (sbi->s_add_error_count > 0) 789 call_notify_err = true; 790 791 ext4_update_super(sbi->s_sb); 792 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) { 793 ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to " 794 "superblock detected"); 795 clear_buffer_write_io_error(sbh); 796 set_buffer_uptodate(sbh); 797 } 798 799 if (jbd2_journal_dirty_metadata(handle, sbh)) { 800 jbd2_journal_stop(handle); 801 goto write_directly; 802 } 803 jbd2_journal_stop(handle); 804 805 if (call_notify_err) 806 ext4_notify_error_sysfs(sbi); 807 808 return; 809 } 810 write_directly: 811 /* 812 * Write through journal failed. Write sb directly to get error info 813 * out and hope for the best. 814 */ 815 ext4_commit_super(sbi->s_sb); 816 ext4_notify_error_sysfs(sbi); 817 } 818 819 #define ext4_error_ratelimit(sb) \ 820 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 821 "EXT4-fs error") 822 823 void __ext4_error(struct super_block *sb, const char *function, 824 unsigned int line, bool force_ro, int error, __u64 block, 825 const char *fmt, ...) 826 { 827 struct va_format vaf; 828 va_list args; 829 830 if (unlikely(ext4_forced_shutdown(sb))) 831 return; 832 833 trace_ext4_error(sb, function, line); 834 if (ext4_error_ratelimit(sb)) { 835 va_start(args, fmt); 836 vaf.fmt = fmt; 837 vaf.va = &args; 838 printk(KERN_CRIT 839 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 840 sb->s_id, function, line, current->comm, &vaf); 841 va_end(args); 842 } 843 fsnotify_sb_error(sb, NULL, error ? error : EFSCORRUPTED); 844 845 ext4_handle_error(sb, force_ro, error, 0, block, function, line); 846 } 847 848 void __ext4_error_inode(struct inode *inode, const char *function, 849 unsigned int line, ext4_fsblk_t block, int error, 850 const char *fmt, ...) 851 { 852 va_list args; 853 struct va_format vaf; 854 855 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 856 return; 857 858 trace_ext4_error(inode->i_sb, function, line); 859 if (ext4_error_ratelimit(inode->i_sb)) { 860 va_start(args, fmt); 861 vaf.fmt = fmt; 862 vaf.va = &args; 863 if (block) 864 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 865 "inode #%lu: block %llu: comm %s: %pV\n", 866 inode->i_sb->s_id, function, line, inode->i_ino, 867 block, current->comm, &vaf); 868 else 869 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 870 "inode #%lu: comm %s: %pV\n", 871 inode->i_sb->s_id, function, line, inode->i_ino, 872 current->comm, &vaf); 873 va_end(args); 874 } 875 fsnotify_sb_error(inode->i_sb, inode, error ? error : EFSCORRUPTED); 876 877 ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block, 878 function, line); 879 } 880 881 void __ext4_error_file(struct file *file, const char *function, 882 unsigned int line, ext4_fsblk_t block, 883 const char *fmt, ...) 884 { 885 va_list args; 886 struct va_format vaf; 887 struct inode *inode = file_inode(file); 888 char pathname[80], *path; 889 890 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 891 return; 892 893 trace_ext4_error(inode->i_sb, function, line); 894 if (ext4_error_ratelimit(inode->i_sb)) { 895 path = file_path(file, pathname, sizeof(pathname)); 896 if (IS_ERR(path)) 897 path = "(unknown)"; 898 va_start(args, fmt); 899 vaf.fmt = fmt; 900 vaf.va = &args; 901 if (block) 902 printk(KERN_CRIT 903 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 904 "block %llu: comm %s: path %s: %pV\n", 905 inode->i_sb->s_id, function, line, inode->i_ino, 906 block, current->comm, path, &vaf); 907 else 908 printk(KERN_CRIT 909 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 910 "comm %s: path %s: %pV\n", 911 inode->i_sb->s_id, function, line, inode->i_ino, 912 current->comm, path, &vaf); 913 va_end(args); 914 } 915 fsnotify_sb_error(inode->i_sb, inode, EFSCORRUPTED); 916 917 ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block, 918 function, line); 919 } 920 921 const char *ext4_decode_error(struct super_block *sb, int errno, 922 char nbuf[16]) 923 { 924 char *errstr = NULL; 925 926 switch (errno) { 927 case -EFSCORRUPTED: 928 errstr = "Corrupt filesystem"; 929 break; 930 case -EFSBADCRC: 931 errstr = "Filesystem failed CRC"; 932 break; 933 case -EIO: 934 errstr = "IO failure"; 935 break; 936 case -ENOMEM: 937 errstr = "Out of memory"; 938 break; 939 case -EROFS: 940 if (!sb || (EXT4_SB(sb)->s_journal && 941 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 942 errstr = "Journal has aborted"; 943 else 944 errstr = "Readonly filesystem"; 945 break; 946 default: 947 /* If the caller passed in an extra buffer for unknown 948 * errors, textualise them now. Else we just return 949 * NULL. */ 950 if (nbuf) { 951 /* Check for truncated error codes... */ 952 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 953 errstr = nbuf; 954 } 955 break; 956 } 957 958 return errstr; 959 } 960 961 /* __ext4_std_error decodes expected errors from journaling functions 962 * automatically and invokes the appropriate error response. */ 963 964 void __ext4_std_error(struct super_block *sb, const char *function, 965 unsigned int line, int errno) 966 { 967 char nbuf[16]; 968 const char *errstr; 969 970 if (unlikely(ext4_forced_shutdown(sb))) 971 return; 972 973 /* Special case: if the error is EROFS, and we're not already 974 * inside a transaction, then there's really no point in logging 975 * an error. */ 976 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb)) 977 return; 978 979 if (ext4_error_ratelimit(sb)) { 980 errstr = ext4_decode_error(sb, errno, nbuf); 981 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 982 sb->s_id, function, line, errstr); 983 } 984 fsnotify_sb_error(sb, NULL, errno ? errno : EFSCORRUPTED); 985 986 ext4_handle_error(sb, false, -errno, 0, 0, function, line); 987 } 988 989 void __ext4_msg(struct super_block *sb, 990 const char *prefix, const char *fmt, ...) 991 { 992 struct va_format vaf; 993 va_list args; 994 995 if (sb) { 996 atomic_inc(&EXT4_SB(sb)->s_msg_count); 997 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), 998 "EXT4-fs")) 999 return; 1000 } 1001 1002 va_start(args, fmt); 1003 vaf.fmt = fmt; 1004 vaf.va = &args; 1005 if (sb) 1006 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 1007 else 1008 printk("%sEXT4-fs: %pV\n", prefix, &vaf); 1009 va_end(args); 1010 } 1011 1012 static int ext4_warning_ratelimit(struct super_block *sb) 1013 { 1014 atomic_inc(&EXT4_SB(sb)->s_warning_count); 1015 return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), 1016 "EXT4-fs warning"); 1017 } 1018 1019 void __ext4_warning(struct super_block *sb, const char *function, 1020 unsigned int line, const char *fmt, ...) 1021 { 1022 struct va_format vaf; 1023 va_list args; 1024 1025 if (!ext4_warning_ratelimit(sb)) 1026 return; 1027 1028 va_start(args, fmt); 1029 vaf.fmt = fmt; 1030 vaf.va = &args; 1031 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 1032 sb->s_id, function, line, &vaf); 1033 va_end(args); 1034 } 1035 1036 void __ext4_warning_inode(const struct inode *inode, const char *function, 1037 unsigned int line, const char *fmt, ...) 1038 { 1039 struct va_format vaf; 1040 va_list args; 1041 1042 if (!ext4_warning_ratelimit(inode->i_sb)) 1043 return; 1044 1045 va_start(args, fmt); 1046 vaf.fmt = fmt; 1047 vaf.va = &args; 1048 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 1049 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 1050 function, line, inode->i_ino, current->comm, &vaf); 1051 va_end(args); 1052 } 1053 1054 void __ext4_grp_locked_error(const char *function, unsigned int line, 1055 struct super_block *sb, ext4_group_t grp, 1056 unsigned long ino, ext4_fsblk_t block, 1057 const char *fmt, ...) 1058 __releases(bitlock) 1059 __acquires(bitlock) 1060 { 1061 struct va_format vaf; 1062 va_list args; 1063 1064 if (unlikely(ext4_forced_shutdown(sb))) 1065 return; 1066 1067 trace_ext4_error(sb, function, line); 1068 if (ext4_error_ratelimit(sb)) { 1069 va_start(args, fmt); 1070 vaf.fmt = fmt; 1071 vaf.va = &args; 1072 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 1073 sb->s_id, function, line, grp); 1074 if (ino) 1075 printk(KERN_CONT "inode %lu: ", ino); 1076 if (block) 1077 printk(KERN_CONT "block %llu:", 1078 (unsigned long long) block); 1079 printk(KERN_CONT "%pV\n", &vaf); 1080 va_end(args); 1081 } 1082 1083 if (test_opt(sb, ERRORS_CONT)) { 1084 if (test_opt(sb, WARN_ON_ERROR)) 1085 WARN_ON_ONCE(1); 1086 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 1087 if (!bdev_read_only(sb->s_bdev)) { 1088 save_error_info(sb, EFSCORRUPTED, ino, block, function, 1089 line); 1090 schedule_work(&EXT4_SB(sb)->s_sb_upd_work); 1091 } 1092 return; 1093 } 1094 ext4_unlock_group(sb, grp); 1095 ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line); 1096 /* 1097 * We only get here in the ERRORS_RO case; relocking the group 1098 * may be dangerous, but nothing bad will happen since the 1099 * filesystem will have already been marked read/only and the 1100 * journal has been aborted. We return 1 as a hint to callers 1101 * who might what to use the return value from 1102 * ext4_grp_locked_error() to distinguish between the 1103 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 1104 * aggressively from the ext4 function in question, with a 1105 * more appropriate error code. 1106 */ 1107 ext4_lock_group(sb, grp); 1108 return; 1109 } 1110 1111 void ext4_mark_group_bitmap_corrupted(struct super_block *sb, 1112 ext4_group_t group, 1113 unsigned int flags) 1114 { 1115 struct ext4_sb_info *sbi = EXT4_SB(sb); 1116 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1117 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL); 1118 int ret; 1119 1120 if (!grp || !gdp) 1121 return; 1122 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) { 1123 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, 1124 &grp->bb_state); 1125 if (!ret) 1126 percpu_counter_sub(&sbi->s_freeclusters_counter, 1127 grp->bb_free); 1128 } 1129 1130 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) { 1131 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, 1132 &grp->bb_state); 1133 if (!ret && gdp) { 1134 int count; 1135 1136 count = ext4_free_inodes_count(sb, gdp); 1137 percpu_counter_sub(&sbi->s_freeinodes_counter, 1138 count); 1139 } 1140 } 1141 } 1142 1143 void ext4_update_dynamic_rev(struct super_block *sb) 1144 { 1145 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 1146 1147 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 1148 return; 1149 1150 ext4_warning(sb, 1151 "updating to rev %d because of new feature flag, " 1152 "running e2fsck is recommended", 1153 EXT4_DYNAMIC_REV); 1154 1155 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 1156 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 1157 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 1158 /* leave es->s_feature_*compat flags alone */ 1159 /* es->s_uuid will be set by e2fsck if empty */ 1160 1161 /* 1162 * The rest of the superblock fields should be zero, and if not it 1163 * means they are likely already in use, so leave them alone. We 1164 * can leave it up to e2fsck to clean up any inconsistencies there. 1165 */ 1166 } 1167 1168 static inline struct inode *orphan_list_entry(struct list_head *l) 1169 { 1170 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 1171 } 1172 1173 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 1174 { 1175 struct list_head *l; 1176 1177 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 1178 le32_to_cpu(sbi->s_es->s_last_orphan)); 1179 1180 printk(KERN_ERR "sb_info orphan list:\n"); 1181 list_for_each(l, &sbi->s_orphan) { 1182 struct inode *inode = orphan_list_entry(l); 1183 printk(KERN_ERR " " 1184 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 1185 inode->i_sb->s_id, inode->i_ino, inode, 1186 inode->i_mode, inode->i_nlink, 1187 NEXT_ORPHAN(inode)); 1188 } 1189 } 1190 1191 #ifdef CONFIG_QUOTA 1192 static int ext4_quota_off(struct super_block *sb, int type); 1193 1194 static inline void ext4_quotas_off(struct super_block *sb, int type) 1195 { 1196 BUG_ON(type > EXT4_MAXQUOTAS); 1197 1198 /* Use our quota_off function to clear inode flags etc. */ 1199 for (type--; type >= 0; type--) 1200 ext4_quota_off(sb, type); 1201 } 1202 1203 /* 1204 * This is a helper function which is used in the mount/remount 1205 * codepaths (which holds s_umount) to fetch the quota file name. 1206 */ 1207 static inline char *get_qf_name(struct super_block *sb, 1208 struct ext4_sb_info *sbi, 1209 int type) 1210 { 1211 return rcu_dereference_protected(sbi->s_qf_names[type], 1212 lockdep_is_held(&sb->s_umount)); 1213 } 1214 #else 1215 static inline void ext4_quotas_off(struct super_block *sb, int type) 1216 { 1217 } 1218 #endif 1219 1220 static int ext4_percpu_param_init(struct ext4_sb_info *sbi) 1221 { 1222 ext4_fsblk_t block; 1223 int err; 1224 1225 block = ext4_count_free_clusters(sbi->s_sb); 1226 ext4_free_blocks_count_set(sbi->s_es, EXT4_C2B(sbi, block)); 1227 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 1228 GFP_KERNEL); 1229 if (!err) { 1230 unsigned long freei = ext4_count_free_inodes(sbi->s_sb); 1231 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 1232 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 1233 GFP_KERNEL); 1234 } 1235 if (!err) 1236 err = percpu_counter_init(&sbi->s_dirs_counter, 1237 ext4_count_dirs(sbi->s_sb), GFP_KERNEL); 1238 if (!err) 1239 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 1240 GFP_KERNEL); 1241 if (!err) 1242 err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0, 1243 GFP_KERNEL); 1244 if (!err) 1245 err = percpu_init_rwsem(&sbi->s_writepages_rwsem); 1246 1247 if (err) 1248 ext4_msg(sbi->s_sb, KERN_ERR, "insufficient memory"); 1249 1250 return err; 1251 } 1252 1253 static void ext4_percpu_param_destroy(struct ext4_sb_info *sbi) 1254 { 1255 percpu_counter_destroy(&sbi->s_freeclusters_counter); 1256 percpu_counter_destroy(&sbi->s_freeinodes_counter); 1257 percpu_counter_destroy(&sbi->s_dirs_counter); 1258 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 1259 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit); 1260 percpu_free_rwsem(&sbi->s_writepages_rwsem); 1261 } 1262 1263 static void ext4_group_desc_free(struct ext4_sb_info *sbi) 1264 { 1265 struct buffer_head **group_desc; 1266 int i; 1267 1268 rcu_read_lock(); 1269 group_desc = rcu_dereference(sbi->s_group_desc); 1270 for (i = 0; i < sbi->s_gdb_count; i++) 1271 brelse(group_desc[i]); 1272 kvfree(group_desc); 1273 rcu_read_unlock(); 1274 } 1275 1276 static void ext4_flex_groups_free(struct ext4_sb_info *sbi) 1277 { 1278 struct flex_groups **flex_groups; 1279 int i; 1280 1281 rcu_read_lock(); 1282 flex_groups = rcu_dereference(sbi->s_flex_groups); 1283 if (flex_groups) { 1284 for (i = 0; i < sbi->s_flex_groups_allocated; i++) 1285 kvfree(flex_groups[i]); 1286 kvfree(flex_groups); 1287 } 1288 rcu_read_unlock(); 1289 } 1290 1291 static void ext4_put_super(struct super_block *sb) 1292 { 1293 struct ext4_sb_info *sbi = EXT4_SB(sb); 1294 struct ext4_super_block *es = sbi->s_es; 1295 int aborted = 0; 1296 int err; 1297 1298 /* 1299 * Unregister sysfs before destroying jbd2 journal. 1300 * Since we could still access attr_journal_task attribute via sysfs 1301 * path which could have sbi->s_journal->j_task as NULL 1302 * Unregister sysfs before flush sbi->s_sb_upd_work. 1303 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If 1304 * read metadata verify failed then will queue error work. 1305 * update_super_work will call start_this_handle may trigger 1306 * BUG_ON. 1307 */ 1308 ext4_unregister_sysfs(sb); 1309 1310 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs unmount")) 1311 ext4_msg(sb, KERN_INFO, "unmounting filesystem %pU.", 1312 &sb->s_uuid); 1313 1314 ext4_unregister_li_request(sb); 1315 ext4_quotas_off(sb, EXT4_MAXQUOTAS); 1316 1317 flush_work(&sbi->s_sb_upd_work); 1318 destroy_workqueue(sbi->rsv_conversion_wq); 1319 ext4_release_orphan_info(sb); 1320 1321 if (sbi->s_journal) { 1322 aborted = is_journal_aborted(sbi->s_journal); 1323 err = jbd2_journal_destroy(sbi->s_journal); 1324 sbi->s_journal = NULL; 1325 if ((err < 0) && !aborted) { 1326 ext4_abort(sb, -err, "Couldn't clean up the journal"); 1327 } 1328 } 1329 1330 ext4_es_unregister_shrinker(sbi); 1331 timer_shutdown_sync(&sbi->s_err_report); 1332 ext4_release_system_zone(sb); 1333 ext4_mb_release(sb); 1334 ext4_ext_release(sb); 1335 1336 if (!sb_rdonly(sb) && !aborted) { 1337 ext4_clear_feature_journal_needs_recovery(sb); 1338 ext4_clear_feature_orphan_present(sb); 1339 es->s_state = cpu_to_le16(sbi->s_mount_state); 1340 } 1341 if (!sb_rdonly(sb)) 1342 ext4_commit_super(sb); 1343 1344 ext4_group_desc_free(sbi); 1345 ext4_flex_groups_free(sbi); 1346 ext4_percpu_param_destroy(sbi); 1347 #ifdef CONFIG_QUOTA 1348 for (int i = 0; i < EXT4_MAXQUOTAS; i++) 1349 kfree(get_qf_name(sb, sbi, i)); 1350 #endif 1351 1352 /* Debugging code just in case the in-memory inode orphan list 1353 * isn't empty. The on-disk one can be non-empty if we've 1354 * detected an error and taken the fs readonly, but the 1355 * in-memory list had better be clean by this point. */ 1356 if (!list_empty(&sbi->s_orphan)) 1357 dump_orphan_list(sb, sbi); 1358 ASSERT(list_empty(&sbi->s_orphan)); 1359 1360 sync_blockdev(sb->s_bdev); 1361 invalidate_bdev(sb->s_bdev); 1362 if (sbi->s_journal_bdev_file) { 1363 /* 1364 * Invalidate the journal device's buffers. We don't want them 1365 * floating about in memory - the physical journal device may 1366 * hotswapped, and it breaks the `ro-after' testing code. 1367 */ 1368 sync_blockdev(file_bdev(sbi->s_journal_bdev_file)); 1369 invalidate_bdev(file_bdev(sbi->s_journal_bdev_file)); 1370 } 1371 1372 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 1373 sbi->s_ea_inode_cache = NULL; 1374 1375 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 1376 sbi->s_ea_block_cache = NULL; 1377 1378 ext4_stop_mmpd(sbi); 1379 1380 brelse(sbi->s_sbh); 1381 sb->s_fs_info = NULL; 1382 /* 1383 * Now that we are completely done shutting down the 1384 * superblock, we need to actually destroy the kobject. 1385 */ 1386 kobject_put(&sbi->s_kobj); 1387 wait_for_completion(&sbi->s_kobj_unregister); 1388 if (sbi->s_chksum_driver) 1389 crypto_free_shash(sbi->s_chksum_driver); 1390 kfree(sbi->s_blockgroup_lock); 1391 fs_put_dax(sbi->s_daxdev, NULL); 1392 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy); 1393 #if IS_ENABLED(CONFIG_UNICODE) 1394 utf8_unload(sb->s_encoding); 1395 #endif 1396 kfree(sbi); 1397 } 1398 1399 static struct kmem_cache *ext4_inode_cachep; 1400 1401 /* 1402 * Called inside transaction, so use GFP_NOFS 1403 */ 1404 static struct inode *ext4_alloc_inode(struct super_block *sb) 1405 { 1406 struct ext4_inode_info *ei; 1407 1408 ei = alloc_inode_sb(sb, ext4_inode_cachep, GFP_NOFS); 1409 if (!ei) 1410 return NULL; 1411 1412 inode_set_iversion(&ei->vfs_inode, 1); 1413 ei->i_flags = 0; 1414 spin_lock_init(&ei->i_raw_lock); 1415 ei->i_prealloc_node = RB_ROOT; 1416 atomic_set(&ei->i_prealloc_active, 0); 1417 rwlock_init(&ei->i_prealloc_lock); 1418 ext4_es_init_tree(&ei->i_es_tree); 1419 rwlock_init(&ei->i_es_lock); 1420 INIT_LIST_HEAD(&ei->i_es_list); 1421 ei->i_es_all_nr = 0; 1422 ei->i_es_shk_nr = 0; 1423 ei->i_es_shrink_lblk = 0; 1424 ei->i_reserved_data_blocks = 0; 1425 spin_lock_init(&(ei->i_block_reservation_lock)); 1426 ext4_init_pending_tree(&ei->i_pending_tree); 1427 #ifdef CONFIG_QUOTA 1428 ei->i_reserved_quota = 0; 1429 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 1430 #endif 1431 ei->jinode = NULL; 1432 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 1433 spin_lock_init(&ei->i_completed_io_lock); 1434 ei->i_sync_tid = 0; 1435 ei->i_datasync_tid = 0; 1436 atomic_set(&ei->i_unwritten, 0); 1437 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 1438 ext4_fc_init_inode(&ei->vfs_inode); 1439 mutex_init(&ei->i_fc_lock); 1440 return &ei->vfs_inode; 1441 } 1442 1443 static int ext4_drop_inode(struct inode *inode) 1444 { 1445 int drop = generic_drop_inode(inode); 1446 1447 if (!drop) 1448 drop = fscrypt_drop_inode(inode); 1449 1450 trace_ext4_drop_inode(inode, drop); 1451 return drop; 1452 } 1453 1454 static void ext4_free_in_core_inode(struct inode *inode) 1455 { 1456 fscrypt_free_inode(inode); 1457 if (!list_empty(&(EXT4_I(inode)->i_fc_list))) { 1458 pr_warn("%s: inode %ld still in fc list", 1459 __func__, inode->i_ino); 1460 } 1461 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 1462 } 1463 1464 static void ext4_destroy_inode(struct inode *inode) 1465 { 1466 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 1467 ext4_msg(inode->i_sb, KERN_ERR, 1468 "Inode %lu (%p): orphan list check failed!", 1469 inode->i_ino, EXT4_I(inode)); 1470 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 1471 EXT4_I(inode), sizeof(struct ext4_inode_info), 1472 true); 1473 dump_stack(); 1474 } 1475 1476 if (EXT4_I(inode)->i_reserved_data_blocks) 1477 ext4_msg(inode->i_sb, KERN_ERR, 1478 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!", 1479 inode->i_ino, EXT4_I(inode), 1480 EXT4_I(inode)->i_reserved_data_blocks); 1481 } 1482 1483 static void ext4_shutdown(struct super_block *sb) 1484 { 1485 ext4_force_shutdown(sb, EXT4_GOING_FLAGS_NOLOGFLUSH); 1486 } 1487 1488 static void init_once(void *foo) 1489 { 1490 struct ext4_inode_info *ei = foo; 1491 1492 INIT_LIST_HEAD(&ei->i_orphan); 1493 init_rwsem(&ei->xattr_sem); 1494 init_rwsem(&ei->i_data_sem); 1495 inode_init_once(&ei->vfs_inode); 1496 ext4_fc_init_inode(&ei->vfs_inode); 1497 } 1498 1499 static int __init init_inodecache(void) 1500 { 1501 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache", 1502 sizeof(struct ext4_inode_info), 0, 1503 SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT, 1504 offsetof(struct ext4_inode_info, i_data), 1505 sizeof_field(struct ext4_inode_info, i_data), 1506 init_once); 1507 if (ext4_inode_cachep == NULL) 1508 return -ENOMEM; 1509 return 0; 1510 } 1511 1512 static void destroy_inodecache(void) 1513 { 1514 /* 1515 * Make sure all delayed rcu free inodes are flushed before we 1516 * destroy cache. 1517 */ 1518 rcu_barrier(); 1519 kmem_cache_destroy(ext4_inode_cachep); 1520 } 1521 1522 void ext4_clear_inode(struct inode *inode) 1523 { 1524 ext4_fc_del(inode); 1525 invalidate_inode_buffers(inode); 1526 clear_inode(inode); 1527 ext4_discard_preallocations(inode); 1528 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 1529 dquot_drop(inode); 1530 if (EXT4_I(inode)->jinode) { 1531 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1532 EXT4_I(inode)->jinode); 1533 jbd2_free_inode(EXT4_I(inode)->jinode); 1534 EXT4_I(inode)->jinode = NULL; 1535 } 1536 fscrypt_put_encryption_info(inode); 1537 fsverity_cleanup_inode(inode); 1538 } 1539 1540 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1541 u64 ino, u32 generation) 1542 { 1543 struct inode *inode; 1544 1545 /* 1546 * Currently we don't know the generation for parent directory, so 1547 * a generation of 0 means "accept any" 1548 */ 1549 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE); 1550 if (IS_ERR(inode)) 1551 return ERR_CAST(inode); 1552 if (generation && inode->i_generation != generation) { 1553 iput(inode); 1554 return ERR_PTR(-ESTALE); 1555 } 1556 1557 return inode; 1558 } 1559 1560 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1561 int fh_len, int fh_type) 1562 { 1563 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1564 ext4_nfs_get_inode); 1565 } 1566 1567 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1568 int fh_len, int fh_type) 1569 { 1570 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1571 ext4_nfs_get_inode); 1572 } 1573 1574 static int ext4_nfs_commit_metadata(struct inode *inode) 1575 { 1576 struct writeback_control wbc = { 1577 .sync_mode = WB_SYNC_ALL 1578 }; 1579 1580 trace_ext4_nfs_commit_metadata(inode); 1581 return ext4_write_inode(inode, &wbc); 1582 } 1583 1584 #ifdef CONFIG_QUOTA 1585 static const char * const quotatypes[] = INITQFNAMES; 1586 #define QTYPE2NAME(t) (quotatypes[t]) 1587 1588 static int ext4_write_dquot(struct dquot *dquot); 1589 static int ext4_acquire_dquot(struct dquot *dquot); 1590 static int ext4_release_dquot(struct dquot *dquot); 1591 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1592 static int ext4_write_info(struct super_block *sb, int type); 1593 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1594 const struct path *path); 1595 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1596 size_t len, loff_t off); 1597 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1598 const char *data, size_t len, loff_t off); 1599 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1600 unsigned int flags); 1601 1602 static struct dquot __rcu **ext4_get_dquots(struct inode *inode) 1603 { 1604 return EXT4_I(inode)->i_dquot; 1605 } 1606 1607 static const struct dquot_operations ext4_quota_operations = { 1608 .get_reserved_space = ext4_get_reserved_space, 1609 .write_dquot = ext4_write_dquot, 1610 .acquire_dquot = ext4_acquire_dquot, 1611 .release_dquot = ext4_release_dquot, 1612 .mark_dirty = ext4_mark_dquot_dirty, 1613 .write_info = ext4_write_info, 1614 .alloc_dquot = dquot_alloc, 1615 .destroy_dquot = dquot_destroy, 1616 .get_projid = ext4_get_projid, 1617 .get_inode_usage = ext4_get_inode_usage, 1618 .get_next_id = dquot_get_next_id, 1619 }; 1620 1621 static const struct quotactl_ops ext4_qctl_operations = { 1622 .quota_on = ext4_quota_on, 1623 .quota_off = ext4_quota_off, 1624 .quota_sync = dquot_quota_sync, 1625 .get_state = dquot_get_state, 1626 .set_info = dquot_set_dqinfo, 1627 .get_dqblk = dquot_get_dqblk, 1628 .set_dqblk = dquot_set_dqblk, 1629 .get_nextdqblk = dquot_get_next_dqblk, 1630 }; 1631 #endif 1632 1633 static const struct super_operations ext4_sops = { 1634 .alloc_inode = ext4_alloc_inode, 1635 .free_inode = ext4_free_in_core_inode, 1636 .destroy_inode = ext4_destroy_inode, 1637 .write_inode = ext4_write_inode, 1638 .dirty_inode = ext4_dirty_inode, 1639 .drop_inode = ext4_drop_inode, 1640 .evict_inode = ext4_evict_inode, 1641 .put_super = ext4_put_super, 1642 .sync_fs = ext4_sync_fs, 1643 .freeze_fs = ext4_freeze, 1644 .unfreeze_fs = ext4_unfreeze, 1645 .statfs = ext4_statfs, 1646 .show_options = ext4_show_options, 1647 .shutdown = ext4_shutdown, 1648 #ifdef CONFIG_QUOTA 1649 .quota_read = ext4_quota_read, 1650 .quota_write = ext4_quota_write, 1651 .get_dquots = ext4_get_dquots, 1652 #endif 1653 }; 1654 1655 static const struct export_operations ext4_export_ops = { 1656 .encode_fh = generic_encode_ino32_fh, 1657 .fh_to_dentry = ext4_fh_to_dentry, 1658 .fh_to_parent = ext4_fh_to_parent, 1659 .get_parent = ext4_get_parent, 1660 .commit_metadata = ext4_nfs_commit_metadata, 1661 }; 1662 1663 enum { 1664 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1665 Opt_resgid, Opt_resuid, Opt_sb, 1666 Opt_nouid32, Opt_debug, Opt_removed, 1667 Opt_user_xattr, Opt_acl, 1668 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1669 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1670 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1671 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1672 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1673 Opt_inlinecrypt, 1674 Opt_usrjquota, Opt_grpjquota, Opt_quota, 1675 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1676 Opt_usrquota, Opt_grpquota, Opt_prjquota, 1677 Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never, 1678 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error, 1679 Opt_nowarn_on_error, Opt_mblk_io_submit, Opt_debug_want_extra_isize, 1680 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1681 Opt_inode_readahead_blks, Opt_journal_ioprio, 1682 Opt_dioread_nolock, Opt_dioread_lock, 1683 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1684 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache, 1685 Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan, 1686 Opt_errors, Opt_data, Opt_data_err, Opt_jqfmt, Opt_dax_type, 1687 #ifdef CONFIG_EXT4_DEBUG 1688 Opt_fc_debug_max_replay, Opt_fc_debug_force 1689 #endif 1690 }; 1691 1692 static const struct constant_table ext4_param_errors[] = { 1693 {"continue", EXT4_MOUNT_ERRORS_CONT}, 1694 {"panic", EXT4_MOUNT_ERRORS_PANIC}, 1695 {"remount-ro", EXT4_MOUNT_ERRORS_RO}, 1696 {} 1697 }; 1698 1699 static const struct constant_table ext4_param_data[] = { 1700 {"journal", EXT4_MOUNT_JOURNAL_DATA}, 1701 {"ordered", EXT4_MOUNT_ORDERED_DATA}, 1702 {"writeback", EXT4_MOUNT_WRITEBACK_DATA}, 1703 {} 1704 }; 1705 1706 static const struct constant_table ext4_param_data_err[] = { 1707 {"abort", Opt_data_err_abort}, 1708 {"ignore", Opt_data_err_ignore}, 1709 {} 1710 }; 1711 1712 static const struct constant_table ext4_param_jqfmt[] = { 1713 {"vfsold", QFMT_VFS_OLD}, 1714 {"vfsv0", QFMT_VFS_V0}, 1715 {"vfsv1", QFMT_VFS_V1}, 1716 {} 1717 }; 1718 1719 static const struct constant_table ext4_param_dax[] = { 1720 {"always", Opt_dax_always}, 1721 {"inode", Opt_dax_inode}, 1722 {"never", Opt_dax_never}, 1723 {} 1724 }; 1725 1726 /* String parameter that allows empty argument */ 1727 #define fsparam_string_empty(NAME, OPT) \ 1728 __fsparam(fs_param_is_string, NAME, OPT, fs_param_can_be_empty, NULL) 1729 1730 /* 1731 * Mount option specification 1732 * We don't use fsparam_flag_no because of the way we set the 1733 * options and the way we show them in _ext4_show_options(). To 1734 * keep the changes to a minimum, let's keep the negative options 1735 * separate for now. 1736 */ 1737 static const struct fs_parameter_spec ext4_param_specs[] = { 1738 fsparam_flag ("bsddf", Opt_bsd_df), 1739 fsparam_flag ("minixdf", Opt_minix_df), 1740 fsparam_flag ("grpid", Opt_grpid), 1741 fsparam_flag ("bsdgroups", Opt_grpid), 1742 fsparam_flag ("nogrpid", Opt_nogrpid), 1743 fsparam_flag ("sysvgroups", Opt_nogrpid), 1744 fsparam_u32 ("resgid", Opt_resgid), 1745 fsparam_u32 ("resuid", Opt_resuid), 1746 fsparam_u32 ("sb", Opt_sb), 1747 fsparam_enum ("errors", Opt_errors, ext4_param_errors), 1748 fsparam_flag ("nouid32", Opt_nouid32), 1749 fsparam_flag ("debug", Opt_debug), 1750 fsparam_flag ("oldalloc", Opt_removed), 1751 fsparam_flag ("orlov", Opt_removed), 1752 fsparam_flag ("user_xattr", Opt_user_xattr), 1753 fsparam_flag ("acl", Opt_acl), 1754 fsparam_flag ("norecovery", Opt_noload), 1755 fsparam_flag ("noload", Opt_noload), 1756 fsparam_flag ("bh", Opt_removed), 1757 fsparam_flag ("nobh", Opt_removed), 1758 fsparam_u32 ("commit", Opt_commit), 1759 fsparam_u32 ("min_batch_time", Opt_min_batch_time), 1760 fsparam_u32 ("max_batch_time", Opt_max_batch_time), 1761 fsparam_u32 ("journal_dev", Opt_journal_dev), 1762 fsparam_bdev ("journal_path", Opt_journal_path), 1763 fsparam_flag ("journal_checksum", Opt_journal_checksum), 1764 fsparam_flag ("nojournal_checksum", Opt_nojournal_checksum), 1765 fsparam_flag ("journal_async_commit",Opt_journal_async_commit), 1766 fsparam_flag ("abort", Opt_abort), 1767 fsparam_enum ("data", Opt_data, ext4_param_data), 1768 fsparam_enum ("data_err", Opt_data_err, 1769 ext4_param_data_err), 1770 fsparam_string_empty 1771 ("usrjquota", Opt_usrjquota), 1772 fsparam_string_empty 1773 ("grpjquota", Opt_grpjquota), 1774 fsparam_enum ("jqfmt", Opt_jqfmt, ext4_param_jqfmt), 1775 fsparam_flag ("grpquota", Opt_grpquota), 1776 fsparam_flag ("quota", Opt_quota), 1777 fsparam_flag ("noquota", Opt_noquota), 1778 fsparam_flag ("usrquota", Opt_usrquota), 1779 fsparam_flag ("prjquota", Opt_prjquota), 1780 fsparam_flag ("barrier", Opt_barrier), 1781 fsparam_u32 ("barrier", Opt_barrier), 1782 fsparam_flag ("nobarrier", Opt_nobarrier), 1783 fsparam_flag ("i_version", Opt_removed), 1784 fsparam_flag ("dax", Opt_dax), 1785 fsparam_enum ("dax", Opt_dax_type, ext4_param_dax), 1786 fsparam_u32 ("stripe", Opt_stripe), 1787 fsparam_flag ("delalloc", Opt_delalloc), 1788 fsparam_flag ("nodelalloc", Opt_nodelalloc), 1789 fsparam_flag ("warn_on_error", Opt_warn_on_error), 1790 fsparam_flag ("nowarn_on_error", Opt_nowarn_on_error), 1791 fsparam_u32 ("debug_want_extra_isize", 1792 Opt_debug_want_extra_isize), 1793 fsparam_flag ("mblk_io_submit", Opt_removed), 1794 fsparam_flag ("nomblk_io_submit", Opt_removed), 1795 fsparam_flag ("block_validity", Opt_block_validity), 1796 fsparam_flag ("noblock_validity", Opt_noblock_validity), 1797 fsparam_u32 ("inode_readahead_blks", 1798 Opt_inode_readahead_blks), 1799 fsparam_u32 ("journal_ioprio", Opt_journal_ioprio), 1800 fsparam_u32 ("auto_da_alloc", Opt_auto_da_alloc), 1801 fsparam_flag ("auto_da_alloc", Opt_auto_da_alloc), 1802 fsparam_flag ("noauto_da_alloc", Opt_noauto_da_alloc), 1803 fsparam_flag ("dioread_nolock", Opt_dioread_nolock), 1804 fsparam_flag ("nodioread_nolock", Opt_dioread_lock), 1805 fsparam_flag ("dioread_lock", Opt_dioread_lock), 1806 fsparam_flag ("discard", Opt_discard), 1807 fsparam_flag ("nodiscard", Opt_nodiscard), 1808 fsparam_u32 ("init_itable", Opt_init_itable), 1809 fsparam_flag ("init_itable", Opt_init_itable), 1810 fsparam_flag ("noinit_itable", Opt_noinit_itable), 1811 #ifdef CONFIG_EXT4_DEBUG 1812 fsparam_flag ("fc_debug_force", Opt_fc_debug_force), 1813 fsparam_u32 ("fc_debug_max_replay", Opt_fc_debug_max_replay), 1814 #endif 1815 fsparam_u32 ("max_dir_size_kb", Opt_max_dir_size_kb), 1816 fsparam_flag ("test_dummy_encryption", 1817 Opt_test_dummy_encryption), 1818 fsparam_string ("test_dummy_encryption", 1819 Opt_test_dummy_encryption), 1820 fsparam_flag ("inlinecrypt", Opt_inlinecrypt), 1821 fsparam_flag ("nombcache", Opt_nombcache), 1822 fsparam_flag ("no_mbcache", Opt_nombcache), /* for backward compatibility */ 1823 fsparam_flag ("prefetch_block_bitmaps", 1824 Opt_removed), 1825 fsparam_flag ("no_prefetch_block_bitmaps", 1826 Opt_no_prefetch_block_bitmaps), 1827 fsparam_s32 ("mb_optimize_scan", Opt_mb_optimize_scan), 1828 fsparam_string ("check", Opt_removed), /* mount option from ext2/3 */ 1829 fsparam_flag ("nocheck", Opt_removed), /* mount option from ext2/3 */ 1830 fsparam_flag ("reservation", Opt_removed), /* mount option from ext2/3 */ 1831 fsparam_flag ("noreservation", Opt_removed), /* mount option from ext2/3 */ 1832 fsparam_u32 ("journal", Opt_removed), /* mount option from ext2/3 */ 1833 {} 1834 }; 1835 1836 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1837 1838 #define MOPT_SET 0x0001 1839 #define MOPT_CLEAR 0x0002 1840 #define MOPT_NOSUPPORT 0x0004 1841 #define MOPT_EXPLICIT 0x0008 1842 #ifdef CONFIG_QUOTA 1843 #define MOPT_Q 0 1844 #define MOPT_QFMT 0x0010 1845 #else 1846 #define MOPT_Q MOPT_NOSUPPORT 1847 #define MOPT_QFMT MOPT_NOSUPPORT 1848 #endif 1849 #define MOPT_NO_EXT2 0x0020 1850 #define MOPT_NO_EXT3 0x0040 1851 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1852 #define MOPT_SKIP 0x0080 1853 #define MOPT_2 0x0100 1854 1855 static const struct mount_opts { 1856 int token; 1857 int mount_opt; 1858 int flags; 1859 } ext4_mount_opts[] = { 1860 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1861 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1862 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1863 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1864 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1865 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1866 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1867 MOPT_EXT4_ONLY | MOPT_SET}, 1868 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1869 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1870 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1871 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1872 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1873 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1874 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1875 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1876 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET}, 1877 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR}, 1878 {Opt_commit, 0, MOPT_NO_EXT2}, 1879 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1880 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1881 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1882 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1883 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1884 EXT4_MOUNT_JOURNAL_CHECKSUM), 1885 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1886 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1887 {Opt_data_err, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_NO_EXT2}, 1888 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1889 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1890 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1891 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1892 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1893 {Opt_dax_type, 0, MOPT_EXT4_ONLY}, 1894 {Opt_journal_dev, 0, MOPT_NO_EXT2}, 1895 {Opt_journal_path, 0, MOPT_NO_EXT2}, 1896 {Opt_journal_ioprio, 0, MOPT_NO_EXT2}, 1897 {Opt_data, 0, MOPT_NO_EXT2}, 1898 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1899 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1900 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1901 #else 1902 {Opt_acl, 0, MOPT_NOSUPPORT}, 1903 #endif 1904 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1905 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1906 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1907 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1908 MOPT_SET | MOPT_Q}, 1909 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1910 MOPT_SET | MOPT_Q}, 1911 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA, 1912 MOPT_SET | MOPT_Q}, 1913 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1914 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA), 1915 MOPT_CLEAR | MOPT_Q}, 1916 {Opt_usrjquota, 0, MOPT_Q}, 1917 {Opt_grpjquota, 0, MOPT_Q}, 1918 {Opt_jqfmt, 0, MOPT_QFMT}, 1919 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET}, 1920 {Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS, 1921 MOPT_SET}, 1922 #ifdef CONFIG_EXT4_DEBUG 1923 {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT, 1924 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY}, 1925 #endif 1926 {Opt_abort, EXT4_MOUNT2_ABORT, MOPT_SET | MOPT_2}, 1927 {Opt_err, 0, 0} 1928 }; 1929 1930 #if IS_ENABLED(CONFIG_UNICODE) 1931 static const struct ext4_sb_encodings { 1932 __u16 magic; 1933 char *name; 1934 unsigned int version; 1935 } ext4_sb_encoding_map[] = { 1936 {EXT4_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)}, 1937 }; 1938 1939 static const struct ext4_sb_encodings * 1940 ext4_sb_read_encoding(const struct ext4_super_block *es) 1941 { 1942 __u16 magic = le16_to_cpu(es->s_encoding); 1943 int i; 1944 1945 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++) 1946 if (magic == ext4_sb_encoding_map[i].magic) 1947 return &ext4_sb_encoding_map[i]; 1948 1949 return NULL; 1950 } 1951 #endif 1952 1953 #define EXT4_SPEC_JQUOTA (1 << 0) 1954 #define EXT4_SPEC_JQFMT (1 << 1) 1955 #define EXT4_SPEC_DATAJ (1 << 2) 1956 #define EXT4_SPEC_SB_BLOCK (1 << 3) 1957 #define EXT4_SPEC_JOURNAL_DEV (1 << 4) 1958 #define EXT4_SPEC_JOURNAL_IOPRIO (1 << 5) 1959 #define EXT4_SPEC_s_want_extra_isize (1 << 7) 1960 #define EXT4_SPEC_s_max_batch_time (1 << 8) 1961 #define EXT4_SPEC_s_min_batch_time (1 << 9) 1962 #define EXT4_SPEC_s_inode_readahead_blks (1 << 10) 1963 #define EXT4_SPEC_s_li_wait_mult (1 << 11) 1964 #define EXT4_SPEC_s_max_dir_size_kb (1 << 12) 1965 #define EXT4_SPEC_s_stripe (1 << 13) 1966 #define EXT4_SPEC_s_resuid (1 << 14) 1967 #define EXT4_SPEC_s_resgid (1 << 15) 1968 #define EXT4_SPEC_s_commit_interval (1 << 16) 1969 #define EXT4_SPEC_s_fc_debug_max_replay (1 << 17) 1970 #define EXT4_SPEC_s_sb_block (1 << 18) 1971 #define EXT4_SPEC_mb_optimize_scan (1 << 19) 1972 1973 struct ext4_fs_context { 1974 char *s_qf_names[EXT4_MAXQUOTAS]; 1975 struct fscrypt_dummy_policy dummy_enc_policy; 1976 int s_jquota_fmt; /* Format of quota to use */ 1977 #ifdef CONFIG_EXT4_DEBUG 1978 int s_fc_debug_max_replay; 1979 #endif 1980 unsigned short qname_spec; 1981 unsigned long vals_s_flags; /* Bits to set in s_flags */ 1982 unsigned long mask_s_flags; /* Bits changed in s_flags */ 1983 unsigned long journal_devnum; 1984 unsigned long s_commit_interval; 1985 unsigned long s_stripe; 1986 unsigned int s_inode_readahead_blks; 1987 unsigned int s_want_extra_isize; 1988 unsigned int s_li_wait_mult; 1989 unsigned int s_max_dir_size_kb; 1990 unsigned int journal_ioprio; 1991 unsigned int vals_s_mount_opt; 1992 unsigned int mask_s_mount_opt; 1993 unsigned int vals_s_mount_opt2; 1994 unsigned int mask_s_mount_opt2; 1995 unsigned int opt_flags; /* MOPT flags */ 1996 unsigned int spec; 1997 u32 s_max_batch_time; 1998 u32 s_min_batch_time; 1999 kuid_t s_resuid; 2000 kgid_t s_resgid; 2001 ext4_fsblk_t s_sb_block; 2002 }; 2003 2004 static void ext4_fc_free(struct fs_context *fc) 2005 { 2006 struct ext4_fs_context *ctx = fc->fs_private; 2007 int i; 2008 2009 if (!ctx) 2010 return; 2011 2012 for (i = 0; i < EXT4_MAXQUOTAS; i++) 2013 kfree(ctx->s_qf_names[i]); 2014 2015 fscrypt_free_dummy_policy(&ctx->dummy_enc_policy); 2016 kfree(ctx); 2017 } 2018 2019 int ext4_init_fs_context(struct fs_context *fc) 2020 { 2021 struct ext4_fs_context *ctx; 2022 2023 ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL); 2024 if (!ctx) 2025 return -ENOMEM; 2026 2027 fc->fs_private = ctx; 2028 fc->ops = &ext4_context_ops; 2029 2030 return 0; 2031 } 2032 2033 #ifdef CONFIG_QUOTA 2034 /* 2035 * Note the name of the specified quota file. 2036 */ 2037 static int note_qf_name(struct fs_context *fc, int qtype, 2038 struct fs_parameter *param) 2039 { 2040 struct ext4_fs_context *ctx = fc->fs_private; 2041 char *qname; 2042 2043 if (param->size < 1) { 2044 ext4_msg(NULL, KERN_ERR, "Missing quota name"); 2045 return -EINVAL; 2046 } 2047 if (strchr(param->string, '/')) { 2048 ext4_msg(NULL, KERN_ERR, 2049 "quotafile must be on filesystem root"); 2050 return -EINVAL; 2051 } 2052 if (ctx->s_qf_names[qtype]) { 2053 if (strcmp(ctx->s_qf_names[qtype], param->string) != 0) { 2054 ext4_msg(NULL, KERN_ERR, 2055 "%s quota file already specified", 2056 QTYPE2NAME(qtype)); 2057 return -EINVAL; 2058 } 2059 return 0; 2060 } 2061 2062 qname = kmemdup_nul(param->string, param->size, GFP_KERNEL); 2063 if (!qname) { 2064 ext4_msg(NULL, KERN_ERR, 2065 "Not enough memory for storing quotafile name"); 2066 return -ENOMEM; 2067 } 2068 ctx->s_qf_names[qtype] = qname; 2069 ctx->qname_spec |= 1 << qtype; 2070 ctx->spec |= EXT4_SPEC_JQUOTA; 2071 return 0; 2072 } 2073 2074 /* 2075 * Clear the name of the specified quota file. 2076 */ 2077 static int unnote_qf_name(struct fs_context *fc, int qtype) 2078 { 2079 struct ext4_fs_context *ctx = fc->fs_private; 2080 2081 if (ctx->s_qf_names[qtype]) 2082 kfree(ctx->s_qf_names[qtype]); 2083 2084 ctx->s_qf_names[qtype] = NULL; 2085 ctx->qname_spec |= 1 << qtype; 2086 ctx->spec |= EXT4_SPEC_JQUOTA; 2087 return 0; 2088 } 2089 #endif 2090 2091 static int ext4_parse_test_dummy_encryption(const struct fs_parameter *param, 2092 struct ext4_fs_context *ctx) 2093 { 2094 int err; 2095 2096 if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) { 2097 ext4_msg(NULL, KERN_WARNING, 2098 "test_dummy_encryption option not supported"); 2099 return -EINVAL; 2100 } 2101 err = fscrypt_parse_test_dummy_encryption(param, 2102 &ctx->dummy_enc_policy); 2103 if (err == -EINVAL) { 2104 ext4_msg(NULL, KERN_WARNING, 2105 "Value of option \"%s\" is unrecognized", param->key); 2106 } else if (err == -EEXIST) { 2107 ext4_msg(NULL, KERN_WARNING, 2108 "Conflicting test_dummy_encryption options"); 2109 return -EINVAL; 2110 } 2111 return err; 2112 } 2113 2114 #define EXT4_SET_CTX(name) \ 2115 static inline void ctx_set_##name(struct ext4_fs_context *ctx, \ 2116 unsigned long flag) \ 2117 { \ 2118 ctx->mask_s_##name |= flag; \ 2119 ctx->vals_s_##name |= flag; \ 2120 } 2121 2122 #define EXT4_CLEAR_CTX(name) \ 2123 static inline void ctx_clear_##name(struct ext4_fs_context *ctx, \ 2124 unsigned long flag) \ 2125 { \ 2126 ctx->mask_s_##name |= flag; \ 2127 ctx->vals_s_##name &= ~flag; \ 2128 } 2129 2130 #define EXT4_TEST_CTX(name) \ 2131 static inline unsigned long \ 2132 ctx_test_##name(struct ext4_fs_context *ctx, unsigned long flag) \ 2133 { \ 2134 return (ctx->vals_s_##name & flag); \ 2135 } 2136 2137 EXT4_SET_CTX(flags); /* set only */ 2138 EXT4_SET_CTX(mount_opt); 2139 EXT4_CLEAR_CTX(mount_opt); 2140 EXT4_TEST_CTX(mount_opt); 2141 EXT4_SET_CTX(mount_opt2); 2142 EXT4_CLEAR_CTX(mount_opt2); 2143 EXT4_TEST_CTX(mount_opt2); 2144 2145 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param) 2146 { 2147 struct ext4_fs_context *ctx = fc->fs_private; 2148 struct fs_parse_result result; 2149 const struct mount_opts *m; 2150 int is_remount; 2151 kuid_t uid; 2152 kgid_t gid; 2153 int token; 2154 2155 token = fs_parse(fc, ext4_param_specs, param, &result); 2156 if (token < 0) 2157 return token; 2158 is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE; 2159 2160 for (m = ext4_mount_opts; m->token != Opt_err; m++) 2161 if (token == m->token) 2162 break; 2163 2164 ctx->opt_flags |= m->flags; 2165 2166 if (m->flags & MOPT_EXPLICIT) { 2167 if (m->mount_opt & EXT4_MOUNT_DELALLOC) { 2168 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_EXPLICIT_DELALLOC); 2169 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { 2170 ctx_set_mount_opt2(ctx, 2171 EXT4_MOUNT2_EXPLICIT_JOURNAL_CHECKSUM); 2172 } else 2173 return -EINVAL; 2174 } 2175 2176 if (m->flags & MOPT_NOSUPPORT) { 2177 ext4_msg(NULL, KERN_ERR, "%s option not supported", 2178 param->key); 2179 return 0; 2180 } 2181 2182 switch (token) { 2183 #ifdef CONFIG_QUOTA 2184 case Opt_usrjquota: 2185 if (!*param->string) 2186 return unnote_qf_name(fc, USRQUOTA); 2187 else 2188 return note_qf_name(fc, USRQUOTA, param); 2189 case Opt_grpjquota: 2190 if (!*param->string) 2191 return unnote_qf_name(fc, GRPQUOTA); 2192 else 2193 return note_qf_name(fc, GRPQUOTA, param); 2194 #endif 2195 case Opt_sb: 2196 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) { 2197 ext4_msg(NULL, KERN_WARNING, 2198 "Ignoring %s option on remount", param->key); 2199 } else { 2200 ctx->s_sb_block = result.uint_32; 2201 ctx->spec |= EXT4_SPEC_s_sb_block; 2202 } 2203 return 0; 2204 case Opt_removed: 2205 ext4_msg(NULL, KERN_WARNING, "Ignoring removed %s option", 2206 param->key); 2207 return 0; 2208 case Opt_inlinecrypt: 2209 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT 2210 ctx_set_flags(ctx, SB_INLINECRYPT); 2211 #else 2212 ext4_msg(NULL, KERN_ERR, "inline encryption not supported"); 2213 #endif 2214 return 0; 2215 case Opt_errors: 2216 ctx_clear_mount_opt(ctx, EXT4_MOUNT_ERRORS_MASK); 2217 ctx_set_mount_opt(ctx, result.uint_32); 2218 return 0; 2219 #ifdef CONFIG_QUOTA 2220 case Opt_jqfmt: 2221 ctx->s_jquota_fmt = result.uint_32; 2222 ctx->spec |= EXT4_SPEC_JQFMT; 2223 return 0; 2224 #endif 2225 case Opt_data: 2226 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS); 2227 ctx_set_mount_opt(ctx, result.uint_32); 2228 ctx->spec |= EXT4_SPEC_DATAJ; 2229 return 0; 2230 case Opt_commit: 2231 if (result.uint_32 == 0) 2232 result.uint_32 = JBD2_DEFAULT_MAX_COMMIT_AGE; 2233 else if (result.uint_32 > INT_MAX / HZ) { 2234 ext4_msg(NULL, KERN_ERR, 2235 "Invalid commit interval %d, " 2236 "must be smaller than %d", 2237 result.uint_32, INT_MAX / HZ); 2238 return -EINVAL; 2239 } 2240 ctx->s_commit_interval = HZ * result.uint_32; 2241 ctx->spec |= EXT4_SPEC_s_commit_interval; 2242 return 0; 2243 case Opt_debug_want_extra_isize: 2244 if ((result.uint_32 & 1) || (result.uint_32 < 4)) { 2245 ext4_msg(NULL, KERN_ERR, 2246 "Invalid want_extra_isize %d", result.uint_32); 2247 return -EINVAL; 2248 } 2249 ctx->s_want_extra_isize = result.uint_32; 2250 ctx->spec |= EXT4_SPEC_s_want_extra_isize; 2251 return 0; 2252 case Opt_max_batch_time: 2253 ctx->s_max_batch_time = result.uint_32; 2254 ctx->spec |= EXT4_SPEC_s_max_batch_time; 2255 return 0; 2256 case Opt_min_batch_time: 2257 ctx->s_min_batch_time = result.uint_32; 2258 ctx->spec |= EXT4_SPEC_s_min_batch_time; 2259 return 0; 2260 case Opt_inode_readahead_blks: 2261 if (result.uint_32 && 2262 (result.uint_32 > (1 << 30) || 2263 !is_power_of_2(result.uint_32))) { 2264 ext4_msg(NULL, KERN_ERR, 2265 "EXT4-fs: inode_readahead_blks must be " 2266 "0 or a power of 2 smaller than 2^31"); 2267 return -EINVAL; 2268 } 2269 ctx->s_inode_readahead_blks = result.uint_32; 2270 ctx->spec |= EXT4_SPEC_s_inode_readahead_blks; 2271 return 0; 2272 case Opt_init_itable: 2273 ctx_set_mount_opt(ctx, EXT4_MOUNT_INIT_INODE_TABLE); 2274 ctx->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 2275 if (param->type == fs_value_is_string) 2276 ctx->s_li_wait_mult = result.uint_32; 2277 ctx->spec |= EXT4_SPEC_s_li_wait_mult; 2278 return 0; 2279 case Opt_max_dir_size_kb: 2280 ctx->s_max_dir_size_kb = result.uint_32; 2281 ctx->spec |= EXT4_SPEC_s_max_dir_size_kb; 2282 return 0; 2283 #ifdef CONFIG_EXT4_DEBUG 2284 case Opt_fc_debug_max_replay: 2285 ctx->s_fc_debug_max_replay = result.uint_32; 2286 ctx->spec |= EXT4_SPEC_s_fc_debug_max_replay; 2287 return 0; 2288 #endif 2289 case Opt_stripe: 2290 ctx->s_stripe = result.uint_32; 2291 ctx->spec |= EXT4_SPEC_s_stripe; 2292 return 0; 2293 case Opt_resuid: 2294 uid = make_kuid(current_user_ns(), result.uint_32); 2295 if (!uid_valid(uid)) { 2296 ext4_msg(NULL, KERN_ERR, "Invalid uid value %d", 2297 result.uint_32); 2298 return -EINVAL; 2299 } 2300 ctx->s_resuid = uid; 2301 ctx->spec |= EXT4_SPEC_s_resuid; 2302 return 0; 2303 case Opt_resgid: 2304 gid = make_kgid(current_user_ns(), result.uint_32); 2305 if (!gid_valid(gid)) { 2306 ext4_msg(NULL, KERN_ERR, "Invalid gid value %d", 2307 result.uint_32); 2308 return -EINVAL; 2309 } 2310 ctx->s_resgid = gid; 2311 ctx->spec |= EXT4_SPEC_s_resgid; 2312 return 0; 2313 case Opt_journal_dev: 2314 if (is_remount) { 2315 ext4_msg(NULL, KERN_ERR, 2316 "Cannot specify journal on remount"); 2317 return -EINVAL; 2318 } 2319 ctx->journal_devnum = result.uint_32; 2320 ctx->spec |= EXT4_SPEC_JOURNAL_DEV; 2321 return 0; 2322 case Opt_journal_path: 2323 { 2324 struct inode *journal_inode; 2325 struct path path; 2326 int error; 2327 2328 if (is_remount) { 2329 ext4_msg(NULL, KERN_ERR, 2330 "Cannot specify journal on remount"); 2331 return -EINVAL; 2332 } 2333 2334 error = fs_lookup_param(fc, param, 1, LOOKUP_FOLLOW, &path); 2335 if (error) { 2336 ext4_msg(NULL, KERN_ERR, "error: could not find " 2337 "journal device path"); 2338 return -EINVAL; 2339 } 2340 2341 journal_inode = d_inode(path.dentry); 2342 ctx->journal_devnum = new_encode_dev(journal_inode->i_rdev); 2343 ctx->spec |= EXT4_SPEC_JOURNAL_DEV; 2344 path_put(&path); 2345 return 0; 2346 } 2347 case Opt_journal_ioprio: 2348 if (result.uint_32 > 7) { 2349 ext4_msg(NULL, KERN_ERR, "Invalid journal IO priority" 2350 " (must be 0-7)"); 2351 return -EINVAL; 2352 } 2353 ctx->journal_ioprio = 2354 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, result.uint_32); 2355 ctx->spec |= EXT4_SPEC_JOURNAL_IOPRIO; 2356 return 0; 2357 case Opt_test_dummy_encryption: 2358 return ext4_parse_test_dummy_encryption(param, ctx); 2359 case Opt_dax: 2360 case Opt_dax_type: 2361 #ifdef CONFIG_FS_DAX 2362 { 2363 int type = (token == Opt_dax) ? 2364 Opt_dax : result.uint_32; 2365 2366 switch (type) { 2367 case Opt_dax: 2368 case Opt_dax_always: 2369 ctx_set_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS); 2370 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER); 2371 break; 2372 case Opt_dax_never: 2373 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER); 2374 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS); 2375 break; 2376 case Opt_dax_inode: 2377 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS); 2378 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER); 2379 /* Strictly for printing options */ 2380 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE); 2381 break; 2382 } 2383 return 0; 2384 } 2385 #else 2386 ext4_msg(NULL, KERN_INFO, "dax option not supported"); 2387 return -EINVAL; 2388 #endif 2389 case Opt_data_err: 2390 if (result.uint_32 == Opt_data_err_abort) 2391 ctx_set_mount_opt(ctx, m->mount_opt); 2392 else if (result.uint_32 == Opt_data_err_ignore) 2393 ctx_clear_mount_opt(ctx, m->mount_opt); 2394 return 0; 2395 case Opt_mb_optimize_scan: 2396 if (result.int_32 == 1) { 2397 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN); 2398 ctx->spec |= EXT4_SPEC_mb_optimize_scan; 2399 } else if (result.int_32 == 0) { 2400 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN); 2401 ctx->spec |= EXT4_SPEC_mb_optimize_scan; 2402 } else { 2403 ext4_msg(NULL, KERN_WARNING, 2404 "mb_optimize_scan should be set to 0 or 1."); 2405 return -EINVAL; 2406 } 2407 return 0; 2408 } 2409 2410 /* 2411 * At this point we should only be getting options requiring MOPT_SET, 2412 * or MOPT_CLEAR. Anything else is a bug 2413 */ 2414 if (m->token == Opt_err) { 2415 ext4_msg(NULL, KERN_WARNING, "buggy handling of option %s", 2416 param->key); 2417 WARN_ON(1); 2418 return -EINVAL; 2419 } 2420 2421 else { 2422 unsigned int set = 0; 2423 2424 if ((param->type == fs_value_is_flag) || 2425 result.uint_32 > 0) 2426 set = 1; 2427 2428 if (m->flags & MOPT_CLEAR) 2429 set = !set; 2430 else if (unlikely(!(m->flags & MOPT_SET))) { 2431 ext4_msg(NULL, KERN_WARNING, 2432 "buggy handling of option %s", 2433 param->key); 2434 WARN_ON(1); 2435 return -EINVAL; 2436 } 2437 if (m->flags & MOPT_2) { 2438 if (set != 0) 2439 ctx_set_mount_opt2(ctx, m->mount_opt); 2440 else 2441 ctx_clear_mount_opt2(ctx, m->mount_opt); 2442 } else { 2443 if (set != 0) 2444 ctx_set_mount_opt(ctx, m->mount_opt); 2445 else 2446 ctx_clear_mount_opt(ctx, m->mount_opt); 2447 } 2448 } 2449 2450 return 0; 2451 } 2452 2453 static int parse_options(struct fs_context *fc, char *options) 2454 { 2455 struct fs_parameter param; 2456 int ret; 2457 char *key; 2458 2459 if (!options) 2460 return 0; 2461 2462 while ((key = strsep(&options, ",")) != NULL) { 2463 if (*key) { 2464 size_t v_len = 0; 2465 char *value = strchr(key, '='); 2466 2467 param.type = fs_value_is_flag; 2468 param.string = NULL; 2469 2470 if (value) { 2471 if (value == key) 2472 continue; 2473 2474 *value++ = 0; 2475 v_len = strlen(value); 2476 param.string = kmemdup_nul(value, v_len, 2477 GFP_KERNEL); 2478 if (!param.string) 2479 return -ENOMEM; 2480 param.type = fs_value_is_string; 2481 } 2482 2483 param.key = key; 2484 param.size = v_len; 2485 2486 ret = ext4_parse_param(fc, ¶m); 2487 if (param.string) 2488 kfree(param.string); 2489 if (ret < 0) 2490 return ret; 2491 } 2492 } 2493 2494 ret = ext4_validate_options(fc); 2495 if (ret < 0) 2496 return ret; 2497 2498 return 0; 2499 } 2500 2501 static int parse_apply_sb_mount_options(struct super_block *sb, 2502 struct ext4_fs_context *m_ctx) 2503 { 2504 struct ext4_sb_info *sbi = EXT4_SB(sb); 2505 char *s_mount_opts = NULL; 2506 struct ext4_fs_context *s_ctx = NULL; 2507 struct fs_context *fc = NULL; 2508 int ret = -ENOMEM; 2509 2510 if (!sbi->s_es->s_mount_opts[0]) 2511 return 0; 2512 2513 s_mount_opts = kstrndup(sbi->s_es->s_mount_opts, 2514 sizeof(sbi->s_es->s_mount_opts), 2515 GFP_KERNEL); 2516 if (!s_mount_opts) 2517 return ret; 2518 2519 fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL); 2520 if (!fc) 2521 goto out_free; 2522 2523 s_ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL); 2524 if (!s_ctx) 2525 goto out_free; 2526 2527 fc->fs_private = s_ctx; 2528 fc->s_fs_info = sbi; 2529 2530 ret = parse_options(fc, s_mount_opts); 2531 if (ret < 0) 2532 goto parse_failed; 2533 2534 ret = ext4_check_opt_consistency(fc, sb); 2535 if (ret < 0) { 2536 parse_failed: 2537 ext4_msg(sb, KERN_WARNING, 2538 "failed to parse options in superblock: %s", 2539 s_mount_opts); 2540 ret = 0; 2541 goto out_free; 2542 } 2543 2544 if (s_ctx->spec & EXT4_SPEC_JOURNAL_DEV) 2545 m_ctx->journal_devnum = s_ctx->journal_devnum; 2546 if (s_ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO) 2547 m_ctx->journal_ioprio = s_ctx->journal_ioprio; 2548 2549 ext4_apply_options(fc, sb); 2550 ret = 0; 2551 2552 out_free: 2553 if (fc) { 2554 ext4_fc_free(fc); 2555 kfree(fc); 2556 } 2557 kfree(s_mount_opts); 2558 return ret; 2559 } 2560 2561 static void ext4_apply_quota_options(struct fs_context *fc, 2562 struct super_block *sb) 2563 { 2564 #ifdef CONFIG_QUOTA 2565 bool quota_feature = ext4_has_feature_quota(sb); 2566 struct ext4_fs_context *ctx = fc->fs_private; 2567 struct ext4_sb_info *sbi = EXT4_SB(sb); 2568 char *qname; 2569 int i; 2570 2571 if (quota_feature) 2572 return; 2573 2574 if (ctx->spec & EXT4_SPEC_JQUOTA) { 2575 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2576 if (!(ctx->qname_spec & (1 << i))) 2577 continue; 2578 2579 qname = ctx->s_qf_names[i]; /* May be NULL */ 2580 if (qname) 2581 set_opt(sb, QUOTA); 2582 ctx->s_qf_names[i] = NULL; 2583 qname = rcu_replace_pointer(sbi->s_qf_names[i], qname, 2584 lockdep_is_held(&sb->s_umount)); 2585 if (qname) 2586 kfree_rcu_mightsleep(qname); 2587 } 2588 } 2589 2590 if (ctx->spec & EXT4_SPEC_JQFMT) 2591 sbi->s_jquota_fmt = ctx->s_jquota_fmt; 2592 #endif 2593 } 2594 2595 /* 2596 * Check quota settings consistency. 2597 */ 2598 static int ext4_check_quota_consistency(struct fs_context *fc, 2599 struct super_block *sb) 2600 { 2601 #ifdef CONFIG_QUOTA 2602 struct ext4_fs_context *ctx = fc->fs_private; 2603 struct ext4_sb_info *sbi = EXT4_SB(sb); 2604 bool quota_feature = ext4_has_feature_quota(sb); 2605 bool quota_loaded = sb_any_quota_loaded(sb); 2606 bool usr_qf_name, grp_qf_name, usrquota, grpquota; 2607 int quota_flags, i; 2608 2609 /* 2610 * We do the test below only for project quotas. 'usrquota' and 2611 * 'grpquota' mount options are allowed even without quota feature 2612 * to support legacy quotas in quota files. 2613 */ 2614 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_PRJQUOTA) && 2615 !ext4_has_feature_project(sb)) { 2616 ext4_msg(NULL, KERN_ERR, "Project quota feature not enabled. " 2617 "Cannot enable project quota enforcement."); 2618 return -EINVAL; 2619 } 2620 2621 quota_flags = EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 2622 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA; 2623 if (quota_loaded && 2624 ctx->mask_s_mount_opt & quota_flags && 2625 !ctx_test_mount_opt(ctx, quota_flags)) 2626 goto err_quota_change; 2627 2628 if (ctx->spec & EXT4_SPEC_JQUOTA) { 2629 2630 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2631 if (!(ctx->qname_spec & (1 << i))) 2632 continue; 2633 2634 if (quota_loaded && 2635 !!sbi->s_qf_names[i] != !!ctx->s_qf_names[i]) 2636 goto err_jquota_change; 2637 2638 if (sbi->s_qf_names[i] && ctx->s_qf_names[i] && 2639 strcmp(get_qf_name(sb, sbi, i), 2640 ctx->s_qf_names[i]) != 0) 2641 goto err_jquota_specified; 2642 } 2643 2644 if (quota_feature) { 2645 ext4_msg(NULL, KERN_INFO, 2646 "Journaled quota options ignored when " 2647 "QUOTA feature is enabled"); 2648 return 0; 2649 } 2650 } 2651 2652 if (ctx->spec & EXT4_SPEC_JQFMT) { 2653 if (sbi->s_jquota_fmt != ctx->s_jquota_fmt && quota_loaded) 2654 goto err_jquota_change; 2655 if (quota_feature) { 2656 ext4_msg(NULL, KERN_INFO, "Quota format mount options " 2657 "ignored when QUOTA feature is enabled"); 2658 return 0; 2659 } 2660 } 2661 2662 /* Make sure we don't mix old and new quota format */ 2663 usr_qf_name = (get_qf_name(sb, sbi, USRQUOTA) || 2664 ctx->s_qf_names[USRQUOTA]); 2665 grp_qf_name = (get_qf_name(sb, sbi, GRPQUOTA) || 2666 ctx->s_qf_names[GRPQUOTA]); 2667 2668 usrquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) || 2669 test_opt(sb, USRQUOTA)); 2670 2671 grpquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) || 2672 test_opt(sb, GRPQUOTA)); 2673 2674 if (usr_qf_name) { 2675 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA); 2676 usrquota = false; 2677 } 2678 if (grp_qf_name) { 2679 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA); 2680 grpquota = false; 2681 } 2682 2683 if (usr_qf_name || grp_qf_name) { 2684 if (usrquota || grpquota) { 2685 ext4_msg(NULL, KERN_ERR, "old and new quota " 2686 "format mixing"); 2687 return -EINVAL; 2688 } 2689 2690 if (!(ctx->spec & EXT4_SPEC_JQFMT || sbi->s_jquota_fmt)) { 2691 ext4_msg(NULL, KERN_ERR, "journaled quota format " 2692 "not specified"); 2693 return -EINVAL; 2694 } 2695 } 2696 2697 return 0; 2698 2699 err_quota_change: 2700 ext4_msg(NULL, KERN_ERR, 2701 "Cannot change quota options when quota turned on"); 2702 return -EINVAL; 2703 err_jquota_change: 2704 ext4_msg(NULL, KERN_ERR, "Cannot change journaled quota " 2705 "options when quota turned on"); 2706 return -EINVAL; 2707 err_jquota_specified: 2708 ext4_msg(NULL, KERN_ERR, "%s quota file already specified", 2709 QTYPE2NAME(i)); 2710 return -EINVAL; 2711 #else 2712 return 0; 2713 #endif 2714 } 2715 2716 static int ext4_check_test_dummy_encryption(const struct fs_context *fc, 2717 struct super_block *sb) 2718 { 2719 const struct ext4_fs_context *ctx = fc->fs_private; 2720 const struct ext4_sb_info *sbi = EXT4_SB(sb); 2721 2722 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy)) 2723 return 0; 2724 2725 if (!ext4_has_feature_encrypt(sb)) { 2726 ext4_msg(NULL, KERN_WARNING, 2727 "test_dummy_encryption requires encrypt feature"); 2728 return -EINVAL; 2729 } 2730 /* 2731 * This mount option is just for testing, and it's not worthwhile to 2732 * implement the extra complexity (e.g. RCU protection) that would be 2733 * needed to allow it to be set or changed during remount. We do allow 2734 * it to be specified during remount, but only if there is no change. 2735 */ 2736 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) { 2737 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy, 2738 &ctx->dummy_enc_policy)) 2739 return 0; 2740 ext4_msg(NULL, KERN_WARNING, 2741 "Can't set or change test_dummy_encryption on remount"); 2742 return -EINVAL; 2743 } 2744 /* Also make sure s_mount_opts didn't contain a conflicting value. */ 2745 if (fscrypt_is_dummy_policy_set(&sbi->s_dummy_enc_policy)) { 2746 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy, 2747 &ctx->dummy_enc_policy)) 2748 return 0; 2749 ext4_msg(NULL, KERN_WARNING, 2750 "Conflicting test_dummy_encryption options"); 2751 return -EINVAL; 2752 } 2753 return 0; 2754 } 2755 2756 static void ext4_apply_test_dummy_encryption(struct ext4_fs_context *ctx, 2757 struct super_block *sb) 2758 { 2759 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy) || 2760 /* if already set, it was already verified to be the same */ 2761 fscrypt_is_dummy_policy_set(&EXT4_SB(sb)->s_dummy_enc_policy)) 2762 return; 2763 EXT4_SB(sb)->s_dummy_enc_policy = ctx->dummy_enc_policy; 2764 memset(&ctx->dummy_enc_policy, 0, sizeof(ctx->dummy_enc_policy)); 2765 ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled"); 2766 } 2767 2768 static int ext4_check_opt_consistency(struct fs_context *fc, 2769 struct super_block *sb) 2770 { 2771 struct ext4_fs_context *ctx = fc->fs_private; 2772 struct ext4_sb_info *sbi = fc->s_fs_info; 2773 int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE; 2774 int err; 2775 2776 if ((ctx->opt_flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 2777 ext4_msg(NULL, KERN_ERR, 2778 "Mount option(s) incompatible with ext2"); 2779 return -EINVAL; 2780 } 2781 if ((ctx->opt_flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 2782 ext4_msg(NULL, KERN_ERR, 2783 "Mount option(s) incompatible with ext3"); 2784 return -EINVAL; 2785 } 2786 2787 if (ctx->s_want_extra_isize > 2788 (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE)) { 2789 ext4_msg(NULL, KERN_ERR, 2790 "Invalid want_extra_isize %d", 2791 ctx->s_want_extra_isize); 2792 return -EINVAL; 2793 } 2794 2795 err = ext4_check_test_dummy_encryption(fc, sb); 2796 if (err) 2797 return err; 2798 2799 if ((ctx->spec & EXT4_SPEC_DATAJ) && is_remount) { 2800 if (!sbi->s_journal) { 2801 ext4_msg(NULL, KERN_WARNING, 2802 "Remounting file system with no journal " 2803 "so ignoring journalled data option"); 2804 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS); 2805 } else if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS) != 2806 test_opt(sb, DATA_FLAGS)) { 2807 ext4_msg(NULL, KERN_ERR, "Cannot change data mode " 2808 "on remount"); 2809 return -EINVAL; 2810 } 2811 } 2812 2813 if (is_remount) { 2814 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) && 2815 (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) { 2816 ext4_msg(NULL, KERN_ERR, "can't mount with " 2817 "both data=journal and dax"); 2818 return -EINVAL; 2819 } 2820 2821 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) && 2822 (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) || 2823 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) { 2824 fail_dax_change_remount: 2825 ext4_msg(NULL, KERN_ERR, "can't change " 2826 "dax mount option while remounting"); 2827 return -EINVAL; 2828 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER) && 2829 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) || 2830 (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) { 2831 goto fail_dax_change_remount; 2832 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE) && 2833 ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) || 2834 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) || 2835 !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) { 2836 goto fail_dax_change_remount; 2837 } 2838 } 2839 2840 return ext4_check_quota_consistency(fc, sb); 2841 } 2842 2843 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb) 2844 { 2845 struct ext4_fs_context *ctx = fc->fs_private; 2846 struct ext4_sb_info *sbi = fc->s_fs_info; 2847 2848 sbi->s_mount_opt &= ~ctx->mask_s_mount_opt; 2849 sbi->s_mount_opt |= ctx->vals_s_mount_opt; 2850 sbi->s_mount_opt2 &= ~ctx->mask_s_mount_opt2; 2851 sbi->s_mount_opt2 |= ctx->vals_s_mount_opt2; 2852 sb->s_flags &= ~ctx->mask_s_flags; 2853 sb->s_flags |= ctx->vals_s_flags; 2854 2855 #define APPLY(X) ({ if (ctx->spec & EXT4_SPEC_##X) sbi->X = ctx->X; }) 2856 APPLY(s_commit_interval); 2857 APPLY(s_stripe); 2858 APPLY(s_max_batch_time); 2859 APPLY(s_min_batch_time); 2860 APPLY(s_want_extra_isize); 2861 APPLY(s_inode_readahead_blks); 2862 APPLY(s_max_dir_size_kb); 2863 APPLY(s_li_wait_mult); 2864 APPLY(s_resgid); 2865 APPLY(s_resuid); 2866 2867 #ifdef CONFIG_EXT4_DEBUG 2868 APPLY(s_fc_debug_max_replay); 2869 #endif 2870 2871 ext4_apply_quota_options(fc, sb); 2872 ext4_apply_test_dummy_encryption(ctx, sb); 2873 } 2874 2875 2876 static int ext4_validate_options(struct fs_context *fc) 2877 { 2878 #ifdef CONFIG_QUOTA 2879 struct ext4_fs_context *ctx = fc->fs_private; 2880 char *usr_qf_name, *grp_qf_name; 2881 2882 usr_qf_name = ctx->s_qf_names[USRQUOTA]; 2883 grp_qf_name = ctx->s_qf_names[GRPQUOTA]; 2884 2885 if (usr_qf_name || grp_qf_name) { 2886 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) && usr_qf_name) 2887 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA); 2888 2889 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) && grp_qf_name) 2890 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA); 2891 2892 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) || 2893 ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA)) { 2894 ext4_msg(NULL, KERN_ERR, "old and new quota " 2895 "format mixing"); 2896 return -EINVAL; 2897 } 2898 } 2899 #endif 2900 return 1; 2901 } 2902 2903 static inline void ext4_show_quota_options(struct seq_file *seq, 2904 struct super_block *sb) 2905 { 2906 #if defined(CONFIG_QUOTA) 2907 struct ext4_sb_info *sbi = EXT4_SB(sb); 2908 char *usr_qf_name, *grp_qf_name; 2909 2910 if (sbi->s_jquota_fmt) { 2911 char *fmtname = ""; 2912 2913 switch (sbi->s_jquota_fmt) { 2914 case QFMT_VFS_OLD: 2915 fmtname = "vfsold"; 2916 break; 2917 case QFMT_VFS_V0: 2918 fmtname = "vfsv0"; 2919 break; 2920 case QFMT_VFS_V1: 2921 fmtname = "vfsv1"; 2922 break; 2923 } 2924 seq_printf(seq, ",jqfmt=%s", fmtname); 2925 } 2926 2927 rcu_read_lock(); 2928 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]); 2929 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]); 2930 if (usr_qf_name) 2931 seq_show_option(seq, "usrjquota", usr_qf_name); 2932 if (grp_qf_name) 2933 seq_show_option(seq, "grpjquota", grp_qf_name); 2934 rcu_read_unlock(); 2935 #endif 2936 } 2937 2938 static const char *token2str(int token) 2939 { 2940 const struct fs_parameter_spec *spec; 2941 2942 for (spec = ext4_param_specs; spec->name != NULL; spec++) 2943 if (spec->opt == token && !spec->type) 2944 break; 2945 return spec->name; 2946 } 2947 2948 /* 2949 * Show an option if 2950 * - it's set to a non-default value OR 2951 * - if the per-sb default is different from the global default 2952 */ 2953 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 2954 int nodefs) 2955 { 2956 struct ext4_sb_info *sbi = EXT4_SB(sb); 2957 struct ext4_super_block *es = sbi->s_es; 2958 int def_errors; 2959 const struct mount_opts *m; 2960 char sep = nodefs ? '\n' : ','; 2961 2962 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 2963 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 2964 2965 if (sbi->s_sb_block != 1) 2966 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 2967 2968 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 2969 int want_set = m->flags & MOPT_SET; 2970 int opt_2 = m->flags & MOPT_2; 2971 unsigned int mount_opt, def_mount_opt; 2972 2973 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 2974 m->flags & MOPT_SKIP) 2975 continue; 2976 2977 if (opt_2) { 2978 mount_opt = sbi->s_mount_opt2; 2979 def_mount_opt = sbi->s_def_mount_opt2; 2980 } else { 2981 mount_opt = sbi->s_mount_opt; 2982 def_mount_opt = sbi->s_def_mount_opt; 2983 } 2984 /* skip if same as the default */ 2985 if (!nodefs && !(m->mount_opt & (mount_opt ^ def_mount_opt))) 2986 continue; 2987 /* select Opt_noFoo vs Opt_Foo */ 2988 if ((want_set && 2989 (mount_opt & m->mount_opt) != m->mount_opt) || 2990 (!want_set && (mount_opt & m->mount_opt))) 2991 continue; 2992 SEQ_OPTS_PRINT("%s", token2str(m->token)); 2993 } 2994 2995 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 2996 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 2997 SEQ_OPTS_PRINT("resuid=%u", 2998 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 2999 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 3000 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 3001 SEQ_OPTS_PRINT("resgid=%u", 3002 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 3003 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 3004 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 3005 SEQ_OPTS_PUTS("errors=remount-ro"); 3006 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 3007 SEQ_OPTS_PUTS("errors=continue"); 3008 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 3009 SEQ_OPTS_PUTS("errors=panic"); 3010 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 3011 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 3012 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 3013 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 3014 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 3015 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 3016 if (nodefs || sbi->s_stripe) 3017 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 3018 if (nodefs || EXT4_MOUNT_DATA_FLAGS & 3019 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 3020 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 3021 SEQ_OPTS_PUTS("data=journal"); 3022 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 3023 SEQ_OPTS_PUTS("data=ordered"); 3024 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 3025 SEQ_OPTS_PUTS("data=writeback"); 3026 } 3027 if (nodefs || 3028 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 3029 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 3030 sbi->s_inode_readahead_blks); 3031 3032 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs || 3033 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 3034 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 3035 if (nodefs || sbi->s_max_dir_size_kb) 3036 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 3037 if (test_opt(sb, DATA_ERR_ABORT)) 3038 SEQ_OPTS_PUTS("data_err=abort"); 3039 3040 fscrypt_show_test_dummy_encryption(seq, sep, sb); 3041 3042 if (sb->s_flags & SB_INLINECRYPT) 3043 SEQ_OPTS_PUTS("inlinecrypt"); 3044 3045 if (test_opt(sb, DAX_ALWAYS)) { 3046 if (IS_EXT2_SB(sb)) 3047 SEQ_OPTS_PUTS("dax"); 3048 else 3049 SEQ_OPTS_PUTS("dax=always"); 3050 } else if (test_opt2(sb, DAX_NEVER)) { 3051 SEQ_OPTS_PUTS("dax=never"); 3052 } else if (test_opt2(sb, DAX_INODE)) { 3053 SEQ_OPTS_PUTS("dax=inode"); 3054 } 3055 3056 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD && 3057 !test_opt2(sb, MB_OPTIMIZE_SCAN)) { 3058 SEQ_OPTS_PUTS("mb_optimize_scan=0"); 3059 } else if (sbi->s_groups_count < MB_DEFAULT_LINEAR_SCAN_THRESHOLD && 3060 test_opt2(sb, MB_OPTIMIZE_SCAN)) { 3061 SEQ_OPTS_PUTS("mb_optimize_scan=1"); 3062 } 3063 3064 ext4_show_quota_options(seq, sb); 3065 return 0; 3066 } 3067 3068 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 3069 { 3070 return _ext4_show_options(seq, root->d_sb, 0); 3071 } 3072 3073 int ext4_seq_options_show(struct seq_file *seq, void *offset) 3074 { 3075 struct super_block *sb = seq->private; 3076 int rc; 3077 3078 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw"); 3079 rc = _ext4_show_options(seq, sb, 1); 3080 seq_puts(seq, "\n"); 3081 return rc; 3082 } 3083 3084 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 3085 int read_only) 3086 { 3087 struct ext4_sb_info *sbi = EXT4_SB(sb); 3088 int err = 0; 3089 3090 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 3091 ext4_msg(sb, KERN_ERR, "revision level too high, " 3092 "forcing read-only mode"); 3093 err = -EROFS; 3094 goto done; 3095 } 3096 if (read_only) 3097 goto done; 3098 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 3099 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 3100 "running e2fsck is recommended"); 3101 else if (sbi->s_mount_state & EXT4_ERROR_FS) 3102 ext4_msg(sb, KERN_WARNING, 3103 "warning: mounting fs with errors, " 3104 "running e2fsck is recommended"); 3105 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 3106 le16_to_cpu(es->s_mnt_count) >= 3107 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 3108 ext4_msg(sb, KERN_WARNING, 3109 "warning: maximal mount count reached, " 3110 "running e2fsck is recommended"); 3111 else if (le32_to_cpu(es->s_checkinterval) && 3112 (ext4_get_tstamp(es, s_lastcheck) + 3113 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds())) 3114 ext4_msg(sb, KERN_WARNING, 3115 "warning: checktime reached, " 3116 "running e2fsck is recommended"); 3117 if (!sbi->s_journal) 3118 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 3119 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 3120 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 3121 le16_add_cpu(&es->s_mnt_count, 1); 3122 ext4_update_tstamp(es, s_mtime); 3123 if (sbi->s_journal) { 3124 ext4_set_feature_journal_needs_recovery(sb); 3125 if (ext4_has_feature_orphan_file(sb)) 3126 ext4_set_feature_orphan_present(sb); 3127 } 3128 3129 err = ext4_commit_super(sb); 3130 done: 3131 if (test_opt(sb, DEBUG)) 3132 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 3133 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 3134 sb->s_blocksize, 3135 sbi->s_groups_count, 3136 EXT4_BLOCKS_PER_GROUP(sb), 3137 EXT4_INODES_PER_GROUP(sb), 3138 sbi->s_mount_opt, sbi->s_mount_opt2); 3139 return err; 3140 } 3141 3142 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 3143 { 3144 struct ext4_sb_info *sbi = EXT4_SB(sb); 3145 struct flex_groups **old_groups, **new_groups; 3146 int size, i, j; 3147 3148 if (!sbi->s_log_groups_per_flex) 3149 return 0; 3150 3151 size = ext4_flex_group(sbi, ngroup - 1) + 1; 3152 if (size <= sbi->s_flex_groups_allocated) 3153 return 0; 3154 3155 new_groups = kvzalloc(roundup_pow_of_two(size * 3156 sizeof(*sbi->s_flex_groups)), GFP_KERNEL); 3157 if (!new_groups) { 3158 ext4_msg(sb, KERN_ERR, 3159 "not enough memory for %d flex group pointers", size); 3160 return -ENOMEM; 3161 } 3162 for (i = sbi->s_flex_groups_allocated; i < size; i++) { 3163 new_groups[i] = kvzalloc(roundup_pow_of_two( 3164 sizeof(struct flex_groups)), 3165 GFP_KERNEL); 3166 if (!new_groups[i]) { 3167 for (j = sbi->s_flex_groups_allocated; j < i; j++) 3168 kvfree(new_groups[j]); 3169 kvfree(new_groups); 3170 ext4_msg(sb, KERN_ERR, 3171 "not enough memory for %d flex groups", size); 3172 return -ENOMEM; 3173 } 3174 } 3175 rcu_read_lock(); 3176 old_groups = rcu_dereference(sbi->s_flex_groups); 3177 if (old_groups) 3178 memcpy(new_groups, old_groups, 3179 (sbi->s_flex_groups_allocated * 3180 sizeof(struct flex_groups *))); 3181 rcu_read_unlock(); 3182 rcu_assign_pointer(sbi->s_flex_groups, new_groups); 3183 sbi->s_flex_groups_allocated = size; 3184 if (old_groups) 3185 ext4_kvfree_array_rcu(old_groups); 3186 return 0; 3187 } 3188 3189 static int ext4_fill_flex_info(struct super_block *sb) 3190 { 3191 struct ext4_sb_info *sbi = EXT4_SB(sb); 3192 struct ext4_group_desc *gdp = NULL; 3193 struct flex_groups *fg; 3194 ext4_group_t flex_group; 3195 int i, err; 3196 3197 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 3198 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 3199 sbi->s_log_groups_per_flex = 0; 3200 return 1; 3201 } 3202 3203 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 3204 if (err) 3205 goto failed; 3206 3207 for (i = 0; i < sbi->s_groups_count; i++) { 3208 gdp = ext4_get_group_desc(sb, i, NULL); 3209 3210 flex_group = ext4_flex_group(sbi, i); 3211 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group); 3212 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes); 3213 atomic64_add(ext4_free_group_clusters(sb, gdp), 3214 &fg->free_clusters); 3215 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs); 3216 } 3217 3218 return 1; 3219 failed: 3220 return 0; 3221 } 3222 3223 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, 3224 struct ext4_group_desc *gdp) 3225 { 3226 int offset = offsetof(struct ext4_group_desc, bg_checksum); 3227 __u16 crc = 0; 3228 __le32 le_group = cpu_to_le32(block_group); 3229 struct ext4_sb_info *sbi = EXT4_SB(sb); 3230 3231 if (ext4_has_metadata_csum(sbi->s_sb)) { 3232 /* Use new metadata_csum algorithm */ 3233 __u32 csum32; 3234 __u16 dummy_csum = 0; 3235 3236 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 3237 sizeof(le_group)); 3238 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset); 3239 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum, 3240 sizeof(dummy_csum)); 3241 offset += sizeof(dummy_csum); 3242 if (offset < sbi->s_desc_size) 3243 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset, 3244 sbi->s_desc_size - offset); 3245 3246 crc = csum32 & 0xFFFF; 3247 goto out; 3248 } 3249 3250 /* old crc16 code */ 3251 if (!ext4_has_feature_gdt_csum(sb)) 3252 return 0; 3253 3254 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 3255 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 3256 crc = crc16(crc, (__u8 *)gdp, offset); 3257 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 3258 /* for checksum of struct ext4_group_desc do the rest...*/ 3259 if (ext4_has_feature_64bit(sb) && offset < sbi->s_desc_size) 3260 crc = crc16(crc, (__u8 *)gdp + offset, 3261 sbi->s_desc_size - offset); 3262 3263 out: 3264 return cpu_to_le16(crc); 3265 } 3266 3267 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 3268 struct ext4_group_desc *gdp) 3269 { 3270 if (ext4_has_group_desc_csum(sb) && 3271 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) 3272 return 0; 3273 3274 return 1; 3275 } 3276 3277 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 3278 struct ext4_group_desc *gdp) 3279 { 3280 if (!ext4_has_group_desc_csum(sb)) 3281 return; 3282 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); 3283 } 3284 3285 /* Called at mount-time, super-block is locked */ 3286 static int ext4_check_descriptors(struct super_block *sb, 3287 ext4_fsblk_t sb_block, 3288 ext4_group_t *first_not_zeroed) 3289 { 3290 struct ext4_sb_info *sbi = EXT4_SB(sb); 3291 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 3292 ext4_fsblk_t last_block; 3293 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0); 3294 ext4_fsblk_t block_bitmap; 3295 ext4_fsblk_t inode_bitmap; 3296 ext4_fsblk_t inode_table; 3297 int flexbg_flag = 0; 3298 ext4_group_t i, grp = sbi->s_groups_count; 3299 3300 if (ext4_has_feature_flex_bg(sb)) 3301 flexbg_flag = 1; 3302 3303 ext4_debug("Checking group descriptors"); 3304 3305 for (i = 0; i < sbi->s_groups_count; i++) { 3306 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 3307 3308 if (i == sbi->s_groups_count - 1 || flexbg_flag) 3309 last_block = ext4_blocks_count(sbi->s_es) - 1; 3310 else 3311 last_block = first_block + 3312 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 3313 3314 if ((grp == sbi->s_groups_count) && 3315 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3316 grp = i; 3317 3318 block_bitmap = ext4_block_bitmap(sb, gdp); 3319 if (block_bitmap == sb_block) { 3320 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3321 "Block bitmap for group %u overlaps " 3322 "superblock", i); 3323 if (!sb_rdonly(sb)) 3324 return 0; 3325 } 3326 if (block_bitmap >= sb_block + 1 && 3327 block_bitmap <= last_bg_block) { 3328 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3329 "Block bitmap for group %u overlaps " 3330 "block group descriptors", i); 3331 if (!sb_rdonly(sb)) 3332 return 0; 3333 } 3334 if (block_bitmap < first_block || block_bitmap > last_block) { 3335 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3336 "Block bitmap for group %u not in group " 3337 "(block %llu)!", i, block_bitmap); 3338 return 0; 3339 } 3340 inode_bitmap = ext4_inode_bitmap(sb, gdp); 3341 if (inode_bitmap == sb_block) { 3342 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3343 "Inode bitmap for group %u overlaps " 3344 "superblock", i); 3345 if (!sb_rdonly(sb)) 3346 return 0; 3347 } 3348 if (inode_bitmap >= sb_block + 1 && 3349 inode_bitmap <= last_bg_block) { 3350 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3351 "Inode bitmap for group %u overlaps " 3352 "block group descriptors", i); 3353 if (!sb_rdonly(sb)) 3354 return 0; 3355 } 3356 if (inode_bitmap < first_block || inode_bitmap > last_block) { 3357 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3358 "Inode bitmap for group %u not in group " 3359 "(block %llu)!", i, inode_bitmap); 3360 return 0; 3361 } 3362 inode_table = ext4_inode_table(sb, gdp); 3363 if (inode_table == sb_block) { 3364 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3365 "Inode table for group %u overlaps " 3366 "superblock", i); 3367 if (!sb_rdonly(sb)) 3368 return 0; 3369 } 3370 if (inode_table >= sb_block + 1 && 3371 inode_table <= last_bg_block) { 3372 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3373 "Inode table for group %u overlaps " 3374 "block group descriptors", i); 3375 if (!sb_rdonly(sb)) 3376 return 0; 3377 } 3378 if (inode_table < first_block || 3379 inode_table + sbi->s_itb_per_group - 1 > last_block) { 3380 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3381 "Inode table for group %u not in group " 3382 "(block %llu)!", i, inode_table); 3383 return 0; 3384 } 3385 ext4_lock_group(sb, i); 3386 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 3387 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3388 "Checksum for group %u failed (%u!=%u)", 3389 i, le16_to_cpu(ext4_group_desc_csum(sb, i, 3390 gdp)), le16_to_cpu(gdp->bg_checksum)); 3391 if (!sb_rdonly(sb)) { 3392 ext4_unlock_group(sb, i); 3393 return 0; 3394 } 3395 } 3396 ext4_unlock_group(sb, i); 3397 if (!flexbg_flag) 3398 first_block += EXT4_BLOCKS_PER_GROUP(sb); 3399 } 3400 if (NULL != first_not_zeroed) 3401 *first_not_zeroed = grp; 3402 return 1; 3403 } 3404 3405 /* 3406 * Maximal extent format file size. 3407 * Resulting logical blkno at s_maxbytes must fit in our on-disk 3408 * extent format containers, within a sector_t, and within i_blocks 3409 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 3410 * so that won't be a limiting factor. 3411 * 3412 * However there is other limiting factor. We do store extents in the form 3413 * of starting block and length, hence the resulting length of the extent 3414 * covering maximum file size must fit into on-disk format containers as 3415 * well. Given that length is always by 1 unit bigger than max unit (because 3416 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 3417 * 3418 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 3419 */ 3420 static loff_t ext4_max_size(int blkbits, int has_huge_files) 3421 { 3422 loff_t res; 3423 loff_t upper_limit = MAX_LFS_FILESIZE; 3424 3425 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64)); 3426 3427 if (!has_huge_files) { 3428 upper_limit = (1LL << 32) - 1; 3429 3430 /* total blocks in file system block size */ 3431 upper_limit >>= (blkbits - 9); 3432 upper_limit <<= blkbits; 3433 } 3434 3435 /* 3436 * 32-bit extent-start container, ee_block. We lower the maxbytes 3437 * by one fs block, so ee_len can cover the extent of maximum file 3438 * size 3439 */ 3440 res = (1LL << 32) - 1; 3441 res <<= blkbits; 3442 3443 /* Sanity check against vm- & vfs- imposed limits */ 3444 if (res > upper_limit) 3445 res = upper_limit; 3446 3447 return res; 3448 } 3449 3450 /* 3451 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 3452 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 3453 * We need to be 1 filesystem block less than the 2^48 sector limit. 3454 */ 3455 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 3456 { 3457 loff_t upper_limit, res = EXT4_NDIR_BLOCKS; 3458 int meta_blocks; 3459 unsigned int ppb = 1 << (bits - 2); 3460 3461 /* 3462 * This is calculated to be the largest file size for a dense, block 3463 * mapped file such that the file's total number of 512-byte sectors, 3464 * including data and all indirect blocks, does not exceed (2^48 - 1). 3465 * 3466 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 3467 * number of 512-byte sectors of the file. 3468 */ 3469 if (!has_huge_files) { 3470 /* 3471 * !has_huge_files or implies that the inode i_block field 3472 * represents total file blocks in 2^32 512-byte sectors == 3473 * size of vfs inode i_blocks * 8 3474 */ 3475 upper_limit = (1LL << 32) - 1; 3476 3477 /* total blocks in file system block size */ 3478 upper_limit >>= (bits - 9); 3479 3480 } else { 3481 /* 3482 * We use 48 bit ext4_inode i_blocks 3483 * With EXT4_HUGE_FILE_FL set the i_blocks 3484 * represent total number of blocks in 3485 * file system block size 3486 */ 3487 upper_limit = (1LL << 48) - 1; 3488 3489 } 3490 3491 /* Compute how many blocks we can address by block tree */ 3492 res += ppb; 3493 res += ppb * ppb; 3494 res += ((loff_t)ppb) * ppb * ppb; 3495 /* Compute how many metadata blocks are needed */ 3496 meta_blocks = 1; 3497 meta_blocks += 1 + ppb; 3498 meta_blocks += 1 + ppb + ppb * ppb; 3499 /* Does block tree limit file size? */ 3500 if (res + meta_blocks <= upper_limit) 3501 goto check_lfs; 3502 3503 res = upper_limit; 3504 /* How many metadata blocks are needed for addressing upper_limit? */ 3505 upper_limit -= EXT4_NDIR_BLOCKS; 3506 /* indirect blocks */ 3507 meta_blocks = 1; 3508 upper_limit -= ppb; 3509 /* double indirect blocks */ 3510 if (upper_limit < ppb * ppb) { 3511 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb); 3512 res -= meta_blocks; 3513 goto check_lfs; 3514 } 3515 meta_blocks += 1 + ppb; 3516 upper_limit -= ppb * ppb; 3517 /* tripple indirect blocks for the rest */ 3518 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb) + 3519 DIV_ROUND_UP_ULL(upper_limit, ppb*ppb); 3520 res -= meta_blocks; 3521 check_lfs: 3522 res <<= bits; 3523 if (res > MAX_LFS_FILESIZE) 3524 res = MAX_LFS_FILESIZE; 3525 3526 return res; 3527 } 3528 3529 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 3530 ext4_fsblk_t logical_sb_block, int nr) 3531 { 3532 struct ext4_sb_info *sbi = EXT4_SB(sb); 3533 ext4_group_t bg, first_meta_bg; 3534 int has_super = 0; 3535 3536 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 3537 3538 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) 3539 return logical_sb_block + nr + 1; 3540 bg = sbi->s_desc_per_block * nr; 3541 if (ext4_bg_has_super(sb, bg)) 3542 has_super = 1; 3543 3544 /* 3545 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 3546 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 3547 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 3548 * compensate. 3549 */ 3550 if (sb->s_blocksize == 1024 && nr == 0 && 3551 le32_to_cpu(sbi->s_es->s_first_data_block) == 0) 3552 has_super++; 3553 3554 return (has_super + ext4_group_first_block_no(sb, bg)); 3555 } 3556 3557 /** 3558 * ext4_get_stripe_size: Get the stripe size. 3559 * @sbi: In memory super block info 3560 * 3561 * If we have specified it via mount option, then 3562 * use the mount option value. If the value specified at mount time is 3563 * greater than the blocks per group use the super block value. 3564 * If the super block value is greater than blocks per group return 0. 3565 * Allocator needs it be less than blocks per group. 3566 * 3567 */ 3568 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 3569 { 3570 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 3571 unsigned long stripe_width = 3572 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 3573 int ret; 3574 3575 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 3576 ret = sbi->s_stripe; 3577 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group) 3578 ret = stripe_width; 3579 else if (stride && stride <= sbi->s_blocks_per_group) 3580 ret = stride; 3581 else 3582 ret = 0; 3583 3584 /* 3585 * If the stripe width is 1, this makes no sense and 3586 * we set it to 0 to turn off stripe handling code. 3587 */ 3588 if (ret <= 1) 3589 ret = 0; 3590 3591 return ret; 3592 } 3593 3594 /* 3595 * Check whether this filesystem can be mounted based on 3596 * the features present and the RDONLY/RDWR mount requested. 3597 * Returns 1 if this filesystem can be mounted as requested, 3598 * 0 if it cannot be. 3599 */ 3600 int ext4_feature_set_ok(struct super_block *sb, int readonly) 3601 { 3602 if (ext4_has_unknown_ext4_incompat_features(sb)) { 3603 ext4_msg(sb, KERN_ERR, 3604 "Couldn't mount because of " 3605 "unsupported optional features (%x)", 3606 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 3607 ~EXT4_FEATURE_INCOMPAT_SUPP)); 3608 return 0; 3609 } 3610 3611 #if !IS_ENABLED(CONFIG_UNICODE) 3612 if (ext4_has_feature_casefold(sb)) { 3613 ext4_msg(sb, KERN_ERR, 3614 "Filesystem with casefold feature cannot be " 3615 "mounted without CONFIG_UNICODE"); 3616 return 0; 3617 } 3618 #endif 3619 3620 if (readonly) 3621 return 1; 3622 3623 if (ext4_has_feature_readonly(sb)) { 3624 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 3625 sb->s_flags |= SB_RDONLY; 3626 return 1; 3627 } 3628 3629 /* Check that feature set is OK for a read-write mount */ 3630 if (ext4_has_unknown_ext4_ro_compat_features(sb)) { 3631 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 3632 "unsupported optional features (%x)", 3633 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 3634 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 3635 return 0; 3636 } 3637 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { 3638 ext4_msg(sb, KERN_ERR, 3639 "Can't support bigalloc feature without " 3640 "extents feature\n"); 3641 return 0; 3642 } 3643 3644 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2) 3645 if (!readonly && (ext4_has_feature_quota(sb) || 3646 ext4_has_feature_project(sb))) { 3647 ext4_msg(sb, KERN_ERR, 3648 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2"); 3649 return 0; 3650 } 3651 #endif /* CONFIG_QUOTA */ 3652 return 1; 3653 } 3654 3655 /* 3656 * This function is called once a day if we have errors logged 3657 * on the file system 3658 */ 3659 static void print_daily_error_info(struct timer_list *t) 3660 { 3661 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report); 3662 struct super_block *sb = sbi->s_sb; 3663 struct ext4_super_block *es = sbi->s_es; 3664 3665 if (es->s_error_count) 3666 /* fsck newer than v1.41.13 is needed to clean this condition. */ 3667 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 3668 le32_to_cpu(es->s_error_count)); 3669 if (es->s_first_error_time) { 3670 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d", 3671 sb->s_id, 3672 ext4_get_tstamp(es, s_first_error_time), 3673 (int) sizeof(es->s_first_error_func), 3674 es->s_first_error_func, 3675 le32_to_cpu(es->s_first_error_line)); 3676 if (es->s_first_error_ino) 3677 printk(KERN_CONT ": inode %u", 3678 le32_to_cpu(es->s_first_error_ino)); 3679 if (es->s_first_error_block) 3680 printk(KERN_CONT ": block %llu", (unsigned long long) 3681 le64_to_cpu(es->s_first_error_block)); 3682 printk(KERN_CONT "\n"); 3683 } 3684 if (es->s_last_error_time) { 3685 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d", 3686 sb->s_id, 3687 ext4_get_tstamp(es, s_last_error_time), 3688 (int) sizeof(es->s_last_error_func), 3689 es->s_last_error_func, 3690 le32_to_cpu(es->s_last_error_line)); 3691 if (es->s_last_error_ino) 3692 printk(KERN_CONT ": inode %u", 3693 le32_to_cpu(es->s_last_error_ino)); 3694 if (es->s_last_error_block) 3695 printk(KERN_CONT ": block %llu", (unsigned long long) 3696 le64_to_cpu(es->s_last_error_block)); 3697 printk(KERN_CONT "\n"); 3698 } 3699 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 3700 } 3701 3702 /* Find next suitable group and run ext4_init_inode_table */ 3703 static int ext4_run_li_request(struct ext4_li_request *elr) 3704 { 3705 struct ext4_group_desc *gdp = NULL; 3706 struct super_block *sb = elr->lr_super; 3707 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 3708 ext4_group_t group = elr->lr_next_group; 3709 unsigned int prefetch_ios = 0; 3710 int ret = 0; 3711 int nr = EXT4_SB(sb)->s_mb_prefetch; 3712 u64 start_time; 3713 3714 if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) { 3715 elr->lr_next_group = ext4_mb_prefetch(sb, group, nr, &prefetch_ios); 3716 ext4_mb_prefetch_fini(sb, elr->lr_next_group, nr); 3717 trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group, nr); 3718 if (group >= elr->lr_next_group) { 3719 ret = 1; 3720 if (elr->lr_first_not_zeroed != ngroups && 3721 !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) { 3722 elr->lr_next_group = elr->lr_first_not_zeroed; 3723 elr->lr_mode = EXT4_LI_MODE_ITABLE; 3724 ret = 0; 3725 } 3726 } 3727 return ret; 3728 } 3729 3730 for (; group < ngroups; group++) { 3731 gdp = ext4_get_group_desc(sb, group, NULL); 3732 if (!gdp) { 3733 ret = 1; 3734 break; 3735 } 3736 3737 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3738 break; 3739 } 3740 3741 if (group >= ngroups) 3742 ret = 1; 3743 3744 if (!ret) { 3745 start_time = ktime_get_real_ns(); 3746 ret = ext4_init_inode_table(sb, group, 3747 elr->lr_timeout ? 0 : 1); 3748 trace_ext4_lazy_itable_init(sb, group); 3749 if (elr->lr_timeout == 0) { 3750 elr->lr_timeout = nsecs_to_jiffies((ktime_get_real_ns() - start_time) * 3751 EXT4_SB(elr->lr_super)->s_li_wait_mult); 3752 } 3753 elr->lr_next_sched = jiffies + elr->lr_timeout; 3754 elr->lr_next_group = group + 1; 3755 } 3756 return ret; 3757 } 3758 3759 /* 3760 * Remove lr_request from the list_request and free the 3761 * request structure. Should be called with li_list_mtx held 3762 */ 3763 static void ext4_remove_li_request(struct ext4_li_request *elr) 3764 { 3765 if (!elr) 3766 return; 3767 3768 list_del(&elr->lr_request); 3769 EXT4_SB(elr->lr_super)->s_li_request = NULL; 3770 kfree(elr); 3771 } 3772 3773 static void ext4_unregister_li_request(struct super_block *sb) 3774 { 3775 mutex_lock(&ext4_li_mtx); 3776 if (!ext4_li_info) { 3777 mutex_unlock(&ext4_li_mtx); 3778 return; 3779 } 3780 3781 mutex_lock(&ext4_li_info->li_list_mtx); 3782 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 3783 mutex_unlock(&ext4_li_info->li_list_mtx); 3784 mutex_unlock(&ext4_li_mtx); 3785 } 3786 3787 static struct task_struct *ext4_lazyinit_task; 3788 3789 /* 3790 * This is the function where ext4lazyinit thread lives. It walks 3791 * through the request list searching for next scheduled filesystem. 3792 * When such a fs is found, run the lazy initialization request 3793 * (ext4_rn_li_request) and keep track of the time spend in this 3794 * function. Based on that time we compute next schedule time of 3795 * the request. When walking through the list is complete, compute 3796 * next waking time and put itself into sleep. 3797 */ 3798 static int ext4_lazyinit_thread(void *arg) 3799 { 3800 struct ext4_lazy_init *eli = arg; 3801 struct list_head *pos, *n; 3802 struct ext4_li_request *elr; 3803 unsigned long next_wakeup, cur; 3804 3805 BUG_ON(NULL == eli); 3806 set_freezable(); 3807 3808 cont_thread: 3809 while (true) { 3810 next_wakeup = MAX_JIFFY_OFFSET; 3811 3812 mutex_lock(&eli->li_list_mtx); 3813 if (list_empty(&eli->li_request_list)) { 3814 mutex_unlock(&eli->li_list_mtx); 3815 goto exit_thread; 3816 } 3817 list_for_each_safe(pos, n, &eli->li_request_list) { 3818 int err = 0; 3819 int progress = 0; 3820 elr = list_entry(pos, struct ext4_li_request, 3821 lr_request); 3822 3823 if (time_before(jiffies, elr->lr_next_sched)) { 3824 if (time_before(elr->lr_next_sched, next_wakeup)) 3825 next_wakeup = elr->lr_next_sched; 3826 continue; 3827 } 3828 if (down_read_trylock(&elr->lr_super->s_umount)) { 3829 if (sb_start_write_trylock(elr->lr_super)) { 3830 progress = 1; 3831 /* 3832 * We hold sb->s_umount, sb can not 3833 * be removed from the list, it is 3834 * now safe to drop li_list_mtx 3835 */ 3836 mutex_unlock(&eli->li_list_mtx); 3837 err = ext4_run_li_request(elr); 3838 sb_end_write(elr->lr_super); 3839 mutex_lock(&eli->li_list_mtx); 3840 n = pos->next; 3841 } 3842 up_read((&elr->lr_super->s_umount)); 3843 } 3844 /* error, remove the lazy_init job */ 3845 if (err) { 3846 ext4_remove_li_request(elr); 3847 continue; 3848 } 3849 if (!progress) { 3850 elr->lr_next_sched = jiffies + 3851 get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ); 3852 } 3853 if (time_before(elr->lr_next_sched, next_wakeup)) 3854 next_wakeup = elr->lr_next_sched; 3855 } 3856 mutex_unlock(&eli->li_list_mtx); 3857 3858 try_to_freeze(); 3859 3860 cur = jiffies; 3861 if ((time_after_eq(cur, next_wakeup)) || 3862 (MAX_JIFFY_OFFSET == next_wakeup)) { 3863 cond_resched(); 3864 continue; 3865 } 3866 3867 schedule_timeout_interruptible(next_wakeup - cur); 3868 3869 if (kthread_should_stop()) { 3870 ext4_clear_request_list(); 3871 goto exit_thread; 3872 } 3873 } 3874 3875 exit_thread: 3876 /* 3877 * It looks like the request list is empty, but we need 3878 * to check it under the li_list_mtx lock, to prevent any 3879 * additions into it, and of course we should lock ext4_li_mtx 3880 * to atomically free the list and ext4_li_info, because at 3881 * this point another ext4 filesystem could be registering 3882 * new one. 3883 */ 3884 mutex_lock(&ext4_li_mtx); 3885 mutex_lock(&eli->li_list_mtx); 3886 if (!list_empty(&eli->li_request_list)) { 3887 mutex_unlock(&eli->li_list_mtx); 3888 mutex_unlock(&ext4_li_mtx); 3889 goto cont_thread; 3890 } 3891 mutex_unlock(&eli->li_list_mtx); 3892 kfree(ext4_li_info); 3893 ext4_li_info = NULL; 3894 mutex_unlock(&ext4_li_mtx); 3895 3896 return 0; 3897 } 3898 3899 static void ext4_clear_request_list(void) 3900 { 3901 struct list_head *pos, *n; 3902 struct ext4_li_request *elr; 3903 3904 mutex_lock(&ext4_li_info->li_list_mtx); 3905 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 3906 elr = list_entry(pos, struct ext4_li_request, 3907 lr_request); 3908 ext4_remove_li_request(elr); 3909 } 3910 mutex_unlock(&ext4_li_info->li_list_mtx); 3911 } 3912 3913 static int ext4_run_lazyinit_thread(void) 3914 { 3915 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 3916 ext4_li_info, "ext4lazyinit"); 3917 if (IS_ERR(ext4_lazyinit_task)) { 3918 int err = PTR_ERR(ext4_lazyinit_task); 3919 ext4_clear_request_list(); 3920 kfree(ext4_li_info); 3921 ext4_li_info = NULL; 3922 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 3923 "initialization thread\n", 3924 err); 3925 return err; 3926 } 3927 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 3928 return 0; 3929 } 3930 3931 /* 3932 * Check whether it make sense to run itable init. thread or not. 3933 * If there is at least one uninitialized inode table, return 3934 * corresponding group number, else the loop goes through all 3935 * groups and return total number of groups. 3936 */ 3937 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 3938 { 3939 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 3940 struct ext4_group_desc *gdp = NULL; 3941 3942 if (!ext4_has_group_desc_csum(sb)) 3943 return ngroups; 3944 3945 for (group = 0; group < ngroups; group++) { 3946 gdp = ext4_get_group_desc(sb, group, NULL); 3947 if (!gdp) 3948 continue; 3949 3950 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3951 break; 3952 } 3953 3954 return group; 3955 } 3956 3957 static int ext4_li_info_new(void) 3958 { 3959 struct ext4_lazy_init *eli = NULL; 3960 3961 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3962 if (!eli) 3963 return -ENOMEM; 3964 3965 INIT_LIST_HEAD(&eli->li_request_list); 3966 mutex_init(&eli->li_list_mtx); 3967 3968 eli->li_state |= EXT4_LAZYINIT_QUIT; 3969 3970 ext4_li_info = eli; 3971 3972 return 0; 3973 } 3974 3975 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3976 ext4_group_t start) 3977 { 3978 struct ext4_li_request *elr; 3979 3980 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3981 if (!elr) 3982 return NULL; 3983 3984 elr->lr_super = sb; 3985 elr->lr_first_not_zeroed = start; 3986 if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) { 3987 elr->lr_mode = EXT4_LI_MODE_ITABLE; 3988 elr->lr_next_group = start; 3989 } else { 3990 elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP; 3991 } 3992 3993 /* 3994 * Randomize first schedule time of the request to 3995 * spread the inode table initialization requests 3996 * better. 3997 */ 3998 elr->lr_next_sched = jiffies + get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ); 3999 return elr; 4000 } 4001 4002 int ext4_register_li_request(struct super_block *sb, 4003 ext4_group_t first_not_zeroed) 4004 { 4005 struct ext4_sb_info *sbi = EXT4_SB(sb); 4006 struct ext4_li_request *elr = NULL; 4007 ext4_group_t ngroups = sbi->s_groups_count; 4008 int ret = 0; 4009 4010 mutex_lock(&ext4_li_mtx); 4011 if (sbi->s_li_request != NULL) { 4012 /* 4013 * Reset timeout so it can be computed again, because 4014 * s_li_wait_mult might have changed. 4015 */ 4016 sbi->s_li_request->lr_timeout = 0; 4017 goto out; 4018 } 4019 4020 if (sb_rdonly(sb) || 4021 (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) && 4022 (first_not_zeroed == ngroups || !test_opt(sb, INIT_INODE_TABLE)))) 4023 goto out; 4024 4025 elr = ext4_li_request_new(sb, first_not_zeroed); 4026 if (!elr) { 4027 ret = -ENOMEM; 4028 goto out; 4029 } 4030 4031 if (NULL == ext4_li_info) { 4032 ret = ext4_li_info_new(); 4033 if (ret) 4034 goto out; 4035 } 4036 4037 mutex_lock(&ext4_li_info->li_list_mtx); 4038 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 4039 mutex_unlock(&ext4_li_info->li_list_mtx); 4040 4041 sbi->s_li_request = elr; 4042 /* 4043 * set elr to NULL here since it has been inserted to 4044 * the request_list and the removal and free of it is 4045 * handled by ext4_clear_request_list from now on. 4046 */ 4047 elr = NULL; 4048 4049 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 4050 ret = ext4_run_lazyinit_thread(); 4051 if (ret) 4052 goto out; 4053 } 4054 out: 4055 mutex_unlock(&ext4_li_mtx); 4056 if (ret) 4057 kfree(elr); 4058 return ret; 4059 } 4060 4061 /* 4062 * We do not need to lock anything since this is called on 4063 * module unload. 4064 */ 4065 static void ext4_destroy_lazyinit_thread(void) 4066 { 4067 /* 4068 * If thread exited earlier 4069 * there's nothing to be done. 4070 */ 4071 if (!ext4_li_info || !ext4_lazyinit_task) 4072 return; 4073 4074 kthread_stop(ext4_lazyinit_task); 4075 } 4076 4077 static int set_journal_csum_feature_set(struct super_block *sb) 4078 { 4079 int ret = 1; 4080 int compat, incompat; 4081 struct ext4_sb_info *sbi = EXT4_SB(sb); 4082 4083 if (ext4_has_metadata_csum(sb)) { 4084 /* journal checksum v3 */ 4085 compat = 0; 4086 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 4087 } else { 4088 /* journal checksum v1 */ 4089 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 4090 incompat = 0; 4091 } 4092 4093 jbd2_journal_clear_features(sbi->s_journal, 4094 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 4095 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 4096 JBD2_FEATURE_INCOMPAT_CSUM_V2); 4097 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4098 ret = jbd2_journal_set_features(sbi->s_journal, 4099 compat, 0, 4100 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 4101 incompat); 4102 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 4103 ret = jbd2_journal_set_features(sbi->s_journal, 4104 compat, 0, 4105 incompat); 4106 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 4107 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 4108 } else { 4109 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 4110 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 4111 } 4112 4113 return ret; 4114 } 4115 4116 /* 4117 * Note: calculating the overhead so we can be compatible with 4118 * historical BSD practice is quite difficult in the face of 4119 * clusters/bigalloc. This is because multiple metadata blocks from 4120 * different block group can end up in the same allocation cluster. 4121 * Calculating the exact overhead in the face of clustered allocation 4122 * requires either O(all block bitmaps) in memory or O(number of block 4123 * groups**2) in time. We will still calculate the superblock for 4124 * older file systems --- and if we come across with a bigalloc file 4125 * system with zero in s_overhead_clusters the estimate will be close to 4126 * correct especially for very large cluster sizes --- but for newer 4127 * file systems, it's better to calculate this figure once at mkfs 4128 * time, and store it in the superblock. If the superblock value is 4129 * present (even for non-bigalloc file systems), we will use it. 4130 */ 4131 static int count_overhead(struct super_block *sb, ext4_group_t grp, 4132 char *buf) 4133 { 4134 struct ext4_sb_info *sbi = EXT4_SB(sb); 4135 struct ext4_group_desc *gdp; 4136 ext4_fsblk_t first_block, last_block, b; 4137 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4138 int s, j, count = 0; 4139 int has_super = ext4_bg_has_super(sb, grp); 4140 4141 if (!ext4_has_feature_bigalloc(sb)) 4142 return (has_super + ext4_bg_num_gdb(sb, grp) + 4143 (has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) + 4144 sbi->s_itb_per_group + 2); 4145 4146 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 4147 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 4148 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 4149 for (i = 0; i < ngroups; i++) { 4150 gdp = ext4_get_group_desc(sb, i, NULL); 4151 b = ext4_block_bitmap(sb, gdp); 4152 if (b >= first_block && b <= last_block) { 4153 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 4154 count++; 4155 } 4156 b = ext4_inode_bitmap(sb, gdp); 4157 if (b >= first_block && b <= last_block) { 4158 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 4159 count++; 4160 } 4161 b = ext4_inode_table(sb, gdp); 4162 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 4163 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 4164 int c = EXT4_B2C(sbi, b - first_block); 4165 ext4_set_bit(c, buf); 4166 count++; 4167 } 4168 if (i != grp) 4169 continue; 4170 s = 0; 4171 if (ext4_bg_has_super(sb, grp)) { 4172 ext4_set_bit(s++, buf); 4173 count++; 4174 } 4175 j = ext4_bg_num_gdb(sb, grp); 4176 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) { 4177 ext4_error(sb, "Invalid number of block group " 4178 "descriptor blocks: %d", j); 4179 j = EXT4_BLOCKS_PER_GROUP(sb) - s; 4180 } 4181 count += j; 4182 for (; j > 0; j--) 4183 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 4184 } 4185 if (!count) 4186 return 0; 4187 return EXT4_CLUSTERS_PER_GROUP(sb) - 4188 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 4189 } 4190 4191 /* 4192 * Compute the overhead and stash it in sbi->s_overhead 4193 */ 4194 int ext4_calculate_overhead(struct super_block *sb) 4195 { 4196 struct ext4_sb_info *sbi = EXT4_SB(sb); 4197 struct ext4_super_block *es = sbi->s_es; 4198 struct inode *j_inode; 4199 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum); 4200 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4201 ext4_fsblk_t overhead = 0; 4202 char *buf = (char *) get_zeroed_page(GFP_NOFS); 4203 4204 if (!buf) 4205 return -ENOMEM; 4206 4207 /* 4208 * Compute the overhead (FS structures). This is constant 4209 * for a given filesystem unless the number of block groups 4210 * changes so we cache the previous value until it does. 4211 */ 4212 4213 /* 4214 * All of the blocks before first_data_block are overhead 4215 */ 4216 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 4217 4218 /* 4219 * Add the overhead found in each block group 4220 */ 4221 for (i = 0; i < ngroups; i++) { 4222 int blks; 4223 4224 blks = count_overhead(sb, i, buf); 4225 overhead += blks; 4226 if (blks) 4227 memset(buf, 0, PAGE_SIZE); 4228 cond_resched(); 4229 } 4230 4231 /* 4232 * Add the internal journal blocks whether the journal has been 4233 * loaded or not 4234 */ 4235 if (sbi->s_journal && !sbi->s_journal_bdev_file) 4236 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len); 4237 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) { 4238 /* j_inum for internal journal is non-zero */ 4239 j_inode = ext4_get_journal_inode(sb, j_inum); 4240 if (!IS_ERR(j_inode)) { 4241 j_blocks = j_inode->i_size >> sb->s_blocksize_bits; 4242 overhead += EXT4_NUM_B2C(sbi, j_blocks); 4243 iput(j_inode); 4244 } else { 4245 ext4_msg(sb, KERN_ERR, "can't get journal size"); 4246 } 4247 } 4248 sbi->s_overhead = overhead; 4249 smp_wmb(); 4250 free_page((unsigned long) buf); 4251 return 0; 4252 } 4253 4254 static void ext4_set_resv_clusters(struct super_block *sb) 4255 { 4256 ext4_fsblk_t resv_clusters; 4257 struct ext4_sb_info *sbi = EXT4_SB(sb); 4258 4259 /* 4260 * There's no need to reserve anything when we aren't using extents. 4261 * The space estimates are exact, there are no unwritten extents, 4262 * hole punching doesn't need new metadata... This is needed especially 4263 * to keep ext2/3 backward compatibility. 4264 */ 4265 if (!ext4_has_feature_extents(sb)) 4266 return; 4267 /* 4268 * By default we reserve 2% or 4096 clusters, whichever is smaller. 4269 * This should cover the situations where we can not afford to run 4270 * out of space like for example punch hole, or converting 4271 * unwritten extents in delalloc path. In most cases such 4272 * allocation would require 1, or 2 blocks, higher numbers are 4273 * very rare. 4274 */ 4275 resv_clusters = (ext4_blocks_count(sbi->s_es) >> 4276 sbi->s_cluster_bits); 4277 4278 do_div(resv_clusters, 50); 4279 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 4280 4281 atomic64_set(&sbi->s_resv_clusters, resv_clusters); 4282 } 4283 4284 static const char *ext4_quota_mode(struct super_block *sb) 4285 { 4286 #ifdef CONFIG_QUOTA 4287 if (!ext4_quota_capable(sb)) 4288 return "none"; 4289 4290 if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb)) 4291 return "journalled"; 4292 else 4293 return "writeback"; 4294 #else 4295 return "disabled"; 4296 #endif 4297 } 4298 4299 static void ext4_setup_csum_trigger(struct super_block *sb, 4300 enum ext4_journal_trigger_type type, 4301 void (*trigger)( 4302 struct jbd2_buffer_trigger_type *type, 4303 struct buffer_head *bh, 4304 void *mapped_data, 4305 size_t size)) 4306 { 4307 struct ext4_sb_info *sbi = EXT4_SB(sb); 4308 4309 sbi->s_journal_triggers[type].sb = sb; 4310 sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger; 4311 } 4312 4313 static void ext4_free_sbi(struct ext4_sb_info *sbi) 4314 { 4315 if (!sbi) 4316 return; 4317 4318 kfree(sbi->s_blockgroup_lock); 4319 fs_put_dax(sbi->s_daxdev, NULL); 4320 kfree(sbi); 4321 } 4322 4323 static struct ext4_sb_info *ext4_alloc_sbi(struct super_block *sb) 4324 { 4325 struct ext4_sb_info *sbi; 4326 4327 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 4328 if (!sbi) 4329 return NULL; 4330 4331 sbi->s_daxdev = fs_dax_get_by_bdev(sb->s_bdev, &sbi->s_dax_part_off, 4332 NULL, NULL); 4333 4334 sbi->s_blockgroup_lock = 4335 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 4336 4337 if (!sbi->s_blockgroup_lock) 4338 goto err_out; 4339 4340 sb->s_fs_info = sbi; 4341 sbi->s_sb = sb; 4342 return sbi; 4343 err_out: 4344 fs_put_dax(sbi->s_daxdev, NULL); 4345 kfree(sbi); 4346 return NULL; 4347 } 4348 4349 static void ext4_set_def_opts(struct super_block *sb, 4350 struct ext4_super_block *es) 4351 { 4352 unsigned long def_mount_opts; 4353 4354 /* Set defaults before we parse the mount options */ 4355 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 4356 set_opt(sb, INIT_INODE_TABLE); 4357 if (def_mount_opts & EXT4_DEFM_DEBUG) 4358 set_opt(sb, DEBUG); 4359 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 4360 set_opt(sb, GRPID); 4361 if (def_mount_opts & EXT4_DEFM_UID16) 4362 set_opt(sb, NO_UID32); 4363 /* xattr user namespace & acls are now defaulted on */ 4364 set_opt(sb, XATTR_USER); 4365 #ifdef CONFIG_EXT4_FS_POSIX_ACL 4366 set_opt(sb, POSIX_ACL); 4367 #endif 4368 if (ext4_has_feature_fast_commit(sb)) 4369 set_opt2(sb, JOURNAL_FAST_COMMIT); 4370 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 4371 if (ext4_has_metadata_csum(sb)) 4372 set_opt(sb, JOURNAL_CHECKSUM); 4373 4374 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 4375 set_opt(sb, JOURNAL_DATA); 4376 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 4377 set_opt(sb, ORDERED_DATA); 4378 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 4379 set_opt(sb, WRITEBACK_DATA); 4380 4381 if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_PANIC) 4382 set_opt(sb, ERRORS_PANIC); 4383 else if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_CONTINUE) 4384 set_opt(sb, ERRORS_CONT); 4385 else 4386 set_opt(sb, ERRORS_RO); 4387 /* block_validity enabled by default; disable with noblock_validity */ 4388 set_opt(sb, BLOCK_VALIDITY); 4389 if (def_mount_opts & EXT4_DEFM_DISCARD) 4390 set_opt(sb, DISCARD); 4391 4392 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 4393 set_opt(sb, BARRIER); 4394 4395 /* 4396 * enable delayed allocation by default 4397 * Use -o nodelalloc to turn it off 4398 */ 4399 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 4400 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 4401 set_opt(sb, DELALLOC); 4402 4403 if (sb->s_blocksize <= PAGE_SIZE) 4404 set_opt(sb, DIOREAD_NOLOCK); 4405 } 4406 4407 static int ext4_handle_clustersize(struct super_block *sb) 4408 { 4409 struct ext4_sb_info *sbi = EXT4_SB(sb); 4410 struct ext4_super_block *es = sbi->s_es; 4411 int clustersize; 4412 4413 /* Handle clustersize */ 4414 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 4415 if (ext4_has_feature_bigalloc(sb)) { 4416 if (clustersize < sb->s_blocksize) { 4417 ext4_msg(sb, KERN_ERR, 4418 "cluster size (%d) smaller than " 4419 "block size (%lu)", clustersize, sb->s_blocksize); 4420 return -EINVAL; 4421 } 4422 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 4423 le32_to_cpu(es->s_log_block_size); 4424 } else { 4425 if (clustersize != sb->s_blocksize) { 4426 ext4_msg(sb, KERN_ERR, 4427 "fragment/cluster size (%d) != " 4428 "block size (%lu)", clustersize, sb->s_blocksize); 4429 return -EINVAL; 4430 } 4431 if (sbi->s_blocks_per_group > sb->s_blocksize * 8) { 4432 ext4_msg(sb, KERN_ERR, 4433 "#blocks per group too big: %lu", 4434 sbi->s_blocks_per_group); 4435 return -EINVAL; 4436 } 4437 sbi->s_cluster_bits = 0; 4438 } 4439 sbi->s_clusters_per_group = le32_to_cpu(es->s_clusters_per_group); 4440 if (sbi->s_clusters_per_group > sb->s_blocksize * 8) { 4441 ext4_msg(sb, KERN_ERR, "#clusters per group too big: %lu", 4442 sbi->s_clusters_per_group); 4443 return -EINVAL; 4444 } 4445 if (sbi->s_blocks_per_group != 4446 (sbi->s_clusters_per_group * (clustersize / sb->s_blocksize))) { 4447 ext4_msg(sb, KERN_ERR, 4448 "blocks per group (%lu) and clusters per group (%lu) inconsistent", 4449 sbi->s_blocks_per_group, sbi->s_clusters_per_group); 4450 return -EINVAL; 4451 } 4452 sbi->s_cluster_ratio = clustersize / sb->s_blocksize; 4453 4454 /* Do we have standard group size of clustersize * 8 blocks ? */ 4455 if (sbi->s_blocks_per_group == clustersize << 3) 4456 set_opt2(sb, STD_GROUP_SIZE); 4457 4458 return 0; 4459 } 4460 4461 static void ext4_fast_commit_init(struct super_block *sb) 4462 { 4463 struct ext4_sb_info *sbi = EXT4_SB(sb); 4464 4465 /* Initialize fast commit stuff */ 4466 atomic_set(&sbi->s_fc_subtid, 0); 4467 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]); 4468 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]); 4469 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]); 4470 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]); 4471 sbi->s_fc_bytes = 0; 4472 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); 4473 sbi->s_fc_ineligible_tid = 0; 4474 spin_lock_init(&sbi->s_fc_lock); 4475 memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats)); 4476 sbi->s_fc_replay_state.fc_regions = NULL; 4477 sbi->s_fc_replay_state.fc_regions_size = 0; 4478 sbi->s_fc_replay_state.fc_regions_used = 0; 4479 sbi->s_fc_replay_state.fc_regions_valid = 0; 4480 sbi->s_fc_replay_state.fc_modified_inodes = NULL; 4481 sbi->s_fc_replay_state.fc_modified_inodes_size = 0; 4482 sbi->s_fc_replay_state.fc_modified_inodes_used = 0; 4483 } 4484 4485 static int ext4_inode_info_init(struct super_block *sb, 4486 struct ext4_super_block *es) 4487 { 4488 struct ext4_sb_info *sbi = EXT4_SB(sb); 4489 4490 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 4491 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 4492 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 4493 } else { 4494 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 4495 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 4496 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) { 4497 ext4_msg(sb, KERN_ERR, "invalid first ino: %u", 4498 sbi->s_first_ino); 4499 return -EINVAL; 4500 } 4501 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 4502 (!is_power_of_2(sbi->s_inode_size)) || 4503 (sbi->s_inode_size > sb->s_blocksize)) { 4504 ext4_msg(sb, KERN_ERR, 4505 "unsupported inode size: %d", 4506 sbi->s_inode_size); 4507 ext4_msg(sb, KERN_ERR, "blocksize: %lu", sb->s_blocksize); 4508 return -EINVAL; 4509 } 4510 /* 4511 * i_atime_extra is the last extra field available for 4512 * [acm]times in struct ext4_inode. Checking for that 4513 * field should suffice to ensure we have extra space 4514 * for all three. 4515 */ 4516 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) + 4517 sizeof(((struct ext4_inode *)0)->i_atime_extra)) { 4518 sb->s_time_gran = 1; 4519 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX; 4520 } else { 4521 sb->s_time_gran = NSEC_PER_SEC; 4522 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX; 4523 } 4524 sb->s_time_min = EXT4_TIMESTAMP_MIN; 4525 } 4526 4527 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 4528 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4529 EXT4_GOOD_OLD_INODE_SIZE; 4530 if (ext4_has_feature_extra_isize(sb)) { 4531 unsigned v, max = (sbi->s_inode_size - 4532 EXT4_GOOD_OLD_INODE_SIZE); 4533 4534 v = le16_to_cpu(es->s_want_extra_isize); 4535 if (v > max) { 4536 ext4_msg(sb, KERN_ERR, 4537 "bad s_want_extra_isize: %d", v); 4538 return -EINVAL; 4539 } 4540 if (sbi->s_want_extra_isize < v) 4541 sbi->s_want_extra_isize = v; 4542 4543 v = le16_to_cpu(es->s_min_extra_isize); 4544 if (v > max) { 4545 ext4_msg(sb, KERN_ERR, 4546 "bad s_min_extra_isize: %d", v); 4547 return -EINVAL; 4548 } 4549 if (sbi->s_want_extra_isize < v) 4550 sbi->s_want_extra_isize = v; 4551 } 4552 } 4553 4554 return 0; 4555 } 4556 4557 #if IS_ENABLED(CONFIG_UNICODE) 4558 static int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es) 4559 { 4560 const struct ext4_sb_encodings *encoding_info; 4561 struct unicode_map *encoding; 4562 __u16 encoding_flags = le16_to_cpu(es->s_encoding_flags); 4563 4564 if (!ext4_has_feature_casefold(sb) || sb->s_encoding) 4565 return 0; 4566 4567 encoding_info = ext4_sb_read_encoding(es); 4568 if (!encoding_info) { 4569 ext4_msg(sb, KERN_ERR, 4570 "Encoding requested by superblock is unknown"); 4571 return -EINVAL; 4572 } 4573 4574 encoding = utf8_load(encoding_info->version); 4575 if (IS_ERR(encoding)) { 4576 ext4_msg(sb, KERN_ERR, 4577 "can't mount with superblock charset: %s-%u.%u.%u " 4578 "not supported by the kernel. flags: 0x%x.", 4579 encoding_info->name, 4580 unicode_major(encoding_info->version), 4581 unicode_minor(encoding_info->version), 4582 unicode_rev(encoding_info->version), 4583 encoding_flags); 4584 return -EINVAL; 4585 } 4586 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: " 4587 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name, 4588 unicode_major(encoding_info->version), 4589 unicode_minor(encoding_info->version), 4590 unicode_rev(encoding_info->version), 4591 encoding_flags); 4592 4593 sb->s_encoding = encoding; 4594 sb->s_encoding_flags = encoding_flags; 4595 4596 return 0; 4597 } 4598 #else 4599 static inline int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es) 4600 { 4601 return 0; 4602 } 4603 #endif 4604 4605 static int ext4_init_metadata_csum(struct super_block *sb, struct ext4_super_block *es) 4606 { 4607 struct ext4_sb_info *sbi = EXT4_SB(sb); 4608 4609 /* Warn if metadata_csum and gdt_csum are both set. */ 4610 if (ext4_has_feature_metadata_csum(sb) && 4611 ext4_has_feature_gdt_csum(sb)) 4612 ext4_warning(sb, "metadata_csum and uninit_bg are " 4613 "redundant flags; please run fsck."); 4614 4615 /* Check for a known checksum algorithm */ 4616 if (!ext4_verify_csum_type(sb, es)) { 4617 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 4618 "unknown checksum algorithm."); 4619 return -EINVAL; 4620 } 4621 ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE, 4622 ext4_orphan_file_block_trigger); 4623 4624 /* Load the checksum driver */ 4625 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 4626 if (IS_ERR(sbi->s_chksum_driver)) { 4627 int ret = PTR_ERR(sbi->s_chksum_driver); 4628 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 4629 sbi->s_chksum_driver = NULL; 4630 return ret; 4631 } 4632 4633 /* Check superblock checksum */ 4634 if (!ext4_superblock_csum_verify(sb, es)) { 4635 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 4636 "invalid superblock checksum. Run e2fsck?"); 4637 return -EFSBADCRC; 4638 } 4639 4640 /* Precompute checksum seed for all metadata */ 4641 if (ext4_has_feature_csum_seed(sb)) 4642 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); 4643 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb)) 4644 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 4645 sizeof(es->s_uuid)); 4646 return 0; 4647 } 4648 4649 static int ext4_check_feature_compatibility(struct super_block *sb, 4650 struct ext4_super_block *es, 4651 int silent) 4652 { 4653 struct ext4_sb_info *sbi = EXT4_SB(sb); 4654 4655 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 4656 (ext4_has_compat_features(sb) || 4657 ext4_has_ro_compat_features(sb) || 4658 ext4_has_incompat_features(sb))) 4659 ext4_msg(sb, KERN_WARNING, 4660 "feature flags set on rev 0 fs, " 4661 "running e2fsck is recommended"); 4662 4663 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 4664 set_opt2(sb, HURD_COMPAT); 4665 if (ext4_has_feature_64bit(sb)) { 4666 ext4_msg(sb, KERN_ERR, 4667 "The Hurd can't support 64-bit file systems"); 4668 return -EINVAL; 4669 } 4670 4671 /* 4672 * ea_inode feature uses l_i_version field which is not 4673 * available in HURD_COMPAT mode. 4674 */ 4675 if (ext4_has_feature_ea_inode(sb)) { 4676 ext4_msg(sb, KERN_ERR, 4677 "ea_inode feature is not supported for Hurd"); 4678 return -EINVAL; 4679 } 4680 } 4681 4682 if (IS_EXT2_SB(sb)) { 4683 if (ext2_feature_set_ok(sb)) 4684 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 4685 "using the ext4 subsystem"); 4686 else { 4687 /* 4688 * If we're probing be silent, if this looks like 4689 * it's actually an ext[34] filesystem. 4690 */ 4691 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4692 return -EINVAL; 4693 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 4694 "to feature incompatibilities"); 4695 return -EINVAL; 4696 } 4697 } 4698 4699 if (IS_EXT3_SB(sb)) { 4700 if (ext3_feature_set_ok(sb)) 4701 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 4702 "using the ext4 subsystem"); 4703 else { 4704 /* 4705 * If we're probing be silent, if this looks like 4706 * it's actually an ext4 filesystem. 4707 */ 4708 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4709 return -EINVAL; 4710 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 4711 "to feature incompatibilities"); 4712 return -EINVAL; 4713 } 4714 } 4715 4716 /* 4717 * Check feature flags regardless of the revision level, since we 4718 * previously didn't change the revision level when setting the flags, 4719 * so there is a chance incompat flags are set on a rev 0 filesystem. 4720 */ 4721 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb)))) 4722 return -EINVAL; 4723 4724 if (sbi->s_daxdev) { 4725 if (sb->s_blocksize == PAGE_SIZE) 4726 set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags); 4727 else 4728 ext4_msg(sb, KERN_ERR, "unsupported blocksize for DAX\n"); 4729 } 4730 4731 if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) { 4732 if (ext4_has_feature_inline_data(sb)) { 4733 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem" 4734 " that may contain inline data"); 4735 return -EINVAL; 4736 } 4737 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) { 4738 ext4_msg(sb, KERN_ERR, 4739 "DAX unsupported by block device."); 4740 return -EINVAL; 4741 } 4742 } 4743 4744 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { 4745 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 4746 es->s_encryption_level); 4747 return -EINVAL; 4748 } 4749 4750 return 0; 4751 } 4752 4753 static int ext4_check_geometry(struct super_block *sb, 4754 struct ext4_super_block *es) 4755 { 4756 struct ext4_sb_info *sbi = EXT4_SB(sb); 4757 __u64 blocks_count; 4758 int err; 4759 4760 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (sb->s_blocksize / 4)) { 4761 ext4_msg(sb, KERN_ERR, 4762 "Number of reserved GDT blocks insanely large: %d", 4763 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks)); 4764 return -EINVAL; 4765 } 4766 /* 4767 * Test whether we have more sectors than will fit in sector_t, 4768 * and whether the max offset is addressable by the page cache. 4769 */ 4770 err = generic_check_addressable(sb->s_blocksize_bits, 4771 ext4_blocks_count(es)); 4772 if (err) { 4773 ext4_msg(sb, KERN_ERR, "filesystem" 4774 " too large to mount safely on this system"); 4775 return err; 4776 } 4777 4778 /* check blocks count against device size */ 4779 blocks_count = sb_bdev_nr_blocks(sb); 4780 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 4781 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 4782 "exceeds size of device (%llu blocks)", 4783 ext4_blocks_count(es), blocks_count); 4784 return -EINVAL; 4785 } 4786 4787 /* 4788 * It makes no sense for the first data block to be beyond the end 4789 * of the filesystem. 4790 */ 4791 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 4792 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4793 "block %u is beyond end of filesystem (%llu)", 4794 le32_to_cpu(es->s_first_data_block), 4795 ext4_blocks_count(es)); 4796 return -EINVAL; 4797 } 4798 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) && 4799 (sbi->s_cluster_ratio == 1)) { 4800 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4801 "block is 0 with a 1k block and cluster size"); 4802 return -EINVAL; 4803 } 4804 4805 blocks_count = (ext4_blocks_count(es) - 4806 le32_to_cpu(es->s_first_data_block) + 4807 EXT4_BLOCKS_PER_GROUP(sb) - 1); 4808 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 4809 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 4810 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu " 4811 "(block count %llu, first data block %u, " 4812 "blocks per group %lu)", blocks_count, 4813 ext4_blocks_count(es), 4814 le32_to_cpu(es->s_first_data_block), 4815 EXT4_BLOCKS_PER_GROUP(sb)); 4816 return -EINVAL; 4817 } 4818 sbi->s_groups_count = blocks_count; 4819 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 4820 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 4821 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) != 4822 le32_to_cpu(es->s_inodes_count)) { 4823 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu", 4824 le32_to_cpu(es->s_inodes_count), 4825 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group)); 4826 return -EINVAL; 4827 } 4828 4829 return 0; 4830 } 4831 4832 static int ext4_group_desc_init(struct super_block *sb, 4833 struct ext4_super_block *es, 4834 ext4_fsblk_t logical_sb_block, 4835 ext4_group_t *first_not_zeroed) 4836 { 4837 struct ext4_sb_info *sbi = EXT4_SB(sb); 4838 unsigned int db_count; 4839 ext4_fsblk_t block; 4840 int i; 4841 4842 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 4843 EXT4_DESC_PER_BLOCK(sb); 4844 if (ext4_has_feature_meta_bg(sb)) { 4845 if (le32_to_cpu(es->s_first_meta_bg) > db_count) { 4846 ext4_msg(sb, KERN_WARNING, 4847 "first meta block group too large: %u " 4848 "(group descriptor block count %u)", 4849 le32_to_cpu(es->s_first_meta_bg), db_count); 4850 return -EINVAL; 4851 } 4852 } 4853 rcu_assign_pointer(sbi->s_group_desc, 4854 kvmalloc_array(db_count, 4855 sizeof(struct buffer_head *), 4856 GFP_KERNEL)); 4857 if (sbi->s_group_desc == NULL) { 4858 ext4_msg(sb, KERN_ERR, "not enough memory"); 4859 return -ENOMEM; 4860 } 4861 4862 bgl_lock_init(sbi->s_blockgroup_lock); 4863 4864 /* Pre-read the descriptors into the buffer cache */ 4865 for (i = 0; i < db_count; i++) { 4866 block = descriptor_loc(sb, logical_sb_block, i); 4867 ext4_sb_breadahead_unmovable(sb, block); 4868 } 4869 4870 for (i = 0; i < db_count; i++) { 4871 struct buffer_head *bh; 4872 4873 block = descriptor_loc(sb, logical_sb_block, i); 4874 bh = ext4_sb_bread_unmovable(sb, block); 4875 if (IS_ERR(bh)) { 4876 ext4_msg(sb, KERN_ERR, 4877 "can't read group descriptor %d", i); 4878 sbi->s_gdb_count = i; 4879 return PTR_ERR(bh); 4880 } 4881 rcu_read_lock(); 4882 rcu_dereference(sbi->s_group_desc)[i] = bh; 4883 rcu_read_unlock(); 4884 } 4885 sbi->s_gdb_count = db_count; 4886 if (!ext4_check_descriptors(sb, logical_sb_block, first_not_zeroed)) { 4887 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 4888 return -EFSCORRUPTED; 4889 } 4890 4891 return 0; 4892 } 4893 4894 static int ext4_load_and_init_journal(struct super_block *sb, 4895 struct ext4_super_block *es, 4896 struct ext4_fs_context *ctx) 4897 { 4898 struct ext4_sb_info *sbi = EXT4_SB(sb); 4899 int err; 4900 4901 err = ext4_load_journal(sb, es, ctx->journal_devnum); 4902 if (err) 4903 return err; 4904 4905 if (ext4_has_feature_64bit(sb) && 4906 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4907 JBD2_FEATURE_INCOMPAT_64BIT)) { 4908 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 4909 goto out; 4910 } 4911 4912 if (!set_journal_csum_feature_set(sb)) { 4913 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 4914 "feature set"); 4915 goto out; 4916 } 4917 4918 if (test_opt2(sb, JOURNAL_FAST_COMMIT) && 4919 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4920 JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) { 4921 ext4_msg(sb, KERN_ERR, 4922 "Failed to set fast commit journal feature"); 4923 goto out; 4924 } 4925 4926 /* We have now updated the journal if required, so we can 4927 * validate the data journaling mode. */ 4928 switch (test_opt(sb, DATA_FLAGS)) { 4929 case 0: 4930 /* No mode set, assume a default based on the journal 4931 * capabilities: ORDERED_DATA if the journal can 4932 * cope, else JOURNAL_DATA 4933 */ 4934 if (jbd2_journal_check_available_features 4935 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4936 set_opt(sb, ORDERED_DATA); 4937 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA; 4938 } else { 4939 set_opt(sb, JOURNAL_DATA); 4940 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA; 4941 } 4942 break; 4943 4944 case EXT4_MOUNT_ORDERED_DATA: 4945 case EXT4_MOUNT_WRITEBACK_DATA: 4946 if (!jbd2_journal_check_available_features 4947 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4948 ext4_msg(sb, KERN_ERR, "Journal does not support " 4949 "requested data journaling mode"); 4950 goto out; 4951 } 4952 break; 4953 default: 4954 break; 4955 } 4956 4957 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 4958 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4959 ext4_msg(sb, KERN_ERR, "can't mount with " 4960 "journal_async_commit in data=ordered mode"); 4961 goto out; 4962 } 4963 4964 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio); 4965 4966 sbi->s_journal->j_submit_inode_data_buffers = 4967 ext4_journal_submit_inode_data_buffers; 4968 sbi->s_journal->j_finish_inode_data_buffers = 4969 ext4_journal_finish_inode_data_buffers; 4970 4971 return 0; 4972 4973 out: 4974 /* flush s_sb_upd_work before destroying the journal. */ 4975 flush_work(&sbi->s_sb_upd_work); 4976 jbd2_journal_destroy(sbi->s_journal); 4977 sbi->s_journal = NULL; 4978 return -EINVAL; 4979 } 4980 4981 static int ext4_check_journal_data_mode(struct super_block *sb) 4982 { 4983 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 4984 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with " 4985 "data=journal disables delayed allocation, " 4986 "dioread_nolock, O_DIRECT and fast_commit support!\n"); 4987 /* can't mount with both data=journal and dioread_nolock. */ 4988 clear_opt(sb, DIOREAD_NOLOCK); 4989 clear_opt2(sb, JOURNAL_FAST_COMMIT); 4990 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 4991 ext4_msg(sb, KERN_ERR, "can't mount with " 4992 "both data=journal and delalloc"); 4993 return -EINVAL; 4994 } 4995 if (test_opt(sb, DAX_ALWAYS)) { 4996 ext4_msg(sb, KERN_ERR, "can't mount with " 4997 "both data=journal and dax"); 4998 return -EINVAL; 4999 } 5000 if (ext4_has_feature_encrypt(sb)) { 5001 ext4_msg(sb, KERN_WARNING, 5002 "encrypted files will use data=ordered " 5003 "instead of data journaling mode"); 5004 } 5005 if (test_opt(sb, DELALLOC)) 5006 clear_opt(sb, DELALLOC); 5007 } else { 5008 sb->s_iflags |= SB_I_CGROUPWB; 5009 } 5010 5011 return 0; 5012 } 5013 5014 static int ext4_load_super(struct super_block *sb, ext4_fsblk_t *lsb, 5015 int silent) 5016 { 5017 struct ext4_sb_info *sbi = EXT4_SB(sb); 5018 struct ext4_super_block *es; 5019 ext4_fsblk_t logical_sb_block; 5020 unsigned long offset = 0; 5021 struct buffer_head *bh; 5022 int ret = -EINVAL; 5023 int blocksize; 5024 5025 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 5026 if (!blocksize) { 5027 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 5028 return -EINVAL; 5029 } 5030 5031 /* 5032 * The ext4 superblock will not be buffer aligned for other than 1kB 5033 * block sizes. We need to calculate the offset from buffer start. 5034 */ 5035 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 5036 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE; 5037 offset = do_div(logical_sb_block, blocksize); 5038 } else { 5039 logical_sb_block = sbi->s_sb_block; 5040 } 5041 5042 bh = ext4_sb_bread_unmovable(sb, logical_sb_block); 5043 if (IS_ERR(bh)) { 5044 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 5045 return PTR_ERR(bh); 5046 } 5047 /* 5048 * Note: s_es must be initialized as soon as possible because 5049 * some ext4 macro-instructions depend on its value 5050 */ 5051 es = (struct ext4_super_block *) (bh->b_data + offset); 5052 sbi->s_es = es; 5053 sb->s_magic = le16_to_cpu(es->s_magic); 5054 if (sb->s_magic != EXT4_SUPER_MAGIC) { 5055 if (!silent) 5056 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 5057 goto out; 5058 } 5059 5060 if (le32_to_cpu(es->s_log_block_size) > 5061 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 5062 ext4_msg(sb, KERN_ERR, 5063 "Invalid log block size: %u", 5064 le32_to_cpu(es->s_log_block_size)); 5065 goto out; 5066 } 5067 if (le32_to_cpu(es->s_log_cluster_size) > 5068 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 5069 ext4_msg(sb, KERN_ERR, 5070 "Invalid log cluster size: %u", 5071 le32_to_cpu(es->s_log_cluster_size)); 5072 goto out; 5073 } 5074 5075 blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 5076 5077 /* 5078 * If the default block size is not the same as the real block size, 5079 * we need to reload it. 5080 */ 5081 if (sb->s_blocksize == blocksize) { 5082 *lsb = logical_sb_block; 5083 sbi->s_sbh = bh; 5084 return 0; 5085 } 5086 5087 /* 5088 * bh must be released before kill_bdev(), otherwise 5089 * it won't be freed and its page also. kill_bdev() 5090 * is called by sb_set_blocksize(). 5091 */ 5092 brelse(bh); 5093 /* Validate the filesystem blocksize */ 5094 if (!sb_set_blocksize(sb, blocksize)) { 5095 ext4_msg(sb, KERN_ERR, "bad block size %d", 5096 blocksize); 5097 bh = NULL; 5098 goto out; 5099 } 5100 5101 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE; 5102 offset = do_div(logical_sb_block, blocksize); 5103 bh = ext4_sb_bread_unmovable(sb, logical_sb_block); 5104 if (IS_ERR(bh)) { 5105 ext4_msg(sb, KERN_ERR, "Can't read superblock on 2nd try"); 5106 ret = PTR_ERR(bh); 5107 bh = NULL; 5108 goto out; 5109 } 5110 es = (struct ext4_super_block *)(bh->b_data + offset); 5111 sbi->s_es = es; 5112 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 5113 ext4_msg(sb, KERN_ERR, "Magic mismatch, very weird!"); 5114 goto out; 5115 } 5116 *lsb = logical_sb_block; 5117 sbi->s_sbh = bh; 5118 return 0; 5119 out: 5120 brelse(bh); 5121 return ret; 5122 } 5123 5124 static void ext4_hash_info_init(struct super_block *sb) 5125 { 5126 struct ext4_sb_info *sbi = EXT4_SB(sb); 5127 struct ext4_super_block *es = sbi->s_es; 5128 unsigned int i; 5129 5130 for (i = 0; i < 4; i++) 5131 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 5132 5133 sbi->s_def_hash_version = es->s_def_hash_version; 5134 if (ext4_has_feature_dir_index(sb)) { 5135 i = le32_to_cpu(es->s_flags); 5136 if (i & EXT2_FLAGS_UNSIGNED_HASH) 5137 sbi->s_hash_unsigned = 3; 5138 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 5139 #ifdef __CHAR_UNSIGNED__ 5140 if (!sb_rdonly(sb)) 5141 es->s_flags |= 5142 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 5143 sbi->s_hash_unsigned = 3; 5144 #else 5145 if (!sb_rdonly(sb)) 5146 es->s_flags |= 5147 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 5148 #endif 5149 } 5150 } 5151 } 5152 5153 static int ext4_block_group_meta_init(struct super_block *sb, int silent) 5154 { 5155 struct ext4_sb_info *sbi = EXT4_SB(sb); 5156 struct ext4_super_block *es = sbi->s_es; 5157 int has_huge_files; 5158 5159 has_huge_files = ext4_has_feature_huge_file(sb); 5160 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 5161 has_huge_files); 5162 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 5163 5164 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 5165 if (ext4_has_feature_64bit(sb)) { 5166 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 5167 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 5168 !is_power_of_2(sbi->s_desc_size)) { 5169 ext4_msg(sb, KERN_ERR, 5170 "unsupported descriptor size %lu", 5171 sbi->s_desc_size); 5172 return -EINVAL; 5173 } 5174 } else 5175 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 5176 5177 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 5178 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 5179 5180 sbi->s_inodes_per_block = sb->s_blocksize / EXT4_INODE_SIZE(sb); 5181 if (sbi->s_inodes_per_block == 0 || sbi->s_blocks_per_group == 0) { 5182 if (!silent) 5183 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 5184 return -EINVAL; 5185 } 5186 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block || 5187 sbi->s_inodes_per_group > sb->s_blocksize * 8) { 5188 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n", 5189 sbi->s_inodes_per_group); 5190 return -EINVAL; 5191 } 5192 sbi->s_itb_per_group = sbi->s_inodes_per_group / 5193 sbi->s_inodes_per_block; 5194 sbi->s_desc_per_block = sb->s_blocksize / EXT4_DESC_SIZE(sb); 5195 sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY; 5196 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 5197 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 5198 5199 return 0; 5200 } 5201 5202 static int __ext4_fill_super(struct fs_context *fc, struct super_block *sb) 5203 { 5204 struct ext4_super_block *es = NULL; 5205 struct ext4_sb_info *sbi = EXT4_SB(sb); 5206 ext4_fsblk_t logical_sb_block; 5207 struct inode *root; 5208 int needs_recovery; 5209 int err; 5210 ext4_group_t first_not_zeroed; 5211 struct ext4_fs_context *ctx = fc->fs_private; 5212 int silent = fc->sb_flags & SB_SILENT; 5213 5214 /* Set defaults for the variables that will be set during parsing */ 5215 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) 5216 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 5217 5218 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 5219 sbi->s_sectors_written_start = 5220 part_stat_read(sb->s_bdev, sectors[STAT_WRITE]); 5221 5222 err = ext4_load_super(sb, &logical_sb_block, silent); 5223 if (err) 5224 goto out_fail; 5225 5226 es = sbi->s_es; 5227 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 5228 5229 err = ext4_init_metadata_csum(sb, es); 5230 if (err) 5231 goto failed_mount; 5232 5233 ext4_set_def_opts(sb, es); 5234 5235 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 5236 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 5237 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 5238 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 5239 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 5240 5241 /* 5242 * set default s_li_wait_mult for lazyinit, for the case there is 5243 * no mount option specified. 5244 */ 5245 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 5246 5247 err = ext4_inode_info_init(sb, es); 5248 if (err) 5249 goto failed_mount; 5250 5251 err = parse_apply_sb_mount_options(sb, ctx); 5252 if (err < 0) 5253 goto failed_mount; 5254 5255 sbi->s_def_mount_opt = sbi->s_mount_opt; 5256 sbi->s_def_mount_opt2 = sbi->s_mount_opt2; 5257 5258 err = ext4_check_opt_consistency(fc, sb); 5259 if (err < 0) 5260 goto failed_mount; 5261 5262 ext4_apply_options(fc, sb); 5263 5264 err = ext4_encoding_init(sb, es); 5265 if (err) 5266 goto failed_mount; 5267 5268 err = ext4_check_journal_data_mode(sb); 5269 if (err) 5270 goto failed_mount; 5271 5272 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 5273 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 5274 5275 /* i_version is always enabled now */ 5276 sb->s_flags |= SB_I_VERSION; 5277 5278 err = ext4_check_feature_compatibility(sb, es, silent); 5279 if (err) 5280 goto failed_mount; 5281 5282 err = ext4_block_group_meta_init(sb, silent); 5283 if (err) 5284 goto failed_mount; 5285 5286 ext4_hash_info_init(sb); 5287 5288 err = ext4_handle_clustersize(sb); 5289 if (err) 5290 goto failed_mount; 5291 5292 err = ext4_check_geometry(sb, es); 5293 if (err) 5294 goto failed_mount; 5295 5296 timer_setup(&sbi->s_err_report, print_daily_error_info, 0); 5297 spin_lock_init(&sbi->s_error_lock); 5298 INIT_WORK(&sbi->s_sb_upd_work, update_super_work); 5299 5300 err = ext4_group_desc_init(sb, es, logical_sb_block, &first_not_zeroed); 5301 if (err) 5302 goto failed_mount3; 5303 5304 err = ext4_es_register_shrinker(sbi); 5305 if (err) 5306 goto failed_mount3; 5307 5308 sbi->s_stripe = ext4_get_stripe_size(sbi); 5309 /* 5310 * It's hard to get stripe aligned blocks if stripe is not aligned with 5311 * cluster, just disable stripe and alert user to simpfy code and avoid 5312 * stripe aligned allocation which will rarely successes. 5313 */ 5314 if (sbi->s_stripe > 0 && sbi->s_cluster_ratio > 1 && 5315 sbi->s_stripe % sbi->s_cluster_ratio != 0) { 5316 ext4_msg(sb, KERN_WARNING, 5317 "stripe (%lu) is not aligned with cluster size (%u), " 5318 "stripe is disabled", 5319 sbi->s_stripe, sbi->s_cluster_ratio); 5320 sbi->s_stripe = 0; 5321 } 5322 sbi->s_extent_max_zeroout_kb = 32; 5323 5324 /* 5325 * set up enough so that it can read an inode 5326 */ 5327 sb->s_op = &ext4_sops; 5328 sb->s_export_op = &ext4_export_ops; 5329 sb->s_xattr = ext4_xattr_handlers; 5330 #ifdef CONFIG_FS_ENCRYPTION 5331 sb->s_cop = &ext4_cryptops; 5332 #endif 5333 #ifdef CONFIG_FS_VERITY 5334 sb->s_vop = &ext4_verityops; 5335 #endif 5336 #ifdef CONFIG_QUOTA 5337 sb->dq_op = &ext4_quota_operations; 5338 if (ext4_has_feature_quota(sb)) 5339 sb->s_qcop = &dquot_quotactl_sysfile_ops; 5340 else 5341 sb->s_qcop = &ext4_qctl_operations; 5342 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 5343 #endif 5344 super_set_uuid(sb, es->s_uuid, sizeof(es->s_uuid)); 5345 5346 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 5347 mutex_init(&sbi->s_orphan_lock); 5348 5349 ext4_fast_commit_init(sb); 5350 5351 sb->s_root = NULL; 5352 5353 needs_recovery = (es->s_last_orphan != 0 || 5354 ext4_has_feature_orphan_present(sb) || 5355 ext4_has_feature_journal_needs_recovery(sb)); 5356 5357 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) { 5358 err = ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)); 5359 if (err) 5360 goto failed_mount3a; 5361 } 5362 5363 err = -EINVAL; 5364 /* 5365 * The first inode we look at is the journal inode. Don't try 5366 * root first: it may be modified in the journal! 5367 */ 5368 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { 5369 err = ext4_load_and_init_journal(sb, es, ctx); 5370 if (err) 5371 goto failed_mount3a; 5372 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) && 5373 ext4_has_feature_journal_needs_recovery(sb)) { 5374 ext4_msg(sb, KERN_ERR, "required journal recovery " 5375 "suppressed and not mounted read-only"); 5376 goto failed_mount3a; 5377 } else { 5378 /* Nojournal mode, all journal mount options are illegal */ 5379 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 5380 ext4_msg(sb, KERN_ERR, "can't mount with " 5381 "journal_async_commit, fs mounted w/o journal"); 5382 goto failed_mount3a; 5383 } 5384 5385 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) { 5386 ext4_msg(sb, KERN_ERR, "can't mount with " 5387 "journal_checksum, fs mounted w/o journal"); 5388 goto failed_mount3a; 5389 } 5390 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 5391 ext4_msg(sb, KERN_ERR, "can't mount with " 5392 "commit=%lu, fs mounted w/o journal", 5393 sbi->s_commit_interval / HZ); 5394 goto failed_mount3a; 5395 } 5396 if (EXT4_MOUNT_DATA_FLAGS & 5397 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 5398 ext4_msg(sb, KERN_ERR, "can't mount with " 5399 "data=, fs mounted w/o journal"); 5400 goto failed_mount3a; 5401 } 5402 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM; 5403 clear_opt(sb, JOURNAL_CHECKSUM); 5404 clear_opt(sb, DATA_FLAGS); 5405 clear_opt2(sb, JOURNAL_FAST_COMMIT); 5406 sbi->s_journal = NULL; 5407 needs_recovery = 0; 5408 } 5409 5410 if (!test_opt(sb, NO_MBCACHE)) { 5411 sbi->s_ea_block_cache = ext4_xattr_create_cache(); 5412 if (!sbi->s_ea_block_cache) { 5413 ext4_msg(sb, KERN_ERR, 5414 "Failed to create ea_block_cache"); 5415 err = -EINVAL; 5416 goto failed_mount_wq; 5417 } 5418 5419 if (ext4_has_feature_ea_inode(sb)) { 5420 sbi->s_ea_inode_cache = ext4_xattr_create_cache(); 5421 if (!sbi->s_ea_inode_cache) { 5422 ext4_msg(sb, KERN_ERR, 5423 "Failed to create ea_inode_cache"); 5424 err = -EINVAL; 5425 goto failed_mount_wq; 5426 } 5427 } 5428 } 5429 5430 /* 5431 * Get the # of file system overhead blocks from the 5432 * superblock if present. 5433 */ 5434 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 5435 /* ignore the precalculated value if it is ridiculous */ 5436 if (sbi->s_overhead > ext4_blocks_count(es)) 5437 sbi->s_overhead = 0; 5438 /* 5439 * If the bigalloc feature is not enabled recalculating the 5440 * overhead doesn't take long, so we might as well just redo 5441 * it to make sure we are using the correct value. 5442 */ 5443 if (!ext4_has_feature_bigalloc(sb)) 5444 sbi->s_overhead = 0; 5445 if (sbi->s_overhead == 0) { 5446 err = ext4_calculate_overhead(sb); 5447 if (err) 5448 goto failed_mount_wq; 5449 } 5450 5451 /* 5452 * The maximum number of concurrent works can be high and 5453 * concurrency isn't really necessary. Limit it to 1. 5454 */ 5455 EXT4_SB(sb)->rsv_conversion_wq = 5456 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 5457 if (!EXT4_SB(sb)->rsv_conversion_wq) { 5458 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 5459 err = -ENOMEM; 5460 goto failed_mount4; 5461 } 5462 5463 /* 5464 * The jbd2_journal_load will have done any necessary log recovery, 5465 * so we can safely mount the rest of the filesystem now. 5466 */ 5467 5468 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL); 5469 if (IS_ERR(root)) { 5470 ext4_msg(sb, KERN_ERR, "get root inode failed"); 5471 err = PTR_ERR(root); 5472 root = NULL; 5473 goto failed_mount4; 5474 } 5475 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 5476 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 5477 iput(root); 5478 err = -EFSCORRUPTED; 5479 goto failed_mount4; 5480 } 5481 5482 generic_set_sb_d_ops(sb); 5483 sb->s_root = d_make_root(root); 5484 if (!sb->s_root) { 5485 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 5486 err = -ENOMEM; 5487 goto failed_mount4; 5488 } 5489 5490 err = ext4_setup_super(sb, es, sb_rdonly(sb)); 5491 if (err == -EROFS) { 5492 sb->s_flags |= SB_RDONLY; 5493 } else if (err) 5494 goto failed_mount4a; 5495 5496 ext4_set_resv_clusters(sb); 5497 5498 if (test_opt(sb, BLOCK_VALIDITY)) { 5499 err = ext4_setup_system_zone(sb); 5500 if (err) { 5501 ext4_msg(sb, KERN_ERR, "failed to initialize system " 5502 "zone (%d)", err); 5503 goto failed_mount4a; 5504 } 5505 } 5506 ext4_fc_replay_cleanup(sb); 5507 5508 ext4_ext_init(sb); 5509 5510 /* 5511 * Enable optimize_scan if number of groups is > threshold. This can be 5512 * turned off by passing "mb_optimize_scan=0". This can also be 5513 * turned on forcefully by passing "mb_optimize_scan=1". 5514 */ 5515 if (!(ctx->spec & EXT4_SPEC_mb_optimize_scan)) { 5516 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD) 5517 set_opt2(sb, MB_OPTIMIZE_SCAN); 5518 else 5519 clear_opt2(sb, MB_OPTIMIZE_SCAN); 5520 } 5521 5522 err = ext4_mb_init(sb); 5523 if (err) { 5524 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 5525 err); 5526 goto failed_mount5; 5527 } 5528 5529 /* 5530 * We can only set up the journal commit callback once 5531 * mballoc is initialized 5532 */ 5533 if (sbi->s_journal) 5534 sbi->s_journal->j_commit_callback = 5535 ext4_journal_commit_callback; 5536 5537 err = ext4_percpu_param_init(sbi); 5538 if (err) 5539 goto failed_mount6; 5540 5541 if (ext4_has_feature_flex_bg(sb)) 5542 if (!ext4_fill_flex_info(sb)) { 5543 ext4_msg(sb, KERN_ERR, 5544 "unable to initialize " 5545 "flex_bg meta info!"); 5546 err = -ENOMEM; 5547 goto failed_mount6; 5548 } 5549 5550 err = ext4_register_li_request(sb, first_not_zeroed); 5551 if (err) 5552 goto failed_mount6; 5553 5554 err = ext4_register_sysfs(sb); 5555 if (err) 5556 goto failed_mount7; 5557 5558 err = ext4_init_orphan_info(sb); 5559 if (err) 5560 goto failed_mount8; 5561 #ifdef CONFIG_QUOTA 5562 /* Enable quota usage during mount. */ 5563 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) { 5564 err = ext4_enable_quotas(sb); 5565 if (err) 5566 goto failed_mount9; 5567 } 5568 #endif /* CONFIG_QUOTA */ 5569 5570 /* 5571 * Save the original bdev mapping's wb_err value which could be 5572 * used to detect the metadata async write error. 5573 */ 5574 spin_lock_init(&sbi->s_bdev_wb_lock); 5575 errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err, 5576 &sbi->s_bdev_wb_err); 5577 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 5578 ext4_orphan_cleanup(sb, es); 5579 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 5580 /* 5581 * Update the checksum after updating free space/inode counters and 5582 * ext4_orphan_cleanup. Otherwise the superblock can have an incorrect 5583 * checksum in the buffer cache until it is written out and 5584 * e2fsprogs programs trying to open a file system immediately 5585 * after it is mounted can fail. 5586 */ 5587 ext4_superblock_csum_set(sb); 5588 if (needs_recovery) { 5589 ext4_msg(sb, KERN_INFO, "recovery complete"); 5590 err = ext4_mark_recovery_complete(sb, es); 5591 if (err) 5592 goto failed_mount10; 5593 } 5594 5595 if (test_opt(sb, DISCARD) && !bdev_max_discard_sectors(sb->s_bdev)) 5596 ext4_msg(sb, KERN_WARNING, 5597 "mounting with \"discard\" option, but the device does not support discard"); 5598 5599 if (es->s_error_count) 5600 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 5601 5602 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 5603 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 5604 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 5605 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 5606 atomic_set(&sbi->s_warning_count, 0); 5607 atomic_set(&sbi->s_msg_count, 0); 5608 5609 return 0; 5610 5611 failed_mount10: 5612 ext4_quotas_off(sb, EXT4_MAXQUOTAS); 5613 failed_mount9: __maybe_unused 5614 ext4_release_orphan_info(sb); 5615 failed_mount8: 5616 ext4_unregister_sysfs(sb); 5617 kobject_put(&sbi->s_kobj); 5618 failed_mount7: 5619 ext4_unregister_li_request(sb); 5620 failed_mount6: 5621 ext4_mb_release(sb); 5622 ext4_flex_groups_free(sbi); 5623 ext4_percpu_param_destroy(sbi); 5624 failed_mount5: 5625 ext4_ext_release(sb); 5626 ext4_release_system_zone(sb); 5627 failed_mount4a: 5628 dput(sb->s_root); 5629 sb->s_root = NULL; 5630 failed_mount4: 5631 ext4_msg(sb, KERN_ERR, "mount failed"); 5632 if (EXT4_SB(sb)->rsv_conversion_wq) 5633 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 5634 failed_mount_wq: 5635 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 5636 sbi->s_ea_inode_cache = NULL; 5637 5638 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 5639 sbi->s_ea_block_cache = NULL; 5640 5641 if (sbi->s_journal) { 5642 /* flush s_sb_upd_work before journal destroy. */ 5643 flush_work(&sbi->s_sb_upd_work); 5644 jbd2_journal_destroy(sbi->s_journal); 5645 sbi->s_journal = NULL; 5646 } 5647 failed_mount3a: 5648 ext4_es_unregister_shrinker(sbi); 5649 failed_mount3: 5650 /* flush s_sb_upd_work before sbi destroy */ 5651 flush_work(&sbi->s_sb_upd_work); 5652 del_timer_sync(&sbi->s_err_report); 5653 ext4_stop_mmpd(sbi); 5654 ext4_group_desc_free(sbi); 5655 failed_mount: 5656 if (sbi->s_chksum_driver) 5657 crypto_free_shash(sbi->s_chksum_driver); 5658 5659 #if IS_ENABLED(CONFIG_UNICODE) 5660 utf8_unload(sb->s_encoding); 5661 #endif 5662 5663 #ifdef CONFIG_QUOTA 5664 for (unsigned int i = 0; i < EXT4_MAXQUOTAS; i++) 5665 kfree(get_qf_name(sb, sbi, i)); 5666 #endif 5667 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy); 5668 brelse(sbi->s_sbh); 5669 if (sbi->s_journal_bdev_file) { 5670 invalidate_bdev(file_bdev(sbi->s_journal_bdev_file)); 5671 fput(sbi->s_journal_bdev_file); 5672 } 5673 out_fail: 5674 invalidate_bdev(sb->s_bdev); 5675 sb->s_fs_info = NULL; 5676 return err; 5677 } 5678 5679 static int ext4_fill_super(struct super_block *sb, struct fs_context *fc) 5680 { 5681 struct ext4_fs_context *ctx = fc->fs_private; 5682 struct ext4_sb_info *sbi; 5683 const char *descr; 5684 int ret; 5685 5686 sbi = ext4_alloc_sbi(sb); 5687 if (!sbi) 5688 return -ENOMEM; 5689 5690 fc->s_fs_info = sbi; 5691 5692 /* Cleanup superblock name */ 5693 strreplace(sb->s_id, '/', '!'); 5694 5695 sbi->s_sb_block = 1; /* Default super block location */ 5696 if (ctx->spec & EXT4_SPEC_s_sb_block) 5697 sbi->s_sb_block = ctx->s_sb_block; 5698 5699 ret = __ext4_fill_super(fc, sb); 5700 if (ret < 0) 5701 goto free_sbi; 5702 5703 if (sbi->s_journal) { 5704 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 5705 descr = " journalled data mode"; 5706 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 5707 descr = " ordered data mode"; 5708 else 5709 descr = " writeback data mode"; 5710 } else 5711 descr = "out journal"; 5712 5713 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 5714 ext4_msg(sb, KERN_INFO, "mounted filesystem %pU %s with%s. " 5715 "Quota mode: %s.", &sb->s_uuid, 5716 sb_rdonly(sb) ? "ro" : "r/w", descr, 5717 ext4_quota_mode(sb)); 5718 5719 /* Update the s_overhead_clusters if necessary */ 5720 ext4_update_overhead(sb, false); 5721 return 0; 5722 5723 free_sbi: 5724 ext4_free_sbi(sbi); 5725 fc->s_fs_info = NULL; 5726 return ret; 5727 } 5728 5729 static int ext4_get_tree(struct fs_context *fc) 5730 { 5731 return get_tree_bdev(fc, ext4_fill_super); 5732 } 5733 5734 /* 5735 * Setup any per-fs journal parameters now. We'll do this both on 5736 * initial mount, once the journal has been initialised but before we've 5737 * done any recovery; and again on any subsequent remount. 5738 */ 5739 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 5740 { 5741 struct ext4_sb_info *sbi = EXT4_SB(sb); 5742 5743 journal->j_commit_interval = sbi->s_commit_interval; 5744 journal->j_min_batch_time = sbi->s_min_batch_time; 5745 journal->j_max_batch_time = sbi->s_max_batch_time; 5746 ext4_fc_init(sb, journal); 5747 5748 write_lock(&journal->j_state_lock); 5749 if (test_opt(sb, BARRIER)) 5750 journal->j_flags |= JBD2_BARRIER; 5751 else 5752 journal->j_flags &= ~JBD2_BARRIER; 5753 if (test_opt(sb, DATA_ERR_ABORT)) 5754 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 5755 else 5756 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 5757 /* 5758 * Always enable journal cycle record option, letting the journal 5759 * records log transactions continuously between each mount. 5760 */ 5761 journal->j_flags |= JBD2_CYCLE_RECORD; 5762 write_unlock(&journal->j_state_lock); 5763 } 5764 5765 static struct inode *ext4_get_journal_inode(struct super_block *sb, 5766 unsigned int journal_inum) 5767 { 5768 struct inode *journal_inode; 5769 5770 /* 5771 * Test for the existence of a valid inode on disk. Bad things 5772 * happen if we iget() an unused inode, as the subsequent iput() 5773 * will try to delete it. 5774 */ 5775 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL); 5776 if (IS_ERR(journal_inode)) { 5777 ext4_msg(sb, KERN_ERR, "no journal found"); 5778 return ERR_CAST(journal_inode); 5779 } 5780 if (!journal_inode->i_nlink) { 5781 make_bad_inode(journal_inode); 5782 iput(journal_inode); 5783 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 5784 return ERR_PTR(-EFSCORRUPTED); 5785 } 5786 if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) { 5787 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 5788 iput(journal_inode); 5789 return ERR_PTR(-EFSCORRUPTED); 5790 } 5791 5792 ext4_debug("Journal inode found at %p: %lld bytes\n", 5793 journal_inode, journal_inode->i_size); 5794 return journal_inode; 5795 } 5796 5797 static int ext4_journal_bmap(journal_t *journal, sector_t *block) 5798 { 5799 struct ext4_map_blocks map; 5800 int ret; 5801 5802 if (journal->j_inode == NULL) 5803 return 0; 5804 5805 map.m_lblk = *block; 5806 map.m_len = 1; 5807 ret = ext4_map_blocks(NULL, journal->j_inode, &map, 0); 5808 if (ret <= 0) { 5809 ext4_msg(journal->j_inode->i_sb, KERN_CRIT, 5810 "journal bmap failed: block %llu ret %d\n", 5811 *block, ret); 5812 jbd2_journal_abort(journal, ret ? ret : -EIO); 5813 return ret; 5814 } 5815 *block = map.m_pblk; 5816 return 0; 5817 } 5818 5819 static journal_t *ext4_open_inode_journal(struct super_block *sb, 5820 unsigned int journal_inum) 5821 { 5822 struct inode *journal_inode; 5823 journal_t *journal; 5824 5825 journal_inode = ext4_get_journal_inode(sb, journal_inum); 5826 if (IS_ERR(journal_inode)) 5827 return ERR_CAST(journal_inode); 5828 5829 journal = jbd2_journal_init_inode(journal_inode); 5830 if (IS_ERR(journal)) { 5831 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 5832 iput(journal_inode); 5833 return ERR_CAST(journal); 5834 } 5835 journal->j_private = sb; 5836 journal->j_bmap = ext4_journal_bmap; 5837 ext4_init_journal_params(sb, journal); 5838 return journal; 5839 } 5840 5841 static struct file *ext4_get_journal_blkdev(struct super_block *sb, 5842 dev_t j_dev, ext4_fsblk_t *j_start, 5843 ext4_fsblk_t *j_len) 5844 { 5845 struct buffer_head *bh; 5846 struct block_device *bdev; 5847 struct file *bdev_file; 5848 int hblock, blocksize; 5849 ext4_fsblk_t sb_block; 5850 unsigned long offset; 5851 struct ext4_super_block *es; 5852 int errno; 5853 5854 bdev_file = bdev_file_open_by_dev(j_dev, 5855 BLK_OPEN_READ | BLK_OPEN_WRITE | BLK_OPEN_RESTRICT_WRITES, 5856 sb, &fs_holder_ops); 5857 if (IS_ERR(bdev_file)) { 5858 ext4_msg(sb, KERN_ERR, 5859 "failed to open journal device unknown-block(%u,%u) %ld", 5860 MAJOR(j_dev), MINOR(j_dev), PTR_ERR(bdev_file)); 5861 return bdev_file; 5862 } 5863 5864 bdev = file_bdev(bdev_file); 5865 blocksize = sb->s_blocksize; 5866 hblock = bdev_logical_block_size(bdev); 5867 if (blocksize < hblock) { 5868 ext4_msg(sb, KERN_ERR, 5869 "blocksize too small for journal device"); 5870 errno = -EINVAL; 5871 goto out_bdev; 5872 } 5873 5874 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 5875 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 5876 set_blocksize(bdev, blocksize); 5877 bh = __bread(bdev, sb_block, blocksize); 5878 if (!bh) { 5879 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 5880 "external journal"); 5881 errno = -EINVAL; 5882 goto out_bdev; 5883 } 5884 5885 es = (struct ext4_super_block *) (bh->b_data + offset); 5886 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 5887 !(le32_to_cpu(es->s_feature_incompat) & 5888 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 5889 ext4_msg(sb, KERN_ERR, "external journal has bad superblock"); 5890 errno = -EFSCORRUPTED; 5891 goto out_bh; 5892 } 5893 5894 if ((le32_to_cpu(es->s_feature_ro_compat) & 5895 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 5896 es->s_checksum != ext4_superblock_csum(sb, es)) { 5897 ext4_msg(sb, KERN_ERR, "external journal has corrupt superblock"); 5898 errno = -EFSCORRUPTED; 5899 goto out_bh; 5900 } 5901 5902 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 5903 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 5904 errno = -EFSCORRUPTED; 5905 goto out_bh; 5906 } 5907 5908 *j_start = sb_block + 1; 5909 *j_len = ext4_blocks_count(es); 5910 brelse(bh); 5911 return bdev_file; 5912 5913 out_bh: 5914 brelse(bh); 5915 out_bdev: 5916 fput(bdev_file); 5917 return ERR_PTR(errno); 5918 } 5919 5920 static journal_t *ext4_open_dev_journal(struct super_block *sb, 5921 dev_t j_dev) 5922 { 5923 journal_t *journal; 5924 ext4_fsblk_t j_start; 5925 ext4_fsblk_t j_len; 5926 struct file *bdev_file; 5927 int errno = 0; 5928 5929 bdev_file = ext4_get_journal_blkdev(sb, j_dev, &j_start, &j_len); 5930 if (IS_ERR(bdev_file)) 5931 return ERR_CAST(bdev_file); 5932 5933 journal = jbd2_journal_init_dev(file_bdev(bdev_file), sb->s_bdev, j_start, 5934 j_len, sb->s_blocksize); 5935 if (IS_ERR(journal)) { 5936 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 5937 errno = PTR_ERR(journal); 5938 goto out_bdev; 5939 } 5940 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 5941 ext4_msg(sb, KERN_ERR, "External journal has more than one " 5942 "user (unsupported) - %d", 5943 be32_to_cpu(journal->j_superblock->s_nr_users)); 5944 errno = -EINVAL; 5945 goto out_journal; 5946 } 5947 journal->j_private = sb; 5948 EXT4_SB(sb)->s_journal_bdev_file = bdev_file; 5949 ext4_init_journal_params(sb, journal); 5950 return journal; 5951 5952 out_journal: 5953 jbd2_journal_destroy(journal); 5954 out_bdev: 5955 fput(bdev_file); 5956 return ERR_PTR(errno); 5957 } 5958 5959 static int ext4_load_journal(struct super_block *sb, 5960 struct ext4_super_block *es, 5961 unsigned long journal_devnum) 5962 { 5963 journal_t *journal; 5964 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 5965 dev_t journal_dev; 5966 int err = 0; 5967 int really_read_only; 5968 int journal_dev_ro; 5969 5970 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5971 return -EFSCORRUPTED; 5972 5973 if (journal_devnum && 5974 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 5975 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 5976 "numbers have changed"); 5977 journal_dev = new_decode_dev(journal_devnum); 5978 } else 5979 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 5980 5981 if (journal_inum && journal_dev) { 5982 ext4_msg(sb, KERN_ERR, 5983 "filesystem has both journal inode and journal device!"); 5984 return -EINVAL; 5985 } 5986 5987 if (journal_inum) { 5988 journal = ext4_open_inode_journal(sb, journal_inum); 5989 if (IS_ERR(journal)) 5990 return PTR_ERR(journal); 5991 } else { 5992 journal = ext4_open_dev_journal(sb, journal_dev); 5993 if (IS_ERR(journal)) 5994 return PTR_ERR(journal); 5995 } 5996 5997 journal_dev_ro = bdev_read_only(journal->j_dev); 5998 really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro; 5999 6000 if (journal_dev_ro && !sb_rdonly(sb)) { 6001 ext4_msg(sb, KERN_ERR, 6002 "journal device read-only, try mounting with '-o ro'"); 6003 err = -EROFS; 6004 goto err_out; 6005 } 6006 6007 /* 6008 * Are we loading a blank journal or performing recovery after a 6009 * crash? For recovery, we need to check in advance whether we 6010 * can get read-write access to the device. 6011 */ 6012 if (ext4_has_feature_journal_needs_recovery(sb)) { 6013 if (sb_rdonly(sb)) { 6014 ext4_msg(sb, KERN_INFO, "INFO: recovery " 6015 "required on readonly filesystem"); 6016 if (really_read_only) { 6017 ext4_msg(sb, KERN_ERR, "write access " 6018 "unavailable, cannot proceed " 6019 "(try mounting with noload)"); 6020 err = -EROFS; 6021 goto err_out; 6022 } 6023 ext4_msg(sb, KERN_INFO, "write access will " 6024 "be enabled during recovery"); 6025 } 6026 } 6027 6028 if (!(journal->j_flags & JBD2_BARRIER)) 6029 ext4_msg(sb, KERN_INFO, "barriers disabled"); 6030 6031 if (!ext4_has_feature_journal_needs_recovery(sb)) 6032 err = jbd2_journal_wipe(journal, !really_read_only); 6033 if (!err) { 6034 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 6035 __le16 orig_state; 6036 bool changed = false; 6037 6038 if (save) 6039 memcpy(save, ((char *) es) + 6040 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 6041 err = jbd2_journal_load(journal); 6042 if (save && memcmp(((char *) es) + EXT4_S_ERR_START, 6043 save, EXT4_S_ERR_LEN)) { 6044 memcpy(((char *) es) + EXT4_S_ERR_START, 6045 save, EXT4_S_ERR_LEN); 6046 changed = true; 6047 } 6048 kfree(save); 6049 orig_state = es->s_state; 6050 es->s_state |= cpu_to_le16(EXT4_SB(sb)->s_mount_state & 6051 EXT4_ERROR_FS); 6052 if (orig_state != es->s_state) 6053 changed = true; 6054 /* Write out restored error information to the superblock */ 6055 if (changed && !really_read_only) { 6056 int err2; 6057 err2 = ext4_commit_super(sb); 6058 err = err ? : err2; 6059 } 6060 } 6061 6062 if (err) { 6063 ext4_msg(sb, KERN_ERR, "error loading journal"); 6064 goto err_out; 6065 } 6066 6067 EXT4_SB(sb)->s_journal = journal; 6068 err = ext4_clear_journal_err(sb, es); 6069 if (err) { 6070 EXT4_SB(sb)->s_journal = NULL; 6071 jbd2_journal_destroy(journal); 6072 return err; 6073 } 6074 6075 if (!really_read_only && journal_devnum && 6076 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 6077 es->s_journal_dev = cpu_to_le32(journal_devnum); 6078 ext4_commit_super(sb); 6079 } 6080 if (!really_read_only && journal_inum && 6081 journal_inum != le32_to_cpu(es->s_journal_inum)) { 6082 es->s_journal_inum = cpu_to_le32(journal_inum); 6083 ext4_commit_super(sb); 6084 } 6085 6086 return 0; 6087 6088 err_out: 6089 jbd2_journal_destroy(journal); 6090 return err; 6091 } 6092 6093 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */ 6094 static void ext4_update_super(struct super_block *sb) 6095 { 6096 struct ext4_sb_info *sbi = EXT4_SB(sb); 6097 struct ext4_super_block *es = sbi->s_es; 6098 struct buffer_head *sbh = sbi->s_sbh; 6099 6100 lock_buffer(sbh); 6101 /* 6102 * If the file system is mounted read-only, don't update the 6103 * superblock write time. This avoids updating the superblock 6104 * write time when we are mounting the root file system 6105 * read/only but we need to replay the journal; at that point, 6106 * for people who are east of GMT and who make their clock 6107 * tick in localtime for Windows bug-for-bug compatibility, 6108 * the clock is set in the future, and this will cause e2fsck 6109 * to complain and force a full file system check. 6110 */ 6111 if (!sb_rdonly(sb)) 6112 ext4_update_tstamp(es, s_wtime); 6113 es->s_kbytes_written = 6114 cpu_to_le64(sbi->s_kbytes_written + 6115 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) - 6116 sbi->s_sectors_written_start) >> 1)); 6117 if (percpu_counter_initialized(&sbi->s_freeclusters_counter)) 6118 ext4_free_blocks_count_set(es, 6119 EXT4_C2B(sbi, percpu_counter_sum_positive( 6120 &sbi->s_freeclusters_counter))); 6121 if (percpu_counter_initialized(&sbi->s_freeinodes_counter)) 6122 es->s_free_inodes_count = 6123 cpu_to_le32(percpu_counter_sum_positive( 6124 &sbi->s_freeinodes_counter)); 6125 /* Copy error information to the on-disk superblock */ 6126 spin_lock(&sbi->s_error_lock); 6127 if (sbi->s_add_error_count > 0) { 6128 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 6129 if (!es->s_first_error_time && !es->s_first_error_time_hi) { 6130 __ext4_update_tstamp(&es->s_first_error_time, 6131 &es->s_first_error_time_hi, 6132 sbi->s_first_error_time); 6133 strncpy(es->s_first_error_func, sbi->s_first_error_func, 6134 sizeof(es->s_first_error_func)); 6135 es->s_first_error_line = 6136 cpu_to_le32(sbi->s_first_error_line); 6137 es->s_first_error_ino = 6138 cpu_to_le32(sbi->s_first_error_ino); 6139 es->s_first_error_block = 6140 cpu_to_le64(sbi->s_first_error_block); 6141 es->s_first_error_errcode = 6142 ext4_errno_to_code(sbi->s_first_error_code); 6143 } 6144 __ext4_update_tstamp(&es->s_last_error_time, 6145 &es->s_last_error_time_hi, 6146 sbi->s_last_error_time); 6147 strncpy(es->s_last_error_func, sbi->s_last_error_func, 6148 sizeof(es->s_last_error_func)); 6149 es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line); 6150 es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino); 6151 es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block); 6152 es->s_last_error_errcode = 6153 ext4_errno_to_code(sbi->s_last_error_code); 6154 /* 6155 * Start the daily error reporting function if it hasn't been 6156 * started already 6157 */ 6158 if (!es->s_error_count) 6159 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); 6160 le32_add_cpu(&es->s_error_count, sbi->s_add_error_count); 6161 sbi->s_add_error_count = 0; 6162 } 6163 spin_unlock(&sbi->s_error_lock); 6164 6165 ext4_superblock_csum_set(sb); 6166 unlock_buffer(sbh); 6167 } 6168 6169 static int ext4_commit_super(struct super_block *sb) 6170 { 6171 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 6172 6173 if (!sbh) 6174 return -EINVAL; 6175 if (block_device_ejected(sb)) 6176 return -ENODEV; 6177 6178 ext4_update_super(sb); 6179 6180 lock_buffer(sbh); 6181 /* Buffer got discarded which means block device got invalidated */ 6182 if (!buffer_mapped(sbh)) { 6183 unlock_buffer(sbh); 6184 return -EIO; 6185 } 6186 6187 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) { 6188 /* 6189 * Oh, dear. A previous attempt to write the 6190 * superblock failed. This could happen because the 6191 * USB device was yanked out. Or it could happen to 6192 * be a transient write error and maybe the block will 6193 * be remapped. Nothing we can do but to retry the 6194 * write and hope for the best. 6195 */ 6196 ext4_msg(sb, KERN_ERR, "previous I/O error to " 6197 "superblock detected"); 6198 clear_buffer_write_io_error(sbh); 6199 set_buffer_uptodate(sbh); 6200 } 6201 get_bh(sbh); 6202 /* Clear potential dirty bit if it was journalled update */ 6203 clear_buffer_dirty(sbh); 6204 sbh->b_end_io = end_buffer_write_sync; 6205 submit_bh(REQ_OP_WRITE | REQ_SYNC | 6206 (test_opt(sb, BARRIER) ? REQ_FUA : 0), sbh); 6207 wait_on_buffer(sbh); 6208 if (buffer_write_io_error(sbh)) { 6209 ext4_msg(sb, KERN_ERR, "I/O error while writing " 6210 "superblock"); 6211 clear_buffer_write_io_error(sbh); 6212 set_buffer_uptodate(sbh); 6213 return -EIO; 6214 } 6215 return 0; 6216 } 6217 6218 /* 6219 * Have we just finished recovery? If so, and if we are mounting (or 6220 * remounting) the filesystem readonly, then we will end up with a 6221 * consistent fs on disk. Record that fact. 6222 */ 6223 static int ext4_mark_recovery_complete(struct super_block *sb, 6224 struct ext4_super_block *es) 6225 { 6226 int err; 6227 journal_t *journal = EXT4_SB(sb)->s_journal; 6228 6229 if (!ext4_has_feature_journal(sb)) { 6230 if (journal != NULL) { 6231 ext4_error(sb, "Journal got removed while the fs was " 6232 "mounted!"); 6233 return -EFSCORRUPTED; 6234 } 6235 return 0; 6236 } 6237 jbd2_journal_lock_updates(journal); 6238 err = jbd2_journal_flush(journal, 0); 6239 if (err < 0) 6240 goto out; 6241 6242 if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) || 6243 ext4_has_feature_orphan_present(sb))) { 6244 if (!ext4_orphan_file_empty(sb)) { 6245 ext4_error(sb, "Orphan file not empty on read-only fs."); 6246 err = -EFSCORRUPTED; 6247 goto out; 6248 } 6249 ext4_clear_feature_journal_needs_recovery(sb); 6250 ext4_clear_feature_orphan_present(sb); 6251 ext4_commit_super(sb); 6252 } 6253 out: 6254 jbd2_journal_unlock_updates(journal); 6255 return err; 6256 } 6257 6258 /* 6259 * If we are mounting (or read-write remounting) a filesystem whose journal 6260 * has recorded an error from a previous lifetime, move that error to the 6261 * main filesystem now. 6262 */ 6263 static int ext4_clear_journal_err(struct super_block *sb, 6264 struct ext4_super_block *es) 6265 { 6266 journal_t *journal; 6267 int j_errno; 6268 const char *errstr; 6269 6270 if (!ext4_has_feature_journal(sb)) { 6271 ext4_error(sb, "Journal got removed while the fs was mounted!"); 6272 return -EFSCORRUPTED; 6273 } 6274 6275 journal = EXT4_SB(sb)->s_journal; 6276 6277 /* 6278 * Now check for any error status which may have been recorded in the 6279 * journal by a prior ext4_error() or ext4_abort() 6280 */ 6281 6282 j_errno = jbd2_journal_errno(journal); 6283 if (j_errno) { 6284 char nbuf[16]; 6285 6286 errstr = ext4_decode_error(sb, j_errno, nbuf); 6287 ext4_warning(sb, "Filesystem error recorded " 6288 "from previous mount: %s", errstr); 6289 6290 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 6291 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 6292 j_errno = ext4_commit_super(sb); 6293 if (j_errno) 6294 return j_errno; 6295 ext4_warning(sb, "Marked fs in need of filesystem check."); 6296 6297 jbd2_journal_clear_err(journal); 6298 jbd2_journal_update_sb_errno(journal); 6299 } 6300 return 0; 6301 } 6302 6303 /* 6304 * Force the running and committing transactions to commit, 6305 * and wait on the commit. 6306 */ 6307 int ext4_force_commit(struct super_block *sb) 6308 { 6309 return ext4_journal_force_commit(EXT4_SB(sb)->s_journal); 6310 } 6311 6312 static int ext4_sync_fs(struct super_block *sb, int wait) 6313 { 6314 int ret = 0; 6315 tid_t target; 6316 bool needs_barrier = false; 6317 struct ext4_sb_info *sbi = EXT4_SB(sb); 6318 6319 if (unlikely(ext4_forced_shutdown(sb))) 6320 return 0; 6321 6322 trace_ext4_sync_fs(sb, wait); 6323 flush_workqueue(sbi->rsv_conversion_wq); 6324 /* 6325 * Writeback quota in non-journalled quota case - journalled quota has 6326 * no dirty dquots 6327 */ 6328 dquot_writeback_dquots(sb, -1); 6329 /* 6330 * Data writeback is possible w/o journal transaction, so barrier must 6331 * being sent at the end of the function. But we can skip it if 6332 * transaction_commit will do it for us. 6333 */ 6334 if (sbi->s_journal) { 6335 target = jbd2_get_latest_transaction(sbi->s_journal); 6336 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 6337 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 6338 needs_barrier = true; 6339 6340 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 6341 if (wait) 6342 ret = jbd2_log_wait_commit(sbi->s_journal, 6343 target); 6344 } 6345 } else if (wait && test_opt(sb, BARRIER)) 6346 needs_barrier = true; 6347 if (needs_barrier) { 6348 int err; 6349 err = blkdev_issue_flush(sb->s_bdev); 6350 if (!ret) 6351 ret = err; 6352 } 6353 6354 return ret; 6355 } 6356 6357 /* 6358 * LVM calls this function before a (read-only) snapshot is created. This 6359 * gives us a chance to flush the journal completely and mark the fs clean. 6360 * 6361 * Note that only this function cannot bring a filesystem to be in a clean 6362 * state independently. It relies on upper layer to stop all data & metadata 6363 * modifications. 6364 */ 6365 static int ext4_freeze(struct super_block *sb) 6366 { 6367 int error = 0; 6368 journal_t *journal = EXT4_SB(sb)->s_journal; 6369 6370 if (journal) { 6371 /* Now we set up the journal barrier. */ 6372 jbd2_journal_lock_updates(journal); 6373 6374 /* 6375 * Don't clear the needs_recovery flag if we failed to 6376 * flush the journal. 6377 */ 6378 error = jbd2_journal_flush(journal, 0); 6379 if (error < 0) 6380 goto out; 6381 6382 /* Journal blocked and flushed, clear needs_recovery flag. */ 6383 ext4_clear_feature_journal_needs_recovery(sb); 6384 if (ext4_orphan_file_empty(sb)) 6385 ext4_clear_feature_orphan_present(sb); 6386 } 6387 6388 error = ext4_commit_super(sb); 6389 out: 6390 if (journal) 6391 /* we rely on upper layer to stop further updates */ 6392 jbd2_journal_unlock_updates(journal); 6393 return error; 6394 } 6395 6396 /* 6397 * Called by LVM after the snapshot is done. We need to reset the RECOVER 6398 * flag here, even though the filesystem is not technically dirty yet. 6399 */ 6400 static int ext4_unfreeze(struct super_block *sb) 6401 { 6402 if (ext4_forced_shutdown(sb)) 6403 return 0; 6404 6405 if (EXT4_SB(sb)->s_journal) { 6406 /* Reset the needs_recovery flag before the fs is unlocked. */ 6407 ext4_set_feature_journal_needs_recovery(sb); 6408 if (ext4_has_feature_orphan_file(sb)) 6409 ext4_set_feature_orphan_present(sb); 6410 } 6411 6412 ext4_commit_super(sb); 6413 return 0; 6414 } 6415 6416 /* 6417 * Structure to save mount options for ext4_remount's benefit 6418 */ 6419 struct ext4_mount_options { 6420 unsigned long s_mount_opt; 6421 unsigned long s_mount_opt2; 6422 kuid_t s_resuid; 6423 kgid_t s_resgid; 6424 unsigned long s_commit_interval; 6425 u32 s_min_batch_time, s_max_batch_time; 6426 #ifdef CONFIG_QUOTA 6427 int s_jquota_fmt; 6428 char *s_qf_names[EXT4_MAXQUOTAS]; 6429 #endif 6430 }; 6431 6432 static int __ext4_remount(struct fs_context *fc, struct super_block *sb) 6433 { 6434 struct ext4_fs_context *ctx = fc->fs_private; 6435 struct ext4_super_block *es; 6436 struct ext4_sb_info *sbi = EXT4_SB(sb); 6437 unsigned long old_sb_flags; 6438 struct ext4_mount_options old_opts; 6439 ext4_group_t g; 6440 int err = 0; 6441 int alloc_ctx; 6442 #ifdef CONFIG_QUOTA 6443 int enable_quota = 0; 6444 int i, j; 6445 char *to_free[EXT4_MAXQUOTAS]; 6446 #endif 6447 6448 6449 /* Store the original options */ 6450 old_sb_flags = sb->s_flags; 6451 old_opts.s_mount_opt = sbi->s_mount_opt; 6452 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 6453 old_opts.s_resuid = sbi->s_resuid; 6454 old_opts.s_resgid = sbi->s_resgid; 6455 old_opts.s_commit_interval = sbi->s_commit_interval; 6456 old_opts.s_min_batch_time = sbi->s_min_batch_time; 6457 old_opts.s_max_batch_time = sbi->s_max_batch_time; 6458 #ifdef CONFIG_QUOTA 6459 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 6460 for (i = 0; i < EXT4_MAXQUOTAS; i++) 6461 if (sbi->s_qf_names[i]) { 6462 char *qf_name = get_qf_name(sb, sbi, i); 6463 6464 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL); 6465 if (!old_opts.s_qf_names[i]) { 6466 for (j = 0; j < i; j++) 6467 kfree(old_opts.s_qf_names[j]); 6468 return -ENOMEM; 6469 } 6470 } else 6471 old_opts.s_qf_names[i] = NULL; 6472 #endif 6473 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) { 6474 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 6475 ctx->journal_ioprio = 6476 sbi->s_journal->j_task->io_context->ioprio; 6477 else 6478 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 6479 6480 } 6481 6482 /* 6483 * Changing the DIOREAD_NOLOCK or DELALLOC mount options may cause 6484 * two calls to ext4_should_dioread_nolock() to return inconsistent 6485 * values, triggering WARN_ON in ext4_add_complete_io(). we grab 6486 * here s_writepages_rwsem to avoid race between writepages ops and 6487 * remount. 6488 */ 6489 alloc_ctx = ext4_writepages_down_write(sb); 6490 ext4_apply_options(fc, sb); 6491 ext4_writepages_up_write(sb, alloc_ctx); 6492 6493 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 6494 test_opt(sb, JOURNAL_CHECKSUM)) { 6495 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 6496 "during remount not supported; ignoring"); 6497 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 6498 } 6499 6500 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 6501 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 6502 ext4_msg(sb, KERN_ERR, "can't mount with " 6503 "both data=journal and delalloc"); 6504 err = -EINVAL; 6505 goto restore_opts; 6506 } 6507 if (test_opt(sb, DIOREAD_NOLOCK)) { 6508 ext4_msg(sb, KERN_ERR, "can't mount with " 6509 "both data=journal and dioread_nolock"); 6510 err = -EINVAL; 6511 goto restore_opts; 6512 } 6513 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) { 6514 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 6515 ext4_msg(sb, KERN_ERR, "can't mount with " 6516 "journal_async_commit in data=ordered mode"); 6517 err = -EINVAL; 6518 goto restore_opts; 6519 } 6520 } 6521 6522 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) { 6523 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount"); 6524 err = -EINVAL; 6525 goto restore_opts; 6526 } 6527 6528 if (test_opt2(sb, ABORT)) 6529 ext4_abort(sb, ESHUTDOWN, "Abort forced by user"); 6530 6531 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 6532 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 6533 6534 es = sbi->s_es; 6535 6536 if (sbi->s_journal) { 6537 ext4_init_journal_params(sb, sbi->s_journal); 6538 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio); 6539 } 6540 6541 /* Flush outstanding errors before changing fs state */ 6542 flush_work(&sbi->s_sb_upd_work); 6543 6544 if ((bool)(fc->sb_flags & SB_RDONLY) != sb_rdonly(sb)) { 6545 if (ext4_forced_shutdown(sb)) { 6546 err = -EROFS; 6547 goto restore_opts; 6548 } 6549 6550 if (fc->sb_flags & SB_RDONLY) { 6551 err = sync_filesystem(sb); 6552 if (err < 0) 6553 goto restore_opts; 6554 err = dquot_suspend(sb, -1); 6555 if (err < 0) 6556 goto restore_opts; 6557 6558 /* 6559 * First of all, the unconditional stuff we have to do 6560 * to disable replay of the journal when we next remount 6561 */ 6562 sb->s_flags |= SB_RDONLY; 6563 6564 /* 6565 * OK, test if we are remounting a valid rw partition 6566 * readonly, and if so set the rdonly flag and then 6567 * mark the partition as valid again. 6568 */ 6569 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 6570 (sbi->s_mount_state & EXT4_VALID_FS)) 6571 es->s_state = cpu_to_le16(sbi->s_mount_state); 6572 6573 if (sbi->s_journal) { 6574 /* 6575 * We let remount-ro finish even if marking fs 6576 * as clean failed... 6577 */ 6578 ext4_mark_recovery_complete(sb, es); 6579 } 6580 } else { 6581 /* Make sure we can mount this feature set readwrite */ 6582 if (ext4_has_feature_readonly(sb) || 6583 !ext4_feature_set_ok(sb, 0)) { 6584 err = -EROFS; 6585 goto restore_opts; 6586 } 6587 /* 6588 * Make sure the group descriptor checksums 6589 * are sane. If they aren't, refuse to remount r/w. 6590 */ 6591 for (g = 0; g < sbi->s_groups_count; g++) { 6592 struct ext4_group_desc *gdp = 6593 ext4_get_group_desc(sb, g, NULL); 6594 6595 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 6596 ext4_msg(sb, KERN_ERR, 6597 "ext4_remount: Checksum for group %u failed (%u!=%u)", 6598 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), 6599 le16_to_cpu(gdp->bg_checksum)); 6600 err = -EFSBADCRC; 6601 goto restore_opts; 6602 } 6603 } 6604 6605 /* 6606 * If we have an unprocessed orphan list hanging 6607 * around from a previously readonly bdev mount, 6608 * require a full umount/remount for now. 6609 */ 6610 if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) { 6611 ext4_msg(sb, KERN_WARNING, "Couldn't " 6612 "remount RDWR because of unprocessed " 6613 "orphan inode list. Please " 6614 "umount/remount instead"); 6615 err = -EINVAL; 6616 goto restore_opts; 6617 } 6618 6619 /* 6620 * Mounting a RDONLY partition read-write, so reread 6621 * and store the current valid flag. (It may have 6622 * been changed by e2fsck since we originally mounted 6623 * the partition.) 6624 */ 6625 if (sbi->s_journal) { 6626 err = ext4_clear_journal_err(sb, es); 6627 if (err) 6628 goto restore_opts; 6629 } 6630 sbi->s_mount_state = (le16_to_cpu(es->s_state) & 6631 ~EXT4_FC_REPLAY); 6632 6633 err = ext4_setup_super(sb, es, 0); 6634 if (err) 6635 goto restore_opts; 6636 6637 sb->s_flags &= ~SB_RDONLY; 6638 if (ext4_has_feature_mmp(sb)) { 6639 err = ext4_multi_mount_protect(sb, 6640 le64_to_cpu(es->s_mmp_block)); 6641 if (err) 6642 goto restore_opts; 6643 } 6644 #ifdef CONFIG_QUOTA 6645 enable_quota = 1; 6646 #endif 6647 } 6648 } 6649 6650 /* 6651 * Handle creation of system zone data early because it can fail. 6652 * Releasing of existing data is done when we are sure remount will 6653 * succeed. 6654 */ 6655 if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) { 6656 err = ext4_setup_system_zone(sb); 6657 if (err) 6658 goto restore_opts; 6659 } 6660 6661 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) { 6662 err = ext4_commit_super(sb); 6663 if (err) 6664 goto restore_opts; 6665 } 6666 6667 #ifdef CONFIG_QUOTA 6668 if (enable_quota) { 6669 if (sb_any_quota_suspended(sb)) 6670 dquot_resume(sb, -1); 6671 else if (ext4_has_feature_quota(sb)) { 6672 err = ext4_enable_quotas(sb); 6673 if (err) 6674 goto restore_opts; 6675 } 6676 } 6677 /* Release old quota file names */ 6678 for (i = 0; i < EXT4_MAXQUOTAS; i++) 6679 kfree(old_opts.s_qf_names[i]); 6680 #endif 6681 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks) 6682 ext4_release_system_zone(sb); 6683 6684 /* 6685 * Reinitialize lazy itable initialization thread based on 6686 * current settings 6687 */ 6688 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE)) 6689 ext4_unregister_li_request(sb); 6690 else { 6691 ext4_group_t first_not_zeroed; 6692 first_not_zeroed = ext4_has_uninit_itable(sb); 6693 ext4_register_li_request(sb, first_not_zeroed); 6694 } 6695 6696 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb)) 6697 ext4_stop_mmpd(sbi); 6698 6699 return 0; 6700 6701 restore_opts: 6702 /* 6703 * If there was a failing r/w to ro transition, we may need to 6704 * re-enable quota 6705 */ 6706 if (sb_rdonly(sb) && !(old_sb_flags & SB_RDONLY) && 6707 sb_any_quota_suspended(sb)) 6708 dquot_resume(sb, -1); 6709 6710 alloc_ctx = ext4_writepages_down_write(sb); 6711 sb->s_flags = old_sb_flags; 6712 sbi->s_mount_opt = old_opts.s_mount_opt; 6713 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 6714 sbi->s_resuid = old_opts.s_resuid; 6715 sbi->s_resgid = old_opts.s_resgid; 6716 sbi->s_commit_interval = old_opts.s_commit_interval; 6717 sbi->s_min_batch_time = old_opts.s_min_batch_time; 6718 sbi->s_max_batch_time = old_opts.s_max_batch_time; 6719 ext4_writepages_up_write(sb, alloc_ctx); 6720 6721 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks) 6722 ext4_release_system_zone(sb); 6723 #ifdef CONFIG_QUOTA 6724 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 6725 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 6726 to_free[i] = get_qf_name(sb, sbi, i); 6727 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]); 6728 } 6729 synchronize_rcu(); 6730 for (i = 0; i < EXT4_MAXQUOTAS; i++) 6731 kfree(to_free[i]); 6732 #endif 6733 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb)) 6734 ext4_stop_mmpd(sbi); 6735 return err; 6736 } 6737 6738 static int ext4_reconfigure(struct fs_context *fc) 6739 { 6740 struct super_block *sb = fc->root->d_sb; 6741 int ret; 6742 6743 fc->s_fs_info = EXT4_SB(sb); 6744 6745 ret = ext4_check_opt_consistency(fc, sb); 6746 if (ret < 0) 6747 return ret; 6748 6749 ret = __ext4_remount(fc, sb); 6750 if (ret < 0) 6751 return ret; 6752 6753 ext4_msg(sb, KERN_INFO, "re-mounted %pU %s. Quota mode: %s.", 6754 &sb->s_uuid, sb_rdonly(sb) ? "ro" : "r/w", 6755 ext4_quota_mode(sb)); 6756 6757 return 0; 6758 } 6759 6760 #ifdef CONFIG_QUOTA 6761 static int ext4_statfs_project(struct super_block *sb, 6762 kprojid_t projid, struct kstatfs *buf) 6763 { 6764 struct kqid qid; 6765 struct dquot *dquot; 6766 u64 limit; 6767 u64 curblock; 6768 6769 qid = make_kqid_projid(projid); 6770 dquot = dqget(sb, qid); 6771 if (IS_ERR(dquot)) 6772 return PTR_ERR(dquot); 6773 spin_lock(&dquot->dq_dqb_lock); 6774 6775 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit, 6776 dquot->dq_dqb.dqb_bhardlimit); 6777 limit >>= sb->s_blocksize_bits; 6778 6779 if (limit && buf->f_blocks > limit) { 6780 curblock = (dquot->dq_dqb.dqb_curspace + 6781 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; 6782 buf->f_blocks = limit; 6783 buf->f_bfree = buf->f_bavail = 6784 (buf->f_blocks > curblock) ? 6785 (buf->f_blocks - curblock) : 0; 6786 } 6787 6788 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit, 6789 dquot->dq_dqb.dqb_ihardlimit); 6790 if (limit && buf->f_files > limit) { 6791 buf->f_files = limit; 6792 buf->f_ffree = 6793 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 6794 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 6795 } 6796 6797 spin_unlock(&dquot->dq_dqb_lock); 6798 dqput(dquot); 6799 return 0; 6800 } 6801 #endif 6802 6803 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 6804 { 6805 struct super_block *sb = dentry->d_sb; 6806 struct ext4_sb_info *sbi = EXT4_SB(sb); 6807 struct ext4_super_block *es = sbi->s_es; 6808 ext4_fsblk_t overhead = 0, resv_blocks; 6809 s64 bfree; 6810 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 6811 6812 if (!test_opt(sb, MINIX_DF)) 6813 overhead = sbi->s_overhead; 6814 6815 buf->f_type = EXT4_SUPER_MAGIC; 6816 buf->f_bsize = sb->s_blocksize; 6817 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 6818 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 6819 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 6820 /* prevent underflow in case that few free space is available */ 6821 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 6822 buf->f_bavail = buf->f_bfree - 6823 (ext4_r_blocks_count(es) + resv_blocks); 6824 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 6825 buf->f_bavail = 0; 6826 buf->f_files = le32_to_cpu(es->s_inodes_count); 6827 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 6828 buf->f_namelen = EXT4_NAME_LEN; 6829 buf->f_fsid = uuid_to_fsid(es->s_uuid); 6830 6831 #ifdef CONFIG_QUOTA 6832 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) && 6833 sb_has_quota_limits_enabled(sb, PRJQUOTA)) 6834 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf); 6835 #endif 6836 return 0; 6837 } 6838 6839 6840 #ifdef CONFIG_QUOTA 6841 6842 /* 6843 * Helper functions so that transaction is started before we acquire dqio_sem 6844 * to keep correct lock ordering of transaction > dqio_sem 6845 */ 6846 static inline struct inode *dquot_to_inode(struct dquot *dquot) 6847 { 6848 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 6849 } 6850 6851 static int ext4_write_dquot(struct dquot *dquot) 6852 { 6853 int ret, err; 6854 handle_t *handle; 6855 struct inode *inode; 6856 6857 inode = dquot_to_inode(dquot); 6858 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 6859 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 6860 if (IS_ERR(handle)) 6861 return PTR_ERR(handle); 6862 ret = dquot_commit(dquot); 6863 if (ret < 0) 6864 ext4_error_err(dquot->dq_sb, -ret, 6865 "Failed to commit dquot type %d", 6866 dquot->dq_id.type); 6867 err = ext4_journal_stop(handle); 6868 if (!ret) 6869 ret = err; 6870 return ret; 6871 } 6872 6873 static int ext4_acquire_dquot(struct dquot *dquot) 6874 { 6875 int ret, err; 6876 handle_t *handle; 6877 6878 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 6879 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 6880 if (IS_ERR(handle)) 6881 return PTR_ERR(handle); 6882 ret = dquot_acquire(dquot); 6883 if (ret < 0) 6884 ext4_error_err(dquot->dq_sb, -ret, 6885 "Failed to acquire dquot type %d", 6886 dquot->dq_id.type); 6887 err = ext4_journal_stop(handle); 6888 if (!ret) 6889 ret = err; 6890 return ret; 6891 } 6892 6893 static int ext4_release_dquot(struct dquot *dquot) 6894 { 6895 int ret, err; 6896 handle_t *handle; 6897 6898 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 6899 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 6900 if (IS_ERR(handle)) { 6901 /* Release dquot anyway to avoid endless cycle in dqput() */ 6902 dquot_release(dquot); 6903 return PTR_ERR(handle); 6904 } 6905 ret = dquot_release(dquot); 6906 if (ret < 0) 6907 ext4_error_err(dquot->dq_sb, -ret, 6908 "Failed to release dquot type %d", 6909 dquot->dq_id.type); 6910 err = ext4_journal_stop(handle); 6911 if (!ret) 6912 ret = err; 6913 return ret; 6914 } 6915 6916 static int ext4_mark_dquot_dirty(struct dquot *dquot) 6917 { 6918 struct super_block *sb = dquot->dq_sb; 6919 6920 if (ext4_is_quota_journalled(sb)) { 6921 dquot_mark_dquot_dirty(dquot); 6922 return ext4_write_dquot(dquot); 6923 } else { 6924 return dquot_mark_dquot_dirty(dquot); 6925 } 6926 } 6927 6928 static int ext4_write_info(struct super_block *sb, int type) 6929 { 6930 int ret, err; 6931 handle_t *handle; 6932 6933 /* Data block + inode block */ 6934 handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2); 6935 if (IS_ERR(handle)) 6936 return PTR_ERR(handle); 6937 ret = dquot_commit_info(sb, type); 6938 err = ext4_journal_stop(handle); 6939 if (!ret) 6940 ret = err; 6941 return ret; 6942 } 6943 6944 static void lockdep_set_quota_inode(struct inode *inode, int subclass) 6945 { 6946 struct ext4_inode_info *ei = EXT4_I(inode); 6947 6948 /* The first argument of lockdep_set_subclass has to be 6949 * *exactly* the same as the argument to init_rwsem() --- in 6950 * this case, in init_once() --- or lockdep gets unhappy 6951 * because the name of the lock is set using the 6952 * stringification of the argument to init_rwsem(). 6953 */ 6954 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */ 6955 lockdep_set_subclass(&ei->i_data_sem, subclass); 6956 } 6957 6958 /* 6959 * Standard function to be called on quota_on 6960 */ 6961 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 6962 const struct path *path) 6963 { 6964 int err; 6965 6966 if (!test_opt(sb, QUOTA)) 6967 return -EINVAL; 6968 6969 /* Quotafile not on the same filesystem? */ 6970 if (path->dentry->d_sb != sb) 6971 return -EXDEV; 6972 6973 /* Quota already enabled for this file? */ 6974 if (IS_NOQUOTA(d_inode(path->dentry))) 6975 return -EBUSY; 6976 6977 /* Journaling quota? */ 6978 if (EXT4_SB(sb)->s_qf_names[type]) { 6979 /* Quotafile not in fs root? */ 6980 if (path->dentry->d_parent != sb->s_root) 6981 ext4_msg(sb, KERN_WARNING, 6982 "Quota file not on filesystem root. " 6983 "Journaled quota will not work"); 6984 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY; 6985 } else { 6986 /* 6987 * Clear the flag just in case mount options changed since 6988 * last time. 6989 */ 6990 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY; 6991 } 6992 6993 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA); 6994 err = dquot_quota_on(sb, type, format_id, path); 6995 if (!err) { 6996 struct inode *inode = d_inode(path->dentry); 6997 handle_t *handle; 6998 6999 /* 7000 * Set inode flags to prevent userspace from messing with quota 7001 * files. If this fails, we return success anyway since quotas 7002 * are already enabled and this is not a hard failure. 7003 */ 7004 inode_lock(inode); 7005 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 7006 if (IS_ERR(handle)) 7007 goto unlock_inode; 7008 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL; 7009 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE, 7010 S_NOATIME | S_IMMUTABLE); 7011 err = ext4_mark_inode_dirty(handle, inode); 7012 ext4_journal_stop(handle); 7013 unlock_inode: 7014 inode_unlock(inode); 7015 if (err) 7016 dquot_quota_off(sb, type); 7017 } 7018 if (err) 7019 lockdep_set_quota_inode(path->dentry->d_inode, 7020 I_DATA_SEM_NORMAL); 7021 return err; 7022 } 7023 7024 static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum) 7025 { 7026 switch (type) { 7027 case USRQUOTA: 7028 return qf_inum == EXT4_USR_QUOTA_INO; 7029 case GRPQUOTA: 7030 return qf_inum == EXT4_GRP_QUOTA_INO; 7031 case PRJQUOTA: 7032 return qf_inum >= EXT4_GOOD_OLD_FIRST_INO; 7033 default: 7034 BUG(); 7035 } 7036 } 7037 7038 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 7039 unsigned int flags) 7040 { 7041 int err; 7042 struct inode *qf_inode; 7043 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 7044 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 7045 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 7046 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 7047 }; 7048 7049 BUG_ON(!ext4_has_feature_quota(sb)); 7050 7051 if (!qf_inums[type]) 7052 return -EPERM; 7053 7054 if (!ext4_check_quota_inum(type, qf_inums[type])) { 7055 ext4_error(sb, "Bad quota inum: %lu, type: %d", 7056 qf_inums[type], type); 7057 return -EUCLEAN; 7058 } 7059 7060 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL); 7061 if (IS_ERR(qf_inode)) { 7062 ext4_error(sb, "Bad quota inode: %lu, type: %d", 7063 qf_inums[type], type); 7064 return PTR_ERR(qf_inode); 7065 } 7066 7067 /* Don't account quota for quota files to avoid recursion */ 7068 qf_inode->i_flags |= S_NOQUOTA; 7069 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA); 7070 err = dquot_load_quota_inode(qf_inode, type, format_id, flags); 7071 if (err) 7072 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL); 7073 iput(qf_inode); 7074 7075 return err; 7076 } 7077 7078 /* Enable usage tracking for all quota types. */ 7079 int ext4_enable_quotas(struct super_block *sb) 7080 { 7081 int type, err = 0; 7082 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 7083 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 7084 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 7085 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 7086 }; 7087 bool quota_mopt[EXT4_MAXQUOTAS] = { 7088 test_opt(sb, USRQUOTA), 7089 test_opt(sb, GRPQUOTA), 7090 test_opt(sb, PRJQUOTA), 7091 }; 7092 7093 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 7094 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 7095 if (qf_inums[type]) { 7096 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 7097 DQUOT_USAGE_ENABLED | 7098 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 7099 if (err) { 7100 ext4_warning(sb, 7101 "Failed to enable quota tracking " 7102 "(type=%d, err=%d, ino=%lu). " 7103 "Please run e2fsck to fix.", type, 7104 err, qf_inums[type]); 7105 7106 ext4_quotas_off(sb, type); 7107 return err; 7108 } 7109 } 7110 } 7111 return 0; 7112 } 7113 7114 static int ext4_quota_off(struct super_block *sb, int type) 7115 { 7116 struct inode *inode = sb_dqopt(sb)->files[type]; 7117 handle_t *handle; 7118 int err; 7119 7120 /* Force all delayed allocation blocks to be allocated. 7121 * Caller already holds s_umount sem */ 7122 if (test_opt(sb, DELALLOC)) 7123 sync_filesystem(sb); 7124 7125 if (!inode || !igrab(inode)) 7126 goto out; 7127 7128 err = dquot_quota_off(sb, type); 7129 if (err || ext4_has_feature_quota(sb)) 7130 goto out_put; 7131 /* 7132 * When the filesystem was remounted read-only first, we cannot cleanup 7133 * inode flags here. Bad luck but people should be using QUOTA feature 7134 * these days anyway. 7135 */ 7136 if (sb_rdonly(sb)) 7137 goto out_put; 7138 7139 inode_lock(inode); 7140 /* 7141 * Update modification times of quota files when userspace can 7142 * start looking at them. If we fail, we return success anyway since 7143 * this is not a hard failure and quotas are already disabled. 7144 */ 7145 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 7146 if (IS_ERR(handle)) { 7147 err = PTR_ERR(handle); 7148 goto out_unlock; 7149 } 7150 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL); 7151 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE); 7152 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 7153 err = ext4_mark_inode_dirty(handle, inode); 7154 ext4_journal_stop(handle); 7155 out_unlock: 7156 inode_unlock(inode); 7157 out_put: 7158 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL); 7159 iput(inode); 7160 return err; 7161 out: 7162 return dquot_quota_off(sb, type); 7163 } 7164 7165 /* Read data from quotafile - avoid pagecache and such because we cannot afford 7166 * acquiring the locks... As quota files are never truncated and quota code 7167 * itself serializes the operations (and no one else should touch the files) 7168 * we don't have to be afraid of races */ 7169 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 7170 size_t len, loff_t off) 7171 { 7172 struct inode *inode = sb_dqopt(sb)->files[type]; 7173 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 7174 int offset = off & (sb->s_blocksize - 1); 7175 int tocopy; 7176 size_t toread; 7177 struct buffer_head *bh; 7178 loff_t i_size = i_size_read(inode); 7179 7180 if (off > i_size) 7181 return 0; 7182 if (off+len > i_size) 7183 len = i_size-off; 7184 toread = len; 7185 while (toread > 0) { 7186 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread); 7187 bh = ext4_bread(NULL, inode, blk, 0); 7188 if (IS_ERR(bh)) 7189 return PTR_ERR(bh); 7190 if (!bh) /* A hole? */ 7191 memset(data, 0, tocopy); 7192 else 7193 memcpy(data, bh->b_data+offset, tocopy); 7194 brelse(bh); 7195 offset = 0; 7196 toread -= tocopy; 7197 data += tocopy; 7198 blk++; 7199 } 7200 return len; 7201 } 7202 7203 /* Write to quotafile (we know the transaction is already started and has 7204 * enough credits) */ 7205 static ssize_t ext4_quota_write(struct super_block *sb, int type, 7206 const char *data, size_t len, loff_t off) 7207 { 7208 struct inode *inode = sb_dqopt(sb)->files[type]; 7209 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 7210 int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1); 7211 int retries = 0; 7212 struct buffer_head *bh; 7213 handle_t *handle = journal_current_handle(); 7214 7215 if (!handle) { 7216 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 7217 " cancelled because transaction is not started", 7218 (unsigned long long)off, (unsigned long long)len); 7219 return -EIO; 7220 } 7221 /* 7222 * Since we account only one data block in transaction credits, 7223 * then it is impossible to cross a block boundary. 7224 */ 7225 if (sb->s_blocksize - offset < len) { 7226 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 7227 " cancelled because not block aligned", 7228 (unsigned long long)off, (unsigned long long)len); 7229 return -EIO; 7230 } 7231 7232 do { 7233 bh = ext4_bread(handle, inode, blk, 7234 EXT4_GET_BLOCKS_CREATE | 7235 EXT4_GET_BLOCKS_METADATA_NOFAIL); 7236 } while (PTR_ERR(bh) == -ENOSPC && 7237 ext4_should_retry_alloc(inode->i_sb, &retries)); 7238 if (IS_ERR(bh)) 7239 return PTR_ERR(bh); 7240 if (!bh) 7241 goto out; 7242 BUFFER_TRACE(bh, "get write access"); 7243 err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE); 7244 if (err) { 7245 brelse(bh); 7246 return err; 7247 } 7248 lock_buffer(bh); 7249 memcpy(bh->b_data+offset, data, len); 7250 flush_dcache_page(bh->b_page); 7251 unlock_buffer(bh); 7252 err = ext4_handle_dirty_metadata(handle, NULL, bh); 7253 brelse(bh); 7254 out: 7255 if (inode->i_size < off + len) { 7256 i_size_write(inode, off + len); 7257 EXT4_I(inode)->i_disksize = inode->i_size; 7258 err2 = ext4_mark_inode_dirty(handle, inode); 7259 if (unlikely(err2 && !err)) 7260 err = err2; 7261 } 7262 return err ? err : len; 7263 } 7264 #endif 7265 7266 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 7267 static inline void register_as_ext2(void) 7268 { 7269 int err = register_filesystem(&ext2_fs_type); 7270 if (err) 7271 printk(KERN_WARNING 7272 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 7273 } 7274 7275 static inline void unregister_as_ext2(void) 7276 { 7277 unregister_filesystem(&ext2_fs_type); 7278 } 7279 7280 static inline int ext2_feature_set_ok(struct super_block *sb) 7281 { 7282 if (ext4_has_unknown_ext2_incompat_features(sb)) 7283 return 0; 7284 if (sb_rdonly(sb)) 7285 return 1; 7286 if (ext4_has_unknown_ext2_ro_compat_features(sb)) 7287 return 0; 7288 return 1; 7289 } 7290 #else 7291 static inline void register_as_ext2(void) { } 7292 static inline void unregister_as_ext2(void) { } 7293 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 7294 #endif 7295 7296 static inline void register_as_ext3(void) 7297 { 7298 int err = register_filesystem(&ext3_fs_type); 7299 if (err) 7300 printk(KERN_WARNING 7301 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 7302 } 7303 7304 static inline void unregister_as_ext3(void) 7305 { 7306 unregister_filesystem(&ext3_fs_type); 7307 } 7308 7309 static inline int ext3_feature_set_ok(struct super_block *sb) 7310 { 7311 if (ext4_has_unknown_ext3_incompat_features(sb)) 7312 return 0; 7313 if (!ext4_has_feature_journal(sb)) 7314 return 0; 7315 if (sb_rdonly(sb)) 7316 return 1; 7317 if (ext4_has_unknown_ext3_ro_compat_features(sb)) 7318 return 0; 7319 return 1; 7320 } 7321 7322 static void ext4_kill_sb(struct super_block *sb) 7323 { 7324 struct ext4_sb_info *sbi = EXT4_SB(sb); 7325 struct file *bdev_file = sbi ? sbi->s_journal_bdev_file : NULL; 7326 7327 kill_block_super(sb); 7328 7329 if (bdev_file) 7330 fput(bdev_file); 7331 } 7332 7333 static struct file_system_type ext4_fs_type = { 7334 .owner = THIS_MODULE, 7335 .name = "ext4", 7336 .init_fs_context = ext4_init_fs_context, 7337 .parameters = ext4_param_specs, 7338 .kill_sb = ext4_kill_sb, 7339 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP, 7340 }; 7341 MODULE_ALIAS_FS("ext4"); 7342 7343 /* Shared across all ext4 file systems */ 7344 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 7345 7346 static int __init ext4_init_fs(void) 7347 { 7348 int i, err; 7349 7350 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 7351 ext4_li_info = NULL; 7352 7353 /* Build-time check for flags consistency */ 7354 ext4_check_flag_values(); 7355 7356 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) 7357 init_waitqueue_head(&ext4__ioend_wq[i]); 7358 7359 err = ext4_init_es(); 7360 if (err) 7361 return err; 7362 7363 err = ext4_init_pending(); 7364 if (err) 7365 goto out7; 7366 7367 err = ext4_init_post_read_processing(); 7368 if (err) 7369 goto out6; 7370 7371 err = ext4_init_pageio(); 7372 if (err) 7373 goto out5; 7374 7375 err = ext4_init_system_zone(); 7376 if (err) 7377 goto out4; 7378 7379 err = ext4_init_sysfs(); 7380 if (err) 7381 goto out3; 7382 7383 err = ext4_init_mballoc(); 7384 if (err) 7385 goto out2; 7386 err = init_inodecache(); 7387 if (err) 7388 goto out1; 7389 7390 err = ext4_fc_init_dentry_cache(); 7391 if (err) 7392 goto out05; 7393 7394 register_as_ext3(); 7395 register_as_ext2(); 7396 err = register_filesystem(&ext4_fs_type); 7397 if (err) 7398 goto out; 7399 7400 return 0; 7401 out: 7402 unregister_as_ext2(); 7403 unregister_as_ext3(); 7404 ext4_fc_destroy_dentry_cache(); 7405 out05: 7406 destroy_inodecache(); 7407 out1: 7408 ext4_exit_mballoc(); 7409 out2: 7410 ext4_exit_sysfs(); 7411 out3: 7412 ext4_exit_system_zone(); 7413 out4: 7414 ext4_exit_pageio(); 7415 out5: 7416 ext4_exit_post_read_processing(); 7417 out6: 7418 ext4_exit_pending(); 7419 out7: 7420 ext4_exit_es(); 7421 7422 return err; 7423 } 7424 7425 static void __exit ext4_exit_fs(void) 7426 { 7427 ext4_destroy_lazyinit_thread(); 7428 unregister_as_ext2(); 7429 unregister_as_ext3(); 7430 unregister_filesystem(&ext4_fs_type); 7431 ext4_fc_destroy_dentry_cache(); 7432 destroy_inodecache(); 7433 ext4_exit_mballoc(); 7434 ext4_exit_sysfs(); 7435 ext4_exit_system_zone(); 7436 ext4_exit_pageio(); 7437 ext4_exit_post_read_processing(); 7438 ext4_exit_es(); 7439 ext4_exit_pending(); 7440 } 7441 7442 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 7443 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 7444 MODULE_LICENSE("GPL"); 7445 MODULE_SOFTDEP("pre: crc32c"); 7446 module_init(ext4_init_fs) 7447 module_exit(ext4_exit_fs) 7448